WorldWideScience

Sample records for selenium hydrides

  1. Simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples using hydride generation ICPMS

    International Nuclear Information System (INIS)

    Jankowski, L.M.; Breidenbach, R.; Bakker, I.J.I.; Epema, O.J.

    2009-01-01

    Full text: A quantitative method for simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples is being developed using hydride generation ICPMS. These elements must be first transformed into hydride-forming oxidation states. This is particularly challenging for selenium and antimony because selenium is susceptible to reduction to the non-hydride-forming elemental state and antimony requires strong reducing conditions. The effectiveness of three reducing agents (KI, thiourea, cysteine) is studied. A comparison is made between addition of reducing agent to the sample and addition of KI to the NaBH 4 solution. Best results were obtained with the latter approach. (author)

  2. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  3. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Carrion, Nereida; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-01-01

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 μm gas orifice nebulizer exhibits a better detection limit than the 120 μm nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3σb) of 3 orders of magnitude and 0.2 μg l -1 for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l -1 , respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values

  4. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  5. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Czech Academy of Sciences Publication Activity Database

    Furdíková, Zuzana; Dočekal, Bohumil

    2009-01-01

    Roč. 64, č. 4 (2009), s. 323-328 ISSN 0584-8547 R&D Projects: GA ČR GA203/06/1441 Institutional research plan: CEZ:AV0Z40310501 Keywords : selenium hydride trapping * arsine * stibine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.719, year: 2009

  6. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  7. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  8. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  9. SYSTEM OPTIMIZATION FOR THE AUTOMATIC SIMULTANEOUS DETERMINATION OF ARSENIC, SELENIUM, AND ANTIMONY, USING HYDRIDE GENERATION INTRODUCTION TO AN INDUCTIVELY COUPLED PLASMA.

    Science.gov (United States)

    Pyen, Grace S.; Browner, Richard F.; Long, Stephen

    1986-01-01

    A fixed-size simplex has been used to determine the optimum conditions for the simultaneous determination of arsenic, selenium, and antimony by hydride generation and inductively coupled plasma emission spectrometry. The variables selected for the simplex were carrier gas flow rate, rf power, viewing height, and reagent conditions. The detection limit for selenium was comparable to the preoptimized case, but there were twofold and fourfold improvements in the detection limits for arsenic and antimony, respectively. Precision of the technique was assessed with the use of artificially prepared water samples.

  10. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    International Nuclear Information System (INIS)

    Qiu Jianhua; Wang Qiuquan; Ma Yuning; Yang Limin; Huang Benli

    2006-01-01

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4 /NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL -1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL -1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946

  11. Trapping of hydride forming elements within miniature electrothermal devices. Part 2. Investigation of collection of arsenic and selenium hydrides on a surface and in a cavity of a graphite rod

    International Nuclear Information System (INIS)

    Docekal, Bohumil

    2004-01-01

    The interaction of arsenic and selenium hydrides with bare and modified graphite was investigated by atomic absorption spectrometry and by radiotracer technique using 75 Se radionuclide in a laboratory made brass cylindrical chamber equipped with a vertical quartz tube torch for supporting miniature hydrogen diffusion flame atomizer. Strong interaction was observed at elevated temperatures above 800 deg. C. In contrast to the very often-reported data for conventional graphite tube atomizers, this high temperature interaction was also accompanied by a pronounced trapping of analytes at elevated temperatures close to 1100-1200 deg. C when modified graphite was used. Comparing modifiers tested (Ir, Pt and Rh), iridium appeared the only useful permanent modifier. Among various graphite-rod traps designed, the most efficient trapping of analytes was achieved in a graphite cavity. The net selenium trapping efficiencies of approximately 53% and 70% were found by radiotracer technique for the iridium-treated graphite surface and the iridium-treated graphite cavity, respectively. In contrast to the molybdenum surface, bare graphite did not exhibit any significant trapping effect. Trapping isotherms obtained at different temperatures displayed non-linear course in the range up to the upper limit of the analytical relevance of 100 ng of an analyte, indicating a limited trapping capacity of the modified graphite surface and the same trapping mechanism at low and elevated temperatures applied (300-1300 deg. C). Radiography experiments with 75 Se radiotracer showed that a major part of selenium was collected within the small cavity of the graphite rod and that selenium was also deposited after the trapping and vaporization steps in the trap chamber and on the quartz tube wall of the burner. Complementary experiments performed with the conventional transversally heated graphite tube and with bare and thermally shielded injection capillaries for hydride introduction, showed that

  12. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Jianhua [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Wang Qiuquan [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)]. E-mail: qqwang@xmu.edu.cn; Ma Yuning [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Yang Limin [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Huang Benli [Department of Chemistry and the MOE Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2006-07-15

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH{sub 4}/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL{sup -1} when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL{sup -1}, respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  13. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, J.F., E-mail: tyson@chem.umass.edu [Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Palmer, C.D. [Lead Poisoning Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Empire State Plaza, Albany, NY 12201-0509 (United States)

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3 s) for selenium was 10 {mu}g L{sup -1}, and for sulfide was 70 {mu}g L{sup -1} (200-{mu}L injection volume). The calibration was linear for selenium up to 2 mg L{sup -1} and to 10 mg L{sup -1} for sulfide. The throughput was 180 h{sup -1}. The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  14. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  15. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  16. Effects of selenium supplementation on four agricultural crops.

    Science.gov (United States)

    Carvalho, Kathleen M; Gallardo-Williams, Maria T; Benson, Robert F; Martin, Dean F

    2003-01-29

    Agricultural crops can be used either to remediate selenium-contaminated soils or to increase the daily selenium intake of consumers after soil supplementation using inorganic or organic selenium sources. In this study, four agricultural crops were examined for potential selenium enhancement. Soils containing tomato, strawberry, radish, and lettuce plants were supplemented with either an inorganic or an organic form of selenium. Two different soils, i.e., low Se and high Se containing, were also used. Statistically significant differences in appearance, fruit production, and fresh weights of the fruit produced were studied. Next, the amount of selenium retained in the edible fruits, nonedible plant, and soil for each was analyzed by acid digestion followed by hydride generation atomic absorption analysis. Finally, inhibition effects on the seeds of the agricultural plants were studied. The results show that supplementation with an inorganic form of selenium led to higher retention in the plants, with a maximum of 97.5% retained in the edible portion of lettuce plants.

  17. The new concept of hyphenated analytical system: Simultaneous determination of inorganic arsenic(III), arsenic(V), selenium(IV) and selenium(VI) by high performance liquid chromatography-hydride generation-(fast sequential) atomic absorption spectrometry during single analysis

    International Nuclear Information System (INIS)

    Niedzielski, P.

    2005-01-01

    The paper presents a new conception of determination of inorganic speciation forms of arsenic: As(III) and As(V) as well selenium Se(IV) and Se(VI) by means of the high performance liquid chromatography hyphenated with a detection by the atomic absorption spectrometry with hydride generation (HPLC-HG-AAS). The application of optimization procedure conditions of chromatographic separation of arsenic and selenium speciation forms (using anion-exchange Supelco LC-SAX1 column and phosphate buffer at pH 5.40 as a mobile phase) as well as the use of the atomic absorption spectrometry as a detector, which enables work in fast sequential mode, allowed to develop original detection methodology of simultaneous determination of arsenic As(III), As(V) and selenium Se(IV) and Se(VI) speciation forms within a 220 s single analysis. The obtained detection limits were 7.8 ng mL -1 for As(III); 12.0 ng mL -1 for As(V); 2.4 ng mL -1 for Se(IV) and 18.6 ng mL -1 for Se(VI) and precision 10.5%, 12.1%, 14.2% and 17.3%, respectively, for 100 ng mL -1 . The described method was used for ground water analysis

  18. Impact of Selenium Addition to Animal Feeds on Human Selenium Status in Serbia

    Directory of Open Access Journals (Sweden)

    Zoran Pavlovic

    2018-02-01

    Full Text Available Research conducted during the 1980s demonstrated Se deficiency in humans. Increased inclusion of selenium in animal feeds started from the year 2000 onwards. The aim of this study was to estimate the effects of selenium inclusion in animal feeds on human selenium status and dietary habits of the Serbian population related to food of animal origin. Plasma selenium concentration in healthy adult volunteers, including residents of one of the regions with the lowest (Eastern Serbia, n = 60 and of one of the regions with the highest Se serum levels reported in the past (Belgrade, n = 82, was determined by hydride generation atomic absorption spectrometry. Multivariate analysis was employed to determine the correlation between Se plasma levels and dietary intake data derived from food frequency questionnaires and laboratory tests. The mean plasma Se level of the participants was 84.3 ± 15.9 μg/L (range: 47.3–132.1 μg/L, while 46% of participants had plasma Se levels lower than 80 μg/L. Frequency of meat, egg, and fish consumption was significantly correlated with plasma selenium level (r = 0.437, p = 0.000. Selenium addition to animal feed in the quantity of 0.14 mg/kg contributed to the improvement of human plasma selenium levels by approximately 30 μg/L.

  19. New challenge in the speciation of selenium. Measurement and production on nano selenium

    Energy Technology Data Exchange (ETDEWEB)

    Prokisch, J; Sztrik, A; Babka, B; Zommara, M; Daroczi, L [Debrecen University, Centre for Agricultural Sciences and Engineering, Debrecen (Hungary). Institute of Bio- and Environmental Energetics

    2009-07-01

    Complete text of publication follows. We have found that several species of probiotic bacteria also used in food industry for making yogurts is capable of producing spherical elemental selenium nanospheres having an average diameter in the range of 50-500 nm when 1-1000 mg/L selenium was added to the medium in the form of selenite ions. Elemental selenium produced thereby has a high degree of purity, is spherical, and its size and crystalline form depends on the bacterium species applied. We have found that some species of the probiotic yogurt bacteria (e.g. Bifidobacterium bifidum or Bifidobacterium longum) are capable of producing the grey crystalline form of elemental selenium which is so far unprecedented in the art for any bacteria capable of producing elemental selenium nanoparticles. Our finding, therefore, enables the first time the development of economical industrial bacterial fermentation based processes for the production of a high quality elemental selenium material comprising uniformly sized grey or red nanospheres having an average diameter in the range of 50-500 nm. The size and the crystalline form of the produced nanosized (50-500 nm) spherical particles is defined by the selected microorganism. This genetic pre-determination result in reproducible production of a material having individual characteristics which can be used in numerous fields of industry and research. The produced nano selenium could be a good raw material for a production of certified reference materials. The measurement of the produced elemental nanoselenium is a new challenge for the speciation analysis. A sample preparation and measurement method was developed and investigated for the analysis of different selenium forms by HPLC-AFS system. The atomic fluorescence (AFS) was a reliable and simple detection method for the elemental nano selenium. The elemental selenium can produce hydride in the system or can be converted to selenite with HCl/H{sub 2}O{sub 2} digestion.

  20. COMPARISON OF DETERMINING METHODS REGARDING SELENIUM CONTENT IN WHEAT PLANT

    Directory of Open Access Journals (Sweden)

    Mihaela Monica Stanciu-Burileanu

    2010-01-01

    Full Text Available As a metallic chemical element, selenium has received special attention from biologists because of its dual role as a trace element essential and toxic. The important part of enzymes that protect cells against the effects of free radicals that are produced during normal metabolism of oxygen. Also, selenium is essential for normal immune system and thyroid gland, The concentration of selenium in the soil, which varies by region, determines the default concentration of selenium in plants growing in the soil.The purpose of this paper is to present methods of comparison, dry oxidation at 450ºC and wet digestion – digestion with acids in high concentrations at microwave system digestion, for determining selenium content from wheat samples collected from the south-eastern part of Romania, namely Bărăgan Plain and Central-South Dobrogea. Selenium separation and dosage from obtained extracts carry out through a selective hydride generation atomic absorption spectrophotometry. With the software SURFER, a tendency map of selenium distribution was drawn.

  1. Determination of total selenium and selenium distribution in the milk phases in commercial cow's milk by HG-AAS

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Naveiro, Oscar; Dominguez-Gonzalez, Raquel; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar [University of Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela (Spain); Cocho, Jose A. [University Clinical Hospital, Laboratory of Metabolic and Nutritional Disorders, Santiago de Compostela (Spain); Fraga, Jose M. [University Clinical Hospital, Department of Pediatrics, Santiago de Compostela (Spain)

    2005-03-01

    A procedure has been developed for determining the selenium in cow's milk using hydride generation-atomic absorption spectrometry (HG-AAS) following microwave-assisted acid digestion. The selenium distributions in milk whey, fat and micellar casein phases were studied after separating the different phases by ultracentrifugation and determining the selenium in all of them. The detection limits obtained by HG-AAS for the whole milk, milk whey and micellar casein were 0.074, 0.065 and 0.075 {mu}g l{sup -1}, respectively. The accuracy for the whole milk was checked by using a Certified Reference Material CRM 8435 whole milk powder from NIST, and the analytical recoveries for the milk whey and casein micelles were 100.9 and 96.9%, respectively. A mass balance study of the determination of selenium in the different milk phases was carried out, obtaining values of 95.5-100.8%. The total content of selenium was determined in 37 milk samples from 15 different manufacturers, 19 whole milk samples and 18 skimmed milk samples. The selenium levels found were within the 8.5-21 {mu}g l{sup -1} range. The selenium distributions in the different milk phases were studied in 14 whole milk samples, and the highest selenium levels were found in milk whey (47.2-73.6%), while the lowest level was found for the fat phase (4.8-16.2%). A strong correlation was found between the selenium levels in whole milk and the selenium levels in the milk components. (orig.)

  2. Trace Element Analysis of Selenium

    International Nuclear Information System (INIS)

    Soliman, M.S.A.

    2010-01-01

    The present thesis divided into four chapters as follows:Chapter (1):This chapter contains an introduction on different oxidation states of organic and inorganic species for selenium in environmental and biological samples, the process for separation of selenium from these samples and the importance of selenium as a component for these samples. Also gives notes about the techniques which are used in the elemental analysis for selenium species and the detection limits for selenium in these techniques, selenium species in human body and the importance of these species in protecting the body from the different types of cancer and the sources of selenium in environmental samples (soil and water) and distribution levels of selenium in these samples.Chapter (2):This chapter is divided into two parts :The first part deals with the sample collection process for environmental samples (underground water, soil) and the wet digestion ( microwave digestion ) process of soil samples. It also contains the theory of work of the closed microwave digestion system.The second part contains detailed information concerning the theoretical considerations of the used analytical techniques. These techniques include Hydride generation - Atomic Absorption Spectrometer (HG-AAS), Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and Neutron Activation Analysis (NAA).Chapter (3): This chapter includes the methods of sampling, sample preparation, and sample digesition. The measures of quality assurance are disscused in this chapter. It describes in details the closed microwave digestion technique and the analytical methods used in this study which are present in Central Laboratory for Elemental and Isotopic Analysis (CLEIA) and the Egypt Second Research Reactor (ETRR-2). The described techniques are Atomic Absorption Spectrometer (AAS 6 vario, Analytical Jena GmbH, Germany), JMS-PLASMAX2 Mass Spectrometer (ICP-MS) and the Egypt Second Research Reactor (NAA).

  3. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    Science.gov (United States)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  4. Determination of arsenic, selenium and antimony by neutron activation analysis. Application to hair samples

    International Nuclear Information System (INIS)

    Das, H.A.; Hoede, D.; Nieuwendijk, B.J.T.; Sloot, H.A. van der; Teunissen, G.J.A.; Woittiez, J.R.W.

    1983-04-01

    A fast rabbit system for instrumental activation analysis with reactor neutrons is described. Its use in the determination of selenium in hair is discussed. A survey is given of the correction factors which are inherent to the use of short-lived radionuclides. An alternative to INAA is NAA based on the separation of arsenic, selenium and antimony by hydride evaporation and adsorption to active carbon. Data for some Standard Reference Materials are given. This work was done under research contract 2440/RI/RB with the IAEA

  5. AN ANALYTICAL METHOD FOR CHEMICAL SPECIATION OF SELENIUM IN SOIL

    Directory of Open Access Journals (Sweden)

    Constantin Luca

    2010-10-01

    Full Text Available Selenium is an essential microelement, sometimes redoubtable, through its beneficial role - risk depending on its concentration in the food chain, at low dose is an important nutrient in the life of humans and animals, contrary at high doses, it becomes toxic. Selenium may be find itself in the environment (soil, sediment, water in many forms (oxidized, reduced, organometallic which determine their mobility and toxicity. Determination of chemical speciation (identification of different chemical forms provides much more complete information for a better understanding of the behavior and the potential impact on the environment. In this work we present the results of methodological research on the extraction of sequential forms of selenium in the soil and the coupling of analytical methods capable of identifying very small amounts of selenium in soils An efficient scheme of sequential extractions forms of selenium (SES consisting in atomic absorption spectrometry coupled with hydride generation (HGAAS has been developed into five experimental steps, detailed in the paper. This operational scheme has been applied to the analysis of chemical speciation in the following areas: the Bărăgan Plain and Central Dobrogea of Romania.

  6. Characterization and mutual comparison of new electrolytic cell designs for hydride generation-atomic absorption spectrometry with a quartz tube atomizer using Se as a model analyte and Se-75 as a radioactive indicator

    Czech Academy of Sciences Publication Activity Database

    Hraníček, J.; Červený, V.; Kratzer, Jan; Vobecký, Miloslav; Rychlovský, P.

    2012-01-01

    Roč. 27, č. 10 (2012), s. 1761-1771 ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional support: RVO:68081715 Keywords : electrochemical hydride generation AAS * selenium hydride * radiotracer study Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.155, year: 2012

  7. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  8. Determination of selenium in cereals, legumes and dry fruits from southeastern Spain for calculation of daily dietary intake

    International Nuclear Information System (INIS)

    Diaz-Alarcon, J.P.; Navarro-Alarcon, M.; Lopez-Garcia de la Serrana, H.; Lopez-Martinez, M.C.

    1996-01-01

    Hydride generation atomic absorption spectrometry was used to determine selenium content in cereals, legumes and dry fruits from the coast of the province of Granada (southeastern Spain). Accuracy was assured using both a NIST SRM 1572 and recovery experiments. The precision expressed as relative standard deviation (RSD) varied between 6.50% for seeds and 15.98% for bread. The highest selenium concentrations were found for dry fruits (294.6 ng/g), followed by legumes (111.8 ng/g), and the lowest for cereals (27.8 ng/g). Considering the average daily individual consumption of these foods in Andalusia (southern Spain), the daily dietary intake of selenium supplied by this source is 15.36 μg/day for an adult. The content of total selenium in corn samples taken from the zone is independent of both human and industrial activities (P 0.05)

  9. Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jan; Rychlovský, P.

    2003-01-01

    Roč. 58, č. 5 (2003), s. 919-930 ISSN 0584-8547 R&D Projects: GA ČR GA203/98/0754; GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride generation * electrothermal atomic absorption spectrometry * In situ trapping Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.361, year: 2003

  10. Internal correction of spectral interferences and mass bias for selenium metabolism studies using enriched stable isotopes in combination with multiple linear regression.

    Science.gov (United States)

    Lunøe, Kristoffer; Martínez-Sierra, Justo Giner; Gammelgaard, Bente; Alonso, J Ignacio García

    2012-03-01

    The analytical methodology for the in vivo study of selenium metabolism using two enriched selenium isotopes has been modified, allowing for the internal correction of spectral interferences and mass bias both for total selenium and speciation analysis. The method is based on the combination of an already described dual-isotope procedure with a new data treatment strategy based on multiple linear regression. A metabolic enriched isotope ((77)Se) is given orally to the test subject and a second isotope ((74)Se) is employed for quantification. In our approach, all possible polyatomic interferences occurring in the measurement of the isotope composition of selenium by collision cell quadrupole ICP-MS are taken into account and their relative contribution calculated by multiple linear regression after minimisation of the residuals. As a result, all spectral interferences and mass bias are corrected internally allowing the fast and independent quantification of natural abundance selenium ((nat)Se) and enriched (77)Se. In this sense, the calculation of the tracer/tracee ratio in each sample is straightforward. The method has been applied to study the time-related tissue incorporation of (77)Se in male Wistar rats while maintaining the (nat)Se steady-state conditions. Additionally, metabolically relevant information such as selenoprotein synthesis and selenium elimination in urine could be studied using the proposed methodology. In this case, serum proteins were separated by affinity chromatography while reverse phase was employed for urine metabolites. In both cases, (74)Se was used as a post-column isotope dilution spike. The application of multiple linear regression to the whole chromatogram allowed us to calculate the contribution of bromine hydride, selenium hydride, argon polyatomics and mass bias on the observed selenium isotope patterns. By minimising the square sum of residuals for the whole chromatogram, internal correction of spectral interferences and mass

  11. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  12. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    Science.gov (United States)

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  13. The determination of arsenic, selenium, antimony, and tin in complex environmental samples by hydride generation AAS

    International Nuclear Information System (INIS)

    Johnson, D.; Beach, C.

    1990-01-01

    Hydride generation techniques are used routinely for the determination of As, Se, Sb and Sn in water samples. Advantages include high sensitivity, simplicity, and relative freedom from interferences. Continuous-flow designs greatly reduce analysis time as well as improve precision and allow for automation. However the accurate analysis of more complex environmental samples such as industrial sludges, soil samples, river sediments, and fly ash remains difficult. Numerous contributing factors influence the accuracy of the hydride technique. Sample digestion methods and sample preparation procedures are of critical importance. The digestion must adequately solubilize the elements of interest without loss by volatilization. Sample preparation procedures that guarantee the proper analyte oxidation state and eliminate the nitric acid and inter-element interferences are needed. In this study, difficult environmental samples were analyzed for As, Se, Sb, and Sn by continuous flow hydride generation. Sample preparation methods were optimized to eliminate interferences. The results of spike recovery studies will be presented. Data from the analysis of the same samples by graphite furnace AAS will be presented for comparison of accuracy, precision, and analysis time

  14. Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS

    International Nuclear Information System (INIS)

    Jiujiang Zhao; Chunying Chen; Peiqun Zhang; Zhifang Chai

    2004-01-01

    Selenium and mercury distribution in porcine tissues and their subcellular fractions from a mercury-polluted area of Guizhou Province and from a not mercury-exposed area of Beijing in China have been studied with neutron activation analysis and hydride generation-atomic fluorescence spectrometry. Both the selenium and mercury levels are higher in Guizhou porcine tissues and their subcellular fractions than those in Beijing. These two elements are highly enriched in kidney and liver of Guizhou pig, while selenium is only enriched in the kidney of Beijing pig. Exposure of mercury may result in redistribution of Se and Hg in vivo. The Hg/Se molar ratio of the subcellular fractions is very low in the case of relatively low mercury level and gradually reaches to a high constant value with increasing level of mercury, which implies that selenium and mercury may form some special complexes in the organisms. (author)

  15. Selenium content in selected foods from the Greek market and estimation of the daily intake

    International Nuclear Information System (INIS)

    Pappa, Eleni C.; Pappas, Athanasios C.; Surai, Peter F.

    2006-01-01

    The total selenium content of foods purchased from the North West part of Greece was determined using hydride generation atomic fluorescence spectroscopy. The results of this study were within the range from other countries. The overall mean average of selenium concentration of the foods examined, in decreasing order, was found in sesame seeds (783.1 ng g -1 ), fish (246 ng g -1 ), legumes (162.5 ng g -1 ), eggs (123 ng g -1 ), bread (91.9 ng g -1 ), meat (71.7 ng g -1 ), cheese (69.8 ng g -1 ), yoghurt (23.6 ng g -1 ), nuts (19.6 ng g -1 ), milk (15.4 ng g -1 ), vegetables (6.5 ng g -1 ) and fruits (3.4 ng g -1 ). Considering the average daily individual consumption of these foods by Greeks, the average daily dietary intake of selenium supplied by this source is 39.3 μg per capita

  16. Selenium content in selected foods from the Greek market and estimation of the daily intake

    Energy Technology Data Exchange (ETDEWEB)

    Pappa, Eleni C. [National Agricultural Research Foundation, Dairy Research Institute, Katsikas 45221, Ioannina (Greece)]. E-mail: instgala@otenet.gr; Pappas, Athanasios C. [Avian Science Research Centre, Animal Health Group, SAC, Auchincruive, Ayr KA6 5HW (United Kingdom); Surai, Peter F. [Avian Science Research Centre, Animal Health Group, SAC, Auchincruive, Ayr KA6 5HW (United Kingdom); Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ, Scotland (United Kingdom)

    2006-12-15

    The total selenium content of foods purchased from the North West part of Greece was determined using hydride generation atomic fluorescence spectroscopy. The results of this study were within the range from other countries. The overall mean average of selenium concentration of the foods examined, in decreasing order, was found in sesame seeds (783.1 ng g{sup -1}), fish (246 ng g{sup -1}), legumes (162.5 ng g{sup -1}), eggs (123 ng g{sup -1}), bread (91.9 ng g{sup -1}), meat (71.7 ng g{sup -1}), cheese (69.8 ng g{sup -1}), yoghurt (23.6 ng g{sup -1}), nuts (19.6 ng g{sup -1}), milk (15.4 ng g{sup -1}), vegetables (6.5 ng g{sup -1}) and fruits (3.4 ng g{sup -1}). Considering the average daily individual consumption of these foods by Greeks, the average daily dietary intake of selenium supplied by this source is 39.3 {mu}g per capita.

  17. Arsine and selenium hydride trapping in a novel quartz device for atomic-absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Dědina, Jiří

    2007-01-01

    Roč. 388, č. 4 (2007), s. 793-800 ISSN 1618-2642 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : HG-AAS * quartz surface * hydride trapping Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.867, year: 2007

  18. Modular L-design of hydride atomizers for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rezacova, Olga; Dedina, Jiri

    2009-01-01

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 μg ml - 1 does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 μg ml - 1 ; interferent concentration of 1 μg ml - 1 causing 20% signal depression.

  19. Selenium

    Science.gov (United States)

    Stillings, Lisa L.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Selenium (Se) was discovered in 1817 in pyrite from copper mines in Sweden. It is a trace element in Earth’s crust, with an abundance of three to seven orders of magnitude less than the major rock-forming elements. Commercial use of selenium began in the United States in 1910, when it was used as a pigment for paints, ceramic glazes, and red glass. Since that time, it has had many other economic uses—notably, in the 1930s and 1940s, when it was used in rectifiers (which change alternating current to direct current), and in the 1960s, when it began to be used in the liner of photocopier drums. In the 21st century, other compounds have replaced selenium in these older products; modern uses for selenium include energy-efficient windows that limit heat transfer and thin-film photovoltaic cells that convert solar energy into electricity.In Earth’s crust, selenium is found as selenide minerals, selenate and selenite salts, and as substitution for sulfur in sulfide minerals. It is the sulfide minerals, most commonly those in porphyry copper deposits, that provide the bulk of the selenium produced for the international commodity market. Selenium is obtained as a byproduct of copper refining and recovered from the anode slimes generated in electrolytic production of copper. Because of this, the countries that have the largest resources and (or) reserves of copper also have the largest resources and (or) reserves of selenium.Because selenium occurs naturally in Earth’s crust, its presence in air, water, and soil results from both geologic reactions and human activity. Selenium is found concentrated naturally in soils that overlie bedrock with high selenium concentrations. Selenium mining, processing, use in industrial and agricultural applications, and disposal may all contribute selenium to the environment. A well-known case of selenium contamination from agricultural practices was discovered in 1983 in the Kesterson National Wildlife Refuge in California. There

  20. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  1. Modular L-design of hydride atomizers for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rezacova, Olga [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, Prague 2, CZ 128 43 (Czech Republic); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic)], E-mail: dedina@biomed.cas.cz

    2009-07-15

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 {mu}g ml{sup - 1} does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 {mu}g ml{sup - 1}; interferent concentration of 1 {mu}g ml{sup - 1} causing 20% signal depression.

  2. Selenium, cadmium and diazinon insecticide in tissues of rats after peroral exposure

    Directory of Open Access Journals (Sweden)

    Róbert Toman

    2017-01-01

    Full Text Available The concentrations of selenium (Se, cadmium (Cd and diazinon (DZN in selected tissues of rats after an oral administration in various combinations were analyzed. Male rats were orally dosed with diazinon (40 mg.L-1, diazinon (40 mg.L-1 +selenium (5 mg.L-1, diazinon (40 mg.L-1 +cadmium (30 mg.L-1, and diazinon (40 mg.L-1 +selenium (5 mg.L-1 +cadmium (30 mg.L-1 in drinking water. After 90 days of per oral administration of compounds, the samples of liver, kidney, muscle tissue (m. quadriceps femoris, and adipose tissue were collected. The content of DZN was analyzed using Gas Chromatography - Mass Spectrometry (GC-MS, Cd was analyzed using an Electrothermal Atomic Absorption Spectrometry (ETAAS and Se using a Hydride Generation Atomic Absorption Spectrometry (HG-AAS methods. Cadmium significantly increased in liver and kidney after DZN +Cd and DZN +Se +Cd administration. Se significantly increased in liver of DZN +Se, DZN +Se +Cd and DZN +Cd exposed rats, in kidney of DZN +Se and DZN +Se +Cd and DZN +Cd, and in muscle of DZN +Se +Cd group. Highest DZN content was found in the adipose tissue in DZN, DZN +Cd and DZN +Se +Cd but not in combined exposure with Se. Anyway, the differences between the control and experimental groups were not significant. The results indicate that cadmium and selenium accumulate mainly in liver, kidney and selenium also in muscle after p.o. administration but diazinon concentrations increases were not signifcant. The co-administration of diazinon, Se and Cd affects the content of these compounds in the organism and the accumulation rate depends on the combination of administered compounds. Diazinon and cadmium could contribute to the selenium redistribution in the organism after the peroral intake.

  3. Determination of total inorganic arsenic in potable water through spectroscopy of atomic absorption with generation of hydride

    International Nuclear Information System (INIS)

    Rodriguez Roman, S.

    1997-01-01

    This study developed a method for the cuantitative analysis of arsenic in potable water , through the spectrophotometric technique of atomic absorption. It used an automatic system of injection of flux for the generation of hydrides. It studied the effect produced by reducer agents, in the prereduction of arsenic in water, obtaining the best result with the use of potasium iodide 1.5% and ascorbic acid 0.25% in hydrochloric acid 3.7%, for the direct determination of total inorganic arsenic. It observed the effect produced by cadmium and selenium to the half of the concentration of arsenic, chromium, lead and silver at the same concentration, and barium at a ten times higher concentration, in the recuperation of total inorganic arsenic. It also used sodium borohydride 0.3% in sodium hydroxide 0.05% (5mL/min), for the formation of the volatile hydrides. It used hydrochloric acid 3.7% (12 mL/min) as disolution of transport; argon as inert gas, and a flame air-acetylene, for the atomization of the hydrides. This method was applied to 19 samples of potable water, and the result was no detectable for all of them. (S. Grainger)

  4. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  5. Investigation of trapping interference effects of arsenic, antimony and bismuth in collection of selenium hydride within an iridium-modified THGA

    Czech Academy of Sciences Publication Activity Database

    Hrušovská, Zuzana; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s143-s144 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] R&D Projects: GA AV ČR IAA400310507 Grant - others:GA FRVŠ(CZ) G6/919/2005 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * hydride trapping * mutual interference effects Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  6. The effect of excimer laser keratectomy on corneal glutathione peroxidase activities and aqueous humor selenium levels in rabbits.

    Science.gov (United States)

    Yis, Ozgür; Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Nilgün Safak; Hasanreisoğlu, Berati

    2002-06-01

    The formation of free oxygen radicals has been demonstrated in the corneal tissue after 193 nm laser irradiation. Cornea has several defense mechanisms that protect against oxidative damage. One of them, glutathione peroxidase (GPx), catalyzes the destruction of hydrogen peroxide and lipid hydroperoxide. Selenium is a trace element which is incorporated into the selenoenzyme GPx. In the present study, the effect of excimer laser keratectomy on corneal GPx activities and aqueous humor selenium concentrations in rabbits was evaluated. Animals were divided into five groups, and all groups were compared: controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy(PRK; group 3), superficial traditional PRK (50 microm; group 4) and deep traditional PRK (100 microm; group 5). Corneal GPx activities were measured by a modification of the coupled assay procedure. Aqueous humor selenium concentrations were determined using hydride generation atomic absorption spectrometry. Corneal GPx activities were significantly lower only in group 5 ( P<0.05), and the selenium concentration in the aqueous humor did not change in any group. Deep corneal photoablation inhibits GPx enzyme activities in the cornea. Therefore, antioxidants may be useful in reducing free radical-mediated complications after excimer laser corneal photoablation.

  7. High-pressure hydriding of Zircaloy

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1996-01-01

    The hydriding characteristics of Zircaloy-2(Zry), sponge zirconium (as a liner on Zry plate), and crystal-bar zirconium exposed to pure H 2 at 0.1 MPa or 7 MPa and 400 C were determined in a thermogravimetric apparatus. The morphology of the hydrided specimens was also examined by optical microscopy. For all specimen types, the rate of hydriding in 7 MPa H 2 was two orders of magnitude greater than in 0.1 MPa H 2 . For Zry, uniform bulk hydriding was revealed by hydride precipitates at room temperature and on one occasion, a sunburst hydride. In addition, all specimen types exhibited a hydride surface layer. In a duplex Zry/sponge-Zr specimen, Zry is more heavily hydrided than the sponge Zr layer. (orig.)

  8. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  9. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    Science.gov (United States)

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  10. Methods of Selenium Supplementation: Bioavailability and Determination of Selenium Compounds.

    Science.gov (United States)

    Bodnar, Malgorzata; Szczyglowska, Marzena; Konieczka, Piotr; Namiesnik, Jacek

    2016-01-01

    Selenium, a "dual-surface" element, maintains a very thin line between a level of necessity and harmfulness. Because of this, a deficiency or excess of this element in an organism is dangerous and causes health-related problems, both physically and mentally. The main source of selenium is a balanced diet, with a proper selection of meat and plant products. Meanwhile, the proper assimilation of selenium into these products depends on their bioavailability, bioaccessibility, and/or bioactivity of a given selenium compound. From the time when it was discovered that selenium and its compounds have a significant influence on metabolic processes and in many countries throughout the world, a low quantity of selenium was found in different parts of the environment, pressure was put upon an effective and fast method of supplementing the environment with the help of selenium. This work describes supplementation methods applied with the use of selenium, as well as new ideas for increasing the level of this element in various organisms. Based on the fact that selenium appears in the environment at trace levels, the determination of total amount of selenium or selenium speciation in a given sample demands the selection of appropriate measurement methods. These methods are most often comprised of a sample preparation technique and/or a separation technique as well as a detection system. The work presents information on the subject of analytical methods used for determining selenium and its compounds as well as examples in literature of their application.

  11. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  12. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  13. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  14. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  15. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  16. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fiorino, J.A.; Jones, J.W.; Capar, S.G.

    1976-01-01

    Analysis of acid digests of foods for As, Se, Sb, and Te was semiautomated. Hydrides generated by controlled addition of base stabilized NaBH 4 solution to acid digests are transported directly into a shielded, hydrogen (nitrogen diluted), entrained-air flame for atomic absorption spectrophotometric determination of the individual elements. The detection limits, based on 1 g of digested sample, are approximately 10 to 20 ng/g for all four elements. Measurement precision is 1 to 2 percent relative standard deviation for each element measured at 0.10 μg. A comparison is made of results of analysis of lyophilized fish tissues for As and Se by instrumental neutron activation (INAA), hydride generation with atomic absorption spectrometry, fluorometry, and spectrophotometry. NBS standard reference materials (orchard leaves and bovine liver) analyzed for As, Se, and Sb by this method show excellent agreement with certified values and with independent NAA values

  17. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  18. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  19. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  20. Preconcentration and in-situ photoreduction of trace selenium using TiO2 nanoparticles, followed by its determination by slurry photochemical vapor generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yang, Wulin; Wu, Li; Zhu, Xiaofan; Gao, Ying; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    We have developed a method for the determination of trace levels of total selenium in water samples. It integrates preconcentration, in-situ photoreduction and slurry photochemical vapor generation using TiO 2 nanoparticles, and the determination of total selenium by AFS. The Se(IV) and Se(VI) species were adsorbed on a slurry of TiO 2 nanoparticles which then were exposed to UV irradiation in the presence of formic acid to form volatile selenium species. The detection limits were improved 17-fold compared to hydride generation and 56-fold compared to photochemical vapor generation, both without any preconcentration. No significant difference was found in the limits of detection (LODs) for Se(IV) and Se(VI). The LOD is as low as 0.8 ng L −1 , the precision is better than 4.5 % (at a level of 0.1 μg L −1 of selenium). The method gave good recoveries when applied to the determination of total selenium in a certified tissue reference material (DORM-3) and in spiked drinking water and wastewater samples containing high concentrations of transition and noble metal ions. It also excels by very low LODs, a significant enhancement of sample throughput, reduced reagent consumption and sample loss, and minimal interference by transition and noble metal ions. (author)

  1. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  2. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  3. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  4. [Selenium treatment in thyreopathies].

    Science.gov (United States)

    Sotak, Štefan

    Selenium (latin Selenium) is a micronutrient embedded in several proteins. In adults, the thyroid is the organ with the highest amount of selenium per gram of tissue. Selenium levels in the body depend on the characteristics of the population and its diet and geographic area. In the thyroid, selenium is required for the antioxidant function and for the metabolism of thyroid hormones. The literature suggests that selenium supplementation of patients with Hashimotos thyroiditis is associated with a reduction in antithyroperoxidase antibody levels. Selenium supplementation also in mild Graves orbitopathy is associated with delayed progression of ocular disorders. As a consequence of this observation The European Group on Graves Orbitopathy recommend six months selenium preparates supportive therapy for patients with mild form of Graves orbitopathy.Key words: Graves-Basedows disease - Hashimotos thyroiditis - selenium - supplementation.

  5. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  6. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  7. Selenium

    Science.gov (United States)

    ... Health Information Supplement Fact Sheets Frequently Asked Questions Making Decisions What you Need To Know About Supplements Dietary ... understand how selenium in food and dietary supplements affects heart health. Cognitive decline Blood selenium levels decrease as people age, ...

  8. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  9. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  10. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  11. Selenium and Human Health

    Directory of Open Access Journals (Sweden)

    M Abedi

    2013-04-01

    Full Text Available Introduction: Selenium is an essential element for human health and it is toxic at high concentrations. Selenium is a constituent component of selenoproteins that have enzymatic and structural roles in human biochemistry. Selenium is a best antioxidant and catalyst for production of thyroid hormone. This element has the key role in the immune function; prevention of AIDS progression and the deactivity of toxins. Furthermore, selenium is essential for sperm motility and can reduce abortions. Selenium deficiency was also associated with adverse mood states. The findings regarding cardiovascular disease risk related to selenium deficiency is unclear, though other conditions such as vascular inflammation, oxidative stress and selenium deficiency can cause this disease too. Moreover, consuming of 60 mg of selenium per day may be associated with reduction of cancer risk. In this study, a review of studies has been performed on the biochemical function of selenium toxicity, and its effects on human health. Furthermore, certain identified cancers associated with selenium have been discussed to absorb more attention to the status of this element and also as a guide for further studies. Selenium plays the dual character (useful and harmful in human health, and then it is necessary to determine the concentration of this element in body fluids and tissues. An appropriate method for routine measurement of selenium in clinical laboratories is electro thermal atomic absorption spectrometry (ETAAS with very low detection limit and good precision.

  12. Selenium Content, Influential Factors Within the Plant and the Transformation of Different Selenium Specification

    Directory of Open Access Journals (Sweden)

    LIU Yuan-yuan

    2014-12-01

    Full Text Available The paper collected relevant literatures on selenium and explored the function to plant, selenium content, influential factors and selenium specification and transformation. We believed that there should be more deep researches on function of selenium to plant. Approaches of molecular, genetic engineering and isotope could be employed to breed selenium rich crops and possibilities in practice. More efforts should be spent on the technologies research for improving selenium level in crops under natural soil conditions to sustainably utilize the selenium resources.

  13. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    Science.gov (United States)

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  14. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  15. Selenium content of mushrooms.

    Science.gov (United States)

    Stijve, T

    1977-07-29

    The selenium contents of 83 species of wild mushrooms were determined by oxygen combustion of the sample, followed by conversion of selenite to bromopiazselenol and final estimation by electron capture gas-liquid chromatography. Selenium concentration were found to range from 0.012-20.0 mg/kg dry weight. Selenium content was species-dependent. High concentrations were found in Agaricaceae and in certain Boletaceae of the genus Tubiporus, whereas in Russulaceae, Amanitaceae and Cantharellaceae selenium-rich species were absent or rare. Ascomycetes and all mushrooms growing on wood had a very low selenium content. The highest selenium concentrations (up to 20 ppm) were found in Boletus (Tubiporus) edulis, a most popular edible mushroom. Analyses of various parts of carpophores of B. edulis, Suillus luteus and Amanita muscaria indicate that in all three species the stalk contains less selenium than the fleshy part of the cap. In Boletus and Suillus the highest selenium content was found in the tubes.

  16. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  17. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  18. Selenium in edible mushrooms.

    Science.gov (United States)

    Falandysz, Jerzy

    2008-01-01

    Selenium is vital to human health. This article is a compendium of virtually all the published data on total selenium concentrations, its distribution in fruitbody, bioconcentration factors, and chemical forms in wild-grown, cultivated, and selenium-enriched mushrooms worldwide. Of the 190 species reviewed (belonging to 21 families and 56 genera), most are considered edible, and a few selected data relate to inedible mushrooms. Most of edible mushroom species examined until now are selenium-poor (cesarea, A. campestris, A. edulis, A. macrosporus, and A. silvaticus. A particularly rich source of selenium could be obtained from selenium-enriched mushrooms that are cultivated on a substrate fortified with selenium (as inorganic salt or selenized-yeast). The Se-enriched Champignon Mushroom could contain up to 30 or 110 microg Se/g dw, while the Varnished Polypore (Ganoderma lucidum) could contain up to 72 microg Se/g dw. An increasingly growing database on chemical forms of selenium of mushrooms indicates that the seleno-compounds identified in carpophore include selenocysteine, selenomethionine, Se-methylselenocysteine, selenite, and several unidentified seleno-compounds; their proportions vary widely. Some aspects of environmental selenium occurrence and human body pharmacokinetics and nutritional needs will also be briefly discussed in this review.

  19. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  20. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  1. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  2. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  3. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří

    2002-01-01

    Roč. 57, č. 12 (2002), s. 2069-2079 ISSN 0584-8547 R&D Projects: GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absortion spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.695, year: 2002

  4. Binary mixtures of mercury/ selenium, and lead/selenium

    African Journals Online (AJOL)

    Physiologically-based biokinetic models have been developed for predicting simultaneously the Absorption, Distribution, Metabolism and Elimination (ADME) properties of lead (Pb) and selenium (Se), and mercury (Hg) and selenium in a number of target tissues of humans. This was done for three population groups, ...

  5. Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens Culinaris L.) From Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Thavarajah, D.; Vandenberg, A.; George, G.N.; Pickering, I.J.

    2009-06-04

    Lentils (Lens culinaris L.) are a source of many essential dietary components and trace elements for human health. In this study we show that lentils grown in the Canadian prairies are additionally enriched in selenium, an essential micronutrient needed for general well-being, including a healthy immune system and protection against cancer. Selenium K near-edge X-ray absorption spectroscopy (XAS) has been used to examine the selenium biochemistry of two lentil cultivars grown in various locations in Saskatchewan, Canada. We observe significant variations in total selenium concentration with geographic location and cultivar; however, almost all the selenium (86--95%) in these field-grown lentils is present as organic selenium modeled as selenomethionine with a small component (5--14%) as selenate. As the toxicities of certain forms of arsenic and selenium are antagonistic, selenium-rich lentils may have a pivotal role to play in alleviating the chronic arsenic poisoning in Bangladesh.

  6. Selenium essentials

    CERN Document Server

    Sams, Prashanth

    2015-01-01

    If you are a developer who wants to migrate from Selenium RC or any other automation tool to Selenium WebDriver, then this book is for you. Knowledge of automation tools is necessary to follow the examples in this book.

  7. Predicting formation enthalpies of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, A.

    2004-12-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)

  8. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  9. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  10. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...

  11. Selenium for preventing cancer

    Directory of Open Access Journals (Sweden)

    Gabriele Dennert

    Full Text Available BACKGROUND: Selenium is a trace element essential to humans. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. OBJECTIVE: Two research questions were addressed in this review: What is the evidence for: 1. an aetiological relationship between selenium exposure and cancer risk in women and men?; 2. the efficacy of selenium supplementation for cancer prevention in women and men? SEARCH STRATEGY: We searched electronic databases and bibliographies of reviews and included publications. SELECTION CRITERIA: We included prospective observational studies to answer research question (a and randomised controlled trials (RCTs to answer research question (b. DATA COLLECTION AND ANALYSIS: We conducted random effects meta-analyses of epidemiological data when five or more studies were retrieved for a specific outcome. We made a narrative summary of data from RCTs. MAIN RESULTS: We included 49 prospective observational studies and six RCTs. In epidemiologic data, we found a reduced cancer incidence (summary odds ratio, OR, 0.69; 95% confidence interval, CI, 0.53 to 0.91 and mortality (OR 0.55, 95% CI 0.36 to 0.83 with higher selenium exposure. Cancer risk was more pronouncedly reduced in men (incidence: OR 0.66, 95% CI 0.42 to 1.05 than in women (incidence: OR 0.90, 95% CI 0.45 to 1.77. These findings have potential limitations due to study design, quality and heterogeneity of the data, which complicated the interpretation of the summary statistics. The RCTs found no protective efficacy of selenium yeast supplementation against non-melanoma skin cancer or L-selenomethionine supplementation against prostate cancer. Study results for the prevention of liver cancer with selenium supplements were inconsistent and studies had an unclear risk of bias. The results of the Nutritional Prevention of Cancer Trial (NPCT and SELECT raised concerns about possible harmful effects of selenium supplements. AUTHORS

  12. Review on Nano SeleniumProduced by Bacteria

    Directory of Open Access Journals (Sweden)

    LI Ji-xiang

    2014-12-01

    Full Text Available Selenium (Se is a kind of essential trace element for people and animal, while ionic state of selenium is toxic with high concentrations and will cause the selenium pollution. Nano-selenium is stable, nontoxic with higher biological activity. Application of bacteria reducing selenite or selenate to biological nano-selenium has great potential in selenium pollution control and nano-selenium production. This review summarizes the research progress of the red elemental nano-selenium reduced by bacteria including characteristics and application of nano-selenium, effects of carbon and nitrogen source, oxygen, temperature and pH in bacteria nano-selenium production, and molecular mechanisms of nano-selenium reduced by bacteria.

  13. Why Nature Chose Selenium.

    Science.gov (United States)

    Reich, Hans J; Hondal, Robert J

    2016-04-15

    The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.

  14. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  15. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium.

    Science.gov (United States)

    Aborode, Fatai Adigun; Raab, Andrea; Foster, Simon; Lombi, Enzo; Maher, William; Krupp, Eva M; Feldmann, Joerg

    2015-07-01

    Three month old Thunbergia alata were exposed for 13 days to 10 μM selenite to determine the biotransformation of selenite in their roots. Selenium in formic acid extracts (80 ± 3%) was present as selenopeptides with Se-S bonds and selenium-PC complexes (selenocysteinyl-2-3-dihydroxypropionyl-glutathione, seleno-phytochelatin2, seleno-di-glutathione). An analytical method using HPLC-ICPMS to detect and quantify elemental selenium in roots of T. alata plants using sodium sulfite to quantitatively transform elemental selenium to selenosulfate was also developed. Elemental selenium was determined as 18 ± 4% of the total selenium in the roots which was equivalent to the selenium not extracted using formic acid extraction. The results are in an agreement with the XAS measurements of the exposed roots which showed no occurrence of selenite or selenate but a mixture of selenocysteine and elemental selenium.

  16. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland.

    Science.gov (United States)

    Gudmundsdottir, Edda Y; Gunnarsdottir, Ingibjorg; Thorlacius, Arngrimur; Reykdal, Olafur; Gunnlaugsdottir, Helga; Thorsdottir, Inga; Steingrimsdottir, Laufey

    2012-01-01

    Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. The subjects were 96 randomly selected girls, aged 16-20, who answered a validated food frequency questionnaire (FFQ) for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90-208); nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P=0.002 and r=0.22; P=0.04, respectively) while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  17. Blood selenium levels and contribution of food groups to selenium intake in adolescent girls in Iceland

    Directory of Open Access Journals (Sweden)

    Ingibjorg Gunnarsdottir

    2012-08-01

    Full Text Available Background/objectives: Significant changes have been reported in dietary habits and food availability in Iceland that would be expected to compromise selenium intake and status, especially among young people. These include substantial decreases in the consumption of fish and milk, as well as the selenium content of imported wheat. The aim of this study was to assess selenium in the diet and whole blood of adolescent girls, as well as define the most important foods contributing to intake and blood concentrations of selenium. Design: The subjects were 96 randomly selected girls, aged 16–20, who answered a validated food frequency questionnaire (FFQ for dietary assessment. Selenium intake from each food group was calculated in µg/day. Blood samples were collected for measurement of whole blood selenium. Results: Mean dietary selenium was 51±25 µg/day. Milk/dairy products, including cheese, contributed 36±14% of total dietary selenium; fish 18±12%; and bread/cereal products 13±6%. Mean whole blood selenium was 117±12 µg/l (range 90–208; nearly 90% of subjects were above the optimal level of 100 µg/l. Fish and bread/cereal products were the only foods significantly correlated with selenium in blood (r=0.32; P = 0.002 and r=0.22; P = 0.04, respectively while no correlation was found with milk and dairy products in spite of their greater contribution to total selenium intake. Conclusion: In this population of Icelandic adolescent girls, selenium intake and status seem acceptable. Judging from associations between intake and blood levels, fish and cereals may be the most important contributors to blood selenium.

  18. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  19. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  20. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  1. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  2. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  3. Determination of sub-ng g-1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2017-03-01

    A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.

  4. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  5. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    International Nuclear Information System (INIS)

    Zhang Jinsong; Wang Huali; Yu Hanqing

    2007-01-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels

  6. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  7. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  8. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    Energy Technology Data Exchange (ETDEWEB)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N. (Harvard-Med)

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  9. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  10. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  11. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  12. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  13. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    Science.gov (United States)

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.

    2012-01-01

    Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231

  14. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  15. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  16. Biological selenium removal from wastewaters

    NARCIS (Netherlands)

    Lenz, M.

    2008-01-01

    In this thesis, microbial conversion of water-soluble, highly toxic forms of selenium (selenate, selenite) to less bioavailable elemental selenium was investigated. By the exploitation of different groups of microorganisms (selenium-respiring, nitrate-reducing and sulfate-reducing bacteria,

  17. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  18. Studies on the origin and transformation of selenium and its chemical species along the process of petroleum refining

    Science.gov (United States)

    Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert

    2009-06-01

    Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of

  19. Selenium in diet

    Science.gov (United States)

    ... how much of the mineral was in the soil where the plants grew. Brazil nuts are a very good source of selenium. Fish, shellfish , red meat, grains, eggs, chicken, liver, and garlic ... soil have higher levels of selenium. Brewer's yeast, wheat ...

  20. Mechanism of selenium hydride atomization, fate of free atoms and temperature distribution in an argon shielded, highly fuel-rich, hydrogen-oxygen diffusion micro-flame studied by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Lampugnani, L.; Matoušek, Tomáš

    2002-01-01

    Roč. 17, č. 3 (2002), s. 253-257 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453; GA ČR GA203/98/0754 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.250, year: 2002

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. Long-term selenium status in humans

    International Nuclear Information System (INIS)

    Baskett, C.K.; Spate, V.L.; Mason, M.M.; Nichols, T.A.; Williams, A.; Dubman, I.M.; Gudino, A.; Denison, J.; Morris, J.S.

    2001-01-01

    The association of sub-optimal selenium status with increased risk factors for some cancers has been reported in two recent epidemiological studies. In both studies the same threshold in selenium status was observed, below which, cancer incidence increased. To assess the use of nails as a biologic monitor to measure the long-term selenium status, an eight-year longitudinal study was undertaken with a group of 11 adult subjects, 5 women and 6 men. Selenium has been measured by instrumental neutron activation analysis. Differences between fingernails and toenails with be discussed. In addition, the results will be discussed in the context of the long-term stability of the nail monitor to measure selenium status during those periods when selenium determinants are static; and the changes that occur as a result of selenium supplementation. (author)

  3. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  4. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  5. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  6. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  7. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  8. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  9. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT)

    Science.gov (United States)

    Nicastro, Holly L.; Dunn, Barbara K.

    2013-01-01

    The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention. PMID:23552052

  10. Selenium and Prostate Cancer Prevention: Insights from the Selenium and Vitamin E Cancer Prevention Trial (SELECT

    Directory of Open Access Journals (Sweden)

    Holly L. Nicastro

    2013-04-01

    Full Text Available The Selenium and Vitamin E Cancer Prevention Trial (SELECT was conducted to assess the efficacy of selenium and vitamin E alone, and in combination, on the incidence of prostate cancer. This randomized, double-blind, placebo-controlled, 2 × 2 factorial design clinical trial found that neither selenium nor vitamin E reduced the incidence of prostate cancer after seven years and that vitamin E was associated with a 17% increased risk of prostate cancer compared to placebo. The null result was surprising given the strong preclinical and clinical evidence suggesting chemopreventive activity of selenium. Potential explanations for the null findings include the agent formulation and dose, the characteristics of the cohort, and the study design. It is likely that only specific subpopulations may benefit from selenium supplementation; therefore, future studies should consider the baseline selenium status of the participants, age of the cohort, and genotype of specific selenoproteins, among other characteristics, in order to determine the activity of selenium in cancer prevention.

  11. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  12. Determination of Total Selenium in Infant Formulas: Comparison of the Performance of FIA and MCFA Flow Systems

    Directory of Open Access Journals (Sweden)

    Mariela Pistón

    2012-01-01

    Full Text Available Two flow methods, based, respectively, on flow-injection analysis (FIA and on multicommutated flow analysis (MCFA, were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp., higher sampling frequency (160 versus. 70 samples per hour, and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance.

  13. Selenium for preventing cancer.

    Science.gov (United States)

    Vinceti, Marco; Filippini, Tommaso; Del Giovane, Cinzia; Dennert, Gabriele; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice Pa; Horneber, Markus; D'Amico, Roberto; Crespi, Catherine M

    2018-01-29

    This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently

  14. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  15. Selenium in human mammary carcinogenesis

    DEFF Research Database (Denmark)

    Overvad, Kim; Grøn, P.; Langhoff, Otto

    1991-01-01

    /l and TNM stage II 76 +/- 13 micrograms selenium/l), indicating disease-mediated changes. The evaluation of selenium as a risk indicator in human breast cancer was therefore restricted to TNM stage I patients (n = 36). Multiple logistic regression analyses including variables associated with selenium levels...

  16. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  17. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  18. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  19. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Selenium in food and health

    National Research Council Canada - National Science Library

    Reilly, Conor

    2006-01-01

    ...) to be a carcinogen and banned as an additive in food. Selenium is considered by some to be a serious hazard to the environment and to animal health. Selenium-contaminated water has brought deformity and death to wildlife in nature reserves in western USA. There is even concern that because of selenium contamination of soil, crops supplied to the great cities of California could become unfit for human consumption. In large areas of China, endemic selenium toxicity is a hazard for locals who depend on cr...

  1. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  2. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400 C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2 /H 2 O above which massive hydriding occurs at 400 C is ∝200. The critical H 2 /H 2 O ratio is shifted to ∝2.5 x 10 3 at 350 C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ∝5 h at a hydriding rate of ∝10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale. (orig.)

  3. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  4. Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds

    International Nuclear Information System (INIS)

    Amoako, Prince O.; Uden, Peter C.; Tyson, Julian F.

    2009-01-01

    Speciation of selenium is of interest because it is both essential and toxic to humans, depending on the species and the amount ingested. Following indications that selenium supplementation could reduce the incidence of some cancers, selenium-enriched yeast and other materials have been commercialized as supplements. Most dramatically however, the SELECT trial that utilized L-selenomethionine as the active supplement was terminated in 2008 and there is much debate regarding both the planning and the results of efficacy studies. Further, since dietary supplements are not regulated as pharmaceuticals, there are concerns about the quality, storage conditions, stability and selenium content in selenium supplements. Enzymatic hydrolysis enabled selenium speciation profiles to be obtained by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and following derivatization gas chromatography with atomic emission detection (GC-AED). Coated fiber solid phase microextraction (SPME) was used to extract volatile selenium species for determination by GC-AED and GC-MS. Similar speciation patterns were observed between yeast-based supplements subject to extended storage and those heated briefly at elevated temperatures. All the yeast-based supplements and one yeast-free supplement formed S-(methylseleno)cysteine on heating. Evidence was obtained in support of the hypotheses that S-(methylseleno)cysteine is formed from a reaction between dimethyldiselenide and cysteine or cystine.

  5. Selenium for preventing cancer

    Science.gov (United States)

    Vinceti, Marco; Dennert, Gabriele; Crespi, Catherine M; Zwahlen, Marcel; Brinkman, Maree; Zeegers, Maurice PA; Horneber, Markus; D'Amico, Roberto; Del Giovane, Cinzia

    2015-01-01

    Background This review is an update of the first Cochrane publication on selenium for preventing cancer (Dennert 2011). Selenium is a metalloid with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancers. Objectives Two research questions were addressed in this review: What is the evidence for: an aetiological relation between selenium exposure and cancer risk in humans? andthe efficacy of selenium supplementation for cancer prevention in humans? Search methods We conducted electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2013, Issue 1), MEDLINE (Ovid, 1966 to February 2013 week 1), EMBASE (1980 to 2013 week 6), CancerLit (February 2004) and CCMed (February 2011). As MEDLINE now includes the journals indexed in CancerLit, no further searches were conducted in this database after 2004. Selection criteria We included prospective observational studies (cohort studies including sub-cohort controlled studies and nested case-control studies) and randomised controlled trials (RCTs) with healthy adult participants (18 years of age and older). Data collection and analysis For observational studies, we conducted random effects meta-analyses when five or more studies were retrieved for a specific outcome. For RCTs, we performed random effects meta-analyses when two or more studies were available. The risk of bias in observational studies was assessed using forms adapted from the Newcastle-Ottawa Quality Assessment Scale for cohort and case-control studies; the criteria specified in the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the risk of bias in RCTs. Main results We included 55 prospective observational studies (including more than 1,100,000 participants) and eight RCTs (with a total of 44,743 participants). For the observational studies, we found lower cancer incidence (summary odds ratio (OR) 0

  6. 21 CFR 573.920 - Selenium.

    Science.gov (United States)

    2010-04-01

    ... section, or as selenium yeast, as provided in paragraph (h) of this section. (c) It is added to feed as... months.” (h) Selenium yeast is a dried, non-viable yeast (Saccharomyces cerevisiae) cultivated in a fed-batch fermentation which provides incremental amounts of cane molasses and selenium salts in a manner...

  7. Dietary selenium in the Glasgow area

    International Nuclear Information System (INIS)

    Cross, J.D.; Raie, R.M.; Smith, H.

    1978-01-01

    A typical diet for people in the Glasgow area is analysed and an estimate is made of the daily intake of selenium for the average person (234 μg). Meat, poultry and bread products contribute 65% of the total selenium consumed. There is a significant loss of selenium on cooking but the concentration in the diet is high compared with the estimated requirement. Selenium levels in prepared infant foods, artificial milk and natural milk are reported. Those infants on artificial milk feeds have a selenium intake equivalent to that of adults (3 μg/kg) while those on natural milk or prepared infant foods have an intake of 6 μg/kg. Adult and infant tissue selenium levels are established and are shown to be in equilibrium with the diet. There is no concentration in man as a result of his position at the top of the food chain. Sudden infant death cannot be related to selenium levels in human tissue or diet. (author)

  8. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  9. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  10. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  11. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  12. Aquatic Life Criterion - Selenium

    Science.gov (United States)

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  13. The use of masking agents in the determination, by hydride generation and atomic-absorption spectrophotometry, of arsenic, antimony, selenium, tellurium, and bismuth in the presence of noble metals

    International Nuclear Information System (INIS)

    Kellerman, S.P.

    1982-01-01

    The effectiveness of thiosemicarbazide, tellurium, and potassium iodide as masking agents to eliminate interferences was assessed. Thiosemicarbazide was found to be effective in eliminating or reducing the interferences on arsenic, antimony, and bismuth, and tellurium reduced the interferences on selenium. The interferences on tellurium could not be eliminated. Arsenic, antimony, selenium, and bismuth were determined in metal sulphide concentrates that were spiked with the noble metals (defined here as gold plus all the platinum-group metals except osmium). The relative standard deviations for arsenic, antimony, bismuth, and selenium were 0,061, 0,017, 0,029, and 0,145 respectively. The values obtained for all the analytes agreed favourably with the preferred values for two in-house reference samples. The laboratory method is detailed in an appendix

  14. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  15. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  16. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  17. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  18. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  19. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  20. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  1. Selenium in Graves' disease

    Directory of Open Access Journals (Sweden)

    Jadwiga Kryczyk

    2013-05-01

    Full Text Available The aim of this study was to present the current state of knowledge of the role of selenium in Graves’ disease. Recently, in the pathogenesis and course of this autoimmune disease, more attention has been paid to the relationship between oxidative stress and the antioxidant system, where selenium compounds play an important role. The thyroid is the organ with the highest selenium concentration in the human body. Selenium compounds, having antioxidant properties, protect thyrocytes against the destructive effects of reactive oxygen species (ROS, which are generated during the synthesis of thyroid hormones. Therefore, strengthening the body’s defense mechanisms, which protect against the formation and activity of ROS during medical treatment of Graves’ disease patients, may be an effective adjuvant in commonly used methods of therapy.

  2. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  3. Does selenium supplementation affect thyroid function?

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Bonnema, Steen Joop; Cold, Frederik

    2015-01-01

    OBJECTIVE: Selenium is present in the active site of proteins important for thyroid hormone synthesis and metabolism. The objective of this study is to investigate the effect of selenium supplementation in different doses on thyroid function, under conditions of suboptimal dietary selenium intake....... DESIGN: The Danish PREvention of Cancer by Intervention with SElenium pilot study (DK-PRECISE) is a randomized, double-blinded, placebo-controlled trial. A total of 491 males and females aged 60-74 years were randomized to 100 μg (n=124), 200 μg (n=122), or 300 μg (n=119) selenium-enriched yeast......=0.015), respectively, per 100 μg/day increase, with insignificant differences between 6 months and 5 years. No significant effects were found for FT3 and FT3:FT4 ratio. CONCLUSIONS: In euthyroid subjects, selenium supplementation minutely and dose-dependently affects thyroid function, when compared...

  4. Acute selenium poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Gabbedy, B J; Dickson, J

    1969-10-01

    An outbreak of sodium selenite poisoning is reported in which 180 of 190 six-weeks-old lambs died. The estimated dose rate of the selenium was 6.4 mg/kg body weight. Liver concentrations of selenium at the time of poisoning averaged 64 ppM and 15 days later liver and kidney concentrations of selenium averaged 26 ppM and 7.4 ppM respectively.

  5. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  6. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2007

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2007-01-01

    This report presents the results for two sampling periods during a 4-year monitoring survey to provide a characterization of selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species, and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species-western mosquitofish (Gambusia affinis), and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Total selenium concentrations in water for both sampling periods ranged from 1.43 to 47.1 micrograms per liter, predominately as selenate, which is typical of waters leached out of selenium-contaminated marine shales under alkaline and oxidizing conditions. Total selenium concentrations ranged from 0.88 to 20.2 micrograms per gram in biota, and from 0.15 to 28.9 micrograms per gram in detritus and sediment.

  7. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    International Nuclear Information System (INIS)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel; Wiley, John B.

    2012-01-01

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb 2 O 7 , is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb 2 LaNb 2 O 7 . This compound is then reacted at room-temperature with in situ generated H 2 S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb 2 Cl)LaNb 2 O 7 where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S 2− alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H 2 Se (g) were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  8. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, April and July 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (April 2008 and July 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples and total selenium was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species - western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.93 to 44.2 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.75 to 3.39; plankton, 0.88 to 4.03; midges, 2.52 to 44.3; fish, 3.37 to 18.9; detritus, 1.11 to 13.6; sediment, 0.11 to 8.93.

  9. The Cultivation and SeleniumEnrichment of SeleniumEnriched Earthworm

    Directory of Open Access Journals (Sweden)

    SUN Xiao-fei

    2014-12-01

    Full Text Available As a bio-carrier, Eisenia fetida was fed with cow dung that added with sodium selenite in order to transfer inorganic selenium(Se into organic selenium. Targeting on survival rate and selenium content, the effects of five Se concentrations(0, 20, 40, 60, 80, 100 mg·kg-1 and four cultivation periods(15, 30, 45, 60 don earthworm growth and Se contents were investigated. The cultivation method with high survival rate, high Se content of earthworm and short breeding time would be screened out. The experimental results showed that the earthworm survival rate decreased and the Se content in earthworm increased with the increase of Se application and the extension of breeding time. The most optimummethod was screened out when the Se concentration was 80 mg·kg-1 and the cultivation period was 45 days, Se content in earthworm was up to 33.25 mg·kg-1.

  10. Acute selenium poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Shortridge, E H; O' Hara, P J; Marshall, P M

    1971-01-01

    Three hundred and seventy-six (67%) of 557 calves of approximately 150-200 kg live-weight died following subcutaneous injection of a solution containing 100 mg selenium as sodium selenite. Eight per cent of the 254 heifer calves and 56% of the 303 steers died. The calves had endured the stress of being weaned twice and held in stockyards twice as well as encountering wet weather during the 4 days before receiving the selenium. The heifer calves were also vaccinated with Br. abortus strain 19 vaccine at the same time as receiving the selenium. The clinical signs and pathological findings of circulatory failure and myocardial damage were similar to those previously reported in acute selenium poisoning.

  11. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  12. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  13. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  14. Selenium Utilization Strategy by Microalgae

    Directory of Open Access Journals (Sweden)

    Hiroya Araie

    2009-11-01

    Full Text Available The diversity of selenoproteins raises the question of why so many life forms require selenium. Selenoproteins are found in bacteria, archaea, and many eukaryotes. In photosynthetic microorganisms, the essential requirement for selenium has been reported in 33 species belonging to six phyla, although its biochemical significance is still unclear. According to genome databases, 20 species are defined as selenoprotein-producing organisms, including five photosynthetic organisms. In a marine coccolithophorid, Emiliania huxleyi (Haptophyta, we recently found unique characteristics of selenium utilization and novel selenoproteins using 75Se-tracer experiments. In E. huxleyi, selenite, not selenate, is the main substrate used and its uptake is driven by an ATP-dependent highaffinity, active transport system. Selenite is immediately metabolized to low-molecular mass compounds and partly converted to at least six selenoproteins, named EhSEP1–6. The most (EhSEP2 and second-most abundant selenoproteins (EhSEP1 are disulfide isomerase (PDI homologous protein and thioredoxin reductase (TR 1, respectively. Involvement of selenium in PDI is unique in this organism, while TR1 is also found in other organisms. In this review, we summarize physiological, biochemical, and molecular aspects of selenium utilization by microalgae and discuss their strategy of selenium utilization.

  15. Selenistasis: Epistatic Effects of Selenium on Cardiovascular Phenotype

    Directory of Open Access Journals (Sweden)

    Joseph Loscalzo

    2013-01-01

    Full Text Available Although selenium metabolism is intricately linked to cardiovascular biology and function, and deficiency of selenium is associated with cardiac pathology, utilization of selenium in the prevention and treatment of cardiovascular disease remains an elusive goal. From a reductionist standpoint, the major function of selenium in vivo is antioxidant defense via its incorporation as selenocysteine into enzyme families such as glutathione peroxidases and thioredoxin reductases. In addition, selenium compounds are heterogeneous and have complex metabolic fates resulting in effects that are not entirely dependent on selenoprotein expression. This complex biology of selenium in vivo may underlie the fact that beneficial effects of selenium supplementation demonstrated in preclinical studies using models of oxidant stress-induced cardiovascular dysfunction, such as ischemia-reperfusion injury and myocardial infarction, have not been consistently observed in clinical trials. In fact, recent studies have yielded data that suggest that unselective supplementation of selenium may, indeed, be harmful. Interesting biologic actions of selenium are its simultaneous effects on redox balance and methylation status, a combination that may influence gene expression. These combined actions may explain some of the biphasic effects seen with low and high doses of selenium, the potentially harmful effects seen in normal individuals, and the beneficial effects noted in preclinical studies of disease. Given the complexity of selenium biology, systems biology approaches may be necessary to reach the goal of optimization of selenium status to promote health and prevent disease.

  16. Multiple microflame quartz tube atomizer: Study and minimization of interferences in quartz tube atomizers in hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br; Medeiros Nunes, Adriane; Luiz Dressler, Valderi [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, CZ-142 20 Prague (Czech Republic)

    2009-02-15

    A systematic study was performed to evaluate the performance of a multiple microflame (MM) quartz tube atomizer (QTA) for minimizing interferences and to improve the extent of the calibration range using a batch system for hydride generation atomic absorption spectrometry (HG AAS). A comparison of the results with conventional QTA on the determination of antimony, arsenic, bismuth and selenium was performed. The interference of As, Bi, Se, Pb, Sn and Sb was investigated using QTA and MMQTA atomizers. Better performance was found for MMQTA, and no loss of linearity was observed up to 160 ng for Se and Sb and 80 ng for As, corresponding to an enhancement of two times for both analytes when compared to QTA (analyte mass refers to a volume of 200 {mu}l). For Bi, the linear range was the same for QTA and MMQTA (140 ng). With the exception of Bi, the tolerance limits for hydride-forming elements were improved more than 50% in comparison to the conventional QTA system, especially for the interferences of As, Sb and Se. However, for Sn as an interferent, no difference was observed in the determination of Se and Sb using the MMQTA system. The use of MMQTA-HG AAS complied with the relatively high sensitivity of conventional QTA and also provided better performance for interferences and the linear range of calibration.

  17. Improved microwave-assisted wet digestion procedures for accurate Se determination in fish and shellfish by flow injection-hydride generation-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lavilla, I.; Gonzalez-Costas, J.M.; Bendicho, C.

    2007-01-01

    Accurate determination of Se in biological samples, especially fish and shellfish, by hydride generation techniques has generally proven troublesome owing to the presence of organoselenium that cannot readily converted into inorganic selenium under usual oxidising conditions. Further improvements in the oxidation procedures are needed so as to obtain accurate concentration values when this type of samples is analyzed. Microwave-assisted wet digestion (MAWD) procedures of seafood based on HNO 3 or the mixture HNO 3 /H 2 O 2 and further thermal reduction of the Se(VI) formed to Se(IV) were evaluated. These procedures were as follows: (I) without H 2 O 2 and without heating to dryness; (II) without H 2 O 2 and with heating to dryness; (III) with H 2 O 2 and without heating to dryness; (IV) with H 2 O 2 and with heating to dryness. In general, low recoveries of selenium are obtained for several marine species (e.g., crustaceans and cephalopods), which may be ascribed to the presence of Se forms mainly associated with nonpolar proteins and lipids. Post-digestion UV irradiation proved very efficient since not only complete organoselenium decomposition was achieved but also the final step required for prereduction of Se(VI) into Se(IV) (i.e. heating at 90 deg. C for 30 min in 6 M HCl) could be avoided. With the MAWD/UV procedure, the use of strong oxidising agents (persuphate, etc.) or acids (e.g. perchloric acid) which are typically applied prior to Se determination by hydride generation techniques is overcome, and as a result, sample pre-treatment is significantly simplified. The method was successfully validated against CRM DOLT-2 (dogfish liver), CRM DORM-2 (dogfish muscle) and CRM TORT-2 (lobster hepatopancreas). Automated ultrasonic slurry sampling with electrothermal atomic absorption spectrometry was also applied for comparison. Total Se contents in ten seafood samples were established. Se levels ranged from 0.7 to 2.9 μg g -1

  18. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2008 and January 2009

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for two sampling periods (October 2008 and January 2009) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (dissolved selenite, selenate, organoselenium), and total suspended solids were determined in water samples. Total selenium also was determined in water column particulates and in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 1.00 to 33.6 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 1.52 to 8.26; plankton, 0.79 to 3.66; midges, 2.68 to 50.6; fish, 3.09 to 30.4; detritus, 1.78 to 58.0; and sediment, 0.42 to 10.0.

  19. Total selenium and selenium species in irrigation drain inflows to the Salton Sea, California, October 2007 and January 2008

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2008-01-01

    This report presents the results for two sampling periods (October 2007 and January 2008) during a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium, selenium species (selenite, selenate, organoselenium), and total suspended solids were determined in water samples, and total selenium was determined in sediment, detritus, and biota that included algae, plankton, midge larvae (family, Chironomidae), and two fish species?western mosquitofish (Gambusia affinis) and sailfin molly (Poecilia latipinna). In addition, sediments were analyzed for percent total organic carbon and particle size. Mean total selenium concentrations in water for both sampling periods ranged from 0.97 to 64.5 micrograms per liter, predominately as selenate, which is typical of waters where selenium is leached out of selenium-containing marine shales and associated soils under alkaline and oxidizing conditions. Total selenium concentrations (micrograms per gram dry weight) ranged as follows: algae, 0.95 to 5.99; plankton, 0.15 to 19.3; midges, 1.39 to 15.4; fish, 3.71 to 25.1; detritus, 0.85 to 21.7; sediment, 0.32 to 7.28.

  20. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency

    Science.gov (United States)

    2014-01-01

    Introduction Low plasma selenium concentrations are frequent in critically ill patients. However, whether this is due to systemic inflammation, a deficient nutritional state or both is still not clear. We aimed to determine the factors associated with low plasma selenium in critically ill children while considering the inflammatory response and nutritional status. Method A prospective study was conducted in 173 children (median age 34 months) with systemic inflammatory response who had plasma selenium concentrations assessed 48 hours after admission and on the 5th day of ICU stay. The normal reference range was 0.58 μmol/L to 1.6 μmol/L. The outcome variable was ‘low plasma selenium’, which was defined as plasma selenium values below the distribution median during this period. The main explanatory variables were age, malnutrition, sepsis, C-reactive protein (CRP), and clinical severity scores. The data were analyzed using a Binomial Generalized Estimating Equations model, which includes the correlation between admission and 5th day responses. Results Malnutrition and CRP were associated with low plasma selenium. The interaction effect between these two variables was significant. When CRP values were less than or equal to 40 mg/L, malnutrition was associated with low plasma selenium levels (odds ratio (OR) = 3.25, 95% confidence interval (CI) 1.39 to 7.63, P = 0.007; OR = 2.98, 95% CI 1.26 to 7.06, P = 0.013; OR = 2.49, 95% CI 1.01 to 6.17, P = 0.049, for CRP = 10, 20 and 40 mg/L, respectively). This effect decreased as CRP concentrations increased and there was loose significance when CRP values were >40 mg/L. Similarly, the effect of CRP on low plasma selenium was significant for well-nourished patients (OR = 1.13; 95% CI 1.06 to 1.22, P selenium. This interaction should be considered when interpreting plasma concentrations as an index of selenium status in patients with systemic inflammation as well as in the decision

  1. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  2. Joint refinery selenium treatability study

    International Nuclear Information System (INIS)

    Meyer, C.L.; Folwarkow, S.

    1993-01-01

    The San Francisco Regional Water Quality Control Board recently established mass limits on discharges of selenium to the San Francisco Bay from several petroleum refineries. The refineries had been working independently to develop control strategies, including both source control and treatment options, for removal of selenium from their discharges. By January 1992, over fifty different combinations of treatment technologies, wastewater streams, and pretreatment steps had been investigated to determine their effectiveness and feasibility as selenium removal processes. No treatment process studied could achieve the required mass limits without serious negative environmental consequences, such as generation of large amounts of hazardous sludge. To better facilitate the development of a feasible selenium treatment process, the six Bay Area refineries shared results of their studies and identified several technologies that, with further work, could be developed further. This additional work is currently being carried out as part of a joint selenium treatability study sponsored by the Western States Petroleum Association. A review of the previous source control and treatment studies, along with a description of the current treatability studies will be discussed

  3. Getting metal-hydrides to do what you want them to

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB 5 compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi 5 + H 2 is used as example. Use of AB 5 hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV 2 ) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures

  4. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  5. An appraisal of neutron activation analysis and other analytical techniques for the determination of arsenic, selenium and tin in environmental samples

    International Nuclear Information System (INIS)

    Peterson, P.J.; Girling, C.A.; Klumpp, D.W.; Minski, M.J.

    1979-01-01

    The paper presents an experimental comparison between neutron activation analysis, atomic absorption spectrophotometry and fluorescence spectrophotometry used for the determination of trace amounts of As, Se and Sn and the other two analytical techniques mentioned. Gamma-ray spectrometry has been used to determine 76 As (tsub(1/2)=26.3 h) after 1 day's irradiation at a thermal neutron flux of 1.6x10 12 n.cm -2 .s -1 . High sensitivity was also obtained using an atomic absorption spectrophotometer coupled with covalent hydride generation. Advantages of the latter technique include simplicity of operation, high speed of analysis and negligible background correction. When used in conjuction with selective reduction and a cold-trap this method quantitatively distinguishes between the valence states and some methylated derivatives. Selenium has been analysed by gamma-ray spectrometry using 77 Sesup(m) (tsub(1/2)=17.5 s) after cyclic activation at a thermal neutron flux of 2x10 12 n.cm -2 .s -1 . Atomic absorption spectrophotometry following hydride generation, or fluorescence spectrophotometry of the 2,3 diaminonaphthalene complex constitute additional sensitive analytical methods for the determination of Se. These have the added advantage that valence states can be selectively measured. Low concentrations of Sn have been determined by neutron activation analysis and by spectrophotometric techniques using phenylfluorone as the complexing reagent, but these methods depend on selective extraction of Sn(IV) iodide. Whilst maintaining high sensitivity, these problems were avoided by using the hydride generation technique with an atomic absorption spectrophotometer. Comparative analytical values for Bowen's kale and NBS orchard leaves are presented

  6. Selenium content of foods purchased or produced in Ohio.

    Science.gov (United States)

    Snook, J T; Kinsey, D; Palmquist, D L; DeLany, J P; Vivian, V M; Moxon, A L

    1987-06-01

    Approximately 450 samples of about 100 types of foods consumed by rural and urban Ohioans were analyzed for selenium. Meat, dairy products, eggs, and grain products produced in Ohio have considerably lower selenium content than corresponding products produced in high selenium areas, such as South Dakota. Retail Ohio foods with interregional distribution tended to be higher in selenium content than corresponding foods produced in Ohio. Best sources of selenium in Ohio foods commonly consumed were meat and pasta products. Poor sources of selenium were fruits, most vegetables, candies, sweeteners, and alcoholic and nonalcoholic beverages. Establishment of an accurate data base for selenium depends on knowledge of the interregional distribution of foods, the selenium content of foods at their production site, and the selenium content of foods with wide local distribution.

  7. Recovery of stream communities from experimental selenium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Swift, M.C.; Kuklinskal, B.; Ferkull, K. [Univ. of Minnesota, Monticello, MN (United States); Allen, K.N.; Hermanutz, R.O.; Roush, T.H.; Hedtke, S.F. [Environmental Protection Agency, Duluth, MN (United States). Environmental Research Lab.

    1994-12-31

    The effects of selenium on stream communities and their recovery from those effects were studied at MERS from 1987--1991. Selenium was dosed into two replicate streams each at concentrations of 30, 10, 2.5 and 0 (control) {mu}g L{sup {minus}1} for 18, 30, and 12 months, respectively. Recovery was monitored for three (30) or two (1 0, 2.5) years following cessation of selenium dosing. Selenium rapidly accumulated in the sediment, plants, macroinvertebrates and fish during dosing. Selenium concentrations in sediment, macroinvertebrates, and plants were as high as 2X--4X, 2X--4X, and 1X--1OX the dosed concentration in the 30, 10, and 2.5 treatments, respectively. Selenium decreased relatively rapidly following cessation of dosing. By two years after dosing ceased, selenium concentrations in plants and macroinvertebrates were little different from the controls; selenium in sediment from the 30 and 10 streams was still higher than in the control streams two years after dosing ceased. The macroinvertebrate community changed little during the dosing and recovery period. Commonly used indices of community structure showed no effect of selenium dosing. The isopod Asellus and oligochaetes in the family Tubificidae decreased rapidly following the onset of selenium dosing; their recovery following cessation of dosing was slow.

  8. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  9. Determination of selenium via the fluorescence quenching effect of selenium on hemoglobin-catalyzed peroxidative reaction.

    Science.gov (United States)

    Chen, Ya-Hong; Zhang, Ya-Nan; Tian, Feng-Shou

    2015-05-01

    A new method for the determination of selenium based on its fluorescence quenching on the hemoglobin-catalyzed reaction of H2 O2 and l-tyrosine has been established. The effect of pH, foreign ions and the optimization of variables on the determination of selenium was examined. The calibration curve was found to be linear between the fluorescence quenching (F0 /F) and the concentration of selenium within the range of 0.16-4.00 µg/mL. The detection limit was 1.96 ng/mL and the relative standard deviation was 3.14%. This method can be used for the determination of selenium in Se-enriched garlic bulbs with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  11. Morphology study on the depleted uranium as hydriding/dehydriding cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong-you, E-mail: dongyou@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Sei-Hun; Kang, Hyun-Goo; Chang, Min Ho; Oh, Yun Hee [National Fusion Research Institute, Daejeon (Korea, Republic of); Kang, Kweon Ho; Woo, Yoon Myung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Depleted Uranium (DU) is one of the strongest candidates as a getter material of hydrogen isotopes in the nuclear fusion reactor. In this work, small DU lump specimen with 99.8% purity was prepared for observation of morphology variation as hydriding/dehydriding cycles. Hydriding/dehydriding of DU was carried out more than 10 cycles for powder preparation. The pulverized DU specimen was safely handled in the glove box under Argon gas condition to minimize contact with oxygen and humidity. The morphology change according to hydriding/dehydriding cycles was observed by visual cell reactor, optical microscope and scanning electron microscope. The first hydriding of the small DU sample has progressed slowly with surface enlargement and volume expansion as time passes. After third hydriding/dehydriding cycles, most of DU was pulverized. The powder fineness of DU developed as hydriding/dehydriding cycle progresses. But the agglomerates of fine DU particles were observed. It was confirmed that the DU particles exist as porous agglomerates. And the particle agglomerate shows poor fluidity and even has the cohesive force.

  12. Distribution and mode of occurrence of selenium in US coals

    Science.gov (United States)

    Coleman, L.; Bragg, L.J.; Finkelman, R.B.

    1993-01-01

    Selenium excess and deficiency have been established as the cause of various health problems in man and animals. Combustion of fossil fuels, especially coal, may be a major source of the anthropogenic introduction of selenium in the environment. Coal is enriched in selenium relative to selenium's concentration in most other rocks and relative to selenium in the Earth's crust. Data from almost 9,000 coal samples have been used to determine the concentration and distribution of selenium in US coals. The geometric mean concentration of selenium in US coal is 1.7 ppm. The highest mean selenium value (geometric mean 4.7 ppm) is in the Texas Region. Atlantic Coast (Virginia and North Carolina) and Alaska coals have the lowest geometric means (0.2 and 0.42 ppm, respectively). All western coal regions have mean selenium concentrations of less than 2.0 ppm. In contrast, all coal basins east of the Rocky Mountains (except for several small basins in Rhode Island, Virginia, and North Carolina) have mean selenium values of 1.9 or greater. Generally, variations in selenium concentration do not correlate with variations in ash yield, pyritic sulphur, or organic sulphur concentrations. This may be the result of multiple sources of selenium; however, in some non-marine basins with restricted sources of selenium, selenium has positive correlations with other coal quality parameters. Selenium occurs in several forms in coal but appears to be chiefly associated with the organic fraction, probably substituting for organic sulphur. Other important forms of selenium in coal are selenium-bearing pyrite, selenium-bearing galena, and lead selenide (clausthalite). Water-soluble and ion-exchangeable selenium also have been reported. ?? 1993 Copyright Science and Technology Letters.

  13. The relationship between selenium and gastric cancer

    International Nuclear Information System (INIS)

    Shi Kuixiong; Ma Guansheng; Zhang Tingyu; Cheng Wufeng; Mao Dajuan; Pan Bixia; Xu Xiuxian

    1993-01-01

    Both sodium selenite and selenium yeast were chosen to block the MNNG mutagenesis. The inhibition rates were 66.5% and 37.9% respectively. The selenium levels in hair, serum and gastric juice, and the contents of nitrosamine in gastric juice were also determined. The results showed that the selenium levels were SG > CAG and Dys > GC (p CAG, Dyas and GC (p < 0.05). 19 cases of CAG patients treated with selenium yeast and 16 cases of the control were observed. After 10 weeks, the selenium levels in serum for the treated group were significantly increased. The symptoms of CAG patients seemed to be alleviated

  14. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Science.gov (United States)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  15. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    International Nuclear Information System (INIS)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs [Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)], since all include sites where uranium was processed. 96 refs., 9 figs

  16. Selenium plating of aluminium and nickel surfaces

    International Nuclear Information System (INIS)

    Qureshi, N.; Shams, N.; Kamal, A.; Ashraf, A.

    1993-01-01

    Selenium exhibits photovoltaic and photoconductive properties. This makes selenium useful in the production of photocells, exposure meters for photographic use, in solar cells, etc. In commerce, selenium coated surfaces are extensively used as photo receptive drums in the xerography machines for reproducing documents. Laboratory experiments were designed to obtain selenium plating on different materials. Of the various electrodes tested for cathodic deposition, anodized aluminum and nickel plated copper were found to give good results. (author)

  17. Is selenium supplementation in autoimmune thyroid diseases justified?

    Science.gov (United States)

    Winther, Kristian H; Bonnema, Steen J; Hegedüs, Laszlo

    2017-10-01

    This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. Epidemiological data suggest an increased prevalence of autoimmune thyroid diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves' disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism, and might benefit patients with mild Graves' orbitopathy. The use of selenium supplementation as adjuvant therapy to standard thyroid medication may be widespread, but a growing body of evidence yields equivocal results. The available evidence from trials does not support routine selenium supplementation in the standard treatment of patients with autoimmune thyroiditis or Graves' disease. However, correction of moderate to severe selenium deficiency may offer benefits in preventing, as well as treating, these disorders. Molecular mechanisms have been proposed, but further studies are needed.

  18. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    Dilute Zr-alloy with hcp α-Zr as major phase is used as pressure boundary for hot coolant in CANDU, PHWR and RBMK reactors. Hydrogen / deuterium ingress during service makes the pressure boundary components like pressure tubes of the aforementioned reactors susceptible to hydride embrittlement. Hydride acquires plate shaped morphology and the broad face of the hydride plate coincides with certain crystallographic plane of α-Zr crystal, which is called habit plane. Hydride plate oriented normal to tensile stress significantly increases the degree of embrittlement. Thus key to mitigating the damage due to hydride embrittlement is to avoid the formation of hydride plates normal to tensile stress. Two different theoretical approaches are used to determine the habit plane of precipitates viz., geometrical and solid mechanics. For the geometrical approach invariant plane and invariant-line criteria have been applied successfully and for the solid mechanics approach strain energy minimization criteria have been used successfully. Solid mechanics approach using strain energy computed by FEM technique has been applied to hydride precipitation in Zr-alloys, but the emphasis has been to understand the solvus hysteresis. The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25, 300, 400 and 450 .deg. C. using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out

  19. High-Resolution Imaging of Selenium in Kidneys: A Localized Selenium Pool Associated with Glutathione Peroxidase 3

    OpenAIRE

    Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distributio...

  20. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  1. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L.) Plants

    OpenAIRE

    Azadeh SAFFARYAZDI; Mehrdad LAHOUTI; Ali GANJEALI; Hassan BAYAT

    2012-01-01

    Selenium (Se) has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri�) plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control), 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like sh...

  2. Effect of selenium supplementation on pigeon reproductive performance, selenium concentration and antioxidant status.

    Science.gov (United States)

    Wang, Y; Yang, H M; Cao, W; Li, Y B

    2017-09-01

    The effects of dietary supplementation of sodium selenite (SS) on the reproductive performance and the concentration of selenium, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA) were determined, and expression of glutathione peroxidase 4 (GPx4) and bone morphogenic protein 15 (BMP15) was evaluated. Paired pigeons (n = 864) were fed: T1 received no SS, while T2, T3, and T4 received 0.5, 1.0, and 1.5 mg of SS/kg of dry matter (DM), respectively. Treatments were performed in triplicate with 72 pairs in each replicate. The results showed that selenium supplementation significantly affected pigeon reproductive performance. Birds fed 1.0 mg of SS/kg displayed higher egg production (P > 0.05), higher birth rate, and lower dead sperm rate than the control group (P Selenium and biochemical analyses revealed a higher selenium concentration in the 1.5 mg of SS/kg group than in the control group (P  0.05); however, in plasma, MDA was lower in the control group (P  0.05), while in ovary, BMP15 was down-regulated in the 1.5 mg of SS/kg group (P selenium concentration, and 0.5 mg of SS/kg up-regulated GSH-Px activity. © 2017 Poultry Science Association Inc.

  3. Absorption and retention of selenium from shrimps in man

    DEFF Research Database (Denmark)

    Bugel, S. H.; Sandstrom, B.; Larsen, Erik Huusfeldt

    2001-01-01

    This study was undertaken to evaluate the bioavailability of selenium in shrimps, a possible good source of selenium, by measurements of the absorption and retention of selenium and the effects on plasma selenium concentration and glutathione peroxidase activity. Twelve healthy young subjects (9F...... of the study, after 2, 4, and 6 weeks. The selenium intake increased from 39.4 +/- 15.3 mug/d to 127 +/- 5.5 mug/d with the addition of shrimps. The apparent absorption of selenium from shrimps was 83 +/- 4%, Faecal and urinary selenium excretion was 32.5 +/- 17.0 mug/d and 21.2 +/- 9.0 mug/d, re spectively...... and the total retention of selenium was 3.1 +/- 1.1 mg. Plasma selenium concentrations were 95.2 +/- 9.7 mug/L and 101.5 +/- 9.7 mug/L before and after six weeks of shrimp intake, respectively (p...

  4. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  5. Arsenic and selenium in microbial metabolism

    Science.gov (United States)

    Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.

    2006-01-01

    Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.

  6. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  7. Room temperature oxidative intercalation with chalcogen hydrides: Two-step method for the formation of alkali-metal chalcogenide arrays within layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Ranmohotti, K.G. Sanjaya; Montasserasadi, M. Dariush; Choi, Jonglak; Yao, Yuan; Mohanty, Debasish; Josepha, Elisha A.; Adireddy, Shiva; Caruntu, Gabriel [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States); Wiley, John B., E-mail: jwiley@uno.edu [Department of Chemistry and the Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148-2820 (United States)

    2012-06-15

    Highlights: ► Topochemical reactions involving intercalation allow construction of metal chalcogenide arrays within perovskite hosts. ► Gaseous chalcogen hydrides serve as effect reactants for intercalation of sulfur and selenium. ► New compounds prepared by a two-step intercalation strategy are presented. -- Abstract: A two-step topochemical reaction strategy utilizing oxidative intercalation with gaseous chalcogen hydrides is presented. Initially, the Dion-Jacobson-type layered perovskite, RbLaNb{sub 2}O{sub 7}, is intercalated reductively with rubidium metal to make the Ruddlesden-Popper-type layered perovskite, Rb{sub 2}LaNb{sub 2}O{sub 7}. This compound is then reacted at room-temperature with in situ generated H{sub 2}S gas to create Rb-S layers within the perovskite host. Rietveld refinement of X-ray powder diffraction data (tetragonal, a = 3.8998(2) Å, c = 15.256(1) Å; space group P4/mmm) shows the compound to be isostructural with (Rb{sub 2}Cl)LaNb{sub 2}O{sub 7} where the sulfide resides on a cubic interlayer site surrounded by rubidium ions. The mass increase seen on sulfur intercalation and the refined S site occupation factor (∼0.8) of the product indicate a higher sulfur content than expected for S{sup 2−} alone. This combined with the Raman studies, which show evidence for an H-S stretch, indicate that a significant fraction of the intercalated sulfide exists as hydrogen sulfide ion. Intercalation reactions with H{sub 2}Se{sub (g)} were also carried out and appear to produce an isostructural selenide compound. The utilization of such gaseous hydride reagents could significantly expand multistep topochemistry to a larger number of intercalants.

  8. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  9. Selenium Level and Dyslipidemia in Rural Elderly Chinese

    Science.gov (United States)

    Su, Liqin; Gao, Sujuan; Unverzagt, Frederick W.; Cheng, Yibin; Hake, Ann M.; Xin, Pengju; Chen, Chen; Liu, Jingyi; Ma, Feng; Bian, Jianchao; Li, Ping; Jin, Yinlong

    2015-01-01

    Objective Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status. Methods A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDLC) and low-density lipoprotein-cholesterol (LDLC), nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and selenium levels and the risk of dyslipidemia. Results Mean nail selenium concentration was 0.465μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of dyslipidemia. Conclusions Our results suggest long-term selenium exposure level may be associated with the risk of dyslipidemia in elderly population. Future studies are needed to examine the underlying mechanism of the association. PMID:26380972

  10. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  11. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  12. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  13. Selenium in human milk: An Australian study

    International Nuclear Information System (INIS)

    Cumming, F.J.; Fardy, J.J.; Woodward, D.R.

    1991-01-01

    The aims of this Australian study were to determine (total) selenium concentration in breast milk and in maternal blood, and to assess the relationship between the two. The authors also aimed to assess the infants' selenium intake. Twenty lactating women from Brisbane (Queensland) participated in the study, at 6-12 weeks post-partum. Small samples (approximately 10 ml) of breast-milk were manually expressed at the beginning and end of a mid-morning feed, from the first breast offered at that feed. Venous blood samples (10 ml) were also collected from the mothers. Milk and blood samples were analyzed by neutron activation analysis. Babies' milk intake over a 24-hour period was estimated using a modified test-weighing technique. Infant selenium intakes were calculated directly for each infant, using his/her mother's milk selenium level and his/her own 24-hour breast milk intake. The mean selenium concentration in maternal blood was 101 (±SD 19) ng/g and in maternal serum 81 (±15) ng/g. Breast milk selenium concentrations (11.9 ± 3.5 ng/g) were fairly low by international standards. There was no correlation between selenium concentrations in milk and blood (or serum). The infants' 24-hour breast-milk intakes were 856 ± 172 g, and their selenium intakes were 10.7 ± 4.1 μg per day

  14. Is selenium supplementation in autoimmune thyroid diseases justified?

    DEFF Research Database (Denmark)

    Winther, Kristian H.; Bonnema, Steen; Hegedüs, Laszlo

    2017-01-01

    PURPOSE OF REVIEW: This review provides an appraisal of recent evidence for or against selenium supplementation in patients with autoimmune thyroid diseases, and discusses possible effect mechanisms. RECENT FINDINGS: Epidemiological data suggest an increased prevalence of autoimmune thyroid...... diseases under conditions of low dietary selenium intake. Two systematic reviews have evaluated controlled trials among patients with autoimmune thyroiditis and report that selenium supplementation decreases circulating thyroid autoantibodies. The immunomodulatory effects of selenium might involve reducing...... proinflammatory cytokine release. However, clinically relevant effects of selenium supplementation, including improvement in quality of life, are more elusive. In Graves’ disease, some, but not all, trials indicate that adjuvant selenium supplementation enhances the restoration of biochemical euthyroidism...

  15. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  16. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  17. On the Chemistry of Hydrides of N Atoms and O+ Ions

    Science.gov (United States)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  18. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  19. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  20. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  1. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  2. Determinants of selenium in the toenail biomonitor

    International Nuclear Information System (INIS)

    Morris, J.S.; Spate, V.L.; Ngwenyama, R.A.

    2006-01-01

    The evaluation of human nails as a measure of selenium intake and to assess selenium status in critical tissues is now being used routinely to investigate hypotheses relating selenium status to chronic disease, especially cancer. In this study we report on our observations of the major determinants of toenail selenium concentrations. Toenail specimens (3575) were, under a protocol we provided, self-collected by adult females (1940, 54.3%) and males (1635, 45.7%) living in 111 of Missouri's 114 counties. The health-conscious participants ranged in age from 18 to 94 years with means of 53.7±14.1 and 56.4±14.2 years for females and males, respectively. Selenium supplement use was over represented, 39.1% and 42.7%, and smoking was under represented, 7.5% and 7.8%, for females and males, respectively. The major determinants of toenail selenium concentration were supplement use, sex and cigarette smoking. We found no overall correlations with age, body mass index or diet selection. (author)

  3. Selenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound selenium

    NARCIS (Netherlands)

    Todd, S.E.; Thomas, D.G.; Hendriks, W.H.

    2012-01-01

    The response of cats to dietary sodium selenite (Na2SeO3) and organically bound selenium was studied in two separate studies with four cats per treatment and three levels of selenium supplementation (targets 1.0, 1.5 and 2.0 µg/g DM) for each Se source. Whole blood and plasma selenium concentrations

  4. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  5. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  6. [The role of selenium in endocrine system diseases].

    Science.gov (United States)

    Balázs, Csaba; Rácz, Károly

    2013-10-13

    Oxygen derived free radicals, generated by a number of cellular reactions, include superoxide anion, hydrogen peroxide and hydroxyl radicals. They exert their cytotoxic effects mainly via peroxidation of the cell membrane resulting in the loss of membrane integrity. The essential trace element, selenium exerts complex effects on the endocrine systems, partly due to its antioxidant capacity. Well-characterized selenoproteins include iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases involved in thyroid hormone metabolism and protection from oxidative damage. The value of selenium supplementation in autoimmune thyroid disorders has been investigated and most studies confirmed the beneficial effect of selenium supplementation in Hashimoto's and Graves's diseases. Recently, selenium proved to be effective in mild inflammatory orbitopathy. There are a number of reports about the effect of selenium in diabetes mellitus, but the data are controversial as both insulin-like and diabetes-inducing effects of selenium have been described. Selenium was successfully used in both female and male infertility of autoimmune origin.

  7. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  8. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  9. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  10. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  11. Selenium and phosphorus interaction in pea (pisum sativum L.)

    International Nuclear Information System (INIS)

    Singh, Mahendra; Bhandari, D.K.

    1975-01-01

    The interaction of selenium and phosphorus on the dry matter yield and concentration and uptake of phosphorus, sulfur and selenium was studied in pea (Pisum sativnum) var. T 163. The fertilizer was tagged with P 32 . It was observed that increased concentration of applied selenium in soil decreased the dry matter yield and increased the concentration and uptake of total P, soil P and selenium in pea plants. Increased concentration of P alone increased dry matter yield, concentration and uptake of total, soil and fertilizer P and selenium which was beyond safe limits, and decreased concentration and uptake of sulphur. Selenium and phosphorus showed strong synergetic relationship by increasing the concentration of each other in plants while both showed antagonistic effect on the concentration of sulphur. Phosphorus compensated the toxic effect of selenium and improved the growth and dry matter yield of pea plants. The highest selenium concentration of 22.4 ppm was observed in 100 ppm phosphorus with 5 ppm selenium treated pots while lowest (0.10 ppm) in control. (author)

  12. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  13. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  14. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  15. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  16. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    Science.gov (United States)

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  17. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  18. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  19. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  20. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  1. Evaluation of delayed hydride cracking and fracture toughness in zirconium alloys

    International Nuclear Information System (INIS)

    Oh, Je Yong

    2000-02-01

    The tensile, fracture toughness, and delayed hydride cracking (DHC) test were carried at various temperatures to understand the effect of hydrides on zirconium alloys. And the effects of yield stress and texture on the DHC velocity were discussed. The tensile properties of alloy A were the highest, and the difference between directions in alloy C was small due to texture. The fracture toughness at room temperature decreased sharply when hydrided. Although the alignment of hydride plates was parallel to loading direction, the hydrides were fractured due to the triaxiality at the crack tip region. The fracture toughness over 200 .deg. C was similar regardless of the hydride existence, because the triaxiality region was lost due to the decrease of yield stress with temperature. As the yield stress decreased, the threshold stress intensity factor and the striation spacing increased in alloy A, and the fracture surfaces and striations were affected by microstructures in all alloys. To evaluate the effect of the yield stress on DHC velocity, a normalization method was proposed. When the DHC velocity was normalized with dividing by the terminal solid solubility and the diffusion coefficient of hydrogen, the relationship between the yield stress and the DHC velocity was representable on one master curve. The equation from the master curve was able to explain the difference between the theoretical activation energy and the experimental activation energy in DHC. The difference was found to be ascribed to the decrease of yield stress with temperature. texture affected the delayed hydride cracking velocity by yield stress and by hydride reprecipitation. The relationship between the yield stress and the DHC velocity was expressed as an exponential function, and the relationship between the reprecipitation of hydride and the DHC velocity was expressed as a linear function

  2. Selenium nanoparticles: potential in cancer gene and drug delivery.

    Science.gov (United States)

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  3. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  4. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  5. Preliminary Study on the Standard of Selenium Content in Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-yuan; YOU Yong; GUO Qing-quan; WANG Yong-hong; DENG Shi-lin

    2012-01-01

    With the improvement of living standards, people pay more attention to the agricultural products with health protection function, and the selenium-rich agricultural products attract more and more consumers. The main biological role of selenium is to resist oxidation and inflammatory response, mainly focusing on resisting aging, preventing cardiovascular disease, protecting eyesight, counteracting or destroying the toxic properties, preventing cancer and thyroid disease. In most areas of China, there is a widespread shortage of selenium, thus producing selenium-rich agricultural products to provide natural selenium-rich health food to the areas in need of selenium, has gradually become a new hot spot of China’s health food industry, but high content of selenium in food is detrimental to human body, even leads to selenium intoxication, and artificially adding inorganic selenium is difficult to guarantee that the selenium content of agricultural products is not exceeded. According to human body’s daily demand for selenium in dietetics and the content of selenium in agricultural products in the Chinese food composition table, we put forward the recommendations on the standard of selenium in agricultural products, in order to provide the basis for China to formulate the health standard of selenium content in selenium-rich agricultural products.

  6. Selenium deficiency and the effects of supplementation on preterm infants

    Directory of Open Access Journals (Sweden)

    Renata Germano B. O. N. Freitas

    2014-03-01

    Full Text Available Objective: This study aimed to review the literature about blood concentrations of selenium associated with gestational age, feeding, supplementation and related clinical features in preterm infants. Data sources: Systematic review in the following databases: MEDLINE, PubMed, Google academics, SciELO. org, ScienceDirect (Elsevier and CINAHL-Plus with Full Text (EBSCO. Articles published up to January 2013 with the keywords "selenium deficiency", "selenium supplementation", "neonates", "infants", "newborn" and "preterm infants" were selected. Data synthesis: The studies reported that low blood selenium levels are associated with increased risk of respiratory diseases. Preterm infants, especially with low birth weight, presented lower selenium levels. Selenium deficiency has also been associated with the use of oral infant formula, enteral and parenteral nutrition (with or without selenium addition. The optimal dose and length of selenium supplementation is not well-established, since they are based only on age group and selenium ingestion by breastfed children. Furthermore, the clinical status of the infant affected by conditions that may increase oxidative stress, and consequently, selenium requirements is not taken into account. Conclusions: Prematurity and low birth weight can contribute to low blood selenium in premature infants. Selenium supplementation seems to minimize or prevent clinical complications caused by prematurity.

  7. Selenium accumulation in lettuce germplasm

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for animals and humans. Increasing Se content in food crops offers an effective approach to reduce the widespread selenium deficiency problem in many parts of the world. In this study, we evaluated thirty diverse accessions of lettuce (Lactuca sativa L.) f...

  8. SELENIUM ACCUMULATION BY BASIL PLANTS (OCINUM BASILICUM L.

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2014-01-01

    Full Text Available Selenium accumulation level in basil plants is investigated. A direct correlation between selenium concentration and essential oil content is demonstrated for basil and other aroma plants. No correlation is found between selenium and flavonoids.

  9. A Study of Selenium in Leprosy

    Directory of Open Access Journals (Sweden)

    Donna Partogi

    2018-03-01

    CONCLUSIONS: Selenium serum levels of patients with PB leprosy are higher than patients with MB leprosy, and high bacteriological index in patients with leprosy were correlated with low selenium serum levels.

  10. Selenium's importance in regulatory issues regarding mercury

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Laura J.; Ralston, Nicholas V.C. [University of North Dakota Energy and Environmental Research Center, 15 North 23rd Street, Stop 9018, Grand Forks, ND 58202-9018 (United States)

    2009-11-15

    Current seafood safety and health risk assessment criteria use mercury concentrations as their sole basis. This unfortunate limitation omits consideration of selenium, an essential trace element that appears to be the primary molecular target of mercury toxicity. Although selenium has been recognized for decades as a means of counteracting mercury toxicity, its effects have often been overlooked or misunderstood. Experimental animal studies have demonstrated that increasing concentrations of selenium throughout the normal dietary range increasingly counteracts methylmercury toxicity. Dietary concentrations of selenium that are slightly less than the average amount present in ocean fish have been shown to completely prevent the onset of toxic symptoms of mercury toxicity, while animals fed lesser amounts of selenium rapidly sickened and died. Dietary selenium from a variety of sources including ocean fish such as tuna, swordfish, menhaden, and rockfish has been shown to counteract mercury toxicity. Since ocean fish are among the richest sources of dietary selenium, it is important to include selenium concentration measurements in future mercury risk assessments and seafood safety criteria. Mercury:selenium molar ratios in blood provide far more consistent and physiologically meaningful risk assessments. Comprehensive seafood safety criteria such as the Selenium Health Benefit Value enable clear differentiation between seafoods that are safe and those that are hazardous for human consumption. Use of parameters that integrate mercury-selenium relationships also make it easy to understand the differences between the findings of maternal mercury exposure studies that have been performed in New Zealand, the Faroes, the Seychelles, and the United Kingdom. Development of criteria for evaluating mercury-selenium interactions will enhance environmental protection and improve public safety. (author)

  11. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  12. [Pharmaconutrition with parenteral selenium in sepsis].

    Science.gov (United States)

    Langlois, P L; de Oliveira Figliolino, L F; Hardy, G; Manzanares, W

    2014-04-01

    Critical illness is characterized by oxidative stress which leads to multiple organ failure, and sepsis-related organ dysfunction remains the most common cause of death in the intensive care unit. Over the last 2 decades, different antioxidant therapies have been developed to improve outcomes in septic patients. According to recent evidence, selenium therapy should be considered the cornerstone of the antioxidant strategies. Selenium given as selenious acid or sodium selenite should be considered as a drug or pharmaconutrient with prooxidant and cytotoxic effects when a loading dose in intravenous bolus form is administered, particularly in the early stage of severe sepsis/septic shock. To date, several phase ii trials have demonstrated that selenium therapy may be able to decrease mortality, improve organ dysfunction and reduce infections in critically ill septic patients. The effect of selenium therapy in sepsis syndrome must be confirmed by large, well designed phase iii clinical trials. The purpose of this review is to discuss current evidence on selenium pharmaconutrition in sepsis syndrome. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  13. Effect of long-term selenium supplementation on mortality

    DEFF Research Database (Denmark)

    Rayman, Margaret P.; Winther, Kristian Hillert; Pastor-Barriuso, Roberto

    2018-01-01

    Background: Selenium, an essential trace element, is incorporated into selenoproteins with a wide range of health effects. Selenoproteins may reach repletion at a plasma selenium concentration of ∼ 125 μg/L, at which point the concentration of selenoprotein P reaches a plateau; whether sustained...... concentrations higher than this are beneficial, or indeed detrimental, is unknown. Objective: In a population of relatively low selenium status, we aimed to determine the effect on mortality of long-term selenium supplementation at different dose levels. Design: The Denmark PRECISE study was a single...... for extension of the study and mortality assessment. Participants were randomly assigned to treatment with 100, 200, or 300 μg selenium/d as selenium-enriched-yeast or placebo-yeast for 5 years from randomization in 1998-1999 and were followed up for mortality for a further 10 years (through March 31, 2015...

  14. Biogeochemical studies of selenium in the Indian Ocean

    International Nuclear Information System (INIS)

    Hattori, H.; Nakaguchi, Y.; Hiraki, K.; Kimura, M.; Koike, Y.

    1999-01-01

    Selenium that is a one of trace essential elements exists mainly in the chemical form of Se(IV), Se(VI) and organic selenium in ocean. Moreover, the monitoring of the selenium species has become a matter of interest as a mean of estimating their influence in biological processes in ocean. In recent works, some investigators reported that Se(IV) shows nutrient-type especially like silica's behavior, Se(VI) shows an approximately constant value, and the biological activities control the distribution of organic selenium. However, these reports were not included the whole world's oceans. It is necessary to research several oceans for the explication of fate on selenium. We investigated at the most interesting area - the Eastern Indian Ocean where should play a key role in global ocean's cycle for acquiring the new knowledge of selenium species at first

  15. Production of selenium-enriched milk and dairy products

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2015-01-01

    Full Text Available Until the middle of the last century, selenium was considered to be toxic, but recently it turned out to be a micronutrient with important physiological effects, whose lack impedes the functioning of several enzymes, while in the case of a prolonged deficiency, disease processes can also occur in the body. Hungary belongs to the selenium-deficient regions in Europe; therefore, our aim was to contribute to the improvement of selenium supply of the population through increasing the selenium content of milk and dairy products. A daily supplementation of 1-6 mg organic selenium to the feed of dairy cows increases the selenium content of milk from the value of 18 μg/kg to 94 μg/kg in 8 weeks, decreasing again to the initial value in 6 weeks after stopping the supplementation.

  16. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  17. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff.

    Science.gov (United States)

    Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2017-03-04

    The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.

  18. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    Science.gov (United States)

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  19. In Situ Immobilization of Selenium in Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Thomas Austin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  20. Selenium: its potential role in male infertility

    International Nuclear Information System (INIS)

    Oguntibeju, O.O.; Esterhuyse, J.S.; Truter, E.J.

    2009-01-01

    Currently, biomedical research is showing interest in the anti-oxidant activity of selenium. This could be due to compelling evidence that reported that oxidative damage to cells and cell membranes is one of the causative agents in the pathogenesis of many disease states including male infertility. Selenium is a trace element which may be found in soil, water and some foods and is considered to be an essential element which plays an active role in several metabolic pathways and is believed to perform several important roles in the human body. These roles include anti-oxidative activities at cellular level and participating in different enzyme systems. Selenium also serves as a vital component in the maintenance of muscle cell and red blood cell integrity, playing a role in the synthesis of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It has also been reported that selenium is essential in the detoxification of toxic metals in the human system, foetal respiration and energy transfer reactions as well as in the production of sperm cells. It is thought that male infertility can be the result of a selenium deficiency as the absence of selenium in the testicular tissues induces degeneration which results in the active impairment of sperm motility as the first indication of impending infertility. This review paper investigates the role of selenium in male infertility. (author)

  1. Selenium Level and Dyslipidemia in Rural Elderly Chinese.

    Directory of Open Access Journals (Sweden)

    Liqin Su

    Full Text Available Higher selenium level has been hypothesized to have the potential to reduce the risk of cardiovascular diseases including dyslipidemia. However, results from previous studies are inconsistent. This study aims to determine the association between selenium level and dyslipidemia in elderly Chinese with relatively low selenium status.A cross-sectional study of 1859 participants aged 65 or older from four rural counties in China was conducted. Serum total cholesterol (TC, triglycerides (TG, high density lipoprotein-cholesterol (HDLC and low-density lipoprotein-cholesterol (LDLC, nail selenium concentration and APOE genotype were measured in all subjects. The four types of dyslipidemia were defined as >5.17 mmol/L for High-TC, >1.69 mmol/L for High-TG, >3.36 mmol/L for High-LDLC, and <1.04 mmol/L for Low-HDLC according to Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults. Logistic models adjusting for age, gender, APOE genotype, body mass index, alcohol consumption, smoking, physical activity, medication use for cardiovascular diseases were used to examine the relationship between selenium levels and the risk of dyslipidemia.Mean nail selenium concentration was 0.465 μg/gin this sample. Rates for High-TC, High-LDLC, High-TG, Low-HDLC were 18.13%, 13.23%, 12.21% and 32.76% respectively. Results from logistic models indicated that higher selenium levels were significantly associated with higher risk of High-TC, High-LDLC and lower risk of Low-HDLC adjusting for covariates (p < 0.0001. Compared with the lowest selenium quartile group, participants in selenium quartile groups 2, 3 and 4 had significantly higher rates of High-TC, High-LDLC, High-TG, and lower rate of Low-HDLC adjusting for covariates. No significant association was observed between selenium level and the risk of High-TG. APOEε4 carriers had higher rates of High-TC and High-LDLC. There was no interaction between selenium level and APOE with the rates of

  2. Selenium supplementation for critically ill adults

    DEFF Research Database (Denmark)

    Allingstrup, Mikkel; Afshari, Arash

    2015-01-01

    BACKGROUND: Selenium is a trace mineral essential to health and has an important role in immunity, defence against tissue damage and thyroid function. Improving selenium status could help protect against overwhelming tissue damage and infection in critically ill adults. This Cochrane review...... was originally published in 2004 updated in 2007 and again 2015. OBJECTIVES: The primary objective was to examine the effect of nutrition supplemented with selenium or ebselen on mortality in critically ill patients.The secondary objective was to examine the relationship between selenium or ebselen...... supplementation and number of infections, duration of mechanical ventilation, length of intensive care unit stay and length of hospital stay. SEARCH METHODS: In this update, we searched the current issue of the Cochrane Central Register of Controlled Trials, the Cochrane Library (2014, Issue 5); MEDLINE (Ovid SP...

  3. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  4. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. Missouri plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  5. Impact of Selenium Supplementation on Growth and Selenium Accumulation on Spinach (Spinacia oleracea L. Plants

    Directory of Open Access Journals (Sweden)

    Azadeh SAFFARYAZDI

    2012-11-01

    Full Text Available Selenium (Se has been proved to be an essential element for humans and animals. However, less is known about its effects on plants. A hydroponic experiment was carried out to investigate the effects of selenium on growth, selenium accumulation and some physiological characteristics of spinach (Spinacia oleracea L. cv. �Missouri� plants. Plants were grown in Hoagland nutrient solution amended with sodium selenite at 0 (control, 1, 2, 4, 6 and 10 mg.L-1 for 28 days. Growth parameters like shoot and root fresh weight, shoot and root dry weight, total dry weight, shoot and root length increased by 17, 15, 38, 19, 18 and 34 percent in response to the lowest concentration of Se (1 mg L-1, respectively over control. However, application of higher Se concentrations reduced these parameters as compared to control. Selenium up to 1 mg L-1 enhanced the levels of chlorophyll a and chlorophyll b by 87 and 165 percent, respectively, while higher levels of Se exert toxic effects. Total phenolic compounds in leaves increased directly by increasing the level of Se and plants treated with 10 mg. L-1 Se had the highest values. Selenium, sodium and calcium content increased, while potassium content decreased, by increasing selenium treatments. The highest amounts of Se in shoots (3.89 mg g-1 DW and roots (4.27 mg g-1 DW were obtained for the highest concentration of Se (10 mg L-1. The present results suggested the beneficial effects of Se on spinach growth and also its contribute ion to improving the nutritional value of spinach for livestock and human nutrition.

  6. Accommodation stresses in hydride precipitates by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Santisteban, J R; Vicente, M A; Vizcaino, P; Banchik, A D; Almer, J

    2012-01-01

    Hydride-forming materials (Zr, Ti, Nb, etc) are affected by a sub-critical crack growth mechanism that involves the diffusion of H to the stressed region ahead of a crack, followed by nucleation and fracture of hydrides at the crack tip [1]. The phenomenon is intermittent, with the crack propagating through the hydride and stopping when it reaches the matrix. By repeating these processes, the crack propagates through a component at a rate that is highly dependent on the temperature history of the component. Most research effort to understand this phenomenon has occurred within the nuclear industry, as it affects the safe operation of pressure tubes (Zr2.5%Nb) and the long-term storage of nuclear fuel (Zircaloy cladding). Stress-induced hydride formation is a consequence of the volume dilatation that accompanies hydride formation (of the order of 15%), which is elastoplastically accommodated by the matrix and precipitate. Compressive stresses are expected within hydride precipitates due to the constraint imposed by the matrix. Such 'accommodation' stresses are essential ingredients in all theoretical models developed to assess the crack growth rate dependence on operational variables such as temperature, applied stress intensity factor, or overall H concentration [2]. Yet little experimental information is available about the magnitude and directionality of such accommodation stresses. Synchrotron X-ray diffraction is the only technique capable of quantifying such stresses. Here we briefly describe the fundaments of the technique, when used through an area detector placed in transmission geometry. The results of the experiments have allowed us to produce a comprehensive picture about the magnitude and origin of accommodation stresses in δ zirconium hydride platelets (author)

  7. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  8. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  9. The role of selenium in predicting preeclampsia

    Directory of Open Access Journals (Sweden)

    Z Ghaemi

    2013-10-01

    Full Text Available Introduction: Preeclampsia is a common disorder that is a leading cause of perinatal and maternal morbidity and mortality; however its specific etiology has still remained obscure.The first step in preventing preeclampsia is early detection of women at risk. Since there is no valid and reliable screening test, appropriate diagnostic and screening tests are necessary, which are inexpensive, non-invasive and beneficial for pregnant women. Therefore, regarding the role of selenium as an antioxidant in the prevention preeclampsia, this study was designed which aimed to determine the prognostic value of plasma selenium levels in the diagnosis of preeclampsia in primigravida women Methods: In a nested case control design, a sample of 650 normal primigravida women of 24-28 weeks participated in the study. Subjects who involved the case group were followed up for 3 months and 38 were affected by preeclampsia. Blood samples were obtained from these 38patients as well as from 38 subjects as their matched controls. Moreover, the amount of selenium was measured by atomic absorption spectrometry. Results: The mean level of selenium in blood plasma of the cases was significantly lower than in their matched controls. The present study findings revealed that pregnant women with serum Se < 66.1 μg/L had a significantly increased risk of preeclampsia. Conclusion: Lower plasma selenium level in women destines to suffering from preeclampsia which confirms the destructive effect of selenium deficiency as an antioxidant in etiopathology of preeclampsia. Measurement of plasma selenium can improve the prediction of preeclampsia; thus, it seems that plasma selenium level test owns an acceptable sensitivity and specificity for predicting preeclampsia.

  10. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  11. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  12. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  13. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    Puls, M.P.; Rogowski, A.J.

    1980-11-01

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  14. Selenium Nanoparticles for Stress-Resilient Fish and Livestock

    Science.gov (United States)

    Sarkar, Biplab; Bhattacharjee, Surajit; Daware, Akshay; Tribedi, Prosun; Krishnani, K. K.; Minhas, P. S.

    2015-09-01

    The fisheries and livestock sectors capture the highest share of protein-rich animal food and demonstrate accelerated growth as an agriculture subsidiary. Environmental pollution, climate change, as well as pathogenic invasions exert increasing stress impacts that lead the productivity momentum at a crossroads. Oxidative stress is the most common form of stress phenomenon responsible for the retardation of productivity in fisheries and livestock. Essential micronutrients play a determinant role in combating oxidative stress. Selenium, one of the essential micronutrients, appears as a potent antioxidant with reduced toxicity in its nanoscale form. In the present review, different methods of synthesis and characterization of nanoscale selenium have been discussed. The functional characterization of nano-selenium in terms of its effect on growth patterns, feed digestibility, and reproductive system has been discussed to elucidate the mechanism of action. Moreover, its anti-carcinogenic and antioxidant potentiality, antimicrobial and immunomodulatory efficacy, and fatty acid reduction in liver have been deciphered as the new phenomena of nano-selenium application. Biologically synthesized nano-selenium raises hope for pharmacologically enriched, naturally stable nanoscale selenium with high ecological viability. Hence, nano-selenium can be administered with commercial feeds for improvising stress resilience and productivity of fish and livestock.

  15. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  16. Substoichiometric determination of selenium with potassium ethyl xanthate

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Polaiah, B.; Rangamannar, B.

    1989-01-01

    A substoichiometric radiochemical method was developed for the determination of selenium with potassium ethyl xanthate. The selenium ethyl xanthate complex formed was extracted into chloroform from borate buffer at pH 5. The effect of foreign ions on the extraction was studied. Microgram quantities of selenium could be conveniently determined with a fair degree of accuracy. The method was successfully applied for the determination of selenium content in food stuffs such as 'Jaggery' and 'Wheat powder'. (author) 4 refs.; 3 figs

  17. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    Science.gov (United States)

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  18. Determination of human and Sprague-Dawley rat trimethylseleonium ion and total selenium urine concentrations from endogenous body selenium pool by neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Claassen, J.P.; Rack, E.P.

    1992-01-01

    This study determined trimethylselenonium ion [TMSe,(CH 3 ) 3 Se + ] and total organic selenium cationic species urinary excretion values for healthy human subjects and Sprague-Dawley rats fed regular diets. The only source of TMSe was from the endogenous selenium body pool. Total selenium concentration in urine was determined by instrumental neutron activation analysis. TMSe and total selenium cationic species concentrations and percent of total selenium urine excretion were determined by chemical neutron activation analysis and coupled anion-cation exchange chromatography and anion-exchange chromatography, respectively. Within experimental error, mean values for TMSe and cationic species as percent selenium were comparable for both human subjects and Sprague-Dawley rats. This study suggested that TMSe excreated in urine by healthy human subjects and Sprague-Dawley rats fed a normal diet is not a minor but a general metabolite of selenium ingested in a normal diet. (author) 27 refs.; 1 fig.; 2 tabs

  19. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  20. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  1. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  2. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  3. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  4. NAIL KERATIN AS MONITOR-TISSUE FOR SELENIUM EXPOSURE

    NARCIS (Netherlands)

    VANNOORD, PAH; MAAS, MJ; DEBRUIN, M

    1992-01-01

    Nail clippings might provide a way to monitor exposure to selenium in the recent past of an individual, since a clipping collected from a toe would reflect exposures months before actual clipping date. The relation between levels of exogenous selenium exposure and selenium levels in nail keratin was

  5. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.

    Science.gov (United States)

    Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz

    2017-10-01

    We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  7. Reproduction in eastern screech-owls fed selenium

    Science.gov (United States)

    Wiemeyer, Stanley N.; Hoffman, D.J.

    1996-01-01

    Raptors are occasionally exposed to excessive selenium from contaminated prey, but the effects of this exposure on reproduction are unknown. Therefore, we fed captive eastern screech-owls (Otus asio) diets containing 0, 4.4, or 13.2 ppm (wet wt) added selenium in the form of seleno-DL-methionine. Adult mass at sacrifice and reproductive success of birds receiving 13.2 ppm selenium were depressed (P biochemistries indicative of oxidative stress were affected (P < 0.05) in 5-day-old nestlings from parents fed 4.4 ppm selenium and included a 19% increase in glutathione peroxidase activity, a 43% increase in the ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH), and a 17% increase in lipid peroxidation. Based on reproductive effects relative to dietary exposure, sensitivity of eastern screech-owls to selenium was similar to that of black-crowned night-herons (Nycticorax nycticorax) but less than that of mallards (Anas platyrhynchos).

  8. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  9. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  10. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  11. Selenium Homeostasis and Clustering of Cardiovascular Risk Factors: A Systematic Review.

    Science.gov (United States)

    Gharipour, Mojgan; Sadeghi, Masoumeh; Behmanesh, Mehrdad; Salehi, Mansour; Nezafati, Pouya; Gharpour, Amin

    2017-10-23

      Selenium is a trace element required for a range of cellular functions. It is widely used for the biosynthesis of the unique amino acid selenocysteine [Sec], which is a structural element of selenoproteins. This systematic review focused on the possible relation between selenium and metabolic risk factors. The literature was searched via PubMed, Scopus, ISI Web of Science, and Google Scholar. Searches were not restricted by time or language. Relevant studies were selected in three phases. After an initial quality assessment, two reviewers extracted all the relevant data, whereas the third reviewer checked their extracted data. All evidence came from experimental and laboratory studies. Selenoprotein P is the best indicator for selenium nutritional levels. In addition, high levels of selenium may increase the risk of metabolic syndrome while the lack of sufficient selenium may also promote metabolic syndrome. selenium supplementation in subjects with sufficient serum selenium levels has a contrary effect on blood pressure, LDL, and total cholesterol. According to the bioavailability of different types of selenium supplementation such as selenomethionine, selenite and selenium-yeast, it seems that the best nutritional type of selenium is selenium-yeast. Regarding obtained results of longitudinal studies and randomized controlled trials, selenium supplementation should not be recommended for primary or secondary cardio-metabolic risk prevention in populations with adequate selenium status.

  12. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  13. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  14. ON THE CHEMISTRY OF HYDRIDES OF N ATOMS AND O{sup +} IONS

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Zainab [Astronomy, Space Science, and Meteorology Department, Faculty of Science, Cairo University, Giza (Egypt); Viti, Serena; Williams, David A., E-mail: zma@sci.cu.edu.eg [Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel /HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H{sub 2} formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O{sup +} ions detected by Herschel /HIFI that are present along many sight lines in the Galaxy. The O{sup +} hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion–molecule reactions.

  15. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  16. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  17. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  18. Advanced prostate cancer risk in relation to toenail selenium levels

    NARCIS (Netherlands)

    Geybels, M.S.; Verhage, B.A.J.; Schooten, F.J. van; Goldbohm, A.; Brandt, P.A. van den

    2013-01-01

    BACKGROUND: Selenium may prevent advanced prostate cancer (PCa), but most studies on this topic were conducted in populations with moderate to high selenium status. We investigated the association of toenail selenium, reflecting long-term selenium exposure, and advanced PCa risk in a population from

  19. Bio-induced solid selenium for recovery from water

    NARCIS (Netherlands)

    Hageman, S.P.W.

    2015-01-01

    Selenium in the form of selenate or selenite in wastewater needs to be removed due to its potential toxicity in the environment. Also, selenium is a valuable element that is used in several industries and current selenium resources are likely to be exhausted in less than 50 years. Waste streams

  20. Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria

    International Nuclear Information System (INIS)

    Beladel, B.; Nedjimi, B.; Mansouri, A.; Tahtat, D.; Belamri, M.; Tchanchane, A.; Khelfaoui, F.; Benamar, M.E.A.

    2013-01-01

    In this work, we have measured the selenium content in wheat produced locally in eight different regions of Algeria from east to west, and we have established the annual consumption of selenium for five socio-professional categories. Instrumental neutron activation analysis is used. The selenium levels in wheat samples varied from 21 (Tiaret) to 153 μg/kg (Khroub), with a mean value about 52 μg/kg. The mean of selenium daily consumption from ingestion of wheat per person in the eight regions varied from 32 to 52 μg/day which is close to the minimal FAO recommendation. - Highlights: ► Cereals and cereal products represent a staple food in Algeria. ► The objective of this study is to determine the Se intake in wheat produced locally. ► The concentration of Se in the wheat reflects the level of the Se in regional soils. ► The mean of Se daily consumption is close to the minimal WHO/FAO recommendation.

  1. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    Science.gov (United States)

    Vanderhoff, Alexandra; Kim, Kwang J.

    2009-12-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride-BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (~14 000 NForce/kgMH) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems.

  2. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  3. Investigation of electrical noise in selenium-immersed thermistor bolometers

    Science.gov (United States)

    Tarpley, J. L.; Sarmiento, P. D.

    1980-01-01

    The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.

  4. Supplementation with Selenium and Coenzyme Q10 Reduces Cardiovascular Mortality in Elderly with Low Selenium Status. A Secondary Analysis of a Randomised Clinical Trial

    Science.gov (United States)

    Alexander, Jan; Aaseth, Jan

    2016-01-01

    Background Selenium is needed by all living cells in order to ensure the optimal function of several enzyme systems. However, the selenium content in the soil in Europe is generally low. Previous reports indicate that a dietary supplement of selenium could reduce cardiovascular disease but mainly in populations in low selenium areas. The objective of this secondary analysis of a previous randomised double-blind placebo-controlled trial from our group was to determine whether the effects on cardiovascular mortality of supplementation with a fixed dose of selenium and coenzyme Q10 combined during a four-year intervention were dependent on the basal level of selenium. Methods In 668 healthy elderly individuals from a municipality in Sweden, serum selenium concentration was measured. Of these, 219 individuals received daily supplementation with selenium (200 μg Se as selenized yeast) and coenzyme Q10 (200 mg) combined for four years. The remaining participants (n = 449) received either placebo (n = 222) or no treatment (n = 227). All cardiovascular mortality was registered. No participant was lost during a median follow-up of 5.2 years. Based on death certificates and autopsy results, all mortality was registered. Findings The mean serum selenium concentration among participants at baseline was low, 67.1 μg/L. Based on the distribution of selenium concentration at baseline, the supplemented group was divided into three groups; 85 μg/L (45 and 90 percentiles) and the remaining participants were distributed accordingly. Among the non-treated participants, lower cardiovascular mortality was found in the high selenium group as compared with the low selenium group (13.0% vs. 24.1%; P = 0.04). In the group with the lowest selenium basal concentration, those receiving placebo or no supplementation had a mortality of 24.1%, while mortality was 12.1% in the group receiving the active substance, which was an absolute risk reduction of 12%. In the middle selenium concentration

  5. Understanding selenium biogeochemistry in engineered ecosystems

    NARCIS (Netherlands)

    Jain, Rohan; Hullebusch, Van Eric D.; Lenz, Markus; Farges, François

    2017-01-01

    Selenium is used extensively in many industries, and it is necessary for human nutrition. On the other hand, it is also toxic at slightly elevated concentrations. With the advent of industrialisation, selenium concentrations in the environment due to anthropogenic activities have increased.

  6. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    Directory of Open Access Journals (Sweden)

    Carina Benstoem

    2015-04-01

    Full Text Available The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

  7. Selenium and Its Supplementation in Cardiovascular Disease—What do We Know?

    Science.gov (United States)

    Benstoem, Carina; Goetzenich, Andreas; Kraemer, Sandra; Borosch, Sebastian; Manzanares, William; Hardy, Gil; Stoppe, Christian

    2015-01-01

    The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery. PMID:25923656

  8. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  9. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  10. Biological effects of selenium and relationships with carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Diplock, A.T.

    1984-01-01

    Selenium is an element that is both essential, at low levels of dietary intake, and toxic, at high levels, to man and a wide range of animals. The purpose of the communication is to review the evidence for the involvement of hyper- and hypo-selenosis in the etiology of cancer. High levels of selenium intake have been blamed for an increase in cancer, dental caries and an array of other conditions. Critical evaluation of the evidence, however, leads to the conclusion that such claims have little substance. On the other hand, low levels of selenium intake may be associated with an increased incidence of certain forms of cancer and there appears to be an inverse relationship between blood selenium levels and cancer death rate in the US. Keshan Disease, in the People's Republic of China has only been shown to occur in populations severely depleted of selenium. In well nourished populations there is no evidence to indicate that selenium supplements have any prophylactic or therapeutic benefit against human diseases such as cancer, cardiovascular disease or cystic fibrosis. 33 references.

  11. Nuclear-based methods for the study of selenium

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Akanle, O.A.; Dhani, A.

    1988-01-01

    The essentiality of selenium to the human being and in particular its deficiency state, associated with prolonged inadequate dietary intake, have received considerable attention. In addition, the possible relationship between selenium and cancer and the claim that selenium may possess cancer-prevention properties have focused research effort. It has been observed in a number of studies on laboratory animals that selenium supplementation protects the animals against carcinogen-induced neoplastic growth in various organ sites, reduces the incidence of spontaneous mammary tumors, and suppresses the growth of transplanted tumor cells. In these research programs on the relationship between trace element levels and senile dementia and depression and the elemental changes in blood associated with selenium supplementation in a normal group of volunteers, it became obvious that in addition to establishing normal levels of elements in the population of interest, there was a more fundamental requirement for methods to be developed that would allow the study of the distribution of selenium in the body and its binding sites. The authors propose emission tomography and perturbed angular correlation as techniques worth exploring

  12. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  13. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  14. Molecular neutron activation analysis of selenium metabolites in urine

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Hansen, G.T.; Ebrahim, A.; Rack, E.P.

    1988-01-01

    Because of the biological importance of selenium in living biological systems, various analytical procedures have been developed for analysis of microquantities of elemental selenium, in urine, serum, and tissue. For urine selenium, these include atomic absorption spectrometry, solution absorption spectrometry, solution fluorescence spectrometry, volumetry, and neutron activation analysis. Of equal or greater importance is the determination of selenium metabolites present in urine for the purpose of describing the biological pathways for the metabolism of selenium in living organisms. While it is known from previous studies that trimethylselenonium ion (TMSe) is a major metabolite in urine, probably the result of reduction and methylation reaction, there are no definitive results in the literature indicating the nature or quantity of other selenium metabolic products in urine. Early techniques to measure TMSe levels in urine involved the use of the radiotracer 75 Se. Because of the long biological half-life of selenium and issues of radiation exposure, its use in humans has been limited. In this paper, the authors report the experimental procedure for the determination of total selenoamino acid concentration in urine and present total selenium values, and, where applicable, TMSe, SeO 2- 3 , and total selenoamino acid concentrations in the urine of normal and diseased subjects

  15. Nuclear transformations studies in selenium isotopes

    International Nuclear Information System (INIS)

    Lopez M, B.E.

    1976-01-01

    A compilation is made with regard to the chemical effects produced by nuclear transformations, such as the chemical effects of the beta decay and the chemical effects of the reaction (n,γ) in selenium radioisotopes. As a particular case the chemical effect of the isomeric transition of sup(81m)Se(VI) in potassium selenate crystals marked with radioactive selenium is studied experimentally and the method of adsorption in activated carbon is applied for the analytical separation of the traces of the nuclear isomer tetravalent sup(81b)Se(IV) of one fraction which contains the mixture of the selenium radioisotopes. (author)

  16. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  17. Serum selenium level and risk of lung cancer mortality

    DEFF Research Database (Denmark)

    Suadicani, P; Hein, H O; Gyntelberg, F

    2011-01-01

    Serum selenium has been implicated as a risk factor for lung cancer, but the issue remains unsettled. We tested in a cohort of 3,333 males aged 53 to 74 years the hypothesis that a low serum selenium would be associated with an increased risk of lung cancer mortality.During 16 years, 167 subjects(5.......1%) died from lung cancer; 48 males (5.0%) among males with low serum selenium, 0.4-1.0 μmol·l(-1), n=965, 57 males (5.1%) among males with medium serum selenium, 1.1-1.2 μmol·l(-1), n=1,141, and 62 males (5.1%) among males with high serum selenium, 1.3-3.0 μmol·l(-1), n=1,227. After adjustment for age...... (chronic bronchitis and peak flow), referencing the lowest level of serum selenium HRs were 1.17(0.79-1.75), and 1.43(0.96-2.14), respectively. Among heavy smokers a high serum selenium was associated with a significantly increased risk of lung cancer mortality after taking into account all potential...

  18. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  19. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  20. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  1. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei.

    Science.gov (United States)

    Kurek, Eliza; Ruszczyńska, Anna; Wojciechowski, Marcin; Łuciuk, Anna; Michalska-Kacymirow, Magdalena; Motyl, Ilona; Bulska, Ewa

    Selenium is an element of very great importance for the proper functioning of the human body, mainly due to its antioxidant properties. Selenium exhibits a preventive effect in the case of cardiovascular disease, the immune system, male infertility and inhibits the toxic action of other agents. Selenium is important for Hashimoto's disease. Intake of selenium in the diet slows the aging process. The biological and toxicological effects of selenium strongly depend on its chemical form. Some organisms for example: plant, yeast, are capable of metabolizing low bioavailable selenium compounds (inorganic selenium) into its high bioavailable forms (organic selenium). The aim of this study was to investigate the bio-transformation of selenium by Lactobacillus bacteria towards the characterisation of selenium metabolites. The speciation of selenium was evaluated by high performance liquid chromatography with inductively coupled plasma mass spectrometry detector. The extraction of selenium species from lyophilized bacteria was executed with water, the mixture of lipase and protease, as well as lisozyme and sodium dodecyl sulphate. All investigated bacteria strains cultivated in the presence of Na2SeO3 effectively uptake selenium. Surprisingly, none of the applied extraction media exhibited a strong power to release the majority of the uptaken selenium compounds. Thus a maximum of 10% of the selenium was extracted from bacteria exposed to the enzymes. However, it was found that Lactobacillus bacteria are able to metabolize inorganic ions of selenium (IV) into Se-methionine, Se-methyloselenocysteine and other unidentified forms. The study confirmed the ability of probiotic bacteria to biotransform inorganic selenium into its organic derivatives. Therefore, Se-enriched bacteria can be considered as an addition to the functional food. selenium speciation, extraction procedure, Lactobacillus casei bacteria, Lactic acid bacteria (LAB), HPLC ICP-MS, functional food.

  2. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  3. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  4. Recycling of high purity selenium from CIGS solar cell waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Anna M.K., E-mail: anna.gustafsson@chalmers.se; Foreman, Mark R.StJ.; Ekberg, Christian

    2014-10-15

    Highlights: • A new method for recycling of selenium from CIGS solar cell materials is presented. • Separation of selenium as selenium dioxide after heating in oxygen atmosphere. • Complete selenium separation after oxidation of <63 μm particles at 800 °C for 1 h. • After reduction of selenium dioxide the selenium purity was higher than 99.999 wt%. - Abstract: Copper indium gallium diselenide (CIGS) is a promising material in thin film solar cell production. To make CIGS solar cells more competitive, both economically and environmentally, in comparison to other energy sources, methods for recycling are needed. In addition to the generally high price of the material, significant amounts of the metals are lost in the manufacturing process. The feasibility of recycling selenium from CIGS through oxidation at elevated temperatures was therefore examined. During oxidation gaseous selenium dioxide was formed and could be separated from the other elements, which remained in solid state. Upon cooling, the selenium dioxide sublimes and can be collected as crystals. After oxidation for 1 h at 800 °C all of the selenium was separated from the CIGS material. Two different reduction methods for reduction of the selenium dioxide to selenium were tested. In the first reduction method an organic molecule was used as the reducing agent in a Riley reaction. In the second reduction method sulphur dioxide gas was used. Both methods resulted in high purity selenium. This proves that the studied selenium separation method could be the first step in a recycling process aimed at the complete separation and recovery of high purity elements from CIGS.

  5. Laser-Induced Gas-Phase Pyrolysis of Dimethyl Selenium: Chemical Deposition of Selenium and Poly(selenoformaldehyde)

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Dana; Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2004-01-01

    Roč. 71, č. 2 (2004), s. 635-644 ISSN 0165-2370 R&D Projects: GA AV ČR IAA4072107; GA MŠk OC 523.60 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : dimethyl selenium * laser pyrolysis * selenium films Subject RIV: CC - Organic Chemistry Impact factor: 1.352, year: 2004

  6. Biomarkers of Selenium Chemoprevention of Prostate Cancer

    National Research Council Canada - National Science Library

    Dong, Yan

    2003-01-01

    The purpose of the present study was to examine the mechanism of selenium growth inhibition in PC-3 human prostate cancer cells Selenium retarded cell cycle progression at multiple transition points...

  7. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  8. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  9. The Effect on Selenium Concentrations of a Randomized Intervention with Fish and Mussels in a Population with Relatively Low Habitual Dietary Selenium Intake

    DEFF Research Database (Denmark)

    Outzen, Malene; Tjønneland, Anne; Larsen, Erik Huusfeldt

    2015-01-01

    Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake...... on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48-76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels....../week for 26 weeks (similar to 50 mu g selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid...

  10. Criteria for fracture initiation at hydrides in zirconium alloys. Pt. 1

    International Nuclear Information System (INIS)

    Shi, S.Q.; Puls, M.P.

    1994-01-01

    A theoretical framework for the initiation of delayed hydride cracking (DHC) in zirconium is proposed for two different types of initiating sites, i.e., a sharp crack tip (considered in this part) and a shallow notch (considered in part II). In the present part I, an expression for K IH is derived which shows that K IH depends on the size and shape of the hydride precipitated at the crack tip, the yield stress and elastic moduli of the material and the fracture stress of the hydride. If the hydride at the crack tip extends in length at constant thickness, then K IH increases as the square root of the hydride thickness. Thus a microstructure favouring the formation of thicker hydrides at the crack tip would result in an increased K IH . K IH increases slightly with temperature up to a temperature at which there is a more rapid increase. The temperature at which there is a more rapid increase in K IH will increase as the yield stress increases. The model also predicts that an increase in yield stress due to irradiation will cause an overall slight decrease in K IH compared to unirradiated material. There is good agreement between the overall predictions of the theory and experimental results. It is suggested that more careful evaluations of some key parameters are required to improve on the theoretical estimates. (orig.)

  11. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  12. Genome-Wide Association Study of Serum Selenium Concentrations

    Directory of Open Access Journals (Sweden)

    Ulrike Peters

    2013-05-01

    Full Text Available Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO Cancer Screening and the Women’s Health Initiative (WHI. We tested association between 2,474,333 single nucleotide polymorphisms (SNPs and serum selenium concentrations using linear regression models. In the first stage (PLCO 41 SNPs clustered in 15 regions had p < 1 × 10−5. None of these 41 SNPs reached the significant threshold (p = 0.05/15 regions = 0.003 in the second stage (WHI. Three SNPs had p < 0.05 in the second stage (rs1395479 and rs1506807 in 4q34.3/AGA-NEIL3; and rs891684 in 17q24.3/SLC39A11 and had p between 2.62 × 10−7 and 4.04 × 10−7 in the combined analysis (PLCO + WHI. Additional studies are needed to replicate these findings. Identification of genetic variation that impacts selenium concentrations may contribute to a better understanding of which genes regulate circulating selenium concentrations.

  13. Erythrocytic glutathione peroxidase: Its relationship to plasma selenium in man

    International Nuclear Information System (INIS)

    Perona, G.; Cellerino, R.; Guidi, G.C.; Moschini, G.; Stievano, B.M.; Tregnaghi, C.

    1977-01-01

    Erythrocytic glutathione-peroxidase (GSH-Px) activity and plasma selenium concentrations were measured in 14 patients: 7 with iron deficiency and 7 with raised serum iron levels. The decreased enzymatic activity in iron deficiency was confirmed. Plasma selenium was significantly lower in patients with lower serum iron; furthermore there is a significant correlation between serum iron and plasma selenium concentrations. Another correlation even more significant was found between plasma selenium and enzyme activity in all the cases we studied. These data suggests that the importance of iron for GSH-Px activity may be merely due to its relationship with selenium and that plasma selenium concentration may be of critical importance for enzyme activity. (author)

  14. Selenium-containing indolyl compounds

    DEFF Research Database (Denmark)

    Casaril, Angela M; Ignasiak, Marta T; Chuang, Christine Y

    2017-01-01

    materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins......Tyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis....

  15. Effect of irradiation on sod activity and selenium content in garlic

    International Nuclear Information System (INIS)

    Xu Weimin; Zheng Anjian; Yan Jianmin; Cao Qingsui; Wu Haihong; Cao Shifeng

    2006-01-01

    The effects of irradiation at 0.1 kGy, 1.0 kGy on SOD activity and the content of total selenium, inorganic selenium, organic selenium in garlic (Allium sativum L.) stored at 10 degree C or 25 degree C were investigated. The results indicated that irradiation treatment with 0.1 kGy, 1 kGy significantly slowed the reduction of SOD activities in garlic stored at 10 degree C or 25 degree C, while the treatment irradiation had no influence on the content of all kinds of selenium. But the garlic stored at 25 degree C had higher content of total selenium, inorganic selenium, organic selenium than that in garlic stored at 10 degree C. (authors)

  16. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.|info:eu-repo/dai/nl/371685117

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  17. Thyroid hormones regulate selenoprotein expression and selenium status in mice.

    Directory of Open Access Journals (Sweden)

    Jens Mittag

    Full Text Available Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRβ or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.

  18. EURRECA—Estimating Selenium Requirements for Deriving Dietary Reference Values

    NARCIS (Netherlands)

    Hurst, R.; Collings, R.; Harvey, L.J.; King, M.; Hooper, L.; Bouwman, J.; Gurinovic, M.; Fairweather-Tait, S.J.

    2013-01-01

    Current reference values for selenium, an essential micronutrient, are based on the intake of selenium that is required to achieve maximal glutathione peroxidase activity in plasma or erythrocytes. In order to assess the evidence of relevance to setting dietary reference values for selenium, the

  19. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  20. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  1. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  2. Ecological Importance of Insects in Selenium Biogenic Cycling

    Directory of Open Access Journals (Sweden)

    Nadezhda Golubkina

    2014-01-01

    Full Text Available Selenium is an essential trace element for animal and human beings. Despite the importance of insects in most ecosystems and their significant contribution to the biological cycling of trace elements due to high abundance, population productivity, and diverse ecosystem functions, surprisingly little information is available on selenium bioaccumulation by these arthropods. This review considers selenium essentiality and toxicity to insects as well as insects’ contribution to selenium trophic transfer through the food chains. Data on Se accumulation by insects of the Dniester River Valley with no anthropogenic Se loading reveal typically low Se content in necrophagous insects compared to predators and herbivores and seasonal variations in Se accumulation.

  3. The Effect on Selenium Concentrations of a Randomized Intervention with Fish and Mussels in a Population with Relatively Low Habitual Dietary Selenium Intake

    Science.gov (United States)

    Outzen, Malene; Tjønneland, Anne; Larsen, Erik H.; Andersen, Klaus K.; Christensen, Jane; Overvad, Kim; Olsen, Anja

    2015-01-01

    Selenium status of the Danish population is below that assumed optimal for the suggested protective effects against chronic diseases, including certain cancers. Fish and shellfish are important dietary sources of selenium in Denmark. We investigated the effect of increased fish and mussel intake on selenium blood concentrations in a population with relatively low habitual dietary selenium intake. We randomly assigned 102 healthy men and women (all non-smokers) aged 48–76 years to an intervention group (n = 51) or a control group (n = 51). Intervention participants received 1000 g fish and mussels/week for 26 weeks (~50 μg selenium/day). Controls received no intervention. Non-fasting blood samples were taken and whole blood selenium was determined using inductively coupled plasma-mass spectrometry (ICP-MS), and plasma selenoprotein P (SelP) was determined by high performance liquid chromatography coupled to ICP-MS. All available observations were included in linear multiple regression analysis to evaluate the effect of the intervention. The difference in mean change for intervention compared with control persons was 14.9 ng/mL (95% CI: 10.2, 19.7) for whole blood selenium, and 7.0 ng/mL (95% CI: 3.1, 10.9) for plasma SelP (Weeks 0–26). Selenium concentrations were significantly increased after 26 weeks of intervention, albeit to a lower degree than expected. PMID:25599275

  4. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  5. Sulfur, selenium, tellurium and polonium

    International Nuclear Information System (INIS)

    Berry, F.J.

    1987-01-01

    This chapter on the coordination compounds of sulfur, selenium, tellurium and polonium starts with an introduction to the bonding, valence and geometry of the elements. Complexes of the group VIB elements are discussed with particular reference to the halo and pseudohalide complexes, oxo acid complexes, oxygen and nitrogen donor complexes and sulfur and selenium donor complexes. There is a section on the biological properties of the complexes discussed. (UK)

  6. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Selenium, selenoproteins and the thyroid gland: interactions in health and disease.

    Science.gov (United States)

    Schomburg, Lutz

    2011-10-18

    The trace element selenium is an essential micronutrient that is required for the biosynthesis of selenocysteine-containing selenoproteins. Most of the known selenoproteins are expressed in the thyroid gland, including some with still unknown functions. Among the well-characterized selenoproteins are the iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases, enzymes involved in thyroid hormone metabolism, regulation of redox state and protection from oxidative damage. Selenium content in selenium-sensitive tissues such as the liver, kidney or muscle and expression of nonessential selenoproteins, such as the glutathione peroxidases GPx1 and GPx3, is controlled by nutritional supply. The thyroid gland is, however, largely independent from dietary selenium intake and thyroid selenoproteins are preferentially expressed. As a consequence, no explicit effects on thyroid hormone profiles are observed in healthy individuals undergoing selenium supplementation. However, low selenium status correlates with risk of goiter and multiple nodules in European women. Some clinical studies have demonstrated that selenium-deficient patients with autoimmune thyroid disease benefit from selenium supplementation, although the data are conflicting and many parameters must still be defined. The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenium supplementation, which might primarily disrupt self-amplifying cycles of the endocrine-immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens. Selenium deficiency is likely to constitute a risk factor for a feedforward derangement of the immune system-thyroid interaction, while selenium supplementation appears to dampen the self-amplifying nature of this derailed interaction.

  8. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  9. Toenail mercury and dyslipidemia: Interaction with selenium.

    Science.gov (United States)

    Park, Kyong; Seo, Eunmin

    2017-01-01

    Although compelling evidences from in vivo and in vitro studies exist, limited studies have examined the association between chronic mercury exposure and dyslipidemia. Particularly, data are sparse regarding the influence of selenium on this association of mercury with dyslipidemia in humans. The purpose of the current study was to examine the associations of toenail mercury with dyslipidemia and its components, and to examine whether selenium in toenails modifies these associations. We performed cross-sectional analyses using baseline data from a cohort in the Yeungnam area in South Korea, including 232 men and 269 women. Toenail mercury and selenium concentrations were quantified using neutron activation analysis, and fasting serum lipid measurements were obtained through the medical examination. Odds ratios of the prevalent hypercholesterolemia, hyper-LDL-cholesterolemia, hypo-HDL-cholesterolemia, hypertriglyceridemia, and dyslipidemia in correlation with mercury levels were calculated using multivariable logistic regression. The mean levels of toenail mercury were 0.47μg/g for men and 0.34μg/g for women. After adjustment for multiple confounding variables, participants in the highest tertile of toenail mercury levels had 4.08 (95% CI 1.09-15.32, p for trend=0.02) times higher risk of hyper-LDL-cholesterolemia, and 2.24 (95% CI 1.15-4.37, p for trend=0.004) times higher risk of dyslipidemia than those in the lowest tertile. Selenium is a significant effect-modifier for these associations; the highest tertile of toenail mercury were significantly associated with a higher risk of hypercholesterolemia (OR 5.25, 95% CI 1.04-26.38) and dyslipidemia (OR 2.98, 95% CI 1.16-7.66) compared to the lowest tertile at toenail selenium levels ≤0.685μg/g, while these associations became weak and non-significant, showing OR 0.98 and 95% CI 0.25-3.80 for hypercholesterolemia and OR 1.99 and 95% CI 0.73-5.45 for dyslipidemia at toenail selenium levels >0.685μg/g. We

  10. Kinetic behaviour of low-Co AB5-type metal hydride electrodes

    International Nuclear Information System (INIS)

    Tliha, M.; Boussami, S.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A.

    2010-01-01

    The kinetic behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R tc , the exchange current density I 0 and the hydrogen diffusion coefficient D H were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation α-β is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  11. Unexpected formation of hydrides in heavy rare earth containing magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-09-01

    Full Text Available Mg–RE (Dy, Gd, Y alloys show promising for being developed as biodegradable medical applications. It is found that the hydride REH2 could be formed on the surface of samples during their preparations with water cleaning. The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments. It increases with the increment of RE content. On the surface of the alloy with T4 treatment the amount of formed hydride REH2 is higher. In contrast, the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys. Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water. The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.

  12. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  13. [Is plasma selenium correlated to transthyretin levels in critically ill patients?

    Science.gov (United States)

    Freitas, Renata G B O N; Nogueira, Roberto Jose Negrão; Cozzolino, Silvia Maria Franciscato; Vasques, Ana Carolina Junqueira; Ferreira, Matthew Thomas; Hessel, Gabriel

    2017-06-05

    Selenium is an essential trace element, but critically ill patients using total parenteral nutrition (PN) do not receive selenium because this mineral is not commonly offered. Threfore, the eval uation of plasma selenium levels is very important for treating or preventing this deficiency. Recent studies have shown that transthyretin may reflect the selenium intake and could be considered a biomarker. However, this issue is still little explored in the literature. This study aims to investigate the correlation of transthyretin with the plasma selenium of critically ill patients receiving PN. This was a prospective cohort study with 44 patients using PN without selenium. Blood samples were carried out in 3 stages: initial, 7th and 14th day of PN. In order to evaluate the clinical condition and the inflammatory process, albumin, C-reactive protein (CRP), transthyretin, creatinine and HDL cholesterol levels were observed. To assess the selenium status, plasma selenium and glutathione peroxidase (GPx) in whole blood were measured. Descriptive analyses were performed and the ANOVA, Mann-Whitney and Spearman's coefficient tests were conducted; we assumed a significance level of 5%. A positive correlation of selenium with the GPx levels (r = 0.46; p = 0.03) was identified. During two weeks, there was a positive correlation of transthyretin with plasma selenium (r = 0.71; p = 0.05) regardless of the CRP values. Transthyretin may have reflected plasma selenium, mainly because the correlation was verified after the acute phase.

  14. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  15. Search for relevant indications for selenium supplementation in thyroid diseases.

    Science.gov (United States)

    Wojciechowska-Durczynska, Katarzyna; Lewinski, Andrzej

    2017-08-01

    Selenium plays a significant role in the thyroid function and its deficiency is considered by some authors to be a cause of thyroid disorders. The potential therapeutic influence of selenium supplementation in thyroid disease was investigated in several studies and some results were encouraging, however results were inconsistent and did not allow conclusion to be drawn. For that reason, we have performed a review study on relevance of selenium supplementation in thyroid disease. Till now, there is no strong evidence that selenium supplementation leads to clinical improvement in the course of autoimmune thyroiditis, nodular goitre or thyroid cancer. On the other hand, there is some evidence that selenium is effective in the treatment of orbitopathy; thus, the European Group on Graves' Orbitopathy (EUGOGO) recommends selenium administration in mild active orbitopathy.

  16. Selenium Speciation and Management in Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Searcy, K; Richardson, M; Blythe, G; Wallschlaeger, D; Chu, P; Dene, C

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, trace metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more

  17. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  18. Enrichment of the African catfish Clarias gariepinus (Burchell) with functional selenium originating from garlic: effect of enrichment period and depuration on total selenium level and sensory properties

    NARCIS (Netherlands)

    Schram, E.; Schelvis-Smit, A.A.M.; Heul, van der J.W.; Luten, J.B.

    2010-01-01

    We wanted to optimize the procedure for the selenium enrichment of farmed African catfish, using garlic as dietary selenium source. In the first experiment we established the relation between the length of the selenium enrichment period and the resulting total selenium level in the fillet of the

  19. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  20. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  1. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  2. Analyses of Selenotranscriptomes and Selenium Concentrations in Response to Dietary Selenium Deficiency and Age Reveal Common and Distinct Patterns by Tissue and Sex in Telomere-Dysfunctional Mice.

    Science.gov (United States)

    Cao, Lei; Zhang, Li; Zeng, Huawei; Wu, Ryan Ty; Wu, Tung-Lung; Cheng, Wen-Hsing

    2017-10-01

    Background: The hierarchies of tissue selenium distribution and selenotranscriptomes are thought to critically affect healthspan and longevity. Objective: We determined selenium status and selenotranscriptomes in response to long-term dietary selenium deficiency and age in tissues of male and female mice. Methods: Weanling telomerase RNA component knockout C57BL/6 mice were fed a selenium-deficient (0.03 mg Se/kg) Torula yeast-based AIN-93G diet or a diet supplemented with sodium selenate (0.15 mg Se/kg) until age 18 or 24 mo. Plasma, hearts, kidneys, livers, and testes were collected to assay for selenotranscriptomes, selected selenoproteins, and tissue selenium concentrations. Data were analyzed with the use of 2-factor ANOVA (diet × age) in both sexes. Results: Dietary selenium deficiency decreased ( P ≤ 0.05) selenium concentrations (65-72%) and glutathione peroxidase (GPX) 3 (82-94%) and selenoprotein P (SELENOP) (17-41%) levels in the plasma of both sexes of mice and mRNA levels (9-68%) of 4, 4, and 12 selenoproteins in the heart, kidney, and liver of males, respectively, and 5, 16, and 14 selenoproteins, respectively, in females. Age increased selenium concentrations and SELENOP levels (27% and 30%, respectively; P ≤ 0.05) in the plasma of males only but decreased (12-46%; P selenium deficiency and age in ≥1 tissue or sex, or both. Dietary selenium deficiency upregulated (40-160%; P ≤ 0.05) iodothyronine deiodinase 2 ( Dio2 ) and selenoprotein N ( Selenon ) in the kidneys of males. Age upregulated (11-44%; P selenium status and selenotranscriptomes because of dietary selenium deficiency and age. © 2017 American Society for Nutrition.

  3. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  4. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  5. Selenium and the thyroid: A close-knit connection

    Directory of Open Access Journals (Sweden)

    Ashok K Bhuyan

    2012-01-01

    Full Text Available Introduction: In areas with severe selenium deficiency higher incidence of thyroiditis has been reported due to a decreased activity of selenium-dependent glutathione peroxidase enzyme within thyroid cells. Aims and Objective: To study the effect of selenium supplementation in patients with autoimmune thyroid disease. Materials and Methods: This is a blinded placebo-controlled prospective study done in 60 patients with autoimmune thyroid disease (as defined by an anti-thyroid peroxidase antibody (TPOAb level more than 150 IU/ml irrespective of the baseline thyroid status. Patients with overt hyperthyroidism who are on antithyroid drugs, patients on any other medication, which may alter the immunity status of the patients, and pregnant patients were excluded from the study. Patients were randomized into two age and TPOAb-matched groups; 30 patients received 200 μg of sodium selenite/day, orally, for 3 months, and 30 patients received placebo. All hypothyroid patients were given l-thyroxine replacement. Results: Of 30 patients in the selenium treated group, 6 patients were overtly hypothyroid, 15 were subclinical hypothyroid, 6 were euthyroid, and 3 were subclinical hyperthyroid. The mean TPOAb concentration decreased significantly by 49.5% (P < 0.013 in the selenium treated group versus 10.1% (P < 0.95 in the placebo-treated group. Conclusion: Selenium substitution has a significant impact on inflammatory activity in thyroid-specific autoimmune disease. It would be of interest to determine whether early treatment with selenium in patients with newly developed autoimmune thyroiditis may delay or even prevent the natural course of these diseases.

  6. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  7. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  8. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  9. Recent trends in selenium regulation and management

    International Nuclear Information System (INIS)

    Sobolewski, A.

    2010-01-01

    Selenium is a contaminant encountered at uranium mines. When discharged into water, it can build up in the food chain and become toxic to egg-laying fish and shorebirds. This presentation reviews recent developments in its regulation, management and treatment. Selenium will soon be regulated on the basis of its concentration in fish or bird eggs, not its dissolved concentrations, which challenges managers trying to establish acceptable discharge limits. Information supporting this change will be discussed. Recent developments to manage and treat selenium will also be reviewed, emphasizing new chemical and biological treatment processes applicable at uranium mines and mill sites. (author)

  10. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    International Nuclear Information System (INIS)

    Vanderhoff, Alexandra; Kim, Kwang J

    2009-01-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride–BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (∼14 000 N Force /kg MH ) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems

  11. Learning selenium testing tools with Python

    CERN Document Server

    Gundecha, Unmesh

    2014-01-01

    If you are a quality testing professional, or a software or web application developer looking to create automation test scripts for your web applications, with an interest in Python, then this is the perfect guide for you. Python developers who need to do Selenium testing need not learn Java, as they can directly use Selenium for testing with this book.

  12. Comparison between selenium and tellurium clusters

    International Nuclear Information System (INIS)

    Benamar, A.; Rayane, D.; Tribollet, B.; Broyer, M.; Melinon, P.

    1991-01-01

    Selenium and tellurium clusters are produced by the inert gas condensation technique. The mass spectra of both species are completely different and reveal different properties. In selenium, a periodicity of 6-7 is observed and may be interpreted by the binding energy between small cyclic molecules. Moreover, it was very difficult to obtained large clusters probably because the binding energy between these molecules is very small. In tellurium, these periodic structures do not exist and large clusters are easily obtained in nucleation conditions where only small selenium clusters are present. These results are discussed and a simple nucleation model is used to illustrate this different behavior. Finally these clusters properties are correlated to the bulk structure of both materials. (orig.)

  13. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  14. Selenium Accumulating Leafy Vegetables Are a Potential Source of Functional Foods

    Directory of Open Access Journals (Sweden)

    Petro E. Mabeyo

    2015-01-01

    Full Text Available Selenium deficiency in humans has been associated with various diseases, the risks of which can be reduced through dietary supplementation. Selenium accumulating plants may provide a beneficial nutrient for avoiding such illnesses. Thus, leafy vegetables such as Amaranthus hybridus, Amaranthus sp., Cucurbita maxima, Ipomoea batatas, Solanum villosum, Solanum scabrum, and Vigna unguiculata were explored for their capabilities to accumulate selenium when grown on selenium enriched soil and for use as a potential source of selenium enriched functional foods. Their selenium contents were determined by spectrophotometry using the complex of 3,3′-diaminobenzidine hydrochloride (DABH as a chromogen. The mean concentrations in the leaves were found to range from 7.90±0.40 to 1.95±0.12 μg/g dry weight (DW, with C. maxima accumulating the most selenium. In stems, the accumulated selenium content ranged from 1.12±0.10 μg/g in Amaranthus sp. to 5.35±0.78 μg/g DW in C. maxima and was hence significantly different (P<0.01. The cancer cell line MDA-MB-231 was used in cytotoxicity assays to determine the anticancer potential of these extracts. With exception of S. scabrum and S. villosum, no cytotoxicity was detected for the selenium enriched vegetable extracts up to 100 μg/mL concentration. Hence, following careful evaluation the studied vegetables may be considered as selenium enriched functional foods.

  15. The necessity of selenium substitution in total parenteral nutrition and artificial alimentation.

    Science.gov (United States)

    Gramm, H J; Kopf, A; Brätter, P

    1995-03-01

    For the trace element selenium, in contrast to zinc, iron, copper, chromium, manganese and iodine, there is still no clear official recommendation with regard to routine substitution in artificial nutrition. An overview of the manifestations of selenium deficiency in humans during the period 1979-1995 shows that nutritive deficiencies are exclusively TPN-induced or the result of severe malnutrition. The pathology of TPN-induced selenium deficiency and the analytic assessment of selenium status are described. Patients undergoing long-term parenteral nutrition or suffering from an increased loss of intestinal secretions have to be characterized as being especially at risk for clinical selenium deficiency. The relationship of the serum selenium kinetics in pediatric and adult patients to the depletion of body compartments during the course of short-term and prolonged TPN is discussed. Because of the importance of the selenoproteins, the regularly occurring depletion during selenium-free TPN and the borderline supply of selenium in Germany the routine substitution of selenium in TPN is strongly recommended. The pharmaceutical industry should be encouraged to develop a trace element solution that includes selenium, so that the nutritive requirement of patients on TPN can be satisfied. Adequate intravenous dosage recommendations are based on maintenance of glutathione peroxidase homeostasis. The routine supplementation dosage may not meet the selenium requirements of intensive care patients under conditions of increased metabolic demands on their anti-oxidative system.

  16. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  17. Selenium supplementation for patients with Graves’ hyperthyroidism (the GRASS trial)

    DEFF Research Database (Denmark)

    Watt, Torquil; Cramon, Per; Bjorner, Jakob Bue

    2013-01-01

    Graves' hyperthyroidism is an autoimmune disease causing hyperfunction of the thyroid gland. The concentration of selenium is high in the thyroid gland and two important groups of enzymes within the thyroid are selenoproteins, that is, they depend on selenium. Selenium may have beneficial effects...

  18. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  19. Effects of organic selenium in broiler feed on the content of selenium and fatty acid profile in lipids of thigh muscle tissue

    Directory of Open Access Journals (Sweden)

    Zlata Kralik

    2013-01-01

    Full Text Available The aim of our study was to determine the effects of selenium supplementation to broiler feed on the content of selenium, total fatty acids in lipids and on the oxidative stability of broiler thigh muscle tissue. The experiment involved 40 broilers fattened for 42 days. During the first three weeks, all broilers consumed starter diet containing 22% crude protein. After three weeks, broilers were divided into two groups and fed finisher diets containing 18% crude protein and supplemented with 3% sunflower oil and 3% linseed oil. Group 1 was not administered artificial selenium; Group 2 was supplemented with organic selenium at the amount of 0.5 mg Se/kg of feed. Significantly higher (P P P > 0.05 and increase of linolenic acid and total n-3 polyunsaturated fatty acids (P < 0.05 in thigh muscle tissue of broilers. Since selenium and n-3 polyunsaturated fatty acids are nutricines, our results show that the produced broiler meat may be considered as functional food.

  20. Optimization of Selenium-enriched Candida utilis by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2014-12-01

    Full Text Available The fermentation conditions of selenium enrichment by Candida utilis were studied. Based on the results of the single factor experiment, three factors including the concentration of sodium selenite, inital pH and incubation temperature were selected. The response surface method was used to optimize the various factors. The optimal conditions were obtained as follows: incubation time was 30 h, time of adding selenium was mid-logarithmic, the sodium selenite concentration was 35 mg·L-1 with inital pH of 6.6, incubation concentration of 10%, incubation temperature of 27 ℃, the medium volume of 150 mL/500 mL, respectively. Under the optimal condition, the biomass was 6.87 g·L-1. The total selenium content of Candida utilis was 12 639.7 μg·L-1, and the selenium content of the cells was 1 839.8 μg·g-1, in which sodium selenite conversion rate was 79.1% and the organic selenium was higher than 90%. The actual value of selenium content was substantially consistent with the theoretical value, and the response surface methodology was applicable for the fermentation conditions of selenium enriched by Candida utilis.

  1. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animals fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with

  2. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  3. Selenium toxicity: cause and effects in aquatic birds

    Science.gov (United States)

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  4. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    Mintz, M.H.

    1976-06-01

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  5. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  6. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  7. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    Science.gov (United States)

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  8. Rethinking mercury: the role of selenium in the pathophysiology of mercury toxicity.

    Science.gov (United States)

    Spiller, Henry A

    2018-05-01

    There is increasing evidence that the pathophysiological target of mercury is in fact selenium, rather than the covalent binding of mercury to sulfur in the body's ubiquitous sulfhydryl groups. The role of selenium in mercury poisoning is multifaceted, bidirectional, and central to understanding the target organ toxicity of mercury. An initial search was performed using Medline/PubMed, Toxline, Google Scholar, and Google for published work on mercury and selenium. These searches yielded 2018 citations. Publications that did not evaluate selenium status or evaluated environmental status (e.g., lake or ocean sediment) were excluded, leaving approximately 500 citations. This initial selection was scrutinized carefully and 117 of the most relevant and representative references were selected for use in this review. Binding of mercury to thiol/sulfhydryl groups: Mercury has a lower affinity for thiol groups and higher affinity for selenium containing groups by several orders of magnitude, allowing for binding in a multifaceted way. The established binding of mercury to thiol moieties appears to primarily involve the transport across membranes, tissue distribution, and enhanced excretion, but does not explain the oxidative stress, calcium dyshomeostasis, or specific organ injury seen with mercury. Effects of mercury on selenium and the role this plays in the pathophysiology of mercury toxicity: Mercury impairs control of intracellular redox homeostasis with subsequent increased intracellular oxidative stress. Recent work has provided convincing evidence that the primary cellular targets are the selenoproteins of the thioredoxin system (thioredoxin reductase 1 and thioredoxin reductase 2) and the glutathione-glutaredoxin system (glutathione peroxidase). Mercury binds to the selenium site on these proteins and permanently inhibits their function, disrupting the intracellular redox environment. A number of other important possible target selenoproteins have been identified

  9. Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium.

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    Full Text Available Supplemental dietary selenium is associated with reduced incidence of many cancers. The antitumor function of selenium is thought to be mediated through selenium-binding protein 1 (SELENBP1. However, the significance of SELENBP1 expression in breast cancer is still largely unknown. A total of 95 normal and tumor tissues assay and 12 breast cancer cell lines were used in this study. We found that SELENBP1 expression in breast cancer tissues is reduced compared to normal control. Low SELENBP1 expression in ER(+ breast cancer patients was significantly associated with poor survival (p<0.01, and SELENBP1 levels progressively decreased with advancing clinical stages of breast cancer. 17-β estradiol (E2 treatment of high SELENBP1-expressing ER(+ cell lines led to a down-regulation of SELENBP1, a result that did not occur in ER(- cell lines. However, after ectopic expression of ER in an originally ER(- cell line, down-regulation of SELENBP1 upon E2 treatment was observed. In addition, selenium treatment resulted in reduced cell proliferation in endogenous SELENBP1 high cells; however, after knocking-down SELENBP1, we observed no significant reduction in cell proliferation. Similarly, selenium has no effect on inhibition of cell proliferation in low endogenous SELENBP1 cells, but the inhibitory effect is regained following ectopic SELENBP1 expression. Furthermore, E2 treatment of an ER silenced high endogenous SELENBP1 expressing cell line showed no abolishment of cell proliferation inhibition upon selenium treatment. These data indicate that SELENBP1 expression is regulated via estrogen and that the cell proliferation inhibition effect of selenium treatment is dependent on the high level of SELENBP1 expression. Therefore, the expression level of SELENBP1 could be an important marker for predicting survival and effectiveness of selenium supplementation in breast cancer. This is the first study to reveal the importance of monitoring SELENBP1 expression

  10. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  11. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  12. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  13. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  14. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  15. Influence of dietary sodium selenite on tissue selenium levels of growing pigs

    International Nuclear Information System (INIS)

    Moksnes, K.; Tollersrud, S.; Larsen, H.J.

    1982-01-01

    Twenty Norwegian Landrace pigs were divided into 5 groups and fed a basal diet consisting of a mixture of dried skim milk and whey powder together with ground barley. The diet was supplemented with 0, 0.2, 0.8, 1.2, and 2.2 μg/g selenium as sodium selenite and was fed for 12 weeks. The muscle selenium level was increased by a factor of about 4 and the liver selenium by a factor of about 12 when the dietary selenium supplement was increased from zero to 2.2μg/g. There was a significant linear correlation between dietary selenium and selenium concentrations in tissues. Possible benefit for humans consuming meat from animals having received the selenium doses used in this experiment are discussed. (author)

  16. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  17. Low selenium and reduced cognitive function in a cohort elderly study

    Institute of Scientific and Technical Information of China (English)

    Jianchao Bian; Sujuan Gao; Qiliang Qin; Zhongjie Yun; Yuan Liu; Shuliang Song; Chuanjiao Liu; Xiaohong Luo; Jie Gao; Chaoke Liang

    2010-01-01

    Cognitive function in the elderly is affected by various environmental,social,and individual factors.Studies show that chemical trace elements are closely related to cognitive function.As a protective factor,selenium promotes cognition in the elderly.However,study results into the effects of selenium on cognition have varied.By eliminating unstable environmental and other related factors,the present study selected elderly individuals from rural areas of the Shandong province to verify whether low selenium exposure is a risk factor for decreased cognitive function.Results demonstrated that age,sex,education,occupation,hypertension,stroke,and body selenium levels were factors affecting cognitive function in the elderly,and that selenium was an important protective factor.Moreover,results supported the hypothesis that a lifelong low selenium level is associated with low cognitive function.

  18. Selenium as an essential micronutrient: roles in cell cycle and apoptosis.

    Science.gov (United States)

    Zeng, Huawei

    2009-03-23

    Selenium is an essential trace element for humans and animals, and selenium deficiency is associated with several disease conditions such as immune impairment. In addition, selenium intakes that are greater than the recommended daily allowance (RDA) appear to protect against certain types of cancers. In humans and animals, cell proliferation and death must be regulated to maintain tissue homeostasis, and it has been well documented that numerous human diseases are directly related to the control of cell cycle progression and apoptosis. Thus, the elucidation of the mechanisms by which selenium regulates the cell cycle and apoptosis can lead to a better understanding of the nature of selenium's essentiality and its role in disease prevention. This article reviews the status of knowledge concerning the effect of selenium on cell cycle and apoptosis.

  19. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  20. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  1. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  2. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1983-01-01

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author) [pt

  3. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  4. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  5. Selenium intake and metabolic syndrome: A systematic review.

    Science.gov (United States)

    Retondario, Anabelle; Fernandes, Ricardo; Rockenbach, Gabriele; Alves, Mariane de Almeida; Bricarello, Liliana Paula; Trindade, Erasmo Benicio Santos de Moraes; Vasconcelos, Francisco de Assis Guedes de

    2018-03-02

    Metabolic syndrome is a multi-causal disease. Its treatment includes lifestyle changes with a focus on weight loss. This systematic review assessed the association between Selenium intake and metabolic syndrome. Data were collected mainly from four databases: PubMed, CENTRAL (Cochrane), Scopus and Web of Knowledge. Keywords related to metabolic syndrome, selenium, as well as metabolic syndrome features were searched. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement. A systematic review protocol was registered at PROSPERO (n. 42016046321). Two reviewers independently screened 2957 abstracts. Six studies were included to perform data extraction with standardized spreadsheets. The risk of bias was assessed by using specific tools according to the design of the relevant studies. An assessment was carried out based on the appropriateness of the study reports accordingly to STROBE and the CONSORT-based checklist for each study design. Three studies found no association between Selenium intake and metabolic syndrome; two of them found an inverse association; and one study found a direct association between Selenium intake and metabolic syndrome. One study also showed an inverse association between Selenium intake and the prevalence of high waist circumference, high diastolic blood pressure, and hyperglycaemia in women. Overall, based on the argumentation and results of this study, it is possible to conclude that Selenium intake and metabolic syndrome are not clearly associated in adults and elderly. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Activation analysis of selenium in odorous vegetable foods

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shoji; Noda, Katsuhiko.

    1981-01-01

    The selenium in odorous vegetables was analyzed by nondestructive neutron activation analysis using 75 Se, by the γ-ray coincidence method with a Ge(Li) and a NaI(Tl) detectors of definite energy ranges. By means of the coincidence counting, the background spectrum in 75 Se in the vicinity of 265 KeV was able to be reduced to about 1/20 of that by the former detector alone, so that the 75 Se detection sensitivity was raised over fourfold. Thus the selenium in odorous vegetables was able to be determined down to the content as low as 0.02 μg/g. The selenium content in garlic bulbs was 0.02 - 0.31 μg/g, and in onion bulbs 0.02 - 0.05 μg/g, both of which agreed well with those by fluorometry. In other odorous vegetables, the selenium content was as little as 0.1 μg/g or lower. It has been said that the selenium content is relatively large along with sulfur because of the same group, but it was found to be fairly small in the odorous vegetables. (Mori, K.)

  7. [Plasma selenium and peripartum cardiomyopathy in Bamako, Mali].

    Science.gov (United States)

    Cénac, A; Touré, K; Diarra, M B; Sergeant, C; Jobic, Y; Sanogo, K; Dembele, M; Fayol, V; Simonoff, M

    2004-01-01

    Peripartum heart failure due to unexplained dilated cardiomyopathy is a common disorder as Savannak-Sahelian Africa. One of the many suspected risk factors identified is selenium deficiency. The purpose of this study was to measure plasma selenium levels in patients with peripartum heart failure due to cardiomyopathy in Bamako, Republic of Mali and compare data with healthy Sahalian women with the same obstetrical status. Plasma selenium was measured in a patient group consisting of 28 Malian women presenting peripartum heart failure and in a control group of 28 healthy breast-feeding Nigerien women of comparable age. The criteria for matching the two groups was parity (similar number of deliveries) since multiparity is a risk factor for peripartum cardiomyopathy. The Wilcoxon test (nonparametric) was used to compare the 2 groups considering up value < 0.05 as significant. Plasma selenium was significantly lower in patients from Mali than in controls from Niger (65 +/- 17 ng/ml vs. 78 +/- 17 ng/ml, p = 0.01). The results of this study showing lower plasma selenium in Bamako patients with peripartum cardiomyopathy than in a matching healthy control population confirms the previous data from the Niamey study.

  8. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  9. Selenium biofortification

    Science.gov (United States)

    Plant foods are the major dietary sources of selenium (Se) in most countries around the world, followed by meats and seafood. For this reason, it is vital to increase Se uptake by plants and to produce crops with higher Se concentrations and bioavailability in their edible tissues. One of the most p...

  10. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  11. Selenium and Lung Cancer: A Systematic Review and Meta Analysis

    Science.gov (United States)

    Fritz, Heidi; Kennedy, Deborah; Fergusson, Dean; Fernandes, Rochelle; Cooley, Kieran; Seely, Andrew; Sagar, Stephen; Wong, Raimond; Seely, Dugald

    2011-01-01

    Background Selenium is a natural health product widely used in the treatment and prevention of lung cancers, but large chemoprevention trials have yielded conflicting results. We conducted a systematic review of selenium for lung cancers, and assessed potential interactions with conventional therapies. Methods and Findings Two independent reviewers searched six databases from inception to March 2009 for evidence pertaining to the safety and efficacy of selenium for lung cancers. Pubmed and EMBASE were searched to October 2009 for evidence on interactions with chemo- or radiation-therapy. In the efficacy analysis there were nine reports of five RCTs and two biomarker-based studies, 29 reports of 26 observational studies, and 41 preclinical studies. Fifteen human studies, one case report, and 36 preclinical studies were included in the interactions analysis. Based on available evidence, there appears to be a different chemopreventive effect dependent on baseline selenium status, such that selenium supplementation may reduce risk of lung cancers in populations with lower baseline selenium status (serumselenium (≥121.6 ng/mL). Pooling data from two trials yielded no impact to odds of lung cancer, OR 0.93 (95% confidence interval 0.61–1.43); other cancers that were the primary endpoints of these trials, OR 1.51 (95%CI 0.70–3.24); and all-cause-death, OR 0.93 (95%CI 0.79–1.10). In the treatment of lung cancers, selenium may reduce cisplatin-induced nephrotoxicity and side effects associated with radiation therapy. Conclusions Selenium may be effective for lung cancer prevention among individuals with lower selenium status, but at present should not be used as a general strategy for lung cancer prevention. Although promising, more evidence on the ability of selenium to reduce cisplatin and radiation therapy toxicity is required to ensure that therapeutic efficacy is maintained before any broad clinical recommendations can be made in this context. PMID:22073154

  12. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  13. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  14. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.

    2014-10-24

    The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30–400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.

  15. Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys

    International Nuclear Information System (INIS)

    Szpunar, Jerzy A.; Qin, Wen; Li, Hualong; Kumar, Kiran

    2011-01-01

    Experimental observations shows that the oxide formed on Zr alloys are strongly textured. The texture and grain-boundary characteristics of oxide are dependent on the texture of metal substrate. Computer simulation and thermodynamic modeling clarify the effect of metal substrate on structure of oxide film, and intrinsic factors affecting the microstructure. Models of diffusion process of hydrogen atoms and oxygen diffusion through oxide are presented. Both intra-granular and inter-granular hydrides were found following (0001) α-Zr //(111) δ-ZrH1.5 relationship. The through-thickness texture inhomogeneity in cladding tubes, the effects of hoop stress on the hydride orientation and the formation of interlinked hydride structure were studied. A thermodynamic model was developed to analyze the nucleation and the stress-induced reorientation of intergranular hydrides. These works provide a framework for understanding the oxidation, the hydrogen ingress and the hydride formation in Zr alloys. (author)

  16. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  17. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  18. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  19. HORMONAL REGULATION OF SELENIUM ACCUMULATION BY PLANTS

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2015-01-01

    Full Text Available Hormonal regulation is considered to be a unique mechanism controlling growth and development of living organism. The review discusses the correlations between pant hormonal status of non-accumulators and hyper-accumulators of Se with the accumulation levels of this microelement. The phenomenon of stimulation and redistribution of selenium as a result of phytohormone treatment, the peculiarities of phytohormones effect among different species and cultivars, and influence of plant sexualization on selenium accumulation are described in article. Data of hormonal regulation of selenium level for spinach, garlic, perennial onion, Brassica chinenesis and Valeriana officialis are presented in the review.

  20. Assessment of dissolved-selenium concentrations and loads in the lower Gunnison River Basin, Colorado, as part of the Selenium Management Program, from 2011 to 2016

    Science.gov (United States)

    Henneberg, Mark F.

    2018-04-23

    The Gunnison Basin Selenium Management Program implemented a water-quality monitoring network in 2011 in the lower Gunnison River Basin in Colorado. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents the percentile values of selenium because regulatory agencies in Colorado make decisions based on the U.S. Environmental Protection Agency (EPA) Clean Water Act Section 303(d) that uses percentile values of concentration. Also presented are dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for water years (WYs) 2011–2016 (October 1, 2010, through September 30, 2016). Annual dissolved-selenium loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations. Annual dissolved-selenium loads for WY 2011 through WY 2016 ranged from 179 and 391 pounds (lb) at Uncompahgre River at Colona to 11,100 and 17,300 lb at Gunnison River near Grand Junction (herein called Whitewater), respectively. Instantaneous loads were calculated for five sites with continuous U.S. Geological Survey (USGS) streamflow-gaging stations and 13 ancillary sites where discrete water-quality sampling also took place, using discrete water-quality samples and the associated discharge measurements collected during the period. Median instantaneous loads ranged from 0.01 pound per day (lb/d) at Smith Fork near Lazear to 33.0 lb/d at Whitewater. Mean instantaneous loads ranged from 0.06 lb/d at Smith Fork near Lazear to 36.2 lb/d at Whitewater. Most tributary sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb/day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream. The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved

  1. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  2. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  3. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  4. Determination of selenium status using the nail biologic monitor in a canine model

    International Nuclear Information System (INIS)

    Steven Morris, J.; Spate, V.L.; Ruth Ann Ngwenyama; Waters, D.J.

    2012-01-01

    Toenails and fingernails are routinely used to estimate selenium status in epidemiological studies; however, literature validating nail selenium concentration as a surrogate for critical organs is limited. In this study diets of intact male dogs were selenium supplemented at two physiological levels (3 and 6 μg/kg/day) in two different forms, selenomethionine and selenium-enriched bioformed yeast. The selenium-adequate basal diet consumed by the treatment and control groups during the 4-week run-in period and throughout the trial contained 0.3 ppm selenium. After 7 months the dogs in the two treatment groups and the control group were euthanized. Representative tissue samples from prostate, brain, liver, heart and skeletal muscle were collected, rinsed and frozen. Toenail clippings from multiple toes were also collected. Selenium was determined by neutron activation analysis using Se77m (half life = 17.4 s) at the University of Missouri Research Reactor Center. NIST SRM 1577, Bovine Liver was analyzed as a quality control. The analysts were blinded to control and treatment group assignments. As expected, tissue selenium levels increased proportionally with supplementation. A slightly greater increase in tissue selenium was observed for the purified selenomethionine compared to the bioformed yeast; however this trend was significant only for brain tissue. Toenail selenium concentrations and tissue selenium were highly correlated (p < 0.003) with Pearson coefficients of 0.759 (skeletal muscle), 0.745 (heart), 0.729 (brain), 0.723 (prostate), and 0.632 (liver). The toenail biologic monitor accurately assesses selenium status in skeletal muscle, heart, brain, prostate, and liver in the canine model. (author)

  5. Supplementation of Merino ewes with vitamin E plus selenium increases α-tocopherol and selenium concentrations in plasma of the lamb but does not improve their immune function.

    Science.gov (United States)

    Sterndale, S; Broomfield, S; Currie, A; Hancock, S; Kearney, G A; Lei, J; Liu, S; Lockwood, A; Scanlan, V; Smith, G; Thompson, A N

    2018-05-01

    Vitamin E and selenium have been reported to improve immune function across a range of species. Ewes lambing on poor-quality dry pasture in autumn in Western Australia are at risk of being deficient in vitamin E and selenium at lambing thus predisposing their lambs to deficiencies and increasing the risk of infection and disease. This study tested the hypotheses that (i) supplementation of autumn-lambing ewes with vitamin E plus selenium in late gestation will increase the concentrations of vitamin E and selenium in plasma in the ewe and lamb and (ii) that the increased concentrations of vitamin E and selenium in plasma in the lambs will improve their innate and adaptive immune responses and thus survival. Pregnant Merino ewes were divided into a control group (n=58) which received no supplementation or a group supplemented with vitamin E plus selenium (n=55). On days 111, 125 and 140 of pregnancy ewes in the vitamin E plus selenium group were given 4 g all-rac-α-tocopherol acetate orally. On day 111 the ewes were also given 60 mg of selenium as barium selenate by subcutaneous injection. The concentrations of α-tocopherol and selenium were measured in ewes and/or lambs from day 111 of pregnancy to 14 weeks of age±10 days (weaning). Immune function of the lamb was assessed by analysing the numbers and phagocytic capacities of monocytes and polymorphonuclear leucocytes and plasma IgG and anti-tetanus toxoid antibody concentrations between birth and 14 weeks of age±10 days. Maternal supplementation with vitamin E plus selenium increased the concentration of α-tocopherol in plasma (1.13 v. 0.67 mg/l; P<0.001) and selenium in whole blood (0.12 v. 0.07 mg/l; P<0.01) of the ewes at lambing compared with controls. Supplementation also increased the concentration of α-tocopherol (0.14 v. 0.08 mg/l; P<0.001) and selenium (0.08 v. 0.05 mg/l; P<0.01) in lambs at birth compared with controls. There was no significant effect of supplementation on immune function or

  6. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  7. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  8. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  9. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    International Nuclear Information System (INIS)

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-01-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 μm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 μm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  10. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, M M [Materiales Dentales, Facultad de OdontologIa, Universidad de Buenos Aires, Marcelo T de Alvear 2142 (1122), Buenos Aires (Argentina); Grana, D R; Kokubu, G A [PatologIa I. Escuela de OdontologIa, Facultad de Medicina. Asociacion Odontologica Argentina-Universidad del Salvador, Tucuman 1845 (1050) Buenos Aires (Argentina); Luppo, M I; Mintzer, S; Vigna, G, E-mail: mbarreiro@mater.odon.uba.a, E-mail: dgrana@usal.edu.a, E-mail: luppo@cnea.gov.a, E-mail: vigna@cnea.gov.a [Departamento Materiales, Comision Nacional de Energia Atomica, Gral Paz 1499 (B1650KNA), San MartIn, Buenos Aires (Argentina)

    2010-04-15

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125{mu}m in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150{mu}m. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  11. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  12. Mining-Related Selenium Contamination in Alaska, and the State of Current Knowledge

    Directory of Open Access Journals (Sweden)

    Aibyek Khamkhash

    2017-03-01

    Full Text Available Selenium pollution has been a topic of extensive research dating back further than the last decade and has attracted significant attention from several environmental and regulatory agencies in order to monitor and control its discharge from myriad industrial sources. The mining industry is a prime contributor of hazardous selenium release in the aquatic systems and is responsible for both acute and chronic impacts on living organisms. Herein we provide an overview of selenium contamination issues, with a specific focus on selenium release from mining industries, including a discussion of various technologies commonly employed to treat selenium-impacted waters from mining discharge. Different cases pertaining to selenium release from Alaskan mines (during years 2000–2015 are also presented, along with measures taken to mitigate high concentration releases. For continued resource exploration and economic development activities, as well as environmental preservation, it is important to fundamentally understand such emerging and pressing issues as selenium contamination and investigate efficient technological approaches to counter these challenges.

  13. Serum selenium levels and the risk of progression of laryngeal cancer.

    Science.gov (United States)

    Lubiński, Jan; Marciniak, Wojciech; Muszynska, Magdalena; Jaworowska, Ewa; Sulikowski, Mieczyslaw; Jakubowska, Anna; Kaczmarek, Katarzyna; Sukiennicki, Grzegorz; Falco, Michal; Baszuk, Piotr; Mojsiewicz, Magdalena; Kotsopoulos, Joanne; Sun, Ping; Narod, Steven A; Lubiński, Jan A

    2018-01-01

    Observational studies have reported an inverse relationship between selenium status (blood or toenail) and the risk of laryngeal cancer; however, the impact of low serum selenium level on survival has not been evaluated. We conducted a prospective study of 296 patients diagnosed with laryngeal cancer in Szczecin, Poland. Serum selenium was measured at diagnosis and prior to treatment. Patients were followed from the date of diagnosis to death at five years. Vital status was obtained by linkage to the Polish National Death Registry. The five-year survival after diagnosis was 82.0% (95% CI: 68% to 91%) for individuals in the highest quartile of serum selenium (> 66.8 μg/L) and was 28.6% (95% CI 19% to 42%) for individuals in the lowest quartile (selenium, compared to those in the highest quartile. The corresponding multivariate HR was 3.07 (95% CI 1.59 to 5.94). This study suggests that a selenium level in excess of 70 μg/L is associated with improved outcome among patients undergoing treatment for laryngeal cancer. Further studies are needed to evaluate if selenium supplementation to achieve this level might improve overall prognosis.

  14. Selenium content of tissues in Finnish infants and adults with various diseases, and studies on the effects of selenium supplementation in neuronal ceroid lipofuscinosis patients

    International Nuclear Information System (INIS)

    Westermarck, T.

    1977-01-01

    A low blood selenium level has previously been observed in healthy inhabitants of Finland. In this study even lower blood selenium values were observed in patients with acrodermatitis enteropathica, dystrophia musculorum progressiva (Duchenne), infantile and juvenile type of neuronal ceroid lipofuscinosis (NCL), severe mental retardation caused by various factors, and myocardial infarction. The selenium content of the brain, heart, kidney and liver in patients of different ages was also determined. The highest selenium level was found in the kidney. The mean liver selenium concentrations in stillborn, premature and full-term neonates were 1.11 plus minus 0.23 (8), 1.21 plus minus 0.17 (12) and 0.93 plus minus 0.16 μg/g dry weight (12) respectively (the number of subjects in parentheses). The selenium values are considerably higher than those in infants of from one to nine months of age and adults, whose liver selenium values were 0.58 plus minus 0.21 (8) and 0.67 plus minus 0.08 μg/g dry weight (8) respectively. The vitamin E levels of serum in patients with NCL, as well as in subjects with severe mental retardation (controls), were low compared with values in healthy normal subjects. Sodium selenite supplementation in patients with NCL produced at least a transitory improvement without causing any toxic effects during one year of administration. (author)

  15. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  16. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  17. Zircaloy-4 hydridation

    International Nuclear Information System (INIS)

    Vizcaino, Pablo

    1997-01-01

    The objectives of this work can be summarized as: 1) To reproduce, by heat treatments, matrix microstructures and hydride morphologies similar to those observed in structural components of the CNA-1 and CNE nuclear power plants; 2) To study the evolution of the mechanical properties of the original material with different hydrogen concentrations, such as microhardness, and its capacity to distinguish these materials; 3) To find parameters that allow to estimate the hydrogen content of a material by quantitative metallographic techniques, to be used as complementary in the study of the radioactive materials from reactors

  18. The Thermodynamics of Selenium Minerals in Near-Surface Environments

    Directory of Open Access Journals (Sweden)

    Vladimir Krivovichev

    2017-10-01

    Full Text Available Selenium compounds are relatively rare as minerals; there are presently only 118 known mineral species. This work is intended to codify and systematize the data of mineral systems and the thermodynamics of selenium minerals, which are unstable (selenides or formed in near-surface environments (selenites, where the behavior of selenium is controlled by variations of the redox potential and the acidity of solutions at low temperatures and pressures. These parameters determine the migration of selenium and its precipitation as various solid phases. All selenium minerals are divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I and hydrous selenites and selenates (II. Within each of the groups, minerals are codified according to the minimum number of independent elements necessary to define the composition of the mineral system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0 software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca were plotted for the average contents of these elements in acidic waters in the oxidation zones of sulfide deposits. The possibility of the formation of Zn, Cd, Ag and Hg selenites under natural oxidation conditions in near surface environments is discussed.

  19. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS.

    Science.gov (United States)

    Alzate, Adriana; Cañas, Benito; Pérez-Munguía, Sandra; Hernández-Mendoza, Hector; Pérez-Conde, Concepción; Gutiérrez, Ana Maria; Cámara, Carmen

    2007-11-28

    Selenium is an essential element in the human diet. Interestingly, there has been an increased consumption of dietary supplements containing this element in the form of either inorganic or organic compounds. The effect of using selenium as a dietary supplement in yogurt has been evaluated. For this purpose, different concentrations of inorganic Se (ranging from 0.2 to 5000 microg g(-1)) have been added to milk before the fermentation process. Biotransformation of inorganic Se into organic species has been carefully evaluated by ion-exchange, reversed-phase, or size-exclusion chromatography, coupled to inductively coupled plasma mass spectrometry (ICP-MS). Yogurt fermentation in the presence of up to 2 microg g(-1) of Se(IV) produces a complete incorporation of this element into proteins as has been demonstrated applying a dialysis procedure. Analysis by SEC-ICP-MS showed that most of them have a molecular mass in the range of 30-70 kDa. Species determination after enzymatic hydrolysis has allowed the identification of Se-cystine using two different chromatographic systems. The biotransformation process that takes place during yogurt fermentation is very attractive because yogurt can act as a source of selenium supplementation.

  20. Selenium transformation in coal mine spoils: Its environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

    1991-12-31

    The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

  1. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  2. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  3. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  4. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  5. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  6. Trapping of antimony and bismuth hydrides on a molybdenum-foil strip

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s148-s149 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * hydride trapping * molybdenum-foil strip device Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  7. Response of selenium changes in blood using cyclic activation analysis

    International Nuclear Information System (INIS)

    Spyrou, N.M.; Akanle, O.B.; Damyanova, A.A.

    1986-01-01

    A study was undertaken to investigate the response of selenium uptake and washout in whole blood and its components in healthy subjects, aged 20 to 30 yr, who were given selenium as a supplement to their usual diet, in the form of a yeast tablet (200 mg) containing 100 μg of the element together with vitamins A, C, and E (natural). Selenium has gained worldwide interest not only as an essential trace element but as a potent modifier of environmental hazards and as a naturally occurring toxicant. It is important therefore to investigate the character and the degree of the changes in healthy people on selenium supplementation. Cyclic activation analysis was used for the determination of selenium concentration through the detection of /sup 77m/Se (17.5 s), because of the increased sensitivity of the method and the large number of samples involved

  8. Removal of Selenium and Nitrate in Groundwater Using Organic Carbon-Based Reactive Mixtures

    Science.gov (United States)

    An, Hyeonsil; Jeen, Sung-Wook

    2016-04-01

    Treatment of selenium and nitrate in groundwater was evaluated through column experiments. Four columns consisting of reactive mixtures, either organic carbon-limestone (OC-LS) or organic carbon-zero valent iron (OC-ZVI), were used to determine the removal efficiency of selenium with different concentrations of nitrate. The source waters were collected from a mine site in Korea or were prepared artificially based on the mine drainage water or deionized water, followed by spiking of elevated concentrations of Se (40 mg/L) and nitrate (100 or 10 mg/L as NO3-N). The results for the aqueous chemistry showed that selenium and nitrate were effectively removed both in the mine drainage water and deionized water-based artificial input solution. However, the removal of selenium was delayed when selenium and nitrate coexisted in the OC-LS columns. The removal of selenium was not significant when the influent nitrate concentration was 100 mg/L as NO3-N, while most of nitrate was gradually removed within the columns. In contrast, 94% of selenium was removed when the influent nitrate concentration was reduced to 10 mg/L as NO3-N. In the OC-ZVI column, selenium and nitrate was removed almost simultaneously and completely even with the high nitrate concentration; however, a high concentration of ammonia was produced as a by-product of abiotic reaction between ZVI and nitrate. The elemental analysis for the solid samples after the termination of the experiments showed that selenium was accumulated in the reactive materials where removal of aqueous-phase selenium mostly occurred. The X-ray absorption near-edge structure (XANES) study indicated that selenium existed in the forms of SeS2 and Se(0) in the OC-LS column, while selenium was present in the forms of FeSe, SeS2 and absorbed Se(IV) in the OC-ZVI column. This study shows that OC-based reactive mixtures have an ability to remove selenium and nitrate in groundwater. However, the removal of selenium was influenced by the high

  9. Conceptual study on HTGR-IS hydrogen supply system using organic hydrides

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Inagaki, Yoshiyuki

    2012-02-01

    We have proposed a hydrogen supply-chain system, which is a storage/supply system of large amount of hydrogen produced by HTGR-IS hydrogen production system. The organic chemical hydride method is one of the candidate techniques in the system for hydrogen storage and transportation. In this study, properties of organic hydrides and conventional hydrogen storage/supply system were surveyed to make use of the conceptual design of the hydrogen supply system using an organic hydrides method with VHTR-IS hydrogen production process (hydrogen production: 85,400 Nm 3 /h). Conceptual specifications of the main equipments were designed for the hydrogen supply system consisting of hydrogenation and dehydrogenation process. It was also clarified the problems of hydrogen supply system, such as energy efficiency and system optimization. (author)

  10. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  11. Selenium containing clays minerals as additive for the discoloration of glass

    NARCIS (Netherlands)

    Timmer, K.; Limpt, J.A.C. van; Fischer, H.R.

    2010-01-01

    While selenium is applied as decolorizing agent for flint container glass or tableware glass, the retention of selenium in glass however is very low. Generally more than 75% of the total selenium input sublimes from the glass melt and leaves the clay minerals due to the high volatility of

  12. Designing the selenium and bladder cancer trial (SELEBLAT, a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium

    Directory of Open Access Journals (Sweden)

    Goossens Maria E

    2012-03-01

    Full Text Available Abstract Background In Belgium, bladder cancer is the fifth most common cancer in males (5.2% and the sixth most frequent cause of death from cancer in males (3.8%. Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of bladder cancer. This suggests that selenium may also be suitable for chemoprevention of recurrence. Method The SELEBLAT study opened in September 2009 and is still recruiting all patients with non-invasive transitional cell carcinoma of the bladder on TURB operation in 15 Belgian hospitals. Recruitment progress can be monitored live at http://www.seleblat.org. Patients are randomly assigned to selenium yeast (200 μg/day supplementation for 3 years or matching placebo, in addition to standard care. The objective is to determine the effect of selenium on the recurrence of bladder cancer. Randomization is stratified by treatment centre. A computerized algorithm randomly assigns the patients to a treatment arm. All study personnel and participants are blinded to treatment assignment for the duration of the study. Design The SELEnium and BLAdder cancer Trial (SELEBLAT is a phase III randomized, placebo-controlled, academic, double-blind superior trial. Discussion This is the first report on a selenium randomized trial in bladder cancer patients. Trial registration ClinicalTrials.gov identifier: NCT00729287

  13. Ecologic study of serum selenium and upper gastrointestinal cancers in Iran.

    Science.gov (United States)

    Nouarie, Mehdi; Pourshams, Akram; Kamangar, Farin; Sotoudeh, Masood; Derakhshan, Mohammad Hossein; Akbari, Mohammad Reza; Fakheri, Hafez; Zahedi, Mohammad Javad; Caldwell, Kathleen; Abnet, Christian C; Taylor, Philip R; Malekzadeh, Reza; Dawsey, Sanford M

    2004-09-01

    Both observational and experimental studies have shown that higher selenium status reduces the risk of upper gastrointestinal cancers in selenium deficient populations. Recent cancer registry data have shown very different rates of esophageal cancer (EC) and gastric cancer (GC) in four Provinces of Iran, namely Ardabil, Mazandaran, Golestan, and Kerman. The aim of this study was to have a preliminary assessment of the hypothesis that high rates of EC in Golestan and high rates of GC in Ardabil may be partly attributable to selenium deficiency. We measured serum selenium in 300 healthy adults from Ardabil (n = 100), Mazandaran (n = 50), Golestan (n = 100), and Kerman (n = 50), using inductively coupled plasma, with dynamic reaction cell, mass spectrometry (ICP-DRC-MS) at the US Centers for Disease Control (Atlanta, Georgia). The median serum selenium concentrations were very different in the four Provinces. The medians (IQR) for selenium in Ardabil, Mazandarn, Golestan, and Kerman were 82 (75-94), 123 (111-132), 155 (141-173), and 119 (110-128) microg/L, respectively (P<0.001). The results of linear regression showed that the Province variable, by itself, explained 76% of the variance in log selenium (r2 = 0.76). The proportion of the populations with a serum selenium more than 90 microg/L (the concentration at which serum selenoproteins are saturated) was 100% in Golestan, Kerman, and Mazandaran but only 29% in Ardabil. Our findings suggest that selenium deficiency is not a major contributor to the high incidence of EC seen in northeastern Iran, but it may play a role in the high incidence of GC in Ardabil Province. Copyright 2004 The WJG Press ISSN

  14. Plasma and breast-milk selenium in HIV-infected Malawian mothers are positively associated with infant selenium status but are not associated with maternal supplementation: results of the Breastfeeding, Antiretrovirals, and Nutrition study.

    Science.gov (United States)

    Flax, Valerie L; Bentley, Margaret E; Combs, Gerald F; Chasela, Charles S; Kayira, Dumbani; Tegha, Gerald; Kamwendo, Debbie; Daza, Eric J; Fokar, Ali; Kourtis, Athena P; Jamieson, Denise J; van der Horst, Charles M; Adair, Linda S

    2014-04-01

    Selenium is found in soils and is essential for human antioxidant defense and immune function. In Malawi, low soil selenium and dietary intakes coupled with low plasma selenium concentrations in HIV infection could have negative consequences for the health of HIV-infected mothers and their exclusively breastfed infants. We tested the effects of lipid-based nutrient supplements (LNS) that contained 1.3 times the Recommended Dietary Allowance of sodium selenite and antiretroviral drugs (ARV) on maternal plasma and breast-milk selenium concentrations. HIV-infected Malawian mothers in the Breastfeeding, Antiretrovirals, and Nutrition study were randomly assigned at delivery to receive: LNS, ARV, LNS and ARV, or a control. In a subsample of 526 mothers and their uninfected infants, we measured plasma and breast-milk selenium concentrations at 2 or 6 (depending on the availability of infant samples) and 24 wk postpartum. Overall, mean (± SD) maternal (range: 81.2 ± 20.4 to 86.2 ± 19.9 μg/L) and infant (55.6 ± 16.3 to 61.0 ± 15.4 μg/L) plasma selenium concentrations increased, whereas breast-milk selenium concentrations declined (14.3 ± 11.5 to 9.8 ± 7.3 μg/L) from 2 or 6 to 24 wk postpartum (all P milk selenium from 2 or 6 to 24 wk postpartum (both P milk selenium, but maternal selenium concentrations were positively associated with infant plasma selenium at 2 or 6 and 24 wk postpartum (P milk selenium concentrations. Future research should examine effects of more readily incorporated forms of selenium (ie, selenomethionine) in HIV-infected breastfeeding women.

  15. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, K.J.; Morgan, G.A. [Savannah River Laboratory, Aiken, SC (United States)

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  16. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  17. Selenium content in tissues and meat quality in rabbits fed selenium yeast

    Czech Academy of Sciences Publication Activity Database

    Dokoupilová, A.; Marounek, Milan; Skřivanová, V.; Březina, P.

    2007-01-01

    Roč. 52, č. 6 (2007), s. 165-169 ISSN 1212-1819 Institutional research plan: CEZ:AV0Z50450515 Keywords : rabbits * selenium * meat Subject RIV: GH - Livestock Nutrition Impact factor: 0.633, year: 2007

  18. Features of selenium metabolism in humans living under the conditions of North European Russia.

    Science.gov (United States)

    Parshukova, Olga; Potolitsyna, Natalya; Shadrina, Vera; Chernykh, Aleksei; Bojko, Evgeny

    2014-08-01

    Selenium supplementation and its effects on Northerners have been little studied. The aim of our study was to assess the selenium levels of the inhabitants of North European Russia, the seasonal aspects of selenium supplementation, and the interrelationships between selenium levels and the levels of thyroid gland hormones. To study the particular features of selenium metabolism in Northerners over the course of 1 year, 19 healthy male Caucasian volunteers (18-21 years old) were recruited for the present study. The subjects were military guards in a Northern European region of Russia (Syktyvkar, Russia, 62°N latitude) who spent 6-10-h outdoors daily. The study was conducted over a 12-month period. Selenium levels, glutathione peroxidase (GP) activity, as well as total triiodothyronine (T3), total thyroxin (T4), free thyroxin, free triiodothyronine, and thyrotropin (TSH) levels, were determined in the blood serum. The study subjects showed low levels of plasma selenium throughout the year. We observed a noticeable decrease in plasma selenium levels during the period from May to August, with the lowest levels in July. Selenium levels in the military guards correlated with the levels of selenium-dependent GP enzyme activity throughout the year. Additionally, we demonstrated a significant correlation between selenium and pituitary-thyroid axis hormones (total T3, free T4, and TSH) in periods in which plasma selenium levels were lower than the established normal ranges. Over the course of 1 year, low levels of plasma selenium affect GP activity and thyroid hormone levels in humans living in North European Russia.

  19. Use of sodium hydroxide treated selenium deficient barley to induce vitamin E and selenium deficiency in yearling cattle.

    Science.gov (United States)

    Rice, D A; McMurray, C H

    1986-02-15

    Selenium deficient barley grown in Northern Ireland was treated with sodium hydroxide to deplete it of vitamin E. Housed cattle fed a complete diet based on this treated barley developed nutritional degenerative myopathy, showing that spontaneous myopathy in yearling cattle can be the result of vitamin E and selenium deficiency alone. The diet used is as effective and cheaper than others presently in use for inducing degenerative myopathy.

  20. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2005-01-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from γ-hydrides to δ-hydrides is likely to be a cause of this, based on Root's observation that the γ-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be δ-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or γ-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be δ-hydrides. When the δ-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the γ-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the γ- and δ-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the hydrogen concentration or .C between the bulk and the

  1. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from {gamma}-hydrides to {delta}-hydrides is likely to be a cause of this, based on Root's observation that the {gamma}-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be {delta}-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or {gamma}-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be {delta}-hydrides. When the {delta}-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the {gamma}-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the {gamma}- and {delta}-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the

  2. Loss of selenium in drying and storage of agronomic plant species

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1970-01-01

    In two experiments with Se75, loss of selenium from agricultural species was noted during both drying and storage. The loss of selenium during drying was to some extent overshadowed by the influence of self-absorption caused by the water in the fresh material. The results showed that even plant...... material of non-indicator plantslose volatile selenium at drying temperatures of 60°C or higher, and in some cases even at temperatures below 60°C. The results also showed that storage as briquettes gives the lowest storage loss of selenium....

  3. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  4. Association between Toenail Mercury and Metabolic Syndrome Is Modified by Selenium

    Directory of Open Access Journals (Sweden)

    Kyong Park

    2016-07-01

    Full Text Available Background: Although Asian populations consume relatively large amounts of fish and seafood and have a high prevalence of metabolic diseases, few studies have investigated the association between chronic mercury exposure and metabolic syndrome and its effect modification by selenium. Methods: We analyzed baseline data from the Trace Element Study of Korean Adults in the Yeungnam area. Participants included 232 men and 269 women, aged 35 years or older, who had complete data regarding demographic, lifestyle, diet, toenail mercury and selenium levels, and health. Toenail mercury and selenium concentrations were measured using instrumental neutron-activation analysis. The metabolic biomarker levels were obtained through biannual medical checkups. Results: Higher toenail mercury levels were associated with habitual consumption of whale and shark meats, older age, obesity, smoking, alcohol drinking, and higher household income. Multivariable analysis showed a positive association between toenail mercury exposure and metabolic syndrome. In addition, this association was significantly stronger at lower selenium levels and was weaker at higher selenium levels. Conclusion: The possible harmful effects of mercury on metabolic syndrome may be attenuated by high levels of selenium. Future studies are needed to suggest optimal dietary guidelines regarding fish and selenium intakes, particularly for Asians with high levels of fish intake.

  5. Inter-individual variation of selenium in maternal plasma, cord plasma and placenta

    International Nuclear Information System (INIS)

    Lee, Anne M.; Huel, Guy; Godin, Jean; Hellier, Georgette; Sahuquillo, Josiane; Moreau, Thierry; Blot, Phillipe

    1994-01-01

    Selenium (Se) in high doses has been known to cause injury to the fetus and newborn. The major difficulty in assessing the effects of selenium on human reproduction stems from the need for a suitable means of estimating maternal and fetal exposure. The present investigation, therefore, examines the respective reliability of maternal plasma, cord plasma and placenta as epidemiological indicators as well as inter-individual variation of this trace element. An unselected population of 128 pregnancies was studied. Obstetrical characteristics were noted. Selenium concentrations were determined for maternal plasma, cord plasma, and placental tissue by fluorometric analysis. Maternal plasma selenium concentrations (Se-Bm) were significantly greater than fetal concentrations (Se-Bc). Placental selenium (Se-Pl) levels were four times that of fetal levels. Variability of Se-Bc is best explained by placental concentrations. Maternal weight and ethnic origin are significantly correlated with Se-Bc. Female newborn have higher selenium levels than male newborn. The present study demonstrates the significance of the placenta as an indicator of fetal selenium exposure

  6. Preparation and characterization of a laboratory scale selenomethionine-enriched bread. Selenium bioaccessibility.

    Science.gov (United States)

    Sánchez-Martínez, María; Pérez-Corona, Teresa; Caímara, Carmen; Madrid, Yolanda

    2015-01-14

    This study focuses on the preparation at lab scale of selenomethionine-enriched white and wholemeal bread. Selenium was supplemented either by adding selenite directly to the dough or by using lab-made selenium-enriched yeast. The best results were obtained when using fresh selenium-enriched yeast. The optimum incubation time for selenomethionine-enriched yeast preparation, while keeping formation of selenium byproducts to a minimum, was 96 h. Selenium content measured by isotope dilution analysis (IDA)-ICP-MS in Se-white and Se-wholemeal bread was 1.28 ± 0.02 μg g–1 and 1.16 ± 0.02 μg g–1 (expressed as mean ± SE, 3 replicates), respectively. HPLC postcolumn IDA-ICP-MS measurements revealed that selenomethionine was the main Se species found in Se-enriched bread, which accounted for ca. 80% of total selenium. In vitro gastrointestinal digestion assay provided selenium bioaccessibility values of 100 ± 3% and 40 ± 1% for white and wholemeal Se-enriched bread, respectively, being selenomethionine the main bioaccessible Se species in white bread, while in wholemeal bread this compound was undetectable.

  7. Recent Microextraction Techniques for Determination and Chemical Speciation of Selenium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ahmed S. A.

    2017-05-01

    Full Text Available Research designed to improve extraction has led to the development of microextraction techniques (ME, which involve simple, low cost, and effective preconcentrationof analytes in various matrices. This review is concerned with the principles and theoretical background of ME, as well as the development of applications for selenium analysis during the period from 2008 to 2016. Among all ME, dispersive liquid-liquid microextraction was found to be most favorable for selenium. On the other hand, atomic absorption spectrometry was the most frequently used instrumentation. Selenium ME have rarely been coupled to spectrophotometry and X-ray spectrophotometry methods, and there is no published application of ME with electrochemical techniques. We strongly support the idea of using a double preconcentration process, which consists of microextraction prior to preconcentration, followed by selenium determination using cathodic stripping voltammetry (ME-CSV. More attention should focus on the development of accurate, precise, and green methods for selenium analysis.

  8. Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression

    Science.gov (United States)

    Cai, Xianlei; Wang, Chen; Yu, Wanqi; Fan, Wenjie; Wang, Shan; Shen, Ning; Wu, Pengcheng; Li, Xiuyang; Wang, Fudi

    2016-01-01

    The objective of this study was to investigate the associations between selenium exposure and cancer risk. We identified 69 studies and applied meta-analysis, meta-regression and dose-response analysis to obtain available evidence. The results indicated that high selenium exposure had a protective effect on cancer risk (pooled OR = 0.78; 95%CI: 0.73–0.83). The results of linear and nonlinear dose-response analysis indicated that high serum/plasma selenium and toenail selenium had the efficacy on cancer prevention. However, we did not find a protective efficacy of selenium supplement. High selenium exposure may have different effects on specific types of cancer. It decreased the risk of breast cancer, lung cancer, esophageal cancer, gastric cancer, and prostate cancer, but it was not associated with colorectal cancer, bladder cancer, and skin cancer. PMID:26786590

  9. Selenium status and cancer mortality in subjects residing in four Canadian provinces

    International Nuclear Information System (INIS)

    Morris, J.S.; Horsman, T.L.; Spate, V.L.; Baskett, C.K.; Mason, M.M.; Nichols, T.A.; Rohan, T.; Soskolne, C.L.; Jain, M.

    2001-01-01

    Selenium status in male and female Canadian subjects was measured relative to cancer mortality in their respective provinces. Toenail specimens from 755 subjects, 377 males and 378 females, living in Vancouver (186), Edmonton (188), Toronto (197) and Montreal (184) were analyzed by instrumental neutron activation analysis giving means of 0.968 ± 0.177, 0.950 ± 0.148, 0.932 ± 0.135 and 0.896 ± 0.127 ppm Se, respectively. The effect of selenium determinants such as gender, selenium supplementation and smoking on selenium status is presented. Details of the observed inverse relationship of selenium status and cancer mortality are discussed. (author)

  10. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  11. Characterization of selenium doped silica glasses synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Kobayashi, R.A.; Toffoli, S.M.

    2012-01-01

    Selenium is a rare element in nature. It is used in the food, pharmaceutical, and glass industries. In commercial glasses, selenium is the element responsible for most of the pink or light red color, but its effect is primarily dependent on the oxidation state of the element in the glassy matrix. Besides, selenium is highly volatile, and as high as 80 wt% may be lost in the furnace during the industrial glass elaboration. The sol– gel method yields synthesized materials of high purity and homogeneity, and uses low processing temperatures. Samples of silica glass were obtained by sol-gel method, incorporating precursors of selenium, with the main objective of reducing selenium losses during its heating. The results of optical absorption, XRD and thermal analysis (TGA, DSC) of the glasses are presented and discussed. (author)

  12. Concentrations of boron, molybdenum, and selenium in chinook salmon

    Science.gov (United States)

    Hamilton, Steven J.; Wiedmeyer, Raymond H.

    1990-01-01

    The concentrations of boron, molybdenum, and selenium in young chinook salmon Oncorhynchus tshawytscha were determined in three partial life cycle chronic toxicity studies. In each study, fish were exposed to a mixture of boron, molybdenum, selenate, and selenite in the proportions found in subsurface agricultural drainage water in the basin of the San Joaquin Valley, California. Tests were conducted in well water and in site-specific fresh and brackish waters. No boron or molybdenum was detected in fish exposed to concentrations as high as 6,046 μg boron/L and 193 μg molybdenum/L for 90 d in well water or fresh water; however, whole-body concentrations of selenium increased with increasing exposure concentrations in well water and fresh water, but not in brackish water. Concentrations of selenium in chinook salmon were strongly correlated with reduced survival and growth of fish in well water and with reduced survival in a 15-d seawater challenge test of fish from fresh water. Concentrations of selenium in fish seemed to reach a steady state after 60 d of exposure in well water or fresh water. Fish in brackish water had only background concentrations of selenium after 60 d of exposure, and no effects on survival and growth in brackish water or on survival in a 10-d seawater challenge test were exhibited. This lack of effect in brackish water was attributed to initiation of the study with advanced fry, which were apparently better able to metabolize the trace element mixture than were the younger fish used in studies with well water and fresh water. In all three experimental waters, concentration factors (whole-body concentration/waterborne concentration) for selenium decreased with increasing exposure concentrations, suggesting decreased uptake or increased excretion, or both, of selenium at the higher concentrations.

  13. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    Science.gov (United States)

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  14. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, H.E. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Lindley, T.C. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2016-09-15

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample’s transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSS{sub D,H}) and precipitation (TSS{sub P,H}).

  15. Selenium Treatment Technologies

    Science.gov (United States)

    Selenium (Se) is a metalloid that is a dietary requirement in small quantities, but toxic at higher quantities. It also is known to bioaccumulate. In oxic environments, it exists as selenate (+6) and selenite (+4), both of which are soluble. Selenite will sorb more strongly to...

  16. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  17. Radiation protection effect of selenium on the Rat's prostate

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Seok; Choi, Jun Hyeok; Jung, Do Young; Kim, Jang Oh; Shin, Ji Hye; Kim, Joo Hee; Min, Byung In [Inje University, Kimhae (Korea, Republic of)

    2017-06-15

    High-tech medical equipment has increased the utilization of radiation in the medical field. As a result, research on radiation protection using natural materials has become an important social issue. Selenium is a natural substance that is highly expressed in prostate known that an essential role in prostate cells. Selenium was orally administered to Rat and irradiated with 10 Gy of radiation. Then, the prostate tissue was used as a target organ for 1 day, 7 days and 21 days to investigate the radiation protection effect of selenium through changes of blood components, Superoxide Dismutase and histological changes. As a result, there was a significant protective effect of hematopoietic immune system(hemoglobin concentration, neutrophil, platelet) in the group irradiated with selenium(p<0.05). The observation of tissue changes selenium is an effective component to increase Superoxide Dismutase activity, and it was confirmed that it has an effect of inhibiting the expression of hypertrophy of prostate by irradiation. Therefore, it is considered that selenium can be utilized as a radioprotective agent by inducing prevention of prostate-related diseases.

  18. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  19. EFFECT OF SELENIUM SUPPLEMENTATION ON PIG PRODUCTION PROPERTIES, ANTIOXIDANT STATUS AND MEAT QUALITY

    Directory of Open Access Journals (Sweden)

    Tomislav Šperanda

    2013-12-01

    Full Text Available Food containing functional ingredients to achieve a positive effect on health and reducing the risk of infection is increasing production. It is also very important to improve the quality of pork with respect to change the genetic makeup of pigs that raised leanness, being inversely correlated with the quality of meat. This study monitored the effectiveness of addition of higher doses of organic selenium in the diet of fattening pigs in relation to their growth, immunity, antioxidant power, the quality of meat and possibility of meat enriching with selenium. The experiment was carried out on 100 pigs (crossbred WJxSLxP of both sexes, from 28 kg to 98 kg body weight during a period of 98 days. Piglets fed the finished feed mixture for fattening up to 60 kg (ST-1 and a mixture for fattening up to 100 kg (DM-2 in addition, by the groups as follows: K-0. 3 mg/kg organic selenium, P1-0.5 mg/kg inorganic selenium, P2-0.5 mg/kg organic selenium, P3-0.5 mg/ kg organic selenium +0.2% zeolite clinoptilolite treated vibrotehnology and P4-gradual increase in selenium so that the concentration of the last month was 0.7 mg/ kg diet of organic selenium. All groups of pigs fed high concentration of organic selenium had a higher proportion of lymphocytes, especially CD4 T lymphocytes. Glutathione peroxidase activity was higher in all groups fed elevated selenium levels and significantly higher in the P3 and P4 groups 71st and 98th days of the trials. Glutathione reductase was significantly higher in the P3 and P4 group 98th days compared to the control. Antioxidant indicators suggested increased antioxidant protection in groups supplemented with 0.5 ppm organic selenium and selenium formulations of the same with the addition of zeolite under stress intensive pig production. No differences were found in the products of lipid peroxidation (TBARS in raw meat or in meat after a week in refrigerator storage. By histological examination statistically higher level of

  20. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    Science.gov (United States)

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  1. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  2. Shape coexistence in selenium isotopes

    International Nuclear Information System (INIS)

    Liu Ying; Cao Zhongbin; Xu Furong

    2010-01-01

    Nuclear shape change and shape coexistence in the Selenium isotopes have been investigated by Total-Routhian-Surface (TRS) calculations. It is found that nuclear shapes vary significantly with increasing neutron number. The TRS calculations for the ground states of 66,72,92,94 Se isotopes show that both neutron-deficient and neutron-dripline Selenium isotopes have oblate and prolate shape coexistence. The cranking shell-model calculations for 72,94 Se give that prolate and oblate shape coexistence in low rotational frequency. However, oblate rotational bands disappear and prolate rotational bands become yrast bands with increasing rotational frequency, which is due to the intrusion of the g 9/2 orbitals. (authors)

  3. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  4. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  5. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  6. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  7. Redox-Active Selenium Compounds—From Toxicity and Cell Death to Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Sougat Misra

    2015-05-01

    Full Text Available Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.

  8. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  9. Binding and Conversion of Selenium in Candida utilis ATCC 9950 Yeasts in Bioreactor Culture

    Directory of Open Access Journals (Sweden)

    Marek Kieliszek

    2017-02-01

    Full Text Available Selenium is considered an essential component of all living organisms. The use of yeasts as a selenium supplement in human nutrition has gained much interest over the last decade. The accumulation and biochemical transformation of selenium in yeast cells is particularly interesting to many researchers. In this article, we present the results of the determination of selenium and selenomethionine content in the biomass of feed yeast Candida utilis ATCC 9950 obtained from the culture grown in a bioreactor. The results indicated that C. utilis cells performed the biotransformation of inorganic selenium(IV to organic derivatives (e.g., selenomethionine. Selenium introduced (20–30 mg Se4+∙L−1 to the experimental media in the form of sodium(IV selenite (Na2SeO3 salt caused a significant increase in selenium content in the biomass of C. utilis,irrespective of the concentration. The highest amount of selenium (1841 μg∙gd.w.−1 was obtained after a 48-h culture in media containing 30 mg Se4+∙L−1. The highest content of selenomethionine (238.8 μg∙gd.w.−1 was found after 48-h culture from the experimental medium that was supplemented with selenium at a concentration of 20 mg Se4+∙L−1. Biomass cell in the cultures supplemented with selenium ranged from 1.5 to 14.1 g∙L−1. The results of this study indicate that yeast cell biomass of C. utilis enriched mainly with the organic forms of selenium can be a valuable source of protein. It creates the possibility of obtaining selenium biocomplexes that can be used in the production of protein-selenium dietary supplements for animals and humans

  10. Selenium supplementation for Hashimoto's thyroiditis.

    Science.gov (United States)

    van Zuuren, Esther J; Albusta, Amira Y; Fedorowicz, Zbys; Carter, Ben; Pijl, Hanno

    2013-06-06

    Hashimoto's thyroiditis is a common auto-immune disorder. The most common presenting symptoms may include anxiety, negative mood, depression, dry skin, cold intolerance, puffy eyes, muscle cramps and fatigue, deep voice, constipation, slow thinking and poor memory. Clinical manifestations of the disease are defined primarily by low levels of thyroid hormones; therefore it is treated by hormone replacement therapy, which usually consists of levothyroxine (LT4). Selenium might reduce antibody levels and result in a decreased dosage of LT4 and may provide other beneficial effects (e.g. on mood and health-related quality of life). To assess the effects of selenium supplementation on Hashimoto's thyroiditis. We searched the following databases up to 2 October 2012: CENTRAL in The Cochrane Library (2012, Issue 10), MEDLINE, EMBASE, and Web of Science; we also screened reference lists of included studies and searched several online trial registries for ongoing trials (5 November 2012). Randomised controlled clinical trials that assessed the effects of selenium supplementation for adults diagnosed with Hashimoto's thyroiditis. Study selection, data extraction, assessment of risk of bias, and analyses were carried out by two independent review authors. We assessed the quality of the evidence of included studies using GRADE. We were unable to conduct a meta-analysis because clinical heterogeneity between interventions that were investigated is substantial. Four studies at unclear to high risk of bias comprising 463 participants were included. The mean study duration was 7.5 months (range 3 to 18 months). One of our primary outcomes-'change from baseline in health related quality of life'-and two of our secondary outcomes-'change from baseline in LT4 replacement dosage at end of the study' and 'economic costs'-were not assessed in any of the studies. One study at high risk of bias showed statistically significant improvement in subjective well-being with sodium

  11. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  12. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  13. Microgravimetric Studies of Selenium Electrodeposition Onto Different Substrates

    Directory of Open Access Journals (Sweden)

    Kowalik R.

    2014-10-01

    Full Text Available The mechanism of selenium electrodeposition from sulfuric acid solution on different substrates was studied with the electrochemical techniques. The cyclic voltammetry was combined with the quartz crystal microbalance technique to analyze selenium deposition process. The electrochemical reduction of selenous acid on gold, silver and copper electrodes was investigated. It was found that reduction of selenous acid is a very complex process and it strongly depends from the applied substrate. The voltammetric measurements indicate the range of potentials in which the process of reduction of selenous acids on the applied substrate is possible. Additionally, the microgravimetric data confirm the deposition of selenium and they reveal the mechanism of the deposition process.

  14. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  15. Selenium Poisoning of Wildlife and Western Agriculture: Cause and Effect

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    2000-02-01

    This project examined the hypothesis that selenium contamination is not the principal cause of the decline of endemic fish species in the Upper Colorado Basin. Activities employed to test this hypothesis included a reconnaissance of locations altered by recent road construction, a re-interpretation of available literature regarding selenium toxicity, and the interpretation of unpublished data obtained from the Upper Colorado Basin Fish Recovery Program. The project demonstrates that most of the evidence implicating selenium is circumstantial.

  16. 21 CFR 522.2100 - Selenium, vitamin E injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Selenium, vitamin E injection. 522.2100 Section... § 522.2100 Selenium, vitamin E injection. (a)(1) Specifications. The drug is an emulsion containing in... of vitamin E (68 I.U.) (as d-alpha tocopheryl acetate). (2) Sponsor. See No. 000061 in § 510.600(c...

  17. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  18. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    International Nuclear Information System (INIS)

    Singh, Anchal; Rathaur, Sushma

    2005-01-01

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass ∼20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/μg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite

  19. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  20. Selenium and tellurium reagents in organic synthesis

    International Nuclear Information System (INIS)

    Comasseto, J.V.

    1984-01-01

    A review of the contribution of the University of Sao Paulo (SP, Brazil) to the organic synthesis of selenium and tellurium reagents is made. Major reactions amoung selenium compounds and insaturated substrates, phosphorus, ester enolates as well as the use of phase transference catalysed reactions to produce arylselenolate are described. For tellurium, interactions of its compounds with organic substrates and reactive intermediates (e.g. benzino diazomethane) are reported. (C.L.B.) [pt