WorldWideScience

Sample records for selenamide-derivatized peptide ions

  1. Tandem MS Analysis of Selenamide-Derivatized Peptide Ions

    Science.gov (United States)

    Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao

    2011-09-01

    Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.

  2. The competition of charge remote and charge directed fragmentation mechanisms in quaternary ammonium salt derivatized peptides--an isotopic exchange study.

    Science.gov (United States)

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-12-01

    Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445-453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms - charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms. © The Author(s) 2011. This article is published with open access at Springerlink.com

  3. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide

    Science.gov (United States)

    Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao

    2012-03-01

    We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.

  4. Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry.

    Science.gov (United States)

    Molloy, M P; Andrews, P C

    2001-11-15

    The development of rapid, global methods for monitoring states of protein phosphorylation would provide greater insight for understanding many fundamental biological processes. Current best practices use mass spectrometry (MS) to profile digests of purified proteins for evidence of phosphorylation. However, this approach is beset by inherent difficulties in both identifying phosphopeptides from within a complex mixture containing many other unmodified peptides and ionizing phosphopeptides in positive-ion MS. We have modified an approach that uses barium hydroxide to rapidly eliminate the phosphoryl group of serine and threonine modified amino acids, creating dehydroamino acids that are susceptible to nucleophilic derivatization. By derivatizing a protein digest with a mixture of two different alkanethiols, phosphopeptide-specific derivatives were readily distinguished by MS due to their characteristic ion-pair signature. The resulting tagged ion pairs accommodate simple and rapid screening for phosphopeptides in a protein digest, obviating the use of isotopically labeled samples for qualitative phosphopeptide detection. MALDI-MS is used in a first pass manner to detect derivatized phosphopeptides, while the remaining sample is available for tandem MS to reveal the site of derivatization and, thus, phosphorylation. We demonstrated the technique by identifying phosphopeptides from beta-casein and ovalbumin. The approach was further used to examine in vitro phosphorylation of recombinant human HSP22 by protein kinase C, revealing phosphorylation of Thr-63.

  5. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    Science.gov (United States)

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  6. 1-(3-aminopropyl)-3-butylimidazolium bromide for carboxyl group derivatization: potential applications in high sensitivity peptide identification by mass spectrometry.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhou, Yuan; Hou, Chunyan; Zhang, Xiaodan; Yang, Kaiguang; Zhang, Lihua; Zhang, Yukui

    2013-03-01

    The cationic reagent 1-(3-aminopropyl)-3-butylimidazolium bromide (BAPI) was exploited for the derivatization of carboxyl groups on peptides. Nearly 100% derivatization efficiency was achieved with the synthetic peptide RVYVHPI (RI-7). Furthermore, the peptide derivative was stable in a 0.1% TFA/water solution or a 0.1% (v/v) TFA/acetonitrile/water solution for at least one week. The effect of BAPI derivatization on the ionization of the peptide RI-7 was further investigated, and the detection sensitivity was improved >42-fold via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), thus outperforming the commercial piperazine derivatization approach. Moreover, the charge states of the peptide were largely increased via BAPI derivatization by electrospray ionization (ESI) MS. The results indicate the potential merits of BAPI derivatization for high sensitivity peptide analysis by MS.

  7. Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry.

    Science.gov (United States)

    Ochoa, Mariela L; Harrington, Peter B

    2004-02-15

    The detection of methamphetamine in the presence of nicotine has been successfully accomplished using in situ chemical derivatization with propyl chloroformate as the derivatization reagent and ion mobility spectrometry (IMS). The rapid detection of methamphetamine is important for forensic scientists in order to establish a chain of evidence and link criminals to the crime scene. Nicotine is pervasive in clandestine drug laboratories from cigarette smoke residue. It has been demonstrated that nicotine obscures the methamphetamine peaks in ion mobility spectrometers due to their similar charge affinities and ion mobilities, which makes their detection a challenging task. As a consequence, false positive or negative responses may arise. In situ chemical derivatization poses as a sensitive, accurate, and reproducible alternative to remove the nicotine background when detecting nanogram amounts of methamphetamine. The derivatization agent was coated onto the sample disk, and the derivatization product corresponding to propyl methamphetamine carbamate was detected. In the present study, in situ chemical derivatization was demonstrated to be a feasible method to detect methamphetamine hydrochloride as the carbamate derivative, which was baseline-resolved from the nicotine peak. Alternating least squares (ALS) was used to model the datasets. A mixture containing both compounds revealed reduced mobilities of 1.61 cm(2)/V.s and 1.54 cm(2)/V.s for methamphetamine and nicotine, respectively. The reduced mobility of propyl methamphetamine carbamate was found at 1.35 cm(2)/V.s.

  8. Derivatization of Dextran for Multiply Charged Ion Formation and Electrospray Ionization Time-of-Flight Mass Spectrometric Analysis

    Science.gov (United States)

    Tapia, Jesus B.; Hibbard, Hailey A. J.; Reynolds, Melissa M.

    2017-10-01

    We present the use of a simple, one-pot derivatization to allow the polysaccharide dextran to carry multiple positive charges, shifting its molecular weight distribution to a lower m/ z range. We performed this derivatization because molecular weight measurements of polysaccharides by mass spectrometry are challenging because of their lack of readily ionizable groups. The absence of ionizable groups limits proton abstraction and suppresses proton adduction during the ionization process, producing mass spectra with predominantly singly charged metal adduct ions, thereby limiting the detection of large polysaccharides. To address this challenge, we derivatized dextran T1 (approximately 1 kDa) by attaching ethylenediamine, giving dextran readily ionizable, terminal amine functional groups. The attached ethylenediamine groups facilitated proton adduction during the ionization process in positive ion mode. Using the low molecular weight dextran T1, we tracked the number of ethylenediamine attachments by measuring the mass shift from underivatized to derivatized dextran T1. Using electrospray ionization time-of-flight mass spectrometry, we observed derivatized dextran chains ranging from two to nine glucose residues with between one and four attachments/charges. Our success in shifting derivatized dextran T1 toward the low m/ z range suggests potential for this derivatization as a viable route for analysis of high molecular weight polysaccharides using electrospray ionization time-of-flight mass spectrometry. [Figure not available: see fulltext.

  9. High-throughput bioconjugation for enhanced 193 nm photodissociation via droplet phase initiated ion/ion chemistry using a front-end dual spray reactor.

    Science.gov (United States)

    Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S

    2015-09-15

    Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.

  10. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  11. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  12. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel

    2011-01-01

    ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu......In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal......, …) in the peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  13. Fabrication of electrolytic cell for online post-column electrochemical derivatization in ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuchao [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Xu Wei [State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310028, Zhejiang (China); Yang Bingcheng [School of Pharmacy, East China University of Science and Technology, Shanghai 200237 (China); Ye Mingli [Thermofisher scientific (China), Shanghai 201203 (China); Zhang Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Shentu Chao [College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015 (China); Zhu Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)

    2012-07-20

    Highlight: Black-Right-Pointing-Pointer An electrolytic cell including ruthenium modified titanium electrode was fabricated. Black-Right-Pointing-Pointer Ion chromatography/electrochemical derivatization/fluorescence detection was developed. Black-Right-Pointing-Pointer Strong oxidation capacity of this EC was obtained by using the Ru/Ti electrode with large surface area. - Abstract: An electrolytic cell (EC), composed of two ruthenium-plated titanium electrodes separated by cation-exchange membranes, was fabricated and evaluated for online postcolumn derivatization in ion chromatography (IC). Folic acid (FA) and methotrexate (MTX) were preliminarily used as prototype analytes to test the performance of EC. After separation by an anion exchange column, FA and MTX, which emit very weak fluorescence when excited, were electrochemically oxidized online in the anode chamber of the EC. The compounds with strong fluorescence, which are oxidation products, were detected by the fluorescence detector. The phosphate buffer solution (100 mM KH{sub 2}PO{sub 4}) served as an optimal eluent for anion exchange chromatographic separation and a suitable supporting electrolyte for electro-oxidation, leading to ideal compatibility between IC separation and the postcolumn electrochemical derivatization. For the presently proposed method, the linear ranges were from 0.01 mg L{sup -1} to 5 mg L{sup -1} for both FA and MTX. The detection limits of FA and MTX were 1.8 and 2.1 {mu}g L{sup -1}, and the relative standard deviations (RSD, n = 7) were 2.9% and 3.6%, respectively. The method was applied for the simultaneous determination of FA and MTX in the plasma of patients being treated for rheumatoid arthritis. The determination of MTX in the urine of the patients of diffuse large B cell lymphoma was also demonstrated.

  14. Derivatized graphitic nanofibres (GNF) as a new support material for mass spectrometric analysis of peptides and proteins.

    Science.gov (United States)

    Greiderer, Andreas; Rainer, Matthias; Najam-ul-Haq, Muhammad; Vallant, Rainer M; Huck, Christian W; Bonn, Günther K

    2009-07-01

    Graphitic nanofibres (GNFs), 100-200 nm in diameter and 5-20 microm in length have been modified in order to yield different affinities (Cu2+ and Fe3+ loaded immobilized metal affinity chromatography (IMAC) as well as cation and anion exchange materials) for the extraction of a range of biomolecules by their inherited hydrophobicity and the hydrophilic chemical functionalities, obtained by derivatization. Modified GNFs have for the first time been employed as carrier materials for protein profiling in material-enhanced laser desorption/ionization (MELDI) for the enrichment and screening of biofluids. For that purpose, the derivatized GNF materials have comprehensively been characterized regarding surface area, structural changes during derivatization, IMAC, as well as ion exchange and protein-loading capacity and recovery. GNF derivatives revealed high protein-binding capacity (2,000 microg ml(-1) for insulin) and ideal sensitivities, resulting in a detection limit of 50 fmol microl(-1) (for insulin), which is crucial for the detection of low abundant species in biological samples. Compared to other MELDI carrier materials, sensitivity was enhanced on GNF derivatives, which might be ascribed to the fact that GNFs support desorption and ionization mechanisms and by absorbing laser energy in addition to matrix.

  15. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for HER-2-overexpressing tumor cells

    Directory of Open Access Journals (Sweden)

    Ringhieri P

    2017-01-01

    Full Text Available Paola Ringhieri,1 Silvia Mannucci,2 Giamaica Conti,2 Elena Nicolato,2 Giulio Fracasso,3 Pasquina Marzola,4 Giancarlo Morelli,1 Antonella Accardo1 1Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB, University of Naples “Federico II”, Napoli, 2Department of Neurological Biomedical and Movement Sciences, 3Section of Immunology, Department of Medicine, 4Department of Informatics, University of Verona, Verona, Italy Abstract: Mixed liposomes, obtained by coaggregation of 1,2-dioleoyl-sn-glycero-3-phosphocholine and of the synthetic monomer containing a gadolinium complex ([C18]2DTPA[Gd] have been prepared. Liposomes externally decorated with KCCYSL (P6.1 peptide sequence in its monomeric, dimeric, and tetrameric forms are studied as target-selective delivery systems toward cancer cells overexpressing human epidermal growth factor receptor-2 (HER-2 receptors. Derivatization of liposomal surface with targeting peptides is achieved using the postmodification method: the alkyne-peptide derivative Pra-KCCYSL reacts, through click chemistry procedures, with a synthetic surfactant modified with 1, 2, or 4 azido moieties previously inserted in liposome formulation. Preliminary in vitro data on MDA-MB-231 and BT-474 cells indicated that liposomes functionalized with P6.1 peptide in its tetrameric form had better binding to and uptake into BT-474 cells compared to liposomes decorated with monomeric or dimeric versions of the P6.1 peptide. BT-474 cells treated with liposomes functionalized with the tetrameric form of P6.1 showed high degree of liposome uptake, which was comparable with the uptake of anti-HER-2 antibodies such as Herceptin. Moreover, magnetic MRI experiments have demonstrated the potential of liposomes to act as MRI contrast agents. Keywords: anti-HER2 liposomes, target peptide, KCCYSL peptide, breast cancer, click chemistry, branched peptides 

  16. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    Science.gov (United States)

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX TEMPO EEQQQTEDELQDK. The X TEMPO residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-C α backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b H ) and y + H (y H ) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long

  17. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.

    Science.gov (United States)

    Zolog, Oana; Mot, Augustin; Deac, Florina; Roman, Alina; Fischer-Fodor, Eva; Silaghi-Dumitrescu, Radu

    2011-01-01

    A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.

  18. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    Science.gov (United States)

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  19. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  20. Patterns of proteolytic cleavage and carbodiimide derivatization in sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    de Ancos, J.G.; Inesi, G.

    1988-01-01

    Two series of experiments were carried out to characterize (a) peptide fragments of sarcoplasmic reticulum (SR) ATPase, based on proteolysis with different enzymes and distribution of known labels, and (b) specific labeling and functional inactivation patterns, following ATPase derivatization with dicyclohexylcarbodiimide (DCCD) under various conditions. Digestion with trypsin or chymotrypsin results in the initial cleavage of the SR ATPase in two fragments of similar size and then into smaller fragments, while subtilisin and thermolysin immediately yield smaller fragments. Peptide fragments were assigned to segments of the protein primary structure and to functionally relevant domains, such as those containing the 32 P at the active site and the fluorescein isothiocyanate at the nucleotide site. ATPase derivatization with [ 14 C]DCCD under mild conditions produced selective inhibition of ATPase hydrolytic catalysis without significant incorporation of the 14 C radioactive label. This effect is attributed to blockage of catalytically active residues by reaction of the initial DCCD adduct with endogenous or exogenous nucleophiles. ATPase derivatization with [ 14 C]DCCD under more drastic conditions produced inhibition of calcium binding, 14 C radioactive labeling of tryptic fragments A 1 and A 2 (but not of B), and extensive cross-linking. The presence of calcium during derivatization prevented functional inactivation, radioactive labeling of fragment A 2 , and internal cross-linking of fragment A 1 . It is proposed that both A 1 and A 2 fragments participate in formation of the calcium binding domain and that the labeled residues of fragment A 2 are directly involved in calcium complexation. A diagram is constructed, representing the relative positions of labels and functional domains within the ATPase protein

  1. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  2. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  3. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  4. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  5. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  6. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    KAUST Repository

    Wang, Bing; Zhang, Jun; Chen, Peng; Ji, Zhiwei; Deng, Shuping; Li, Chi

    2013-01-01

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  7. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    KAUST Repository

    Wang, Bing

    2013-05-09

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  8. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides

    Science.gov (United States)

    Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.

    2016-05-01

    A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.

  9. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.

    Science.gov (United States)

    Protas, Anna Maria; Bonna, Arkadiusz; Kopera, Edyta; Bal, Wojciech

    2011-01-01

    Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Krężel, E. Kopera, A. M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  11. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  12. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    Science.gov (United States)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  13. Hydrazinonicotinic acid derivatization for selective ionization and improved glycan structure characterization by MALDI-MS.

    Science.gov (United States)

    Jiao, Jing; Yang, Lijun; Zhang, Ying; Lu, Haojie

    2015-08-21

    The analysis of glycan is important for understanding cell biology and disease processes because the glycans play a key role in many important biological behaviors, such as cell division, cellular localization, tumor immunology and inflammation. Nevertheless, it is still hard work to analyze glycans by MALDI-MS, which generally stems from the inherent low abundance and the low ionization efficiency of glycans. Moreover, the difficulty in generating informative fragmentations further hinders glycans structure characterization. In this work, hydrazinonicotinic acid (HYNIC) was used as a novel derivatized reagent for improved and selective detection of glycans. Through tagging the reducing terminus of glycans with the diazanyl group of HYNIC, significant enhancement of the ionization efficiency of glycans was achieved. After derivatization, the signal to noise ratio (S/N) of the maltoheptaose was improved by more than one order of magnitude in positive mode. HYNIC derivatization also allowed the sensitive detection of sialylated glycan in negative mode, with a 15 fold enhancement of S/N. Interestingly, it is noteworthy that the HYNIC reagent not only effectively labeled the reducing end of glycans in the presence of tryptic peptides, but also suppressed the ionization of peptides, enabling the direct detection of glycans from glycoprotein without separation. Therefore, analysis of glycans became easier due to the omission of a pre-separation step. Importantly, by using different acid reagents as the catalyst, derivatized product signals corresponding to [M + Na](+) or [M + H](+) were obtained respectively, which yield complementary fragmentation patterns for the structure elucidation of glycans. Finally, more than 40 N-glycans were successfully detected in 10 μL human serum using this method.

  14. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    Science.gov (United States)

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  15. Analysis of iodinated quorum sensing peptides by LC–UV/ESI ion trap mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yorick Janssens

    2018-02-01

    Full Text Available Five different quorum sensing peptides (QSP were iodinated using different iodination techniques. These iodinated peptides were analyzed using a C18 reversed phase HPLC system, applying a linear gradient of water and acetonitrile containing 0.1% (m/v formic acid as mobile phase. Electrospray ionization (ESI ion trap mass spectrometry was used for the identification of the modified peptides, while semi-quantification was performed using total ion current (TIC spectra. Non-iodinated peptides and mono- and di-iodinated peptides (NIP, MIP and DIP respectively were well separated and eluted in that order. Depending on the used iodination method, iodination yields varied from low (2% to high (57%.

  16. Dependence of matrix effect on ionization polarity during LC-ESI-MS analysis of derivatized amino acids in some natural samples.

    Science.gov (United States)

    Oldekop, Maarja-Liisa; Rebane, Riin; Herodes, Koit

    2017-10-01

    Matrix effect, the influence of co-eluting components on the ionization efficiency of the analyte, affects the trueness and precision of the LC-ESI-MS analysis. Derivatization can reduce or eliminate matrix effect, for example, diethyl ethoxymethylenemalonate (DEEMM) derivatives have shown less matrix effect compared to other derivatives. Moreover, the use of negative ion mode can further reduce matrix effect. In order to investigate the combination of derivatization and different ionization modes, an LC-ESI-MS/MS method using alternating positive/negative ion mode was developed and validated. The analyses in positive and negative ion modes had comparable limit of quantitation values. The influence of ESI polarity on matrix effect was investigated during the analysis of 22 DEEMM-derivatized amino acids in herbal extracts and honeys. Sample dilution approach was used for the evaluation of the presence of matrix effect. Altogether, 4 honeys and 11 herbal extracts were analyzed, and the concentrations of 22 amino acids in the samples are presented. In the positive ion mode, matrix effect was observed for several amino acid derivatives and the matrix effect was stronger in honey samples compared to the herbal extracts. The negative ion mode was free from matrix effect, with only few exceptions in honeys (average relative standard deviation over all analytes and matrices was 8%; SD = 7%). The matrix effect was eliminated in the positive ion mode by sample dilution and agreement between concentrations from the two ion modes was achieved for most amino acids. In conclusion, it was shown that the combination of derivatization and negative ion mode can be a powerful tool for minimizing matrix effect in more complicated applications.

  17. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.

    Science.gov (United States)

    Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra

    2018-02-01

    Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.

  18. Structure and further fragmentation of significant [a3 + Na - H]+ ions from sodium-cationized peptides.

    Science.gov (United States)

    Wang, Huixin; Wang, Bing; Wei, Zhonglin; Zhang, Hao; Guo, Xinhua

    2015-01-01

    A good understanding of gas-phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium-cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na - H](+) ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na - H](+) ion needs to overcome several relatively high energetic barriers to form [b2 + Na - H](+) ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na - H](+) ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na - H](+) from the [a3 + Na - H](+) ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    Czech Academy of Sciences Publication Activity Database

    Pepin, R.; Laszlo, K. J.; Marek, Aleš; Peng, B.; Bush, M. F.; Lavanant, H.; Afonso, C.; Tureček, F.

    2016-01-01

    Roč. 27, č. 10 (2016), s. 1647-1660 ISSN 1044-0305 Institutional support: RVO:61388963 Keywords : peptide ions * ion mobility * collisional cross sections * density functional theory calculations * ion structures * polar effects Subject RIV: CC - Organic Chemistry Impact factor: 2.786, year: 2016

  20. Oxidation of Peptides by Methyl(trifluoromethyl)dioxirane: the Protecting Group Matters

    Science.gov (United States)

    Rella, Maria Rosaria; Williard, Paul G.

    2011-01-01

    Representative Boc protected and acetyl protected peptide methyl esters bearing alkyl side chains undergo effective oxidation using methyl(trifluoromethyl)dioxirane (1b) under mild conditions. We observe a protecting group dependency in the chemoselectivity displayed by the dioxirane 1b. N-hydroxylation occurs in the case of the Boc protected peptides, side chain hydroxylation takes place in the case of acetyl protected peptides. Both are attractive transformations since they yield derivatized peptides that serve as valuable synthons. PMID:17221970

  1. Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses

    Science.gov (United States)

    Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P.; Thibault, Pierre

    2018-04-01

    The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. [Figure not available: see fulltext.

  2. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  3. Determination of eugenol in rat plasma by liquid chromatography-quadrupole ion trap mass spectrometry using a simple off-line dansyl chloride derivatization reaction to enhance signal intensity.

    Science.gov (United States)

    Beaudry, Francis; Guénette, Sarah Annie; Vachon, Pascal

    2006-11-01

    A rapid, selective and sensitive method was developed for the determination of eugenol concentration using an off-line dansyl chloride derivatization step to enhance signal intensity. The method consisted of a protein precipitation extraction followed by derivatization with dansyl chloride and analysis by full scan liquid chromatography electrospray quadrupole ion trap mass spectrometry (LC-ESI-QIT). The separation was achieved using a 100 x 2 mm C(8) analytical column combined with an isocratic mobile phase composed of 75:25 acetonitrile: 0.1% formic acid in water set at a flow rate of 0.25 mL/min. Signal intensity of the eugenol-dansyl chloride derivative was increased up to 100-fold as compared with the underivatized eugenol in positive electrospray mode. An analytical range of 100-20,000 ng/mL was used in the calibration curve of plasma and blood samples. The LOD observed was 0.5 pg injected on column. The novel method met all requirements of specificity, sensitivity, linearity, precision, accuracy and stability. In conclusion, a rapid and sensitive LC-ESI/MS/MS method using a derivatization agent was developed to enhance signal intensity of eugenol. Copyright (c) 2006 John Wiley & Sons, Ltd.

  4. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization.

    Science.gov (United States)

    Ziegler, Jörg; Abel, Steffen

    2014-12-01

    A new method for the determination of amino acids is presented. It combines established methods for the derivatization of primary and secondary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) with the subsequent amino acid specific detection of the derivatives by LC-ESI-MS/MS using multiple reaction monitoring (MRM). The derivatization proceeds within 5 min, and the resulting amino acid derivatives can be rapidly purified from matrix by solid-phase extraction (SPE) on HR-X resin and separated by reversed-phase HPLC. The Fmoc derivatives yield several amino acid specific fragment ions which opened the possibility to select amino acid specific MRM transitions. The method was applied to all 20 proteinogenic amino acids, and the quantification was performed using L-norvaline as standard. A limit of detection as low as 1 fmol/µl with a linear range of up to 125 pmol/µl could be obtained. Intraday and interday precisions were lower than 10 % relative standard deviations for most of the amino acids. Quantification using L-norvaline as internal standard gave very similar results compared to the quantification using deuterated amino acid as internal standards. Using this protocol, it was possible to record the amino acid profiles of only a single root from Arabidopsis thaliana seedlings and to compare it with the amino acid profiles of 20 dissected root meristems (200 μm).

  6. Speciation of mercury by ion chromatography with post-column derivatization

    International Nuclear Information System (INIS)

    Foltin, M.; Megova, S.; Prochakova, T.; Steklac, M.

    1996-01-01

    The chromatographic behaviour of Hg(II), methylmercury, phenylmercury and Cu(II) on three different sorbents, strong acidic sulfobutyl cation-exchanger, weak basic aminopropyl anion-exchanger and silicagel has been studied. A dithizone solution in cetyltrimethylammonium hydrogensulfate water micellar medium was found as a useful post-column derivatization reagent for UV-VIS detection. The detection limits 1.1 ng, 2.2 ng, 6.2 ng and 1.6 ng were found in silicagel chromatographic system and dithizone detection system for Hg(II), methylmercury, phenylmercury and respectively for Cu(II). (author). 18 refs., 4 figs., 3 tabs

  7. Reversal of the Hofmeister Series: Specific Ion Effects on Peptides

    Czech Academy of Sciences Publication Activity Database

    Paterová, Jana; Rembert, K. B.; Heyda, J.; Kurra, Y.; Okur, H. I.; Liu, W. R.; Hilty, Ch.; Cremer, P. S.; Jungwirth, Pavel

    2013-01-01

    Roč. 117, č. 27 (2013), s. 8150-8158 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ions * peptide * NMR * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  8. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  9. Analysis of carbonyl compounds via headspace solid-phase microextraction with on-fiber derivatization and gas chromatographic-ion trap tandem mass spectrometric determination of their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Schmarr, Hans-Georg [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)], E-mail: hans-georg.schmarr@dlr.rlp.de; Potouridis, Theodoros; Ganss, Sebastian; Sang, Wei; Koepp, Benedikt; Bokuz, Ursula; Fischer, Ulrich [Dienstleistungszentrum Laendlicher Raum (DLR) Rheinpfalz, Breitenweg 71, D-67435 Neustadt an der Weinstrasse (Germany)

    2008-06-09

    An improved method for the analysis of carbonyls is described utilizing a headspace solid-phase microextraction (HS-SPME) step and on-fiber derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) hydrochloride. Thermal desorption of the oxime derivatives formed on the fiber is followed by gas chromatographic separation coupled to an ion trap tandem mass spectrometer (GC-ITMS). Selecting specific fragment ions within the electron ionization (EI{sup +}) mass spectra of these oxime derivatives as precursor ions for MS-MS fragmentation provides a suitable method for the target analysis of individual carbonyl classes, such as alkanals, (E)-2-alkenals, (E,E)-2,4-alkadienals, and others. Retention indices on polar as well as on apolar stationary phases along with EI{sup +} mass spectra patterns are presented for a large set of oxime derivatives, giving valuable information needed for unambiguous assignment of substances in complex sample matrices. The fast sample preparation and derivatization step via HS-SPME can be automated and is applicable to a variety of biological samples and foodstuffs, allowing rapid and sensitive screening analyses of important aldehydic biomarkers and aroma active compounds.

  10. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures.

    Directory of Open Access Journals (Sweden)

    Isabella Bon

    Full Text Available Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs that were challenged with reference and wild-type human immunodeficiency virus type 1 (HIV-1 strains. SB105-A10 inhibited infections by HIV-1 X4 and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate proteoglycans (HSPGs and, importantly, the surface plasmon resonance (SPR assay revealed that SB105-A10 strongly binds gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10 inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of HIV-1.

  11. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS.

    Science.gov (United States)

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-06-01

    A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  12. The use of mass spectrometry in peptide chemistry

    NARCIS (Netherlands)

    Leclercq, P.A.; White, P.A.; Hägele, K.; Desiderio, D.M.; Meienhofer, J.

    1972-01-01

    A review with 16 refs. Methods are detailed for derivatizing peptides (mg quantities) in order to provide sufficient volatility for mass spectrometry (at least 10-5 mm vapor pressure at 300 Deg is required). Three steps are used in producing the desired derivs.: (a) arginine side chains are

  13. 123I labelled vasoactive intestinal peptide: Optimization of the radioiodination method, in vivo and in vitro assays

    International Nuclear Information System (INIS)

    Pozzi, O.R.; Sajaroff, E.O.; Edreira, M.; Gomez, S.I.; Manzini, A.

    2002-01-01

    In the framework of the CRP, our country has worked on the optimization of synthesis, quality control, in vitro and in vivo evaluation of 123 I radiopharmaceuticals based on peptides. We have worked on selective labelling procedures using prosthetic groups with the goal to create a strong carbon-halogen bond, which will be resistant to in vivo dehalogenation and other catabolic processes. The method utilizes the labelling agent, reactive with ε-amino lysine groups, N-succinimidyl 3-iodobenzoate. This conjugation agent was radiolabelled by using an organometallic intermediate to facilitate the reaction. The organometallic N-succinimidyl 3-(tri-nbutylstannyl) benzoate (ATE) was made in a three-step synthesis pathway. The yields for the reactions of this synthetic pathway were: 56.4% for the first reaction, 67% for the second, and 58% for the ATE (469 mg, 0.92 mmol). Because of only 0.1 μmol of ATE is needed for the labelling of peptides, from one batch of organic synthesis we obtained ATE to make more than 9000 labelling. The N-succinimidyl 3-(tri-n-butylstannyl) benzoate (ATE) was radiolabelled in 55-85% radiochemical yield to obtain the N-succinimidyl 3-iodobenzoate ( [ 131 I]SIB ). Parameters like reactive concentration and isolation method of the labelling agent were studied. The labelling agent [ 131 I]SIB was subsequently conjugated to a human IgG and a peptide. A chemotactic peptide was used as a model peptide. A potent chemotactic peptide N-formyl-norleucyl-leucyl-phenylalanyl-norleucyltyrosyl- lysine (fNleLFNleYK) was derivatized by reaction with the labelling agent in 59-75% of radiochemical yield. This derivatized peptide bound specifically to human polymorphonuclear leukocytes in vitro and exhibited biological activity in a superoxide production assay. Binding affinity IC 50 : 36 nM, in the displacing of [ 3 H]fMLF binding, and IC 50 : 68 nM, in the displacing of the fNleLFNleYK-[ 131 I]SIB conjugate, for the derivatized peptide were obtained. Because

  14. HPLC determination of chloride, bromide and iodide ions in drinking water and industrial effluents using trifluoromethylmercuric nitrate as derivatizing reagent

    International Nuclear Information System (INIS)

    Arain, M.A.; Bhanger, M.I.; Khuhawar, M.Y.

    1997-01-01

    A simple procedure for the simultaneous determination of various halides in drinking water and industrial effluents of Hyderabad and Iodized salt is reported. The method utilizes derivatization of halides through trifluoromethylmercuric nitrate in aqueous solution, extraction in petroleum ether followed by reverse phase HPLC separation using c-18 Lichrosorb column, 150 x 4 mm i.d., mobile phase methanol : water (20: 80) and UV detection at 225 nm. Linear calibration ranges for chloride, bromide and iodide (0-10 ug/mL) with correlation coefficient 0.996, 0.998 and 0.989 have been determined with lowest possible detection limit as 1.0, 0.25 and 1.5 Mu g/ml, respectively. The effect of various interfering ions is also discussed. (author)

  15. Stereospecific control of peptide gas-phase ion chemistry with cis and trans cyclo ornithine residues

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Nguyen, H. T. H.; Brož, Břetislav; Tureček, F.

    2018-01-01

    Roč. 53, č. 2 (2018), s. 124-137 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : cis and trans isomers * cyclo ornithine * peptide dissociations * peptide ion structures * stereochemistry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.422, year: 2016

  16. The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization

    Directory of Open Access Journals (Sweden)

    Tom Willemse

    2017-02-01

    Full Text Available The (site-selective derivatization of amino acids and peptides represents an attractive field with potential applications in the establishment of structure–activity relationships and labeling of bioactive compounds. In this respect, bioorthogonal cross-coupling reactions provide valuable means for ready access to peptide analogues with diversified structure and function. Due to the complex and chiral nature of peptides, mild reaction conditions are preferred; hence, a suitable cross-coupling reaction is required for the chemical modification of these challenging substrates. The Suzuki reaction, involving organoboron species, is appropriate given the stability and environmentally benign nature of these reactants and their amenability to be applied in (partial aqueous reaction conditions, an expected requirement upon the derivatization of peptides. Concerning the halogenated reaction partner, residues bearing halogen moieties can either be introduced directly as halogenated amino acids during solid-phase peptide synthesis (SPPS or genetically encoded into larger proteins. A reversed approach building in boron in the peptidic backbone is also possible. Furthermore, based on this complementarity, cyclic peptides can be prepared by halogenation, and borylation of two amino acid side chains present within the same peptidic substrate. Here, the Suzuki–Miyaura reaction is a tool to induce the desired cyclization. In this review, we discuss diverse amino acid and peptide-based applications explored by means of this extremely versatile cross-coupling reaction. With the advent of peptide-based drugs, versatile bioorthogonal conversions on these substrates have become highly valuable.

  17. In-source formation of N-acetyl-p-benzoquinone imine (NAPQI), the putatively toxic acetaminophen (paracetamol) metabolite, after derivatization with pentafluorobenzyl bromide and GC-ECNICI-MS analysis.

    Science.gov (United States)

    Tsikas, Dimitrios; Trettin, Arne; Zörner, Alexander A; Gutzki, Frank-Mathias

    2011-05-15

    Pentafluorobenzyl (PFB) bromide (PFB-Br) is a versatile derivatization reagent for numerous classes of compounds. Under electron-capture negative-ion chemical ionization (ECNICI) conditions PFB derivatives of acidic compounds readily and abundantly ionize to produce intense anions due to [M-PFB](-). In the present article we investigated the PFB-Br derivatization of unlabelled acetaminophen (N-acetyl-p-aminophenol, NAPAP-d(0); paracetamol; MW 151) and tetradeuterated acetaminophen (NAPAP-d(4); MW 155) in anhydrous acetonitrile and their GC-ECNICI-MS behavior using methane as the buffer gas. In addition to the expected anions [M-PFB](-) at m/z 150 from NAPAP-d(0) and m/z 154 from NAPAP-d(4), we observed highly reproducibly almost equally intense anions at m/z 149 and m/z 153, respectively. Selected ion monitoring of these ions is suitable for specific and sensitive quantification of acetaminophen in human plasma and urine. Detailed investigations suggest in-source formation of N-acetyl-p-benzoquinone imine (NAPQI; MW 149), the putatively toxic acetaminophen metabolite, from the PFB ether derivative of NAPAP. GC-ECNICI-MS of non-derivatized NAPAP did not produce NAPQI. The peak area ratio of m/z 149 to m/z 150 and of m/z 153 to m/z 154 decreased with increasing ion-source temperature in the range 100-250°C. Most likely, NAPQI formed in the ion-source captures secondary electrons to become negatively charged (i.e., [NAPQI](-)) and thus detectable. Formation of NAPQI was not observed under electron ionization (EI) conditions, i.e., by GC-EI-MS, from derivatized and non-derivatized NAPAP. NAPQI was not detectable in flow injection analysis LC-MS of native NAPAP in positive electrospray ionization (ESI) mode, whereas in negative ESI mode low extent NAPQI formation was observed (<5%). Our results suggest that oxidation of drug derivatives in the ion-sources of mass spectrometers may form intermediates that are produced from activated drugs in enzyme-catalyzed reactions

  18. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...

  19. Processing-independent analysis of peptide hormones and prohormones in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens Peter; Hunter, Ingrid; Lippert, Solvej Koelvraa

    2012-01-01

    Peptide hormones are post-translationally matured before they reach a structure in which they can fulfill their biological functions. The prohormone processing may encompass a variety of endoproteolytic cleavages, N- and C-terminal trimmings, and amino acid derivatizations. The same prohormone can...

  20. Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam

    International Nuclear Information System (INIS)

    Joshi, K B; Singh, Prabhpreet; Verma, Sandeep

    2009-01-01

    An expedient entry into the construction of bionanocomposites by merging peptide self-assembly, focused ion beam milling, and electron beam-induced deposition is described. Hexapeptides 1 and 2 revealed spherical self-assembled structures which are confirmed by a scanning electron microscope (SEM), atomic force microscope (AFM), focused ion beam/high-resolution scanning electron microscope (FIB-HRSEM), and high-resolution transmission electron microscopy (HRTEM). The microspheres from 1 and 2 are milled with the help of an ion beam to create different shapes. Soft spherical peptide-based structures were also subjected to fabrication under a gallium ion beam, followed by deposition of platinum pillars through a direct write process. It is envisaged that such hybrid bionanocomposites could have applications ranging from Pt-based hydrogenation catalysts to bioelectronics. In addition, such a fabrication process might also be useful to electrically connect two biological systems in order to study an electrical signal or electron transport phenomenon and structural transformations

  1. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexa-peptide

    International Nuclear Information System (INIS)

    Dejugnat, Ch.; Dufreche, J.F.; Zemb, Th.; Dejugnat, Ch.

    2011-01-01

    An amphiphilic hexa-peptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexa-peptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to 'Hofmeister' but different from volume and valency. (authors)

  2. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects.

    Science.gov (United States)

    Sturm, Sebastian; Ramesh, Divya; Brockmann, Axel; Neupert, Susanne; Predel, Reinhard

    2016-01-30

    We investigated the peptide inventory of the corpora cardiaca (CC) of the honey bee, Apis mellifera, by direct tissue profiling using MALDI-TOF MS combined with proteomic approaches focusing on cysteine-containing peptides. An agatoxin-like peptide (ALP) was identified as a component of the glandular part of the CC and was associated with the presence of the adipokinetic hormone in mass spectra. Although abundant in the CC, ALP does not belong to the toxins observed in the venom gland of A. mellifera. Homologs of ALP are highly conserved in major groups of arthropods and in line with this we detected ALP in the CC of non-venomous insects such as cockroaches and silverfish. In the American cockroach, Periplaneta americana, ALP was also identified in the CNS and stomatogastric nervous system. This is the first report that establishes the presence of ALPs in the neuroendocrine tissues of insects and further studies are necessary to reveal common functions of these peptides, e.g. as antimicrobial agents, ion channel modulators or classical neuropeptides. Among the messenger molecules of the nervous system, neuropeptides represent the structurally most diverse class and basically participate in the regulation of all physiological processes. The set of neuropeptides, their functions and spatial distribution are particularly well-studied in insects. Until now, however, several potential neuropeptide receptors remained orphan, which indicates the existence of so far unknown ligands. In our study, we used proteomic methods such as cysteine modification, enzymatic digestion and peptide derivatization, combined with direct tissue profiling by MALDI-TOF mass spectrometry, for the discovery of novel putative messenger molecules in the neuroendocrine system. The described presence of agatoxin-like peptides in the nervous system of the honey bee and other insects was overseen so far and is thus a remarkable addition to the very well studied neuropeptidome of insects. It is not

  3. Peptide analysis as amino alcohols by gas chromatography-mass spectrometry. Application to hyperoligopeptiduria. Detection of Gly-3Hyp-4Hyp and Gly-Pro-4Hyp-Gly.

    Science.gov (United States)

    Steiner, W; Niederwieser, A

    1979-03-15

    A method for the qualitative analysis of oligopeptides in human urine in cases of peptiduria is described. After sample precleaning on a strongly acidic ion exchanger, the trifluoroacetyl/methyl esters were formed and the peptide derivatives were transformed into trifluoroethyl oligoamino alcohols according to Nau and Biemann. It was found that oligoamino alcohols could be isolated selectively on a weakly acidic ion exchanger. The O-trimethylsilylated trifluoroethyl oligoamino alcohols were separated on a SE-30 glass capillary column and analyzed by computer-assisted gas chromatography-mass spectrometry. In order to increase specificity and to facilitate mass spectrometric interpretation, aliquots of the sample were reduced separately with lithium-aluminium deuteride and hydride. Each peptide gave a pair of derivatives with characteristic mass differences of the ions, namely 2 mass units per reduced oxo group (deuterium-hydrogen-labelling of oxo groups by reduction). Correct identification is assumed only if both mass spectral patterns fit the theory. Sample volumes of 5--100 ml of urine are needed. About six samples can be derivatized per week. Three cases with suspected peptiduria were investigated and the following peptides were found: Gly-Pro-4Hyp-Gly; Gly-Pro-4Hyp; Gly-Hyp-Hyp (postulated isomer Gly-3Hyp-4Hyp); Pro-4Hyp and Gly-Pro. With exception of the tetrapeptide, these compounds could be detected also in the urine of a healthy child.

  4. Preparation of Cu{sup 2+}/NTA-derivatized branch polyglycerol magnetic nanoparticles for protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    ShiXing Wang, E-mail: wsxkm@sina.com; Sun Wentong [Yunnan Institute of Product Quality Supervision and Inspection (China); Zhou Yang, E-mail: zhouyang8250@sohu.co [Kunming University of Science and Technology, Faculty of Metallurgical and Energy Engineering (China)

    2010-09-15

    In this report, we described the preparation of Cu{sup 2+}/nitrilotriacetic acids (NTA)-derivatized branch polyglycerol magnetic nanoparticles for protein adsorption with avoidance of nonspecific interactions at the same time. Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation method. The transmission electron microscopy results showed that the average diameter of MNPs was 15.8 {+-} 4.6 nm. X-ray photoelectron spectroscopy and Fourier Transform infrared measurements indicated that branch polyglycerols were grafted on MNPs via the ring-opening polymerization of glycidol and that Cu{sup 2+} ions had been successfully immobilized on the surface of MNPs. The protein immobilization effect was characterized by UV-Vis spectrum. The results proved that Cu{sup 2+}/NTA-derivatized branch polyglycerol magnetic nanoparticles effectively adsorbed bovine haemoglobin and rarely adsorbed lysozyme and {gamma}-globin.

  5. Improved derivatization protocol for simultaneous determination of ...

    African Journals Online (AJOL)

    The derivatization reaction was completed in 30 min at 50°C using hexane as solvent. ... higher temperatures and shorter derivatization time, or lower temperatures ... The following were added into a pyrex test tube: 80 µℓ of organic mixture ...

  6. Development of an Electrochemical Metal-Ion Biosensor Using Self-Assembled Peptide Nanofibrils

    DEFF Research Database (Denmark)

    Viguier, Bruno; Zor, Kinga; Kasotakis, Emmanouil

    2011-01-01

    . These nanofibrils were obtained under aqueous conditions, at room temperature and outside the clean room. The functionalized gold electrode was evaluated by cyclic voltammetry, impedance spectroscopy, energy dispersive X-ray and atomic force microscopy. The obtained results displayed a layer of nanofibrils able......This article describes the combination of self-assembled peptide nanofibrils with metal electrodes for the development of an electrochemical metal-ion biosensor. The biological nanofibrils were immobilized on gold electrodes and used as biorecognition elements for the complexation with copper ions...

  7. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  8. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    Yang, Xu; Lazar, Iulia M

    2009-01-01

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  10. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Hsu, Ching-Lin; Ding, Wang-Hsien

    2009-12-15

    A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.

  11. On-matrix derivatization extraction of chemical weapons convention relevant alcohols from soil.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Dubey, D K; Pardasani, Deepak

    2013-10-11

    Present study deals with the on-matrix derivatization-extraction of aminoalcohols and thiodiglycols, which are important precursors and/or degradation products of VX analogues and vesicants class of chemical warfare agents (CWAs). The method involved hexamethyldisilazane (HMDS) mediated in situ silylation of analytes on the soil. Subsequent extraction and gas chromatography-mass spectrometry analysis of derivatized analytes offered better recoveries in comparison to the procedure recommended by the Organization for the Prohibition of Chemical Weapons (OPCW). Various experimental conditions such as extraction solvent, reagent and catalyst amount, reaction time and temperature were optimized. Best recoveries of analytes ranging from 45% to 103% were obtained with DCM solvent containing 5%, v/v HMDS and 0.01%, w/v iodine as catalyst. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes ranged from 8 to 277 and 21 to 665ngmL(-1), respectively, in selected ion monitoring mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Immobilisation of ligands by radio-derivatized polymers

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1995-01-01

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs

  13. APPLICATION OF DNPH DERIVATIZATION WITH LC/MS TO THE IDENTIFICATION OF POLAR CARBONYL DRINKING WATER DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    A qualitative method using 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by analysis with liquid chromatography (LC)/negative ion-electrospray mass spectrometry (MS) was developed for analyzing and identifying highly polar aldehydes and ketones in ozonated drinking wa...

  14. Derivatization Ion Chromatography for the Determination of Monoethanolamine in Presence of Hydrazine in PHWR Steam-Water Circuits

    Directory of Open Access Journals (Sweden)

    Ayushi D.

    2011-01-01

    Full Text Available A simple, rapid and accurate method for the determination of monoethanolamine (MEA in PHWR steam-water circuits has been developed. MEA is added in the feed water to provide protection against corrosion while hydrazine is added to scavenge dissolved oxygen. The quantitative determination of MEA in presence of hydrazine was accomplished using derivatization ion chromatography with conductometric detection in nonsuppressed mode. A Metrosep cation 1-2 analytical column and a Metrosep cartridge were used for cation separation. A mixture of 4 mM tartaric acid, 20% acetone and 0.05 mM HNO3 was used as eluent. Acetone in the mobile phase leads to the formation of different derivatives with MEA and hydrazine. The interferences due Na+ and NH4 + were eliminated by adopting a simple pretreatment procedure employing OnGuard-H cartridge. The limit of detection limit of MEA was 0.1 μg mL−1 and the relative standard deviation was 2% for the overall method. The recovery of MEA added was in the range 95%–102%. The method was applied to the determination of MEA in steam generator water samples.

  15. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  16. Phosphopeptide Enrichment by Covalent Chromatography after Derivatization of Protein Digests Immobilized on Reversed-Phase Supports

    Science.gov (United States)

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O

  17. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  18. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    Science.gov (United States)

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  19. Stereoselective determination of amino acids in beta-amyloid peptides and senile plaques.

    Science.gov (United States)

    Thorsén, G; Bergquist, J; Westlind-Danielsson, A; Josefsson, B

    2001-06-01

    A novel method for the determination of the enantiomeric composition of peptides is presented. In this paper, the focus has been on beta-amyloid peptides from deceased Alzheimer's disease patients. The peptides are hydrolyzed using mineral acid. The free amino acids are derivatized with the chiral reagent (+)- or (-)-1-(9-anthryl)-2-propyl chloroformate and subsequently separated using micellar electrokinetic chromatography (MEKC) and detected using laser-induced fluorescence (LIF) detection. The high separation efficiency of the MEKC-LIF system, yielding approximately 1 million theoretical plates/m for most amino acids, facilitates the simultaneous chiral determination of nine amino acids. The samples that have been analyzed were standard 1-40 beta-amyloid peptides, in vitro precipitated beta-amyloid fibrils, and human senile plaque samples.

  20. Sensitive electrospray mass spectrometry analysis of one-bead-one-compound peptide libraries labeled by quaternary ammonium salts.

    Science.gov (United States)

    Bąchor, Remigiusz; Cydzik, Marzena; Rudowska, Magdalena; Kluczyk, Alicja; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-08-01

    A rapid and straightforward method for high-throughput analysis of single resin beads from one-bead-one-compound combinatorial libraries with high resolution electrospray ionization tandem mass spectrometry (HR ESI-MS/MS) is presented. The application of an efficient method of peptide derivatization by quaternary ammonium salts (QAS) formation increases ionization efficiency and reduces the detection limit, allowing analysis of trace amounts of compounds by ESI-MS. Peptides, synthesized on solid support, contain a new cleavable linker composed of a Peg spacer (9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid), lysine with ɛ-amino group marked by the N,N,N-triethylglycine salt, and methionine, which makes possible the selective cleavage by cyanogen bromide. Even a small portion of peptides derivatized by QAS cleaved from a single resin bead is sufficient for sequencing by HR ESI-MS/MS experiments. The developed strategy was applied to a small training library of α chymotrypsin substrates. The obtained results confirm the applicability of the proposed method in combinatorial chemistry.

  1. Hyperbranched polyglycerol-grafted titanium oxide nanoparticles: synthesis, derivatization, characterization, size separation, and toxicology

    Science.gov (United States)

    Qin, Hongmei; Maruyama, Kyouhei; Amano, Tsukuru; Murakami, Takashi; Komatsu, Naoki

    2016-10-01

    We have been developing surface functionalization of various nanoparticles including nanodiamond and iron oxide nanoparticles in view of biomedical applications. In this context, TiO2 nanoparticles (TiO2 NP) are functionalized with polyglycerol (PG) to provide water-dispersible TiO2-PG, which is further derivatized through multi-step organic transformations. The resulting TiO2-PG and its derivatives are fully characterized by various analyses including solution-phase 1H and 13C NMR. TiO2-PG was size-tuned with centrifugation by changing the acceleration and duration. At last, no cytotoxicity of TiO2 NP, TiO2-PG, and TiO2-PG functionalized with RGD peptide was observed under dark conditions.

  2. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1986-05-06

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-(/sup 3/H)ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate.

  3. The potential use of complex derivatization procedures in comprehensive HPLC-MS/MS detection of anabolic steroids.

    Science.gov (United States)

    Baranov, Pavel A; Appolonova, Svetlana A; Rodchenkov, Grigory M

    2010-10-01

    The use of two separate derivatization procedures with the formation of oxime (hydroxyl ammonium pretreatment) and picolinoyl (mixed anhydride method) derivates of anabolic steroids following HPLC-MS/MS analysis was proposed. The main product ions of obtained derivatives for 21 anabolic steroids were evaluated and fragmentation pathways were compared.The analysis of MS/MS spectra for underivatized steroids versus oxime or picolinoyl derivatives showed that in case of analytes containing conjugated double bonds in sterane core all of the observed MS/MS spectra contained abundant product ions of diagnostic value. The implementation of derivatization procedures to such compounds is useful for upgrading sensitivity or selectivity of the evaluated method. On the other hand, MS/MS spectra of underivatized and oxime analytes without conjugated double bonds in sterane core produce spectra with large amounts of low abundant product ions. Picolinoyl derivatives formation leads to highly specific spectra with product ions of diagnostic value coupled with sensitive and selective analysis at the same time. The intra- and inter-group comparison analysis revealed that fragmentation pathways for underivatized steroids and correspondent oxime derivatives are similar.The obtained oxime and picolinoyl derivatives provided 10-15 times higher ESI response in the HPLC-ESI-MS-selected reaction monitoring (SRM) when compared to those of underivatized molecules in positive HPLC-ESI-MS mode.Due to the laborious sample preparation we suggest to use the performed strategy for confirmation analysis purposes, metabolic studies or while the identification of new steroids or steroid-like substances. Copyright © 2010 John Wiley & Sons, Ltd.

  4. A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.

    Science.gov (United States)

    Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi

    2018-04-21

    Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018

  5. Determination of glufosinate ammonium and its metabolite (AE F064619 and AE F061517) residues in water by gas chromatography with tandem mass spectrometry after ion exchange cleanup and derivatization.

    Science.gov (United States)

    Royer, A; Beguin, S; Sochor, H; Communal, P Y

    2000-11-01

    An analytical method for the determination of glufosinate ammonium and its principal metabolites, AE F064619 and AE F061517, in water of two different hardnesses (5 and 30 DH, French hardness) has been developed and validated. Samples were spiked at different levels (0. 05 and 0.5 microgram/L) and were purified by column chromatography on ion-exchange resins. After derivatization with glacial acetic acid and trimethylarthoacetate mixture, the derivatives were quantified by using capillary gas chromatography with an ion-trap tandem mass spectrometric detector. Analytical conditions for MS/MS detection were optimized, and the quantification was carried out on the areas of the most representative ions. The limit of quantification was validated at 0.05 microgram/L for each compound. The mean recovery value and the relative standard deviation (n = 20) were 92.0% and 17. 8% for glufosinate ammonium, 90.2% and 15.8% for AE F064619, and 89. 7% and 12.7% for AE F061517.

  6. pH-dependence of the specific binding of Cu(II) and Zn(II) ions to the amyloid-β peptide

    International Nuclear Information System (INIS)

    Ghalebani, Leila; Wahlström, Anna; Danielsson, Jens; Wärmländer, Sebastian K.T.S.; Gräslund, Astrid

    2012-01-01

    Highlights: ► Cu(II) and Zn(II) display pH-dependent binding to the Aβ(1–40) peptide. ► At pH 7.4 both metal ions display residue-specific binding to the Aβ peptide. ► At pH 5.5 the binding specificity is lost for Zn(II). ► Differential Cu(II) and Zn(II) binding may help explain metal-induced AD toxicity. -- Abstract: Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer’s disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with 15 N- and 13 C, 15 N-labeled Aβ(1–40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.

  7. Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification.

    Science.gov (United States)

    Zhao, Xianen; Suo, Yourui

    2008-03-01

    2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where

  8. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C{sub 60}{sup +}-Ar{sup +} co-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chi-Jen [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang [Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan (China); Kuo, Yu-Ting; Kao, Wei-Lun; Yen, Guo-Ji; Tsai, Meng-Hung [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Shyue, Jing-Jong, E-mail: shyue@gate.sinica.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan (China)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Multiple peptides are detected and quantified at the same time without labeling. Black-Right-Pointing-Pointer C{sub 60}{sup +} ion is responsible for generating molecular-specific ions at high mass. Black-Right-Pointing-Pointer The co-sputtering yielded more steady depth profile and more well defined interface. Black-Right-Pointing-Pointer The fluence of auxiliary Ar{sup +} does not affect the quantification curve. Black-Right-Pointing-Pointer The damage from Ar{sup +} is masked by high sputtering yield of C{sub 60}{sup +}. - Abstract: Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C{sub 60}{sup +} primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C{sub 60}{sup +} primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar{sup +} was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C{sub 60}{sup +} bombardment, which suppressed the ion intensities during the depth

  9. Opsigtsvækkende nyt om derivater fra USA

    DEFF Research Database (Denmark)

    Thinggaard, Frank

    1997-01-01

    Der er opsigsvækkende nyt fra USA om den regnskabsmæssige behandling af derivater som terminskontrakter, futures, optioner, swaps m.v. Glem alt om historiske anskaffelsespriser. For derivater er der kun ét mål, som kan bruges: markedsværdier (fair-values). Glem alt om snakken om 'off-balance-sheet...

  10. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    Science.gov (United States)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  11. Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS.

    Science.gov (United States)

    Dettmer, Katja; Stevens, Axel P; Fagerer, Stephan R; Kaspar, Hannelore; Oefner, Peter J

    2012-01-01

    Two mass spectrometry-based methods for the quantitative analysis of free amino acids are described. The first method uses propyl chloroformate/propanol derivatization and gas chromatography-quadrupole mass spectrometry (GC-qMS) analysis in single-ion monitoring mode. Derivatization is carried out directly in aqueous samples, thereby allowing automation of the entire procedure, including addition of reagents, extraction, and injection into the GC-MS. The method delivers the quantification of 26 amino acids. The isobaric tagging for relative and absolute quantification (iTRAQ) method employs the labeling of amino acids with isobaric iTRAQ tags. The tags contain two different cleavable reporter ions, one for the sample and one for the standard, which are detected by fragmentation in a tandem mass spectrometer. Reversed-phase liquid chromatography of the labeled amino acids is performed prior to mass spectrometric analysis to separate isobaric amino acids. The commercial iTRAQ kit allows for the analysis of 42 physiological amino acids with a respective isotope-labeled standard for each of these 42 amino acids.

  12. Radiolabelled peptides and nanoparticles for specific molecular targeting in oncology

    International Nuclear Information System (INIS)

    Helbok, A.

    2011-01-01

    The aim of this thesis is the development of radiolabelled peptides and nanoparticles (NP) for specific molecular targeting in oncology. Three different types of NP were investigated in this study: lipid - based NP (liposomes and micelles), human serum albumin - based NP (albumin NP) and protamine - oligonucleotide - based NP (proticles). In a first step, radiolabelling protocols were set up for the different NP - formulations. The variety of radioisotopes used, covers the whole spectrum of applications in nuclear medicine: SPECT (111In, 99mTc), (2) PET (68Ga) and therapeutic applications (177Lu, 90Y) opening a manifold administration potential for these NP aiming towards multiple targeting and hybrid imaging strategies (combined SPECT / PET and MRI). Radiolabelling quality was analyzed by instant thin layer chromatography (ITLC). High radiochemical yields (RCY >90 %) and high specific activity (SA) were achieved. NP - formulations were derivatized with the chelating agent Diethylenetriaminepentaacetic acid (DTPA) allowing complexation of trivalent radiometals, and potentially nonradioactive metals, such as Gd3+, for MRI imaging leading to the development of multifunctionalized NP for a unified labelling approach. Furthermore, NP were derivatized with the pharmacokinetic modifier polyethylene glycol (PEG) to maintain NP with long circulating ability. Stability assessments included incubation in different media (serum, 4 mM DTPA - solution and PBS pH 7.4, at 37 o C for a period of 24 h). For the in vivo biodistribution of the NP, static and / or dynamic SPECT / PET imaging studies were performed at different time points with Lewis rats and correlated to results from quantification of tissue - uptake. Results indicate differences in stability and general pharmacokinetic behaviour depended on the NP - formulation. However, a positive influence expressed in a prolonged retention time in circulation was investigated for all different NP - formulations due to PEG

  13. Derivatization, characterization, and tribological behavior of an amine-terminated polymer surface

    International Nuclear Information System (INIS)

    Ren, S.L.; Yang, S.R.; Zhao, Y.P.

    2004-01-01

    The derivatization, characterization, and micro-tribological behavior of an amine-terminated polymer surface were investigated. Thus, the heptafluorobutyric anhydride (HFBA) derivatized film was characterized by means of contact-angle measurement and X-ray photoelectron spectroscopy (XPS). It was found that the HFBA-derivatized film was generated on the PEI surface in the presence of a chemical amide bond. The tribological properties were characterized as well. The polymer PEI film had relative high adhesion, friction, and poor anti-wear ability, while the HFBA-derivatized polymer film possessed a very low adhesive force of only about 5.5 nN (a pyramidal Si 3 N 4 tip with radius of curvature about 50 nm was used to measure the adhesion), which was more than an order of magnitude lower than that of the silicon substrate surface. Besides, the HFBA-derivatized film registered good friction-reducing ability and thermal stability. Thus, a good alternative method was presented to improve the tribological properties of polymer film by chemisorbing molecules with low surface energy. This makes it feasible for the derivatized polymer film to find promising application in resolving the tribological problems of micro-electromechanical systems (MEMS)

  14. Study of recovery and stability of derivatized gliphosate and AMPA in soil using national resins

    OpenAIRE

    Souza, Tomaz Alves de; Matta, Marcia Helena de Rizzo da; Montagner, Émerson; Abreu, Adley Bergson Gonçalves de

    2006-01-01

    In the present paper we studied the recoveries of glyphosate, N-(phosphonomethyl)glycine (GLY) and its major metabolite, (aminomethyl)phosphonic acid (AMPA) in soil using national (Brazilian) ion-exchange resins, derivatization by a mixture of trifluoroacetic anhydride and trifluoroethanol and analyses by GC-MS. The quantification limits were 12 ng.g-1 for both compounds and the methodology showed a range of recuperation from 85 to 94% with coefficients of variation (CV) ranging from 4.07 to ...

  15. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-02-01

    Pentafluorobenzyl bromide (PFB-Br) is a versatile derivatization agent. It is widely used in chromatography and mass spectrometry since several decades. The bromide atom is largely the single leaving group of PFB-Br. It is substituted by wide a spectrum of nucleophiles in aqueous and non-aqueous systems to form electrically neutral, in most organic solvents soluble, generally thermally stable, volatile, strongly electron-capturing and ultraviolet light-absorbing derivatives. Because of these greatly favoured physicochemical properties, PFB-Br emerged an ideal derivatization agent for highly sensitive analysis of endogenous and exogenous substances including various inorganic and organic anions by electron capture detection or after electron-capture negative-ion chemical ionization in GC-MS. The present article attempts an appraisal of the utility of PFB-Br in analytical chemistry. It reviews and discusses papers dealing with the use of PFB-Br as the derivatization reagent in the qualitative and quantitative analysis of endogenous and exogenous inorganic anions in various biological samples, notably plasma, urine and saliva. These analytes include nitrite, nitrate, cyanide and dialkyl organophosphates. Special emphasis is given to mass spectrometry-based approaches and stable-isotope dilution techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular architecture with carbohydrate functionalized β-peptides adopting 314-helical conformation

    Directory of Open Access Journals (Sweden)

    Nitin J. Pawar

    2014-04-01

    Full Text Available Carbohydrate recognition is essential in cellular interactions and biological processes. It is characterized by structural diversity, multivalency and cooperative effects. To evaluate carbohydrate interaction and recognition, the structurally defined attachment of sugar units to a rigid template is highly desired. β-Peptide helices offer conformationally stable templates for the linear presentation of sugar units in defined distances. The synthesis and β-peptide incorporation of sugar-β-amino acids are described providing the saccharide units as amino acid side chain. The respective sugar-β-amino acids are accessible by Michael addition of ammonia to sugar units derivatized as α,β-unsaturated esters. Three sugar units were incorporated in β-peptide oligomers varying the sugar (glucose, galactose, xylose and sugar protecting groups. The influence of sugar units and the configuration of sugar-β-amino acids on β-peptide secondary structure were investigated by CD spectroscopy.

  17. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  18. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Creese, Andrew J; Smart, Jade; Cooper, Helen J

    2013-05-21

    Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers. The resulting tandem mass spectra are composite, containing fragments from multiple precursor ions. The benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for proteomics have been demonstrated by a number of groups, but previously work has focused on extending proteome coverage generally. Here, we present a systematic study of the benefits of FAIMS for a key challenge in proteomics, that of peptide isomers. We have applied FAIMS to the analysis of a phosphopeptide library comprising the sequences GPSGXVpSXAQLX(K/R) and SXPFKXpSPLXFG(K/R), where X = ADEFGLSTVY. The library has defined limits enabling us to make valid conclusions regarding FAIMS performance. The library contains numerous sequence inversions and structural isomers. In addition, there are large numbers of theoretical localization variants, allowing false localization rates to be determined. The FAIMS approach is compared with reversed-phase liquid chromatography and strong cation exchange chromatography. The FAIMS approach identified 35% of the peptide library, whereas LC-MS/MS alone identified 8% and LC-MS/MS with strong cation exchange chromatography prefractionation identified 17.3% of the library.

  19. Process for derivatizing carbon nanotubes with diazonium species

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2007-01-01

    The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.

  20. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A rapid novel derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography electron ionization and chemical ionization mass spectrometric analysis.

    Science.gov (United States)

    Dasgupta, A; Spies, J

    1998-05-01

    Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode

  2. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    Science.gov (United States)

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  3. Automated precolumn derivatization procedures in HPLC for biomedical and clinical applications

    NARCIS (Netherlands)

    Wolf, Johannes Hendrik

    1992-01-01

    This thesis describes three automated precolumn derivatization procedures for the analysis of carboxylic group-containing compounds. After derivatization with a suitable label, the derivatives are separated on reversed-phashed HPLC and detected by fluorescence. ... Zie: Summary

  4. Quantification of peramivir in dog plasma by liquid chromatography/tandem mass spectrometry employing precolumn derivatization.

    Science.gov (United States)

    Li, Xin; Li, Ying; Wang, Juan; Wang, Lili; Zhong, Wu; Ruan, Jinxiu; Zhang, Zhenqing

    2014-01-01

    Peramivir is a novel influenza neuraminidase inhibitor used for anti-influenza. In this article, a novel method was developed to determine peramivir in dog plasma using a derivatization treatment step to increase the retention time and enhance the signal intensity. The sample preparation consisted of a protein precipitation extraction followed by derivatization with 10M hydrochloric acid-methanol (10:90, v/v) and determined by liquid chromatography coupled with tandem mass spectrometry. The selected reaction monitoring mode of the positive ion was performed and the precursor to the product ion transitions of m/z 343→284 and m/z 299→152 were used to measure the derivative of peramivir and Ro 64-0802 (internal standard, an active metabolite of oseltamivir). The chromatographic separation was achieved using a ZORBAX RX-C8 (2.0mm×150mm×5μm) analytical column with an isocratic mobile phase composed of acetonitrile-water-formic acid (30:70:0.1, v/v/v, 0.2mL/min). The method was linear over a concentration range of 0.25-250ng/mL. The average intra-day/inter-day precision values were 4.04-8.17% and 3.02-7.08%, respectively, while the average accuracy value was 93.99-106.48%. This method has been successfully applied to the preclinical dog research of peramivir following intragastric administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Energetic and frictional effects in the transport of ions in a cyclic peptide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yongil; Song, Yeon Ho; Hwang, Hyeon Seok [Dept. of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon (Korea, Republic of); Schatz, George C. [Dept. of Chemistry, Northwestern University, Evanston (United States)

    2017-01-15

    The effects of geometric restraints and frictional parameters on the energetics and dynamics of ion transport through a synthetic ion channel are investigated using molecular dynamics (MD) simulations for several different ions. To do so, potential of mean force profiles and position-dependent diffusion coefficients for Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −} transport through a simple cyclic peptide nanotube, which is composed of 4× cyclo[−(D-Ala-Glu-D-Ala-Gln){sub 2−}] rings, are calculated via an adaptive biasing force MD simulation method and a Baysian inference/Monte Carlo algorithm. Among the restraints and parameters examined in this work, the radius parameter used in the flat-bottom half-harmonic restraint at the entrance and exit to channel has a great effect on the energetics of ion transport through the variation of entropy in the outside of the channel. The diffusivity profiles for the ions show a strong dependence on the damping coefficient, but the dependence on the coefficient becomes minimal inside the channel, indicating that the most important factor which affects the diffusivity of ions inside the channel is local interactions of ions with the structured channel water molecules through confinement.

  6. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  7. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.

    Science.gov (United States)

    Li, Guo-Zhong; Vissers, Johannes P C; Silva, Jeffrey C; Golick, Dan; Gorenstein, Marc V; Geromanos, Scott J

    2009-03-01

    A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to

  8. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro

    2017-06-16

    An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m 3 (assuming a sampling volume of 1m 3 and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m 3 . The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-D-Enantiomer of Alzheimer’s β-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology

    Science.gov (United States)

    Connelly, Laura; Arce, Fernando Teran; Jang, Hyunbum; Capone, Ricardo; Kotler, Samuel A.; Ramachandran, Srinivasan; Kagan, Bruce L.; Nussinov, Ruth; Lal, Ratnesh

    2012-01-01

    Alzheimer’s disease (AD) is a protein misfolding disease characterized by a build-up of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization; or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM) we imaged the structures of both D- and L-enantiomers of the full length Aβ1-42 when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Earlier we have shown that D-Aβ1-42 channels conduct ions similarly to their L-counter parts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors. PMID:22217000

  11. Ferro-based derivatizing agents for LC/MS an LC/EC/MS

    NARCIS (Netherlands)

    Seiwert, Bettina

    2007-01-01

    Within this thesis, the development and application of ferrocene-based derivatizing agents for LC/MS and LC/EC/MS is presented. The advantages of derivatization by ferrocenes are the similtaneous introduction of a mass tag and an electroactive group, which make them ideally suited for LC/MS and

  12. Purification of dirucotide, a synthetic 17-aminoacid peptide, by ion exchange centrifugal partition chromatography.

    Science.gov (United States)

    Boudesocque, Leslie; Forni, Luciano; Martinez, Agathe; Nuzillard, Jean-Marc; Giraud, Matthieu; Renault, Jean-Hugues

    2017-09-01

    Dirucotide is a synthetic drug candidate for the treatment of multiple sclerosis. This 17-aminoacid peptide was successfully purified by ion exchange centrifugal partition chromatography. The optimized conditions involved the biphasic methyl tert-butyl ether/acetonitrile/n-butanol/water (2:1:2:5, v/v) solvent system in the descending mode, the di(2-ethylhexyl)phosphoric acid cation-exchanger with an exchanger (di(2-ethylhexyl)phosphoric acid)/dirucotide mole ratio of 100 and Ca 2+ ions in aqueous solution as displacer. Critical impurities were efficiently eliminated and dirucotide was recovered in high yield and purity (69% and 98%, respectively) and with a productivity of 2.29g per liter of stationary phase per hour. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Matrix-assisted laser desorption/ionization time-of-flight and nano-electrospray ionization ion trap mass spectrometric characterization of 1-cyano-2-substituted-benz[f]isoindole derivatives of peptides for fluorescence detection

    DEFF Research Database (Denmark)

    Linnemayr, K; Brückner, A; Körner, R

    1999-01-01

    A series of hexa- to decapeptides (molecular mass range 800-1200) were labeled with naphthalene-2,3-dicarboxaldehyde, which preferentially reacts with the primary amino groups of a peptide. A highly stable peptide conjugate is formed, which allows selective analysis by fluorescence at excitation...... and emission wavelengths of 420 and 490 nm, respectively. After removal of unreacted compounds, the peptide conjugates were characterized by matrix-assisted laser desorption/ionization (MALDI) time-of-flight and nano-electrospray ionization (ESI) ion trap mass spectrometry. They readily form both [M + H]+ ions...... by MALDI and both [M + H]+ and [M + 2H]2+ ions by ESI. Furthermore, the fragmentation behavior of the N-terminally tagged peptides, exhibiting an uncharged N-terminus, was investigated applying post-source decay fragmentation with a curved field reflector and collision-induced dissociation...

  14. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    Science.gov (United States)

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  15. Establishment of a Charge Reversal Derivatization Strategy to Improve the Ionization Efficiency of Limaprost and Investigation of the Fragmentation Patterns of Limaprost Derivatives Via Exclusive Neutral Loss and Survival Yield Method

    Science.gov (United States)

    Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai

    2018-04-01

    Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.

  16. Comparison of derivatization/ionization techniques for liquid chromatography tandem mass spectrometry analysis of oxylipins.

    Science.gov (United States)

    Meckelmann, Sven W; Hellhake, Stefan; Steuck, Maryvonne; Krohn, Michael; Schebb, Nils Helge

    2017-05-01

    The performance of two derivatization and ionization techniques for the quantitative reversed phase liquid chromatography (LC)- mass spectrometry (MS) analysis of hydroxy fatty acids (OH-PUFA) in plasma was evaluated: One used AMPP (N-(4-aminomethylphenyl)pyridinium chloride) leading to a positive charged amid-derivate which can be detected by electrospray ionization (ESI)-MS. Second yielded penta fluorobenzyl bromide (PFB) ester derivates allowing detection in electron capture atmospheric pressure chemical ionization (ecAPCI)-MS. The sensitivity of detection of a comprehensive set of hydroxy fatty acids of n6- and n3- poly unsaturated fatty acids was investigated. On the SCIEX3200 MS the applied PFB derivatization led to poor limits of detection (LOD) of 10-100nM (0.1-1pmol/0.03-0.3ng on column). By contrast, AMPP derivatization led to a similar sensitivity compared to the standard ESI(-) of non derivatized analytes (LOD about 1nM (10fmol/3pg on column)). For several analytes, including 9-HETE, 11-HETE and 17-HDHA the AMPP derivatization improved sensitivity enabling their detection in human plasma. However, precision was reduced by AMPP derivatization and variation in IS recovery indicated a strong matrix influence on the MS-signal. In sum, with the instrumentation used, neither of these derivatization methods improves in our hands the LC-MS based quantification of oxylipins. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The big six, regnskabsbrugerne og FASBs nye regler om derivater

    DEFF Research Database (Denmark)

    Thinggaard, Frank

    1997-01-01

    Artiklen har flere formål. Dels at præsentere FASBs første forslag til den regnskabsmæssige behandling af samtlige derivater. Dels at analysere og sammenligne de enkelte big six revisions-firmaers holdning til forslagets vigtigste emner samt at sammenligne dette med kommentarerne fra en repræsent......Artiklen har flere formål. Dels at præsentere FASBs første forslag til den regnskabsmæssige behandling af samtlige derivater. Dels at analysere og sammenligne de enkelte big six revisions-firmaers holdning til forslagets vigtigste emner samt at sammenligne dette med kommentarerne fra en...... repræsentant for brugerne. Artiklen viser, at revisionsfirmaerne generelt er meget enige i deres bedømmelse af reglerne. De fleste er ikke modstandere af at værdiansætte derivater til fair value. Kritikken går på behandlingen af gevinsterne og tabene, hvor de er bange for den volatilitet, der kan komme i...... virksomhedernes resultater. Især for gevinster og tab på derivater, der sikrer fremtidige cash-flows. Artiklen forklarer nærmere, hvad modstanden består i, hvilket giver en dybere forståelse for, hvordan reglerne virker. Artiklen viser, at brugerne ikke er nær så kritiske som the big six....

  18. Fingerprinting desmosine-containing elastin peptides

    DEFF Research Database (Denmark)

    Schräder, Christoph U; Heinz, Andrea; Majovsky, Petra

    2015-01-01

    , and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type Cx...

  19. Expanded metabolite coverage of Saccharomyces cerevisiae extract through improved chloroform/methanol extraction and tert-butyldimethylsilyl derivatization

    DEFF Research Database (Denmark)

    Khoomrung, Sakda; Martinez Ruiz, José Luis; Tippmann, Stefan

    2015-01-01

    and non-polar metabolites were derivatized using tert-butyldimethylsilyl (t-BDMS) dissolved in acetonitrile. Using microwave treatment of the samples, the derivatization process could be completed within 2 h (from >20 h of the conventional method), providing fully derivatized metabolites that contain...

  20. Method for Derivatization and Detection of Chemical Weapons Convention Related Sulfur Chlorides via Electrophilic Addition with 3-Hexyne.

    Science.gov (United States)

    Goud, D Raghavender; Pardasani, Deepak; Purohit, Ajay Kumar; Tak, Vijay; Dubey, Devendra Kumar

    2015-07-07

    Sulfur monochloride (S2Cl2) and sulfur dichloride (SCl2) are important precursors of the extremely toxic chemical warfare agent sulfur mustard and classified, respectively, into schedule 3.B.12 and 3.B.13 of the Chemical Weapons Convention (CWC). Hence, their detection and identification is of vital importance for verification of CWC. These chemicals are difficult to detect directly using chromatographic techniques as they decompose and do not elute. Until now, the use of gas chromatographic approaches to follow the derivatized sulfur chlorides is not reported in the literature. The electrophilic addition reaction of sulfur monochloride and sulfur dichloride toward 3-hexyne was explored for the development of a novel derivatization protocol, and the products were subjected to gas chromatography-mass spectrometric (GC-MS) analysis. Among various unsaturated reagents like alkenes and alkynes, symmetrical alkyne 3-hexyne was optimized to be the suitable derivatizing agent for these analytes. Acetonitrile was found to be the suitable solvent for the derivatization reaction. The sample preparation protocol for the identification of these analytes from hexane spiked with petrol matrix was also optimized. Liquid-liquid extraction followed by derivatization was employed for the identification of these analytes from petrol matrix. Under the established conditions, the detection and quantification limits are 2.6 μg/mL, 8.6 μg/mL for S2Cl2 and 2.3 μg/mL, 7.7 μg/mL for SCl2, respectively, in selected ion monitoring (SIM) mode. The calibration curve had a linear relationship with y = 0.022x - 0.331 and r(2) = 0.992 for the working range of 10 to 500 μg/mL for S2Cl2 and y = 0.007x - 0.064 and r(2) = 0.991 for the working range of 10 to 100 μg/mL for SCl2, respectively. The intraday RSDs were between 4.80 to 6.41%, 2.73 to 6.44% and interday RSDs were between 2.20 to 7.25% and 2.34 to 5.95% for S2Cl2 and SCl2, respectively.

  1. Amino acid detection using fluoroquinolone–Cu2+ complex as a switch-on fluorescent probe by competitive complexation without derivatization

    International Nuclear Information System (INIS)

    Farokhcheh, Alireza; Alizadeh, Naader

    2014-01-01

    In this work, we describe the use of fluoroquinolone–Cu 2+ complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu 2+ ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu 2+ ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu 2+ complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10 −7 to 1.1×10 −5 mol L −1 for aspartic acid. The detection limit was found 2.7×10 −8 mol L −1 with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu 2+ complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization

  2. Derivatization reactions in the gas—liquid chromatographic analysis of drugs in biological fluids

    NARCIS (Netherlands)

    Hulshoff, A.; Lingeman, H.

    1984-01-01

    Alkylation, acylation, silylation and other derivatization reactions applied to the gas chromatographic analysis of drugs in biological matrices are reviewed. Reaction conditions are discussed in relation to reaction mechanisms. Detector-oriented labelling of drugs, and derivatization with chiral

  3. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.

    Science.gov (United States)

    Gagné, Jean-Philippe; Langelier, Marie-France; Pascal, John M; Poirier, Guy G

    2018-06-11

    Despite significant advances in the development of mass spectrometry-based methods for the identification of protein ADP-ribosylation, current protocols suffer from several drawbacks that preclude their widespread applicability. Given the intrinsic heterogeneous nature of poly(ADP-ribose), a number of strategies have been developed to generate simple derivatives for effective interrogation of protein databases and site-specific localization of the modified residues. Currently, the generation of spectral signatures indicative of ADP-ribosylation rely on chemical or enzymatic conversion of the modification to a single mass increment. Still, limitations arise from the lability of the poly(ADP-ribose) remnant during tandem mass spectrometry, the varying susceptibilities of different ADP-ribose-protein bonds to chemical hydrolysis, or the context dependence of enzyme-catalyzed reactions. Here, we present a chemical-based derivatization method applicable to the confident identification of site-specific ADP-ribosylation by conventional mass spectrometry on any targeted amino acid residue. Using PARP-1 as a model protein, we report that treatment of ADP-ribosylated peptides with hydrofluoric acid generates a specific +132 Da mass signature that corresponds to the decomposition of mono- and poly(ADP-ribosylated) peptides into ribose adducts as a consequence of the cleavage of the phosphorus-oxygen bonds.

  4. Highly specific purification of N-glycans using phosphate-based derivatization as an affinity tag in combination with Ti{sup 4+}-SPE enrichment for mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032 (China); Peng, Ye; Bin, Zhichao [Department of Chemistry, Fudan University, Shanghai 200032 (China); Wang, Huijie [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Lu, Haojie, E-mail: luhaojie@fudan.edu.cn [Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Department of Chemistry, Fudan University, Shanghai 200032 (China); Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai 200032 (China)

    2016-08-31

    N-linked protein glycosylation is involved in regulation of a wide variety of cellular processes and associated with numerous diseases. Highly specific identification of N-glycome remains a challenge while its biological significance is acknowledged. The relatively low abundance of glycan in complex biological mixtures, lack of basic sites for protonation, and suppression by other highly abundant proteins/peptides lead to the particularly poor detection sensitivity of N-glycans in the MS analysis. Therefore, the highly specific purification procedure becomes a crucial step prior to MS analysis of the N-glycome. Herein, a novel N-glycans enrichment approach based on phosphate derivatization combined with Ti{sup 4+}-SPE (solid phase extraction) was developed. Briefly, in this strategy, N-glycans were chemically labeled with a phospho-group at their reducing ends, such that the Ti{sup 4+}-SPE microspheres were able to capture the phospho-containing glycans. The enrichment method was developed and optimized using model oligosaccharides (maltoheptaose DP7 and sialylated glycan A1) and also glycans from a standard glycoprotein (asialofetuin, ASF). This method experimentally showed high derivatization efficiency (almost 100%), excellent selectivity (analyzing DP7 in the digests of bovine serum albumin at a mass ratio of 1:100), high enriching recovery (90%), good reproducibility (CV<15%) as well as high sensitivity (LOD at fmol level). At last, the proposed method was successfully applied in the profiling of N-glycome in human serum, in which a total of 31 N-glycan masses were identified. - Graphical abstract: A selective enrichment method for the N-glycome is reported. N-glycans were chemically labeled with a phosphate derivatization reagent (AMS), then the phospho-containing glycans were enriched using Ti{sup 4+}-microspheres. - Highlights: • A highly specific N-glycans purification method based on phosphate derivatization combined with Ti{sup 4+}-SPE was developed

  5. Radical Reactions in the Gas Phase: Recent Development and Application in Biomolecules

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-01-01

    Full Text Available This review summarizes recent literature describing the use of gas phase radical reactions for structural characterization of complex biomolecules other than peptides. Specifically, chemical derivatization, in-source chemical reaction, and gas phase ion/ion reactions have been demonstrated as effective ways to generate radical precursor ions that yield structural informative fragments complementary to those from conventional collision-induced dissociation (CID. Radical driven dissociation has been applied to a variety of biomolecules including peptides, nucleic acids, carbohydrates, and phospholipids. The majority of the molecules discussed in this review see limited fragmentation from conventional CID, and the gas phase radical reactions open up completely new dissociation channels for these molecules and therefore yield high fidelity confirmation of the structures of the target molecules. Due to the extensively studied peptide fragmentation, this review focuses only on nonpeptide biomolecules such as nucleic acids, carbohydrates, and phospholipids.

  6. On-target sample preparation of 4-sulfophenyl isothiocyanate-derivatized peptides using AnchorChip Targets

    DEFF Research Database (Denmark)

    Zhang, Xumin; Rogowska-Wrzesinska, Adelina; Roepstorff, Peter

    2008-01-01

    De novo sequencing of tryptic peptides by post source decay (PSD) or collision induced dissociation (CID) analysis using MALDI TOF-TOF instruments is due to the easy interpretation facilitated by the introduction of N-terminal sulfonated derivatives. Recently, a stable and cheap reagent, 4...

  7. Amino acid detection using fluoroquinolone–Cu{sup 2+} complex as a switch-on fluorescent probe by competitive complexation without derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Farokhcheh, Alireza; Alizadeh, Naader, E-mail: alizaden@modares.ac.ir

    2014-01-15

    In this work, we describe the use of fluoroquinolone–Cu{sup 2+} complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu{sup 2+} ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu{sup 2+} ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu{sup 2+} complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10{sup −7} to 1.1×10{sup −5} mol L{sup −1} for aspartic acid. The detection limit was found 2.7×10{sup −8} mol L{sup −1} with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu{sup 2+} complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization.

  8. Bulk derivatization and cation exchange restricted access media-based trap-and-elute liquid chromatography–mass spectrometry method for determination of trace estrogens in serum

    International Nuclear Information System (INIS)

    Beinhauer, Jana; Bian, Liangqiao; Fan, Hui; Šebela, Marek; Kukula, Maciej; Barrera, Jose A.

    2015-01-01

    Highlights: • Analysis of estrogens in small volume samples at low parts-per-trillion concentration. • Charged bulk derivatization facilitates on-line ion exchange sample preparation. • On-line WCX restricted access media traps analytes, but not proteins and lipids. • Complete preparation and LC–MS/MS analysis completed in 30 min/sample. - Abstract: Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL −1 , and demonstrated good linearity of R 2 from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL −1 . Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified

  9. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  10. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  11. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: preclinical in vitro and in vivo investigations.

    Science.gov (United States)

    Domnanich, Katharina A; Müller, Cristina; Farkas, Renata; Schmid, Raffaella M; Ponsard, Bernard; Schibli, Roger; Türler, Andreas; van der Meulen, Nicholas P

    2017-01-01

    Recently, 44 Sc (T 1/2  = 3.97 h, Eβ + av  = 632 keV, I = 94.3 %) has emerged as an attractive radiometal candidate for PET imaging using DOTA-functionalized biomolecules. The aim of this study was to investigate the potential of using NODAGA for the coordination of 44 Sc. Two pairs of DOTA/NODAGA-derivatized peptides were investigated in vitro and in vivo and the results obtained with 44 Sc compared with its 68 Ga-labeled counterparts.DOTA-RGD and NODAGA-RGD, as well as DOTA-NOC and NODAGA-NOC, were labeled with 44 Sc and 68 Ga, respectively. The radiopeptides were investigated with regard to their stability in buffer solution and under metal challenge conditions using Fe 3+ and Cu 2+ . Time-dependent biodistribution studies and PET/CT imaging were performed in U87MG and AR42J tumor-bearing mice. Both RGD- and NOC-based peptides with a DOTA chelator were readily labeled with 44 Sc and 68 Ga, respectively, and remained stable over at least 4 half-lives of the corresponding radionuclide. In contrast, the labeling of NODAGA-functionalized peptides with 44 Sc was more challenging and the resulting radiopeptides were clearly less stable than the DOTA-derivatized matches. 44 Sc-NODAGA peptides were clearly more susceptible to metal challenge than 44 Sc-DOTA peptides under the same conditions. Instability of 68 Ga-labeled peptides was only observed if they were coordinated with a DOTA in the presence of excess Cu 2+ . Biodistribution data of the 44 Sc-labeled peptides were largely comparable with the data obtained with the 68 Ga-labeled counterparts. It was only in the liver tissue that the uptake of 68 Ga-labeled DOTA compounds was markedly higher than for the 44 Sc-labeled version and this was also visible on PET/CT images. The 44 Sc-labeled NODAGA-peptides showed a similar tissue distribution to those of the DOTA peptides without any obvious signs of in vivo instability. Although DOTA revealed to be the preferred chelator for stable coordination of 44

  12. Immobilisation of ligands by radio-derivatized polymers; Immobilisering av ligander med radioderiverte polymerer

    Energy Technology Data Exchange (ETDEWEB)

    Varga, J.M.; Fritsch, P.

    1995-01-30

    The invention relates to radio-derivatized polymers and a method of producing them by contacting non-polymerizable conjugands with radiolysable polymers in the presence of irradiation. The resulting radio-derivatized polymers can be further linked with ligand of organic or inorganic nature to immobilize such ligands. 2 figs., 5 tabs.

  13. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  14. Interaction study of amino acids and the peptide aspartame with lanthanide (III) ions

    International Nuclear Information System (INIS)

    Carubelli, C.R.

    1990-01-01

    The interactions between the Nd(III) ion with the amino acids L-aspartic acid, L-glutamic acid and L-histidine and the peptide aspartame in aqueous solution were studied. The study was conducted by means of electronic spectroscopy with the Judd-Ofelt formalism for transition intensity parameters calculations. Several coordination compounds involving Nd(III), Eu(III), and Tb(III) and the ligands L-histidine and aspartame were synthesized and characterized in the solid state. Mixed compounds involving Eu(III) and Tb(III) with the same ligands were synthesized and characterized also. The characterization were achieved by chemical analysis, melting points, vibrational spectroscopy (IR) and powder X-ray diffractometry. (author)

  15. Towards Liquid Chromatography Time-Scale Peptide Sequencing and Characterization of Post-Translational Modifications in the Negative-Ion Mode Using Electron Detachment Dissociation Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Hørning, Ole B; Jensen, Søren S

    2008-01-01

    Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented...... coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research....

  16. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  17. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Science.gov (United States)

    Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)

    2011-01-01

    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.

  18. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haixiang [College of Science, China Agricultural University, Beijing 100094 (China); Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Department of Basic Agricultural Science, Hebei North College, Zhangjiakou Hebei 075131 (China); Wang Liping [College of Science, China Agricultural University, Beijing 100094 (China); Qiu Yueming [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Zhou Zhiqiang [College of Science, China Agricultural University, Beijing 100094 (China)]. E-mail: zqzhou@cau.edu.cn; Zhong Weike [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Li Xiang [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China)

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH{sub 3}I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 {mu}g kg{sup -1}. Limit of detection (LOD) of barbital was 0.2 {mu}g kg{sup -1} and that of amobarbital and phenobarbital were both 0.1 {mu}g kg{sup -1} (S/N {>=} 3). Limit of quatification (LOQ) was 0.5 {mu}g kg{sup -1} for three barbiturates (S/N {>=} 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.

  19. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    International Nuclear Information System (INIS)

    Zhao Haixiang; Wang Liping; Qiu Yueming; Zhou Zhiqiang; Zhong Weike; Li Xiang

    2007-01-01

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH 3 I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 μg kg -1 . Limit of detection (LOD) of barbital was 0.2 μg kg -1 and that of amobarbital and phenobarbital were both 0.1 μg kg -1 (S/N ≥ 3). Limit of quatification (LOQ) was 0.5 μg kg -1 for three barbiturates (S/N ≥ 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%

  20. Statistical Characterization of the Charge State and Residue Dependence of Low-Energy CID Peptide Dissociation Patterns

    International Nuclear Information System (INIS)

    Huang, Yingying; Triscari, Joseph M.; Tseng, George C.; Pasa-Tolic, Ljiljana; Lipton, Mary S.; Smith, Richard D.; Wysocki, Vicki H.

    2005-01-01

    Data mining was performed on 28 330 unique peptide tandem mass spectra for which sequences were assigned with high confidence. By dividing the spectra into different sets based on structural features and charge states of the corresponding peptides, chemical interactions involved in promoting specific cleavage patterns in gas-phase peptides were characterized. Pairwise fragmentation maps describing cleavages at all Xxx-Zzz residue combinations for b and y ions reveal that the difference in basicity between Arg and Lys results in different dissociation patterns for singly charged Arg- and Lys-ending tryptic peptides. While one dominant protonation form (proton localized) exists for Arg-ending peptides, a heterogeneous population of different protonated forms or more facile interconversion of protonated forms (proton partially mobile) exists for Lys-ending peptides. Cleavage C-terminal to acidic residues dominates spectra from peptides that have a localized proton and cleavage N-terminal to Pro dominates those that have a mobile or partially mobile proton. When Pro is absent from peptides that have a mobile or partially mobile proton, cleavage at each peptide bond becomes much more prominent. Whether the above patterns can be found in b ions, y ions, or both depends on the location of the proton holder(s). Enhanced cleavages C-terminal to branched aliphatic residues (Ile, Val, Leu) are observed in both b and y ions from peptides that have a mobile proton, as well as in y ions from peptides that have a partially mobile proton; enhanced cleavages N-terminal to these residues are observed in b ions from peptides that have a partially mobile proton. Statistical tools have been designed to visualize the fragmentation maps and measure the similarity between them. The pairwise cleavage patterns observed expand our knowledge of peptide gas-phase fragmentation behaviors and should be useful in algorithm development that employs improved models to predict fragment ion

  1. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  2. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry

    Science.gov (United States)

    Ding, W.; Hsu, C.

    2008-12-01

    Currently, the investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, because they have great potential to influence cloud formation, precipitation, and climate on both global and regional scales. Of these compounds, low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) have attracted the most interest because of their properties as specific tracers for the burning of biomass. In this study, a modified injection-port derivatization and gas chromatography - mass spectrometry method was developed and evaluated for rapid determination of LMW dicarboxylic acids in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) dissolved in methanol used as the ion-pair solution gave excellent yield for di-butyl ester low-molecular weight derivatives. Solid-phase extraction method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with relative standard deviation (RSD) less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Oxalic (C2) acid was the dominant dicarboxylic acids detected in aerosol samples. The total concentrations of the LMW dicarboxylic acids (from C2 to C10) correspond to 2.2 to 2.6% of the total aerosol mass.

  3. Peptide de novo sequencing of mixture tandem mass spectra

    DEFF Research Database (Denmark)

    Gorshkov, Vladimir; Hotta, Stéphanie Yuki Kolbeck; Braga, Thiago Verano

    2016-01-01

    they decrease the identification performance using database search engines. De novo sequencing approaches are expected to be even more sensitive to the reduction in mass spectrum quality resulting from peptide precursor co-isolation and thus prone to false identifications. The deconvolution approach matched...... complementary b-, y-ions to each precursor peptide mass, which allowed the creation of virtual spectra containing sequence specific fragment ions of each co-isolated peptide. Deconvolution processing resulted in equally efficient identification rates but increased the absolute number of correctly sequenced...... peptides. The improvement was in the range of 20–35% additional peptide identifications for a HeLa lysate sample. Some correct sequences were identified only using unprocessed spectra; however, the number of these was lower than those where improvement was obtained by mass spectral deconvolution. Tight...

  4. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    Science.gov (United States)

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  6. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  7. [Analysis of monosaccharides and uronic acids in polysaccharides by pre-column derivatization with p-aminobenzoic acid and high performance liquid chromatography].

    Science.gov (United States)

    Hao, Guitang; Chen, Shangwei; Zhu, Song; Yin, Hongping; Dai, Jun; Cao, Yuhua

    2007-01-01

    An ion-pair reversed-phase high performance liquid chromatographic (RP-HPLC) method for the simultaneous determination of carbohydrate and uronic acids was developed. p-Aminobenzoic acid (p-AMBA) was used for pre-column derivatization of the analytes, enabling fluorescence (lambda(ex) = 313 nm, lambda(em) = 358 nm) or ultraviolet (UV at 303 nm) detection. Reaction conditions such as reaction temperature and reaction time were optimized. Atlantis dC18 column with hydrophilic end capping was selected for the separation of derivatives. Effects of mobile phase compositions such as ion pairs and their concentrations and pH on the retention behaviors and separation results of 9 monosaccharides and 2 uronic acids were investigated. Derivatives of fructose, galactose, glucose, mannose, xylose, arabinose, ribose, galacturonic acid, fucose, glucuronic acid and rhamnose were separated within 42 min, applying tetrabutyl ammonium hydrogen bisulfate (TBAHSO4) as the ion pair reagent. The detection limits were between 3.38 x 10(-8) mol/L and 176 x 10(-8) mol/L for fluorescence detection and between 2.55 x 10(-7) mol/L and 13.4 x 10(-7) mol/L for UV detection. Good linearities were obtained with correlation coefficients (r2) above 0.99. The relative standard deviations (RSDs) of the peak area of the derivatives in 12 - 51 h after derivatization were from 2.5% to 3.9%. This method has been applied for the determination of mono-/disaccharides and uronic acids in spirulina polysaccharide after dissolved in trifluoroacetic acid solution (2 mol/L). The results showed this method is suitable for the analysis of monosaccharide compositions in polysaccharides.

  8. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)

    Science.gov (United States)

    Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.

    2012-01-01

    We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482

  9. Determination of Diacetyl in Beer by a Precolumn Derivatization-HPLC-UV Method Using 4-(2,3-Dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a Derivatizing Reagent.

    Science.gov (United States)

    Wang, Ji-Yu; Wang, Xin-Jie; Hui, Xian; Hua, Shui-Hong; Li, Heng; Gao, Wen-Yun

    2017-03-29

    Diacetyl is an important flavoring compound in many foods, especially in beer. In the present study, we developed and validated a new precolumn derivatization HPLC-UV method for the determination of diacetyl using 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine as a novel derivatizing reagent. After derivatization with the reagent at a pH value 4.0 at ambient temperature for 10 min, diacetyl was analyzed on an ODS column and detected at 254 nm. The results show that the correlation coefficient of the method is 0.9991 in the range of 0.10 to 100.0 μM diacetyl, and the limit of detection is 0.02 μM. The method was further evaluated in the analysis of beer samples with the recoveries ranging from 94.4 to 102.6% and RSDs from 1.36 to 3.33%. The concentrations of diacetyl in 8 beer samples were determined in the range of 0.19 to 0.42 μM. The method established in this study may be well suitable for the determination of diacetyl in beer.

  10. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bulk derivatization and cation exchange restricted access media-based trap-and-elute liquid chromatography–mass spectrometry method for determination of trace estrogens in serum

    Energy Technology Data Exchange (ETDEWEB)

    Beinhauer, Jana [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Bian, Liangqiao [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Fan, Hui [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Šebela, Marek [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Kukula, Maciej [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Barrera, Jose A. [Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); and others

    2015-02-09

    Highlights: • Analysis of estrogens in small volume samples at low parts-per-trillion concentration. • Charged bulk derivatization facilitates on-line ion exchange sample preparation. • On-line WCX restricted access media traps analytes, but not proteins and lipids. • Complete preparation and LC–MS/MS analysis completed in 30 min/sample. - Abstract: Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL{sup −1}, and demonstrated good linearity of R{sup 2} from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL{sup −1}. Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified.

  12. Peptide sequencing and characterization of post-translational modifications by enhanced ion-charging and liquid chromatography electron-transfer dissociation tandem mass spectrometry

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Giessing, Anders; Ingrell, Christian R

    2007-01-01

    We have tested the effect of m-nitrobenzyl alcohol (m-NBA) as a method to increase the average charge state of protonated gas-phase molecular ions generated by ESI from tryptic peptides and phosphopeptides. Various concentrations of m-NBA were added to the mobile phases of a liquid chromatography...

  13. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Drochioiu, Gabi; Ion, Laura [Alexandru Ioan Cuza University of Iasi, 11 Carol I, Iasi 700506 (Romania); Murariu, Manuela; Habasescu, Laura [Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487 (Romania)

    2014-10-06

    An elevation in the concentration of heavy metal ions in Alzheimer’s disease (AD) brain has been demonstrated in many studies. Aβ precipitation and toxicity in AD brains seem to be caused by abnormal interactions with neocortical metal ions, especially iron, copper, zinc, and aluminum [1–3]. There is increasing evidence that iron and aluminum ions are involved in the mechanisms that underlie the neurodegenerative diseases [4,5]. However, evidence was brought to demonstrate that some Aβ fragments, at physiological pH, are not able to form binary complexes with Fe(III) ions of sufficient stability to compete with metal hydroxide precipitation [6]. On the contrary, multiple metal ions are known to interact with Aβ peptides [7]. Consequently, we investigated here the interaction of Fe(II/III) and Al(III) ions with some amyloid-β peptides and fragments that results in peptide aggregation and fibrillation [8,9]. Infrared spectroscopy, atomic force microscopy, scanning electron microscopy, electrophoresis and mass spectrometry demonstrated conformational changes of peptides in the presence of such metals.

  14. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  15. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    International Nuclear Information System (INIS)

    Yang, Hongyu; Tang, Zhenghua; Wang, Likai; Zhou, Weijia; Li, Ligui; Zhang, Yongqing; Chen, Shaowei

    2016-01-01

    Highlights: • Apparent color change upon the addition of Hg"2"+ or As"3"+ ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg"2"+ ions. • The Hg"2"+ concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg"2"+ or As"3"+ ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg"2"+, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg"2"+ reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  16. A Direct Aqueous Derivatization GSMS Method for Determining Benzoylecgonine Concentrations in Human Urine.

    Science.gov (United States)

    Chericoni, Silvio; Stefanelli, Fabio; Da Valle, Ylenia; Giusiani, Mario

    2015-09-01

    A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl-chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid-liquid extraction procedure. Gas chromatography-mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV)0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples. © 2015 American Academy of Forensic Sciences.

  17. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR-A24 as an ion transport peptide-like (ITPL receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs, we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1-5. In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling.

  18. Fingerprinting Desmosine-Containing Elastin Peptides

    Science.gov (United States)

    Schräder, Christoph U.; Heinz, Andrea; Majovsky, Petra; Schmelzer, Christian E. H.

    2015-05-01

    Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS2 data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.

  19. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor.

    Science.gov (United States)

    Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra

    2011-02-28

    A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Different target surfaces for the analysis of peptides, peptide mixtures and peptide mass fingerprints by AP-MALDI ion trap-mass spectrometry.

    Science.gov (United States)

    Pittenauer, Ernst; Kassler, Alexander; Haubner, Roland; Allmaier, Günter

    2011-06-10

    The desorption/ionization behavior of individual peptides, an equimolare peptide mixture and a tryptic digest was investigated by AP-MALDI-IT-MS using four different target materials (gold-covered stainless steel (SS), titanium nitride-covered SS, hand-polished SS, and microdiamond-covered hardmetal) under identical conditions. Gold-covered as well as polished SS targets yielded comparable mass spectra for peptides and peptide mixture in the low pMol-range. The first target exhibited superior data down to the 10fMol-range. In contrast, titanium nitride-covered SS and microdiamond-covered hardmetal AP-MALDI-targets yielded poor sensitivity. These observations could be correlated with the surface roughness of the targets determined by 3D-confocal-white-light-microscopy. The roughest surfaces were found for titanium nitride-covered SS and microdiamond-covered hardmetal material showing both poor MS sensitivity. A less rough surface could be determined for the hand-polished SS target and the smoothest surface was found for the gold-covered target yielding the best sensitivity of all surfaces. These differences in the roughness having a strong impact on the ultimate sensitivity obtainable for peptide samples could be corroborated by electron microscopy. A peptide mixture covering a wide range of molecular weights and a tryptic protein digest (from 2-DE) exhibit the same behavior. This clearly indicates that the smooth gold-covered SS target is the surface of choice in AP-MALDI MS proteomics. Copyright © 2010. Published by Elsevier B.V.

  1. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  2. Photoreactive polymer brushes for high-density patterned surface derivatization using a Diels-Alder photoclick reaction.

    Science.gov (United States)

    Arumugam, Selvanathan; Orski, Sara V; Locklin, Jason; Popik, Vladimir V

    2012-01-11

    Reactive polymer brushes grown on silicon oxide surfaces were derivatized with photoreactive 3-(hydroxymethyl)naphthalene-2-ol (NQMP) moieties. Upon 300 or 350 nm irradiation, NQMP efficiently produces o-naphthoquinone methide (oNQM), which in turn undergoes very rapid Diels-Alder addition to vinyl ether groups attached to a substrate, resulting in the covalent immobilization of the latter. Any unreacted oNQM groups rapidly add water to regenerate NQMP. High-resolution surface patterning is achieved by irradiating NQMP-derivatized surfaces using photolithographic methods. The Diels-Alder photoclick reaction is orthogonal to azide-alkyne click chemistry, enabling sequential photoclick/azide-click derivatizations to generate complex surface functionalities. © 2011 American Chemical Society

  3. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.

    Science.gov (United States)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S; Ibrahim, Yehia M; Petyuk, Vladislav A; Smith, Richard D

    2017-07-11

    While α-linked amino acids in the l-form are exclusively utilized in mammalian protein building, β-linked and d-form amino acids also have important biological roles. Unfortunately, the structural elucidation and separation of these different amino acid types in peptides has been analytically challenging to date due to the numerous isomers present, limiting our knowledge about their existence and biological roles. Here, we utilized an ultrahigh resolution ion mobility spectrometry platform coupled with mass spectrometry (IMS-MS) to separate amyloid β (Aβ) peptides containing l-aspartic acid, d-aspartic acid, l-isoaspartic acid, and d-isoaspartic acid residues which span α- and β-linked amino acids in both d- and l-forms. The results illustrate how IMS-MS could be used to better understand age-related diseases or protein folding disorders resulting from amino acid modifications.

  5. The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongyu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Tang, Zhenghua, E-mail: zhht@scut.edu.cn [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Wang, Likai; Zhou, Weijia; Li, Ligui [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhang, Yongqing [Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Chen, Shaowei, E-mail: shaowei@ucsc.edu [New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-08-15

    Highlights: • Apparent color change upon the addition of Hg{sup 2+} or As{sup 3+} ions into A3-AuNPs solution. • Distinct color change of A3-AgNPs solution only in the presence of Hg{sup 2+} ions. • The Hg{sup 2+} concentration limit of A3-AgNPs about 40 times lower than A3-AuNPs. • Based on the DLS, TEM and XPS results, two reaction mechanisms have been proposed. - Abstract: Peptide A3-capped gold and silver nanoparticles were prepared by chemical reduction of metal salt precursors. The nanoparticles exhibited apparent but distinctly different color changes upon the addition of selected heavy metal ions. For gold nanoparticles, the solution color was found to change from red to blue in the presence of Hg{sup 2+} or As{sup 3+} ions, accompanied with broadening and a red-shift of the surface plasmon resonance peak. In contrast, silver nanoparticles showed an apparent color change from yellow to colorless only in the presence of Hg{sup 2+}, along with a blue-shift and diminishment of the surface plasmon resonance peak. The Hg{sup 2+} reaction concentration limit of silver nanoparticle was about 40 times lower than that of gold nanoparticle. Based on the dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopic results, the reaction mechanism has been proposed. Such a sensitive variation of the nanoparticle optical properties to selective ions might be exploited for ion detection for potential applications.

  6. Selenium Derivatization of Nucleic Acids for Phase and Structure Determination in Nucleic Acid X-ray Crystallography

    Directory of Open Access Journals (Sweden)

    Zhen Huang

    2008-03-01

    Full Text Available Selenium derivatization (via selenomethionine of proteins for crystal structure determination via MAD phasing has revolutionized protein X-ray crystallography. It is estimated that over two thirds of all new crystal structures of proteins have been determined via Se-Met derivatization. Similarly, selenium functionalities have also been successfully incorporated into nucleic acids to facilitate their structure studies and it has been proved that this Se-derivatization has advantages over halogen strategy, which was usually used as a traditional method in this field. This review reports the development of site-specific selenium derivatization of nucleic acids for phase determination since the year of 2001 (mainly focus on the 2’-position of the ribose. All the synthesis of 2’-SeMe modified phosphoramidite building blocks (U, C, T, A, G and the according oligonucleotides are included. In addition, several structures of selenium contained nucleic acid are also described in this paper.

  7. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Pankratova, Stanislava; Nielsen, Peter E

    2005-01-01

    Cell-penetrating peptides have been widely used to improve cellular delivery of a variety of proteins and antisense agents. However, recent studies indicate that such cationic peptides are predominantly entering cells via an endosomal pathway. We now show that the nuclear antisense effect in He......La cells of a variety of peptide nucleic acid (PNA) peptide conjugates is significantly enhanced by addition of 6 mM Ca(2+) (as well as by the lysosomotrophic agent chloroquine). In particular, the antisense activities of Tat(48-60) and heptaarginine-conjugated PNAs were increased 44-fold and 8.5-fold......, respectively. Evidence is presented that the mechanism involves endosomal release. The present results show that Ca(2+) can be used as an effective enhancer for in vitro cellular delivery of cationic peptide-conjugated PNA oligomers, and also emphasize the significance of the endosomal escape route...

  8. Method for the determination of carboxylic acids in industrial effluents using dispersive liquid-liquid microextraction with injection port derivatization gas chromatography-mass spectrometry.

    Science.gov (United States)

    Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz

    2017-09-29

    The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Towards a rational approach for heavy-atom derivative screening in protein crystallography

    International Nuclear Information System (INIS)

    Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.; Sun, Peter D.

    2008-01-01

    Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme

  10. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.

    Science.gov (United States)

    Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).

  11. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  12. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.

    2003-01-01

    the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the distribution......Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis...... of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report compares...

  13. Simultaneous quantitation of hydrazine and acetylhydrazine in human plasma by high performance liquid chromatography-tandem mass spectrometry after derivatization with p-tolualdehyde.

    Science.gov (United States)

    Song, Lu; Gao, Dan; Li, Shangfu; Wang, Yanwei; Liu, Hongxia; Jiang, Yuyang

    2017-09-15

    A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for simultaneous quantitative analysis of hydrazine and acetylhydrazine in human plasma based on the strategy of p-tolualdehyde derivatization. The derivatization reactions were easily realized by ultrasonic manipulation for 40min. Good separation of the derivatization products was achieved using a C 18 column by gradient elution. The optimized mass transition ion-pairs (m/z) monitored for the two hydrazine derivatives were m/z 237.1≫>119.9 and m/z 176.9≫>117.8, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for hydrazine were 0.002 and 0.005ngmL -1 separately. And they were 0.03 and 0.05ngmL -1 for acetylhydrazine, respectively. The linear range was 0.005-50ngmL -1 for hydrazine and 0.05-500ngmL -1 for acetylhydrazine with R 2 greater than 0.999. The recovery range was determined to be 95.38-108.12% with the relative standard deviation (RSD) in the range of 1.24-14.89%. The method was successfully applied to detect 30 clinical plasma samples of pulmonary tuberculosis patients treated with isoniazid. The concentrations were from 0.04-1.99ngmL -1 for hydrazine and 0.06-142.43ngmL -1 for acetylhydrazine. The results indicated that our developed method had the potential for the detection of hydrazine toxicology in complex biological samples. Furthermore, the method has an important significance to clinical treatment with drugs. Copyright © 2017. Published by Elsevier B.V.

  14. Extraction and derivatization of chemical weapons convention relevant aminoalcohols on magnetic cation-exchange resins.

    Science.gov (United States)

    Singh, Varoon; Garg, Prabhat; Chinthakindi, Sridhar; Tak, Vijay; Dubey, Devendra Kumar

    2014-02-14

    Analysis and identification of nitrogen containing aminoalcohols is an integral part of the verification analysis of chemical weapons convention (CWC). This study was aimed to develop extraction and derivatization of aminoalcohols of CWC relevance by using magnetic dispersive solid-phase extraction (MDSPE) in combination with on-resin derivatization (ORD). For this purpose, sulfonated magnetic cation-exchange resins (SMRs) were prepared using magnetite nanoparticles as core, styrene and divinylbenzene as polymer coat and sulfonic acid as acidic cation exchanger. SMRs were successfully employed as extractant for targeted basic analytes. Adsorbed analytes were derivatized with hexamethyldisilazane (HMDS) on the surface of extractant. Derivatized (silylated) compounds were analyzed by GC-MS in SIM and full scan mode. The linearity of the method ranged from 5 to 200ngmL(-1). The LOD and LOQ ranged from 2 to 6ngmL(-1) and 5 to 19ngmL(-1) respectively. The relative standard deviation for intra-day repeatability and inter-day intermediate precision ranged from 5.1% to 6.6% and 0.2% to 7.6% respectively. Recoveries of analytes from spiked water samples from different sources varied from 28.4% to 89.3%. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    Science.gov (United States)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  16. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    Science.gov (United States)

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  17. PECAN: library-free peptide detection for data-independent acquisition tandem mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Ying S.; Egertson, Jarrett D.; Bollinger, James G.; Searle, Brian C.; Payne, Samuel H.; Noble, William Stafford; MacCoss, Michael J.

    2017-08-07

    Data-independent acquisition (DIA) is an emerging mass spectrometry (MS)-based technique for unbiased and reproducible measurement of protein mixtures. DIA tandem mass spectrometry spectra are often highly multiplexed, containing product ions from multiple cofragmenting precursors. Detecting peptides directly from DIA data is therefore challenging; most DIA data analyses require spectral libraries. Here we present PECECAN (http://pecan.maccosslab.org), a library-free, peptide-centric tool that robustly and accurately detects peptides directly from DIA data. PECECAN reports evidence of detection based on product ion scoring, which enables detection of low-abundance analytes with poor precursor ion signal. We demonstrate the chromatographic peak picking accuracy and peptide detection capability of PECECAN, and we further validate its detection with data-dependent acquisition and targeted analyses. Lastly, we used PECECAN to build a plasma proteome library from DIA data and to query known sequence variants.

  18. Modified Method for Detection of Benzoylecgonine in Human Urine by GC-MS: Derivatization Using Pentafluoropropanol/Acetic Anhydride.

    Science.gov (United States)

    Serafin, Michelle C; Paulemon, Kasandra M; Fuller, Zachary J; Bronner, William E

    2017-05-01

    An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Specific Cα-C Bond Cleavage of β-Carbon-Centered Radical Peptides Produced by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Nagoshi, Keishiro; Yamakoshi, Mariko; Sakamoto, Kenya; Takayama, Mitsuo

    2018-04-01

    Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. [Figure not available: see fulltext.

  20. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  1. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Ziming, E-mail: analchem@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-11-30

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: Black-Right-Pointing-Pointer A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. Black-Right-Pointing-Pointer Derivatization, extraction and preconcentration of SAs were performed in one step. Black-Right-Pointing-Pointer IL-based MADLLME and derivatization were first applied for the determination of SAs. Black-Right-Pointing-Pointer Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination

  2. Ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    International Nuclear Information System (INIS)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi; Wang Ziming

    2011-01-01

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: ► A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. ► Derivatization, extraction and preconcentration of SAs were performed in one step. ► IL-based MADLLME and derivatization were first applied for the determination of SAs. ► Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0–110.8, 95.4–106.3, 95.0–108.3, and 95.7–107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples.

  3. Separation-oriented derivatization of native fluorescent compounds through fluorous labeling followed by liquid chromatography with fluorous-phase.

    Science.gov (United States)

    Sakaguchi, Yohei; Yoshida, Hideyuki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-15

    We have developed a new and simple method based on "fluorous derivatization" for LC of native fluorescent compounds. This method involves the use of a column with a fluorous stationary phase. Native fluorescent analytes with target functional groups are precolumn derivatized with a nonfluorescent fluorous tag, and the fluorous-labeled analytes are retained in the column, whereas underivatized substances are not. Only the retained fluorescent analytes are detected fluorometrically at appropriate retention times, and retained substrates without fluorophores are not detected. In this study, biologically important carboxylic acids (homovanillic acid, vanillylmandelic acid, and 5-hydroxyindoleacetic acid) and drugs (naproxen, felbinac, flurbiprofen, and etodolac) were used as model native fluorescent compounds. Experimental results indicate that the fluorous-phase column can selectively retain fluorous compounds including fluorous-labeled analytes on the basis of fluorous separation. We believe that separation-oriented derivatization presented here is the first step toward the introduction of fluorous derivatization in quantitative LC analysis.

  4. Automated determination of aliphatic primary amines in wastewater by simultaneous derivatization and headspace solid-phase microextraction followed by gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Llop, Anna; Pocurull, Eva; Borrull, Francesc

    2010-01-22

    This paper presents a fully automated method for determining ten primary amines in wastewater at ng/L levels. The method is based on simultaneous derivatization with pentafluorobenzaldehyde (PFBAY) and headspace solid-phase microextraction (HS-SPME) followed by gas chromatography coupled to ion trap tandem mass spectrometry (GC-IT-MS-MS). The influence of main factors on the efficiency of derivatization and of HS-SPME is described in detail and optimized by a central composite design. For all species, the highest enrichment factors were achieved using a 85 microm polyacrylate (PA) fiber exposed in the headspace of stirred water samples (750 rpm) at pH 12, containing 360 g/L of NaCl, at 40 degrees C for 15 min. Under optimized conditions, the proposed method achieved detection limits ranging from 10 to 100 ng/L (except for cyclohexylamine). The optimized method was then used to determine the presence of primary amines in various types of wastewater samples, such as influent and effluent wastewater from municipal and industrial wastewater treatment plants (WWTPs) and a potable water treatment plant. Although the analysis of these samples revealed the presence of up to 1500 microg/L of certain primary amines in influent industrial wastewater, the concentration of these compounds in the effluent and in municipal and potable water was substantially lower, at low microg/L levels. The new derivatization-HS-SPME-GC-IT-MS-MS method is suitable for the fast, reliable and inexpensive determination of primary amines in wastewater in an automated procedure. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI-MS(/MS) applied for the analysis of prostanoids and NSAID in urine

    NARCIS (Netherlands)

    Kretschmer, A.; Giera, M.A.; Wijtmans, M.; de Vries, L.; Lingeman, H.; Irth, H.; Niessen, W.M.A.

    2011-01-01

    In order to develop a generic positive ionization ESI LC-MS method for a variety of interesting substance classes, a new derivatization strategy for carboxylic acids was developed. The carboxylic acid group is labeled with the bromine containing 4-APEBA reagent based on carbodiimide chemistry. The

  7. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    Science.gov (United States)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  8. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE*

    OpenAIRE

    Korwar, Arvind M.; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G.; Jayaramaiah, Ramesha H.; Bhat, Shweta; Regin, Bhaskaran S.; Ramaswamy, Sureshkumar; Giri, Ashok P.; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J.

    2015-01-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified...

  9. Experimental Peptide Identification Repository (EPIR): an integrated peptide-centric platform for validation and mining of tandem mass spectrometry data

    DEFF Research Database (Denmark)

    Kristensen, Dan Bach; Brønd, Jan Christian; Nielsen, Peter Aagaard

    2004-01-01

    LC MS/MS has become an established technology in proteomic studies, and with the maturation of the technology the bottleneck has shifted from data generation to data validation and mining. To address this bottleneck we developed Experimental Peptide Identification Repository (EPIR), which...... is an integrated software platform for storage, validation, and mining of LC MS/MS-derived peptide evidence. EPIR is a cumulative data repository where precursor ions are linked to peptide assignments and protein associations returned by a search engine (e.g. Mascot, Sequest, or PepSea). Any number of datasets can...

  10. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    C. Cheignon

    2018-04-01

    Full Text Available Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer’s disease (AD, an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS when bound to the amyloid-β (Aβ. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …. This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level. Keywords: Oxidative stress, Amyloid beta peptide, Metal-ions, Reactive oxygen species, Oxidative damages

  11. Analysis of Organic Molecules Extracted from Mars Analogues and Influence of Their Mineralogy Using N-Methyl-N-(tert-butyldimethylsilyl)Trifluoroacetamide Derivatization Coupled with Gas Chromatography Mass Spectrometry in Preparation for the Sample Analysis at Mars Derivatization Experiment on the Mars Science Laboratory Mission

    Science.gov (United States)

    Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids will require a chemical extraction and derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed, a one-pot extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL). The temperature and duration the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 C for several minutes of a variety of terrestrial Mars analogue materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analogue materials that contained high abundances of hydrated minerals and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA, The combination of pyrolysis and two different chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars,

  12. High-performance liquid chromatographic determination of selenium in coal after derivatization to 2,1,3-benzoselenadiazoles

    Energy Technology Data Exchange (ETDEWEB)

    Khuhawar, M.Y.; Bozdar, R.B.; Babar, M.A. (Sindh University, Jamshoro (Pakistan). Inst. of Chemistry)

    1992-11-01

    High-performance liquid chromatography was examined for the determination of selenium after derivatization to 2,1,3-benzoselenadiazoles using 1,2-diaminobenzene, 1,2-diamino-4-nitrobenzene (NDAB), 2,3-diaminonaphthalene and 3,3-diaminobenzidine as derivatizing agents. Elution was carried out using a mixture of chloroform and hexane, with ultraviolet spectrophotometric detection. The 2,1,3-benzoselenadiazoles were extracted into toluene. Linear calibrations were obtained for 0-4[mu]g of selenium in 10 cm[sup 3] of solution and the detection limits were 20-50 ng of selenium in 10 cm[sup 3] of solution. The method was applied to the determination of selenium in coal samples and a shampoo using NDAB as the derivatizing reagent in acidic solution.

  13. Distinguishing d - and l -aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin M.; Ibrahim, Yehia M.; Petyuk, Vladislav A.; Smith, Richard D.

    2017-01-01

    Ion mobility spectrometry (IMS) was utilized to separate Aβ peptide variants containing isomeric asparic and isoaspartic acid residues with either al- ord-form. The abundance of each variant is of great interest in Alzheimer's disease studies and also to evaluate how often these modifications are occurring in other environmental and biological samples.

  14. Quantification of piperazine phosphate in human plasma by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry employing precolumn derivatization with dansyl chloride.

    Science.gov (United States)

    Lin, Hui; Tian, Yuan; Zhang, Zunjian; Wu, Lili; Chen, Yun

    2010-04-01

    This paper describes a novel method that combines dansyl chloride (DNS-CL) derivatization with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) for the sensitive and selective determination of piperazine phosphate in human plasma. After addition of ondansetron hydrochloride as internal standard (IS), piperazine phosphate was derivatized and then extracted with ethyl acetate. After being evaporated and reconstituted, the sample was analyzed using LC-ESI/MS/MS. Separation was achieved using an Agilent ZORBAX SB-C(18) (150 mm x 2.1 mm I.D., 3.5 microm) column and isocratic elution with 10 mM ammonium acetate solution (pH 3.0)-methanol (50: 50, v/v). Detection was performed on a triple-quadrupole mass spectrometer utilizing electrospray ionization (ESI) interface operating in positive ion and selected reaction monitoring (SRM) mode with the precursor to product ion transitions m/z 320-->171 for DNS-CL-piperazine phosphate and m/z 294-->170 for the IS. The method was fully validated for its selectivity, sensitivity, linearity, precision, accuracy, recovery, matrix effect and stability. The coefficient (r) of piperazine phosphate with a linear range of 0.1-15 microg mL(-1) was 0.9974-0.9995. The limit of detection and lower limit of quantification in human plasma were 0.01 and 0.1 microg mL(-1), respectively. The validated LC-ESI/MS/MS method has been successfully applied to a bioequivalence study of piperazine phosphate trochiscus in Chinese healthy male volunteers. 2010 Elsevier B.V. All rights reserved.

  15. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly.

    Science.gov (United States)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-28

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.

  16. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    Science.gov (United States)

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  17. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    Science.gov (United States)

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  18. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Science.gov (United States)

    Pilz, Claudia S.

    2008-01-01

    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  19. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N. [Qatar Environment and Energy Research Institute (QEERI), Hamad Ben Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Harrabi, K. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Mehmood, U.; Hussein, I. A. [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261 Dharan (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Zhang, J. [Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ London (United Kingdom); McLachlan, M. A. [Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2AZ London (United Kingdom)

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.

  20. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2018-03-01

    Full Text Available Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km, attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.

  1. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    Science.gov (United States)

    Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.

    2018-01-01

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033

  2. Highly sensitive and specific derivatization strategy to profile and quantitate eicosanoids by UPLC-MS/MS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ting; Tie, Cai; Wang, Zhe; Zhang, Jin-Lan, E-mail: zhjl@imm.ac.cn

    2017-01-15

    Eicosanoids are signaling molecules mainly oxidized from arachidonic acid (ARA) and eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). They have attracted increasing attention from the scientists attributing to their essential physiological functions. However, their quantification have long been challenged by the low abundance, high structure similarity, poor stability and limited ionization efficiency. In this paper, an ultra-high performance liquid chromatograph coupled with tandem mass spectrometry (UPLC-MS/MS) strategy was developed for the comprehensive profiling of more than 60 eicosanoids based on an efficient derivatization reagent 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine (T3) and general multiple reaction monitoring (MRM) parameters. Carboxylic acid of eicosanoid was converted to amide in 30 min at 4 °C with derivatization yield larger than 99%. Limits of quantitation (LOQs) for derivatized eicosanoids varied from 0.05 to 50 pg depending on their structures. The sensitivities of derivatized eicosanoids were enhanced by 10- to 5000-folds compared to free eicosanoids. Stabilities of T3 modified eicosanoids were also highly improved compared to free eicosanoids. This new method can also be used to quantify eicosanoids in bio-samples using isotopic internal standards with high efficiency and reliability within 19 min. 46 and 50 eicosanoids in rat plasma and heart tissue from control and acute myocardial ischemia (AMI) model rats were respectively profiled and quantitated using this new method. And 24 of 46 and 25 of 50 eicosanoids were found to be significantly changed between control and model groups. The changed eicosanoids related to AMI modeling were further statistically analyzed and interpreted based on eicosanoid metabolism pathway. - Highlights: • Eicosanoids are important signaling molecules. • A highly sensitive and specific derivatization strategy was developed for eicosanoid profiling. • The strategy was employed for

  3. Highly sensitive and specific derivatization strategy to profile and quantitate eicosanoids by UPLC-MS/MS

    International Nuclear Information System (INIS)

    Hu, Ting; Tie, Cai; Wang, Zhe; Zhang, Jin-Lan

    2017-01-01

    Eicosanoids are signaling molecules mainly oxidized from arachidonic acid (ARA) and eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). They have attracted increasing attention from the scientists attributing to their essential physiological functions. However, their quantification have long been challenged by the low abundance, high structure similarity, poor stability and limited ionization efficiency. In this paper, an ultra-high performance liquid chromatograph coupled with tandem mass spectrometry (UPLC-MS/MS) strategy was developed for the comprehensive profiling of more than 60 eicosanoids based on an efficient derivatization reagent 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine (T3) and general multiple reaction monitoring (MRM) parameters. Carboxylic acid of eicosanoid was converted to amide in 30 min at 4 °C with derivatization yield larger than 99%. Limits of quantitation (LOQs) for derivatized eicosanoids varied from 0.05 to 50 pg depending on their structures. The sensitivities of derivatized eicosanoids were enhanced by 10- to 5000-folds compared to free eicosanoids. Stabilities of T3 modified eicosanoids were also highly improved compared to free eicosanoids. This new method can also be used to quantify eicosanoids in bio-samples using isotopic internal standards with high efficiency and reliability within 19 min. 46 and 50 eicosanoids in rat plasma and heart tissue from control and acute myocardial ischemia (AMI) model rats were respectively profiled and quantitated using this new method. And 24 of 46 and 25 of 50 eicosanoids were found to be significantly changed between control and model groups. The changed eicosanoids related to AMI modeling were further statistically analyzed and interpreted based on eicosanoid metabolism pathway. - Highlights: • Eicosanoids are important signaling molecules. • A highly sensitive and specific derivatization strategy was developed for eicosanoid profiling. • The strategy was employed for

  4. Elimination of N,O-bis(trimethylsilyl)trifluoroacetamide interference by base treatment in derivatization gas chromatography mass spectrometry determination of parts per billion of alcohols in a food additive.

    Science.gov (United States)

    Zhu, Koudi; Gu, Binghe; Kerry, Michael; Mintert, Markus; Luong, Jim; Pursch, Matthias

    2017-03-24

    A novel base treatment followed by liquid-liquid extraction was developed to remove the interference of excess derivatization reagent BSTFA [N,O-Bis(trimethylsilyl)trifluoroacetamide] and its byproducts for trace determination of 1-chloro-2-propanol and 2-chloro-1-propanol in a food additive. The corresponding trimethylsilyl derivatives were analyzed by gas chromatography mass spectrometry (GC/MS) detection in selective ion monitoring mode. Due to a large volume splitless injection needed for achieving the required sensitivity, excess BSTFA in the derivatization sample solution interfered with the trimethylsilyl derivatives of the analytes of interest, making their quantitation not attainable. Efforts were made to decompose BSTFA while keeping the trimethylsilyl derivatives intact. Water or aqueous sulfuric acid treatment converted BSTFA into mainly N-trimethylsilyltrifluoroacetamide, which partitions between aqueous and organic layers. In contrast, aqueous sodium hydroxide decomposed BSTFA into trifluoroacetic acid, which went entirely into the aqueous layer. No BSTFA or its byproduct N-trimethylsilyltrifluoroacetamide or trifluroacetamide was found in the organic layer where the derivatized alcohols existed, which in turn completely eliminated their interference, enabling accurate and precise determination of parts per billion of the short-chain alcohols in the food additive. Contrary to the conventional wisdom that a trimethylsilyl derivative is susceptible to hydrolysis, the derivatized short-chain alcohols were found stable even in the presence of 0.17N aqueous sodium hydroxide as the improved GC/MS method was validated successfully, with a satisfactory linearity response in the concentration range of 10-400ng/g (regression coefficient greater than 0.999), good method precision (<4%), good recovery (90-98%), and excellent limit of detection (3ng/g) and limit of quantitation (10ng/g). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide-Calcium Complex.

    Science.gov (United States)

    Sun, Na; Jin, Ziqi; Li, Dongmei; Yin, Hongjie; Lin, Songyi

    2017-11-08

    The binding mode between the pentapeptide (DHTKE) from egg white hydrolysates and calcium ions was elucidated upon its structural and thermodynamics characteristics. The present study demonstrated that the DHTKE peptide could spontaneously bind calcium with a 1:1 stoichiometry, and that the calcium-binding site corresponded to the carboxyl oxygen, amino nitrogen, and imidazole nitrogen atoms of the DHTKE peptide. Moreover, the effect of the DHTKE-calcium complex on improving the calcium absorption was investigated in vitro using Caco-2 cells. Results showed that the DHTKE-calcium complex could facilitate the calcium influx into the cytosol and further improve calcium absorption across Caco-2 cell monolayers by more than 7 times when compared to calcium-free control. This study facilitates the understanding about the binding mechanism between peptides and calcium ions as well as suggests a potential application of egg white peptides as nutraceuticals to improve calcium absorption.

  6. Purification of the labeled cyanogen bromide peptides of the α polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the α-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate

  7. Protein and Peptide Gas-phase Structure Investigation Using Collision Cross Section Measurements and Hydrogen Deuterium Exchange

    Science.gov (United States)

    Khakinejad, Mahdiar

    Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS

  8. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach.

    Science.gov (United States)

    Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech

    2018-01-01

    In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.

  9. Characterization of Hydrophobic Peptides in the Presence of Detergent by Photoionization Mass Spectrometry

    Science.gov (United States)

    Bagag, Aïcha; Jault, Jean-Michel; Sidahmed-Adrar, Nazha; Réfrégiers, Matthieu; Giuliani, Alexandre; Le Naour, François

    2013-01-01

    The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI) for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI). Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM) was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI–MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent. PMID:24236085

  10. Characterization of hydrophobic peptides in the presence of detergent by photoionization mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Aïcha Bagag

    Full Text Available The characterization of membrane proteins is still challenging. The major issue is the high hydrophobicity of membrane proteins that necessitates the use of detergents for their extraction and solubilization. The very poor compatibility of mass spectrometry with detergents remains a tremendous obstacle in studies of membrane proteins. Here, we investigated the potential of atmospheric pressure photoionization (APPI for mass spectrometry study of membrane proteins. This work was focused on the tetraspanin CD9 and the multidrug transporter BmrA. A set of peptides from CD9, exhibiting a broad range of hydropathicity, was investigated using APPI as compared to electrospray ionization (ESI. Mass spectrometry experiments revealed that the most hydrophobic peptides were hardly ionized by ESI whereas all peptides, including the highly hydrophobic one that corresponds to the full sequence of the first transmembrane domain of CD9, were easily ionized by APPI. The native protein BmrA purified in the presence of the non-ionic detergent beta-D-dodecyl maltoside (DDM was digested in-solution using trypsin. The resulting peptides were investigated by flow injection analysis of the mixture followed by mass spectrometry. Upon ESI, only detergent ions were detected and the ionic signals from the peptides were totally suppressed. In contrast, APPI allowed many peptides distributed along the sequence of the protein to be detected. Furthermore, the parent ion corresponding to the first transmembrane domain of the protein BmrA was detected under APPI conditions. Careful examination of the APPI mass spectrum revealed a-, b-, c- and y- fragment ions generated by in-source fragmentation. Those fragment ions allowed unambiguous structural characterization of the transmembrane domain. In conclusion, APPI-MS appears as a versatile method allowing the ionization and fragmentation of hydrophobic peptides in the presence of detergent.

  11. Quantitation of fumonisin B1 and B2 in feed using FMOC pre-column derivatization with HPLC and fluorescence detection.

    Science.gov (United States)

    Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L

    2017-11-01

    Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The property distance index PD predicts peptides that cross-react with IgE antibodies

    Science.gov (United States)

    Ivanciuc, Ovidiu; Midoro-Horiuti, Terumi; Schein, Catherine H.; Xie, Liping; Hillman, Gilbert R.; Goldblum, Randall M.; Braun, Werner

    2009-01-01

    Similarities in the sequence and structure of allergens can explain clinically observed cross-reactivities. Distinguishing sequences that bind IgE in patient sera can be used to identify potentially allergenic protein sequences and aid in the design of hypo-allergenic proteins. The property distance index PD, incorporated in our Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/), may identify potentially cross-reactive segments of proteins, based on their similarity to known IgE epitopes. We sought to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to three linear IgE epitopes of Jun a 1, the dominant allergen from mountain cedar pollen. For each of the three epitopes, 60 peptides were designed with increasing PD values (decreasing physicochemical similarity) to the starting sequence. The peptides synthesized on a derivatized cellulose membrane were probed with sera from patients who were allergic to Jun a 1, and the experimental data were interpreted with a PD classification method. Peptides with low PD values relative to a given epitope were more likely to bind IgE from the sera than were those with PD values larger than 6. Control sequences, with PD values between 18 and 20 to all the three epitopes, did not bind patient IgE, thus validating our procedure for identifying negative control peptides. The PD index is a statistically validated method to detect discrete regions of proteins that have a high probability of cross-reacting with IgE from allergic patients. PMID:18950868

  13. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  14. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens

    DEFF Research Database (Denmark)

    Rand, Kasper D; Adams, Christopher M; Zubarev, Roman A

    2008-01-01

    scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon...... ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited...

  15. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Wei, Fang, E-mail: willasa@163.com [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Xu, Ji-qu; Lv, Xin; Dong, Xu-yan [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Han, Xianlin [Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 (United States); College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053 (China); Quek, Siew-young [School of Chemical Science, The University of Auckland, Auckland 1142 (New Zealand); Huang, Feng-hong [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China); Chen, Hong, E-mail: chenhong@oilcrops.cn [Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture (China); Hubei Key Laboratory of Lipid Chemistry and Nutrition (China)

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d{sub 0}-acetone) and deuterium-labeled acetone (d{sub 6}-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. - Highlights: • A novel isotope reagent acetone was explored for the derivatization of PEs. • The labeling reaction was carried out under mild conditions with high specificity. • Enhanced detection sensitivity of PEs was achieved after derivatization. • The ASID-DNLS-Shotgun MS/MS method was used to relative quantification of PEs.

  16. Removal of methyl violet dye by adsorption onto N-benzyltriazole derivatized dextran

    DEFF Research Database (Denmark)

    Cho, Eunae; Tahir, Muhammad Nazir; Kim, Hwanhee

    2015-01-01

    In this work, N-benzyltriazole derivatized dextran was evaluated for its potential as a novel carbohydrate-based adsorbent for the removal of methyl violet dye from water. The modified dextran was synthesized by a click reaction of pentynyl dextran and benzyl azide, and the structure...... was characterized by nuclear magnetic resonance spectroscopy, elemental analysis, and scanning electron microscopy. Dextran was substituted with a triazole-linked benzyl group. For decolorization of the dye effluent, adsorption is a very effective treatment; here, the driving force is based on hydrogen bonding, pi...... stacking, and electrostatic interaction between the methyl violet dye and the N-benzyltriazole derivatized dextran. Batch experiments were carried out to investigate the required contact time and the effects of pH, initial dye concentrations, and temperature. The experimental data were analyzed...

  17. Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone.

    Science.gov (United States)

    Zheng, Ying; Chen, Zhuo; Zheng, Chengbin; Lee, Yong-Ill; Hou, Xiandeng; Wu, Li; Tian, Yunfei

    2016-08-01

    A facile method was developed for determination of trace volatile acetone by coupling a derivatization reaction to surface-enhanced Raman scattering (SERS). With iodide modified Ag nanoparticles (Ag IMNPs) as the SERS substrate, acetone without obvious Raman signal could be converted to SERS-sensitive species via a chemical derivatization reaction with 2,4-dinitrophenylhydrazine (2,4-DNPH). In addition, acetone can be effectively separated from liquid phase with a purge-sampling device and then any serious interference from sample matrices can be significantly reduced. The optimal conditions for the derivatization reaction and the SERS analysis were investigated in detail, and the selectivity and reproducibility of this method were also evaluated. Under the optimal conditions, the limit of detection (LOD) for acetone was 5mgL(-1) or 0.09mM (3σ). The relative standard deviation (RSD) for 80mgL(-1) acetone (n=9) was 1.7%. This method was successfully used for the determination of acetone in artificial urine and human urine samples with spiked recoveries ranging from 92% to 110%. The present method is convenient, sensitive, selective, reliable and suitable for analysis of trace acetone, and it could have a promising clinical application in early diabetes diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of a novel selective ESI-MS derivatization reagent - ssynthesis and optimization for the analysis of aldehydes in biological mixtures

    NARCIS (Netherlands)

    Eggink, M.; Wijtmans, M.; de Esch, I.J.P.; Lingeman, H.; Niessen, W.M.A.; Irth, H.

    2008-01-01

    In LC-MS, derivatization is primarily used to improve ionization characteristics, especially for analytes that are not (efficiently) ionized by ESI or APCI such as aldehydes, sugars, and steroids. Derivatization strategies are then directed at the incorporation of a group with a permanent charge. A

  19. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  20. Simultaneous determination of diastereoisomeric and enantiomeric impurities in SSS-octahydroindole-2-carboxylic acid by chiral high-performance liquid chromatography with pre-column derivatization.

    Science.gov (United States)

    Wang, Jin Zhao; Zeng, Su; Hu, Gong Yun; Wang, Dan Hua

    2009-04-10

    SSS-Octahydroindole-2-carboxylic acid (SSS-Oic) is a key intermediate used in the synthesis of some angiotensin-converting enzyme (ACE) inhibitors. The separation of diastereoisomers and enantiomers of Oic was performed using a pre-column derivatization chiral HPLC method. Phenyl isothiocyanate (PITC) was used as the derivatization reagent. Three PITC derivatives of Oic stereoisomers were separated on an Ultron ES-OVM chiral column (150 mm x 4.6 mm, 5 microm). Derivatization conditions such as reaction temperature, reaction time and derivatization reagent concentration were investigated. The chromatographic conditions for separation of the three PITC-Oic derivatives were optimized. The method was successfully applied in the diastereoisomeric and enantiomeric purity test of SSS-Oic.

  1. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  2. Immobilization of small molecules and proteins by radio-derivatized polystyrene

    International Nuclear Information System (INIS)

    Varga, J.M.; Fritsch, P.

    1990-01-01

    When molded polystyrene (PS) products (e.g., microtiter plates) or latex particles are irradiated with high-energy (1-10 Mrads) gamma rays in the presence of nonpolymerizable small molecules such as aromatic amines, some of these molecules incorporate into PS, which leads to the formation of radio-derivatized PS (RDPS). Two classes of RDPS can be identified regarding their ability for immobilization of biologically important molecules: (1) reactive RDPS that are able to form covalent bonds with molecules such as proteins without the help of cross-linkers, and (2) functionalized RDPS that can be used for the immobilization of molecules with activators (e.g., carbodiimides) or cross-linkers. The method can be used for the production of low-noise supports for binding assays. Most of the RDPS can be produced without impairment of the optical quality of PS, making derivatized microtiter plates suitable for colorimetric assays. The principle can be applied for the preparation of affinity sorbents, e.g., for high-performance affinity chromatography and for the immobilization of enzymes using latex PS particles

  3. Electron transfer dissociation of synthetic and natural peptides containing lanthionine/methyllanthionine bridges.

    Science.gov (United States)

    Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae

    2018-06-15

    The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.

  4. De novo quence analysis and intact mass measurements for characterization of phycocyanin subunit isoforms from the blue-green alga Aphanizomenon flos-aquae

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Roepstorff, Peter; Zolla, Lello

    2009-01-01

    isothiocyanate (SPITC) and MALDI-TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20...... of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI- and ESI-MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon...

  5. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    Science.gov (United States)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  6. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    Science.gov (United States)

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry.

    Science.gov (United States)

    Heron, Scott R; Wilson, Rab; Shaffer, Scott A; Goodlett, David R; Cooper, Jonathan M

    2010-05-15

    We describe the fabrication of a surface acoustic wave (SAW) device on a LiNbO(3) piezoelectric transducer for the transfer of nonvolatile analytes to the gas phase at atmospheric pressure (a process referred to as nebulization or atomization). We subsequently show how such a device can be used in the field of mass spectrometry (MS) detection, demonstrating that SAW nebulization (SAWN) can be performed either in a discontinuous or pulsed mode, similar to that for matrix assisted laser desorption ionization (MALDI) or in a continuous mode like electrospray ionization (ESI). We present data showing the transfer of peptides to the gas phase, where ions are detected by MS. These peptide ions were subsequently fragmented by collision-induced dissociation, from which the sequence was assigned. Unlike MALDI mass spectra, which are typically contaminated with matrix ions at low m/z, the SAWN generated spectra had no such interference. In continuous mode, the SAWN plume was sampled on a microsecond time scale by a linear ion trap mass spectrometer and produced multiply charged peptide precursor ions with a charge state distribution shifted to higher m/z compared to an identical sample analyzed by ESI. The SAWN technology also provides the opportunity to re-examine a sample from a flat surface, repeatedly. The process can be performed without the need for capillaries, which can clog, reservoirs, which dilute the sample, and electrodes, which when in direct contact with sample, cause unwanted electrochemical oxidation. In both continuous and pulsed sampling modes, the quality of precursor ion scans and tandem mass spectra of peptides was consistent across the plume's lifetime.

  8. Sequential derivatization of polar organic compounds in cloud water using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride, N,O-bis(trimethylsilyl)trifluoroacetamide, and gas-chromatography/mass spectrometry analysis.

    Science.gov (United States)

    Sagona, Jessica A; Dukett, James E; Hawley, Harmonie A; Mazurek, Monica A

    2014-10-03

    Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks. Here, we discuss a dual derivatization method with PFBHA and BSTFA which targets only organic compounds that contain functional groups reacting with both reagents. The method also reduced potential contamination by minimizing the amount of sample processing from the field through the GCMS analysis steps. Once derivatized only gas chromatographic separation and selected ion monitoring (SIM) are needed to identify and quantify the polar organic compounds of interest. Concentrations of the detected total keto-acids in individual cloud water samples ranged from 27.8 to 329.3ngmL(-1) (ppb). Method detection limits for the individual HPOC ranged from 0.17 to 4.99ngmL(-1) and the quantification limits for the compounds ranged from 0.57 to 16.64ngmL(-1). The keto-acids were compared to the total organic carbon (TOC) results for the cloud water samples with concentrations of 0.607-3.350mgL(-1) (ppm). GCMS analysis of all samples and blanks indicated good control of the entire collection and analysis steps. Selected ion monitoring by GCMS of target keto-acids was essential for screening the complex organic carbon mixtures present at low ppb levels in cloud water. It was critical for ensuring high levels of quality assurance and

  9. Purification of the labeled cyanogen bromide peptides of the. cap alpha. polypeptide from sodium and potassium ion-activated adenosinetriphosphatase modified with N-(/sup 3/H)ethylmaleimide

    Energy Technology Data Exchange (ETDEWEB)

    Le, D.T.

    1985-01-01

    Sodium and potassium ion-activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-(/sup 3/H)ethylmaleimide under three different conditions, defined by particular concentrations of ligands for the enzyme, such that after the same amount of time the remaining activity of then enzyme varied from 90% to 30%. The conformation of the enzyme also differed among the three conditions. In all cases, the ..cap alpha..-polypeptide was purified and subjected to cyanogen bromide digestion. Two distinct, radioactive peptides were separated by gel filtration of the cyanogen bromide digest on a column of Sephadex LH-60 equilibrated with 95% ethanol: 88% formic acid:4:1. One of the radioactive peptides was shown to contain the sulfhydryl residue whose reaction with N-ethylmaleimide inactivates the enzyme. The other radioactive peptide contained a sulfhydryl residue that seems to react with N-ethylmaleimide only when the binding site for ATP is not occupied. Alkylation of this residue, however, does not result in inactivation of enzyme. Both peptides were purified further by high-pressure liquid chromatography, and their amino-terminal sequences were determined by the manual dansyl-Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluorescein-5'-isothiocyanate.

  10. Covalent modifications of the amyloid beta peptide by hydroxynonenal: Effects on metal ion binding by monomers and insights into the fibril topology.

    Science.gov (United States)

    Grasso, G; Komatsu, H; Axelsen, P H

    2017-09-01

    Amyloid β peptides (Aβ) and metal ions are associated with oxidative stress in Alzheimer's disease (AD). Oxidative stress, acting on ω-6 polyunsaturated fatty acyl chains, produces diverse products, including 4-hydroxy-2-nonenal (HNE), which can covalently modify the Aβ that helped to produce it. To examine possible feedback mechanisms involving Aβ, metal ions and HNE production, the effects of HNE modification and fibril formation on metal ion binding was investigated. Results indicate that copper(II) generally inhibits the modification of His side chains in Aβ by HNE, but that once modified, copper(II) still binds to Aβ with high affinity. Fibril formation protects only one of the three His residues in Aβ from HNE modification, and this protection is consistent with proposed models of fibril structure. These results provide insight into a network of biochemical reactions that may be operating as a consequence of oxidative stress in AD, or as part of the pathogenic process. Copyright © 2016. Published by Elsevier Inc.

  11. 2-Aminobenzamide and 2-Aminobenzoic Acid as New MALDI Matrices Inducing Radical Mediated In-Source Decay of Peptides and Proteins

    Science.gov (United States)

    Smargiasso, Nicolas; Quinton, Loic; de Pauw, Edwin

    2012-03-01

    One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.

  12. QM/MM and classical molecular dynamics simulation of histidine-tagged peptide immobilization on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhenyu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080(China); Zhao Yapu [State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: yzhao@lnm.imech.ac.cn

    2006-05-15

    The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by 'GAMESS', and the rest atoms are treated as MM part calculated by 'TINKER'. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.

  13. The hypertrehalosemic neuropeptides of cicadas are structural isomers-evidence by ion mobility mass spectrometry.

    Science.gov (United States)

    König, Simone; Marco, Heather; Gäde, Gerd

    2017-11-01

    It has been known for more than 20 years that the neurosecretory glands of the cicadas, the corpora cardiaca, synthesize two isobaric peptides with hypertrehalosemic activity. Both decapeptides have exactly the same amino acid sequence (pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp-Gly-Asn-NH 2 ) and mass but differ in their retention time in reversed-phase liquid chromatography. A synthetic peptide with the same sequence elutes together with the second more hydrophobic peptide peak of the natural cicada extract. It is not clear what modification is causing the described observations. Therefore, in the current study, ion mobility separation in conjunction with high-resolution mass spectrometry was used to investigate this phenomenon as it was sensitive to changes in conformation. It detected different drift times in buffer gas for both the intact peptides and some of their fragment ions. Based on the ion mobility and fragment ion intensity of the corresponding ions, it is concluded that the region Pro 6 -Ser 7 -Trp 8 contains a structural feature differing from the L-amino acids present in the known peptide. Whether the conformer is the result of racemization or other biochemical processes needs to be further investigated.

  14. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma.

    Science.gov (United States)

    Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming

    2011-11-30

    The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Damanjit Kaur. Articles written in Journal of Chemical Sciences. Volume 112 Issue 6 December 2000 pp 623-629 Physical and Theoretical. Theoretical studies on the conformations of selenamides · Rajnish Moudgil Damanjit Kaur Rachita Vashisht Prasad V Bharatam.

  16. Determination of NH_2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    International Nuclear Information System (INIS)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-01-01

    Highlights: • A new method for primary amines derivatization is proposed and validated. • The chemical structure of APTES layer is studied. • The derivatization by 5-iodo 2-furaldehyde allowed to avoid side reactions in contrast to 4-trifluoromethyl benzaldehyde derivatization. - Abstract: The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH_2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH_2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH_2 fraction ∼8.5%. This value is closely matching the NH_2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH_2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably

  17. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  18. Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries

    International Nuclear Information System (INIS)

    Zacharis, Constantinos K.; Tzanavaras, Paraskevas D.

    2013-01-01

    Graphical abstract: -- Highlights: •Review on liquid chromatography coupled to post-column derivatization. •Overview of instrumentation for post-column derivatization. •Post-column chemistries for analysis of organic compounds. -- Abstract: Analytical derivatization either in pre or post column modes is one of the most widely used sample pretreatment techniques coupled to liquid chromatography. In the present review article we selected to discuss the post column derivatization mode for the analysis of organic compounds. The first part of the review focuses to the instrumentation of post-column setups including not only fundamental components such as pumps and reactors but also less common parts such as static mixers and back-pressure regulators; the second part of the article discusses the most popular “chemistries” that are involved in post column applications, including reagent-less approaches and new sensing platforms such as the popular gold nanoparticles. Some representative recent applications are also presented as tables

  19. Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries

    Energy Technology Data Exchange (ETDEWEB)

    Zacharis, Constantinos K., E-mail: zacharis@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotelian University of Thessaloniki, GR-54124 Thessaloniki (Greece); Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute (ATEI) of Thessaloniki, 57400 Thessaloniki (Greece); Tzanavaras, Paraskevas D., E-mail: ptzanava@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotelian University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2013-10-10

    Graphical abstract: -- Highlights: •Review on liquid chromatography coupled to post-column derivatization. •Overview of instrumentation for post-column derivatization. •Post-column chemistries for analysis of organic compounds. -- Abstract: Analytical derivatization either in pre or post column modes is one of the most widely used sample pretreatment techniques coupled to liquid chromatography. In the present review article we selected to discuss the post column derivatization mode for the analysis of organic compounds. The first part of the review focuses to the instrumentation of post-column setups including not only fundamental components such as pumps and reactors but also less common parts such as static mixers and back-pressure regulators; the second part of the article discusses the most popular “chemistries” that are involved in post column applications, including reagent-less approaches and new sensing platforms such as the popular gold nanoparticles. Some representative recent applications are also presented as tables.

  20. Biosynthetic Tailoring of Microcin E492m: Post-Translational Modification Affords an Antibacterial Siderophore-Peptide Conjugate

    Science.gov (United States)

    Nolan, Elizabeth M.; Fischbach, Michael A.; Koglin, Alexander; Walsh, Christopher T.

    2008-01-01

    The present work reveals that four proteins, MceCDIJ, encoded by the MccE492 gene cluster are responsible for the remarkable post-translational tailoring of Microcin E492 (MccE492), an 84-residue protein toxin secreted by Klebsiella pneumonaie RYC492 that targets neighboring gram-negative species. This modification results in attachment of a linearized and monoglycosylated derivative of enterobactin, a nonribosomal peptide and iron scavenger (siderophore), to the MccE492m C-terminus. MceC and MceD derivatize enterobactin by C-glycosylation at the C5 position of a N-(2,3-dihydroxybenzoyl) serine (DHB-Ser) moiety and regiospecific hydrolysis of an ester linkage in the trilactone scaffold, respectively. MceI and MceJ form a protein complex that attaches C-glycosylated enterobactins to the C-terminal serine residue of both aC10 model peptide and full-length MccE492. In the enzymatic product, the terminal serine residue is covalently attached to the C4′ oxygen of the glucose moiety. Non-enzymatic and base-catalyzed migration of the peptide to the C6′ position affords the C6′ glycosyl ester linkage observed in the mature toxin, MccE492m, isolated from bacterial cultures. PMID:17973380

  1. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    Science.gov (United States)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.

  2. De novo sequencing of two novel peptides homologous to calcitonin-like peptides, from skin secretion of the Chinese Frog, Odorrana schmackeri

    Directory of Open Access Journals (Sweden)

    Geisa P.C. Evaristo

    2015-09-01

    Full Text Available An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH2 and SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH2, i.e. two carboxyamidated 34 residue peptides with an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys2 and Cys7. Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L discriminations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene related peptide (CGRP and adrenomedullin from other vertebrates. Detailed sequence analysis as well as the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins (32 residues or CGRPs (37 amino acids and may justify their classification in a novel peptide family within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with synthetic replicas of the S–S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal myotropic activity.

  3. Exposure Assessment of Acetamide in Milk, Beef, and Coffee Using Xanthydrol Derivatization and Gas Chromatography/Mass Spectrometry.

    Science.gov (United States)

    Vismeh, Ramin; Haddad, Diane; Moore, Janette; Nielson, Chandra; Bals, Bryan; Campbell, Tim; Julian, Allen; Teymouri, Farzaneh; Jones, A Daniel; Bringi, Venkataraman

    2018-01-10

    Acetamide has been classified as a possible human carcinogen, but uncertainties exist about its levels in foods. This report presents evidence that thermal decomposition of N-acetylated sugars and amino acids in heated gas chromatograph injectors contributes to artifactual acetamide in milk and beef. An alternative gas chromatography/mass spectrometry protocol based on derivatization of acetamide with 9-xanthydrol was optimized and shown to be free of artifactual acetamide formation. The protocol was validated using a surrogate analyte approach based on d 3 -acetamide and applied to analyze 23 pasteurized whole milk, 44 raw sirloin beef, and raw milk samples from 14 different cows, and yielded levels about 10-fold lower than those obtained by direct injection without derivatization. The xanthydrol derivatization procedure detected acetamide in every food sample tested at 390 ± 60 ppb in milk, 400 ± 80 ppb in beef, and 39 000 ± 9000 ppb in roasted coffee beans.

  4. Analysis of surface properties of fixed and live cells using derivatized agarose beads.

    Science.gov (United States)

    Navarro, Vanessa M; Walker, Sherri L; Badali, Oliver; Abundis, Maria I; Ngo, Lylla L; Weerasinghe, Gayani; Barajas, Marcela; Zem, Gregory; Oppenheimer, Steven B

    2002-01-01

    A novel assay has been developed for the histochemical characterization of surface properties of cells based on their adhesion to agarose beads derivatized with more than 100 types of molecules, including sugars, lectins and other proteins, and amino acids. The assay simply involves mixing small quantities of washed cells and beads in droplets on glass microscope slides and determining to which beads various cell types adhere. Distilled water was found to be the best medium for this assay because added ions or molecules in other media inhibit adhesion in some cases. Many cells, however, cannot tolerate distilled water. Here we show that cells fixed with either of two fixatives (1% formaldehyde or Prefer fixative) displayed similar bead-binding properties as did live cells. Specificity of cell-bead binding was tested by including specific free molecules in the test suspensions in hapten-type inhibition experiments. If a hapten compound inhibited live-cell adhesion to a specific bead, it also inhibited fixed-cell adhesion to a specific bead. The results of these experiments suggest that fixed cells display authentic surface properties, opening the door for the use of this assay with many cell types that cannot tolerate distilled water.

  5. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  6. A novel fast method for aqueous derivatization of THC, OH-THC and THC-COOH in human whole blood and urine samples for routine forensic analyses.

    Science.gov (United States)

    Stefanelli, Fabio; Pesci, Federica Giorgia; Giusiani, Mario; Chericoni, Silvio

    2018-04-01

    A novel aqueous in situ derivatization procedure with propyl chloroformate (PCF) for the simultaneous, quantitative analysis of Δ 9 -tetrahydrocannabinol (THC), 11-hydroxy-Δ 9 -tetrahydrocannabinol (OH-THC) and 11-nor-Δ 9 -tetrahydrocannabinol-carboxylic acid (THC-COOH) in human blood and urine is proposed. Unlike current methods based on the silylating agent [N,O-bis(trimethylsilyl)trifluoroacetamide] added in an anhydrous environment, this new proposed method allows the addition of the derivatizing agent (propyl chloroformate, PCF) directly to the deproteinized blood and recovery of the derivatives by liquid-liquid extraction. This novel method can be also used for hydrolyzed urine samples. It is faster than the traditional method involving a derivatization with trimethyloxonium tetrafluoroborate. The analytes are separated, detected and quantified by gas chromatography-mass spectrometry in selected ion monitoring mode (SIM). The method was validated in terms of selectivity, capacity of identification, limits of detection (LOD) and quantification (LOQ), carryover, linearity, intra-assay precision, inter-assay precision and accuracy. The LOD and LOQ in hydrolyzed urine were 0.5 and 1.3 ng/mL for THC and 1.2 and 2.6 ng/mL for THC-COOH, respectively. In blood, the LOD and LOQ were 0.2 and 0.5 ng/mL for THC, 0.2 and 0.6 ng/mL for OH-THC, and 0.9 and 2.4 ng/mL for THC-COOH, respectively. This method was applied to 35 urine samples and 50 blood samples resulting to be equivalent to the previously used ones with the advantage of a simpler method and faster sample processing time. We believe that this method will be a more convenient option for the routine analysis of cannabinoids in toxicological and forensic laboratories. Copyright © 2017 John Wiley & Sons, Ltd.

  7. An innovative strategy for sulfopeptides analysis using MALDI-TOF MS reflectron positive ion mode.

    Science.gov (United States)

    Cantel, Sonia; Brunel, Luc; Ohara, Keiichiro; Enjalbal, Christine; Martinez, Jean; Vasseur, Jean-Jacques; Smietana, Michael

    2012-08-01

    Sulfation of tyrosine residues is a key posttranslational modification in the regulation of various cellular processes. As such, the detection and localization of tyrosine sulfation is an essential step toward the elucidation of the physiological and pathological roles of this process. Despite substantial advances, intact sulfated peptides are still difficult to detect by MALDI-MS due to the extreme lability of the sulfo-moiety. The present report demonstrates for the first time how intact sulfated peptides can be directly and specifically detected by MALDI-MS in positive reflectron mode by using pyrenemethylguanidine (pmg) as a noncovalent derivatizing agent and an ionization enhancer. This new method allows the determination of the degree of sulfation of sulfopeptides pure or in mixtures. Moreover, the observation of specific peaks in the mass spectra enables a rapid and unambiguous discrimination between phospho- and sulfopeptides. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of NH{sub 2} concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton, E-mail: ant-manahov@ya.ru [National University of Science and Technology “MISiS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); RG Plasma Technologies, CEITEC—Central European Institute of Technology, Masaryk University, Kotlářská, 2, 61137 Brno (Czech Republic); Čechal, Jan [CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); Michlíček, Miroslav [RG Plasma Technologies, CEITEC—Central European Institute of Technology, Masaryk University, Kotlářská, 2, 61137 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno (Czech Republic); Shtansky, Dmitry V. [National University of Science and Technology “MISiS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)

    2017-08-31

    Highlights: • A new method for primary amines derivatization is proposed and validated. • The chemical structure of APTES layer is studied. • The derivatization by 5-iodo 2-furaldehyde allowed to avoid side reactions in contrast to 4-trifluoromethyl benzaldehyde derivatization. - Abstract: The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH{sub 2} groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH{sub 2}/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH{sub 2} fraction ∼8.5%. This value is closely matching the NH{sub 2}/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH{sub 2}/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA

  9. Analysis of L-serine-O-phosphate in cerebrospinal spinal fluid by derivatization-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    McNaney, Colleen A; Benitex, Yulia; Luchetti, David; Labasi, Jeffrey M; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2014-05-01

    L-serine-O-phosphate (L-SOP), the precursor of L-serine, is a potent agonist against the group III metabotropic glutamate receptors (mGluRs) and, thus, is of interest as a potential biomarker for monitoring modulation of neurotransmitter release. So far, no reports are available on the analysis of L-SOP in cerebrospinal fluid (CSF). Here a novel method is presented to determine L-SOP levels in CSF employing precolumn derivatization with (5-N-succinimidoxy-5-oxopentyl)triphenylphosphonium bromide (SPTPP) coupled to liquid chromatography/mass spectrometry (derivatization-LC/MS, d-LC/MS). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Varanusupakul, Pakorn [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)], E-mail: pakorn.v@chula.ac.th; Vora-adisak, Narongchai; Pulpoka, Bancha [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)

    2007-08-15

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na{sub 2}SO{sub 4}. The linear calibration curves were observed for the concentrations ranging from 1 to 300 {mu}g L{sup -1} with the correlation coefficients (R{sup 2}) being greater than 0.99. The method detection limits of most analytes were below 1 {mu}g L{sup -1} except DCAA and MCAA that were 2 and 18 {mu}g L{sup -1}, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  11. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  12. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.

    Science.gov (United States)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.

  13. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Quantification of Carbonyl Compounds Generated from Ozone-Based Food Colorants Decomposition Using On-Fiber Derivatization-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Wenda Zhu

    2014-12-01

    Full Text Available Fruit leathers (FLs production produces some not-to-specification material, which contains valuable ingredients like fruit pulp, sugars and acidulates. Recovery of FL for product recycling requires decolorization. In earlier research, we proved the efficiency of an ozone-based decolorization process; however, it produces carbonyls as major byproducts, which could be of concern. A headspace solid-phase microextraction with on-fiber derivatization followed by gas chromatography-mass spectrometry was developed for 10 carbonyls analysis in ozonated FL solution/suspension. Effects of dopant concentration, derivatization temperature and time were studied. The adapted method was used to analyze ozonated FL solution/suspension samples. Dopant concentration and derivatization temperature were optimized to 17 mg/mL and 60 °C, respectively. Competitive extraction was studied, and 5 s extraction time was used to avoid non-linear derivatization of 2-furfural. The detection limits (LODs for target carbonyls ranged from 0.016 and 0.030 µg/L. A much lower LOD (0.016 ppb for 2-furfural was achieved compared with 6 and 35 ppb in previous studies. Analysis results confirmed the robustness of the adapted method for quantification of carbonyls in recycled process water treated with ozone-based decolorization. Ethanal, hexanal, 2-furfural, and benzaldehyde were identified as byproducts of known toxicity but all found below levels for concern.

  15. Solid-Phase Reactions of Iminium Ions: Cyclized Peptide Derivatives

    DEFF Research Database (Denmark)

    Wang, Yuanyuan

    formation of N,N’-aminals by nucleophilic attack of the peptide backbone is reversible under strongly acidic conditions and the N,N’-aminal is likely to be the kinetic product of many INCIC reactions. In addition, the N,N’-aminals are stable in the absence of acid but could be converted to the THIQ...... derivatives in solution phase under acid conditions in the presence of an active C-nucleophile in the side chain. The high yielding nature of the aminal formation is confirmed by solution phase synthesis. The introduced azide and alkyne residues in the side chain of N,N’-aminal products were further......BB may undergo auto-oxidation to quinazoline-2,4-diones in the absence of a suitable nucleophile on the side chain or backbone of the peptide (Chapter 4). The structure is confirmed by comparison with products obtained from solution-phase synthesis under the same conditions, one of which was confirmed...

  16. Design and application of a data-independent precursor and product ion repository.

    Science.gov (United States)

    Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J

    2012-10-01

    The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.

  17. Dual function of a bee (Apis cerana) inhibitor cysteine knot peptide that acts as an antifungal peptide and insecticidal venom toxin.

    Science.gov (United States)

    Park, Hee Geun; Kyung, Seung Su; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Kwon, Hyung Wook; Je, Yeon Ho; Jin, Byung Rae

    2014-12-01

    Inhibitor cysteine knot (ICK) peptides exhibit ion channel blocking, insecticidal, and antimicrobial activities, but currently, no functional roles for bee-derived ICK peptides have been identified. In this study, a bee (Apis cerana) ICK peptide (AcICK) that acts as an antifungal peptide and as an insecticidal venom toxin was identified. AcICK contains an ICK fold that is expressed in the epidermis, fat body, or venom gland and is present as a 6.6-kDa peptide in bee venom. Recombinant AcICK peptide (expressed in baculovirus-infected insect cells) bound directly to Beauveria bassiana and Fusarium graminearum, but not to Escherichia coli or Bacillus thuringiensis. Consistent with these findings, AcICK showed antifungal activity, indicating that AcICK acts as an antifungal peptide. Furthermore, AcICK expression is induced in the fat body and epidermis after injection with B. bassiana. These results provide insight into the role of AcICK during the innate immune response following fungal infection. Additionally, we show that AcICK has insecticidal activity. Our results demonstrate a functional role for AcICK in bees: AcICK acts as an antifungal peptide in innate immune reactions in the body and as an insecticidal toxin in venom. The finding that the AcICK peptide functions with different mechanisms of action in the body and in venom highlights the two-pronged strategy that is possible with the bee ICK peptide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. [Determination of bisphenol A from toys and food contact materials by derivatization and gas chromatography-mass spectrometry].

    Science.gov (United States)

    Gao, Yonggang; Zhang, Yanyan; Gao, Jianguo; Zhang, Huiling; Zheng, Lisha; Chen, Jing

    2012-10-01

    A method was developed for the determination of bisphenol A (BPA) in toys and food contact materials. The BPA was extracted with Soxhlet extraction method from the sample and reacted with acetic anhydride. The final product was determined by gas chromatography-mass spectrometry (GC-MS). To achieve the optimum derivatization performance, the derivatization time and dosage of derivatization reagent etc. were investigated. Under the optimized experimental conditions, the final product was stable and the peak shape was good. The linearity of the derivative was good in the range of 0.05 to 50 mg/L with the correlation coefficient (r2) above 0.999. The recoveries ranged from 80% to 93% at the spiked levels of 0.05, 1.00, 10.00 mg/kg with the relative standard deviations (RSDs) less than 3.7%. The limit of detection (S/N = 3) was 10 microg/kg. The method is accurate and has high recovery. The method is suitable for the inspection of bisphenol A in toys and food contact materials.

  19. Derivatization of castor oil based estolide esters: Preparation of epoxides and cyclic carbonates

    Science.gov (United States)

    Estolides that are based on castor oil and oleic acid are versatile starting points for the production of industrial fluids with new properties. A variety of unsaturated estolides were derivatized by epoxidation with hydrogen peroxide. The epoxidized estolides were further modified using supercritic...

  20. Formation and fragmentation of radical peptide anions: insights from vacuum ultra violet spectroscopy.

    Science.gov (United States)

    Brunet, Claire; Antoine, Rodolphe; Dugourd, Philippe; Canon, Francis; Giuliani, Alexandre; Nahon, Laurent

    2012-02-01

    We have studied the photodissociation of gas-phase deprotonated caerulein anions by vacuum ultraviolet (VUV) photons in the 4.5 to 20 eV range, as provided by the DESIRS beamline at the synchrotron radiation facility SOLEIL (France). Caerulein is a sulphated peptide with three aromatic residues and nine amide bonds. Electron loss is found to be the major relaxation channel at every photon energy. However, an increase in the fragmentation efficiency (neutral losses and peptide backbone cleavages) as a function of the energy is also observed. The oxidized ions, generated by electron photodetachment were further isolated and activated by collision (CID) in a MS(3) scheme. The branching ratios of the different fragments observed by CID as a function of the initial VUV photon energy are found to be independent of the initial photon energy. Thus, there is no memory effect of the initial excitation energy on the fragmentation channels of the oxidized species on the time scale of our tandem MS experiment. We also report photofragment yields as a function of photon energy for doubly deprotonated caerulein ions, for both closed-shell ([M-2H](2-)) non-radical ions and open-shell ([M-3H](2-•)) radical ions. These latter ions are generated by electron photodetachment from [M-3H](3-) precursor ions. The detachment yield increases monotonically with the energy with the appearance of several absorption bands. Spectra for radical and non-radical ions are quite similar in terms of observed bands; however, the VUV fragmentation yield is enhanced by the presence of a radical in caerulein peptides. © American Society for Mass Spectrometry, 2011

  1. Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide

    International Nuclear Information System (INIS)

    Chung, Hsiu-Ying; Li, Cheng Che

    2013-01-01

    A highly biocompatible peptide, triplet repeats of asparagine–serine–serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: ► The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. ► 3NSS peptide promoted the formation of hydroxyapatites with a smaller crystalline size (14 nm). ► 3NSS

  2. VUV action spectroscopy of protonated leucine-enkephalin peptide in the 6-14 eV range

    Energy Technology Data Exchange (ETDEWEB)

    Ranković, M. Lj. [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Canon, F. [INRA, UMR1324 Centre des Sciences du Goût et de l’Alimentation, F-21000 Dijon (France); Nahon, L. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); Giuliani, A. [SOLEIL, l’Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex (France); INRA, UAR1008, CEPIA, Rue de la Géraudière, BP 71627, 44316 Nantes (France); Milosavljević, A. R., E-mail: vraz@ipb.ac.rs [Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-12-28

    We have studied the Vacuum Ultraviolet (VUV) photodissociation of gas-phase protonated leucine-enkephalin peptide ion in the 5.7 to 14 eV photon energy range by coupling a linear quadrupole ion trap with a synchrotron radiation source. We report VUV activation tandem mass spectra at 6.7, 8.4, and 12.8 eV photon energies and photodissociation yields for a number of selected fragments. The obtained results provide insight into both near VUV radiation damage and electronic properties of a model peptide. We could distinguish several absorption bands and assign them to particular electronic transitions, according to previous theoretical studies. The photodissociation yields appear to be very different for the various observed fragmentation channels, depending on both the types of fragments and their position along the peptide backbone. The present results are discussed in light of recent gas-phase spectroscopic data on peptides.

  3. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    Science.gov (United States)

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Spectrophotometric determination of metformin in pharmaceutical preparations, serum and urine using benzoin as derivatizing reagent

    International Nuclear Information System (INIS)

    Alamgir, M.; Hayat, A.

    2014-01-01

    A simple and selective spectrophotometric procedure is described for the determination of Metformin based on derivatization with benzoin. The Beers law was obeyed with 2.50-12.50 meu mol L-1 at 290 nm with coefficient of determination (r2) 0.997. The experimental conditions in term of pH, reaction time and temperature, and addition of derivatizing reagent were examined. The pure metformin-benzoin derivative was prepared and characterized by FT-IR and mass spectroscopic techniques. The method was applied for the determination of metformin from pharmaceutical preparations and serum and urine of volunteers after spiking with metformin. The results were checked by standard addition method. A number of pharmaceutical additives and serum or urine matrix did not affect the determination of metformin. (author)

  5. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    International Nuclear Information System (INIS)

    De Santis, E; Minicozzi, V; Morante, S; Rossi, G C; Stellato, F

    2016-01-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed. (paper)

  6. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    Science.gov (United States)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  7. Membrane Assisted Simultaneous Extraction and Derivatization with Triphenylphosphine of Elemental Sulfur in Arabian Crude Samples by Gas Chromatography/Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ibrahim Al-Zahrani

    2015-01-01

    Full Text Available Determination of trace level elemental sulfur from crude oil samples is a tedious task. Recently, several gas chromatographic methods were reported in which selective triphenylphosphine derivatization of sulfur was used to form triphenylphosphine sulfide. Direct quantitation of elemental sulfur from crude oil requires an efficient sample preparation method. This paper describes how simultaneous extraction derivatization of elemental sulfur was performed for the first time using porous hollow fiber membrane. A thick (0.25 um pore size; 1550 μm wall thickness; and 5500 μm inner diameter hollow fiber membrane filled with triphenylphosphine (dissolved N-methylpyrrolidone is used as a solvent bar. The solvent bar is tumbled freely in the crude oil sample; the elemental sulfur was extracted and derivatized. Finally, the derivatized sulfur was analyzed by gas chromatography/mass spectrometry. Various experimental conditions of solvent bar microextraction (SBME were optimized to achieve higher extraction. The linear range was established between 1 and 50 μg/mL, while a squared regression coefficient was found to be 0.9959 μg/mL. Relative standard deviation (RSD was below 10%. Relative recoveries were calculated for SBME in crude oil samples and were in the range between 98.2% and 101.2%.

  8. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer.

    Science.gov (United States)

    Bhatia, Meenakshi; Ahuja, Munish; Mehta, Heena

    2015-10-20

    Thiol-derivatization of xanthan gum polysaccharide was carried out by esterification with mercaptopropionic acid and thioglycolic acid. Thiol-derivatization was confirmed by Fourier-transformed infra-red spectroscopy. Xanthan-mercaptopropionic acid conjugate and xanthan-thioglycolic acid conjugate were found to possess 432.68mM and 465.02mM of thiol groups as determined by Ellman's method respectively. Comparative evaluation of mucoadhesive property of metronidazole loaded buccal pellets of xanthan and thiolated xanthan gum using chicken buccal pouch membrane revealed higher ex vivo bioadhesion time of thiolated xanthan gum as compared to xanthan gum. Improved mucoadhesive property of thiolated xanthan gum over the xanthan gum can be attributed to the formation of disulfide bond between mucus and thiolated xanthan gum. In vitro release study conducted using phosphate buffer (pH 6.8) revealed a sustained release profile of metronidazole from thiolated xanthan pellets as compared to xanthan pellets. In conclusion, thiolation of xanthan improves its mucoadhesive property and sustained the release of metronidazole over a prolonged period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Design, Synthesis, and Characterization of Novel Thiol-Derivatized Ibuprofen Monolayer Protected Gold Clusters

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, K.H.; Lin, Y.Sh.; Huang, P.J.

    2013-01-01

    A series of new thiol-derivatized ibuprofen monolayer protected gold clusters have been prepared by amidation of ibuprofen with alkyl alcohol or aminophenol affording the carboxamide, N-hydroxyalkyl amide 2, and N-hydroxyphenyl amide 6, which were then tosylate with p-toluenesulfonyl chloride at hydroxyl group to give 3 and 7. Reactions of 3 and 7 with NaSH afforded the mercapto derivatives 4 and 8. Conducting Brust’s reaction with a 3:1 mole ratio of thiolate ibuprofen/ AuCl 4 - yielded polydisperse thiol-derivatized ibuprofen-MPCs 5 and 9. All compounds have been identified by NMR, MS, UV, and IR spectroscopies. Compounds 4 and 8 and the MPCs 5 and 9 have been investigated by using the method of 1 H NMR spectroscopy. The broadening of the signals from 0.8 to 2.0 ppm in 1 H NMR spectrum of MPCs 5 and 9 confirmed the success of the conjugation of thiol-containing derivatives with nano gold cluster.

  10. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2010-11-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000-15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert's visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition.

  11. Peptide and protein loading into porous silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Prestidge, C.A.; Barnes, T.J.; Mierczynska-Vasilev, A.; Kempson, I.; Peddie, F. [Ian Wark Research Institute, University of South Australia, Mawson Lakes (Australia); Barnett, C. [Medica Ltd, Malvern, Worcestershire, UK WR14 3SZ (United Kingdom)

    2008-02-15

    The influence of peptide/protein size and hydrophobicity on the physical and chemical aspects of loading within porous silicon (pSi) wafer samples has been determined using Atomic Force Microscopy (AFM) and Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Both Gramicidin A (a small hydrophobic peptide) and Papain (a larger hydrophilic protein) were observed (ToF-SIMS) to penetrate across the entire pSi layer, even at low loading levels. AFM surface imaging of pSi wafers during peptide/protein loading showed that surface roughness increased with Papain loading, but decreased with Gramicidin A loading. For Papain, the loading methodology was also found to influence loading efficiency. These differences indicate more pronounced surface adsorption of Papain. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry.

    Science.gov (United States)

    Yu, Ran; Duan, Lei; Jiang, Jingkun; Hao, Jiming

    2017-03-01

    The ozonation of hydroxyl compounds (e.g., sugars and alcohols) gives a broad range of products such as alcohols, aldehydes, ketones, and carboxylic acids. This study developed and optimized a two-step derivatization procedure for analyzing polar products of aldehydes and carboxylic acids from the ozonation of diethylene glycol (DEG) in a non-aqueous environment using gas chromatography-mass spectrometry. Experiments based on Central Composite Design with response surface methodology were carried out to evaluate the effects of derivatization variables and their interactions on the analysis. The most desirable derivatization conditions were reported, i.e., oximation was performed at room temperature overnight with the o-(2,3,4,5,6-pentafluorobenzyl) hydroxyl amine to analyte molar ratio of 6, silylation reaction temperature of 70°C, reaction duration of 70min, and N,O-bis(trimethylsilyl)-trifluoroacetamide volume of 12.5μL. The applicability of this optimized procedure was verified by analyzing DEG ozonation products in an ultrafine condensation particle counter simulation system. Copyright © 2016. Published by Elsevier B.V.

  13. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  14. Serum peptides as putative modulators of inflammation in psoriasis.

    Science.gov (United States)

    Matsuura, Tetsuhiko; Sato, Masaaki; Nagai, Kouhei; Sato, Toshiyuki; Arito, Mitsumi; Omoteyama, Kazuki; Suematsu, Naoya; Okamoto, Kazuki; Kato, Tomohiro; Soma, Yoshinao; Kurokawa, Manae S

    2017-07-01

    Psoriasis is a refractory inflammatory disease, however, its pathophysiology is still not fully understood. We tried to identify novel serum peptides associated with the pathophysiology of psoriasis. Serum peptides from 24 patients with psoriasis vulgaris (PV), 10 patients with psoriatic arthritis (PsA), 14 patients with atopic dermatitis (AD), and 23 healthy control (HC) subjects were analyzed by mass spectrometry. The effects of some peptides on the secretion of humoral factors from dermal cells were investigated by cytokine arrays and ELISAs. A total of 93 peptides were detected. 24, 20, 23, and 2 peptides showed at least 1.2-fold difference in ion intensity between the psoriasis (PV+PsA) and HC groups, between the PV+PsA and AD groups, between the PV and PsA groups, and between patients with severe-to-moderate PV (n=6) and those with mild PV (n=18), respectively (ppsoriasis, regulating the secretion of inflammatory chemokines and an antimicrobial protein. The modulation of serum peptides may be a potential therapeutic strategy for psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  16. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    Science.gov (United States)

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry.

  17. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  18. Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis

    KAUST Repository

    Hourani, Nadim

    2013-10-01

    Rationale Polycyclic aromatic sulfur heterocycles (PASHs) are detrimental species for refining processes in petroleum industry. Current mass spectrometric Methods that determine their composition are often preceded by derivatization and dopant addition approaches. Different ionization Methods have different impact on the molecular assignment of complex PASHs. The analysis of such species under atmospheric pressure chemical ionization (APCI) is still considered limited due to uncontrolled ion generation with low- and high-mass PASHs. Methods The ionization behavior of a model mixture of five selected PASH standards was investigated using an APCI source with nitrogen as the reagent gas. A complex thiophenic fraction was separated from a vacuum gas oil (VGO) and injected using the same method. The samples were analyzed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). RESULTS PASH model analytes were successfully ionized and mainly [M + H]+ ions were produced. The same ionization pattern was observed for the real thiophenic sample. It was found that S1 class species were the major sulfur-containing species found in the VGO sample. These species indicated the presence of alkylated benzothiophenic (BT), dibenzothiophenic (DBT) and benzonaphthothiophenic (BNT) series that were detected by APCI-FTICR MS. CONCLUSIONS This study provides an established APCI-FTICR MS method for the analysis of complex PASHs. PASHs were detected without using any derivatization and without fragmentation. The method can be used for the analysis of S-containing crude oil samples. © 2013 John Wiley & Sons, Ltd.

  19. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo

    International Nuclear Information System (INIS)

    Grossmann, Michael E.; Madden, Benjamin J.; Gao, Fan; Pang, Yuan-Ping; Carpenter, John E.; McCormick, Daniel; Young, Charles Y.F.

    2004-01-01

    Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed

  20. Electrically switched cesium ion exchange. FY 1996 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified

  1. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  2. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2010-01-01

    detected by a depletion of deuterium when deuterated ammonia is lost from peptides during ETD. This straightforward method requires no modifications to the experimental workflow and has the great advantage that the occurrence of hydrogen scrambling can be directly detected in the actual peptides analyzed......The application of electron-transfer dissociation (ETD) to obtain single-residue resolution in hydrogen exchange-mass spectrometry (HX-MS) experiments has recently been demonstrated. For such measurements, it is critical to ensure that the level of gas-phase hydrogen scrambling is negligible. Here...... we utilize the abundant loss of ammonia upon ETD of peptide ions as a universal reporter of positional randomization of the exchangeable hydrogens (hydrogen scrambling) during HX-ETD experiments. We show that the loss of ammonia from peptide ions proceeds without depletion of deuterium when employing...

  3. Determination of NH2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    Science.gov (United States)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-08-01

    The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH2 fraction ∼8.5%. This value is closely matching the NH2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably related to the side reaction of benzaldehydes with conjugated imines, the proposed IFA derivatization of primary amines can be an alternative procedure for the quantification of surface amine groups.

  4. Combining UV photodissociation with electron transfer for peptide structure analysis

    Czech Academy of Sciences Publication Activity Database

    Shaffer, C. J.; Marek, Aleš; Pepin, R.; Slováková, K.; Tureček, F.

    2015-01-01

    Roč. 50, č. 3 (2015), s. 470-475 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : electron transfer dissociation * laser photodissociation * peptide ions * cation radical * chromophores * isomer distinction Subject RIV: CE - Biochemistry Impact factor: 2.541, year: 2015

  5. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  6. Food Derived Bioactive Peptides and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Olga Martínez-Augustin

    2014-12-01

    Full Text Available A wide range of food-derived bioactive peptides have been shown to exert health-promoting actions and are therefore considered functional foods or nutraceuticals. Some of these actions are related to the maintenance, reinforcement or repairment of the intestinal barrier function (IBF whose role is to selectively allow the absorption of water, nutrients and ions while preventing the influx of microorganisms from the intestinal lumen. Alterations in the IBF have been related to many disorders, such as inflammatory bowel disease or metabolic syndrome. Components of IBF are the intestinal epithelium, the mucus layer, secretory immunoglobulin A and cells of the innate and adaptive immune systems. Here we review the effects of food derived bioactive peptides on these IBF components. In vitro and in vivo effects, both in healthy and disease states, have been reviewed. Although limited, the available information indicates a potential for food-derived peptides to modify IBF and to contribute to disease treatment, but further research is needed to better isolate responsible peptides, and to help define their mode of action.

  7. Rapid Determination of the Monosaccharide Composition and Contents in Tea Polysaccharides from Yingshuang Green Tea by Pre-Column Derivatization HPLC

    OpenAIRE

    Ai, Yujie; Yu, Zhi; Chen, Yuqiong; Zhu, Xiaojing; Ai, Zeyi; Liu, Shuyuan; Ni, Dejiang

    2016-01-01

    A pre-column derivatization high-performance liquid chromatography (HPLC) method was developed and optimized to characterize and quantify the monosaccharides present in tea polysaccharides (TPS) isolated from Yingshuang green tea. TPS sample was hydrolyzed with trifluoroacetic acid, subjected to pre-column derivatization using 1-phenyl-3-methyl-5-pyrazolone (PMP), and separated on an Agilent TC-C18 column (4.6 mm × 250 mm, 5 μm) with UV detection at 250 nm. A mixture of ten PMP derivatives of...

  8. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    Science.gov (United States)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  9. Microanalysis of oligosaccharide HS203 in beagle dog plasma by postcolumn fluorescence derivatization method.

    Science.gov (United States)

    Sun, Shumeng; Zhao, Xia; Li, Guangsheng; Yu, Guangli; Xing, Xiaoxu; Zeng, Yangyang; Wu, Jian; Wang, Jianing

    2012-06-20

    A rapid and sensitive postcolumn fluorescence derivatization method was developed for microanalysis of antidiabetic oligosaccharide HS203 in beagle dog plasma. After plasma protein was removed by a simple and fast ultrafiltration method, chromatographic separation was performed on an Asahipak GS-320 HQ column with a mobile phase of 50 mmol/L phosphate buffer (pH 6.7) and acetonitrile (83/17, v/v). The column effluent was monitored by fluorescence detection at 249 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as a postcolumn derivatizing reagent. A satisfactory resolution of the analyte was achieved and the limit of detection was found to be 4 ng (more sensitive than silver staining of HS203 in polyacrylamide gel electrophoresis). The method described above was successfully applied to a pharmacokinetic study of HS203 and to monitor blood glucose level simultaneously in beagle dog. It is also possible to be applied for microanalysis of other oligosaccharides in biological samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bilayer lipid composition modulates the activity of dermaseptins, polycationic antimicrobial peptides.

    Science.gov (United States)

    Duclohier, Hervé

    2006-05-01

    The primary targets of defense peptides are plasma membranes, and the induced irreversible depolarization is sufficient to exert antimicrobial activity although secondary modes of action might be at work. Channels or pores underlying membrane permeabilization are usually quite large with single-channel conductances two orders of magnitude higher than those exhibited by physiological channels involved, e.g., in excitability. Accordingly, the ion specificity and selectivity are quite low. Whereas, e.g., peptaibols favor cation transport, polycationic or basic peptides tend to form anion-specific pores. With dermaseptin B2, a 33 residue long and mostly alpha-helical peptide isolated from the skin of the South American frog Phyllomedusa bicolor, we found that the ion specificity of its pores induced in bilayers is modulated by phospholipid-charged headgroups. This suggests mixed lipid-peptide pore lining instead of the more classical barrel-stave model. Macroscopic conductance is nearly voltage independent, and concentration dependence suggests that the pores are mainly formed by dermaseptin tetramers. The two most probable single-channel events are well resolved at 200 and 500 pS (in 150 mM NaCl) with occasional other equally spaced higher or lower levels. In contrast to previous molecular dynamics previsions, this study demonstrates that dermaseptins are able to form pores, although a related analog (B6) failed to induce any significant conductance. Finally, the model of the pore we present accounts for phospholipid headgroups intercalated between peptide helices lining the pore and for one of the most probable single-channel conductance.

  11. Combination of Ambiguous and Unambiguous Data in the Restraint-driven Docking of Flexible Peptides with HADDOCK: The Binding of the Spider Toxin PcTx1 to the Acid Sensing Ion Channel (ASIC) 1a.

    Science.gov (United States)

    Deplazes, Evelyne; Davies, Josephine; Bonvin, Alexandre M J J; King, Glenn F; Mark, Alan E

    2016-01-25

    Peptides that bind to ion channels have attracted much interest as potential lead molecules for the development of new drugs and insecticides. However, the structure determination of large peptide-channel complexes using experimental methods is challenging. Thus structural models are often derived from combining experimental information with restraint-driven docking approaches. Using the complex formed by the venom peptide PcTx1 and the acid sensing ion channel (ASIC) 1a as a case study, we have examined the effect of different combinations of restraints and input structures on the statistical likelihood of (a) correctly predicting the structure of the binding interface and (b) the ability to predict which residues are involved in specific pairwise peptide-channel interactions. For this, we have analyzed over 200,000 water-refined docked structures obtained with various amounts and types of restraints of the peptide-channel complex predicted using the docking program HADDOCK. We found that increasing the number of restraints or even the use of pairwise interaction data resulted in only a modest improvement in the likelihood of finding a structure within a given accuracy. This suggests that shape complementarity and the force field make a large contribution to the accuracy of the predicted structure. The results also showed that there are large variations in the accuracy of the predicted structure depending on the precise combination of residues used as restraints. Finally, we reflect on the limitations of relying on geometric criteria such as root-mean square deviations to assess the accuracy of docking procedures. We propose that in addition to currently used measures, the likelihood of finding a structure within a given level of accuracy should be also used to evaluate docking methods.

  12. LC determination of propylene glycol in human plasma after pre-column derivatization with benzoyl chloride

    NARCIS (Netherlands)

    Sinjewel, A.; Swart, E.L.; Lingeman, H.; Wilhelm, A.J.

    2007-01-01

    A simple high-performance liquid chromatographic method, using photodiode array detection was developed for the determination of propylene glycol in human plasma and in the fluid retreived after continuous veno-venous hemofiltration. The method entailed alkaline derivatization with benzoyl chloride

  13. Automated Gain Control and Internal Calibration With External Ion Accumulation Capillary liquid chromatography-electrospray ionization-fourier transform ion cyclotron resonance.

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E.(VISITORS); Zhang, Rui (BATTELLE (PACIFIC NW LAB)); Strittmatter, Eric F.(BATTELLE (PACIFIC NW LAB)); Prior, David C.(BATTELLE (PACIFIC NW LAB)); Tang, Keqi (BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2003-08-15

    When combined with capillary LC separations, Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR MS) has increasingly been applied for advanced characterization of proteolytic digests. Incorporation of external (to the ICR cell) ion accumulation multipoles with FTICR for ion pre selection and accumulation has enhanced the dynamic range, sensitivity and duty cycle of measurements. However, the highly variable ion production rate from an LC separation can result in overfilling of the external trap, resulting in m/z discrimination and fragmentation of peptide ions. An excessive space charge trapped in the ICR cell causes significant shifts in the detected ion cyclotron frequencies, reducing the achievable mass measurement accuracy (MMA) for protein identification. To eliminate m/z discrimination in the external ion trap, further increase the duty cycle and improve MMA, we developed a capability for data-dependent adjustment of ion accumulation times in the course of an LC separation, referred to as Automated Gain Control (AGC), in combination with low kinetic energy gated ion trapping and internal calibration using a dual-channel electrodynamic ion funnel. The system was initially evaluated in the analysis of a 0.5 mg/mL tryptic digest of bovine serum albumin. The implementation of LC/ESI/AGC/FTICR with internal calibration gave rise to a {approx} 10-fold increase in the number of identified tryptic peptides within mass measurement accuracy of 2 ppm as compared to that detected during the conventional LC/FTICR run with a fixed ion accumulation time and external calibration.

  14. Venom-derived peptides inhibiting Kir channels: Past, present, and future.

    Science.gov (United States)

    Doupnik, Craig A

    2017-12-01

    Inwardly rectifying K + (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K + ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K + -selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca 2+ -activated and voltage-gated K + channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. EThcD Discrimination of Isomeric Leucine/Isoleucine Residues in Sequencing of the Intact Skin Frog Peptides with Intramolecular Disulfide Bond

    Science.gov (United States)

    Samgina, Tatiana Yu; Kovalev, Sergey V.; Tolpina, Miriam D.; Trebse, Polonca; Torkar, Gregor; Lebedev, Albert T.

    2018-05-01

    Our scientific interests involve de novo sequencing of non-tryptic natural amphibian skin peptides including those with intramolecular S-S bond by means of exclusively mass spectrometry. Reliable discrimination of the isomeric leucine/isoleucine residues during peptide sequencing by means of mass spectrometry represents a bottleneck in the workflow for complete automation of the primary structure elucidation of these compounds. MS3 is capable of solving the problem. Earlier we demonstrated the advanced efficiency of ETD-HCD method to discriminate Leu/Ile in individual peptides by consecutive application of ETD to the polyprotonated peptides followed by HCD applied to the manually selected primary z-ions with the targeted isomeric residues at their N-termini and registration of the characteristic w-ions. Later this approach was extended to deal with several (4-7) broad band mass ranges, without special isolation of the primary z-ions. The present paper demonstrates an advanced version of this method when EThcD is applied in the whole mass range to a complex mixture of natural non-tryptic peptides without their separation and intermediate isolation of the targeted z-ions. The proposed EThcD method showed over 81% efficiency for the large natural peptides with intact disulfide ring, while the interfering process of radical site migration is suppressed. Due to higher speed and sensitivity, the proposed EThcD approach facilitates the analytical procedure and allows for the automation of the entire experiment and data processing. Moreover, in some cases it gives a chance to establish the nature of the residues in the intact intramolecular disulfide loops. [Figure not available: see fulltext.

  16. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    Science.gov (United States)

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  17. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  18. Determination of monosaccharides derivatized with 2-aminobenzoic Acid by capillary electrophoresis.

    Science.gov (United States)

    Abo, Mitsuru; He, Li-Ping; Sato, Kae; Okubo, Akira

    2013-01-01

    Reducing monosaccharides were derivatized with 2-aminobenzoic acid (2-AA) through reductive amination using sodium cyanoborohydride as a reductant, and the derivatives were separated by capillary zone electrophoresis with UV detection using 50 mM sodium phosphate (pH 5.5) or 150 mM sodium borate-50 mM sodium phosphate (pH 7.0) running buffer. The derivatives of monosaccharides, which are major components of various carbohydrate materials, were completely separated within 25 min.

  19. Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep

    2015-05-15

    A simultaneous derivatization/extraction method followed by liquid chromatography-electrospray-high resolution mass spectrometry for the determination of volatile thiols in hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% to 129%. The method was then applied for the analysis of four white wines and six beers. Five out of the eleven reference thiols were identified and quantified in the samples analyzed. The non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 [C13H10ONSe](+) in the fragmentation spectrum, allowed detecting, in the same samples, fourteen non-target thiols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. α-Peptide/ß-Peptoid Chimeras

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Bonke, Gitte; Vedel, Line

    2007-01-01

    We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of a-amino acids and chiral N-alkyl-ß-alanine (ß-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable...... to well-known antimicrobial agents. Moreover, the chimeras exhibit length-dependent, concentration-dependent, solvent-dependent, and ion-strength-dependent ellipticity, indicating the presence of a secondary structure in solution. Thus, a-peptide/ß-peptoid oligomers represent a promising novel...

  1. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam J.; Volmer, Dietrich A.

    2017-12-01

    Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. [Figure not available: see fulltext.

  2. One-step derivatization and preconcentration microextraction technique for determination of bisphenol A in beverage samples by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fontana, Ariel R; Muñoz de Toro, Mónica; Altamirano, Jorgelina C

    2011-04-27

    A simple technique based on ultrasound-assisted emulsification microextraction in situ derivatization (USAEME-ISD) is proposed for the one-step derivatization, extraction, and preconcentration of bisphenol A (BPA) in beverage samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. BPA was in situ derivatized with acetic anhydride and simultaneously extracted and preconcentrated by using USAEME. Variables affecting the extraction efficiency of BPA were evaluated. Under optimal experimental conditions, the detection limit (LOD) was 38 ng L(-1) with a relative standard deviation (RSD) value of 11.6%. The linear working range was 100-1250 ng L(-1), and the coefficient of estimation (r(2)) of the calibration curve was ≥0.9971. The robustness of the proposed methodology was probed by developing a recovery study at two concentrations (125 and 500 ng L(-1)) over different beverage samples. This study led to a satisfactory result achieving recoveries of ≥82%, which showed acceptable robustness for determination of nanograms per liter of BPA in samples of food safety interest.

  3. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes.

    Science.gov (United States)

    Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C

    2018-02-01

    Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A novel branched TAT(47-57) peptide for selective Ni(2+) introduction into the human fibrosarcoma cell nucleus.

    Science.gov (United States)

    Szyrwiel, Łukasz; Shimura, Mari; Shirataki, Junko; Matsuyama, Satoshi; Matsunaga, Akihiro; Setner, Bartosz; Szczukowski, Łukasz; Szewczuk, Zbigniew; Yamauchi, Kazuto; Malinka, Wiesław; Chavatte, Laurent; Łobinski, Ryszard

    2015-07-01

    A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).

  5. A rapid gas chromatographic injection-port derivatization method for the tandem mass spectrometric determination of patulin and 5-hydroxymethylfurfural in fruit juices.

    Science.gov (United States)

    Marsol-Vall, Alexis; Balcells, Mercè; Eras, Jordi; Canela-Garayoa, Ramon

    2016-07-01

    A novel method consisting of injection-port derivatization coupled to gas chromatography-tandem mass spectrometry is described. The method allows the rapid assessment of 5-hydroxymethylfurfural (HMF) and patulin content in apple and pear derivatives. The chromatographic separation of the compounds was achieved in a short chromatographic run (12.2min) suitable for routine controls of these compounds in the fruit juice industry. The optimal conditions for the injection-port derivatization were at 270°C, 0.5min purge-off, and a 1:2 sample:derivatization reagent ratio (v/v). These conditions represent an important saving in terms of derivatization reagent consumption and sample preparation time. Quality parameters were assessed for the target compounds, giving LOD of 0.7 and 1.6μg/kg and LOQ of 2 and 5μg/kg for patulin and HMF, respectively. These values are below the maximum patulin concentration in food products intended for infants and young children. Repeatability (%RSD n=5) was below 12% for both compounds. In addition, the method linearity ranged between 25 and 1000μg/kg and between 5 and 192μg/kg for HMF and patulin, respectively. Finally, the method was applied to study HMF and patulin content in various fruit juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Dried blood spot on-card derivatization: an alternative form of sample handling to overcome the instability of thiorphan in biological matrix.

    Science.gov (United States)

    Mess, Jean-Nicholas; Taillon, Marie-Pierre; Côté, Cynthia; Garofolo, Fabio

    2012-12-01

    Thiorphan, the active metabolite of racecadotril, can undergo oxidation in biological matrices such as blood and plasma. In bioanalysis, a general approach for the stabilization of such a molecule is to derivatize the thiol group to a more stable thioether, often requiring complex handling procedures at the clinical site. In this research, the concept of dried blood spot (DBS) on-card derivatization was evaluated to stabilize thiorphan. DBS cards were in-house pre-treated with 2-bromo-3'-methoxyacetophenone and left to dry prior to blood spotting. Thiorphan was shown to be effectively derivatized to thiorphan-methoxyacetophenone once applied on the in-house pre-treated cards. Thiorphan-methoxyacetophenone was extracted by soaking a 6 mm DBS punch in methanol containing the internal standard (thiorphan-methoxyacetophenone-D₅). Chromatographic separation was achieved on a Waters XBridge C₁₈ column with a gradient elution of 5 mM NH₄HCO₃ and methanol in 2.5 min and detection by ESI(+)/MS/MS. A linear (weighted 1/x²) relationship was obtained over a concentration range of 5.00-600.00 ng/mL. The assay met regulatory guidelines acceptance criteria for sensitivity, selectivity, precision and accuracy, matrix effect, recovery, dilution integrity and multiple stability evaluations. The DBS on-card derivatization has shown to be an easy and reliable alternative form of sample collection for the quantification of thiorphan. Copyright © 2012 John Wiley & Sons, Ltd.

  7. A simultaneous derivatization of 3-monochloropropanediol and 1,3-dichloropropane with hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate at room temperature for efficient analysis of food sample analysis.

    Science.gov (United States)

    Lee, Bai Qin; Wan Mohamed Radzi, Che Wan Jasimah Bt; Khor, Sook Mei

    2016-02-05

    This paper reports the application of hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate (HMDS-TMSOTf) for the simultaneous silylation of 3-monochloro-1,2-propanediol (3-MCPD) and 1,3-dicholoropropanol (1,3-DCP) in solid and liquid food samples. 3-MCPD and 1,3-DCP are chloropropanols that have been established as Group 2B carcinogens in clinical testing. They can be found in heat-processed food, especially when an extended high-temperature treatment is required. However, the current AOAC detection method is time-consuming and expensive. Thus, HMDS-TMSOTf was used in this study to provide a safer, and cost-effective alternative to the HFBI method. Three important steps are involved in the quantification of 3-MCPD and 1,3-DCP: extraction, derivatization and quantification. The optimization of the derivatization process, which involved focusing on the catalyst volume, derivatization temperature, and derivatization time was performed based on the findings obtained from both the Box-Behnken modeling and a real experimental set up. With the optimized conditions, the newly developed method was used for actual food sample quantification and the results were compared with those obtained via the standard AOAC method. The developed method required less samples and reagents but it could be used to achieve lower limits of quantification (0.0043mgL(-1) for 1,3-DCP and 0.0011mgL(-1) for 3-MCPD) and detection (0.0028mgL(-1) for 1,3-DCP and 0.0008mgL(-1) for 3-MCPD). All the detected concentrations are below the maximum tolerable limit of 0.02mgL(-1). The percentage of recovery obtained from food sample analysis was between 83% and 96%. The new procedure was validated with the AOAC method and showed a comparable performance. The HMDS-TMSOTf derivatization strategy is capable of simultaneously derivatizing 1,3-DCP and 3-MCPD at room temperature, and it also serves as a rapid, sensitive, and accurate analytical method for food samples analysis. Copyright © 2015 Elsevier B

  8. Quaternary ammonium isobaric tag for a relative and absolute quantification of peptides.

    Science.gov (United States)

    Setner, Bartosz; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2018-02-01

    Isobaric labeling quantification of peptides has become a method of choice for mass spectrometry-based proteomics studies. However, despite of wide variety of commercially available isobaric tags, none of the currently available methods offers significant improvement of sensitivity of detection during MS experiment. Recently, many strategies were applied to increase the ionization efficiency of peptides involving chemical modifications introducing quaternary ammonium fixed charge. Here, we present a novel quaternary ammonium-based isobaric tag for relative and absolute quantification of peptides (QAS-iTRAQ 2-plex). Upon collisional activation, the new stable benzylic-type cationic reporter ion is liberated from the tag. Deuterium atoms were used to offset the differential masses of a reporter group. We tested the applicability of QAS-iTRAQ 2-plex reagent on a series of model peptides as well as bovine serum albumin tryptic digest. Obtained results suggest usefulness of this isobaric ionization tag for relative and absolute quantification of peptides. Copyright © 2017 John Wiley & Sons, Ltd.

  9. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  10. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  11. Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics.

    Science.gov (United States)

    Toprak, Umut H; Gillet, Ludovic C; Maiolica, Alessio; Navarro, Pedro; Leitner, Alexander; Aebersold, Ruedi

    2014-08-01

    Quantifying the similarity of spectra is an important task in various areas of spectroscopy, for example, to identify a compound by comparing sample spectra to those of reference standards. In mass spectrometry based discovery proteomics, spectral comparisons are used to infer the amino acid sequence of peptides. In targeted proteomics by selected reaction monitoring (SRM) or SWATH MS, predetermined sets of fragment ion signals integrated over chromatographic time are used to identify target peptides in complex samples. In both cases, confidence in peptide identification is directly related to the quality of spectral matches. In this study, we used sets of simulated spectra of well-controlled dissimilarity to benchmark different spectral comparison measures and to develop a robust scoring scheme that quantifies the similarity of fragment ion spectra. We applied the normalized spectral contrast angle score to quantify the similarity of spectra to objectively assess fragment ion variability of tandem mass spectrometric datasets, to evaluate portability of peptide fragment ion spectra for targeted mass spectrometry across different types of mass spectrometers and to discriminate target assays from decoys in targeted proteomics. Altogether, this study validates the use of the normalized spectral contrast angle as a sensitive spectral similarity measure for targeted proteomics, and more generally provides a methodology to assess the performance of spectral comparisons and to support the rational selection of the most appropriate similarity measure. The algorithms used in this study are made publicly available as an open source toolset with a graphical user interface. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A novel and exploitable antifungal peptide from kale (Brassica alboglabra) seeds.

    Science.gov (United States)

    Lin, Peng; Ng, Tzi Bun

    2008-10-01

    The aim of this study was to purify and characterize antifungal peptides from kale seeds in view of the paucity of information on antifungal peptides from the family Brassicaceae, and to compare its characteristics with those of published Brassica antifungal peptides. A 5907-Da antifungal peptide was isolated from kale seeds. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and Mono S, and gel filtration on Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali, with an IC(50) of 4.3microM, 2.1microM, 2.4microM, and 0.15microM, respectively and exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells with an IC(50) of 2.7microM and 3.4microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 4.9microM. Its N-terminal sequence differed from those of antifungal proteins which have been reported to date.

  13. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone

    International Nuclear Information System (INIS)

    Sić, Siniša; Maier, Norbert M.; Rizzi, Andreas M.

    2016-01-01

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d_0/d_5-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80–100 μg (250 pmol–1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling strategy for

  15. Quantitative profiling of O-glycans by electrospray ionization- and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry after in-gel derivatization with isotope-coded 1-phenyl-3-methyl-5-pyrazolone

    Energy Technology Data Exchange (ETDEWEB)

    Sić, Siniša; Maier, Norbert M.; Rizzi, Andreas M., E-mail: Andreas.Rizzi@univie.ac.at

    2016-09-07

    The potential and benefits of isotope-coded labeling in the context of MS-based glycan profiling are evaluated focusing on the analysis of O-glycans. For this purpose, a derivatization strategy using d{sub 0}/d{sub 5}-1-phenyl-3-methyl-5-pyrazolone (PMP) is employed, allowing O-glycan release and derivatization to be achieved in one single step. The paper demonstrates that this release and derivatization reaction can be carried out also in-gel with only marginal loss in sensitivity compared to in-solution derivatization. Such an effective in-gel reaction allows one to extend this release/labeling method also to glycoprotein/glycoform samples pre-separated by gel-electrophoresis without the need of extracting the proteins/digested peptides from the gel. With highly O-glycosylated proteins (e.g. mucins) LODs in the range of 0.4 μg glycoprotein (100 fmol) loaded onto the electrophoresis gel can be attained, with minor glycosylated proteins (like IgAs, FVII, FIX) the LODs were in the range of 80–100 μg (250 pmol–1.5 nmol) glycoprotein loaded onto the gel. As second aspect, the potential of isotope coded labeling as internal standardization strategy for the reliable determination of quantitative glycan profiles via MALDI-MS is investigated. Towards this goal, a number of established and emerging MALDI matrices were tested for PMP-glycan quantitation, and their performance is compared with that of ESI-based measurements. The crystalline matrix 2,6-dihydroxyacetophenone (DHAP) and the ionic liquid matrix N,N-diisopropyl-ethyl-ammonium 2,4,6-trihydroxyacetophenone (DIEA-THAP) showed potential for MALDI-based quantitation of PMP-labeled O-glycans. We also provide a comprehensive overview on the performance of MS-based glycan quantitation approaches by comparing sensitivity, LOD, accuracy and repeatability data obtained with RP-HPLC-ESI-MS, stand-alone nano-ESI-MS with a spray-nozzle chip, and MALDI-MS. Finally, the suitability of the isotope-coded PMP labeling

  16. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp.

    Directory of Open Access Journals (Sweden)

    Sang Kook Lee

    2013-02-01

    Full Text Available In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1, along with thalassospiramides A and D (2–3, was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA, 4-amino-3,5-dihydroxy-pentanoic acid (ADPA, and unique 2-amino-1-(1H-indol-3-yl ethanone (AIEN, was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3, including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA, was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3 inhibited nitric oxide (NO production in lipopolysaccharide (LPS-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively.

  17. BIOACTIVE PEPTIDES OF THE COW MILK WHEY PROTEINS (Bos taurus

    Directory of Open Access Journals (Sweden)

    A. V. Iukalo

    2013-10-01

    Full Text Available Data on the biological functions of milk whey proteins, which are implemented at the level of their proteolytic degradation products — bioactive peptides have been reviewed. The main functions of these proteins is to provide the amino acid nutrition of mammals in the early stages of development, as well as the transport of fatty acids, retinol, involved in the synthesis of lactose, ions of calcium and iron, immune protection, antimicrobial action, etc. However, in recent years, it has been found that milk proteins like casein are precursors of biologically active peptides. Аngiotensin — converting enzyme, opioid peptides which are opiate receptor agonists, anti–microbial peptides, peptides with immunomodulatory and hypocholesterolemic action, and peptides affecting motility have been found among the products of proteolytic degradation of ?-lactoglobulin, ?-laktoalbumin, lactoferrin and milk whey albumin. Also data on the possible participation of peptides from milk whey proteins in the implementation of the biological functions of both the assimilation of calcium, antioxidant effect, the regulation of appetite, anticarcinogenic are provided. The authors assume that the phenomenon of bioactive peptides formation could be considered as an additional function of natural food proteins, which gives advantages to the mammals and has a positive effect on their development in the postnatal period. Ways of bioactive peptides formation, their resistance to action of proteolytic enzymes, the ability to cross into the bloodstream and have biological effects have been also discussed. Up to date, only a few products with bioactive peptides from milk whey proteins are obtained. Further studies of their structure, mechanism of action, ways of formation and methods of isolation are required for their wider use. Formation of functional products based on bioactive peptides from milk whey proteins will allow efficient use of milk whey, which is often a

  18. Antibacterial activity in bovine lactoferrin-derived peptides.

    Science.gov (United States)

    Hoek, K S; Milne, J M; Grieve, P A; Dionysius, D A; Smith, R

    1997-01-01

    Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region. PMID:8980754

  19. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    Science.gov (United States)

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  20. Determination of alkylphenols in water samples using liquid chromatography-tandem mass spectrometry after pre-column derivatization with dansyl chloride.

    Science.gov (United States)

    Pernica, Marek; Poloucká, Petra; Seifertová, Marta; Šimek, Zdeněk

    2015-10-23

    The present study describes an effect of reaction condition of pre-column derivatization of alkylphenols (APs): bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), 4-octylphenol (4-OP), 4-n-nonylphenol (4-n-NP), and isomers of 4-nonylphenol (iso-NP) with 5-(dimethylamino) naphthalene-1-sulfonyl chloride (dansyl chloride, DNSC) on their LC-ESI-MS/MS determination in water samples. Chemical derivatization improves the sensitivity and selectivity of LC-MS/MS analysis. In principle, alkylphenols can be analyzed by LC-MS/MS without derivatization. However, pre-column derivatization of APs increases the sensitivity up to 1000 times in comparison with the analysis of underivatized alkylphenols. Reaction conditions affecting formation of the DNSC-derivatives, such as various solvent, reaction temperature, reaction time, DNSC concentration and pH values were tested. The most suitable conditions, in terms of achieving a high sensitivity, resulting from this study are: acetonitrile as reaction solvent, 60 min as reaction time, 60 °C as reaction temperature, pH values 10.5, 0.5 mg mL(-1) as DNSC concentration. Calibration curves are linear at least in the range of 1-1000 ng mL(-1), limits of detection (LOD) and limits of quantification (LOQ) ranging from 0.02 to 0.25 pg/injection and from 0.08 to 0.83 pg/injection, respectively. The improved procedure was successfully applied for the analysis of APs and BPA in real water samples. The median concentration of BPA and iso-NP obtained in bottled waters was 4.7 ng L(-1) and 33.5 ng L(-1), respectively. The median concentration of 4-t-OP was 1.3 ng L(-1.) Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Gas chromatographic determination of 1,1-dimethylhydrazine in water samples by solid-phase microextraction with derivatization

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2014-10-01

    Full Text Available 1,1-Dimethylhydrazine (1,1-DMH used as a rocket fuel component is highly reactive and unstable compound. It greatly complicates its accurate and express determination in environmental samples. Goal of this work was to develop a method for its express determination in water samples based on solid-phase microextraction with preliminary derivatization. Acetone was selected as reagent for derivatization because during its reaction with 1,1-DMH, volatile and hydrophobic acetone dimethylhydrazone (ADMH was formed. It was established that fiber based on 100-micron polydimethylsiloxane provides the most efficient extraction of ADMH from water at extraction time 2 min. Optimal concentration of acetone was 30 mg/mL. The minimum time for reaction of 1,1-DMH with acetone is 10 minutes. Addition of acids and alkali reduced ADMH response that may be caused by degradation of 1,1-DMH and reduction of derivatization rate. Addition of salt allowed to increase the response of ADMH however made impossible the quantitative determination of 1,1-DMH. Dependence of ADMH response on the concentration of 1,1-DMH at optimized parameters is linear in the concentrations range of 0.1-100 mg/L and can be used for quantitative determination of 1,1-DMH in water. Detection limit of the developed method is 0.02 mg/L. Reproducibility index of the method in the whole range of concentrations did not exceed 7%, accuracy index - 15%. Developed method is simple, inexpensive, accurate, automated and can be recommended for implementation in laboratories conducting environmental monitoring in areas of rocket-carriers fall.

  2. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    Science.gov (United States)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  3. Tumour uptake of the radiolabelled somatostatin analogue [DOTA0,TYR3]octreotide is dependent on the peptide amount

    International Nuclear Information System (INIS)

    Jong, M. de; Breeman, W.A.P.; Bernard, B.F.; Gameren, A. van; Bruin, E. de; Bakker, W.H.; Van der Pluijm, M.E.; Krenning, E.P.; Visser, T.J.; Maecke, H.R.

    1999-01-01

    Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr 3 ]octreotide (d-Phe-c(Cys-Tyr-d-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA 0 ,Tyr 3 ]octreotide in somatostatin receptor subtype 2 (sst 2 )-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111 In-labelled [DOTA 0 ,Tyr 3 ]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA 0 ,Tyr 3 ]octreotide in sst 2 -positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05-0.1 (pituitary and stomach) and 0.25 (pancreas) μg. Uptake in the tumour was highest at 0.5 μg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [ 111 In-DTPA 0 ]octreotide (d-Phe-c(Cys-Phe-d-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound

  4. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  5. Simultaneous determination of palladium, platinum and rhodium by on-line column enrichment and HPLC with 2,4-dihydroxybenzylidenethiorhodanine as pre-column derivatization reagent

    Directory of Open Access Journals (Sweden)

    Dong Xuechang

    2006-01-01

    Full Text Available A new method for the simultaneous determination of palladium, platinum and rhodium ions as metal-DHBTR chelates was developed. The palladium, platinum and rhodium ions were pre-column derivatized with 2,4-dihydroxybenzylidenethiorhodanine (DHBTR to form colored chelates. The Pd-DHBTR, Pt-DHBTR and Rh-DHBTR chelates can be absorbed onto the front of the enrichment column when they were injected into the injector and sent to the enrichment column with a 0.05 mol L-1 sodium acetate-acetic acid buffer solution (pH 3.5 as mobile phase. After the enrichment had finished, by switching the six ports switching valve, the retained chelates were back-flushed by mobile phase and traveling towards the analytical column. These chelates separation on the analytical column was satisfactory with 62% (v/v acetonitrile (containing 0.05 mol L-1 of pH 3.5 sodium acetate-acetic acid buffer salt and 0.1% (m/v of tritonX-100 as mobile phase. The Limits of detection of palladium, platinum and rhodium are 3.6 ng L-1, 3.2 ng L-1 and 4.5 ng L-1, respectively. This method was applied to the determination of palladium, platinum and rhodium in water, urine and soil samples with good results.

  6. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Science.gov (United States)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2017-09-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  7. Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography

    Science.gov (United States)

    Kawamura, Kimitaka; Barrie, Leonard A.; Toom-Sauntry, Desiree

    2010-12-01

    Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (oxalic acid by GC ranged from 6.5-59.1 ng m -3 (av. 26.0 ng m -3, median 26.2 ng m -3) whereas those by IC ranged from 6.6-52.1 ng m -3 (av. 26.6 ng m -3, median 25.4 ng m -3). They showed a good correlation ( r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study.

  8. Synthetic lung surfactants containing SP-B and SP-C peptides plus novel phospholipase-resistant lipids or glycerophospholipids

    Directory of Open Access Journals (Sweden)

    Robert H. Notter

    2016-10-01

    Full Text Available Background This study examines the biophysical and preclinical pulmonary activity of synthetic lung surfactants containing novel phospholipase-resistant phosphonolipids or synthetic glycerophospholipids combined with Super Mini-B (S-MB DATK and/or SP-Css ion-lock 1 peptides that replicate the functional biophysics of surfactant proteins (SP-B and SP-C. Phospholipase-resistant phosphonolipids used in synthetic surfactants are DEPN-8 and PG-1, molecular analogs of dipalmitoyl phosphatidylcholine (DPPC and palmitoyl-oleoyl phosphatidylglycerol (POPG, while glycerophospholipids used are active lipid components of native surfactant (DPPC:POPC:POPG 5:3:2 by weight. The objective of the work is to test whether these novel lipid/peptide synthetic surfactants have favorable preclinical activity (biophysical, pulmonary for therapeutic use in reversing surfactant deficiency or dysfunction in lung disease or injury. Methods Surface activity of synthetic lipid/peptide surfactants was assessed in vitro at 37 °C by measuring adsorption in a stirred subphase apparatus and dynamic surface tension lowering in pulsating and captive bubble surfactometers. Shear viscosity was measured as a function of shear rate on a Wells-Brookfield micro-viscometer. In vivo pulmonary activity was determined by measuring lung function (arterial oxygenation, dynamic lung compliance in ventilated rats and rabbits with surfactant deficiency/dysfunction induced by saline lavage to lower arterial PO2 to <100 mmHg, consistent with clinical acute respiratory distress syndrome (ARDS. Results Synthetic surfactants containing 5:3:2 DPPC:POPC:POPG or 9:1 DEPN-8:PG-1 combined with 3% (by wt of S-MB DATK, 3% SP-Css ion-lock 1, or 1.5% each of both peptides all adsorbed rapidly to low equilibrium surface tensions and also reduced surface tension to ≤1 mN/m under dynamic compression at 37 °C. However, dual-peptide surfactants containing 1.5% S-MB DATK + 1.5% SP-Css ion-lock 1 combined with

  9. Microwave-assisted Derivatization of Fatty Acids for Its Measurement in Milk Using High-Performance Liquid Chromatography.

    Science.gov (United States)

    Shrestha, Rojeet; Miura, Yusuke; Hirano, Ken-Ichi; Chen, Zhen; Okabe, Hiroaki; Chiba, Hitoshi; Hui, Shu-Ping

    2018-01-01

    Fatty acid (FA) profiling of milk has important applications in human health and nutrition. Conventional methods for the saponification and derivatization of FA are time-consuming and laborious. We aimed to develop a simple, rapid, and economical method for the determination of FA in milk. We applied a beneficial approach of microwave-assisted saponification (MAS) of milk fats and microwave-assisted derivatization (MAD) of FA to its hydrazides, integrated with HPLC-based analysis. The optimal conditions for MAS and MAD were determined. Microwave irradiation significantly reduced the sample preparation time from 80 min in the conventional method to less than 3 min. We used three internal standards for the measurement of short-, medium- and long-chain FA. The proposed method showed satisfactory analytical sensitivity, recovery and reproducibility. There was a significant correlation in the milk FA concentrations between the proposed and conventional methods. Being quick, economic, and convenient, the proposed method for the milk FA measurement can be substitute for the convention method.

  10. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar; Baker, Erin M.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements

  11. Self-assembling peptide detergents stabilize isolated photosystem ion a dry surface for an extended time.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available We used a class of designed peptide detergents to stabilize photosystem I (PS-I upon extended drying under N2 on a gold-coated-Ni-NTA glass surface. PS-I is a chlorophyll-containing membrane protein complex that is the primary reducer of ferredoxin and the electron acceptor of plastocyanin. We isolated the complex from the thylakoids of spinach chloroplasts using a chemical detergent. The chlorophyll molecules associated with the PS-I complex provide an intrinsic steady-state emission spectrum between 650 and 800 nm at -196.15 degrees C that reflects the organization of the pigment-protein interactions. In the absence of detergents, a large blue shift of the fluorescence maxima from approximately 735 nm to approximately 685 nm indicates a disruption in light-harvesting subunit organization, thus revealing chlorophyll-protein interactions. The commonly used membrane protein-stabilizing detergents, N-dodecyl-beta-D-maltoside and N-octyl-beta-D-glucoside, only partially stabilized the approximately 735-nm complex with approximately 685-nm spectroscopic shift. However, prior to drying, addition of the peptide detergent acetyl-AAAAAAK at increasing concentration significantly stabilized the PS-I complex. Moreover, in the presence of acetyl-AAAAAAK, the PS-I complex is stable in a dried form at room temperature for at least 3 wk. Another peptide detergent, acetyl-VVVVVVD, also stabilized the complex but to a lesser extent. These observations suggest that the peptide detergents may effectively stabilize membrane proteins in the solid-state. These designed peptide detergents may facilitate the study of diverse types of membrane proteins.

  12. Expanding the informational chemistries of life: peptide/RNA networks

    Science.gov (United States)

    Taran, Olga; Chen, Chenrui; Omosun, Tolulope O.; Hsieh, Ming-Chien; Rha, Allisandra; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-11-01

    The RNA world hypothesis simplifies the complex biopolymer networks underlining the informational and metabolic needs of living systems to a single biopolymer scaffold. This simplification requires abiotic reaction cascades for the construction of RNA, and this chemistry remains the subject of active research. Here, we explore a complementary approach involving the design of dynamic peptide networks capable of amplifying encoded chemical information and setting the stage for mutualistic associations with RNA. Peptide conformational networks are known to be capable of evolution in disease states and of co-opting metal ions, aromatic heterocycles and lipids to extend their emergent behaviours. The coexistence and association of dynamic peptide and RNA networks appear to have driven the emergence of higher-order informational systems in biology that are not available to either scaffold independently, and such mutualistic interdependence poses critical questions regarding the search for life across our Solar System and beyond. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  13. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    Science.gov (United States)

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-05

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides.

  14. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  15. Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol.

    Science.gov (United States)

    Legrand, Tiphaine; Rakotoson, Marie-Georgine; Galactéros, Frédéric; Bartolucci, Pablo; Hulin, Anne

    2017-10-01

    A simple and rapid high performance liquid chromatography (HPLC) method using ultraviolet (UV) detection was developed to determine hydroxyurea (HU) concentration in plasma sample after derivatization with xanthydrol. Two hundred microliters samples were spiked with methylurea (MeU) as internal standard and proteins were precipitated by adding methanol. Derivatization of HU and MeU was immediately performed by adding 0.02M xanthydrol and 1.5M HCl in order to obtain xanthyl-derivatives of HU and MeU that can be further separated using HPLC and quantified using UV detection at 240nm. Separation was achieved using a C18 column with a mobile phase composed of 20mM ammonium acetate and acetonitrile in gradient elution mode at a flow rate of 1mL/min. The total analysis time did not exceed 18min. The method was found linear from 5 to 400μM and all validation parameters fulfilled the international requirements. Between- and within-run accuracy error ranged from -4.7% to 3.2% and precision was lower than 12.8%. This simple method requires small volume samples and can be easily implemented in most clinical laboratories to develop pharmacokinetics studies of HU and to promote its therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electron transfer dissociation facilitates the measurement of deuterium incorporation into selectively labeled peptides with single residue resolution

    DEFF Research Database (Denmark)

    Zehl, Martin; Rand, Kasper D; Jensen, Ole N

    2008-01-01

    Mass spectrometry is routinely applied to measure the incorporation of deuterium into proteins and peptides. The exchange of labile, heteroatom-bound hydrogens is mainly used to probe the structural dynamics of proteins in solution, e.g., by hydrogen-exchange mass spectrometry, but also to study...... collisional activation induces proton mobility in a gaseous peptide ion at various levels of vibrational excitation....

  17. Ultraviolet spectroscopy and metal ions detection

    International Nuclear Information System (INIS)

    Chaudry, M.A.

    1995-01-01

    The spectrochemical analysis is based on the interaction of radiation with the chemical species and depends on their nature, having pi, sigma or electrons, or d and f electrons, UV. Visible spectrophotometry has been used extensively in the detection and determination of both organics and inorganics. In UV detection the sensitivity is proportional to the bath length and the excitation coefficient of the given sample. It may be insensitive to many species unless these are converted to UV, absorbing derivatives. The technique has been applied for the monitoring of the effluents from HPLC, as chlorides or other complexes of various elements in this article the utility of HCl as reagent for the spectrophotometric determination of the metal ions like Al(III), As(III,IV), Ba(II), Cd(II), Ca(II) Ce(III), Cs(i), Cr(III,VI), Co(II), Cu(II), Dy(III), Eu(III), Gd(III), Au(III), Hf(IV), Ho(III), In(III), Fe(III), La(III), Pb(II), Lu (III), Mg(II), Mn(II), Hg(II), Mo(VI), Ni(II), Pd(II), Pt(IV), K(I), Pr(III), Re(VII), Ru(IV), Sm(III), Sc(III), Ag(I), Sr(II) Te(III), Th(IV), Sn(II,IV), Ti(III,IV), W(VI), U(VI), V(IV,V), Yb(III), Zn(II) AND Zr(IV) Ions i.e. for meta ions from d of the most of these metal ions has been found sufficient permit their detection in HPLC. Their molar absorptive have also been reported. Reference has also been provided to post column derivatization of some metal ions from d and f block elements for their detection in HPLC. (author) 12 figs.; 6 tabs.; 27 refs

  18. Derivatizations for improved detection of alcohols by gas chromatography and photoionization detection (GC-PID)

    International Nuclear Information System (INIS)

    Krull, I.S.; Swartz, M.; Driscoll, J.N.

    1984-01-01

    Pentafluorophenyldimethylsilyl chloride (flophemesyl chloride, Fl) is a well known derivatization reagent for improved electron capture detection (ECD) in gas chromatography (GC)(GC-ECD), but it has never been utilized for improved detectability and sensitivity in GC-photoionization detection (GC-PID). A wide variety of flophemesyl alcohol derivatives have been used in order to show a new approach for realizing greatly reduced minimum detection limits (MDL) of virtually all alcohol derivatives in GC-PID analysis. This particular derivatization approach is inexpensive and easy to apply, leading to quantitative or near 100% conversion of the starting alcohols to the expected flophemesyl ethers (silyl ethers). Detection limits can be lowered by 2-3 orders of magnitude for such derivatives when compared with the starting alcohols, along with calibration plots that are linear over 5-7 orders of magnitude. Specific GC conditions have been developed for many flophemesyl derivatives, in all cases using packed columns. Both ECD and PID relative response factors (RRFs) and normalized RRFs have been determined, and such ratios can now be used for improved analytic identification from complex sample matrices, where appropriate. 28 references, 2 figures, 5 tables

  19. A convenient tool for gas derivatization using fine-needle capillary mounting for protein crystals

    International Nuclear Information System (INIS)

    Mizuno, Nobuhiro; Makino, Masatomo; Kumasaka, Takashi

    2013-01-01

    A convenient gas-derivatization tool for protein crystals is presented in combination with a fine-needle capillary and a gas-pressure regulator. Gas derivatization of protein crystals is useful not only to analyse gas-binding proteins but also to solve the phase problem of X-ray crystallography by using noble gases. However, the gas pressurization tools for these experiments are often elaborate and need to release the gas before flash-cooling. To simplify this step, a procedure using a fine-needle capillary to mount and flash-cool protein crystals under the pressurization of gases has been developed. After the crystals are picked up with the capillary, the capillary is sealed with an adhesive and then connected directly to a gas regulator. The quality of the diffraction data using this method is comparable with that of data from conventional pressurization procedures. The preparation of xenon-derivatives of hen egg-white lysozyme using this method was a success. In the derivatives, two new xenon binding sites were found and one of their sites vanished by releasing the gas. This observation shows the availability of flash-cooling under gas pressurization. This procedure is simple and useful for preparing gas-derivative crystals

  20. Derivatization chemistry of the double-decker dicobalt sandwich ion targeted to design biologically active substances

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Švec, Petr; Hájková, Zuzana; Císařová, I.; Pokorná, Jana; Konvalinka, Jan

    2012-01-01

    Roč. 84, č. 11 (2012), s. 2243-2262 ISSN 0033-4545 R&D Projects: GA AV ČR IAAX00320901 Institutional support: RVO:61388980 ; RVO:61388963 Keywords : AIDS treatment * boranes * canastide ion * carboranes * dicarbollides * HIV -protease Subject RIV: CA - Inorganic Chemistry Impact factor: 3.386, year: 2012

  1. A novel method of liquid chromatography–tandem mass spectrometry combined with chemical derivatization for the determination of ribonucleosides in urine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangfu [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Jin, Yibao [Shenzhen Institute for Drug Control, Shenzhen 518055 (China); State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Zhi; Lin, Shuhai [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Liu, Hongxia [State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055 (China); Jiang, Yuyang [State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Cai, Zongwei, E-mail: zwcai@hkbu.edu.hk [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China)

    2015-03-15

    Highlights: • A simple, robust and low-cost derivatization method was reported for ribonucleoside determination for the first time. • Improvement of separation and enhancement of sensitivity were achieved by using the derivatization approach. • Isotope labeling method with acetone-d{sub 6} and multivariate statistical analysis facilitated ribonucleoside identification. • Application of the method enabled the positive identification of 56 ribonucleosides. - Abstract: Ribonucleosides are the end products of RNA metabolism. These metabolites, especially the modified ribonucleosides, have been extensively evaluated as cancer-related biomarkers. However, the determination of urinary ribonucleosides is still a challenge due to their low abundance, high polarity and serious matrix interferences in urine samples. In this study, a derivatization method based on a chemical reaction between ribonucleosides and acetone to form acetonides was developed for the determination of urinary ribonucleosides. The derivative products, acetonides, were detected by using liquid chromatography–tandem mass spectrometry (LC–MS/MS). The methodological evaluation was performed by quantifying four nucleosides for linear range, average recovery, precision, accuracy and stability. The validated procedures were applied to screen modified ribonucleosides in urine samples. Improvement of separation and enhancement of sensitivity were obtained in the analysis. To identify ribonucleosides, inexpensive isotope labeling acetone (acetone-d{sub 6}) and label-free acetone were applied to form ordinary and deuterated acetonides, respectively. The two groups of samples were separated with orthogonal partial least squares (OPLS). The ordinary and deuterated pairs of acetonides were symmetrically distributed in the S-plot for easy and visual signal identification. After structural confirmation, a total of 56 ribonucleosides were detected, 52 of which were modified ribonucleosides. The application

  2. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    International Nuclear Information System (INIS)

    Massicano, Adriana V.F.; Akanji, Akinkunmi G.; Santos, Josefina S.; Pujatti, Priscilla B.; Couto, Renata M.; Massicano, Felipe; Araujo, Elaine Bortoleti de

    2009-01-01

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with 177 Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce 177 Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of 177 LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  3. GC separation of amino acid enantiomers via derivatization with heptafluorobutyl chloroformate and Chirasil-L-Val column

    Czech Academy of Sciences Publication Activity Database

    Zahradníčková, Helena; Hušek, Petr; Šimek, Petr

    2009-01-01

    Roč. 32, č. 22 (2009), s. 3919-3924 ISSN 1615-9306 R&D Projects: GA ČR GA203/09/2014 Institutional research plan: CEZ:AV0Z50070508 Keywords : chiral separation * derivatization * D,L-AAs Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.551, year: 2009

  4. A Validated Stability-indicating Reverse Phase HPLC Assay Method for the Determination of Memantine Hydrochloride Drug Substance with UV-Detection Using Precolumn Derivatization Technique

    Directory of Open Access Journals (Sweden)

    Bhavil Narola

    2010-01-01

    Full Text Available This present paper deals with the development and validation of a stability indicating high performance liquid chromatographic method for the quantitative determination of Memantine hydrochloride. Memantine hydrochloride was derivatized with 0.015 M 9-fluorenylmethyl chloroformate (FMOC and 0.5 M borate buffer solution by keeping it at room temperature for about 20 minutes and the chromatographic separation achieved by injecting 10 μL of the derivatized mixture into a Waters HPLC system with photodiode array detector using a kromasil C18 column (150 × 4.6 mm, 5 μ, The mobile phase consisting of 80% acetonitrile and 20% phosphate buffer solution and a flow rate of 2 milliliter/minute. The Memantine was eluted at approximately 7.5 minutes. The volume of FMOC used in derivatization, concentration of FMOC and derivatization time was optimized and used. Forced degradation studies were performed on bulk sample of Memantine hydrochloride using acid (5.0 Normal (N hydrochloric acid, base (1.0 N sodium hydroxide, oxidation (30% hydrogen peroxide, thermal (105 ° C, photolytic and humidity conditions. The developed LC method was validated with respect to specificity, precision (% RSD about 0.70%, linearity (linearity of range about 70-130 μg/mL, ruggedness (Overall % RSD about 0.35%, stability in analytical solution (Cumulative % RSD about 0.11% after 1450 min. and robustness.

  5. A Validated Stability-indicating Reverse Phase HPLC Assay Method for the Determination of Memantine Hydrochloride Drug Substance with UV-Detection Using Precolumn Derivatization Technique

    Directory of Open Access Journals (Sweden)

    Bhavil Narola

    2010-07-01

    Full Text Available This present paper deals with the development and validation of a stability indicating high performance liquid chromatographic method for the quantitative determination of Memantine hydrochloride. Memantine hydrochloride was derivatized with 0.015 M 9-fluorenylmethyl chloroformate (FMOC and 0.5 M borate buffer solution by keeping it at room temperature for about 20 minutes and the chromatographic separation achieved by injecting 10 µL of the derivatized mixture into a Waters HPLC system with photodiode array detector using a kromasil C18 column (150 × 4.6 mm, 5 µ. The mobile phase consisting of 80% acetonitrile and 20% phosphate buffer solution and a flow rate of 2 milliliter/minute. The Memantine was eluted at approximately 7.5 minutes. The volume of FMOC used in derivatization, concentration of FMOC and derivatization time was optimized and used. Forced degradation studies were performed on bulk sample of Memantine hydrochloride using acid (5.0 Normal (N hydrochloric acid, base (1.0 N sodium hydroxide, oxidation (30% hydrogen peroxide, thermal (105°C, photolytic and humidity conditions. The developed LC method was validated with respect to specificity, precision (% RSD about 0.70%, linearity (linearity of range about 70–130 µg/mL, ruggedness (Overall % RSD about 0.35%, stability in analytical solution (Cumulative % RSD about 0.11% after 1450 min. and robustness.

  6. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  7. Derivatized Pentadentate Macrocyclic Ligands and Their Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Muhammad S. Khan

    2002-06-01

    Full Text Available The reaction of the pendant hydroxyethyl group in the planar pentadentate macrocyclic ligand,1,11-bis(2’-hydroxyethyl-4,8;12,16;17,21-trinitrilo-1,2,10,11-tetraazacyclohenicosa- 2,4,6,9,12,14,18,20-octaene (L2, derived from the condensation of 2,6-pyridinedialdehyde with 6,6’-bis(2’ hydroxyethylhydrazino -2,2’-bipyridine (L1, has been investigated. Esterification reactions are facile, and the reaction of the hydroxyethyl-substituted macrocycle with thionyl chloride yields a chloroethyl derivative. Metal complexes of the new derivatized macrocyclic ligands L3-6having general formula ML3-6X2.nH2O (M = Mn, Fe, Co, Ni, Cu, Zn are readily prepared.

  8. Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carro, A.M.; Neira, I.; Rodil, R.; Lorenzo, R. A. [Univ. Santiago de Compostela (Spain). Dpto. Quimica Analitica, Nutricion y Bromatologia

    2003-06-01

    A method is proposed for the extraction and determination of organomercury compounds and Hg(II) in seawater samples by headspace solid-phase microextraction (HS-SPME) combined with capillary gas chromatography-microwave-induced plasma atomic emission spectrometry. The mercury species were derivatized with sodium tetraphenylborate, sorbed on a polydimethylsiloxane-coated fused-silica fibre, and desorbed in the injection port of the GC, in splitless mode. Experimental design methodology was used to evaluate the effect of six HS-SPME-derivatization variables: sample volume, NaBPh{sub 4} volume, pH, sorption time, extraction-derivatization temperature, and rate of stirring. Use of a multicriterion decision-making approach, with the desirability function, enabled determination of the optimum working conditions of the procedure for simultaneous analysis of three mercury species. (orig.)

  9. Precolumn derivatization LC–MS/MS method for the determination and pharmacokinetic study of glucosamine in human plasma and urine

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-02-01

    Full Text Available A selective precolumn derivatization liquid chromatography–tandem mass spectrometric (LC–MS/MS method for the determination of glucosamine in human plasma and urine has been developed and validated. Glucosamine was derivatized by o-phthalaldehyde/3-mercaptopropionic acid. Chromatographic separation was performed on a Phenomenex ODS column (150 mm×4.6 mm, 5 μm using linear gradient elution by a mobile phase consisting of methanol (A, and an aqueous solution containing 0.2% ammonium acetate and 0.1% formic acid (B at a flow rate of 1 mL/min. Tolterodine tartrate was used as the internal standard (IS. With protein precipitation by acetonitrile and then the simple one-step derivatization, a sensitive bio-assay was achieved with the lower limit of quantitation (LLOQ as low as 12 ng/mL for plasma. The standard addition calibration curves suitable for clinical sample analysis showed good linearity over the range of 0.012–8.27 μg/mL in plasma and 1.80–84.1 μg/mL in urine. The fully validated method has been successfully applied to a pharmacokinetic study of compound glucosamine sulfate dispersible tablets in health Chinese volunteers receiving single oral doses at 500, 1000 and 1500 mg of glucosamine sulfate, as well as multiple oral doses of 500 mg t.i.d. for 7 consecutive days. Keywords: Glucosamine, Pharmacokinetics, Precolumn derivatization, LC–MS/MS

  10. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  11. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis

    Science.gov (United States)

    Cheng, Qing-Yun; Xiong, Jun; Huang, Wei; Ma, Qin; Ci, Weimin; Feng, Yu-Qi; Yuan, Bi-Feng

    2015-01-01

    2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases. Here we developed a strategy by chiral derivatization combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive determination of D-2HG and L-2HG enantiomers. N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was used to derivatize 2HG. The formed diastereomers by TSPC labeling can efficiently improve the chromatographic separation of D-2HG and L-2HG. And derivatization by TSPC could also markedly increase the detection sensitivities by 291 and 346 folds for D-2HG and L-2HG, respectively. Using the developed method, we measured the contents of D-2HG and L-2HG in clear cell renal cell carcinoma (ccRCC) tissues. We observed 12.9 and 29.8 folds increase of D-2HG and L-2HG, respectively, in human ccRCC tissues compared to adjacent normal tissues. The developed chiral derivatization combined with LC-ESI-MS/MS analysis offers sensitive determination of D-2HG and L-2HG enantiomers, which benefits the precise diagnosis of 2HG related metabolic diseases. PMID:26458332

  12. Measurement of opioid peptides with combinations of reversed phase high performance liquid chromatography, radioimmunoassay, radioreceptorassay, and mass spectrometry

    International Nuclear Information System (INIS)

    Fridland, G.H.; Desiderio, D.M.

    1987-01-01

    As the first step, RP-HPLC gradient elution is performed of a Sep-Pak treated peptide-rich fraction from a tissue extract, and the eluent is monitored by a variety of post-HPLC detectors. In an effort to maximize the structural information that can be obtained from the analysis, UV provides the analog absorption trace; receptorassay analysis (RRA) data of all fractions that are collected are used to construct the profile of opioid-receptoractive peptides; radioimmunoassay (RIA) of selected HPLC fractions at retention times corresponding to the retention time of standards, or in some special cases of all 90-fractions, provides immunoreactivity information; and fast atom bombardment mass spectrometry (FAB-MS) in two modes - corroboration of the (M + H) + of the expected peptide, or MS/MS to monitor an amino acid sequence-determining fragment ion unique to that peptide in the selected ion monitoring (SIM) mode - provides structural information. As a demonstration of the level of quantification sensitivity that can be attained by these novel MS methods, FAB-MS-MS-SIM of solutions of synthetic leucine enkephalin was sensitive to the 70 femtomole level. This paper discusses RIA versus RRA data, and recent MS measurements of peptides in human tissues. 4 references, 1 figure

  13. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels.

    Science.gov (United States)

    Castañeda, Olga; Harvey, Alan L

    2009-12-15

    Peptides have been isolated from several species of sea anemones and shown to block currents through various potassium ion channels, particularly in excitable cells. The toxins can be grouped into four structural classes: type 1 with 35-37 amino acid residues and three disulphide bridges; type 2 with 58-59 residues and three disulphide bridges; type 3 with 41-42 residues and three disulphide bridges; and type 4 with 28 residues and two disulphide bridges. Examples from the first class are BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS (or kaliseptine) from Anemonia sulcata (now A. viridis). These interfere with binding of radiolabelled dendrotoxin to synaptosomal membranes and block currents through channels with various Kv1 subunits and also intermediate conductance K(Ca) channels. Toxins in the second class are homologous to Kunitz-type inhibitors of serine proteases; these toxins include kalicludines (AsKC 1-3) from A. sulcata and SHTXIII from S. haddoni; they block Kv1.2 channels. The third structural group includes BDS-I, BDS-II (from A. sulcata) and APETx 1 (from Anthropleura elegantissima). Their pharmacological specificity differs: BDS-I and -II block currents involving Kv3 subunits, while APETx1 blocks ERG channels. The fourth group comprises the more recently discovered SHTX I and II from S. haddoni. Their channel blocking specificity is not yet known but they displace dendrotoxin binding from synaptosomal membranes. Sea anemones can be predicted to be a continued source of new toxins that will serve as molecular probes of various K(+) channels.

  14. Solid-phase extraction and on-disc derivatization of the major benzodiazepines in urine using enzyme hydrolysis and Toxi-Lab VC MP3 column.

    Science.gov (United States)

    King, J W; King, L J

    1996-01-01

    Because of the increase in use of the newer benzodiazepines, we explored the opportunity to develop a gas chromatographic-mass spectrometric (GC-MS) method that encompasses most of the widely prescribed benzodiazepines in use today. The benzodiazepines included in our study are nordiazepam, oxazepam, temazepam, lorazepam, alpha-hydroxyalprazolam, alpha-hydroxytriazolam, desalkylflurazepam, and 2-hydroxyethylflurazepam. Using 1.0 mL of urine as the matrix, we added the enzyme Glusulase and incubated the specimens for 2 h to obtain the free drugs. The hydrolyzed samples were then loaded onto a Toxi-Lab Spec VC MP3 column containing a 15-mg disc. On-disc derivatization was accomplished by adding N-methyl-N-(t-butyldimethylsilyl) trifluroacetamide (MTBSTFA) with 1% TBDMSCI to the disc. The derivatives were then placed in a GC vial and analyzed by GC-MS in the selected ion monitoring mode. These results were then compared to confirmed positives by the traditional acid hydrolysis GC-MS method.

  15. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    International Nuclear Information System (INIS)

    Pan, Haitao; Hao, Shaofei; Zheng, Qixin; Li, Jingfeng; Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong; Yang, Qin

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability

  16. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Haitao; Hao, Shaofei [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Jingfeng [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang, Qin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-08-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability.

  17. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    Energy Technology Data Exchange (ETDEWEB)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  18. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  19. Organic acid derivatization techniques applied to petroleum hydrocarbon transformations in subsurface environments

    International Nuclear Information System (INIS)

    Barcelona, M.J.; Lu, J.; Tomczak, D.M.

    1995-01-01

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way, a mass balance between fuel constituents and end products may be approached to monitor cleanup progress. Application of advanced organic acid metabolite derivatization techniques to several know sites of organic compounds and fuel mixture contamination provide valuable information on the pathways and progress of microbial transformation. Good correlation between observed metabolites and transformation pathways of aromatic fuel constituents were observed at the sites

  20. Continuous determination of gaseous ammonia in the ambient atmosphere using fluorescence derivatization

    Science.gov (United States)

    Abbas, Rana; Tanner, Roger L.

    A method for continuous determination of ambient ammonia levels employing o-phthalaldehyde fluorescence derivatization is described. A simplified Venturi scrubber and gas-liquid separator have been employed for reproducible measurements of ⩾ 0.1 ppb ambient ammonia with less than 2 min time resolution. The scrubbing efficiency of the ammonia gas collection system was determined to be 29 ± 1 %. During 4 d in August 1979 ambient ammonia levels at the Brookhaven National Laboratory site averaged about 1.5 ± 1.1 ppb during afternoon daylight hours.

  1. Sampling and Analytical Method for Alpha-Dicarbonyl Flavoring Compounds via Derivatization with o-Phenylenediamine and Analysis Using GC-NPD

    Directory of Open Access Journals (Sweden)

    Stephanie M. Pendergrass

    2016-01-01

    Full Text Available A novel methodology is described for the sampling and analysis of diacetyl, 2,3-pentanedione, 2,3-hexanedione, and 2,3-heptanedione. These analytes were collected on o-phenylenediamine-treated silica gel tubes and quantitatively recovered as the corresponding quinoxaline derivatives. After derivatization, the sorbent was desorbed in 3 mL of ethanol solvent and analyzed using gas chromatography/nitrogen-phosphorous detection (GC/NPD. The limits of detection (LOD achieved for each analyte were determined to be in the range of 5–10 nanograms/sample. Evaluation of the on-tube derivatization procedure indicated that it is unaffected by humidities ranging from 20% to 80% and that the derivatization procedure was quantitative for analyte concentrations ranging from 0.1 μg to approximately 500 μg per sample. Storage stability studies indicated that the derivatives were stable for 30 days when stored at both ambient and refrigerated temperatures. Additional studies showed that the quinoxaline derivatives were quantitatively recovered when sampling up to a total volume of 72 L at a sampling rate of 50 cc/min. This method will be important to evaluate and monitor worker exposures in the food and flavoring industry. Samples can be collected over an 8-hour shift with up to 288 L total volume collected regardless of time, sampling rate, and/or the effects of humidity.

  2. Defying the stereotype: non-canonical roles of the peptide hormones guanylin and uroguanylin

    Directory of Open Access Journals (Sweden)

    Nirmalya eBasu

    2011-06-01

    Full Text Available The peptide hormones uroguanylin and guanylin have been traditionally thought to be mediators of fluid-ion homeostasis in the vertebrate intestine. They serve as ligands for receptor guanylyl cyclase C (GC-C, and both receptor and ligands are expressed predominantly in the intestine. Ligand binding to GC-C results in increased cGMP production in the cell which governs downstream signaling. In the last decade, a significant amount of research has unraveled novel functions for this class of peptide hormones, in addition to their action as intestinal secretagogues. An additional receptor for uroguanylin, receptor guanylyl cyclase D, has also been identified. Thus, unconventional roles of these peptides in regulating renal filtration, olfaction, reproduction and cell proliferation have begun to be elucidated in detail. These varied effects suggest that these peptide hormones act in an autocrine, paracrine as well as endocrine manner to regulate diverse cellular processes.

  3. [Detection of monoamine neurotransmitters and its metabolites by high performance liquid chromatograph after pre-column derivatization of dansyl chloride column].

    Science.gov (United States)

    Huang, Xiao; Chen, Jia-wen; He, Li-ping; Kang, Xue-jun

    2012-12-01

    To develop a high performance liquid chromatography (HPLC) for detection of monoamine neurotransmitters and its metabolites after pre-column derivatization with dansyl chloride. The C(18) chromatograph column (150 mm×4.6 mm×5 µm) was selected for detection, and derived by dansyl chloride (10 mg/ml) under the condition of 50°C water bath by pH11 buffer solution. 20 µl acetic acid acetone solution (1.0 mol/L) was then mixed in for termination of the reaction. Then the solution was cooling to room temperature, 0.1 mol/L acetic acid zinc-acetonitrile-tetrahydrofuran solution was adopted for mobile phrase, with the volume ratio at 62:35:3. The flow rate was 1.0 ml/min between 0-10 min, 2.0 ml/min between 10-35 min. The ultraviolet detection wavelength was 286 nm. The above method separately detected monoamine neurotransmitters and its metabolites and evaluated the limit of detection, accurate degree and accuracy degree. The linear relations between each component was good in the range of 1 - 20 µg/ml (r = 0.999). The lowest detection limit of norepinephrine, dopamine, 5-hydroxytryptamine and the metabolites 3-methoxy-4-benzoglycols, homovanillic acid and 5-heteroauxin were separately 0.60, 0.80, 0.41, 0.21, 0.19 and 0.1 µg/ml; while the average recovery rates were between 78.5% - 95.9%, and the relative standard deviation (RSD) was 6.62%, 7.64%, 2.98%, 3.60%, 5.09% and 3.09%, respectively. In the process of selection and optimization of the chromatographic conditions, we observed the importance of metal ions to discretion, and discussed the temperature, pH of the buffer solution and dosage of dansyl chloride in derivation. Under the above conditions, the reaction was perfect, and the baseline of the detected materials thoroughly separated. The method to detect monoamine neurotransmitters and its metabolites by HPLC and pre-column derivatization with dansyl chloride was established; and this method could provide reference for the detection of polyamine by HPLC.

  4. Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization

    Science.gov (United States)

    Li, Jun; Richards, Michele R.; Kitova, Elena N.; Klassen, John S.

    2017-10-01

    The gas-phase conformations of dimers of the channel-forming membrane peptide gramicidin A (GA), produced from isobutanol or aqueous solutions of GA-containing nanodiscs (NDs), are investigated using electrospray ionization-ion mobility separation-mass spectrometry (ESI-IMS-MS) and molecular dynamics (MD) simulations. The IMS arrival times measured for (2GA + 2Na)2+ ions from isobutanol reveal three different conformations, with collision cross-sections (Ω) of 683 Å2 (conformation 1, C1), 708 Å2 (C2), and 737 Å2 (C3). The addition of NH4CH3CO2 produced (2GA + 2Na)2+ and (2GA + H + Na)2+ ions, with Ω similar to those of C1, C2, and C3, as well as (2GA + 2H)2+, (2GA + 2NH4)2+, and (2GA + H + NH4)2+ ions, which adopt a single conformation with a Ω similar to that of C2. These results suggest that the nature of the charging agents, imparted by the ESI process, can influence dimer conformation in the gas phase. Notably, the POPC NDs produced exclusively (2GA + 2NH4)2+ dimer ions; the DMPC NDs produced both (2GA + 2H)2+ and (2GA + 2NH4)2+ dimer ions. While the Ω of (2GA + 2H)2+ is similar to that of C2, the (2GA + 2NH4)2+ ions from NDs adopt a more compact structure, with a Ω of 656 Å2. It is proposed that this compact structure corresponds to the ion conducting single stranded head-to-head helical GA dimer. These findings highlight the potential of NDs, combined with ESI, for transferring transmembrane peptide complexes directly from lipid bilayers to the gas phase. [Figure not available: see fulltext.

  5. Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Dranchak, Patricia; Li, Zhiru; MacArthur, Ryan; Munson, Matthew S.; Mehzabeen, Nurjahan; Baird, Nathan J.; Battalie, Kevin P.; Ross, David; Lovell, Scott; Carlow, Clotilde K.S.; Suga, Hiroaki; Inglese, James (U of Tokyo); (NEB); (Kansas); (NIH); (NIST); (HHMI)

    2017-04-03

    Glycolytic interconversion of phosphoglycerate isomers is catalysed in numerous pathogenic microorganisms by a cofactor-independent mutase (iPGM) structurally distinct from the mammalian cofactor-dependent (dPGM) isozyme. The iPGM active site dynamically assembles through substrate-triggered movement of phosphatase and transferase domains creating a solvent inaccessible cavity. Here we identify alternate ligand binding regions using nematode iPGM to select and enrich lariat-like ligands from an mRNA-display macrocyclic peptide library containing >1012 members. Functional analysis of the ligands, named ipglycermides, demonstrates sub-nanomolar inhibition of iPGM with complete selectivity over dPGM. The crystal structure of an iPGM macrocyclic peptide complex illuminated an allosteric, locked-open inhibition mechanism placing the cyclic peptide at the bi-domain interface. This binding mode aligns the pendant lariat cysteine thiolate for coordination with the iPGM transition metal ion cluster. The extended charged, hydrophilic binding surface interaction rationalizes the persistent challenges these enzymes have presented to small-molecule screening efforts highlighting the important roles of macrocyclic peptides in expanding chemical diversity for ligand discovery.

  6. Self-assembled peptide nanotubes as an etching material for the rapid fabrication of silicon wires

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Andersen, Karsten Brandt; Svendsen, Winnie Edith

    2011-01-01

    This study has evaluated self-assembled peptide nanotubes (PNTS) and nanowires (PNWS) as etching mask materials for the rapid and low-cost fabrication of silicon wires using reactive ion etching (RIE). The self-assembled peptide structures were fabricated under mild conditions and positioned on c...... characterization by SEM and I-V measurements. Additionally, the fabricated silicon structures were functionalized with fluorescent molecules via a biotin-streptavidin interaction in order to probe their potential in the development of biosensing devices....

  7. A novel sensitive sheathless CE-MS device for peptide and protein analysis

    DEFF Research Database (Denmark)

    Nguyen, Tam T. T. N.; Petersen, Nickolaj J.; Rand, Kasper Dyrberg

    analysis. By analysis of a model peptide (Leucine Enkephalin), a limit of detection (LOD) of 0.045 pmol/µL (corresponding to 67 attomol in a sample volume of ~ 15 nL) was obtained. The merit of the CE-MS approach was demonstrated by analysis of bovine serum albumin (BSA) tryptic peptides. A well......Ab (Rituximab) suggesting significant real-world applicability in biopharmaceutical research. Finally, by employing a native CE buffer (ammonium acetate, pH 6), we show that the CE-MS interface facilitates gentle ESI of proteins, opening up for native MS applications in combination with ion mobility and other...

  8. NMR characterization of the DNA binding properties of a novel Hoechst 33258 analogue peptide building block

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Behrens, Carsten; Jacobsen, Jens Peter

    2002-01-01

    A novel aryl-bis-benzimidazole amino acid analogue of the DNA-binding compound Hoechst 33258 has recently been designed for incorporation in peptide combinatorial libraries by replacing the N-methylpiperazine group with a carboxyl group and the hydroxy group with an amino-methyl group. The DNA......-binding properties of the aryl-bis-benzimidazole monomer with the C-terminus derivatized with 3-(dimethylamino)-propylamine has been investigated in this paper by (1)H NMR studies of two different complexes with two different DNA sequences: A(5) d(5'-GCCA(5)CG-3'):d(5'-CGT(5)GGC-3') and A(3)T(3) d(5'-CGA(3)T(3)CG-3...... preference with the bis-benzimidazole moiety displaced toward the 3'-end from the center of the duplex. Two families of models of the complexes with A(5) and A(3)T(3) were derived with restrained molecular dynamics based on a large set of 70 and 61, respectively, intermolecular ligand NOEs. Both models give...

  9. Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat.

    Science.gov (United States)

    Oguri, Shigeyuki; Okuya, Yukie; Yanase, Yukiko; Suzuki, Sayaka

    2008-08-15

    A system to perform post-column derivatization capillary electrochromatography (CEC) was developed for the first time. The system mainly included a 4-microm (O.D.) silica packed column (200 mm effective length x 0.1 mm inner diameter I.D.) with micro-magnetic particles (MMPs) frits, a T-junction connector, an in-line fluorescence detector and a high-voltage power supply. The system was evaluated by using histamine (HA) as a standard biogenic amine for this study. A 5 microM HA solution was loaded at the anodic site of the capillary column by applying 3 kV for 5s. Then, HA was electrophoretically eluted with a 20mM phosphate buffer (pH 7) by applying 3 kV, and was derivatized with 3mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) in 100 mM borate (pH 10), which was continuously delivered through the reagent-loading capillary tube by gravity into the T-junction connector. HA derivative was finally detected with the in-line fluorescence detector (lambda(Ex)=340 nm, lambda(Em)=450 nm) at 9.7 min after sample loading. To test the utility of this system, it was next employed for its ability to detect the presence of HA and other kinds of biogenic amines, including cadaverine (Cad), spermidine (Spm) and tyramine (Tyr) in tuna-meat, once the validity of the method had been confirmed.

  10. Chiral recognition with enantioselective ion exchangers based on carbamoylated cinchonan derivatives as chiral selectors for the HPLC enantioseparation

    International Nuclear Information System (INIS)

    Laemmerhofer, M.

    1996-11-01

    The high-performance liquid chromatographic (HPLC) separation of enantiomers is preferentially performed using chiral stationary phases (CSPs). If the chiral auxiliary (selector, SO) contains charged or ionizable groups one gets ion exchanger type CSPs which may bind and retain oppositely charged analytes (selectands, SAs). We prepared anion exchanger type CSPs with various quinine and quinidine carbarnates as chiral SOs immobilized either on porous or non-porous silica. These CSPs are able to resolve the enantiomers of a wide spectrum of chiral carboxylic, sulfonic, phosphonic, phosphoric acids and of many other chiral acidic solutes (e.g. N-derivatized alpha-, beta- , gamma-amino acids as 2,4-dinitrophenyl, 3,5-dinitrobenzoyl, benzoyl, acetyl, formyl, t.-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethoxycarbonyl, dansyl amino acids and peptides, alpha-arylalkylcarboxylic acids as profens, alpha-aryloxyalkylcarboxylic acids, alpha-arylthioalkylcarboxylic acids and acidic drugs like etodolac, proglumide, acenocournarol, leucovorin, omeprazole, pantoprazole) employing buffered aqueous mobile phases or non-aqueous mobile phases with buffer dissolved in the organic solvent. The influence of mobile phase parameters and other experimental conditions on retention and enantioselectivity has been evaluated for isocratic and gradient elution techniques, aided by the commercial method development computer software DryLab. Several 'Quantitative Structure-Retention Relationships' (QSRR) have been derived, which allowed prediction of enantioselectivity of new analytes and moreover the optimization of the SO-structure. Spectroscopic investigations as H-NMR, FTIR of certain SO-SA-complexes have been exerted to unveil the mechanism of chiral recognition. (author)

  11. Determination of desipramine in biological samples using liquid-liquid-liquid microextraction combined with in-syringe derivatization, gas chromatography, and nitrogen/phosphorus detection.

    Science.gov (United States)

    Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi

    2012-10-01

    A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  13. Effects of extraction and derivatization techniques on recovery of organotin species in environmental matrices (W3)

    International Nuclear Information System (INIS)

    Wahlen, R.; Catterick, T.

    2002-01-01

    Full text: Organotin (OT) contamination is still persistent in most coastal environments and estuaries and can be monitored accurately by analysis of sediments and sedentary aquatic animal populations. In addition to human exposure via contaminated seafood, there is increasing concern about OT compounds in man-made consumer products. Organotin analysis involves the extraction from the matrix, derivatization (for GC analysis), separation of the different species and detection. Commonly used extraction techniques are mechanical shaking, ultrasonic agitation and microwave leaching (open or closed vessel). Accelerated solvent extraction (ASE) has also been reported. In this study, closed-vessel microwave extraction and ASE methods are compared for OT analysis in environmental tissues using separation by gas chromatography (GC) and detection by inductively coupled plasma mass-spectrometry (ICP-MS). The efficiency of an ethylation procedure with sodiumtetraethylborate (NABEt 4 ) using different matrices and derivatization durations is monitored by comparing data obtained by external calibration with results by species-specific isotope dilution analysis (SS-IDMS) of dibutyltin (TBT) and dibutyltin (DBT) enriched with 117 Sn. Uncertainty estimates for both quantification techniques will be provided. (author)

  14. Picomolar concentrations of morphine in human urine determined by dansyl derivatization and liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Lamshöft, Marc; Grobe, Nadja; Spiteller, Michael

    2011-04-15

    Morphine is present in varying amounts as an endogenous product in human urine. Derivatization of morphine contained in urine with dansyl chloride yields a known product, which can be quantified by liquid chromatography mass spectrometry with high selectivity and sensitivity. Urine samples of 51 healthy individuals were spiked with stable-isotope labeled morphine, hydrolyzed and subjected to solid phase extraction followed by derivatization of morphine with dansyl chloride. The dansyl derivatives of naturally occurring morphine and deuterated internal standard were then detected by liquid chromatography-triple quadrupole mass spectrometry. Using the [N-CD(3)]-labeled internal standard and solid-phase extraction, a limit of detection of 35 fmol/ml (10 pg/ml) and a limit of quantification of 87.5 fmol/ml (25 pg/ml) was determined for morphine in human urine. This new LC-MS/MS method allowed the detection of endogenous morphine in human urine of 51 volunteers with an average value of 156.4 fmol/ml (44.7 ng/ml). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Trace analysis of icariin in human serum with dansyl chloride derivatization after oral administration of Epimedium decoction by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Gong, Yinhan; Yip, See Chung; Thamarai, Sennappan Kanagamani; Zhang, Jie; Lee, Hian Kee; Yong, E L

    2007-12-15

    Epimedium herbs are a type of complex traditional Chinese medicine (TCM) with high estrogenic bioactivity. The Epimedium herbal decoction mixture contains many compounds including icariin that can exert potent effects on numerous physiological processes related to human health. An ultrasensitive liquid chromatography tandem mass spectrometric (LC-MS/MS) method has been developed to determine trace levels of icariin in human serum with dansyl chloride derivatization after oral administration of the Epimedium herbal decoctions. The dansyl-icariin showed an intense protonated molecular ion at m/z 910. The collision-induced dissociation of this ion formed a distinctive product at m/z 764, corresponding to a characteristic removal of a rhamnose sugar moiety of icariin. The selected reaction monitoring, based on the m/z 910-->764 transition, was highly specific and ultrasenstive for icariin in human serum samples. The lower limit of quantitation was 10 pg/mL icariin spiked into blank serum. The ranges of coefficients of variation for interday assays and intraday assays were 0-15.0% and 1.1-17.5%, respectively, for a wide linear range from 10 pg/mL to 4 ng/mL. This method was successfully applied to measure trace levels of icariin in a human serum after oral administration of Epimedium decoction within 48 h for the first time.

  16. Gas chromatographic determination of purines and pyrimidines from DNA using ethyl chloroformate as derivatizing reagent

    International Nuclear Information System (INIS)

    Brohi, R.O.Z.; Khuhawar, M.Y.; Laghari, A.J.; Channa, A.

    2016-01-01

    An analytical method has been proposed for the separation and determination of guanine, adenine, cytosine, thymine and uracil by gas chromatography (GC) following precolumn derivatization using ethyl chloroformate. The GC separation was achieved from HP-5 (30 m x 0.32 rnrn id) column with layer thickness 0.25 microm. The linear calibrations were observed within 0.5-50.0 micro mole/L for each of the compound and limits of detection were within 0.1-0.17 micro mol/L. The derivatization, separation and quantitation was repeatable with intra (n=5) and inter (n=5) variation in terms of peak height/peak area and retention time with relative standard deviation (RSD) within 4.70-6.43%. The method was applied for the analysis of isolated DNA from human blood and plant leaves after acid hydrolysis. The concentration of thymine, adenine, cytosine and guanine in blood samples were observed within 0.602-2.135 micro mol/L of each compounds with RSD 2.60- 6.00%. The recovery of the nucleobases by standard addition was calculated within 98-108% with RSD 2.5-7.8%. (author)

  17. Gas Chromatographic Determination of Purines and Pyrimidines from DNA Using Ethyl Chloroformate as Derivatizing Reagent

    Directory of Open Access Journals (Sweden)

    Rafi O. Zaman Brohi

    2016-06-01

    Full Text Available An analytical method has been proposed for the separation and determination of guanine, adenine, cytosine, thymine and uracil by gas chromatography (GC following precolumn derivatization using ethyl chloroformate. The GC separation was achieved from HP-5 (30 m × 0.32 mm id column with layer thickness 0.25 µm. The linear calibrations were observed within 0.5-50.0 µmol/L for each of the compound and limits of detection were within 0.1-0.17 µmol/L. The derivatization, separation and quantitation was repeatable with intra (n=5 and inter (n=5 variation in terms of peak height/peak area and retention time with relative standard deviation (RSD within 4.70-6.43%. The method was applied for the analysis of isolated DNA from human blood and plant leaves after acid hydrolysis. The concentration of thymine, adenine, cytosine and guanine in blood samples were observed within 0.602-2.135 µmol/L of each compounds with RSD 2.60-6.00%. The recovery of the nucleobases by standard addition was calculated within 98-108% with RSD 2.5-7.8%.

  18. HPLC determination of chlorine in air and water samples following precolumn derivatization to 4-bromoacetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry); Verma, K.K. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry)

    1993-11-01

    Chlorine has been determined in air and water samples by a rapid and sensitive method entailing precolumn derivatization to 4-bromoacetanilide. A mixed potassium bromide - acetanilide reagent was used as a trapping agent for chlorine in air, and for its derivatization. The 4-bromoacetanilide formed was determined by reversed-phase HPLC on an ODS column, using methanol-water, 65:35 (v/v) as mobile phase; detection was at 240 nm. A rectilinear calibration graph was obtained for the range 0.1-30 [mu]g mL[sup -1] chlorine; the limit of detection found to be 0.01 [mu]g mL[sup -1]. The precolumn derivative has been found to have a shelf-life of at least 21 days; this enables the use of the method for samples transported from the field to the analytical laboratory, or the testing of a variety of conditions for chlorine scrubbing studies without the need for immediate analysis of samples. Humic substances do not cause any interference with the proposed method and the presence of nitrite does not lead to artificially high results and consequent misleading conclusions of the presence of high levels of chlorine. (orig.)

  19. HPLC determination of chlorine in air and water samples following precolumn derivatization to 4-bromoacetanilide

    International Nuclear Information System (INIS)

    Jain, A.; Verma, K.K.

    1993-01-01

    Chlorine has been determined in air and water samples by a rapid and sensitive method entailing precolumn derivatization to 4-bromoacetanilide. A mixed potassium bromide - acetanilide reagent was used as a trapping agent for chlorine in air, and for its derivatization. The 4-bromoacetanilide formed was determined by reversed-phase HPLC on an ODS column, using methanol-water, 65:35 (v/v) as mobile phase; detection was at 240 nm. A rectilinear calibration graph was obtained for the range 0.1-30 μg mL -1 chlorine; the limit of detection found to be 0.01 μg mL -1 . The precolumn derivative has been found to have a shelf-life of at least 21 days; this enables the use of the method for samples transported from the field to the analytical laboratory, or the testing of a variety of conditions for chlorine scrubbing studies without the need for immediate analysis of samples. Humic substances do not cause any interference with the proposed method and the presence of nitrite does not lead to artificially high results and consequent misleading conclusions of the presence of high levels of chlorine. (orig.)

  20. Simultaneous in situ derivatization and ultrasound-assisted dispersive magnetic solid phase extraction for thiamine determination by spectrofluorimetry.

    Science.gov (United States)

    Tarigh, Ghazale Daneshvar; Shemirani, Farzaneh

    2014-06-01

    A simple and rapid method for the simultaneous in situ derivatizaion, preconcentration and extraction of thiamine (vitamin B1) as a model analyte was developed by a novel quantitative method, namely ultrasound-assisted dispersive magnetic solid phase extraction spectrofluorimetry (USA-DMSPE-FL) from different real samples. This method consists of sample preparation, in situ derivatization, exhaustive extraction and clean up by a single process. High extraction efficiency and in situ derivatization in a short period of time is the main advantages of this procedure. For this purpose, the reusable magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite was used as an adsorbent for preconcentration and determination of thiamine. Thiamine was, simultaneously, in situ derivatized as thiochrome by potassium hexacyanoferrate (III) and adsorbed on MMWCNT in an ultrasonic water bath. The MMWCNTs were then collected using an external magnetic field. Subsequently, the extracted thiochrome was washed from the surface of the adsorbent and determined by spectrofluorimetry. The developed method, which has been analytically characterized under its optimal operating conditions, allows the detection of the analyte in the samples with method detection limits of 0.37 µg L(-1). The repeatability of the method, expressed as the relative standard deviation (RSD, n=6), varies between 2.0% and 4.8% in different real samples, while the enhancement factor is 197. The proposed procedure has been applied for the determination of thiamine in biological (serum and urine), pharmaceutical (multivitamin tablet and B complex syrup) and foodstuff samples (cereal, wheat flour, banana and honey) with the good recoveries in the range from 90% to 105%. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simultaneous determination of amino acid and monoamine neurotransmitters in PC12 cells and rats models of Parkinson's disease using a sensitizing derivatization reagent by UHPLC-MS/MS.

    Science.gov (United States)

    Zhao, Xian-En; Zhu, Shuyun; Yang, Hongmei; You, Jinmao; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2015-07-15

    Multi-analytes simultaneous monitoring of amino acid and monoamine neurotransmitters (NTs) has important scientific significance for their related pathology, physiology and drug screening. In this work, in virtue of a mass spectrometry sensitizing reagent 10-ethyl-acridone-3-sulfonyl chloride (EASC) as derivatization reagent, an Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS) method was developed and validated for simultaneous determination of six amino acid NTs, two monoamine ones and its one metabolite. The simple and rapid derivatization reaction was innovatively combined with plasma preparation by using EASC acetonitrile solution as protein precipitant. This interesting combination brought the advantages of speediness, simpleness and high-throughput in a cost-effective way. Under the optimized conditions, LODs (0.004-3.80nM) and LOQs (0.014-13.3nM) of EASC derivatized-NTs were calculated and found to be significantly lower than those of direct UHPLC-MS/MS detection about 11.5-275.0 and 14.4-371.4 times, respectively. Moreover, EASC derivatization significantly improved chromatographic resolution and matrix effect when compared with direct UPLC-MS/MS detection method without derivatization. Meanwhile, it also brought acceptable precision (3.0-13.0%, peak area CVs%), accuracy (86.4-112.9%), recovery (88.3-107.8%) and stability (3.8-8.5%, peak area CVs%) results. This method was successfully applied for the antiparkinsonian effect evaluation of levodopa and Ginsenoside Rg1 using PC12 cells and rats models by measuring multiple NTs. This provided a new method for the NTs related studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  3. Mitsunobu mischief: Neighbor-directed histidine N(π)–alkylation provides access to peptides containing selectively functionalized imidazolium heterocycles

    Science.gov (United States)

    Qian, Wen-Jian

    2015-01-01

    There are few methodologies that yield peptides containing His residues with selective N(π), N(π)-bis-alkylated imidazole rings. We have found that, under certain conditions, on-resin Mitsunobu coupling of alcohols with peptides having a N(π)-alkylated His residue results in selective and high-yield alkylation of the imidazole N(π) nitrogen. The reaction requires the presence of a proximal phosphoric, carboxylic or sulfonic acid, and proceeds through an apparent intramolecular mechanism involving Mitsunobu intermediates. These transformations have particular application to phosphopeptides, where “charge masking” of one phosphoryl anionic charge by the cationic histidine imidazolium ion is now possible. This chemistry opens selective access to peptides containing differentially functionalized imidazolium heterocycles, which provide access to new classes of peptides and peptide mimetics. PMID:25739367

  4. PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer

    Science.gov (United States)

    Garateix, Anoland; Salceda, Emilio; Zaharenko, André Junqueira; Pons, Tirso; Santos, Yúlica; Arreguín, Roberto; Ständker, Ludger; Forssmann, Wolf-Georg; Tytgat, Jan; Vega, Rosario

    2018-01-01

    Sea anemones produce proteinaceous toxins for predation and defense, including peptide toxins that act on a large variety of ion channels of pharmacological and biomedical interest. Phymanthus crucifer is commonly found in the Caribbean Sea; however, the chemical structure and biological activity of its toxins remain unknown, with the exception of PhcrTx1, an acid-sensing ion channel (ASIC) inhibitor. Therefore, in the present work, we focused on the isolation and characterization of new P. crucifer toxins by chromatographic fractionation, followed by a toxicity screening on crabs, an evaluation of ion channels, and sequence analysis. Five groups of toxic chromatographic fractions were found, and a new paralyzing toxin was purified and named PhcrTx2. The toxin inhibited glutamate-gated currents in snail neurons (maximum inhibition of 35%, IC50 4.7 µM), and displayed little or no influence on voltage-sensitive sodium/potassium channels in snail and rat dorsal root ganglion (DRG) neurons, nor on a variety of cloned voltage-gated ion channels. The toxin sequence was fully elucidated by Edman degradation. PhcrTx2 is a new β-defensin-fold peptide that shares a sequence similarity to type 3 potassium channels toxins. However, its low activity on the evaluated ion channels suggests that its molecular target remains unknown. PhcrTx2 is the first known paralyzing toxin in the family Phymanthidae. PMID:29414882

  5. PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer

    Directory of Open Access Journals (Sweden)

    Armando Alexei Rodríguez

    2018-02-01

    Full Text Available Sea anemones produce proteinaceous toxins for predation and defense, including peptide toxins that act on a large variety of ion channels of pharmacological and biomedical interest. Phymanthus crucifer is commonly found in the Caribbean Sea; however, the chemical structure and biological activity of its toxins remain unknown, with the exception of PhcrTx1, an acid-sensing ion channel (ASIC inhibitor. Therefore, in the present work, we focused on the isolation and characterization of new P. crucifer toxins by chromatographic fractionation, followed by a toxicity screening on crabs, an evaluation of ion channels, and sequence analysis. Five groups of toxic chromatographic fractions were found, and a new paralyzing toxin was purified and named PhcrTx2. The toxin inhibited glutamate-gated currents in snail neurons (maximum inhibition of 35%, IC50 4.7 µM, and displayed little or no influence on voltage-sensitive sodium/potassium channels in snail and rat dorsal root ganglion (DRG neurons, nor on a variety of cloned voltage-gated ion channels. The toxin sequence was fully elucidated by Edman degradation. PhcrTx2 is a new β-defensin-fold peptide that shares a sequence similarity to type 3 potassium channels toxins. However, its low activity on the evaluated ion channels suggests that its molecular target remains unknown. PhcrTx2 is the first known paralyzing toxin in the family Phymanthidae.

  6. Ribosome-catalyzed formation of an abnormal peptide analogue

    International Nuclear Information System (INIS)

    Roesser, J.R.; Chorghade, M.S.; Hecht, S.M.

    1986-01-01

    The peptidyl-tRNA analogue N-(chloracetyl) phenylalanyl-tRNA/sup Phe/ was prepared by chemical aminoacylation and prebound to the P site of Escherichia coli ribosomes in response to poly(uridylic acid). Admixture of phenylalanyl-tRNA/sup Phe/ to the A site resulted in the formation of two dipeptides, one of which was found by displacement of chloride ion from the peptidyl-tRNA. This constitutes the first example of ribosome-mediated formation of a peptide of altered connectivity and suggests a need for revision of the current model of peptide bond formation. Also suggested by the present finding is the feasibility of utilizing tRNAs to prepare polypeptides of altered connectivity in an in vitro protein biosynthesizing system. [ 32 P]-oligo(rA), [ 3 H]- and [ 14 C] phenylalanines were used in the assay of the peptidye-tRNA analogue

  7. 1,5-Anhydro-D-fructose: biocatalytic and chemical synthetic methods for the preparation, transformation and derivatization

    DEFF Research Database (Denmark)

    Lundt, Inge; Yu, Shukun

    2010-01-01

    1,5-Anhydro-D-fructose (1,5AnFru) is a monoketosaccharide that can be prepared enzymatically from starch by a-1,4-glucan lyase or chemically from D-glucose or D-fructose in a few steps with high yields. The formed 1,5AnFru can be derivatized both enzymatically and chemically to interesting new...

  8. Sample limited characterization of a novel disulfide-rich venom peptide toxin from terebrid marine snail Terebra variegata.

    Directory of Open Access Journals (Sweden)

    Prachi Anand

    Full Text Available Disulfide-rich peptide toxins found in the secretions of venomous organisms such as snakes, spiders, scorpions, leeches, and marine snails are highly efficient and effective tools for novel therapeutic drug development. Venom peptide toxins have been used extensively to characterize ion channels in the nervous system and platelet aggregation in haemostatic systems. A significant hurdle in characterizing disulfide-rich peptide toxins from venomous animals is obtaining significant quantities needed for sequence and structural analyses. Presented here is a strategy for the structural characterization of venom peptide toxins from sample limited (4 ng specimens via direct mass spectrometry sequencing, chemical synthesis and NMR structure elucidation. Using this integrated approach, venom peptide Tv1 from Terebra variegata was discovered. Tv1 displays a unique fold not witnessed in prior snail neuropeptides. The novel structural features found for Tv1 suggest that the terebrid pool of peptide toxins may target different neuronal agents with varying specificities compared to previously characterized snail neuropeptides.

  9. Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions.

    Science.gov (United States)

    Dorcák, Vlastimil; Sestáková, Ivana

    2006-01-01

    Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.

  10. Synthesis of a cyclic fibrin-like peptide and its analysis by fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.D.; Costello, C.E.; Langenhove, A. van; Haber, E.; Matsueda, G.R.

    1983-01-01

    For immunochemical purposes, a cyclic 12 peptide was synthesized to model the γ-γ-chain cross-link site in human fibrin. The model was based upon the structure proposed by Chen and Doolittle which is characterized by two reciprocating epsilon-(γ-Glu)Lys bonds between adjacent fibrin γ-chains oriented in an antiparallel manner. To achieve the antiparallel orientation of the peptide backbone, Pro and Gly were inserted at positions 6 and 7 of the linear 12-peptide: acetyl-Gly-Glu-Gln-His-His-Pro-Gly-Gly-Gly-Ala-Lys-Gly-amide. The insertions were made to facilitate a reverse turn of the peptide during the last synthetic step, which was formation of the epsilon-(γ-Glu)Lys bond between Glu at position 2 and Lys at position 11 with diphenylphosphorylazide. The resulting cyclic peptide represented half of the symmetrical cross-linked region in clotted fibrin. Following purification by HPLC, both linear and cyclic 12-peptides were analyzed by fast atom bombardment mass spectrometry. Abundant molecular protonated ions were observed for both peptides. In addition, the amino acid sequence of the linear peptide and the location of the epsilon-(γ-Glu)Lys bond in the cyclized peptide could be verified. (author)

  11. Doping reversed-phase media for improved peptide purification.

    Science.gov (United States)

    Khalaf, Rushd; Forrer, Nicola; Buffolino, Gianluca; Gétaz, David; Bernardi, Susanna; Butté, Alessandro; Morbidelli, Massimo

    2015-06-05

    The purification of therapeutic peptides is most often performed using one or more reversed phase chromatography steps. This ensures high purities while keeping the costs of purification under control. In this paper, a doped reversed phase chromatographic material is tested and compared to traditional reversed phase materials. The doping consists of adding limited amounts of ion exchange ligands to the surface of the material to achieve orthogonal separation and increase the non-hydrophobic interactions with the surface. These ionic groups can either be attractive (opposite charge), or repulsive (same charge) to the peptide. The benefit of this new doped reversed phase material is shown through increases in selectivity in diluted conditions and yield and productivity in overloaded (i.e. industrial) conditions. It is the conjectured that all performance characteristics should increase using repulsive doping groups, whereas these characteristics should decrease when using attractive doping groups. This conjecture is shown to be true through several examples, including purifications of industrially relevant peptide crudes, in industrially relevant conditions. Moreover, the effect of ionic strength and organic modifier concentration was explored and shown to be in line with the expected behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Pharmacological screening technologies for venom peptide discovery.

    Science.gov (United States)

    Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina

    2017-12-01

    Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs.

    Science.gov (United States)

    Bauchart, Caroline; Morzel, Martine; Chambon, Christophe; Mirand, Philippe Patureau; Reynès, Christelle; Buffière, Caroline; Rémond, Didier

    2007-12-01

    Characterisation and identification of peptides (800 to 5000 Da) generated by intestinal digestion of fish or meat were performed using MS analyses (matrix-assisted laser desorption ionisation time of flight and nano-liquid chromatography electrospray-ionisation ion trap MS/MS). Four pigs fitted with cannulas at the duodenum and jejunum received a meal exclusively made of cooked Pectoralis profundus beef meat or cooked trout fillets. A protein-free meal, made of free amino acids, starch and fat, was used to identify peptides of endogenous origin. Peptides reproducibly detected in digesta (i.e. from at least three pigs) were evidenced predominantly in the first 3 h after the meal. In the duodenum, most of the fish- and meat-derived peptides were characteristic of a peptic digestion. In the jejunum, the majority of peptides appeared to result from digestion by chymotrypsin and trypsin. Despite slight differences in gastric emptying kinetics and overall peptide production, possibly in relation to food structure and texture, six and four similar peptides were released after ingestion of fish or meat in the duodenum and jejunum. A total of twenty-six different peptides were identified in digesta. All were fragments of major structural (actin, myosin) or sarcoplasmic (creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and myoglobin) muscle proteins. Peptides were short ( digestion, some of them can be reproducibly observed in intestinal digesta.

  14. Modelling the interactions between animal venom peptides and membrane proteins.

    Science.gov (United States)

    Hung, Andrew; Kuyucak, Serdar; Schroeder, Christina I; Kaas, Quentin

    2017-12-01

    The active components of animal venoms are mostly peptide toxins, which typically target ion channels and receptors of both the central and peripheral nervous system, interfering with action potential conduction and/or synaptic transmission. The high degree of sequence conservation of their molecular targets makes a range of these toxins active at human receptors. The high selectivity and potency displayed by some of these toxins have prompted their use as pharmacological tools as well as drugs or drug leads. Molecular modelling has played an essential role in increasing our molecular-level understanding of the activity and specificity of animal toxins, as well as engineering them for biotechnological and pharmaceutical applications. This review focuses on the biological insights gained from computational and experimental studies of animal venom toxins interacting with membranes and ion channels. A host of recent X-ray crystallography and electron-microscopy structures of the toxin targets has contributed to a dramatic increase in the accuracy of the molecular models of toxin binding modes greatly advancing this exciting field of study. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 2-Naphthalenthiol derivatization followed by dispersive liquid-liquid microextraction as an efficient and sensitive method for determination of acrylamide in bread and biscuit samples using high-performance liquid chromatography.

    Science.gov (United States)

    Faraji, Mohammad; Hamdamali, Mohammadrezza; Aryanasab, Fezzeh; Shabanian, Meisam

    2018-07-13

    In this research, an ultrasonic-assisted extraction followed by 2-naphthalenthiol derivatization and dispersive liquid-liquid microextraction of acrylamide (AA) was developed as simple and sensitive sample preparation method for AA in bread and biscuit samples using high performance liquid chromatography. Influence of derivatization and microextraction parameters were evaluated and optimized. Results showed that the derivatization of AA leads to improve its hydrophobicity and chromatographic behavior. Under optimum conditions of derivatization and microextraction, the method yielded a linear calibration curve ranging from 10 to 1000 μg L -1 with a determination coefficient (R 2 ) of 0.9987. Limit of detection (LOD) and limit of quantification (LOQ) were 3.0 and 9.0 μg L -1 , respectively. Intra-day (n = 6) and inter-day (n = 3) precisions based on relative standard deviation percent (RSD%) for extraction and determination of AA at 50 and 500 μg L -1 levels were less than 9.0%. Finally, the performance of proposed method was investigated for determination of AA in some bread and biscuit samples, and satisfactory results were obtained (relative recovery ≥ 90%). Copyright © 2018. Published by Elsevier B.V.

  16. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guilong [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China); He, Qiang, E-mail: heqiang0980@163.com [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Lu, Ying [Department of Mathematics and Physics, Armed Police College, Chengdu, 610213 (China); Huang, Jing [Research Center for Advanced Computation, College of Science, Xihua University, Chengdu, 610039 (China); Lin, Jin-Ming, E-mail: jmlin@mail.tsinghua.edu.cn [Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China)

    2017-02-22

    In this paper, a rapid and simple method using magnetic multi-walled carbon nanotubes (MWCNTS), as a solid-phase extraction (SPE) sorbent, was successfully developed for extraction and preconcentration trace amounts of Cr(III) in water samples. The synthesized magnetic-MWCNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A rhodamine derivative (R1) was synthesized and characterized as a highly selective and sensitive fluorescent derivatizing agent for Cr(III). After SPE procedure, Cr(III) analysis was performed by flow injection microfluidic chip with on-line fluorescent derivatization and laser-induced fluorescence (LIF) spectroscopy detection. The parameters, which affected the efficiency of the developed method were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0–10.0 nM, with a detection limit of 0.094 nM and an enrichment factor of 38. Furthermore, real water samples were analyzed and good recoveries were obtained from 91.0 to 101.6%. - Graphical abstract: Flow injection microfluidic device with on-line fluorescent derivatization and detection coupled to LIF. - Highlights: • A highly selective and sensitive derivatizing reagent for Cr(III) was synthesized and characterized. • The magnetic-MWCNTs nanocomposite as a SPE sorbent was successfully synthesized and characterized. • A new portable detection system was developed for microfluidic chip FIA platform.

  17. Spectrophotometric determination of phenylpropanolamine in dosage forms using dimethylaminobenzaldehyde as a derivatizing reagent

    International Nuclear Information System (INIS)

    Rind, F.M.A.; Khushawar, M.Y.

    2000-01-01

    Phenylpropanolamine (PPA) was extracted from slightly alkaline medium in chloroform, derivatized with dimethylaminobenzaldehyde (DAB) and determined by spectrophotometry at 377 nm. Beer's law was obeyed for 4.5-13.5 mu g. After the extraction of PPA in organic phase, paracetamole remaining in the aqueous phase could also be determined by spectrophotometry at 291 nm. The method was applied for the determination of PPA and paracetamole in the pharmaceutical preparations. Tavagyl-D, sinulab and Panadol labels with RSD within 0.4-0.8%. (author)

  18. Effects of derivatization reagents consisting of n-alkyl chloroformate/n-alcohol combinations in LC-ESI-MS/MS analysis of zwitterionic antiepileptic drugs.

    Science.gov (United States)

    Kostić, Nađa; Dotsikas, Yannis; Malenović, Anđelija; Medenica, Mirjana

    2013-11-15

    In the current study, three antiepileptic drugs with zwitterionic properties, namely vigabatrin, pregabalin and gabapentin, were chosen as model analytes to undergo derivatization by applying various n-alkyl chloroformate/n-alcohol combinations, followed by LC-ESI-MS/MS analysis. The employment of 16 combinations per drug using methyl, ethyl, propyl or butyl chloroformate coupled with methanol, ethanol, propanol or butanol, greatly affected a series of parameters of the derivatives, such as retention time on C8 column, signal expressed via areas, limit of detection values, as well as the yields of the main and side reactions. Practically, even slight modification of n-alkyl group of either chloroformate or alcohol resulted in significant changes in the chromatographic and mass spectrometric behavior of the novel derivative. It was clearly demonstrated that all the estimated parameters were highly correlated with the length of n-alkyl groups of the involved chloroformate and alcohol. The most significant influence was monitored in peak area values, indicating that the length of the n-alkyl chain plays an important role in electrospray ionization efficiency. For this parameter, increasing the n-alkyl chain from methyl to butyl led to increment up to 2089%, 508.7% and 1075% for area values of derivatized vigabatrin, pregabalin and gabapentin, respectively. These changes affected also the corresponding values of limits of detection, with the estimated improvements up to 1553%, 397.7% and 875.0% for the aforementioned derivatized drugs, respectively. Besides the obvious utilization of these conclusions in the development of bioanalytical methods for these analytes with the current protocol, this study offers valuable data which can be useful in more general approaches, giving insights into the effects of this derivatization reaction and its performances. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    Science.gov (United States)

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  20. Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase.

    Science.gov (United States)

    Nguyen, Kiet T; Wu, Jen-Chieh; Boylan, Julie A; Gherardini, Frank C; Pei, Dehua

    2007-12-15

    Peptide deformylase (PDF, E.C. 3.5.1.88) catalyzes the removal of N-terminal formyl groups from nascent ribosome-synthesized polypeptides. PDF contains a catalytically essential divalent metal ion, which is tetrahedrally coordinated by three protein ligands (His, His, and Cys) and a water molecule. Previous studies revealed that the metal cofactor is a Fe2+ ion in Escherichia coli and many other bacterial PDFs. In this work, we found that PDFs from two iron-deficient bacteria, Borrelia burgdorferi and Lactobacillus plantarum, are stable and highly active under aerobic conditions. The native B. burgdorferi PDF (BbPDF) was purified 1200-fold and metal analysis revealed that it contains approximately 1.1 Zn2+ ion/polypeptide but no iron. Our studies suggest that PDF utilizes different metal ions in different organisms. These data have important implications in designing PDF inhibitors and should help address some of the unresolved issues regarding PDF structure and catalytic function.

  1. Investigation of pH response and photo-control of wettability on spiropyran-derivatized surfaces

    Science.gov (United States)

    Park, Choong-Do

    2009-12-01

    One promising method to control a liquid drop on a surface for microfluidic devices is to use the surface tension gradient on a photo-responsive surface by light irradiation. A photo-switchable spiropyran monolayer was prepared on smooth glass or silicon wafers via 3-aminopropylmethyldiethoxysilane linkages. The pH response of the surface-bound spiropyran was investigated by measuring contact angle as a function of pH, since the pH value of the liquids applied to a microfluidic system can vary widely. Based on the contact angle titration and UV-Vis spectroscopic data, a protonation and deprotonation mechanism of the surface-bound spiropyran was proposed. The advancing contact angles under UV and under visible light irradiation at high pH values were about 100 smaller than those at low pH values. The decrease in contact angle under UV light with decreasing pH value was assigned to the protonation of open merocyanine (MC) to MC-OH+. Meanwhile, the decrease in contact angle under visible light was attributed to the protonation of the closed spiropryan (SP), generating a mixed state of MC-OH+ in equilibrium with N-protonated SP-NH+. In order to examine the possibility of light-induced liquid drop motion on the spiropyran-derivatized smooth surfaces, the light-induced surface tension change between SP and MC was estimated using the contact angle hysteresis (CAH) and the Lifshitz---van der Waals/Acid-Base (LWAB) approaches based on the contact angle data. The average light-induced surface energy change between the two isomers under UV and visible light exposure was 1.4 mJ/m 2, implying that the small change in surface tension is not sufficient to move a liquid droplet on the surface. Liquid drop motion requires that the light-induced switching angle be greater than the contact angle hysteresis. However, the light-induced switching angle of the spiropyran-derivatized surface was significantly smaller than the hysteresis. Thus, in order to achieve liquid drop motion on the

  2. Mass spectrometric differentiation of linear peptides composed of L-amino acids from isomers containing one D-amino acid residue.

    Science.gov (United States)

    Serafin, Scott V; Maranan, Rhonda; Zhang, Kangling; Morton, Thomas Hellman

    2005-09-01

    MS/MS of electrosprayed ions is shown to have the capacity to discriminate between peptides that differ by configuration about their alpha-carbons. It is not necessary for the peptides to possess tertiary structures that are affected by stereochemistry, since five epimers of the pentapeptide, H2N-Gly-Leu-Ser-Phe-Ala-OH (GLSFA) all display different collisionally activated dissociation (CAD) patterns of their protonated parent ions. The figure of merit, r, is a ratio of ratios of fragment ion abundances between stereoisomers, where r = 1 corresponds to no stereochemical effect. Values of r as high as 3.8 are seen for diastereomer pairs. Stereochemical effects are also seen for the diprotonated dodecapeptide H2N-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-OH (LVFFAEDVGSNK), a tryptic fragment from the amyloid beta-protein. Triply charged complexes of the protonated dodecapeptide with cobalt(II) ions undergo CAD at lower collision energies than do doubly protonated LVFFAEDVGSNK ions. Statistically significant (p < 0.01) differences between the all-L-dodecapeptide and the ones containing a d-serine or a D-aspartic acid are observed.

  3. 丹磺酰氯对异丙酚荧光衍生化的工艺研究%Study on preparation process of propofol fluorescence derivatization by dansyl chloride

    Institute of Scientific and Technical Information of China (English)

    李莹; 李莉

    2016-01-01

    目的:以丹磺酰氯(DNS-Cl)作为荧光衍生化试剂对异丙酚进行荧光衍生化方法的研究与探讨。方法 DNS-Cl 对异丙酚荧光衍生化后,衍生产物用荧光分光光度法检测,通过单因素变量法考察衍生化条件。结果当 DNS-Cl 与异丙酚的摩尔比为8∶1,在浓度为0.1 mol/L 氢氧化钠碱性条件下60℃水浴避光反应5 min后,衍生产物用环己烷萃取1 min 效果最佳。结论该荧光衍生化条件温和、反应速度快,DNS-Cl 可以应用于异丙酚的衍生化。%Objiective To explore preparation process of fluorescence derivatization for propofol by using dansyl chloride as derivatization reagent.Methods Utilize the reaction of propofol and the DNS-Cl to ob-tain a fluorescent derivative product which was detected by fluorospectrophotometry.And investigate deri-vatization conditions by single-factor variable method.Results The results of derivatization indicated that the derivatives could be obtained by the labeling reaction of DNS-Cl with propofol (DNS-Cl:propofol=8:1 in mole ratio)in the presence of sodium hydroxide (0.1 mol/L)at 60℃ for 5 min in the dark,then using cyclohexane to extract for 1 min.Conclusion DNS-Cl could be applied to derivatize for propofol,the reac-tion condition was mild and the reaction velosity is fast in the fluorescence derivatization.

  4. Stable-isotope dilution GC-MS approach for nitrite quantification in human whole blood, erythrocytes, and plasma using pentafluorobenzyl bromide derivatization: nitrite distribution in human blood.

    Science.gov (United States)

    Schwarz, Alexandra; Modun, Darko; Heusser, Karsten; Tank, Jens; Gutzki, Frank-Mathias; Mitschke, Anja; Jordan, Jens; Tsikas, Dimitrios

    2011-05-15

    Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC-MS using their (15)N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC-MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0-4°C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50°C). Potassium ferricyanide (K(3)Fe(CN)(6)) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC-MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486±280 nM in whole blood, 672±496 nM in plasma (C(P)), and 620±350 nM in erythrocytes (C(E)). The C(E)-to-C(P) ratio was 0.993±0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC-MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood

  5. Generation of accurate peptide retention data for targeted and data independent quantitative LC-MS analysis: Chromatographic lessons in proteomics.

    Science.gov (United States)

    Krokhin, Oleg V; Spicer, Vic

    2016-12-01

    The emergence of data-independent quantitative LC-MS/MS analysis protocols further highlights the importance of high-quality reproducible chromatographic procedures. Knowing, controlling and being able to predict the effect of multiple factors that alter peptide RP-HPLC separation selectivity is critical for successful data collection for the construction of ion libraries. Proteomic researchers have often regarded RP-HPLC as a "black box", while vast amount of research on peptide separation is readily available. In addition to obvious parameters, such as the type of ion-pairing modifier, stationary phase and column temperature, we describe the "mysterious" effects of gradient slope, column size and flow rate on peptide separation selectivity. Retention time variations due to these parameters are governed by the linear solvent strength (LSS) theory on a peptide level by the value of its slope S in the basic LSS equation-a parameter that can be accurately predicted. Thus, the application of shallower gradients, higher flow rates, or smaller columns will each increases the relative retention of peptides with higher S-values (long species with multiple positively charged groups). Simultaneous changes to these parameters that each drive shifts in separation selectivity in the same direction should be avoided. The unification of terminology represents another pressing issue in this field of applied proteomics that should be addressed to facilitate further progress. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  7. Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes

    OpenAIRE

    Persico, Mathieu; Bazinet, Laurent

    2017-01-01

    Peptide adsorption occurring on conventional anion- and cation-exchange membranes is one of the main technological locks in electrodialysis (ED) for hydrolysate demineralization. Hence, the peptide fouling of monovalent anion (MAP) and monovalent cation (MCP) permselective membranes was studied and compared to conventional membranes (AMX-SB and CMX-SB). It appeared that the main peptide sequences responsible for fouling were TPEVDDEALEKFDK, VAGTWY and VLVLDTDYK for both anionic membranes; and...

  8. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  9. Diversity-Oriented Syntheses by Combining CuAAC and Stereoselective INCIC Reactions with Peptides

    DEFF Research Database (Denmark)

    Wang, Yuanyuan; Madsen, Anders; Diness, Frederik

    2017-01-01

    Cascade reactions proceeding through peptide-derived N-carbamoyl iminium ions are reported. Two new reactions of N-carbamoyl iminium ions are described, including a stereoselective double cyclization generating N,N′-aminals and an acid-promoted auto-oxidation. Mechanistic investigations revealed...... that the N,N′-aminal formation is reversible under strongly acidic conditions. Both of these new reactions proved to be completely orthogonal to subsequent CuAAC chemistry. The reactions were performed in solution and on solid support. The robustness and high stereoselectivity of the methodology holds great...

  10. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  11. Gas-phase structure and fragmentation pathways of singly protonated peptides with N-terminal arginine.

    Science.gov (United States)

    Bythell, Benjamin J; Csonka, István P; Suhai, Sándor; Barofsky, Douglas F; Paizs, Béla

    2010-11-25

    The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b(2) ions or facilely rearrange to form anhydrides from which both b(2) and b(2)+H(2)O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b(2) and b(2)+H(2)O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc. 2009, 131, 14057-14065.). In addition to these findings we also report on the mechanisms for the formation of the b(1) ion, neutral loss (H(2)O, NH(3), guanidine) fragment ions, and the d(3) ion.

  12. Simultaneous determination of dihydrotestosterone and its metabolites in mouse sera by LC-MS/MS with chemical derivatization.

    Science.gov (United States)

    Gorityala, Shashank; Yang, Shuming; Montano, Monica M; Xu, Yan

    2018-07-15

    Androgens play a vital role in prostate cancer development, and their elimination and blockade are essential in the disease management. DHT is the key ligand for androgen receptor (AR) in the prostate. It is locally synthesized from testosterone. In the prostate, DHT is predominantly metabolized to α-diol and β-diol. Recent studies indicate that impaired DHT catabolism is associated with prostate cancer, signifying the necessity of a sensitive quantitative method for the determination of DHT and its metabolites. In this work, an LC-MS/MS method for the simultaneous quantification of DHT and its metabolites was developed and validated. Steroid-free sera were prepared and used for the preparation of sera calibrators and quality controls (QCs). DHT and its metabolites along with their respective stable heavy isotope labeled analytes representing internal standards were first extracted with methyl tertiary-butyl ether (MTBE) and derivatized with picolinic acid (PA). The derivatized analytes were then extracted again with MTBE, dried under nitrogen and reconstituted in the mobile phase (80% methanol and 0.2% formic acid in water). Baseline chromatographic separation of the derivatized analytes was achieved isocratically on XTerra C18 column (2.1 × 100 mm) using the mobile phase at a flow rate of 0.25 mL/min. Quantitation was performed using multiple-reaction-monitoring mode with positive electrospray ionization. The method has calibration ranges from 0.0500 ng/mL to 50.0 ng/mL for DHT and its two metabolites with acceptable assay precision, accuracy, recovery, and matrix factor. It was applied to the determination of DHT and its metabolites in an animal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    Belov, Mikhail E.; Anderson, Gordon A.; Wingerd, Mark A.; Udseth, Harold R.; Tang, Keqi; Prior, David C.; Swanson, Kenneth R.; Buschbach, Michael A.; Strittmatter, Eric F.; Moore, Ronald J.; Smith, Richard D.

    2004-01-01

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  14. Simultaneous identification and quantification of bisphenol A and 12 bisphenol analogues in environmental samples using precolumn derivatization and ultra high performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Wang, Zhonghe; Yu, Jing; Yao, Jiaxi; Wu, Linlin; Xiao, Hang; Wang, Jun; Gao, Rong

    2018-02-10

    A method for the identification and quantification of bisphenol A and 12 bisphenol analogues in river water and sediment samples combining liquid-liquid extraction, precolumn derivatization, and ultra high-performance liquid chromatography coupled with tandem mass spectrometry was developed and validated. Analytes were extracted from the river water sample using a liquid-liquid extraction method. Dansyl chloride was selected as a derivatization reagent. Derivatization reaction conditions affecting production of the dansyl derivatives were tested and optimized. All the derivatized target compounds were well separated and eluted in 10 min. Dansyl chloride labeled compounds were analyzed using a high-resolution mass spectrometer with electrospray ionization in the positive mode, and the results were confirmed and quantified in the parallel reaction monitoring mode. The method validation results showed a satisfactory level of sensitivity. Linearity was assessed using matrix-matched standard calibration, and good correlation coefficients were obtained. The limits of quantification for the analytes ranged from 0.005 to 0.02 ng/mL in river water and from 0.15 to 0.80 ng/g in sediment. Good reproducibility of the method in terms of intra- and interday precision was achieved, yielding relative standard deviations of less than 10.1 and 11.6%, respectively. Finally, this method was successfully applied to the analysis of real samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid chromatographic determination of microcystins in water samples following pre-column excimer fluorescence derivatization with 4-(1-pyrene)butanoic acid hydrazide.

    Science.gov (United States)

    Hayama, Tadashi; Katoh, Kenji; Aoki, Takayoshi; Itoyama, Miki; Todoroki, Kenichiro; Yoshida, Hideyuki; Yamaguchi, Masatoshi; Nohta, Hitoshi

    2012-11-28

    A method to measure the concentrations of microcystins (MCs) in water samples has been developed by incorporating pre-column fluorescence derivatization and liquid chromatography (LC). A solid-phase extraction for pretreatment was used to extract the MCs in water samples. The MCs were derivatized with excimer-forming 4-(1-pyrene)butanoic acid hydrazide (PBH). The MCs could then be detected by fluorescence after separation with a pentafluorophenyl (PFP)-modified superficially porous (core shell) particle LC column. The derivatization reactions of MCs with PBH proceeded easily in the presence of 4,6-dimethoxy-1,3,5-triazin-2-yl-4-methylmorpholinium (DMT-MM) as a condensation reagent, and the resulting derivatives could be easily separated on the PFP column. The derivatives were selectively detected at excimer fluorescence wavelengths (440-540 nm). The instrument detection limit and the instrument quantification limit of the MCs standards were 0.4-1.2 μg L(-1) and 1.4-3.9 μg L(-1), respectively. The method was validated at 0.1 and 1.0 μg L(-1) levels in tap and pond water samples, and the recovery of MCs was between 67 and 101% with a relative standard deviation of 11%. The proposed method can be used to quantify trace amounts of MCs in water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  17. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  18. Rapid Determination of the Monosaccharide Composition and Contents in Tea Polysaccharides from Yingshuang Green Tea by Pre-Column Derivatization HPLC

    Directory of Open Access Journals (Sweden)

    Yujie Ai

    2016-01-01

    Full Text Available A pre-column derivatization high-performance liquid chromatography (HPLC method was developed and optimized to characterize and quantify the monosaccharides present in tea polysaccharides (TPS isolated from Yingshuang green tea. TPS sample was hydrolyzed with trifluoroacetic acid, subjected to pre-column derivatization using 1-phenyl-3-methyl-5-pyrazolone (PMP, and separated on an Agilent TC-C18 column (4.6 mm × 250 mm, 5 μm with UV detection at 250 nm. A mixture of ten PMP derivatives of standard monosaccharides (mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, xylose, galactose, arabinose, and fucose could be baseline separated within 20 min. Moreover, quantitative analysis of the component monosaccharides in Yingshuang green tea TPS was achieved, indicating the TPS consisted of mannose, ribose, rhamnose, glucuronic acid, galacturonic acid, glucose, xylose, galactose, and arabinose in the molar contents of 0.72, 0.78, 0.89, 0.13, 0.15, 0.36, 0.39, 0.36, 0.36, and 0.38 μM, respectively. Recovery efficiency for component monosaccharides from TPS ranged from 93.6 to 102.4% with RSD values lower than 2.5%. In conclusion, pre-column derivatization HPLC provides a rapid, reproducible, accurate, and quantitative method for analysis of the monosaccharide composition and contents in TPS, which may help to further explore the relationship between TPS monosaccharides isolated from different tea varieties and their biological activity.

  19. Improved Gas Chromatographic Determination of Guanidino Compounds Using Isovaleroylacetone and Ethyl Chloroformate as Derivatizing Reagents.

    Science.gov (United States)

    Zounr, Rizwan Ali; Khuhawar, Mumammad Yar; Jahangir, Taj Muhammad; Alamgir, Malik

    2016-01-01

    An improved GC method in terms of sensitivity and decrease in the analysis time has been developed for the analysis of eight guanidino compounds: guanidine (G), methylguanidine (MG), creatinine (CTN), guanidinoacetic acid (GAA), guanidinobutyric acid (GBA), guanidinopropionic acid (GPA), argenine (Arg), and guanidinosuccinic acid (GSA), using isovaleroylacetone (IVA) and ethyl chloroformate (ECF) as derivatizing reagents. The separation was obtained from column HP-5 (30 m × 0.32 mm i.d.) with film thickness of 0.25 μm within 11 min. The linear calibrations were obtained with 0.5 to 50 μg/mL with coefficient of determination (R(2)) within 0.9969 - 0.9998. Limits of detections (LODs) were within 5 - 140 ng/mL. The derivatization, separation and determination was repeatable (n = 6) with relative standard deviation (RSD) within 1.2 - 3.1%. The guanidino compounds were determined in deproteinized serum of healthy volunteers and uremic patients within below LOD to 8.8 μg/mL and below LOD to 43.99 μg/mL with RSD within 1.4 - 3.6%. The recovery of guanidino compounds calculated by standard addition from serum was within 96.1 - 98.9%, with RSD 1.4 - 3.6%.

  20. An investigation of liquid secondary ion and laser desorption mass spectroscopy for the analysis of planar chromatograms

    Energy Technology Data Exchange (ETDEWEB)

    Dunphy, J.C.

    1990-11-01

    In the work described in this dissertation, interfaces between two mass spectrometric methods, liquid secondary ion mass spectrometry (LSIMS) and laser desorption/ionization Fourier transform mass spectrometry (LD/FTMS), and thin-layer chromatography (TLC) and slab gel electrophoresis were developed for bioanalytical applications. In an investigation of direct LSIMS for TLC analysis (TLC/LSIMS), mass spectra of bile acids and bile salts were characterized directly from high-performance TLC plates. The scanning ability of the LSIMS instrument was used to generate spatial profiles of the characteristic bile acid ions in the mass spectra. A procedure for the analysis of bile salts in dog bile was developed involving an extraction step, followed by TLC separation and direct TLC/LSIMS detection and semi-quantitation. For peptides, an experiment called selected-sequence monitoring'' was developed to locate target peptides related in structure in complex mixtures developed on TLC plates. Ions characteristic of the bradykinin and enkephalin peptides were used to generate spatial profiles of members of those peptide families on TLC plates. Using a Fourier transform mass spectrometer (FTMS), a fundamental investigation was conducted into the factors affecting the quality of analytical data obtained using direct laser desorption/ionization to produce mass spectra from TLC plates.

  1. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  2. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins

    Directory of Open Access Journals (Sweden)

    Aida Verdes

    2016-04-01

    Full Text Available Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1 delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2 identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3 chemical and recombinant synthesis of promising peptide toxins; (4 structural characterization through experimental and computational methods; (5 determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6 optimization of peptide toxin affinity and selectivity to molecular target; and (7 development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.

  3. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction.

    Science.gov (United States)

    Zeng, Mingfei; Cao, Huachuan

    2018-04-15

    Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    Science.gov (United States)

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  5. Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC–ESI-MS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianyang; Liu, Danting [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Xin, Baozhong; Cechner, Karen [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Xiang [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Wang, Heng, E-mail: Wang@ddcclinic.org [DDC Clinic, Center for Special Needs Children, 14567 Madison Road, Middlefield, OH 44062 (United States); Zhou, Aimin, E-mail: a.zhou@csuohio.edu [Clinical Chemistry Program, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States); Center for Gene Regulation in Health and Diseases, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115 (United States)

    2016-07-27

    Gangliosides are found in abundance in the central nervous system of vertebrates. Their metabolic disruption and dysfunction are associated with various neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. In order to improve our understanding of the etiology of these diseases, analytical ganglioside assays with sufficient specificity and sensitivity in relevant biological matrices are required. In the present work we have developed and validated a reverse-phase ultra-performance liquid chromatography (UPLC)/tandem mass spectrometry (MS) method for determining monosialogangliosides GM1, GM2, and GM3 present in human plasma. Compared with our previous method, this method enhanced, by 15 fold, MS responses of the analytes by employing 2-(2-Pyridilamino)-ethylamine (PAEA) & 4-(4, 6-Dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM)-based derivatization. The analytes and internal standards were derivatized with PAEA&DMTMM after extraction from plasma using a protein precipitation procedure. They were then purified using liquid–liquid partitioning. When the samples were then analyzed by UPLC-MS/MS with a multiple reaction monitoring (MRM) mode, we achieved superior sensitivity and specificity. This method was evaluated for extraction recovery, calibration linearity, precision, accuracy, and lower limit of quantification (LLOQ). The validated method was successfully applied to monitor monosialoganglioside levels in the plasma from patients with GM3 synthase deficiency. With significantly increased sensitivity, we have, for the first time, detected a significant amount of GM3 in the affected patients. - Highlights: • A UPLC/MS/MS method for analyzing monosialogangliosides GM1, GM2, and GM3 in human plasma was developed and validated. • PAEA&DMTMM-based derivatization greatly improved the sensitivity. • The method was applied to measure GM1, GM2, and GM3 in the plasma from the patients with GM3 synthase

  6. A Probabilistic Framework for Peptide and Protein Quantification from Data-Dependent and Data-Independent LC-MS Proteomics Experiments

    Science.gov (United States)

    Richardson, Keith; Denny, Richard; Hughes, Chris; Skilling, John; Sikora, Jacek; Dadlez, Michał; Manteca, Angel; Jung, Hye Ryung; Jensen, Ole Nørregaard; Redeker, Virginie; Melki, Ronald; Langridge, James I.; Vissers, Johannes P.C.

    2013-01-01

    A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods. PMID:22871168

  7. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  8. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  9. Profiling and relative quantification of phosphatidylethanolamine based on acetone stable isotope derivatization.

    Science.gov (United States)

    Wang, Xiang; Wei, Fang; Xu, Ji-Qu; Lv, Xin; Dong, Xu-Yan; Han, Xianlin; Quek, Siew-Young; Huang, Feng-Hong; Chen, Hong

    2016-01-01

    Phosphatidylethanolamine (PE) is considered to be one of the pivotal lipids for normal cellular function as well as disease initiation and progression. In this study, a simple, efficient, reliable, and inexpensive method for the qualitative analysis and relative quantification of PE, based on acetone stable isotope derivatization combined with double neutral loss scan-shotgun electrospray ionization tandem-quadrupole mass spectrometry analysis (ASID-DNLS-Shotgun ESI-MS/MS), was developed. The ASID method led to alkylation of the primary amino groups of PE with an isopropyl moiety. The use of acetone (d0-acetone) and deuterium-labeled acetone (d6-acetone) introduced a 6 Da mass shift that was ideally suited for relative quantitative analysis, and enhanced sensitivity for mass analysis. The DNLS model was introduced to simultaneously analyze the differential derivatized PEs by shotgun ESI-MS/MS with high selectivity and accuracy. The reaction specificity, labeling efficiency, and linearity of the ASID method were thoroughly evaluated in this study. Its excellent applicability was validated by qualitative and relative quantitative analysis of PE species presented in liver samples from rats fed different diets. Using the ASID-DNLS-Shotgun ESI-MS/MS method, 45 PE species from rat livers have been identified and quantified in an efficient manner. The level of total PEs tended to decrease in the livers of rats on high fat diets compared with controls. The levels of PE 32:1, 34:3, 34:2, 36:3, 36:2, 42:10, plasmalogen PE 36:1 and lyso PE 22:6 were significantly reduced, while levels of PE 36:1 and lyso PE 16:0 increased. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Conformation-specific spectroscopy of capped glutamine-containing peptides: role of a single glutamine residue on peptide backbone preferences.

    Science.gov (United States)

    Walsh, Patrick S; Dean, Jacob C; McBurney, Carl; Kang, Hyuk; Gellman, Samuel H; Zwier, Timothy S

    2016-04-28

    The conformational preferences of a series of short, aromatic-capped, glutamine-containing peptides have been studied under jet-cooled conditions in the gas phase. This work seeks a bottom-up understanding of the role played by glutamine residues in directing peptide structures that lead to neurodegenerative diseases. Resonant ion-dip infrared (RIDIR) spectroscopy is used to record single-conformation infrared spectra in the NH stretch, amide I and amide II regions. Comparison of the experimental spectra with the predictions of calculations carried out at the DFT M05-2X/6-31+G(d) level of theory lead to firm assignments for the H-bonding architectures of a total of eight conformers of four molecules, including three in Z-Gln-OH, one in Z-Gln-NHMe, three in Ac-Gln-NHBn, and one in Ac-Ala-Gln-NHBn. The Gln side chain engages actively in forming H-bonds with nearest-neighbor amide groups, forming C8 H-bonds to the C-terminal side, C9 H-bonds to the N-terminal side, and an amide-stacked geometry, all with an extended (C5) peptide backbone about the Gln residue. The Gln side chain also stabilizes an inverse γ-turn in the peptide backbone by forming a pair of H-bonds that bridge the γ-turn and stabilize it. Finally, the entire conformer population of Ac-Ala-Gln-NHBn is funneled into a single structure that incorporates the peptide backbone in a type I β-turn, stabilized by the Gln side chain forming a C7 H-bond to the central amide group in the β-turn not otherwise involved in a hydrogen bond. This β-turn backbone structure is nearly identical to that observed in a series of X-(AQ)-Y β-turns in the protein data bank, demonstrating that the gas-phase structure is robust to perturbations imposed by the crystalline protein environment.

  11. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES OF ENTEROCOCCUS FAECIUM].

    Science.gov (United States)

    Vasilchenko, A S; Rogozhin, E A; Valyshev, A V

    2015-01-01

    Isolate bacteriocins from Enterococcus faecium metabolites and characterize their effect on cells of Gram positive (Listeria monocytogenes) and Gram negative (Escherichia coli) bacteria. Methods of solid-phase extraction, ion-exchange and reversed phase chromatography were applied for isolation of bacteriocins from cultural medium of bacteria MALDI time-of-flight mass-spectrometry was used for characterization of the obtained preparations. The mechanism of biological effect of peptides was evaluated using DNA-tropic dyes (SYTO 9 and PI) with subsequent registration of fluorescence spectra: Atomic-force microscopy (AFM) was used for characterization of morpho-functional reaction of target cells. Peptide fractions with mass of 1.0 - 3.0 kDa were isolated from enterococci metabolites, that inhibit the growth of indicator microorganisms. E. faecium strain exoproducts were shown to increase membrane permeability during interaction with L. monocytogenes, that results in subsequent detectable disturbance of normal cell morphology of listeria. Alterations of E. coli surface during the effect of purified peptide fraction was detected using AFM. The studies carried out have revealed the effect of bacteriocins of enterococci on microorganisms with various types of cell wall composition and have confirmed the importance of bacterial barrier structure permeability disturbance in the mechanism of antimicrobial effect of enterocins.

  12. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  13. Synthesis and assessment of peptide-nanocellulosic biosensors

    Science.gov (United States)

    Nanocellulose is an ideal transducer surface for biosensors: it provides a high surface area, easily derivatized with bioactive molecules, and abrogates binding of proteins present in biological fluids where analytes and clinical biomarkers are of interest. Here an example of approaches to biosenso...

  14. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  15. Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Faraji, M; Adeli, M

    2017-04-15

    A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL -1 with a determination coefficient (R 2 ) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL -1 , respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL -1 levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. On Selective Derivatization of meso-Tetraarylporphyrins (A Microreview)

    International Nuclear Information System (INIS)

    Ostrowski, S.

    2003-01-01

    The studies on selective derivatization in one or two aromatic rings of meso-tetraarylporphyrin systems (and their zinc and copper complexes) using (a) selective nitration, (b) Vicarious Nucleophilic Substitution of Hydrogen(VNS), and (c) alkylation of the above intermediates with alkyl halides, are reported. The stepwise selective nitration of meso-aryl substituted porphyrins with fuming yellow nitric acid (d= 1.53) at the tempreture 0 deg to 20 deg results in the formation of 5-(4-nitroaryl)- 10, 15, 20-triarylporphyrins, 5,10-bis(4-nitroaryl)-15,20-diarylporphrins or trinitro- and tetranitro-derivatives, respectively, in good or reasonable yield. The above intermediates, after simple transformation to their copper or zinc complexes react with carbanions bearing leaving groups at the carbanionic center, according to VNS scheme. This reaction can be also realized at low temperature (-30 deg- 40 deg) without complexation of the parent nitroporphyrins. Alkylation of the products obtained with alkyl halides or alkyl halides bearing multiple bonds in the carbon chain led to useful compounds for further functionalization . (Author) 53 refs., 7sches., 4 figs

  17. Evaluation of peptide adsorption-controlled liquid chromatography-tandem mass spectrometric (PAC-LC-MS/MS) method for simple and simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides in dog cerebrospinal fluid.

    Science.gov (United States)

    Goda, Ryoya; Kobayashi, Nobuhiro

    2012-05-01

    To evaluate the usefulness of the peptide adsorption-controlled liquid chromatography-tandem mass spectrometry (PAC-LC-MS/MS) for reproducible measurement of peptides in biological fluids, simultaneous quantitation of amyloid β 1-38, 1-40, 1-42 and 1-43 peptides (Aβ38, Aβ40, Aβ42 and Aβ43) in dog cerebrospinal fluid (CSF) was tried. Each stable isotope labeled Aβ was used as the internal standard to minimize the influence of CSF matrix on the reproducible Aβ quantitation. To reduce a loss of Aβ during the pretreatment procedures, the dog CSF diluted by water-acetic acid-methanol (2:6:1, v/v/v) was loaded on PAC-LC-MS/MS directly. Quantification of the Aβ in the diluted dog CSF was carried out using multiple reaction monitoring (MRM) mode. The [M+5H(5+)] and b(5+) ion fragment of each peptide were chosen as the precursor and product ions for MRM transitions of each peptide. The calibration curves were drawn from Aβ standard calibration solutions using PAC-LC-MS/MS. Analysis of dog CSF samples suggests that the basal concentration of Aβ38, Aβ40, Aβ42 and Aβ43 in dog CSF is approximately 300, 900, 200 and 30 pM, respectively. This is the first time Aβ concentrations in dog CSF have been reported. Additionally, the evaluation of intra- and inter-day reproducibility of analysis of Aβ standard solution, the freeze-thaw stability and the room temperature stability of Aβ standard solution suggest that the PAC-LC-MS/MS method enables reproducible Aβ quantitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cnidarian Neurotoxic Peptides Affecting Central Nervous System Targets.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Hernández-Guzmán, Ulises; Sánchez-Rodríguez, Judith; Arreguín-Espinosa, Roberto

    2016-01-01

    Natural products from animal venoms have been used widely in the discovery of novel molecules with particular biological activities that enable their use as potential drug candidates. The phylum Cnidaria (jellyfish, sea anemones, corals zoanthids, hydrozoans, etc.) is the most ancient venomous phylum on earth. Its venoms are composed of a complex mixture of peptidic compounds with neurotoxic and cytolitic properties that have shown activity on mammalian systems despite the fact that they are naturally targeted against fish and invertebrate preys, mainly crustaceans. For this reason, cnidarian venoms are an interesting and vast source of molecules with a remarkable activity on central nervous system, targeting mainly voltage-gated ion channels, ASIC channels, and TRPV1 receptors. In this brief review, we list the amino acid sequences of most cnidarian neurotoxic peptides reported to date. Additionally, we propose the inclusion of a new type of voltage-gated sea anemone sodium channel toxins based on the most recent reports.

  19. Fast derivatization of fatty acids in different meat samples for gas chromatography analysis.

    Science.gov (United States)

    Figueiredo, Ingrid Lima; Claus, Thiago; Oliveira Santos Júnior, Oscar; Almeida, Vitor Cinque; Magon, Thiago; Visentainer, Jesuí Vergilio

    2016-07-22

    In order to analyze the composition of fatty acids employing gas chromatography as the separation method, a derivatization of lipids using esterification and transesterification reactions is needed. The methodologies currently available are time consuming and use large amounts of sample and reagents. Thus, this work proposes a new procedure to carry out the derivatization of fatty acids without the need for prior extraction of lipids. The use of small amounts of sample (100mg) allows the analysis to be performed in specific parts of animals, in most cases without having them slaughtered. Another benefit is the use of small amounts of reagents (only 2mL of NaOH/Methanol and H2SO4/Methanol). The use of an experimental design procedure (Design Expert software) allows the optimization of the alkaline and acid reaction times. The procedure was validated for five minutes in both steps. The method was validated for bovine fat, beef, chicken, pork, fish and shrimp meats. The results for the merit figures of accuracy (from 101.07% to 109.18%), precision (RSDintra-day (from 0.65 to 3.93%), RSDinter-day (from 1.57 to 5.22%)), linearity (R(2)=0.9864) and robustness confirmed that the new method is satisfactory within the linear range of 2-30% of lipids in the sample. Besides the benefits of minimizing the amount of samples and reagents, the procedure enables gas chromatography sample preparation in a very short time compared with traditional procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  1. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    Science.gov (United States)

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  2. Preparative purification of a high-mannose type N-glycan from soy bean agglutinin by hydrazinolysis and tyrosinamide derivatization.

    Science.gov (United States)

    Evers, D L; Hung, R L; Thomas, V H; Rice, K G

    1998-12-15

    The N-linked oligosaccharide from soy bean agglutinin (Man9) was isolated on a preparative scale following derivatization with Boc-tyrosine. The procedure utilized preparative hydrazinolysis to release the oligosaccharide and yielded multi-micromol quantities of Boc-tyrosine-Man9 which was characterized by 1H NMR and ES-MS. Copyright 1998 Academic Press.

  3. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection.

    Science.gov (United States)

    Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W

    2018-05-22

    Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Hydrazine reagents as derivatizing agents in environmental analysis--a critical review.

    Science.gov (United States)

    Vogel, M; Büldt, A; Karst, U

    2000-04-01

    Hydrazine reagents are a well-known group of derivatizing agents for the determination of aldehydes and ketones in liquid and gaseous samples. Within this article, the most important hydrazine reagents are critically summarized, and their major applications in different fields, including environmental analysis, food chemistry and industrial analysis are introduced. As 2,4-dinitrophenylhydrazine (DNPH) is the basic reagent for several international standard procedures, its properties are discussed in detail. Particular focus is directed on the chemistry of the hydrazine reagents, and chemical interferences are considered. Recent methods for the determination of various oxidants using hydrazine reagents are presented as well. Due to limited space, this review does not cover the related field of carbohydrate analysis, although many chemical aspects are similar.

  5. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    Science.gov (United States)

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  6. Oxidative damage to collagen and related substrates by metal ion/hydrogen peroxide systems

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1997-01-01

    . In this study electron paramagnetic resonance spectroscopy with spin trapping has been used to identify radicals formed on collagen and related materials by metal ion-H2O2 mixtures. Attack of the hydroxyl radical, from a Fe(II)-H2O2 redox couple, on collagen peptides gave signals from both side chain (.CHR...... are similar to those from the alpha-carbon site of peptides and the side-chain of lysine. Enzymatic digestion of the large, protein-derived, species releases similar low-molecular-weight adducts. The metal ion employed has a dramatic effect on the species observed. With Cu(I)-H2O2 or Cu(II)-H2O2 instead of Fe(II)-H......2O2, evidence has been obtained for: i) altered sites of attack and fragmentation, ii) C-terminal decarboxylation, and iii) hydrogen abstraction at N-terminal alpha-carbon sites. This altered behaviour is believed to be due to the binding of copper ions to some substrates and hence site...

  7. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  8. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    Science.gov (United States)

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  9. Flagellar glycosylation in Clostridium botulinum.

    Science.gov (United States)

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  10. [An improved method of preparing protein and peptide probes in mass spectrometry with ionization of division fragments by californium-252 (TOF-PDMS)].

    Science.gov (United States)

    Chivanov, V D; Zubarev, R A; Aksenov, S A; Bordunova, O G; Eremenko, V I; Kabanets, V M; Tatarinova, V I; Mishnev, A K; Kuraev, V V; Knysh, A N; Eremenko, I A

    1996-08-01

    The addition of organic acids (picric, oxalic, citric, or tartaric) to peptide and protein samples was found to significantly increase the yield of their quasi-molecular ions (QMI) in time-of-flight 252Cf plasma desorption mass spectrometry. The yield of the ions depended on the pKa of the acid added.

  11. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. II. Changes in Na+ and Ca2+ fluxes, Na+/K+ pump activity, and intracellular pH

    International Nuclear Information System (INIS)

    Mendoza, S.A.; Schneider, J.A.; Lopez-Rivas, A.; Sinnett-Smith, J.W.; Rozengurt, E.

    1986-01-01

    The amphibian tetradecapeptide, bombesin, and structurally related peptides caused a marked increase in ouabain-sensitive 86 Rb + uptake (a measure of Na + /K + pump activity) in quiescent Swiss 3T3 cells. This effect occurred within seconds after the addition of the peptide and appeared to be mediated by an increase in Na + entry into the cells. The effect of bombesin on Na + entry and Na + /K + pump activity was concentration dependent with half-maximal stimulation occurring at 0.3-0.4 nM. The structurally related peptides litorin, gastrin-releasing peptide, and neuromedin B also stimulated ouabain-sensitive 86 Rb + uptake; the relative potencies of these peptides in stimulating the Na + /K + pump were comparable to their potencies in increasing DNA synthesis. Bombesin increased Na + influx, at least in part, through an Na + /H + antiport. The peptide augmented intracellular pH and this effect was abolished in the absence of extracellular Na + . In addition to monovalent ion transport, bombesin and the structurally related peptides rapidly increased the efflux of 45 Ca 2+ from quiescent Swiss 3T3 cells. This Ca 2+ came from an intracellular pool and the efflux was associated with a 50% decrease in total intracellular Ca 2+ . The peptides also caused a rapid increase in cytosolic free calcium concentration. Prolonged pretreatment of Swiss 3T3 cells with phorbol dibutyrate, which causes a loss of protein kinase C activity, greatly decreased the stimulation of 86 Rb + uptake and Na + entry by bombesin implicating this phosphotransferase system in the mediation of part of these responses to bombesin. Since some activation of monovalent ion transport by bombesin was seen in phorbol dibutyrate-pretreated cells, it is likely that the peptide also stimulates monovalent ion transport by a second mechanism

  12. Synthesis of novel chitosan resin derivatized with serine moiety for the column collection/concentration of uranium and the determination of uranium by ICP-MS

    International Nuclear Information System (INIS)

    Oshita, Koji; Oshima, Mitsuko; Gao Yunhua; Lee, Kyue-Hyung; Motomizu, Shoji

    2003-01-01

    A chitosan resin derivatized with serine moiety (serine-type chitosan) was newly developed by using the cross-linked chitosan as a base material. The adsorption behavior of trace amounts of metal ions on the serine-type chitosan resin was systematically examined by packing it in a mini-column, passing a metal solution through it and measuring metal ions in the effluent by ICP-MS. The resin could adsorb a number of metal cations at pH from neutral to alkaline region, and several oxoanionic metals at acidic pH region by an anion exchange mechanism. Uranium and Cu could be adsorbed selectively at pH from acidic to alkaline region by a chelating mechanism; U could be adsorbed quantitatively even at pH 3-4. Uranium adsorbed on the resin was easily eluted with 1 M nitric acid: the preconcentration (5-, 10-, 50- and 100-fold) of U was possible. The column treatment method was used prior to the ICP-MS measurement of U in natural river, sea and tap waters; R.S.D. were 2.63, 1.13 and 1.37%, respectively. Uranium in tap water could be determined by 10-fold preconcentration: analytical result was 1.46±0.02 ppt. The resin also was applied to the recovery of U in sea water: the recovery tests for artificial and natural sea water were 97.1 and 93.0%, respectively

  13. [Determination of organotin compounds in plastic products by GC/MS after ethyl derivatization with sodium tetraethylborate].

    Science.gov (United States)

    Ohno, Hiroyuki; Suzuki, Masako; Nakashima, Shigehito; Aoyama, Taiki; Mitani, Kazunori

    2002-08-01

    A simultaneous determination method for 9 organotin compounds in polyvinyl chloride (PVC) and silicone products used as kitchen utensils and food packages was developed using ethyl derivatization with sodium tetraethylborate (NaBEt4). Organotin compounds were extracted with acetone-hexane (3:7) from the samples after acidification and the extract was filtered and concentrated at under 40 degrees C. After centrifugal separation, these compounds were derivatized with 2% NaBEt4 solution and determined by GC/MS. This method was applicable for simple routine analysis. Recoveries of spiked compounds were 49.1-118.1% for 3 PVC products and 88.8-102.2% for a siliconized paper. Monooctyltin, dioctyltin and trioctyltin compounds were found in all PVC food containers at the levels of 123-1,380 micrograms/g, 1,770-13,200 micrograms/g and 6.6-139 micrograms/g, respectively. They also were found in 3 gloves, 5 spouts, 1 hose and 5 pipes. Some PVC products contained monomethyltin, dimethyltin, trimethyltin, monobutyltin and dibutyltin compounds at the levels of 97.3-433 micrograms/g, 96.5-5,120 micrograms/g, 8.5-24.9 micrograms/g, 1.2-852 micrograms/g and 1.2-29.4 micrograms/g, respectively.

  14. Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides

    NARCIS (Netherlands)

    Kabel, M.A.; Heijnis, W.H.; Bakx, E.J.; Kuijpers, I.J.; Voragen, A.G.J.; Schols, H.A.

    2006-01-01

    Various plant polysaccharide derived mono- and oligosaccharides were derivatized with the fluorescent 9-aminopyrene-1,4,6-trisulfonate (APTS) and subjected to capillary electrophoresis (CE) in combination with laser induced fluorescence (LIF) detection. CE-LIF was suitable for mol-based

  15. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions.

    Science.gov (United States)

    Høgstedt, Ulrich B; Schwach, Grégoire; van de Weert, Marco; Østergaard, Jesper

    2016-10-10

    Protein-protein and peptide-peptide (self-)interactions are of key importance in understanding the physiochemical behavior of proteins and peptides in solution. However, due to the small size of peptide molecules, characterization of these interactions is more challenging than for proteins. In this work, we show that protein-protein and peptide-peptide interactions can advantageously be investigated by measurement of the diffusion coefficient using Taylor Dispersion Analysis. Through comparison to Dynamic Light Scattering it was shown that Taylor Dispersion Analysis is well suited for the characterization of protein-protein interactions of solutions of α-lactalbumin and human serum albumin. The peptide-peptide interactions of three selected peptides were then investigated in a concentration range spanning from 0.5mg/ml up to 80mg/ml using Taylor Dispersion Analysis. The peptide-peptide interactions determination indicated that multibody interactions significantly affect the PPIs at concentration levels above 25mg/ml for the two charged peptides. Relative viscosity measurements, performed using the capillary based setup applied for Taylor Dispersion Analysis, showed that the viscosity of the peptide solutions increased with concentration. Our results indicate that a viscosity difference between run buffer and sample in Taylor Dispersion Analysis may result in overestimation of the measured diffusion coefficient. Thus, Taylor Dispersion Analysis provides a practical, but as yet primarily qualitative, approach to assessment of the colloidal stability of both peptide and protein formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Isolation, chemical and functional characterization of several new K(+)-channel blocking peptides from the venom of the scorpion Centruroides tecomanus.

    Science.gov (United States)

    Olamendi-Portugal, Timoteo; Bartok, Adam; Zamudio-Zuñiga, Fernando; Balajthy, Andras; Becerril, Baltazar; Panyi, Gyorgy; Possani, Lourival D

    2016-06-01

    Six new peptides were isolated from the venom of the Mexican scorpion Centruroides tecomanus; their primary structures were determined and the effects on ion channels were verified by patch-clamp experiments. Four are K(+)-channel blockers of the α-KTx family, containing 32 to 39 amino acid residues, cross-linked by three disulfide bonds. They all block Kv1.2 in nanomolar concentrations and show various degree of selectivity over Kv1.1, Kv1.3, Shaker and KCa3.1 channels. One peptide has 42 amino acids cross-linked by four disulfides; it blocks ERG-channels and belongs to the γ-KTx family. The sixth peptide has only 32 amino acid residues, three disulfide bonds and has no effect on the ion-channels assayed. It also does not have antimicrobial activity. Systematic numbers were assigned (time of elution on HPLC): α-KTx 10.4 (time 24.1); α-KTx 2.15 (time 26.2); α-KTx 2.16 (time 23.8); α-KTx 2.17 (time 26.7) and γ-KTx 1.9 (elution time 29.6). A partial proteomic analysis of the short chain basic peptides of this venom, which elutes on carboxy-methyl-cellulose column fractionation, is included. The pharmacological properties of the peptides described in this study may provide valuable tools for understanding the structure-function relationship of K(+) channel blocking scorpion toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Brute-Force Approach for Mass Spectrometry-Based Variant Peptide Identification in Proteogenomics without Personalized Genomic Data

    Science.gov (United States)

    Ivanov, Mark V.; Lobas, Anna A.; Levitsky, Lev I.; Moshkovskii, Sergei A.; Gorshkov, Mikhail V.

    2018-02-01

    In a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al. (Nat. Biotechnol. 33, 743-749, 2015) on the feasibility of such variant peptide search, we evaluated two available approaches based on the previously suggested "open" search and the "brute-force" strategy. To improve the efficiency of these approaches, we propose an algorithm for exclusion of false variant identifications from the search results involving analysis of modifications mimicking single amino acid substitutions. Also, we propose a de novo based scoring scheme for assessment of identified point mutations. In the scheme, the search engine analyzes y-type fragment ions in MS/MS spectra to confirm the location of the mutation in the variant peptide sequence.

  18. Liquid chromatographic determination of aniline and derivatives in environmental waters at nanogram per litre levels using fluorescamine pre-column derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Djozan, D. [Univ. of Tabriz (Iran, Islamic Republic of). Dept. of Analytical Chemistry; Faraj-Zadeh, M.A. [Univ. of Tabriz (Iran, Islamic Republic of). Dept. of Analytical Chemistry

    1995-11-01

    Fluorescamine (fluram) has been used as a fluorogenic compound for pre-column derivatization of aniline and some derivatives. Anilines were derivatized with fluram in citrate buffer media (pH 5.5) to form pyrrolinones. The highly fluorescence pyrrolinones were isolated and pre-concentrated by solid phase extraction. A reversed phase, Spherisorb RP-8 column and tetrahydrofuran: Water:formic acid (42:56:2) mobile phase was used for separation. Detection method was by a sensitive fluorimetric method and quantitation was at 395 and 495 nm. The various parameters such as reaction conditions between anilines and fluram, solid phase extraction and chromatographic separation were optimized. Calibrations were linear over the range considered with excellent correlation coefficients (r>0.999). Relative standard deviations are less than 2.5% and detection limits for aniline, p-toluidine, 4-chloroaniline and 4-bromoaniline were 6, 30, 6 and 8 ng L{sup -1}, respectively. This method has been used successfully for the determination of anilines in environmental waters. (orig.)

  19. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  20. An infrared spectroscopy approach to follow β-sheet formation in peptide amyloid assemblies

    Science.gov (United States)

    Seo, Jongcheol; Hoffmann, Waldemar; Warnke, Stephan; Huang, Xing; Gewinner, Sandy; Schöllkopf, Wieland; Bowers, Michael T.; von Helden, Gert; Pagel, Kevin

    2017-01-01

    Amyloidogenic peptides and proteins play a crucial role in a variety of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These proteins undergo a spontaneous transition from a soluble, often partially folded form, into insoluble amyloid fibrils that are rich in β-sheets. Increasing evidence suggests that highly dynamic, polydisperse folding intermediates, which occur during fibril formation, are the toxic species in the amyloid-related diseases. Traditional condensed-phase methods are of limited use for characterizing these states because they typically only provide ensemble averages rather than information about individual oligomers. Here we report the first direct secondary-structure analysis of individual amyloid intermediates using a combination of ion mobility spectrometry-mass spectrometry and gas-phase infrared spectroscopy. Our data reveal that oligomers of the fibril-forming peptide segments VEALYL and YVEALL, which consist of 4-9 peptide strands, can contain a significant amount of β-sheet. In addition, our data show that the more-extended variants of each oligomer generally exhibit increased β-sheet content.

  1. Buckwheat trypsin inhibitor with helical hairpin structure belongs to a new family of plant defence peptides.

    Science.gov (United States)

    Oparin, Peter B; Mineev, Konstantin S; Dunaevsky, Yakov E; Arseniev, Alexander S; Belozersky, Mikhail A; Grishin, Eugene V; Egorov, Tsezi A; Vassilevski, Alexander A

    2012-08-15

    A new peptide trypsin inhibitor named BWI-2c was obtained from buckwheat (Fagopyrum esculentum) seeds by sequential affinity, ion exchange and reversed-phase chromatography. The peptide was sequenced and found to contain 41 amino acid residues, with four cysteine residues involved in two intramolecular disulfide bonds. Recombinant BWI-2c identical to the natural peptide was produced in Escherichia coli in a form of a cleavable fusion with thioredoxin. The 3D (three-dimensional) structure of the peptide in solution was determined by NMR spectroscopy, revealing two antiparallel α-helices stapled by disulfide bonds. Together with VhTI, a trypsin inhibitor from veronica (Veronica hederifolia), BWI-2c represents a new family of protease inhibitors with an unusual α-helical hairpin fold. The linker sequence between the helices represents the so-called trypsin inhibitory loop responsible for direct binding to the active site of the enzyme that cleaves BWI-2c at the functionally important residue Arg(19). The inhibition constant was determined for BWI-2c against trypsin (1.7×10(-1)0 M), and the peptide was tested on other enzymes, including those from various insect digestive systems, revealing high selectivity to trypsin-like proteases. Structural similarity shared by BWI-2c, VhTI and several other plant defence peptides leads to the acknowledgement of a new widespread family of plant peptides termed α-hairpinins.

  2. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  3. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  4. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  5. GC-ECNICI-MS analysis of S-nitrosothiols and nitroprusside after treatment with aqueous sulphide (S2-) and derivatization with pentafluorobenzyl bromide: Evidence of S-transnitrosylation and formation of nitrite and nitrate.

    Science.gov (United States)

    Tsikas, Dimitrios; Schmidt, Mario; Hanff, Erik; Böhmer, Anke

    2017-02-01

    A GC-MS method is reported for the quantitative analysis of S-nitrosothiols (RSNO) derived from endogenous low- and high-molecular mass thiols (RSH) including hemoglobin, cysteine, glutathione, N-acetylcysteine, and the exogenous N-acetylcysteine ethyl ester. The method is based on the conversion of RSNO to nitrite by aqueous Na 2 S (S 2- ). 15 N-Labelled analogs (RS 15 NO) or 15 N-labelled nitrite and nitrate were used as internal standards. The nitrite ( 14 NO 2 - and 15 NO 2 - ) and nitrate (O 14 NO 2 - and O 15 NO 2 - anions were derivatised by pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone and their PFB derivatives were separated by gas chromatography. After electron-capture negative-ion chemical ionization, the anions were separated by mass spectrometry and detected by selected-ion monitoring of m/z 46 for 14 NO 2 - , m/z 47 for 15 NO 2 - , m/z 62 for O 14 NO 2 - , and m/z 63 for O 15 NO 2 - . The expected thionitrites ( - S 14 NO and - S 15 NO) were not detected, suggesting that they are intermediates and rapidly exchange their S by O from water, presumably prior to PFB-Br derivatization. The reaction of S 2- with RSNO and sodium nitroprusside (SNP) resulted in the formation of nitrite and nitrate as the major and minor reaction products, respectively. The novel Na 2 S procedure was compared with established procedures based on the use of aqueous HgCl 2 or cysteine/Cu 2+ reagents to convert the S-nitroso group to nitrite. Our results provide evidence for an equilibrium S-transnitrosylation reaction between S 2- with RSNO in buffered solutions of neutral pH. Use of Na 2 S in molar excess over RSNO shifts this reaction to the right, thus allowing almost complete conversion of RSNO to nitrite and nitrate. The Na 2 S procedure should be useful for the quantitative determination of RSNO as nitrite and nitrate after PFB-Br derivatization and GC-MS analysis. The Na 2 S procedure may also contribute to explore the complex reactions of S 2- with RSNO

  6. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N

    2005-01-01

    based on TiO2microcolumns and peptide loading in 2,5-dihydroxybenzoic acid (DHB). The effect of DHB was a very efficient reduction in the binding of nonphosphorylated peptides to TiO2 while retaining its high binding affinity for phosphorylated peptides. Thus, inclusion of DHB dramatically increased...... the selectivity of the enrichment of phosphorylated peptides by TiO2. We demonstrated that this new procedure was more selective for binding phosphorylated peptides than IMAC using MALDI mass spectrometry. In addition, we showed that LC-ESI-MSMS was biased toward monophosphorylated peptides, whereas MALDI MS...... was not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  7. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    Science.gov (United States)

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.

  8. Evidence for Sequence Scrambling and Divergent H/D Exchange Reactions of Doubly-Charged Isobaric b-Type Fragment Ions

    Science.gov (United States)

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H.; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10 2+ that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10 2+ and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10 2+, suggesting that b10 2+ may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10 2+; over 30 % of the observed SORI-CID fragment ions from substance P b10 2+ had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10 2+, whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10 2+.

  9. Evidence for sequence scrambling and divergent H/D exchange reactions of doubly-charged isobaric b-type fragment ions.

    Science.gov (United States)

    Zekavat, Behrooz; Miladi, Mahsan; Al-Fdeilat, Abdullah H; Somogyi, Arpad; Solouki, Touradj

    2014-02-01

    To date, only a limited number of reports are available on structural variants of multiply-charged b-fragment ions. We report on observed bimodal gas-phase hydrogen/deuterium exchange (HDX) reaction kinetics and patterns for substance P b10(2+) that point to presence of isomeric structures. We also compare HDX reactions, post-ion mobility/collision-induced dissociation (post-IM/CID), and sustained off-resonance irradiation-collision induced dissociation (SORI-CID) of substance P b10(2+) and a cyclic peptide with an identical amino acid (AA) sequence order to substance P b10. The observed HDX patterns and reaction kinetics and SORI-CID pattern for the doubly charged head-to-tail cyclized peptide were different from either of the presumed isomers of substance P b10(2+), suggesting that b10(2+) may not exist exclusively as a head-to-tail cyclized structure. Ultra-high mass measurement accuracy was used to assign identities of the observed SORI-CID fragment ions of substance P b10(2+); over 30% of the observed SORI-CID fragment ions from substance P b10(2+) had rearranged (scrambled) AA sequences. Moreover, post-IM/CID experiments revealed the presence of two conformer types for substance P b10(2+), whereas only one conformer type was observed for the head-to-tail cyclized peptide. We also show that AA sequence scrambling from CID of doubly-charged b-fragment ions is not unique to substance P b10(2+).

  10. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.

    Science.gov (United States)

    Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C

    2017-07-01

    The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  11. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  12. Imbalance of plasma membrane ion leak and pump relationship as a new aetiological basis of certain disease states.

    Science.gov (United States)

    Ronquist, G; Waldenström, A

    2003-12-01

    The basis for life is the ability of the cell to maintain ion gradients across biological membranes. Such gradients are created by specific membrane-bound ion pumps [adenosine triphosphatases (ATPases)]. According to physicochemical rules passive forces equilibrate (dissipate) ion gradients. The cholesterol/phospholipid ratio of the membrane and the degree of saturation of phospholipid fatty acids are important factors for membrane molecular order and herewith a determinant of the degree of non-specific membrane leakiness. Other operative principles, i.e. specific ion channels can be opened and closed according to mechanisms that are specific to the cell. Certain compounds called ionophores can be integrated in the plasma membrane and permit specific inorganic ions to pass. Irrespective of which mechanism ions leak across the plasma membrane the homeostasis may be kept by increasing ion pumping (ATPase activity) in an attempt to restore the physiological ion gradient. The energy source for this work seems to be glycolytically derived ATP formation. Thus an increase in ion pumping is reflected by increased ATP hydrolysis and rate of glycolysis. This can be measured as an accumulation of breakdown products of ATP and end-products of anaerobic glycolysis (lactate). In certain disease entities, the balance between ATP formation and ion pumping may be disordered resulting in a decrease in inter alia (i.a.) cellular energy charge, and an increase in lactate formation and catabolites of adenylates. Cardiac syndrome X is proposed to be due to an excessive leakage of potassium ions, leading to electrocardiographic (ECG) changes, abnormal Tl-scintigraphy of the heart and anginal pain (induced by adenosine). Cocksackie B3 infections, a common agent in myocarditis might also induce an ionophore-like effect. Moreover, Alzheimer's disease is characterized by the formation of extracellular amyloid deposits in the brain of patients. Perturbation of cellular membranes by the

  13. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    He, Yongrui; Zhao, Xian-En; Wang, Renjun; Wei, Na; Sun, Jing; Dang, Jun; Chen, Guang; Liu, Zhiqiang; Zhu, Shuyun; You, Jinmao

    2016-11-02

    A simple, rapid, sensitive, selective, and environmentally friendly method, based on in situ derivatization ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) coupled with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using multiple reaction monitoring (MRM) mode has been developed for the simultaneous determination of food-related biogenic amines and amino acids. A new mass-spectrometry-sensitive derivatization reagent 4'-carbonyl chloride rosamine (CCR) was designed, synthesized, and first reported. Parameters and conditions of in situ DUADLLME and UHPLC-MS/MS were optimized in detail. Under the optimized conditions, the in situ DUADLLME was completed speedily (within 1 min) with high derivatization efficiencies (≥98.5%). With the cleanup and concentration of microextraction step, good analytical performance was obtained for the analytes. The results showed that this method was accurate and practical for quantification of biogenic amines and amino acids in common food samples (red wine, beer, wine, cheese, sausage, and fish).

  14. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  17. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    Synthetic peptides have frequently been used to immunize animals. However, peptides less than about 20 to 30 amino acids long are poor immunogens. In general, to increase its immunogenicity, the presentation of the peptide should be improved, and molecular weight needs to be increased. Many...... or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  18. Otimização de metodologia para derivação de desoxinivalenol através de planejamento experimental Optimization of the methodology for deoxynivalenol derivatization by experimental planning

    Directory of Open Access Journals (Sweden)

    Jaqueline Garda

    2008-01-01

    Full Text Available The objective of this work was to optimize the derivatization reaction for determining deoxynivalenol (DON by gas chromatography employing an experimental planning procedure. The factors were: temperature, reaction time, catalyst and trifluoroacetic anhydride concentration. The relative peak areas were used to evaluated the effects. The best conditions for DON derivatization were 200 µL TFAA and 18 mg sodium bicarbonate for 6 min at 74 ºC for 7 to 21 µg of DON. Under these conditions, the detection limit was 1.4 µg of DON.

  19. Combined derivatization and high-performance liquid chromatography with fluorescence and ultraviolet detection for simultaneous analysis of octreotide and gabexate mesylate metabolite in human pancreatic juice samples.

    Science.gov (United States)

    Carlucci, Giuseppe; Selvaggi, Federico; Sulpizio, Sara; Bassi, Claudio; Carlucci, Maura; Cotellese, Roberto; Ferrone, Vincenzo; Innocenti, Paolo; Locatelli, Marcello

    2015-06-01

    A simple and sensitive method based on the combination of derivatization and high-performance liquid chromatography with ultraviolet and fluorimetric detection was developed for the simultaneous determination of octreotide and gabexate mesylate metabolite in human pancreatic juice samples. Parameters of the derivatization procedure affecting extraction efficiency were optimized. The developed method was validated according to the International Conference on Harmonization guidelines. The calibration curves were linear over a range of 0.1-15 µg/mL for octreotide and 0.20-15 µg/mL for gabexate mesylate metabolite. Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The limits of detection were 0.025 and 0.05, respectively, for octreotide and gabexate mesylate metabolite. This paper reports the validation of a quantitative high performance liquid chromatography-photodiode array-fluorescence (HPLC-PDA-FL) method for the simultaneous analysis of octreotide and gabexate mesylate metabolite in pancreatic juice by protein precipitation using zinc sulfate-methanol-acetonitrile containing the derivatizing reagent, 4-fluoro-7-nitro-[2,1,3]-benzoxadiazole (NBD-F). Derivatized products of octreotide and gabexate mesylate metabolite were separated on a Luna C18 column (4.6 × 250 mm; 5 µm particle size) using a gradient with a run time of 36 min, without further purification. The method was validated over the concentration ranges 0.1-15 and 0.2-15 µg/mL for octreotide and gabexate mesylate metabolite, respectively, in human pancreatic juice. Biphalin and methyl-p-hydroxybenzoate were used as the internal standards. This method was successfully utilized to support clinical studies in humans. The results from assay validations show that the method is selective, sensitive and robust. The limit

  20. SPAK Dependent Regulation of Peptide Transporters PEPT1 and PEPT2

    Directory of Open Access Journals (Sweden)

    Jamshed Warsi

    2014-10-01

    Full Text Available Background/Aims: SPAK (STE20-related proline/alanine-rich kinase is a powerful regulator of renal tubular ion transport and blood pressure. Moreover, SPAK contributes to the regulation of cell volume. Little is known, however, about a role of SPAK in the regulation or organic solutes. The present study thus addressed the influence of SPAK on the peptide transporters PEPT1 and PEPT2. Methods: To this end, cRNA encoding PEPT1 or PEPT2 were injected into Xenopus laevis oocytes without or with additional injection of cRNA encoding wild-type, SPAK, WNK1 insensitive inactive T233ASPAK, constitutively active T233ESPAK, and catalytically inactive D212ASPAK. Electrogenic peptide (glycine-glycine transport was determined by dual electrode voltage clamp and PEPT2 protein abundance in the cell membrane by chemiluminescence. Intestinal electrogenic peptide transport was estimated from peptide induced current in Ussing chamber experiments of jejunal segments isolated from gene targeted mice expressing SPAK resistant to WNK-dependent activation (spaktg/tg and respective wild-type mice (spak+/+. Results: In PEPT1 and in PEPT2 expressing oocytes, but not in oocytes injected with water, the dipeptide gly-gly (2 mM generated an inward current, which was significantly decreased following coexpression of SPAK. The effect of SPAK on PEPT1 was mimicked by T233ESPAK, but not by D212ASPAK or T233ASPAK. SPAK decreased maximal peptide induced current of PEPT1. Moreover, SPAK decreased carrier protein abundance in the cell membrane of PEPT2 expressing oocytes. In intestinal segments gly-gly generated a current, which was significantly higher in spaktg/tg than in spak+/+ mice. Conclusion: SPAK is a powerful regulator of peptide transporters PEPT1 and PEPT2.

  1. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis.

    Science.gov (United States)

    Sato, Kae; Sato, Kiichi; Okubo, Akira; Yamazaki, Sunao

    2005-01-01

    A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.

  3. [Determination of formaldehyde and acetaldehyde in packaging paper by dansylhydrazine derivatization-high performance liquid chromatography-fluorescence detection].

    Science.gov (United States)

    Gong, Shuguo; Liang, Yong; Tang, Liyun; Huang, Ping; Dai, Yunhui

    2017-07-08

    A high performance liquid chromatography with fluorescence detection (HPLC-FLD) method was developed for the simultaneous determination of formaldehyde and acetaldehyde in packaging paper by dansylhydrazine (DNSH) derivatization. The samples were extracted by derivatization reagent for 30 min, and derived for 24 h. After purifying treatment with a PSA/C18 cartridge, a Diamonsil ® C18 column (150 mm×4.6 mm, 5 μ m) was used as stationary phase for separation, the mixtures of acetic acid aqueous solution (pH 2.55)-acetonitrile were used as mobile phases by gradient elution, and the excitation and emission wavelengths were 330 nm and 484 nm, respectively. The results showed that the recoveries of formaldehyde and acetaldehyde spiked in the samples were 81.64%-106.78%, and the relative standard deviations (RSDs) were 2.02%-5.53% ( n =5). The limits of detection of formaldehyde and acetaldehyde were 19.2 μ g/kg and 20.7 μ g/kg, respectively. The limits of quantification of formaldehyde and acetaldehyde were 63.9 μ g/kg and 69.1 μ g/kg, respectively. The method is simple, sensitive and reproducible. It provides a basic approach for the determination of trace formaldehyde and acetaldehyde.

  4. Fast and accurate preparation fatty acid methyl esters by microwave-assisted derivatization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Khoomrung, Sakda; Chumnanpuen, Pramote; Jansa-ard, Suwanee; Nookaew, Intawat; Nielsen, Jens

    2012-06-01

    We present a fast and accurate method for preparation of fatty acid methyl esters (FAMEs) using microwave-assisted derivatization of fatty acids present in yeast samples. The esterification of free/bound fatty acids to FAMEs was completed within 5 min, which is 24 times faster than with conventional heating methods. The developed method was validated in two ways: (1) through comparison with a conventional method (hot plate) and (2) through validation with the standard reference material (SRM) 3275-2 omega-3 and omega-6 fatty acids in fish oil (from the Nation Institute of Standards and Technology, USA). There were no significant differences (P>0.05) in yields of FAMEs with both validations. By performing a simple modification of closed-vessel microwave heating, it was possible to carry out the esterification in Pyrex glass tubes kept inside the closed vessel. Hereby, we are able to increase the number of sample preparations to several hundred samples per day as the time for preparation of reused vessels was eliminated. Pretreated cell disruption steps are not required, since the direct FAME preparation provides equally quantitative results. The new microwave-assisted derivatization method facilitates the preparation of FAMEs directly from yeast cells, but the method is likely to also be applicable for other biological samples.

  5. [Determination of urea in canned foods by high performance liquid chromatography-fluorescence detection coupled with precolumn derivatization].

    Science.gov (United States)

    Zeng, Qi; Zhang, Jin; Xu, Dunming; Zhang, Zhigang; Ke, Zhicheng

    2015-01-01

    A method for the determination of urea residue in canned foods by high performance liquid chromatography-fluorescence detection (HPLC-FLD) coupled with precolumn derivatization was established. The sample (5.0 g), including canned edible fungi, fruit, vegetable, fish, and meat was extracted with 20 mL 1% (v/v) acetic acid solution. The extract was centrifuged, filtrated, and then derivatized with xanthydrol. The analysis was completed with HPLC-FLD. A good linear relationship was obtained in the range of 0.1-500 mg/L with the correlation coefficients more than 0.9995. The average recoveries of urea spiked at 0.001-30 g/kg levels in five kinds of canned foods ranged from 80.2% to 109.7% with the RSDs of 2.05%-6.53%. The limit of detection (LOD) was 0.5 mg/kg, and the limit of quantitation (LOQ) was 1.0 mg/kg. The proposed procedure was then applied to the analysis of 168 real samples collected from Xiamen, Fujian Province, China. The existence of urea was found in three pork cans with contents of 10.6, 62.1 and 2.6 mg/kg, respectively. The method is stable, reliable, simple and suitable for the determination of urea in canned foods, and has great potential for routine analysis in foodstuffs.

  6. Diversity-oriented peptide stapling

    DEFF Research Database (Denmark)

    Tran, Thu Phuong; Larsen, Christian Ørnbøl; Røndbjerg, Tobias

    2017-01-01

    as a powerful method for peptide stapling. However, to date CuAAC stapling has not provided a simple method for obtaining peptides that are easily diversified further. In the present study, we report a new diversity-oriented peptide stapling (DOPS) methodology based on CuAAC chemistry. Stapling of peptides...

  7. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  8. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  9. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  10. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A; Kunze, Angelika; Carlsson, Nils; Altgä rde, Noomi; Svedhem, Sofia; Nordé n, Bengt

    2014-01-01

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  11. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  12. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  13. Therapeutic peptides for cancer therapy. Part I - peptide inhibitors of signal transduction cascades.

    Science.gov (United States)

    Bidwell, Gene L; Raucher, Drazen

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.

  14. CycloBranch: De Novo Sequencing of Nonribosomal Peptides from Accurate Product Ion Mass Spectra

    Czech Academy of Sciences Publication Activity Database

    Novák, Jiří; Lemr, Karel; Schug, K. A.; Havlíček, Vladimír

    2015-01-01

    Roč. 26, č. 10 (2015), s. 1780-1786 ISSN 1044-0305 R&D Projects: GA ČR(CZ) GAP206/12/1150 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : De novo sequencing * Nonribosomal peptides * Linear Subject RIV: CE - Biochemistry Impact factor: 3.031, year: 2015

  15. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia; Sonke, Theo; Quaedflieg, Peter J.; Janssen, Dick B.

    Peptide deformylases (PDFs) catalyze the removal of the formyl group from the N-terminal methionine residue in nascent polypeptide chains in prokaryotes. Its deformylation activity makes PDF an attractive candidate for the biocatalytic deprotection of formylated peptides that are used in

  16. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    International Nuclear Information System (INIS)

    Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Murakami, Katsunori; Nagao, Masataka; Namura, Akira

    2010-01-01

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d 5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL -1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL -1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≥0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL -1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≥ 3) in urine was 5 ng mL -1 for MA and MDMA and 10 ng mL -1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  17. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Akihiro [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nishida, Manami [Hiroshima University Technical Center, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Saito, Takeshi [Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143 (Japan); Kishiyama, Izumi; Miyazaki, Shota [GL Sciences Inc., Sayamagahara 237-2, Iruma, Saitama 358-0032 (Japan); Murakami, Katsunori [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nagao, Masataka [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Namura, Akira, E-mail: namera@hiroshima-u.ac.jp [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan)

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d{sub 5} was used as an internal standard. The linear ranges were 0.01-5.0 {mu}g mL{sup -1} for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 {mu}g mL{sup -1} for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation {>=}0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 {mu}g mL{sup -1} of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio {>=} 3) in urine was 5 ng mL{sup -1} for MA and MDMA and 10 ng mL{sup -1} for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  18. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection.

    Science.gov (United States)

    Nakamoto, Akihiro; Nishida, Manami; Saito, Takeshi; Kishiyama, Izumi; Miyazaki, Shota; Murakami, Katsunori; Nagao, Masataka; Namura, Akira

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d(5) was used as an internal standard. The linear ranges were 0.01-5.0 microg mL(-1) for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 microg mL(-1) for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation > or = 0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 microg mL(-1) of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio > or = 3) in urine was 5 ng mL(-1) for MA and MDMA and 10 ng mL(-1) for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  20. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.