WorldWideScience

Sample records for selectively activate dopamine

  1. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  2. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats.

    Science.gov (United States)

    Xu, Haiyang; Das, Sasmita; Sturgill, Marc; Hodgkinson, Colin; Yuan, Qiaoping; Goldman, David; Grasing, Kenneth

    2017-08-01

    The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.

  3. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  4. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  5. Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo.

    Science.gov (United States)

    Cooper, B R; Hester, T J; Maxwell, R A

    1980-10-01

    Bupropion (BW 323U; Wellbutrin), a novel compound with antidepressant effects in man, was found to reduce immobility in an "experimental helplessness" forced swimming antidepressant test in rats as did imipramine and amitriptyline. Higher doses produced elevated locomotor activity in an automated open field and produced stereotyped sniffing which was contrasted with apomorphine. When bupropion or desmethylimipramine was given before intracisternal injections of 6-hydroxydopamine, bupropion produced a dose-related selective antagonism of the destruction of dopamine neurons, while under the same conditions, desmethylimipramine produced a dose-related selective antagonism of the destruction of noradrenergic neurons. Studies in which the dose of bupropion and the dose of 6-hydroxydopamine were varied revealed that a dose-related selective antagonism of dopamine depletion by 6-hydroxydopamine occurred when doses up to and including 50 mg/kg i.p. to bupropion were administered. Some antagonism of norepinephrine depletion also occurred at 100 mg/kg of bupropion i.p. Bupropion also selectively reversed the dopamine depletion produced by alpha-methyl-m-tyrosine, a finding which is consistent with the view that bupropion is a dopamine uptake inhibitor in vivo. The importance of dopamine systems for the behavioral effects of bupropion were also studied. When the locomotor stimulant effects of bupropion were tested in rats with chronic destruction of dopamine neurons produced by 6-hydroxydopamine, bupropion failed to elevate locomotor activity. Rats treated with procedures using 6-hydroxydopamine to produce relatively selective norepinephrine depletions responded to bupropion with locomotor activity stimulation like controls. Rats with similar depletions of either dopamine or norepinephrine were also tested for the ability of low doses of bupropion to reduce immobility in the "experimental helplessness" forced swim antidepressant test. Prior destruction of dopamine neurons

  6. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  7. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis.

    Science.gov (United States)

    Belda, Xavier; Armario, Antonio

    2009-10-01

    Whereas the role of most biogenic amines in the control of the hypothalamus-pituitary-adrenal (HPA) response to stress has been extensively studied, the role of dopamine has not. We studied the effect of different dopamine receptor antagonists on HPA response to a severe stressor (immobilization, IMO) in adult male Sprague-Dawley rats. Haloperidol administration reduced adrenocorticotropin hormone and corticosterone responses to acute IMO, particularly during the post-IMO period. This effect cannot be explained by a role of dopamine to maintain a sustained activation of the HPA axis as haloperidol did not modify the response to prolonged (up to 6 h) IMO. Administration of more selective D1 and D2 receptor antagonists (SCH23390 and eticlopride, respectively) also resulted in lower and/or shorter lasting HPA response to IMO. Dopamine, acting through both D1 and D2 receptors, exerts a stimulatory role on the activation of the HPA axis in response to a severe stressor. The finding that dopamine is involved in the maintenance of post-stress activation of the HPA axis is potentially important because the actual pathological impact of HPA activation is likely to be related to the area under the curve of plasma glucocorticoid levels, which is critically dependent on how long after stress high levels of glucocorticoid are maintained.

  8. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  9. Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands

    Science.gov (United States)

    Kwak, Kyuju; Kumar, S. Senthil; Lee, Dongil

    2012-06-01

    We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au25) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au25 modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au25 was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au25. Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au25 and DA cation. The GS-Au25 modified sol-gel electrode also showed excellent selectivity for DA in the

  10. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  11. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics.

    Science.gov (United States)

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  12. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  13. Dopamine agonist activity of EMD 23,448

    International Nuclear Information System (INIS)

    Martin, G.E.; Pettibone, D.J.

    1985-01-01

    EMD 23,448 was examined in tests of dopaminergic function and was found to be an atypical dopamine (DA) agonist. EMD 23,448 was a weak or inactive DA agonist when examined in tests of normal postsynaptic DA receptor function: production of stereotypy in the rat (ED 50 greater than sign 5.0 mg/kg.i.p.); production of emesis in beagles (minimum effective dose = 81μg/kg i.v.); and, enhanced locomotor activity of the mouse (no excitation in doses 3 H]-apomorphine binding to rat striatal membranes (Ki, 205 nM). On the other hand, this indolyl-3-butylamine did activate supersensitive postsynaptic DA receptors. Specifically, it elicited contralateral turning in rats with a unilateral 6-hydroxydopamine lesion of the substantia nigra (ED 50 value = 0.9 mg/kg) and did elicit stereotypy in rats given chronic daily haloperidol treatments. EMD 23,448 also exerted pharmacological effects in tests designed to measure activation of dopamine autoreceptors. It inhibited the γ-butyrolactone-induced increase in striatal dopa levels (ED 50 = 1 mg/kg i.p.) and produced a dose-related fall in the locomotor activity of the mouse. The results are discussed and contrasted with data derived for apomorphine and the putatively selective autoreceptor agonist (+-)-3-PPP. (Author)

  14. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific

  15. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Directory of Open Access Journals (Sweden)

    Matthew T C Brown

    2010-12-01

    Full Text Available Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system.We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine.We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  16. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  17. Dopamine agonist activity of EMD 23,448

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G E; Pettibone, D J [Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania (USA). Dept. of Pharmacology

    1985-01-01

    EMD 23,448 was examined in tests of dopaminergic function and was found to be an atypical dopamine (DA) agonist. EMD 23,448 was a weak or inactive DA agonist when examined in tests of normal postsynaptic DA receptor function: production of stereotypy in the rat (ED/sub 50/ greater than sign 5.0 mg/kg.i.p.); production of emesis in beagles (minimum effective dose = 81..mu..g/kg i.v.); and, enhanced locomotor activity of the mouse (no excitation in doses <=50 mg/i.p.). Moreover, EMD 23,448 was relatively weak in competing for (/sup 3/H)-apomorphine binding to rat striatal membranes (Ki, 205 nM). On the other hand, this indolyl-3-butylamine did activate supersensitive postsynaptic DA receptors. Specifically, it elicited contralateral turning in rats with a unilateral 6-hydroxydopamine lesion of the substantia nigra (ED/sub 50/ value = 0.9 mg/kg) and did elicit stereotypy in rats given chronic daily haloperidol treatments. EMD 23,448 also exerted pharmacological effects in tests designed to measure activation of dopamine autoreceptors. It inhibited the ..gamma..-butyrolactone-induced increase in striatal dopa levels (ED/sub 50/ = 1 mg/kg i.p.) and produced a dose-related fall in the locomotor activity of the mouse. The results are discussed and contrasted with data derived for apomorphine and the putatively selective autoreceptor agonist (+-)-3-PPP.

  18. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  19. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.

    Science.gov (United States)

    Mach, Robert H; Luedtke, Robert R

    2018-03-01

    The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  1. Selective response of dopamine in the presence of ascorbic acid ...

    African Journals Online (AJOL)

    Selective response of dopamine in the presence of ascorbic acid and uric acid at gold nanoparticles and multi-walled carbon nanotubes grafted with ethylene diamine tetraacetic acid modified electrode.

  2. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  3. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  4. Selection in the dopamine receptor 2 gene: a candidate SNP study

    Directory of Open Access Journals (Sweden)

    Tobias Göllner

    2015-08-01

    Full Text Available Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004 stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2 underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I, which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs with two minor allele frequencies (MAFs in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05 and 246 SNPs (MAF > 0.01 for DRD2. We used two different approaches (an outlier approach and a Bayesian approach to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05 and two candidate SNPs (MAF > 0.01, under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471 has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects.

  5. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata

    International Nuclear Information System (INIS)

    Aceves, J.; Young, J.M.; Arias-Montano, J.A.; Floran, B.; Garcia, M.

    1997-01-01

    The release of [ 3 H]GABA from slices of rat substantia nigra pars reticulata induced by increasing extracellular K + from 6 to 15 mM in the presence of 10 μM sulpiride was inhibited by 73±3% by 1 μM SCH 23390, consistent with a large component of release dependent upon D 1 receptor activation. The histamine H 3 receptor-selective agonist immepip (1 μM) and the non-selective agonist histamine (100 μM) inhibited [ 3 H]GABA release by 78±2 and 80±2%, respectively. The inhibition by both agonists was reversed by the H 3 receptor antagonist thioperamide (1 μM). However, in the presence of 1 μM SCH 23390 depolarization-induced release of [ 3 H]GABA was not significantly decreased by 1 μM immepip. In rats depleted of dopamine by pretreatment with reserpine, immepip no longer inhibited control release of [ 3 H]GABA, but in the presence of 1 μM SKF 38393, which produced a 7±1-fold stimulation of release, immepip reduced the release to a level not statistically different from that in the presence of immepip alone. Immepip (1 μM) also inhibited the depolarization-induced release of [ 3 H]dopamine from substantia nigra pars reticulata slices, by 38±3%.The evidence is consistent with the proposition that activation of histamine H 3 receptors leads to the selective inhibition of the component of depolarization-induced [ 3 H]GABA release in substantia nigra pars reticulata slices which is dependent upon D 1 receptor activation. This appears to be largely an action at the terminals of the striatonigral GABA projection neurons, which may be enhanced by a partial inhibition of dendritic [ 3 H]dopamine release. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  7. Development of specific dopamine D-1 agonists and antagonists

    International Nuclear Information System (INIS)

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo[a,d]cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo[1,2]cyclohepta[3,4,5d,e]isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC 50 of compound 11 for displacement of 3 H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of 3 H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor

  8. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  9. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  10. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM.

  11. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  12. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    Science.gov (United States)

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  13. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  14. The anti-influenza drug oseltamivir evokes hypothermia in mice through dopamine D2 receptor activation via central actions

    Directory of Open Access Journals (Sweden)

    Akihiro Fukushima

    2018-01-01

    Full Text Available Oseltamivir has a hypothermic effect in mice when injected intraperitoneally (i.p. and intracerebroventricularly (i.c.v.. Here we show that the hypothermia evoked by i.c.v.-oseltamivir is inhibited by non-selective dopamine receptor antagonists (sulpiride and haloperidol and the D2-selective antagonist L-741,626, but not by D1/D5-selective and D3-selective antagonists (SCH-23390 and SB-277011-A, respectively. The hypothermic effect of i.p.-administered oseltamivir was not inhibited by sulpiride, haloperidol, L-741,626 and SCH-23390. In addition, neither sulpiride, haloperidol nor SCH-23390 blocked hypothermia evoked by i.c.v.-administered oseltamivir carboxylate (a hydrolyzed metabolite of oseltamivir. These results suggest that oseltamivir in the brain induces hypothermia through activation of dopamine D2 receptors.

  15. Dopamine modulates reward system activity during subconscious processing of sexual stimuli.

    Science.gov (United States)

    Oei, Nicole Y L; Rombouts, Serge Arb; Soeter, Roelof P; van Gerven, Joop M; Both, Stephanie

    2012-06-01

    Dopaminergic medication influences conscious processing of rewarding stimuli, and is associated with impulsive-compulsive behaviors, such as hypersexuality. Previous studies have shown that subconscious subliminal presentation of sexual stimuli activates brain areas known to be part of the 'reward system'. In this study, it was hypothesized that dopamine modulates activation in key areas of the reward system, such as the nucleus accumbens, during subconscious processing of sexual stimuli. Young healthy males (n=53) were randomly assigned to two experimental groups or a control group, and were administered a dopamine antagonist (haloperidol), a dopamine agonist (levodopa), or placebo. Brain activation was assessed during a backward-masking task with subliminally presented sexual stimuli. Results showed that levodopa significantly enhanced the activation in the nucleus accumbens and dorsal anterior cingulate when subliminal sexual stimuli were shown, whereas haloperidol decreased activations in those areas. Dopamine thus enhances activations in regions thought to regulate 'wanting' in response to potentially rewarding sexual stimuli that are not consciously perceived. This running start of the reward system might explain the pull of rewards in individuals with compulsive reward-seeking behaviors such as hypersexuality and patients who receive dopaminergic medication.

  16. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  17. Selective electrochemical detection of dopamine in a microfluidic channel on carbon nanoparticulate electrodes.

    Science.gov (United States)

    Rozniecka, Ewa; Jonsson-Niedziolka, Martin; Celebanska, Anna; Niedziolka-Jonsson, Joanna; Opallo, Marcin

    2014-06-07

    There is a continuous need for the construction of detection systems in microfluidic devices. In particular, electrochemical detection allows the separation of signals from the analyte and interfering substances in the potential domain. Here, a simple microfluidic device for the sensitive and selective determination of dopamine in the presence of interfering substances was constructed and tested. It employs a carbon nanoparticulate electrode allowing the separation of voltammetric signals of dopamine and common interfering substances (ascorbic acid and acetaminophen) both in quiescent conditions and in flow due to the electrocatalytic effect. These voltammograms were also successfully simulated. The limit of detection of dopamine detected by square wave voltammetry in 1 mM solutions of interfering substances in phosphate buffered saline is about 100 nM. In human serum a clear voltammetric signal could be seen for a 200 nM solution, sufficient to detect dopamine in the cerebral fluid. Flow injection analysis allows a decrease in the limit of detection down to 3.5 nM.

  18. Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core.

    Science.gov (United States)

    Fortin, Samantha M; Roitman, Mitchell F

    2017-07-01

    Drugs of abuse increase the frequency and magnitude of brief (1-3s), high concentration (phasic) dopamine release events in terminal regions. These are thought to be a critical part of drug reinforcement and ultimately the development of addiction. Recently, metabolic regulatory peptides, including the satiety signal glucagon-like peptide-1 (GLP-1), have been shown to modulate cocaine reward-driven behavior and sustained dopamine levels after cocaine administration. Here, we use fast-scan cyclic voltammetry (FSCV) to explore GLP-1 receptor (GLP-1R) modulation of dynamic dopamine release in the nucleus accumbens (NAc) during cocaine administration. We analyzed dopamine release events in both the NAc shell and core, as these two subregions are differentially affected by cocaine and uniquely contribute to motivated behavior. We found that central delivery of the GLP-1R agonist Exendin-4 suppressed the induction of phasic dopamine release events by intravenous cocaine. This effect was selective for dopamine signaling in the NAc core. Suppression of phasic signaling in the core by Exendin-4 could not be attributed to interference with cocaine binding to one of its major substrates, the dopamine transporter, as cocaine-induced increases in reuptake were unaffected. The results suggest that GLP-1R activation, instead, exerts its suppressive effects by altering dopamine release - possibly by suppressing the excitability of dopamine neurons. Given the role of NAc core dopamine in the generation of conditioned responses based on associative learning, suppression of cocaine-induced dopamine signaling in this subregion by GLP-1R agonism may decrease the reinforcing properties of cocaine. Thus, GLP-1Rs remain viable targets for the treatment and prevention of cocaine seeking, taking and relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    -Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  20. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    International Nuclear Information System (INIS)

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-01-01

    -immunoreactive dopaminergic amacrine cells ► Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells ► Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization ► A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity

  1. Characterization of D1 dopamine receptors in the central nervous system

    International Nuclear Information System (INIS)

    Hess, E.J.

    1987-01-01

    Several lines of evidence suggest an association of central nervous system dopaminergic systems in the etiology of the schizophrenia. Interest in the role of D 1 dopamine receptors has revived with the advent of selective drugs for this dopamine receptor, particularly the D 1 dopamine receptor antagonists, SCH23390. [ 3 H]SCH23390 represents a superior radioligand for labeling the two-state striatal D 1 dopamine receptor in that its high percent specific binding makes it especially suitable for detailed mechanistic studies of this receptor. Striatal D 1 dopamine receptors have been shown to mediate the stimulation of adenylate cyclase activity via a guanine nucleotide regulatory subunit. Forskolin acts in a synergistic manner with dopamine agonists, guanine nucleotides or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase activity mediated by these reagents. By using the aforementioned reagents and the irreversible receptor modifying reagent N-ethoxycarbonyl-2-ethoxy-1,2,-dihydroquinoline, we demonstrated that the D 1 dopamine receptor population in rat striatum is not a stoichiometrically-limiting factor in agonist stimulation of adenylate cyclase activity

  2. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    Science.gov (United States)

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors

  3. Role of Dopamine Receptors in the Anticancer Activity of ONC201

    Directory of Open Access Journals (Sweden)

    Christina Leah B. Kline

    2018-01-01

    Full Text Available ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201’s interaction with DRD2 plays a role in ONC201’s anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type–specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201’s anticancer effects. Although ONC201’s anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201’s anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201’s ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity.

  4. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    Science.gov (United States)

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  5. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  6. Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons.

    Science.gov (United States)

    Arib, Ouafa; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; Faure, Philippe; de Beaurepaire, Renaud

    2010-03-10

    It has been suggested that the beta-carbolines harmane and norharmane may be involved in the pathophysiology of Parkinson's disease, psychosis and addiction, but the mechanisms of these possible effects remain to be elucidated. In the present study, the effects of the two compounds were examined by using in vivo extracellular recordings of ventral tegmental dopamine neurons. The effects of harmane (2mg/kg) and norharmane (2mg/kg), were compared to those of nicotine (11microg/kg), of cotinine (0.5mg/kg), of the monoamine-oxidase-A inhibitor befloxatone (0.12mg/kg), and of the monoamine-oxidase-B inhibitor selegiline (0.5mg/kg). The effects of harmane were also tested after pre-treatment with the nicotine receptor antagonist mecamylamine. The results show that all substances, except befloxatone, activate the firing and/or burst activity of dopamine neurons. The increase in firing rate produced by harmane was approximately 18 times greater than that produced by nicotine. Such powerful excitation of dopamine neurons by harmane may in part explain its involvement in neurotoxicity, psychosis and addiction. The absence of effect of befloxatone supports the hypothesis that the effect of harmane is not related to its monoamine-oxidase-A inhibitory properties. Mecamylamine inhibited by approximately 80% the activity of harmane, indicating that the activating effect of harmane on dopamine neurons involves several mechanisms, among which activation of nicotinic receptors likely has a prominent importance. The results of the present study support the hypothesis that harmane could be a tobacco (or smoke) component other than nicotine involved in tobacco dependence. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  8. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  9. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.

    Science.gov (United States)

    Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V

    2009-05-01

    Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.

  10. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eric C Kong

    2010-04-01

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  11. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Science.gov (United States)

    Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques

    2014-01-01

    The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986

  12. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  13. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  14. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    Science.gov (United States)

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  15. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    Science.gov (United States)

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  16. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    Science.gov (United States)

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  17. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  18. Increased orbitofrontal brain activation after administration of a selective adenosine A2A antagonist in cocaine dependent subjects

    Directory of Open Access Journals (Sweden)

    F. Gerard eMoeller

    2012-05-01

    Full Text Available Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115 while performing a working memory task with 3 levels of difficulty (3, 5, and 7 digits. fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use.

  19. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  20. Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine.

    Science.gov (United States)

    Rincón-Cortés, Millie; Grace, Anthony A

    2017-10-01

    Stress constitutes a risk factor across several psychiatric disorders. Moreover, females are more susceptible to stress-related disorders, such as depression, than males. Although dopamine system underactivation is implicated in the pathophysiology of depression, little is known about the female dopamine system at baseline and post-stress. The effects of chronic mild stress were examined on ventral tegmental area dopamine neuron activity and forced swim test immobility by comparing male and female rats. The impact of a single dose of the rapid antidepressant ketamine (10 mg/kg, i.p.) on forced swim test immobility and ventral tegmental area function was then tested. Baseline ventral tegmental area dopamine activity was comparable in both sexes. At baseline, females exhibited roughly double the forced swim test immobility duration than males, which corresponded to ~50% decrease in ventral tegmental area dopamine population activity compared with similarly treated (i.e., post-forced swim test) males. Following chronic mild stress, there was greater immobility duration in both sexes and reduced ventral tegmental area dopamine neuron activity by approximately 50% in males and nearly 75% in females. Ketamine restored behavior and post-forced swim test ventral tegmental area dopamine activity for up to 7 days in females as well as in both male and female chronic mild stress-exposed rats. These data suggest increased female susceptibility to depression-like phenotypes (i.e., greater immobility, ventral tegmental area hypofunction) is associated with higher dopamine system sensitivity to both acute and repeated stress relative to males. Understanding the neural underpinnings of sex differences in stress vulnerability will provide insight into mechanisms of disease and optimizing therapeutic approaches in both sexes. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  1. [Neurotensin-like oligopeptides as potential antipsychotics: effect on dopamine system].

    Science.gov (United States)

    Kost, N V; Meshavkin, V K; Batishcheva, E Iu; Sokolov, O Iu; Andreeva, L A; Miasoedov, N F

    2011-01-01

    According to published data, peptide neurotensin is considered as endogenous antipsychotic agent. A series of oligopeptides have been synthesized based on the proposed active center of neurotensin. These oligopeptides (called neurotensin-like peptides, NLPs) have been studied on behavioral models, in which the functional state of the dopamine system of animals was modified by apomorphine injections. The results of verticalization, stereotypy, and yawning tests revealed NLPs that behave as antagonists of dopamine receptors. Radioligand analysis showed that these peptides compete for specific binding to these receptors with sulpiride, which is a D2-type selective antagonist of dopamine receptors. The high degree of NLPs efficiency manifested in the behavioral tests and radioligand analysis suggests that the their antipsychotic action can be mediated by dopamine receptors.

  2. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  3. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  4. A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine

    International Nuclear Information System (INIS)

    Daniel Arulraj, Abraham; Arunkumar, Arumugam; Vijayan, Muthunanthevar; Balaji Viswanath, Kamatchirajan; Vasantha, Vairathevar Sivasamy

    2016-01-01

    A highly selective sensor was developed for dopamine with electrochemically treated sodium dodecyl benzene sulfonate doped nano polypyrrole (ET-SDBS-NPPy)/reduced graphene oxide (RGO) film. First, graphene oxide (GO) was reduced on the electrode surface electrochemically and then, SDBS-NPPy film was polymerized electrochemically on the ERGO coated GCE and bare GCE also. The SDBS-NPPy/ERGO and SDBS-NPPy films were treated electrochemically in phosphate buffer solution to replace macro SDBS- anions by smaller phosphate anions. Then, the physical properties of the above composite films were characterized by scanning electron microscope (SEM) and water wettability test. The replacement of SDBS- anions by phosphate anions leaves porous structure in the polymer films and also increases the hydrophobicity in the films. Then, these composite films were applied for the determination of dopamine in the presence of ascorbic acid and uric acid. Under the optimal conditions, the linear range for dopamine detection is 0.1 μM-100.0 μM with the detection limit of 20 nM at S/N = 3. Generally, conducting polypyrrole film could sense ascorbic acid and dopamine simultaneously. However, we have proposed a simple route to synthesis a porous and hydrophobic polypyrrole composite film for selective determination of dopamine in the presence of higher concentration (five orders) of ascorbic acid and uric acid.

  5. Dopamine signaling negatively regulates striatal phosphorylation of Cdk5 at tyrosine 15 in mice.

    Directory of Open Access Journals (Sweden)

    Yukio eYamamura

    2013-02-01

    Full Text Available Striatal functions depend on the activity balance between the dopamine and glutamate neurotransmissions. Glutamate inputs activate cyclin-dependent kinase 5 (Cdk5, which inhibits postsynaptic dopamine signaling by phosphorylating DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa at Thr75 in the striatum. c-Abelson tyrosine kinase (c-Abl is known to phosphorylate Cdk5 at Tyr15 (Tyr15-Cdk5 and thereby facilitates the Cdk5 activity. We here report that Cdk5 with Tyr15 phosphorylation (Cdk5-pTyr15 is enriched in the mouse striatum, where dopaminergic stimulation inhibited phosphorylation of Tyr15-Cdk5 by acting through the D2 class dopamine receptors. Moreover, in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine mouse model, dopamine deficiency caused increased phosphorylation of both Tyr15-Cdk5 and Thr75-DARPP-32 in the striatum, which could be attenuated by administration of L-3,4-dihydroxyphenylalanine and imatinib (STI-571, a selective c-Abl inhibitor. Our results suggest a functional link of Cdk5-pTyr15 with postsynaptic dopamine and glutamate signals through the c-Abl kinase activity in the striatum.

  6. A sensitive and selective chemiluminescence sensor for the determination of dopamine based on silanized magnetic graphene oxide-molecularly imprinted polymer.

    Science.gov (United States)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2015-03-15

    Based on silanized magnetic graphene oxide-molecularly imprinted polymer (Si-MG-MIP), a sensitive and selective chemiluminescence sensor for dopamine measurement was developed. Si-MG-MIP, in which silanes was introduced to improve the mass transfer, graphene oxide was employed to improve absorption capacity, Fe3O4 nanoparticles were applied for separation easily and molecularly imprinted polymer was used to improve selectivity, demonstrated the advantages of the sensor. All the composites were confirmed by SEM, TEM, XRD and FTIR. Under the optimal conditions of chemiluminescence, dopamine could be assayed in the range of 8.0-200.0 ng/mL with a correlation coefficient of linear regression of 0.9970. The detection limit was 1.5 ng/mL (3δ) and the precision for 11 replicate detections of 80.0 ng/mL dopamine was 3.4% (RSD). When the sensor was applied in determining dopamine in actual samples, recovery ranged from 94% to 110%, which revealed that the results were satisfactory. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  8. Blockade of Dopamine Activity in the Nucleus Accumbens Impairs Learning Extinction of Conditioned Fear

    Science.gov (United States)

    Holtzman-Assif, Orit; Laurent, Vincent; Westbrook, R. Frederick

    2010-01-01

    Three experiments used rats to investigate the role of dopamine activity in learning to inhibit conditioned fear responses (freezing) in extinction. In Experiment 1, rats systemically injected with the D2 dopamine antagonist, haloperidol, froze more across multiple extinction sessions and on a drug-free retention test than control rats. In…

  9. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  10. Activation of dopamine receptors in the nucleus accumbens promotes sucrose-reinforced cued approach behavior

    Directory of Open Access Journals (Sweden)

    Saleem M. Nicola

    2016-07-01

    Full Text Available Dopamine receptor activation in the nucleus accumbens (NAc promotes vigorous environmentally-cued food-seeking in hungry rats. Rats fed ad libitum, however, respond to fewer food-predictive cues, particularly when the value of food reward is low. Here, we investigated whether this difference could be due to differences in the degree of dopamine receptor activation in the NAc. First, we observed that although rats given ad libitum access to chow in their home cages approached a food receptacle in response to reward-predictive cues, the number of such approaches declined as animals accumulated food rewards. Intriguingly, cued approach to food occurred in clusters, with several cued responses followed by successive non-responses. This pattern suggested that behavior was dictated by transitions between two states, responsive and non-responsive. Injection of D1 or D2 dopamine receptor agonists into the NAc dose-dependently increased cue responding by promoting transitions to the responsive state and by preventing transitions to the non-responsive state. In contrast, antagonists of either D1 or D2 receptors promoted long bouts of non-responding by inducing transitions to the non-responsive state and by preventing transitions to the responsive state. Moreover, locomotor behavior during the inter-trial interval was correlated with the responsive state, and was also increased by dopamine receptor agonists. These results suggest that activation of NAc dopamine receptors plays an important role in regulating the probability of approach to food under conditions of normative satiety.

  11. Dopamine receptor blockade attenuates the general incentive motivational effects of noncontingently delivered rewards and reward-paired cues without affecting their ability to bias action selection.

    Science.gov (United States)

    Ostlund, Sean B; Maidment, Nigel T

    2012-01-01

    Environmental cues affect our behavior in a variety of ways. Despite playing an invaluable role in guiding our daily activities, such cues also appear to trigger the harmful, compulsive behaviors that characterize addiction and other disorders of behavioral control. In instrumental conditioning, rewards and reward-paired cues bias action selection and invigorate reward-seeking behaviors, and appear to do so through distinct neurobehavioral processes. Although reward-paired cues are known to invigorate performance through a dopamine-dependent incentive motivational process, it is not known if dopamine also mediates the influence of rewards and reward-paired cues over action selection. The current study contrasted the effects of systemic administration of the nonspecific dopamine receptor antagonist flupentixol on response invigoration and action bias in Pavlovian-instrumental transfer, a test of cue-elicited responding, and in instrumental reinstatement, a test of noncontingent reward-elicited responding. Hungry rats were trained on two different stimulus-outcome relationships (eg, tone-grain pellets and noise-sucrose solution) and two different action-outcome relationships (eg, left press-grain and right press-sucrose). At test, we found that flupentixol pretreatment blocked the response invigoration generated by the cues but spared their ability to bias action selection to favor the action whose outcome was signaled by the cue being presented. The response-biasing influence of noncontingent reward deliveries was also unaffected by flupentixol. Interestingly, although flupentixol had a modest effect on the immediate response invigoration produced by those rewards, it was particularly potent in countering the lingering enhancement of responding produced by multiple reward deliveries. These findings indicate that dopamine mediates the general incentive motivational effects of noncontingent rewards and reward-paired cues but does not support their ability to bias

  12. The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system.

    Science.gov (United States)

    Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G

    2002-09-01

    The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.

  13. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  14. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine

    Science.gov (United States)

    Wheeler, David S.; Underhill, Suzanne M.; Stolz, Donna B.; Murdoch, Geoffrey H.; Thiels, Edda; Romero, Guillermo; Amara, Susan G.

    2015-01-01

    Acute amphetamine (AMPH) exposure elevates extracellular dopamine through a variety of mechanisms that include inhibition of dopamine reuptake, depletion of vesicular stores, and facilitation of dopamine efflux across the plasma membrane. Recent work has shown that the DAT substrate AMPH, unlike cocaine and other nontransported blockers, can also stimulate endocytosis of the plasma membrane dopamine transporter (DAT). Here, we show that when AMPH enters the cytoplasm it rapidly stimulates DAT internalization through a dynamin-dependent, clathrin-independent process. This effect, which can be observed in transfected cells, cultured dopamine neurons, and midbrain slices, is mediated by activation of the small GTPase RhoA. Inhibition of RhoA activity with C3 exotoxin or a dominant-negative RhoA blocks AMPH-induced DAT internalization. These actions depend on AMPH entry into the cell and are blocked by the DAT inhibitor cocaine. AMPH also stimulates cAMP accumulation and PKA-dependent inactivation of RhoA, thus providing a mechanism whereby PKA- and RhoA-dependent signaling pathways can interact to regulate the timing and robustness of AMPH’s effects on DAT internalization. Consistent with this model, the activation of D1/D5 receptors that couple to PKA in dopamine neurons antagonizes RhoA activation, DAT internalization, and hyperlocomotion observed in mice after AMPH treatment. These observations support the existence of an unanticipated intracellular target that mediates the effects of AMPH on RhoA and cAMP signaling and suggest new pathways to target to disrupt AMPH action. PMID:26553986

  15. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    Science.gov (United States)

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  16. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes.

    Science.gov (United States)

    Jin, Joon-Hyung; Cho, Eunae; Jung, Seunho

    2010-03-01

    Microbial carbohydrate-doped multiwall carbon nanotube (MWNT)-modified electrodes were prepared for the purpose of determining if 4-(2-aminoethyl)benzene-1,2-diol (3,4-dihydroxyphenylalanine; dopamine) exists in the presence of 0.5 mM ascorbic acid, a representative interfering agent in neurotransmitter detection. The microbial carbohydrate dopants were alpha-cyclosophorohexadecaose (alpha-C16) from Xanthomonas oryzae and cyclic-(1 --> 2)-beta-d-glucan (Cys) from Rhizobium meliloti. The cyclic voltammetric responses showed that the highest sensitivity (5.8 x 10(-3) mA cm(-2) microM(-1)) is attained with the Cys-doped MWNT-modified ultra-trace carbon electrode, and that the alpha-C16-doped MWNT-modified glassy carbon electrode displays the best selectivity to dopamine (the approximate peak potential separation is 310 mV).

  17. Dopamine and serotonin: influences on male sexual behavior.

    Science.gov (United States)

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  18. MS-377, a novel selective sigma(1) receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain.

    Science.gov (United States)

    Takahashi, S; Horikomi, K; Kato, T

    2001-09-21

    A novel selective sigma(1) receptor ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), inhibits phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced behaviors in animal models. In this study, we measured extracellular dopamine and serotonin levels in the rat brain after treatment with MS-377 alone, using in vivo microdialysis. We also examined the effects of MS-377 on extracellular dopamine and serotonin levels in the rat medial prefrontal cortex after treatment with PCP. MS-377 itself had no significant effects on dopamine release in the striatum (10 mg/kg, p.o.) nor on dopamine or serotonin release in the medial prefrontal cortex (1 and 10 mg/kg, p.o.). PCP (3 mg/kg, i.p.) markedly increased dopamine and serotonin release in the medial prefrontal cortex. MS-377 (1 mg/kg, p.o.), when administered 60 min prior to PCP, significantly attenuated this effect of PCP. These results suggest that the inhibitory effects of MS-377 on PCP-induced behaviors are partly mediated by inhibition of the increase in dopamine and serotonin release in the rat medial prefrontal cortex caused by PCP.

  19. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  1. Direct demonstration of D1 dopamine receptors in the bovine parathyroid gland using the D1 selective antagonist [125I]-SCH 23982

    International Nuclear Information System (INIS)

    Monsma, F.J. Jr.; Sibley, D.R.

    1989-01-01

    The presence of D1 dopamine receptors in the parathyroid gland has been proposed based on the demonstration of dopaminergic regulation of adenylate cyclase activity and parathyroid hormone release in dispersed bovine parathyroid cells. Using a radioiodinated D1 selective antagonist [125I]-SCH 23982, we have now directly labeled and characterized the D1 dopamine receptors in bovine parathyroid gland membranes. [125I]-SCH 23982 binds in a saturable manner with high affinity and low nonspecific binding to membranes prepared from bovine parathyroid glands. D1 dopamine receptors are present in this preparation at a concentration of approximately 130 fMoles/mg protein and [125I]-SCH 23982 binding increases with increasing protein concentration in a linear fashion. Determination of the Kd using the association (k1) and dissociation (k-1) rate constants revealed good agreement with the Kd determined by saturation analysis (390 pM vs. 682 pM, respectively). Inhibition of 0.3 nM [125I]-SCH 23982 binding by a series of dopaminergic antagonists verified the D1 nature of this binding site, exhibiting appropriate affinities and rank order of potency. The competition curves of all antagonists exhibited Hill coefficients that were not significantly different from 1. Inhibition of [125I]-SCH 23982 binding by dopamine and other dopaminergic agonists revealed the presence of high and low affinity agonist binding sites. Addition of 200 microM GppNHp effected a complete conversion of high affinity dopamine binding sites to a homogeneous population of low affinity dopamine sites. The D1 receptors identified in the parathyroid gland with [125I]-SCH 23982 appear to be pharmacologically identical with those previously characterized in the central nervous system

  2. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata

    Science.gov (United States)

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  3. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    Science.gov (United States)

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.

  4. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  5. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  6. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  7. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  8. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  9. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  10. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  11. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  12. Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yan; Lin Lingling; Feng Zengfang; Zhou Jianzhang [State Key Laboratory for Physical Chemistry of the Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Lin Zhonghua, E-mail: zhlin@xmu.edu.c [State Key Laboratory for Physical Chemistry of the Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2009-12-15

    Polyaniline/Au nanocomposite modified nanoelectrodes based dopamine nanosensors have been developed. The polyaniline/Au nanocomposite film was deposited at the exposed end of the nanoelectrode tip by a surface-graft polymerization method to fabricate a desired modified nanoelectrode. With this modified method, the nanocomposites firmly adhered on the electrode surface and the modified nanoelectrode still had a sharp tip, which was proved by the scanning electron microscope. The electrochemical measurement shows the polyaniline/Au nanocomposite modified film has a good and stable redox activity in neutral solution. The modified nanoelectrode exhibits the excellent electrocatalytic activity towards the oxidations of ascorbic acid and dopamine in phosphate buffer solution. The separation of anodic peak potential of dopamine and ascorbic acid reaches 250 mV. Differential pulse voltammograms results illustrate that dopamine can be selectively determined in the presence of thousands times higher concentration of ascorbic acid with a wide linear range from 200 to 0.3 muM and the detection limit is 0.1 muM. This study provides a simple method for the construction of dopamine nanosensors that have a good sensitivity, wide linear range and stable response. The nanosensors are hopeful to be applied to the detection of dopamine in vivo.

  13. Fabrication of a PANI/Au nanocomposite modified nanoelectrode for sensitive dopamine nanosensor design

    International Nuclear Information System (INIS)

    Zhang Yan; Lin Lingling; Feng Zengfang; Zhou Jianzhang; Lin Zhonghua

    2009-01-01

    Polyaniline/Au nanocomposite modified nanoelectrodes based dopamine nanosensors have been developed. The polyaniline/Au nanocomposite film was deposited at the exposed end of the nanoelectrode tip by a surface-graft polymerization method to fabricate a desired modified nanoelectrode. With this modified method, the nanocomposites firmly adhered on the electrode surface and the modified nanoelectrode still had a sharp tip, which was proved by the scanning electron microscope. The electrochemical measurement shows the polyaniline/Au nanocomposite modified film has a good and stable redox activity in neutral solution. The modified nanoelectrode exhibits the excellent electrocatalytic activity towards the oxidations of ascorbic acid and dopamine in phosphate buffer solution. The separation of anodic peak potential of dopamine and ascorbic acid reaches 250 mV. Differential pulse voltammograms results illustrate that dopamine can be selectively determined in the presence of thousands times higher concentration of ascorbic acid with a wide linear range from 200 to 0.3 μM and the detection limit is 0.1 μM. This study provides a simple method for the construction of dopamine nanosensors that have a good sensitivity, wide linear range and stable response. The nanosensors are hopeful to be applied to the detection of dopamine in vivo.

  14. Generation of an activating Zn(2+) switch in the dopamine transporter

    DEFF Research Database (Denmark)

    Loland, Claus Juul; Norregaard, Lene; Litman, Thomas

    2002-01-01

    Binding of Zn(2+) to the endogenous Zn(2+) binding site in the human dopamine transporter leads to potent inhibition of [(3)H]dopamine uptake. Here we show that mutation of an intracellular tyrosine to alanine (Y335A) converts this inhibitory Zn(2+) switch into an activating Zn(2+) switch, allowing...... Zn(2+)-dependent activation of the transporter. The tyrosine is part of a conserved YXX Phi trafficking motif (X is any residue and Phi is a residue with a bulky hydrophobic group), but Y335A did not show alterations in surface targeting or protein kinase C-mediated internalization. Despite wild...... for several substrates was increased. However, the presence of Zn(2+) in micromolar concentrations increased the V(max) up to 24-fold and partially restored the apparent affinities. The capability of Zn(2+) to restore transport is consistent with a reversible, constitutive shift in the distribution...

  15. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  16. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  17. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  19. D-2 dopamine receptor activation reduces free [3H]arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    International Nuclear Information System (INIS)

    Canonico, P.L.

    1989-01-01

    Dopamine reduces the stimulation of intracellular [ 3 H]arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited [ 3 H]arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular [ 3 H]arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels

  20. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.

    Science.gov (United States)

    Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M

    2014-09-01

    The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples.

  2. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  3. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  4. A subset of dopamine neurons signals reward for odour memory in Drosophila.

    Science.gov (United States)

    Liu, Chang; Plaçais, Pierre-Yves; Yamagata, Nobuhiro; Pfeiffer, Barret D; Aso, Yoshinori; Friedrich, Anja B; Siwanowicz, Igor; Rubin, Gerald M; Preat, Thomas; Tanimoto, Hiromu

    2012-08-23

    Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

  5. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.

    Science.gov (United States)

    Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M

    2016-09-21

    Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior

  6. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  7. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  8. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine

    Science.gov (United States)

    Kulchat, Sirinan; Boonta, Wissuta; Todee, Apinya; Sianglam, Pradthana; Ngeontae, Wittaya

    2018-05-01

    A fluorescent sensor based on thioglycolic acid-capped cadmium sulfide quantum dots (TGA-CdS QDs) has been designed for the sensitive and selective detection of dopamine (DA). In the presence of dopamine (DA), the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) activates the reaction between the carboxylic group of the TGA and the amino group of dopamine to form an amide bond, quenching the fluorescence of the QDs. The fluorescence intensity of TGA-CdS QDs can be used to sense the presence of dopamine with a limit of detection of 0.68 μM and a working linear range of 1.0-17.5 μM. This sensor system shows great potential application for dopamine detection in dopamine drug samples and for future easy-to-make analytical devices.

  9. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  10. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  11. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  12. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  13. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Directory of Open Access Journals (Sweden)

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  14. 6-hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Porceddu, M.L.; Giorgi, O.; De Montis, G.; Mele, S.; Cocco, L.; Ongini, E.; Biggio, G.

    1987-01-01

    Dopamine-sensitive adenylate cyclase and 3 H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3 H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3 H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3 H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: a) within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and and/or dendrites of dopaminergic neurons; b) striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers. 24 references, 1 figure, 1 table

  15. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  17. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    Science.gov (United States)

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  18. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    OpenAIRE

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abuse...

  19. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  20. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    Science.gov (United States)

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library.

    Science.gov (United States)

    Männel, Barbara; Jaiteh, Mariama; Zeifman, Alexey; Randakova, Alena; Möller, Dorothee; Hübner, Harald; Gmeiner, Peter; Carlsson, Jens

    2017-10-20

    Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D 2 dopamine receptor (D 2 R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D 2 R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D 2 R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D 2 R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC 50 = 320 nM, E max = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.

  2. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  3. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  4. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  5. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  6. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  7. [{sup 11}C]A-69024: A potent and selective non-benzazepine radiotracer for in vivo studies of dopamine D1 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kassiou, Michael; Scheffel, Ursula; Ravert, Hayden T; Mathews, William B; Musachio, John L; Lambrecht, Richard M; Dannals, Robert F

    1995-02-01

    [{sup 11}C]A-69024, ({+-})-1-(2-bromo-4,5-dimethoxybenzyl)-7-hydroxy-6-methoxy-2-[{sup 11}C]methyl-1,2= ,3,4-tetrahydroisoquinoline, is a specific and selective dopamine D1 radiotracer. The in vivo biodistribution of this novel radioligand in mice showed a high uptake in the striatum (6.7% ID/g) at 5 min, followed by clearance with a half-life of 16.1 min. As a measure of specificity, the striatal/cerebellar ratio reached a maximum of 7.4 at 30 min post-injection. Radioactivity in the striatum was reduced to the level of the cerebellum by pre-administration of the D1 antagonist SCH 23390 (1 mg/kg). Pretreatment of mice with spiperone (D2), 7-hydroxydipropylaminotetralin (7-OH-DPAT) (D3), clozapine (D4), ketanserin (5-HT2/5-HT2C), mazindol (monoamine reuptake), prazosin ({alpha}{sub 1}), and haloperidol (D2/{sigma}) had no inhibitory effect on [{sup 11}C]A-69024 uptake in the striatum. The dextrotatory enantiomer of the dopamine antagonist butaclamol inhibited striatal uptake, while the less active isomer (-)-butaclamol did not. [{sup 11}C]A-69024 binding was inhibited by unlabeled A-69024 in a dose dependent manner (ED{sub 50} = 0.3 mg/kg) in the striatum while no change occurred in the cerebellum. [{sup 11}C]A-69024 warrants further investigation as a PET ligand for examination of central dopamine D1 receptors in humans.

  8. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Directory of Open Access Journals (Sweden)

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  11. The Design, Synthesis and Structure-Activity Relationship of Mixed Serotonin, Norepinephrine and Dopamine Uptake Inhibitors

    Science.gov (United States)

    Chen, Zhengming; Yang, Ji; Skolnick, Phil

    The evolution of antidepressants over the past four decades has involved the replacement of drugs with a multiplicity of effects (e.g., TCAs) by those with selective actions (i.e., SSRIs). This strategy was employed to reduce the adverse effects of TCAs, largely by eliminating interactions with certain neurotransmitters or receptors. Although these more selective compounds may be better tolerated by patients, selective drugs, specifically SSRIs, are not superior to older drugs in treating depressed patients as measured by response and remission rates. It may be an advantage to increase synaptic levels of both serotonin and norepinephrine, as in the case of dual uptake inhibitors like duloxetine and venlafaxine. An important recent development has been the emergence of the triple-uptake inhibitors (TUIs/SNDRIs), which inhibit the uptake of the three neurotransmitters most closely linked to depression: serotonin, norepinephrine, and dopamine. Preclinical studies and clinical trials indicate that a drug inhibiting the reuptake of all three of these neurotransmitters could produce more rapid onset of action and greater efficacy than traditional antidepressants. This review will detail the medicinal chemistry involved in the design, synthesis and discovery of mixed serotonin, norepinephrine and dopamine transporter uptake inhibitors.

  12. A novel G protein-coupled receptor of Schistosoma mansoni (SmGPR-3 is activated by dopamine and is widely expressed in the nervous system.

    Directory of Open Access Journals (Sweden)

    Fouad El-Shehabi

    Full Text Available Schistosomes have a well developed nervous system that coordinates virtually every activity of the parasite and therefore is considered to be a promising target for chemotherapeutic intervention. Neurotransmitter receptors, in particular those involved in neuromuscular control, are proven drug targets in other helminths but very few of these receptors have been identified in schistosomes and little is known about their roles in the biology of the worm. Here we describe a novel Schistosoma mansoni G protein-coupled receptor (named SmGPR-3 that was cloned, expressed heterologously and shown to be activated by dopamine, a well established neurotransmitter of the schistosome nervous system. SmGPR-3 belongs to a new clade of "orphan" amine-like receptors that exist in schistosomes but not the mammalian host. Further analysis of the recombinant protein showed that SmGPR-3 can also be activated by other catecholamines, including the dopamine metabolite, epinine, and it has an unusual antagonist profile when compared to mammalian receptors. Confocal immunofluorescence experiments using a specific peptide antibody showed that SmGPR-3 is abundantly expressed in the nervous system of schistosomes, particularly in the main nerve cords and the peripheral innervation of the body wall muscles. In addition, we show that dopamine, epinine and other dopaminergic agents have strong effects on the motility of larval schistosomes in culture. Together, the results suggest that SmGPR-3 is an important neuronal receptor and is probably involved in the control of motor activity in schistosomes. We have conducted a first analysis of the structure of SmGPR-3 by means of homology modeling and virtual ligand-docking simulations. This investigation has identified potentially important differences between SmGPR-3 and host dopamine receptors that could be exploited to develop new, parasite-selective anti-schistosomal drugs.

  13. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    DEFF Research Database (Denmark)

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte

    2012-01-01

    Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological......]-amine (CyPPA), a subtype-selective positive modulator of SK channels (SK3¿>¿SK2¿>¿>¿>¿SK1, IK), decreased spontaneous firing rate, increased the duration of the apamin-sensitive afterhyperpolarization, and caused an activity-dependent inhibition of current-evoked action potentials in DA neurons from both...

  14. Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Di Giorgio, Annabella; Blasi, Giuseppe; Romano, Raffaella; Taurisano, Paolo; Caforio, Grazia; Sinibaldi, Lorenzo; Ursini, Gianluca; Popolizio, Teresa; Tirotta, Emanuele; Papp, Audrey; Dallapiccola, Bruno; Borrelli, Emiliana; Sadee, Wolfgang

    2009-01-28

    Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.

  15. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  16. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  17. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death.

    Science.gov (United States)

    Choi, Kyou-Chan; Kim, Shin-Hee; Ha, Ji-Young; Kim, Sang-Tae; Son, Jin H

    2010-01-01

    Our previous microarray analysis identified a neuroprotective protein Oxi-alpha, that was down-regulated during oxidative stress (OS)-induced cell death in dopamine neurons [Neurochem. Res. (2004) vol. 29, pp. 1223]. Here we find that the phylogenetically conserved Oxi-alpha protects against OS by a novel mechanism: activation of the mammalian target of rapamycin (mTOR) kinase and subsequent repression of autophagic vacuole accumulation and cell death. To the best of our knowledge, Oxi-alpha is the first molecule discovered in dopamine neurons, which activates mTOR kinase. Indeed, the down-regulation of Oxi-alpha by OS suppresses the activation of mTOR kinase. The pathogenic effect of down-regulated Oxi-alpha was confirmed by gene-specific knockdown experiment, which resulted in not only the repression of mTOR kinase and the subsequent phosphorylation of p70 S6 kinase and 4E-BP1, but also enhanced susceptibility to OS. In accordance with these observations, treatment with rapamycin, an mTOR inhibitor and autophagy inducer, potentiated OS-induced cell death, while similar treatment with an autophagy inhibitor, 3-methyladenine protected the dopamine cells. Our findings present evidence for the presence of a novel class of molecule involved in autophagic cell death triggered by OS in dopamine neurons.

  18. Reward-based hypertension control by a synthetic brain-dopamine interface.

    Science.gov (United States)

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  19. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  20. Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Wed Al-Graiti

    2017-04-01

    Full Text Available The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the MWNT/Nafion yarn-based probe sensors have been assembled and assessed for high-performance dopamine sensing, showing a significant improvement in both sensitivity and selectivity in dopamine detection in presence of ascorbic acid and uric acid. It offers the potential to be further developed as implantable probe sensors.

  1. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  2. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  3. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  4. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  5. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  6. Putting Desire on a Budget: Dopamine and Energy Expenditure, Reconciling Reward and Resources

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2012-07-01

    Full Text Available Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the ‘reward deficiency hypothesis’ as a

  7. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cell

    Directory of Open Access Journals (Sweden)

    Lei eXing

    2015-09-01

    Full Text Available Radial glial cells (RGCs are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.

  8. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    Science.gov (United States)

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion

  9. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine......, norepinephrine, 3,4-dihydroxy-phenylalanine (l-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application...... as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors...

  10. Halloysite-based dopamine-imprinted polymer for selective protein capture.

    Science.gov (United States)

    Zhu, Xiaohong; Li, Hui; Liu, Hui; Peng, Wei; Zhong, Shian; Wang, Yan

    2016-06-01

    We describe a facile, general, and highly efficient approach to obtain polydopamine-coated molecularly imprinted polymer based on halloysite nanotubes for bovine serum albumin. The method combined surface molecular imprinting and one-step immobilized template technique. Hierarchically structured polymer was prepared in physiological conditions adopting dopamine as functional monomer. A thin layer of polydopamine can be coated on the surface of amino-modified halloysite nanotubes by self-polymerization, and the thickness of the imprinted shells can be controlled by the mass ratio of matrix and dopamine. The polymer was characterized by Fourier transform infrared spectrometry, transmission electron microscopy, and thermogravimetric analysis. The prepared material showed high binding capacity (45.4 mg/g) and specific recognition behavior toward the template protein. In addition, stability and regeneration analyses indicated that the imprinted polymer exhibited excellent reusability (relative standard deviation < 9% for batch-to-batch evaluation). Therefore, the developed polymer is effective for protein recognition and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  12. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Science.gov (United States)

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  13. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L

    2015-10-01

    Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The

  15. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [11C]raclopride to measure...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  16. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  17. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  18. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  19. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    Science.gov (United States)

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  20. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  1. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  2. Ventral tegmental area dopamine revisited: effects of acute and repeated stress

    Science.gov (United States)

    Holly, Elizabeth N.; Miczek, Klaus A.

    2015-01-01

    Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression. PMID:26676983

  3. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    Science.gov (United States)

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  4. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  5. Carbon-11 labelling of eticlopride in two different positions - a selective high-affinity ligand for the study of dopamine D-2 receptors using PET

    International Nuclear Information System (INIS)

    Halldin, Christer; Hall, Haakan

    1990-01-01

    A new highly selective high-affinity dopamine D-2 receptor antagonist, eticlopride ((-)-(S)-5-chloro-3-ethyl-N-(1-ethyl-2-pyrrolidinyl)methyl)-6-methoxysalicylamide), was labelled with 11 C in two different positions ([N-ethyl- 11 C]eticlopride (I) and ([methyl- 11 C]eticlopride (II)). Product I was prepared by N-alkylation of the N-desethyl compound with [ 11 C]ethyl iodide. II was prepared by O-alkylation of the diphenolic precursor with [ 11 C]methyl iodide followed by separation of the two methylated products. The radiochemical yields were 15-20% (EOB) with an overall synthesis time of 45-60 min. Both compounds were isolated by semi-preparative HPLC and the radiochemical purity was in both cases > 99%. I was injected i.v. in a Cynomolgus monkey and brain radioactivity was measured by positron emission tomography (PET). The specific activity was 70 Ci/mmol at time of injection. There was a marked accumulation of radioactivity in the basal ganglia, regions known to have a high density of dopamine D-2 receptors. (author)

  6. DOPAMINE AND THE BIOLOGY OF CREATIVITY: LESSONS FROM PARKINSON’S DISEASE

    Directory of Open Access Journals (Sweden)

    Eugénie eLhommée

    2014-04-01

    Full Text Available BACKGROUND: Parkinson’s disease (PD is characterized by reduced flexibility, conceptualization and visuo-spatial abilities. Although these are essential to creativity, case studies show emergence of creativity during PD. Knowledge about the role of dopamine in creativity so far only stems from a few case reports. We aim at demonstrating that creativity can be induced by dopaminergic treatments in PD, and tends to disappear after withdrawal of dopamine agonists. METHODS: 11 consecutive creative PD patients were selected from candidates for subthalamic deep brain stimulation (STN DBS surgery, and compared to 22 non-creative control PD patients. Motor disability (UPDRS III, cognition (Frontal Score, Mattis scale and behaviour (Ardouin scale were assessed before surgery and one year after. RESULTS: Before surgery, whereas cognitive and motor assessments where similar between groups, dopamine agonist (but not levodopa dosages were higher in creative patients (p=0.01. The Ardouin scale revealed also a specific psycho-behavioural profile of creative patients which had higher scores for mania (pCONCLUSION: Creativity in PD is linked to dopamine agonist therapy, and tends to disappear after STN DBS in parallel to reduction of dopamine agonists, which are relatively selective for the mesolimbic D3 dopamine receptors

  7. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  8. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Science.gov (United States)

    Rose, Jamie H.; Karkhanis, Anushree N.; Steiniger-Brach, Björn; Jones, Sara R.

    2016-01-01

    The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs. PMID:27472317

  9. Direct and Systemic Administration of a CNS-Permeant Tamoxifen Analog Reduces Amphetamine-Induced Dopamine Release and Reinforcing Effects.

    Science.gov (United States)

    Carpenter, Colleen; Zestos, Alexander G; Altshuler, Rachel; Sorenson, Roderick J; Guptaroy, Bipasha; Showalter, Hollis D; Kennedy, Robert T; Jutkiewicz, Emily; Gnegy, Margaret E

    2017-09-01

    Amphetamines (AMPHs) are globally abused. With no effective treatment for AMPH addiction to date, there is urgent need for the identification of druggable targets that mediate the reinforcing action of this stimulant class. AMPH-stimulated dopamine efflux is modulated by protein kinase C (PKC) activation. Inhibition of PKC reduces AMPH-stimulated dopamine efflux and locomotor activity. The only known CNS-permeant PKC inhibitor is the selective estrogen receptor modulator tamoxifen. In this study, we demonstrate that a tamoxifen analog, 6c, which more potently inhibits PKC than tamoxifen but lacks affinity for the estrogen receptor, reduces AMPH-stimulated increases in extracellular dopamine and reinforcement-related behavior. In rat striatal synaptosomes, 6c was almost fivefold more potent at inhibiting AMPH-stimulated dopamine efflux than [ 3 H]dopamine uptake through the dopamine transporter (DAT). The compound did not compete with [ 3 H]WIN 35,428 binding or affect surface DAT levels. Using microdialysis, direct accumbal administration of 1 μM 6c reduced dopamine overflow in freely moving rats. Using LC-MS, we demonstrate that 6c is CNS-permeant. Systemic treatment of rats with 6 mg/kg 6c either simultaneously or 18 h prior to systemic AMPH administration reduced both AMPH-stimulated dopamine overflow and AMPH-induced locomotor effects. Finally, 18 h pretreatment of rats with 6 mg/kg 6c s.c. reduces AMPH-self administration but not food self-administration. These results demonstrate the utility of tamoxifen analogs in reducing AMPH effects on dopamine and reinforcement-related behaviors and suggest a new avenue of development for therapeutics to reduce AMPH abuse.

  10. Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M5 muscarinic receptor knockout mice

    DEFF Research Database (Denmark)

    Schmidt, Lene S; Miller, Anthony D; Lester, Deranda B

    2010-01-01

    showed that M(5) receptor knockout (M (5) (-/-) ) mice are less sensitive to the reinforcing properties of addictive drugs. MATERIALS AND METHODS: Here, we investigate the role of M(5) receptors in the effects of amphetamine and cocaine on locomotor activity, locomotor sensitization, and dopamine release......-induced hyperactivity and dopamine release as well as amphetamine sensitization are enhanced in mice lacking the M(5) receptor. These results support the concept that the M(5) receptor modulates effects of addictive drugs....

  11. Stereoselectivity of presynaptic autoreceptors modulating dopamine release

    International Nuclear Information System (INIS)

    Arbilla, S.; Langer, S.Z.

    1981-01-01

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [ 3 H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01-1μM enhanced the electrically evoked release of [ 3 H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.1-1 μM) but not to (R)-butaclamol (0.1-10μM) enhanced the field-stimulated release of [ 3 H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1μM) of the stimulated release of [ 3 H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [ 3 H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective. (Auth.)

  12. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  13. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism

    DEFF Research Database (Denmark)

    Södersten, Erik; Feyder, Michael; Lerdrup, Mads

    2014-01-01

    . Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation....... The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p...

  15. Cross-talk between an activator of nuclear receptors-mediated transcription and the D1 dopamine receptor signaling pathway.

    Science.gov (United States)

    Schmidt, Azriel; Vogel, Robert; Rutledge, Su Jane; Opas, Evan E; Rodan, Gideon A; Friedman, Eitan

    2005-03-01

    Nuclear receptors are transcription factors that usually interact, in a ligand-dependent manner, with specific DNA sequences located within promoters of target genes. The nuclear receptors can also be controlled in a ligand-independent manner via the action of membrane receptors and cellular signaling pathways. 5-Tetradecyloxy-2-furancarboxylic acid (TOFA) was shown to stimulate transcription from the MMTV promoter via chimeric receptors that consist of the DNA binding domain of GR and the ligand binding regions of the PPARbeta or LXRbeta nuclear receptors (GR/PPARbeta and GR/LXRbeta). TOFA and hydroxycholesterols also modulate transcription from NF-kappaB- and AP-1-controlled reporter genes and induce neurite differentiation in PC12 cells. In CV-1 cells that express D(1) dopamine receptors, D(1) dopamine receptor stimulation was found to inhibit TOFA-stimulated transcription from the MMTV promoter that is under the control of chimeric GR/PPARbeta and GR/LXRbeta receptors. Treatment with the D(1) dopamine receptor antagonist, SCH23390, prevented dopamine-mediated suppression of transcription, and by itself increased transcription controlled by GR/LXRbeta. Furthermore, combined treatment of CV-1 cells with TOFA and SCH23390 increased transcription controlled by the GR/LXRbeta chimeric receptor synergistically. The significance of this in vitro synergy was demonstrated in vivo, by the observation that SCH23390 (but not haloperidol)-mediated catalepsy in rats was potentiated by TOFA, thus showing that an agent that mimics the in vitro activities of compounds that activate members of the LXR and PPAR receptor families can influence D1 dopamine receptor elicited responses.

  16. Mesolimbic dopamine function is not altered during continuous chronic treatment of rats with typical or atypical neuroleptic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Rupniak, N M.J.; Hall, M D; Kelly, E; Fleminger, S; Kilpatrick, G; Jenner, P; Marsden, C D

    1985-01-01

    Rats were treated continuously for up to 20 months with either haloperidol (1.4-1.6 mg/kg/day), sulpiride (102-109 mg/kg/day) or clozapine (24-27 mg/kg/day). Bsub(max) for specific mesolimbic binding of TH-spiperone, TH-N, n-propylnorapomorphine or TH-piflutixol did not differ in tissue taken from animals treated for up to 12 months with haloperidol, sulpiride or clozapine by comparison to age-matched control rats. Mesolimbic dopamine (50 M)-stimulated adenylate cyclase activity was not altered in any drug treatment group. Spontaneous locomotor activity was transiently decreased during treatment with haloperidol for 1 or 3 months, but not by chronic sulpiride or clozapine treatment. Locomotor activity was not consistently increased in any drug treatment group. After 20 months of continuous drug treatment, focal bilateral application of dopamine (12.5 or 25 g) into the nucleus accumbens caused equivalent increases in locomotor activity in control rats and in animals receiving haloperidol, sulpiride of clozapine. These findings suggest that dopamine receptor blockade is not maintained in the mesolimbic area following chronic treatment with haloperidol, sulpiride or clozapine, and indicate that, under these conditions, clozapine and sulpiride may not act selectively on mesolimbic dopamine receptors. (Author).

  17. Mesolimbic dopamine function is not altered during continuous chronic treatment of rats with typical or atypical neuroleptic drugs

    International Nuclear Information System (INIS)

    Rupniak, N.M.J.; Hall, M.D.; Kelly, E.; Fleminger, S.; Kilpatrick, G.; Jenner, P.; Marsden, C.D.

    1985-01-01

    Rats were treated continuously for up to 20 months with either haloperidol (1.4-1.6 mg/kg/day), sulpiride (102-109 mg/kg/day) or clozapine (24-27 mg/kg/day). Bsub(max) for specific mesolimbic binding of 3 H-spiperone, 3 H-N, n-propylnorapomorphine or 3 H-piflutixol did not differ in tissue taken from animals treated for up to 12 months with haloperidol, sulpiride or clozapine by comparison to age-matched control rats. Mesolimbic dopamine (50 μM)-stimulated adenylate cyclase activity was not altered in any drug treatment group. Spontaneous locomotor activity was transiently decreased during treatment with haloperidol for 1 or 3 months, but not by chronic sulpiride or clozapine treatment. Locomotor activity was not consistently increased in any drug treatment group. After 20 months of continuous drug treatment, focal bilateral application of dopamine (12.5 or 25 μg) into the nucleus accumbens caused equivalent increases in locomotor activity in control rats and in animals receiving haloperidol, sulpiride of clozapine. These findings suggest that dopamine receptor blockade is not maintained in the mesolimbic area following chronic treatment with haloperidol, sulpiride or clozapine, and indicate that, under these conditions, clozapine and sulpiride may not act selectively on mesolimbic dopamine receptors. (Author)

  18. Decreased spontaneous activity in AMPK alpha 2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism

    DEFF Research Database (Denmark)

    Møller, Lisbeth Liliendal Valbjørn; Sylow, Lykke; Gøtzsche, Casper René

    2016-01-01

    was tested in an open field test. Furthermore, we investigated maximal running capacity and voluntary running over a period of 19 days. AMPK α2 KD mice ran 30% less in daily distance compared to WT. Furthermore, AMPK α2 KD mice showed significantly decreased locomotor activity in the open field test compared...... through alterations of the brain dopamine levels specifically in the striatal region. To test this hypothesis, transgenic mice overexpressing an inactivatable dominant negative α2 AMPK construct (AMPK α2 KD) in muscles and littermate wildtype (WT) mice were tested. AMPK α2 KD mice have impaired running...... capacity and display reduced voluntary wheel running activity. Striatal content of dopamine and its metabolites were measured under basal physiological conditions and after cocaine-induced dopamine efflux from the ventral striatum by in vivo microdialysis. Moreover, cocaine-induced locomotor activity...

  19. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  20. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Rodthongkum, Nadnudda, E-mail: Nadnudda.R@chula.ac.th [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Ruecha, Nipapan [Program in Macromolecular Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Rangkupan, Ratthapol [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Center of Innovative Nanotechnology, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Vachet, Richard W. [Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01002 (United States); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2013-12-04

    Graphical abstract: -- Highlights: •A novel electrode based on electrospun graphene/polyaniline/polystyrene nanofibers has been developed. •The proposed system provides ultrahigh sensitivity, good selectivity and wide linearity for the determination of dopamine. •This system was successfully applied to determine dopamine in complex biological environment with excellent reproducibility. -- Abstract: A novel and highly sensitive electrochemical system based on electrospun graphene/polyaniline/polystyrene (G/PANI/PS) nanofiber-modified screen-printed carbon electrodes has been developed for dopamine (DA) determination. A dramatic increase (9 times) in the current signal for the redox reaction of a standard, ferri/ferrocyanide [Fe(CN){sub 6}]{sup 3−/4−} couple was found when compared to an unmodified electrode. This modified electrode also exhibited favorable electron transfer kinetics and excellent electrocatalytic activity toward the oxidation of DA. When used together with square wave voltammetry (SWV), DA can be selectively determined in the presence of the common interferents (i.e. ascorbic acid and uric acid). Under optimal conditions, a very low limit of detection (0.05 nM) and limit of quantification (0.30 nM) were achieved for DA. In addition, a wide dynamic range of 0.1 nM to 100 μM was found for this electrode system. Finally, the system can be successfully applied to determine DA in complex biological environment (e.g. human serum, urine) with excellent reproducibility.

  1. Dopamine synthesis in alcohol drinking-prone and -resistant mouse strains

    Science.gov (United States)

    Siciliano, Cody A.; Locke, Jason L.; Mathews, Tiffany A.; Lopez, Marcelo F.; Becker, Howard C.; Jones, Sara R.

    2017-01-01

    Alcoholism is a prevalent and debilitating neuropsychiatric disease, and much effort has been aimed at elucidating the neurobiological mechanisms underlying maladaptive alcohol drinking in an effort to design rational treatment strategies. In preclinical literature, the use of inbred mouse lines has allowed for the examination of ethanol effects across vulnerable and resistant phenotypes. C57BL/6J mice consistently show higher rates of ethanol drinking compared to most mouse strains. Conversely, DBA/2J mice display low rates of ethanol consumption. Given that the reinforcing and rewarding effects of ethanol are thought to be in part mediated by its actions on dopamine neurotransmission, we hypothesized that alcohol-preferring C57BL/6J and alcohol-avoiding DBA/2J mice would display basal differences in dopamine system function. By administering an L-aromatic acid decarboxylase inhibitor and measuring L-Dopa accumulation via high-performance liquid chromatography as a measure of tyrosine hydroxylase activity, we found no difference in dopamine synthesis between mouse strains in the midbrain, dorsal striatum, or ventral striatum. However, we did find that quinpirole-induced inhibition of dopamine synthesis was greater in the ventral striatum of C57BL/6J mice, suggesting increased presynaptic D2-type dopamine autoreceptor sensitivity. To determine whether dopamine synthesis or autoreceptor sensitivity was altered by a history of ethanol, we exposed C57BL/6J mice to one or two weekly cycles of chronic intermittent ethanol (CIE) exposure and withdrawal. We found that there was an attenuation of baseline dopamine synthesis in the ventral striatum after two cycles of CIE. Finally, we examined tissue content of dopamine and dopamine metabolites across recombinant inbred mice bred from a C57BL/6J × DBA/2J cross (BXD). We found that low dopaminergic activity, as indicated by high dopamine/metabolite ratios, was positively correlated with drinking. Together, these findings

  2. Comparative MD Simulations Indicate a Dual Role for Arg1323.50 in Dopamine-Dependent D2R Activation.

    Directory of Open Access Journals (Sweden)

    Ralf C Kling

    Full Text Available Residue Arg3.50 belongs to the highly conserved DRY-motif of class A GPCRs, which is located at the bottom of TM3. On the one hand, Arg3.50 has been reported to help stabilize the inactive state of GPCRs, but on the other hand has also been shown to be crucial for stabilizing active receptor conformations and mediating receptor-G protein coupling. The combined results of these studies suggest that the exact function of Arg3.50 is likely to be receptor-dependent and must be characterized independently for every GPCR. Consequently, we now present comparative molecular-dynamics simulations that use our recently described inactive-state and Gα-bound active-state homology models of the dopamine D2 receptor (D2R, which are either bound to dopamine or ligand-free, performed to identify the function of Arg1323.50 in D2R. Our results are consistent with a dynamic model of D2R activation in which Arg1323.50 adopts a dual role, both by stabilizing the inactive-state receptor conformation and enhancing dopamine-dependent D2R-G protein coupling.

  3. Detection of dopamine neurotransmission in 'real time'

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    2013-07-01

    Full Text Available Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

  4. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  5. A Selective Role for Dopamine in Learning to Maximize Reward But Not to Minimize Effort: Evidence from Patients with Parkinson's Disease.

    Science.gov (United States)

    Skvortsova, Vasilisa; Degos, Bertrand; Welter, Marie-Laure; Vidailhet, Marie; Pessiglione, Mathias

    2017-06-21

    Instrumental learning is a fundamental process through which agents optimize their choices, taking into account various dimensions of available options such as the possible reward or punishment outcomes and the costs associated with potential actions. Although the implication of dopamine in learning from choice outcomes is well established, less is known about its role in learning the action costs such as effort. Here, we tested the ability of patients with Parkinson's disease (PD) to maximize monetary rewards and minimize physical efforts in a probabilistic instrumental learning task. The implication of dopamine was assessed by comparing performance ON and OFF prodopaminergic medication. In a first sample of PD patients ( n = 15), we observed that reward learning, but not effort learning, was selectively impaired in the absence of treatment, with a significant interaction between learning condition (reward vs effort) and medication status (OFF vs ON). These results were replicated in a second, independent sample of PD patients ( n = 20) using a simplified version of the task. According to Bayesian model selection, the best account for medication effects in both studies was a specific amplification of reward magnitude in a Q-learning algorithm. These results suggest that learning to avoid physical effort is independent from dopaminergic circuits and strengthen the general idea that dopaminergic signaling amplifies the effects of reward expectation or obtainment on instrumental behavior. SIGNIFICANCE STATEMENT Theoretically, maximizing reward and minimizing effort could involve the same computations and therefore rely on the same brain circuits. Here, we tested whether dopamine, a key component of reward-related circuitry, is also implicated in effort learning. We found that patients suffering from dopamine depletion due to Parkinson's disease were selectively impaired in reward learning, but not effort learning. Moreover, anti-parkinsonian medication restored the

  6. Dopamine receptors D3 and D5 regulate CD4(+)T-cell activation and differentiation by modulating ERK activation and cAMP production.

    Science.gov (United States)

    Franz, Dafne; Contreras, Francisco; González, Hugo; Prado, Carolina; Elgueta, Daniela; Figueroa, Claudio; Pacheco, Rodrigo

    2015-07-15

    Dopamine receptors have been described in T-cells, however their signalling pathways coupled remain unknown. Since cAMP and ERKs play key roles regulating T-cell physiology, we aim to determine whether cAMP and ERK1/2-phosphorylation are modulated by dopamine receptor 3 (D3R) and D5R, and how this modulation affects CD4(+) T-cell activation and differentiation. Our pharmacologic and genetic evidence shows that D3R-stimulation reduced cAMP levels and ERK2-phosphorylation, consequently increasing CD4(+) T-cell activation and Th1-differentiation, respectively. Moreover, D5R expression reinforced TCR-triggered ERK1/2-phosphorylation and T-cell activation. In conclusion, these findings demonstrate how D3R and D5R modulate key signalling pathways affecting CD4(+) T-cell activation and Th1-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  8. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Science.gov (United States)

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. In vivo neurochemical characterization of clothianidin induced striatal dopamine release.

    Science.gov (United States)

    Faro, L R F; Oliveira, I M; Durán, R; Alfonso, M

    2012-12-16

    Clothianidin (CLO) is a neonicotinoid insecticide with selective action on nicotinic acetylcholine receptors. The aim of this study was to determine the neurochemical basis for CLO-induced striatal dopamine release using the microdialysis technique in freely moving and conscious rats. Intrastriatal administration of CLO (3.5mM), produced an increase in both spontaneous (2462 ± 627% with respect to basal values) and KCl-evoked (4672 ± 706% with respect to basal values) dopamine release. This effect was attenuated in Ca(2+)-free medium, and was prevented in reserpine pre-treated animals or in presence of tetrodotoxin (TTX). To investigate the involvement of dopamine transporter (DAT), the effect of CLO was observed in presence of nomifensine. The coadministration of CLO and nomifensine produced an additive effect on striatal dopamine release. The results suggest that the effect of CLO on striatal dopamine release is predominantly mediated by an exocytotic mechanism, Ca(2+), vesicular and TTX-dependent and not by a mechanism mediated by dopamine transporter. Published by Elsevier Ireland Ltd.

  10. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Science.gov (United States)

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.

  11. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  12. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  13. Ultrasensitive and Selective Organic FET-type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide.

    Science.gov (United States)

    Oh, Jungkyun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2017-11-15

    Dopamine (DA), a catecholamine hormone, is an important neurotransmitter that controls renal and cardiovascular organizations and regulates physiological activities. Abnormal concentrations of DA cause unfavorable neuronal illnesses such as Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder/attention deficit disorder. However, the DA concentration is exceedingly low in patients and difficult to detect with existing biosensors. In this study, we developed an organic field-effect-transistor-type (OFET) nonenzyme biosensor using platinum nanoparticle-decorated reduced graphene oxide (Pt_rGO) for ultrasensitive and selective DA detection. The Pt_rGOs were fabricated by reducing GO aqueous solution-containing Pt precursors (PtCl 4 ) with a chemical reducing agent. The Pt_rGOs were immobilized on a graphene substrate by π-π interactions and a conducting-polymer source-drain electrode was patterned on the substrate to form the DA sensor. The resulting OFET sensor showed a high sensitivity to remarkably low DA concentrations (100 × 10 -18 M) and selectivity among interfering molecules. Good stability was expected for the OFET sensor because it was fabricated without an enzymatic receptor, and π-π conjugation is a part of the immobilization process. Furthermore, the OFET sensors are flexible and offer the possibility of wide application as wearable and portable sensors.

  14. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor

    Energy Technology Data Exchange (ETDEWEB)

    Talemi, Rasoul Pourtaghavi, E-mail: rasoulpourtaghavi@gmail.com [Faculty of Chemistry, Kharazmi University, Tehran (Iran, Islamic Republic of); Mousavi, Seyed Mehdi [Faculty of Chemistry, Kharazmi University, Tehran (Iran, Islamic Republic of); Afruzi, Hossein [Department of Chemistry, Faculty of Science, Lorestan University, Lorestan (Iran, Islamic Republic of)

    2017-04-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and Au−S well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (R{sub CT}) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (± 0.1) to 100.0 (± 0.3) ng L{sup −1} (ppt) with detection and quantification limits of 0.29 (± 0.10) and 0.90 (± 0.08) ng L{sup −1} (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. - Highlights: • A novel impedimetric aptasensor was prepared for dopamine ultra-trace determination. • Gold nanostar used for electrostatic and covalent immobilization of a thiolated dopamine aptamer. • The proposed aptasensor had high sensitivity, specificity, and regeneration ability.

  15. Using gold nanostars modified pencil graphite electrode as a novel substrate for design a sensitive and selective Dopamine aptasensor

    International Nuclear Information System (INIS)

    Talemi, Rasoul Pourtaghavi; Mousavi, Seyed Mehdi; Afruzi, Hossein

    2017-01-01

    For the first time, gold nanostars (GNS) were applied for electrostatic and covalent immobilizing a thiol modified Dopamine aptamer on the pencil graphite electrode and signal amplification. Dopamine aptamer was immobilized on the gold nanostars through electrostatic interaction between negatively charged phosphate groups of aptamer and positively charged gold nanostars and Au−S well known covalent interaction. In the presence of Dopamine in the test solution, the charge transfer resistance (R CT ) on the electrode surface increased with the increase of the Dopamine concentration due to specific interaction between Dopamine aptamer and Dopamine molecules, which made a barrier for electrons and inhibited the electron-transfer. So, the proposed approach showed a high sensitivity and a wide linearity to Dopamine in the range from 1.0 (± 0.1) to 100.0 (± 0.3) ng L −1 (ppt) with detection and quantification limits of 0.29 (± 0.10) and 0.90 (± 0.08) ng L −1 (ppt), respectively. Finally, the sensor was successfully used for determination of Dopamine in biological (human blood plasma and urine) samples. The results open up the path for manufacturing cost effective aptasensors for other biomedical applications. - Highlights: • A novel impedimetric aptasensor was prepared for dopamine ultra-trace determination. • Gold nanostar used for electrostatic and covalent immobilization of a thiolated dopamine aptamer. • The proposed aptasensor had high sensitivity, specificity, and regeneration ability.

  16. Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens.

    Science.gov (United States)

    Bardo, M T

    1998-01-01

    Multiple lines of research have implicated the mesolimbic dopamine system in drug reward measured by either the drug self-administration or conditioned place preference paradigm. The present review summarizes recent work that examines the neuropharmacological mechanisms by which drugs impinge on this dopaminergic neural circuitry, as well as other systems that provide input and output circuits to the mesolimbic dopamine system. Studies examining the effect of selective agonist and antagonist drugs administered systemically have indicated that multiple neurotransmitters are involved, including dopamine, serotonin, acetylcholine, glutamate, GABA, and various peptides. Direct microinjection studies have also provided crucial evidence indicating that, in addition to the mesolimbic dopamine system, other structures play a role in drug reward, including the ventral pallidum, amygdala, hippocampus, hypothalamus, and pedunculopontine tegmental nucleus. GABAergic circuitry descending from the nucleus accumbens to the pedunculopontine tegmental nucleus via the ventral pallidum appears to be especially important in directing the behavioral sequelae associated with reward produced by various drugs of abuse. However, activation of the reward circuitry is achieved differently for various drugs of abuse. With amphetamine and cocaine, initiation of reward is controlled within the nucleus accumbens and prefrontal cortex, respectively. With opiates, initiation of reward involves the ventral tegmental area, nucleus accumbens, hippocampus, and hypothalamus. It is not clear presently if these multiple anatomical structures mediate opiate reward by converging on a single output system or multiple output systems.

  17. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  18. Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Directory of Open Access Journals (Sweden)

    Andrew C. Hiday

    2017-01-01

    Full Text Available Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1, are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD.

  19. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity.

    Science.gov (United States)

    Fiore, Vincenzo G; Dolan, Raymond J; Strausfeld, Nicholas J; Hirth, Frank

    2015-12-19

    Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates. © 2015 The Authors.

  20. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  1. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    Directory of Open Access Journals (Sweden)

    Chiara Baston

    2015-01-01

    Full Text Available The basal ganglia (BG are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go, indirect (NoGo, and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges, synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication. Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  2. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  3. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    Science.gov (United States)

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  4. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    Science.gov (United States)

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  5. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    and differentially modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.

  6. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    NARCIS (Netherlands)

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  7. Altered dopamine signaling in naturally occurring maternal neglect.

    Directory of Open Access Journals (Sweden)

    Stephen C Gammie

    2008-04-01

    Full Text Available Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking.The current study characterizes a population of mice (MaD1 which naturally exhibit maternal neglect (little or no care of offspring at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI, ventral tegmental area (VTA, and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production was significantly elevated in ZI and higher in VTA (although not significantly in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams.These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally

  8. A Neurocomputational Model of Dopamine and Prefrontal-Striatal Interactions during Multicue Category Learning by Parkinson Patients

    Science.gov (United States)

    Moustafa, Ahmed A.; Gluck, Mark A.

    2011-01-01

    Most existing models of dopamine and learning in Parkinson disease (PD) focus on simulating the role of basal ganglia dopamine in reinforcement learning. Much data argue, however, for a critical role for prefrontal cortex (PFC) dopamine in stimulus selection in attentional learning. Here, we present a new computational model that simulates…

  9. Depression of Serotonin Synaptic Transmission by the Dopamine Precursor L-DOPA

    Directory of Open Access Journals (Sweden)

    Stephanie C. Gantz

    2015-08-01

    Full Text Available Imbalance between the dopamine and serotonin (5-HT neurotransmitter systems has been implicated in the comorbidity of Parkinson’s disease (PD and psychiatric disorders. L-DOPA, the leading treatment of PD, facilitates the production and release of dopamine. This study assessed the action of L-DOPA on monoamine synaptic transmission in mouse brain slices. Application of L-DOPA augmented the D2-receptor-mediated inhibitory postsynaptic current (IPSC in dopamine neurons of the substantia nigra. This augmentation was largely due to dopamine release from 5-HT terminals. Selective optogenetic stimulation of 5-HT terminals evoked dopamine release, producing D2-receptor-mediated IPSCs following treatment with L-DOPA. In the dorsal raphe, L-DOPA produced a long-lasting depression of the 5-HT1A-receptor-mediated IPSC in 5-HT neurons. When D2 receptors were expressed in the dorsal raphe, application of L-DOPA resulted in a D2-receptor-mediated IPSC. Thus, treatment with L-DOPA caused ectopic dopamine release from 5-HT terminals and a loss of 5-HT-mediated synaptic transmission.

  10. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila

    Directory of Open Access Journals (Sweden)

    Tingting Xie

    2018-04-01

    Full Text Available Summary: The neuromodulator dopamine (DA plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay. : The rapid analysis of how dopaminergic circuits regulate behavior is limited by the genetic tools available to target and manipulate small numbers of these neurons. Xie et al. present genetic tools in Drosophila that allow rational targeting of sparse dopaminergic neuronal subsets and selective knockdown of dopamine signaling. Keywords: dopamine, genetics, behavior, neural circuits, neuromodulation, Drosophila

  11. Dopamine activates masculine sexual behavior independent of the estrogen receptor alpha.

    Science.gov (United States)

    Wersinger, S R; Rissman, E F

    2000-06-01

    Estrogen receptor alpha (ERalpha) is believed to be a critical part of the regulatory processes involved in normal reproduction and sexual behavior. However, in this study we show the ERalpha is not required for display of masculine sexual behavior. Male and female, ERalpha knock-out (ERalphaKO) and wild-type mice were gonadectomized and implanted with testosterone. Sexual behavior and social preferences were tested after injection of the dopamine agonist, apomorphine (APO), or vehicle. All wild-type mice showed normal masculine behavior, including mounts and pelvic thrusts in females, and ejaculation in males. In agreement with past reports, ERalphaKO mice, given vehicle, failed to show mating behavior. Yet, ERalphaKO males given APO showed masculine copulatory behavior and chemoinvestigatory behavior directed at females. ERalphaKO females, treated with APO, mounted and thrusted when tested with receptive females. HPLC revealed that wild-type and ERalphaKO mice had equivalent catecholamine content in brain regions associated with masculine sexual behavior. These data show that the ERalpha is not essential during development or adulthood for the expression of masculine sexual behavior in mice. Moreover, dopamine can activate sexual behavior via a mechanism that either acts on an ER other than ERalpha or via an estrogen-independent pathway.

  12. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    Science.gov (United States)

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Return of D4 Dopamine Receptor Antagonists in Drug Discovery.

    Science.gov (United States)

    Lindsley, Craig W; Hopkins, Corey R

    2017-09-14

    The dopamine D 4 receptor garnered a great deal of interest in the early 1990s when studies showed the atypical antipsychotic clozapine possessed higher affinity for D 4 , relative to other dopamine receptor subtypes, and that this activity might underlie the unique clinical efficacy of clozapine. Unfortunately, D 4 antagonists that were developed for schizophrenia failed in the clinic. Thus, D 4 fell out of favor as a therapeutic target, and work in this area was silent for decades. Recently, D 4 ligands with improved selectivity for D 4 against not only D 1-3,5 but also other biogenic amine targets have emerged, and D 4 is once again in the spotlight as a novel target for both addiction and Parkinson's disease (PD), as well as other emerging diseases. This report will review the historical data for D 4 , review the known D 4 ligands, and then highlight new data supporting a role for D 4 inhibition in addiction, PD, and cancer.

  14. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  15. Dopamine1 receptors in rat kidneys identified with 125I-Sch 23982

    International Nuclear Information System (INIS)

    Felder, R.A.; Jose, P.A.

    1988-01-01

    Dopamine1 receptors were studied in rat kidney using the selective dopamine1 antagonist 125I-labeled Sch 23982. The specific binding of 125I-Sch 23982 (defined by 5 microM Sch 23390) to renal cortical homogenates incubated at room temperature was rapid, saturable with time and ligand concentration, and reversible. Analysis of Rosenthal plots revealed a single class of receptors with an apparent dissociation constant of 12.2 +/- 1.9 nM and maximum receptor density of 1.03 +/- 0.15 pmol/mg protein (n = 6). However, competition experiments with the dopamine1 antagonist Sch 23390 revealed a low- and high-affinity binding site with inhibition constants of 1 x 10(-6) and 1 x 10(-8) M, respectively. The competition experiments were also indicative of dopamine1 receptors with stereoselectivity noted for dopamine1 but not for dopamine2 antagonists. The inhibition constants for dopamine1 antagonists and agonists were two orders of magnitude greater in renal cortical than striatal homogenates. Different buffers affected striatal but not renal cortical binding. Autoradiographic studies revealed 125I-Sch 23982 binding in renal cortical but not medullary tissue. These studies confirm the presence of dopamine1 receptors in the cortex of the rat kidney

  16. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    Science.gov (United States)

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Science.gov (United States)

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  18. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  19. Dopamine transporter gene variation modulates activation of striatum in youth with ADHD.

    Science.gov (United States)

    Bédard, Anne-Claude; Schulz, Kurt P; Cook, Edwin H; Fan, Jin; Clerkin, Suzanne M; Ivanov, Iliyan; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2010-11-15

    Polymorphisms in the 3'UTR variable number tandem repeat (VNTR) of exon 15 of the dopamine transporter gene (DAT1) have been linked to attention-deficit hyperactivity disorder (ADHD); moreover, variability in DAT1 3'UTR genotype may contribute to both heterogeneity of the ADHD phenotype and differences in response to stimulant medications. The impact of this VNTR on neuronal function in individuals with ADHD remains unclear despite evidence that the polymorphisms influence dopamine transporter expression. Thus, we used event-related functional magnetic resonance imaging to examine the impact of DAT1 3'UTR genotype on brain activation during response inhibition in unmedicated children and adolescents with ADHD. Twenty-one youth with ADHD who were homozygous for the 10-repeat (10R) allele of the DAT1 3'UTR and 12 youth who were carriers of the 9-repeat (9R) allele were scanned while they performed a Go/No-Go task. Response inhibition was modeled by contrasting activation during correct No-Go trials versus correct Go trials. Participants who were homozygous for the DAT1 3'UTR 10R allele and those who had a single 9R allele did not differ on percent of trials with successful inhibition, which was the primary measure of inhibitory control. Yet, youth with the DAT1 3'UTR 10R/10R genotype had significantly greater inhibitory control-related activation than those with one 9R allele in the left striatum, right dorsal premotor cortex, and bilaterally in the temporoparietal cortical junction. These findings provide preliminary evidence that neural activity related to inhibitory control may differ as a function of DAT1 3'UTR genotype in youth with ADHD. Copyright 2009 Elsevier Inc. All rights reserved.

  20. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  1. Nafion covered core–shell structured Fe{sub 3}O{sub 4}@graphene nanospheres modified electrode for highly selective detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wuxiang; Zheng, Jianzhong; Shi, Jiangu; Lin, Zhongqiu; Huang, Qitong; Zhang, Hanqiang; Wei, Chan [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Chen, Jianhua [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000 (China); Hu, Shirong, E-mail: Hushirong6666@163.com [College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Hao, Aiyou [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-01

    Graphical abstract: Schematic illustration of the reaction mechanism of Fe{sub 3}O{sub 4}@GNs/Nafion with DA. - Highlights: • The sensor based on Fe{sub 3}O{sub 4}@graphene nanospheres was prepared for the first time. • The biosensor shows a wide linear range and a lower detection limit of 0.007 μM. • This method was successfully applied to detection of DA in real samples. - Abstract: Nafion covered core–shell structured Fe{sub 3}O{sub 4}@graphene nanospheres (GNs) modified glassy carbon electrode (GCE) was successfully prepared and used for selective detection dopamine. Firstly, the characterizations of hydro-thermal synthesized Fe{sub 3}O{sub 4}@GNs were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Then Fe{sub 3}O{sub 4}@GNs/Nafion modified electrode exhibited excellent electrocatalytic activity toward the oxidations of dopamine (DA). The interference test showed that the coexisted ascorbic acid (AA) and uric acid (UA) had no electrochemical interference toward DA. Under the optimum conditions, the broad linear relationship was obtained in the experimental concentration from 0.020 μM to 130.0 μM with the detection limit (S/N = 3) of 0.007 μM. Furthermore, the core–shell structured Fe{sub 3}O{sub 4}@GNs/Nafion/GCE was applied to the determination of DA in real samples and satisfactory results were got, which could provide a promising platform to develop excellent biosensor for detecting DA.

  2. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine

    Science.gov (United States)

    Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.

    2013-01-01

    Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560

  4. Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode

    International Nuclear Information System (INIS)

    Hammami, Asma; Raouafi, Noureddine; Sahli, Rihab

    2016-01-01

    We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. (author)

  5. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  6. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  7. Characterization of the discriminative stimulus produced by the dopamine antagonist tiapride.

    Science.gov (United States)

    Cohen, C; Sanger, D J; Perrault, G

    1997-11-01

    The ability of tiapride, a selective D2/D3 dopamine receptor antagonist, to exert discriminative stimulus control of responding was investigated by training rats to discriminate this drug (30 mg/kg) from saline in a two-lever, food-reinforcement procedure. Acquisition of tiapride discrimination required a relatively lengthy training period (mean of 76 sessions) but stable performance was maintained throughout the 18- month study. The dose of tiapride eliciting 50% tiapride-lever choice (ED50) was 2.2 mg/kg. After determination of the dose-effect curve with tiapride, substitution tests with several dopamine antagonists and other reference compounds were performed. All dopamine antagonists, including amisulpride (ED50 4 mg/kg), sulpiride (18 mg/kg), sultopride (1.5 mg/kg), clebopride (0.13 mg/kg), raclopride (0.16 mg/kg), metoclopramide (1.4 mg/kg), remoxipride (4.8 mg/kg), pimozide (2.7 mg/kg), thioridazine (3.4 mg/kg), olanzapine (0.97 mg/kg), chlorpromazine (1.9 mg/kg), risperidone (0.22 mg/kg) and haloperidol (0.14 mg/kg), except clozapine (>10 mg/kg), produced dose-dependent substitution for tiapride. Tiapride-like stimulus effects were observed at doses that decreased response rates. However, ED50 values for substitution by tiapride, amisulpride, sulpiride, sultopride, pimozide, clebopride and thioridazine were lower than ED50 values for decreasing responding. Additional studies were conducted to evaluate the ability of direct and indirect dopamine agonists to attenuate the tiapride discriminative stimulus. Pretreatment with d-amphetamine and nomifensine antagonized the discriminative stimulus effects of tiapride. Quinpirole, 7-OH-DPAT, bromocriptine and apomorphine partially blocked the stimulus effects of tiapride whereas SKF 38393 did not affect the discrimination. These results from substitution and antagonism tests indicated that the discriminative effects of tiapride are mediated by activity at D2/D3 dopamine receptors.

  8. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats.

    Directory of Open Access Journals (Sweden)

    Guiqin Xie

    Full Text Available Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1 receptors (D(1Rs. In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.

  9. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    OpenAIRE

    Brittany M. Winner; Brittany M. Winner; Harue Zhang; McKenzie M. Farthing; Lalitha M. Karchalla; Keith J. Lookingland; Keith J. Lookingland; Keith J. Lookingland; John L. Goudreau; John L. Goudreau; John L. Goudreau; John L. Goudreau

    2017-01-01

    Parkinson disease (PD) is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA) neurons. Interestingly, not all dopamine (DA) neurons are affected equally by PD and aging, particularly mesolimbic (ML) DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA) neurons and astrocyte DA metabolism. There were no differences in ...

  10. A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Takashi Nakano

    2010-02-01

    Full Text Available Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD, the combination with dopamine switches LTD to long-term potentiation (LTP, which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32, as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA, protein phosphatase 2A (PP2A, and the phosphorylation site at threonine 75 of DARPP-32 (Thr75 served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B-CK1 (casein kinase 1-Cdk5 (cyclin-dependent kinase 5-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP. The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The

  11. Carbon nanotubes-functionalized urchin-like In2S3 nanostructure for sensitive and selective electrochemical sensing of dopamine

    International Nuclear Information System (INIS)

    Yang, Z.; Huang, X.; Li, J.; Zhang, Y.; Yu, S.; Xu, Q.; Hu, X.

    2012-01-01

    Urchin-like In 2 S 3 nanostructures were functionalized with multi-walled carbon nanotubes (MWCNTs) and deposited on a glassy carbon electrode (GCE) to obtain a new kind of sensor for dopamine (DA). The new electrode was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry and differential pulse voltammetry. It is found that the current response toward DA is significantly enhanced compared to that of a bare GCE or a GCE modified with MWCNTs. The peak separation between DA and ascorbic acid (AA) is up to 225 mV. The new electrode also has improved selectivity for DA over AA compared to the bare electrode. The new DA sensor has a wide linear range (0.5-300 μM), high sensitivity (594.9 μA mM -1 cm -2 ) and low detection limit (0.1 μM). CNTs wrapped on urchin-like nanostructures remarkable improve its electrocatalytic activity and thus provide a promising strategy to develop excellent composite materials for electrochemical sensing. (author)

  12. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke Ramsgaard

    2018-01-01

    pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  13. Dopamine inhibits maitotoxin-stimulated pituitary 45Ca2+ efflux and prolactin release

    International Nuclear Information System (INIS)

    Login, I.S.; Judd, A.M.; MacLeod, R.M.

    1986-01-01

    The authors examined the hypothesis that dopaminergic inhibition of prolactin release is coupled to modulation of cellular calcium flux. Dispersed female rat pituitary cells were prelabeled in 45 Ca 2+ and perifused to determine simultaneously fractional calcium efflux and prolactin release, as stimulated by maitotoxin, a calcium channel activator. The integrated response of each parameter to 5 ng/ml maitotoxin was obtained in individual perifusion columns in the absence or presence of various concentrations of dopamine. Maitotoxin-stimulated calcium efflux was suppressed by dopamine concentrations of 0.01 μM and greater and achieved a maximal effect at ∼0.1 μM, at which calcium efflux was reduced by 50%. Maitotoxin-stimulated prolactin release was inhibited by 0.03 μM dopamine and greater concentrations, and at a concentration of ∼10.0 μM dopamine the effect became maximal at ∼85% suppression. Haloperidol (0.1 μM) blocked the effects of 0.1 μM dopamine on both parameters. Simultaneous suppression of maitotoxin-stimulated calcium efflux and prolactin release by concentrations of dopamine within the nonomolar range suggests that dopamine receptor activation is negatively coupled to modulation of calcium flux in the physiological regulation of prolactin secretion

  14. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  15. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  16. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2016-05-01

    Full Text Available Palladium nanoparticle-bacterial cellulose (PdBC hybrid nanofibers were synthesized by in-situ chemical reduction method. The obtained PdBC nanofibers were characterized by a series of analytical techniques. The results revealed that Pd nanoparticles were evenly dispersed on the surfaces of BC nanofibers. Then, the as-prepared PdBC nanofibers were mixed with laccase (Lac and Nafion to obtain mixture suspension, which was further modified on electrode surface to construct novel biosensing platform. Finally, the prepared electrochemical biosensor was employed to detect dopamine. The analysis result was satisfactory, the sensor showed excellent electrocatalysis towards dopamine with high sensitivity (38.4 µA·mM−1, low detection limit (1.26 µM, and wide linear range (5–167 µM. Moreover, the biosensor also showed good repeatability, reproducibility, selectivity and stability and was successfully used in the detection of dopamine in human urine, thus providing a promising method for dopamine analysis in clinical application.

  17. Punishment induced behavioural and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters

    Science.gov (United States)

    Galea, Joseph M.; Ruge, Diane; Buijink, Arthur; Bestmann, Sven; Rothwell, John C.

    2013-01-01

    Action selection describes the high-level process which selects between competing movements. In animals, behavioural variability is critical for the motor exploration required to select the action which optimizes reward and minimizes cost/punishment, and is guided by dopamine (DA). The aim of this study was to test in humans whether low-level movement parameters are affected by punishment and reward in ways similar to high-level action selection. Moreover, we addressed the proposed dependence of behavioural and neurophysiological variability on DA, and whether this may underpin the exploration of kinematic parameters. Participants performed an out-and-back index finger movement and were instructed that monetary reward and punishment were based on its maximal acceleration (MA). In fact, the feedback was not contingent on the participant’s behaviour but pre-determined. Blocks highly-biased towards punishment were associated with increased MA variability relative to blocks with either reward or without feedback. This increase in behavioural variability was positively correlated with neurophysiological variability, as measured by changes in cortico-spinal excitability with transcranial magnetic stimulation over the primary motor cortex. Following the administration of a DA-antagonist, the variability associated with punishment diminished and the correlation between behavioural and neurophysiological variability no longer existed. Similar changes in variability were not observed when participants executed a pre-determined MA, nor did DA influence resting neurophysiological variability. Thus, under conditions of punishment, DA-dependent processes influence the selection of low-level movement parameters. We propose that the enhanced behavioural variability reflects the exploration of kinematic parameters for less punishing, or conversely more rewarding, outcomes. PMID:23447607

  18. Sibling genes as environment: Sibling dopamine genotypes and adolescent health support frequency dependent selection.

    Science.gov (United States)

    Rauscher, Emily; Conley, Dalton; Siegal, Mark L

    2015-11-01

    While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Niggemann Bernd

    2009-12-01

    Full Text Available Abstract Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.

  1. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings.

    Science.gov (United States)

    Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre

    2014-01-01

    The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction. © 2014 Elsevier B.V. All rights reserved.

  2. Further human evidence for striatal dopamine release induced by administration of ∆9-tetrahydrocannabinol (THC): selectivity to limbic striatum.

    Science.gov (United States)

    Bossong, Matthijs G; Mehta, Mitul A; van Berckel, Bart N M; Howes, Oliver D; Kahn, René S; Stokes, Paul R A

    2015-08-01

    Elevated dopamine function is thought to play a key role in both the rewarding effects of addictive drugs and the pathophysiology of schizophrenia. Accumulating epidemiological evidence indicates that cannabis use is a risk factor for the development of schizophrenia. However, human neurochemical imaging studies that examined the impact of ∆9-tetrahydrocannabinol (THC), the main psychoactive component in cannabis, on striatal dopamine release have provided inconsistent results. The objective of this study is to assess the effect of a THC challenge on human striatal dopamine release in a large sample of healthy participants. We combined human neurochemical imaging data from two previous studies that used [(11)C]raclopride positron emission tomography (PET) (n = 7 and n = 13, respectively) to examine the effect of THC on striatal dopamine neurotransmission in humans. PET images were re-analysed to overcome differences in PET data analysis. THC administration induced a significant reduction in [(11)C]raclopride binding in the limbic striatum (-3.65 %, from 2.39 ± 0.26 to 2.30 ± 0.23, p = 0.023). This is consistent with increased dopamine levels in this region. No significant differences between THC and placebo were found in other striatal subdivisions. In the largest data set of healthy participants so far, we provide evidence for a modest increase in human striatal dopamine transmission after administration of THC compared to other drugs of abuse. This finding suggests limited involvement of the endocannabinoid system in regulating human striatal dopamine release and thereby challenges the hypothesis that an increase in striatal dopamine levels after cannabis use is the primary biological mechanism underlying the associated higher risk of schizophrenia.

  3. Dopamine Modulates Option Generation for Behavior.

    Science.gov (United States)

    Ang, Yuen-Siang; Manohar, Sanjay; Plant, Olivia; Kienast, Annika; Le Heron, Campbell; Muhammed, Kinan; Hu, Michele; Husain, Masud

    2018-05-21

    Animals make innumerable decisions every day, each of which involves evaluating potential options for action. But how are options generated? Although much is now known about decision making when a fixed set of potential options is provided, surprisingly little progress has been made on self-generated options. Some researchers have proposed that such abilities might be modulated by dopamine. Here, we used a new measure of option generation that is quantitative, objective, and culture fair to investigate how humans generate different behavioral options. Participants were asked to draw as many different paths (options) as they could between two points within a fixed time. Healthy individuals (n = 96) exhibited a trade-off between uniqueness (how individually different their options were) and fluency (number of options), generating either many similar or few unique options. To assess influence of dopamine, we first examined patients with Parkinson's disease (n = 35) ON and OFF their dopaminergic medication and compared them to elderly healthy controls (n = 34). Then we conducted a double-blind, placebo-controlled crossover study of the D2 agonist cabergoline in healthy older people (n = 29). Across both studies, dopamine increased fluency but diminished overall uniqueness of options generated, due to the effect of fluency trading off with uniqueness. Crucially, however, when this trade-off was corrected for, dopamine was found to increase uniqueness for any given fluency. Three carefully designed control studies showed that performance on our option-generation task was not related to executing movements, planning actions, or selecting between generated options. These findings show that dopamine plays an important role in modulating option generation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  5. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers

    International Nuclear Information System (INIS)

    Mani, Veerappan; Govindasamy, Mani; Chen, Shen-Ming; Karthik, Raj; Huang, Sheng-Tung

    2016-01-01

    We describe a hybrid material that consists of molybdenum sulfide flowers placed on graphene nanosheets and multiwalled carbon nanotubes (GNS-CNTs/MoS_2). It was deposited on a glassy carbon electrode (GCE) which then is well suited for sensitive and selective determination of dopamine. The GNS-CNTs/MoS_2 nanocomposite was prepared by a hydrothermal method and characterized by scanning electron and transmission emission microscopies, energy-dispersive X-ray spectroscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Electrochemical studies show the composite to possess excellent electrochemical properties such as a large electrochemically active surface, high capacitance current, a wide potential window, high conductivity and large porosity. The electrode displays excellent electrocatalytic ability to oxidize dopamine. The modified GCE, best operated at a working potential as low as 0.15 V (vs. Ag/AgCl), responds linearly to dopamine in the 100 nM to 100 μM concentration range. The detection limit is 50 nM, and the sensitivity is 10.81 (± 0.26) μA⋅μM"−"1⋅cm"−"2. The sensor has good selectivity, appreciable stability, repeatability and reproducibility. It was applied to the determination of dopamine in (spiked) biological and pharmaceutical samples. (author)

  6. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  7. Interactions between lysergic acid diethylamide and dopamine-sensitive adenylate cyclase systems in rat brain.

    Science.gov (United States)

    Hungen, K V; Roberts, S; Hill, D F

    1975-08-22

    Investigations were carried out on the interactions of the hallucinogenic drug, D-lysergic acid diethylamide (D-LSD), and other serotonin antagonists with catecholamine-sensitive adenylate cyclase systems in cell-free preparations from different regions of rat brain. In equimolar concentration, D-LSD, 2-brono-D-lysergic acid diethylamide (BOL), or methysergide (UML) strongly blocked maximal stimulation of adenylate cyclase activity by either norepinephrine or dopamine in particulate preparations from cerebral cortices of young adult rats. D-LSD also eliminated the stimulation of adenylate cyclase activity of equimolar concentrations of norepinephrine or dopamine in particulate preparations from rat hippocampus. The effects of this hallucinogenic agent on adenylate cyclase activity were most striking in particulate preparations from corpus striatum. Thus, in 10 muM concentration, D-LSD not only completely eradicated the response to 10 muM dopamine in these preparations but also consistently stimulated adenylate cyclase activity. L-LSD (80 muM) was without effect. Significant activation of striatal adenylate cyclase was produced by 0.1 muM D-LSD. Activation of striatal adenylate cyclase of either D-LSD or dopamine was strongly blocked by the dopamine-blocking agents trifluoperazine, thioridazine, chlorpromazine, and haloperidol. The stimulatory effects of D-LSD and dopamine were also inhibited by the serotonin-blocking agents, BOL, 1-methyl-D-lysergic acid diethylamide (MLD), and cyproheptadine, but not by the beta-adrenergic-blocking agent, propranolol. However, these serotonin antagonists by themselves were incapable of stimulating adenylate cyclase activity in the striatal preparations. Several other hallucinogens, which were structurally related to serotonin, were also inactive in this regard, e.g., mescaline, N,N-dimethyltryptamine, psilocin and bufotenine. Serotonin itself produced a small stimulation of adenylate cyclase activity in striatal preparations and

  8. The roles of dopamine and serotonin in decision making: evidence from pharmacological experiments in humans.

    Science.gov (United States)

    Rogers, Robert D

    2011-01-01

    Neurophysiological experiments in primates, alongside neuropsychological and functional magnetic resonance investigations in humans, have significantly enhanced our understanding of the neural architecture of decision making. In this review, I consider the more limited database of experiments that have investigated how dopamine and serotonin activity influences the choices of human adults. These include those experiments that have involved the administration of drugs to healthy controls, experiments that have tested genotypic influences upon dopamine and serotonin function, and, finally, some of those experiments that have examined the effects of drugs on the decision making of clinical samples. Pharmacological experiments in humans are few in number and face considerable methodological challenges in terms of drug specificity, uncertainties about pre- vs post-synaptic modes of action, and interactions with baseline cognitive performance. However, the available data are broadly consistent with current computational models of dopamine function in decision making and highlight the dissociable roles of dopamine receptor systems in the learning about outcomes that underpins value-based decision making. Moreover, genotypic influences on (interacting) prefrontal and striatal dopamine activity are associated with changes in choice behavior that might be relevant to understanding exploratory behaviors and vulnerability to addictive disorders. Manipulations of serotonin in laboratory tests of decision making in human participants have provided less consistent results, but the information gathered to date indicates a role for serotonin in learning about bad decision outcomes, non-normative aspects of risk-seeking behavior, and social choices involving affiliation and notions of fairness. Finally, I suggest that the role played by serotonin in the regulation of cognitive biases, and representation of context in learning, point toward a role in the cortically mediated cognitive

  9. Preparation of (7,8-3H) dopamine

    International Nuclear Information System (INIS)

    Shen Qiyuan; Tang Guozhong; Guo Zili

    1986-01-01

    Dopamine is a neurotransmitter in the central nervous system. (7,8- 3 H) dopamine is an important tracer for the study of physiological functions and metabolic processes. It was prepared by catalytic reduction of 3-hydroxy-4-methoxy-8-nitro-styrene with tritium gas. At the end of reaction, hydrobromic acid was added and heated to remove the methoxyl group. The crude product was purified by paper chromatography. The purity of (7,8- 3 H) dopamine was identified by IR, UV, PC and 3 H-NMR spectra. The radiochemical purity was over 95% and the specific activity was 1.26 x 10 12 Bq/mmol (34 Ci/mmol). The distribution of labelled tritium in molecule was shown as follows: 55.4% at position 7 and 44.6% at position 8

  10. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  11. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  12. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids

    Science.gov (United States)

    Covey, Dan P.; Bunner, Kendra D.; Schuweiler, Douglas R.; Cheer, Joseph F.; Garris, Paul A.

    2018-01-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  13. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    Science.gov (United States)

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement

  14. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Alicia Gonzalo-Gomez

    Full Text Available HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  15. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine β-hydroxylase activity in adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Wilson, S.P.

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine β-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine β-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was ∼ 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of [ 35 S]proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function

  16. Insulin-like growth factor I enhances proenkephalin synthesis and dopamine. beta. -hydroxylase activity in adrenal chromaffin cells

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, S.P. (Univ. of South Carolina School of Medicine, Columbia (USA))

    1991-01-01

    Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin derived enkephalin-containing peptides and the activity of dopamine {beta}-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine {beta}-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was {approximately} 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1,000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of ({sup 35}S)proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.

  17. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia.

    Science.gov (United States)

    Calcagno, B; Eyles, D; van Alphen, B; van Swinderen, B

    2013-01-08

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.

  18. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction.

    Science.gov (United States)

    Feng, Peijian; Chen, Yulei; Zhang, Lei; Qian, Cheng-Gen; Xiao, Xuanzhong; Han, Xu; Shen, Qun-Dong

    2018-02-07

    Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.

  19. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    Directory of Open Access Journals (Sweden)

    Brittany M. Winner

    2017-12-01

    Full Text Available Parkinson disease (PD is prevalent in elderly individuals and is characterized by selective degeneration of nigrostriatal dopamine (NSDA neurons. Interestingly, not all dopamine (DA neurons are affected equally by PD and aging, particularly mesolimbic (ML DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA neurons and astrocyte DA metabolism. There were no differences in phenotypic markers of DA synthesis, reuptake or metabolism in NSDA or MLDA neurons in aged mice, but MLDA neurons displayed lower DA stores. Astrocyte metabolism of DA to 3-methoxytyramine (3-MT in the striatum was decreased in aged mice, but was maintained in the nucleus accumbens. Despite diminished DA vesicular storage capacity in MLDA neurons, susceptibility to acute neurotoxicant exposure was similar in young and aged mice. These results reveal an age- and neurotoxicant-induced impairment of DA metabolic activity in astrocytes surrounding susceptible NSDA neurons as opposed to maintenance of DA metabolism in astrocytes surrounding resistant MLDA neurons, and suggest a possible therapeutic target for PD.

  20. Dopamine and extinction: A convergence of theory with fear and reward circuitry

    Science.gov (United States)

    Abraham, Antony D.; Neve, Kim A.; Lattal, K. Matthew

    2014-01-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine’s function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. PMID:24269353

  1. Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior.

    Science.gov (United States)

    Brown, Jacob D; Green, Caroline L; Arthur, Ian M; Booth, Frank W; Miller, Dennis K

    2015-02-01

    The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.

  2. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  3. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    DEFF Research Database (Denmark)

    Hansen, Freja H; Skjørringe, Tina; Yasmeen, Saiqa

    2014-01-01

    experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine......Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we......-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake...

  4. Simultaneous Detection of c-Fos Activation from Mesolimbic and Mesocortical Dopamine Reward Sites Following Naive Sugar and Fat Ingestion in Rats.

    Science.gov (United States)

    Dela Cruz, Julie A D; Coke, Tricia; Bodnar, Richard J

    2016-08-24

    This study uses cellular c-fos activation to assess effects of novel ingestion of fat and sugar on brain dopamine (DA) pathways in rats. Intakes of sugars and fats are mediated by their innate attractions as well as learned preferences. Brain dopamine, especially meso-limbic and meso-cortical projections from the ventral tegmental area (VTA), has been implicated in both of these unlearned and learned responses. The concept of distributed brain networks, wherein several sites and transmitter/peptide systems interact, has been proposed to mediate palatable food intake, but there is limited evidence empirically demonstrating such actions. Thus, sugar intake elicits DA release and increases c-fos-like immunoreactivity (FLI) from individual VTA DA projection zones including the nucleus accumbens (NAC), amygdala (AMY) and medial prefrontal cortex (mPFC) as well as the dorsal striatum. Further, central administration of selective DA receptor antagonists into these sites differentially reduce acquisition and expression of conditioned flavor preferences elicited by sugars or fats. One approach by which to determine whether these sites interacted as a distributed brain network in response to sugar or fat intake would be to simultaneous evaluate whether the VTA and its major mesotelencephalic DA projection zones (prelimbic and infralimbic mPFC, core and shell of the NAc, basolateral and central-cortico-medial AMY) as well as the dorsal striatum would display coordinated and simultaneous FLI activation after oral, unconditioned intake of corn oil (3.5%), glucose (8%), fructose (8%) and saccharin (0.2%) solutions. This approach is a successful first step in identifying the feasibility of using cellular c-fos activation simultaneously across relevant brain sites to study reward-related learning in ingestion of palatable food in rodents.

  5. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C......-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7...

  6. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke

    OpenAIRE

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard; Husain, Masud

    2012-01-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, ...

  7. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  8. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    Science.gov (United States)

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  9. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  10. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  11. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  12. Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp simulator.

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    Full Text Available Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated 'teaching' signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson's disease, or induced through drugs blocking dopamine reuptake.

  13. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  14. Chronic intrastriatal dopamine infusions in rats with unilateral lesions of the substantia nigra

    International Nuclear Information System (INIS)

    Hargraves, R.; Freed, W.J.

    1987-01-01

    This study examined the effects of continuously supplied dopamine delivered directly into the dopamine-deficient striatum. Rats received unilateral lesions of the substantia nigra by stereotaxic administration of 6-hydroxydopamine and were tested for apomorphine-induced rotational behavior and general activity. Osmotic mini-pumps were filled with dopamine in various concentrations, implanted subcutaneously and connected to a cannula implanted directly into the striatum. The system delivered solution at a rate of .5 μl/hr for two weeks. Dopamine in a dosage of 0.5 μg/per hour reduced apomorphine-induced rotational behavior by a mean of 52 +/- 5.8% (mean +/- SEM n=20) with a maximal individual decrease of 99%. There was no change in general activity or increase in stereotype behavior. Infusions of vehicle solutions did not decrease rotational behavior. Spread of the infused dopamine and its metabolites was estimated by adding 3 H-dopamine to the pumps in tracer quantities. Radioactivity was highly concentrated at the infusion site and decreased rapidly within a few mm from the infusion site. Continuous infusion methods may eventually prove to be effective in the treatment of nigro-striatal degenerative disease. 12 references, 4 figures

  15. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia.

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin M

    2017-01-01

    The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia. Because it was initially based on indirect evidence and findings in patients with established schizophrenia, it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also affect presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis, and psychosocial stress. Included among the many genes associated with risk of schizophrenia are the gene encoding the dopamine D 2 receptor and those involved in the upstream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acidergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitize the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Chronic inhibition of dopamine β-hydroxylase facilitates behavioral responses to cocaine in mice.

    Directory of Open Access Journals (Sweden)

    Meriem Gaval-Cruz

    Full Text Available The anti-alcoholism medication, disulfiram (Antabuse, decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH, the enzyme that converts dopamine (DA to norepinephrine (NE in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/- mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/- and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor enhance qualitatively different cocaine-induced behaviors.

  17. Chronic Inhibition of Dopamine β-Hydroxylase Facilitates Behavioral Responses to Cocaine in Mice

    Science.gov (United States)

    Gaval-Cruz, Meriem; Liles, Larry Cameron; Iuvone, Paul Michael; Weinshenker, David

    2012-01-01

    The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh −/−) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/−) and Dbh −/− mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh −/− mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/− mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/− mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh −/− mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors. PMID:23209785

  18. Imaging dopamine and opiate receptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1986-01-01

    Chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its nature. In 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spipeone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress

  19. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  20. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    Science.gov (United States)

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  1. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  2. The role of genes, stress and dopamine in the development of schizophrenia

    Science.gov (United States)

    Howes, Oliver D; McCutcheon, Robert; Owen, Michael J; Murray, Robin

    2017-01-01

    The dopamine hypothesis is the longest standing pathoaetiological theory of schizophrenia. As it was initially based on indirect evidence and findings in patients with established schizophrenia it was unclear what role dopamine played in the onset of the disorder. However, recent studies in people at risk of schizophrenia have found elevated striatal dopamine synthesis capacity, and increased dopamine release to stress. Furthermore, striatal dopamine changes have been linked to altered cortical function during cognitive tasks, in-line with preclinical evidence that a circuit involving cortical projections to the striatum and midbrain may underlie the striatal dopamine changes. Other studies have shown that a number of environmental risk factors for schizophrenia, such as social isolation and childhood trauma, also impact on presynaptic dopaminergic function. Advances in preclinical work and genetics have begun to unravel the molecular architecture linking dopamine, psychosis and psychosocial stress. Included among the many genes associated with risk of schizophrenia, are the gene encoding the DRD2 receptor and those involved in the up-stream regulation of dopaminergic synthesis, through glutamatergic and gamma-aminobutyric acid (GABA)-ergic pathways. A number of these pathways are also linked to the stress response. We review these new lines of evidence and present a model of how genes and environmental factors may sensitise the dopamine system so that it is vulnerable to acute stress, leading to progressive dysregulation and the onset of psychosis. Finally, we consider the implications for rational drug development, in particular regionally selective dopaminergic modulation, and the potential of genetic factors to stratify patients. PMID:27720198

  3. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang L.; Ernst, T.; Fowler, J.S.

    2009-01-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [ 11 C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  4. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  5. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  6. Parkinson's disease treatment may cause impulse-control disorder via dopamine D3 receptors.

    Science.gov (United States)

    Seeman, Philip

    2015-04-01

    In treating Parkinson's disease with dopaminergic agonists, such as pramipexole, ropinirole, pergolide, rotigotine, apomorphine, or bromocriptine, it has been observed that a significant number of patients develop impulse-control disorders, such as compulsive shopping, pathological gambling, or hypersexuality. Because the dopamine agonists have high affinities for the dopamine D2 and D3 receptors, the drug dissociation constants of these drugs at the functional high-affinity states of these receptors, namely D2High and D3High, were compared. The data show that, compared to the other dopamine agonist drugs, pramipexole has a relatively high selectivity for the dopamine D3 receptor, as compared to D2, suggesting that the D3 receptor may be a primary target for pramipexole. There is a trend showing that the proportion of impulse-control disorders is related to the selectivity for D3 receptors over D2 receptors, with pramipexole having the highest association with, or frequency of, impulse-control disorders. While the number of studies are limited, the proportion of patients with impulse-control disorder in Parkinson patients treated with an add-on agonist were 32% for pramipexole, 25% for ropinirole, 16% for pergolide, 22% for rotigotine, 10% for apomorphine, and 6.8% for bromocriptine. Clinically, temporary replacement of pramipexole by bromocriptine may provide relief or reversal of the impulsive behavior associated with selective D3 stimulation by either pramipexole or ropinirole, while maintaining D2 stimulation needed for the anti-Parkinson action. © 2015 Wiley Periodicals, Inc.

  7. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  8. Tamping Ramping: Algorithmic, Implementational, and Computational Explanations of Phasic Dopamine Signals in the Accumbens.

    Directory of Open Access Journals (Sweden)

    Kevin Lloyd

    2015-12-01

    Full Text Available Substantial evidence suggests that the phasic activity of dopamine neurons represents reinforcement learning's temporal difference prediction error. However, recent reports of ramp-like increases in dopamine concentration in the striatum when animals are about to act, or are about to reach rewards, appear to pose a challenge to established thinking. This is because the implied activity is persistently predictable by preceding stimuli, and so cannot arise as this sort of prediction error. Here, we explore three possible accounts of such ramping signals: (a the resolution of uncertainty about the timing of action; (b the direct influence of dopamine over mechanisms associated with making choices; and (c a new model of discounted vigour. Collectively, these suggest that dopamine ramps may be explained, with only minor disturbance, by standard theoretical ideas, though urgent questions remain regarding their proximal cause. We suggest experimental approaches to disentangling which of the proposed mechanisms are responsible for dopamine ramps.

  9. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks.

    Science.gov (United States)

    Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno

    2008-08-01

    Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

  10. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    Science.gov (United States)

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  11. LOW DOPAMINE D2 RECEPTOR INCREASES VULNERABILITY TO OBESITY VIA REDUCED PHYSICAL ACTIVITY NOT INCREASED APPETITIVE MOTIVATION

    Science.gov (United States)

    Beeler, Jeff A.; Faust, Rudolf P.; Turkson, Susie; Ye, Honggang; Zhuang, Xiaoxi

    2015-01-01

    Background The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a “reward deficiency” and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. Methods We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. Results The KD mice did not gain more weight or show increased appetitive motivation compared to wild-type (WT) in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than WT, obtaining no protective benefit from exercise opportunities. Conclusions These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating. PMID:26281715

  12. Role of dopamine D4 receptors in copulatory behavior: Studies with selective D4 agonists and antagonists in male rats.

    Science.gov (United States)

    Sanna, Fabrizio; Contini, Andrea; Melis, Maria Rosaria; Argiolas, Antonio

    2015-10-01

    Dopamine influences the anticipatory and consummatory phases of sexual behavior, by acting on receptors of the D2 family (D2, D3 and D4) and in particular of the D2 subtype, although evidence for a role of D4 receptors in erectile function and copulatory behavior is also available. In order to clarify such a role of D4 receptors, the effect of selective D4 receptor agonists and antagonists on copulatory behavior of sexually potent male rats in classic copulation tests with a receptive female, was compared with that of apomorphine and haloperidol, a classic dopamine receptor agonist and antagonist, respectively. PD-168,077 (0.05-0.2mg/kg) and ABT-724 (0.01-0.04mg/kg), two selective D4 receptor agonists, given subcutaneously, improved dose-dependently copulatory behavior as shown by the decrease of mount frequency and post ejaculatory interval induced by PD-168,077, and of mount frequency, ejaculation latency, post ejaculatory and inter intromission intervals induced by ABT-724, and by the increase of ejaculation frequency and copulatory efficacy induced by both drugs. Conversely, L-745,870 (1-5mg/kg), a selective D4 receptor antagonist, given intraperitoneally, impaired dose-dependently copulatory behavior, as shown by the increase in intromission and ejaculation latencies, mount frequency, post ejaculatory interval and the decrease in ejaculation frequency and copulatory efficacy induced by this drug. L-745,870 (5mg/kg) administered before PD-168,077 (0.2mg/kg) or ABT-724 (0.04mg/kg), also abolished completely the facilitatory effects of both PD-168,077 and ABT-724 on sexual behavior. These results confirm the involvement of D4 receptors in specific aspects of male rat copulatory behavior that overlap only partially with those influenced by apomorphine and haloperidol. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Synthesis and in vitro evaluation of no-carrier-added 2-(3-(4-(4-[{sup 18}F]fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole, a potential dopamine D{sub 4} receptor radioligand

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gu-Cai; Zhang, Ru [Hunan Institute of Engineering, Hunan Xiangtan (China). College of Chemistry and Chemical Engineering; Xia, Jiao-yun [Changsha Univ. of Science and Technology (China). School of Chemistry and Biology Engineering

    2016-07-01

    The dopamine D{sub 4} receptor has been shown to play important roles in some central nervous system pathologies. Specific radioligands for the D{sub 4} receptor may be useful to understand the function of the D{sub 4} receptor and its correlations with various disorders. 2-(3-(4-(4-[{sup 18}F]Fluorobenzyl)piperazin-1-yl)propyl)benzo[d]thiazole ([{sup 18}F]4) was synthesized through a one-pot two-step procedure with total yield 18.6% (decay corrected). The specific activity of the radioligand was 112 GBq/μmol and its radiochemical purity was >95.0%. Its affinity and selectivity for dopamine D{sub 2}-like receptors were measured through in vitro receptor binding evaluation and the K{sub i} value for the D{sub 4} receptor was determined to be 2.9±0.2 nM, and its selectivity for the dopamine D{sub 4} receptor is 709-fold versus D{sub 2long} receptor, 823-fold versus D{sub 3} receptor. The partition coefficient (Log D) of it was determined to be 2.6±0.1 through octanol-water partition experiment. The ligand presents desirable combination of lipophilicity, affinity and selectivity for the dopamine D{sub 4} receptor. The results suggested that the radioligand shows promises for the in vivo study of the dopamine D{sub 4} receptor.

  14. Interactions between aromatase (estrogen synthase) and dopamine in the control of male sexual behavior in quail.

    Science.gov (United States)

    Balthazart, Jacques; Baillien, Michelle; Ball, Gregory F

    2002-05-01

    In male quail, like in other vertebrates including rodents, testosterone acting especially through its estrogenic metabolites is necessary for the activation of male sexual behavior. Also, the administration of dopamine agonists and antagonists profoundly influences male sexual behavior. How the steroid-sensitive neural network and dopamine interact physiologically, remains largely unknown. It is often implicitly assumed that testosterone or its metabolite estradiol, stimulates male sexual behavior via the modification of dopaminergic transmission. We have now identified in quail two possible ways in which dopamine could potentially affect sexual behavior by modulating the aromatization of testosterone into an estrogen. One is a long-acting mechanism that presumably involves the modification of dopaminergic transmission followed by the alteration of the genomic expression of aromatase. The other is a more rapid mechanism that does not appear to be dopamine receptor-mediated and may involve a direct interaction of dopamine with aromatase (possibly via substrate competition). We review here the experimental data supporting the existence of these controls of aromatase activity by dopamine and discuss the possible contribution of these controls to the activation of male sexual behavior.

  15. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  16. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.

    Science.gov (United States)

    Felger, Jennifer C

    Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

  17. Preventing or attenuating amphotericin B nephrotoxicity with dopamine receptor agonists: a literature review

    Directory of Open Access Journals (Sweden)

    Iman Karimzadeh

    2016-09-01

    Full Text Available Nephrotoxicity is generally considered as the most clinically significant and dose-limiting adverse reaction of amphotericin B. Currently, only the clinical effectiveness of salt loading and administering lipid formulations of amphotericin B have been clearly demonstrated to prevent its nephrotoxicity. In this review, we collected the published data related to dopamine receptor agonists in preventing amphotericin B nephrotoxicity. A literature search was conducted by the relevant keywords like ‘‘amphotericin B”, “nephrotoxicity’’, and ‘‘dopamine’’in databases such as Scopus, Medline, Embase and ISI Web of Knowledge. Four relevant articles were considered. Results of all the 3 experimental studies demonstrated that co-administration of dopamine (0.5-10 μg/kg/min as continuous intravenous infusion, SK&F R-105058, a prodrug of fenoldopam (10 mg/kg twice daily, orally or fenoldopam, a relatively selective dopamine receptor type 1 agonist, (0.5 or 1 μg/kg/min as continuous intravenous infusion can at least significantly mitigate the decrease in creatinine clearance caused by amphotericin B. Furthermore, fenoldopam and SK&F R-105058 can also protect against or delay amphotericin B-induced tubular damage. In contrast, the only clinical trial published until now found that simultaneous continuous intravenous infusion of low dose dopamine (3 μg/kg/min had no beneficial effect on the incidence, severity and time onset of developing amphotericin B-induced nephrotoxicity in autologous bone marrow transplant and leukemia patients. Considering the lack of beneficial effects in different settings such as acute kidney injury of any cause, negative results of the only clinical trial, and risk of significant adverse reactions, continuous intravenous infusion of low dose dopamine (1-3 μg/kg/min or selective dopamine receptor type 1 agonists (e.g., fenoldopam currently appears to have no promising clinical role in preventing or attenuating

  18. Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS)

    International Nuclear Information System (INIS)

    Staedt, J.; Stoppe, G.; Riemann, H.; Hajak, G.; Ruether, E.; Koegler, A.; Emrich, D.

    1995-01-01

    Single photon emission tomography (SPET) permits the in vivo measurements of regional cerebral radioactivity in the human brain following the administration of compounds labeled with photon-emitting isotopes. According to our SPET findings of a reduced binding of [ 123 I]labeled (S)-2-hydroxy-3-iodo-6-methoxy-([1-ethyl-2-pyrrolidinyl]methyl) benzamide (IBZM) (a highly selective CNS D 2 dopamine receptor ligand) to D 2 dopamine receptors in striatal structures in untreated patients with nocturnal myoclonus syndrome (NMS) it seemed to be of interest to investigate whether there are changes in D 2 receptor binding under dopamine replacement therapy or not. We studied the uptake and distribution of [ 123 I]IBZM before and in the course of dopamine replacement therapy in four patients with severe insomnia caused by nocturnal myoclonus syndrome (NMS). We found an increase of the IBZM binding to D 2 receptors in the course of treatment, which was associated with an improvement of sleep quality. Reasons for this are discussed. The [ 123 I]IBZM SPET technique in conclusion offers an interesting tool for in vivo investigations of functional changes in the dopaminergic neurotransmitter system in longitudinal studies. (author)

  19. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations.

    Science.gov (United States)

    Sharott, Andrew; Vinciati, Federica; Nakamura, Kouichi C; Magill, Peter J

    2017-10-11

    Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits. SIGNIFICANCE STATEMENT Chronic depletion of dopamine

  20. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  1. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  2. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  3. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  4. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  5. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs.

    Science.gov (United States)

    Moore, Thomas J; Glenmullen, Joseph; Mattison, Donald R

    2014-12-01

    Severe impulse control disorders involving pathological gambling, hypersexuality, and compulsive shopping have been reported in association with the use of dopamine receptor agonist drugs in case series and retrospective patient surveys. These agents are used to treat Parkinson disease, restless leg syndrome, and hyperprolactinemia. To analyze serious adverse drug event reports about these impulse control disorders received by the US Food and Drug Administration (FDA) and to assess the relationship of these case reports with the 6 FDA-approved dopamine receptor agonist drugs. We conducted a retrospective disproportionality analysis based on the 2.7 million serious domestic and foreign adverse drug event reports from 2003 to 2012 extracted from the FDA Adverse Event Reporting System. Cases were selected if they contained any of 10 preferred terms in the Medical Dictionary for Regulatory Activities (MedDRA) that described the abnormal behaviors. We used the proportional reporting ratio (PRR) to compare the proportion of target events to all serious events for the study drugs with a similar proportion for all other drugs. We identified 1580 events indicating impulse control disorders from the United States and 21 other countries:710 fordopamine receptor agonist drugs and 870 for other drugs. The dopamine receptor agonist drugs had a strong signal associated with these impulse control disorders (n = 710; PRR = 277.6, P < .001). The association was strongest for the dopamine agonists pramipexole (n = 410; PRR = 455.9, P < .001) and ropinirole (n = 188; PRR = 152.5, P < .001), with preferential affinity for the dopamine D3 receptor. A signal was also seen for aripiprazole, an antipsychotic classified as a partial agonist of the D3 receptor (n = 37; PRR = 8.6, P < .001). Our findings confirm and extend the evidence that dopamine receptor agonist drugs are associated with these specific impulse control disorders. At present

  6. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  7. Effect of dopamine on pentagastrin-stimulated gastric acid secretion and mucosal blood flow in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Gottrup, F

    1982-01-01

    with selective blockade of alpha-, beta-, and dopaminergic receptors. A significant inhibition of gastric acid secretion was found with the highest dose of dopamine used (40 micrograms/kg/min). The kinetic study showed characteristics of a non-competitive type. The anti-secretory effect dopamine...

  8. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Wang, Xiao H; Souders, Christopher L; Zhao, Yuan H; Martyniuk, Christopher J

    2018-01-01

    The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparative study on the disposition of a new orally active dopamine prodrug, N-(N-acetyl-L-methionyl)-O,O-bis(ethoxycarbonyl)dopamine (TA-870) and dopamine hydrochloride in rats and dogs

    International Nuclear Information System (INIS)

    Yoshikawa, M.; Endo, H.; Otsuka, M.; Yamaguchi, I.; Harigaya, S.

    1988-01-01

    The pharmacokinetics of a dopamine derivative, TA-870, and dopamine (DA) after oral administration are compared in rats and dogs. The maximum concentrations of free DA in plasma after oral administration of TA-870 were 150 ng/ml in the rat (30 mg/kg) and 234 ng/ml in the dog (33.5 mg/kg). On the contrary, the maximum plasma concentrations after oral administration of DA at an equimolar dose to TA-870 were 12 ng/ml in the rat (12 mg/kg) and 36 ng/ml in the dog (13.5 mg/kg). The AUC values of free DA in plasma after oral administration of TA-870 (30 or 33.5 mg/kg) were 4-6 times higher than those after DA in both animal species. The peak tissue levels of radioactivity in rats after oral administration of [ 14 C]TA-870 (30 mg/kg) were also 5.5 times higher in the liver and 1-2 times higher in other tissues than those after [ 14 C]DA dose (12 mg/kg). In rats, the main excretion route of radioactivity after oral administration of [ 14 C]TA-870 or DA was via the urine. The total recoveries of radioactivity in the urine and feces were 91-96% of the dose within 24 hr for both compounds. Biliary excretion in rats accounted for 19.8% of the dose of [ 14 C]TA-870 and 12.6% of the dose of [ 14 C]DA within 24 hr. These results demonstrate that TA-870 was well absorbed from the digestive tract, extensively metabolized to dopamine, and proved to be an orally usable dopamine prodrug

  11. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J.M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C.M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A.H.

    Background:Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  12. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J. M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C. M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A. H.

    2017-01-01

    BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  13. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  14. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1-like dopamine receptors.

    Directory of Open Access Journals (Sweden)

    Jason M Meyer

    2012-01-01

    Full Text Available BACKGROUND: Many neglected tropical infectious diseases affecting humans are transmitted by arthropods such as mosquitoes and ticks. New mode-of-action chemistries are urgently sought to enhance vector management practices in countries where arthropod-borne diseases are endemic, especially where vector populations have acquired widespread resistance to insecticides. METHODOLOGY/PRINCIPAL FINDINGS: We describe a "genome-to-lead" approach for insecticide discovery that incorporates the first reported chemical screen of a G protein-coupled receptor (GPCR mined from a mosquito genome. A combination of molecular and pharmacological studies was used to functionally characterize two dopamine receptors (AaDOP1 and AaDOP2 from the yellow fever mosquito, Aedes aegypti. Sequence analyses indicated that these receptors are orthologous to arthropod D(1-like (Gα(s-coupled receptors, but share less than 55% amino acid identity in conserved domains with mammalian dopamine receptors. Heterologous expression of AaDOP1 and AaDOP2 in HEK293 cells revealed dose-dependent responses to dopamine (EC(50: AaDOP1 = 3.1±1.1 nM; AaDOP2 = 240±16 nM. Interestingly, only AaDOP1 exhibited sensitivity to epinephrine (EC(50 = 5.8±1.5 nM and norepinephrine (EC(50 = 760±180 nM, while neither receptor was activated by other biogenic amines tested. Differential responses were observed between these receptors regarding their sensitivity to dopamine agonists and antagonists, level of maximal stimulation, and constitutive activity. Subsequently, a chemical library screen was implemented to discover lead chemistries active at AaDOP2. Fifty-one compounds were identified as "hits," and follow-up validation assays confirmed the antagonistic effect of selected compounds at AaDOP2. In vitro comparison studies between AaDOP2 and the human D(1 dopamine receptor (hD(1 revealed markedly different pharmacological profiles and identified amitriptyline and doxepin as AaDOP2

  15. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  16. Novel L-Dopa and dopamine prodrugs containing a 2-phenyl-imidazopyridine moiety.

    Science.gov (United States)

    Denora, Nunzio; Laquintana, Valentino; Lopedota, Angela; Serra, Mariangela; Dazzi, Laura; Biggio, Giovanni; Pal, Dhananjay; Mitra, Ashim K; Latrofa, Andrea; Trapani, Giuseppe; Liso, Gaetano

    2007-07-01

    The aim of this study was to gain insight into the feasibility of enhancing the delivery of L-Dopa and dopamine to the brain by linking these neurotransmitters and L-Dopa ethyl ester to 2-phenyl-3-carboxymethyl-imidazopyridine compounds giving rise to the so-called Dopimid compounds. A number of Dopimid compounds were synthesized and both stability and binding studies to dopaminergic and benzodiazepine receptors were performed. To evaluate whether Dopimid compounds are P-gp substrates, [(3)H]ritonavir uptake experiments and bi-directional transport studies on confluent MDCKII-MDR1 monolayers were carried out. The brain penetration properties of Dopimid compounds were estimated by the Clark's computational model and evaluated by investigation of their transport across BBMECs monolayers. The dopamine levels following the intraperitoneal administration of the selected Dopimid compounds were measured in vivo by using brain microdialysis in rat. Tested compounds were adequately stable in solution buffered at pH 7.4 but undergo faster cleavage in dilute rat serum at 37 degrees C. Receptor binding studies showed that Dopimid compounds are essentially devoid of affinity for dopaminergic and benzodiazepine receptors. [(3)H]ritonavir uptake experiments indicated that selected Dopimid compounds, like L-Dopa and dopamine hydrochloride, are not substrates of P-gp and it was also confirmed by bi-directional transport experiments across MDCKII-MDR1 monolayers. By Clark's model a significant brain penetration was deduced for L-Dopa ethyl ester and dopamine derivatives. Transport studies involving BBMECs monolayers indicated that some of these compounds should be able to cross the BBB. Interestingly, the rank order of apparent permeability (P (app)) values observed in these assays parallels that calculated by the computational approach. Brain microdialysis experiments in rat showed that intraperitoneal acute administration of some Dopimid compounds induced a dose-dependent increase

  17. Neuroimaging of the Dopamine/Reward System in Adolescent Drug Use

    Science.gov (United States)

    Ernst, Monique; Luciana, Monica

    2015-01-01

    Adolescence is characterized by heightened risk-taking, including substance misuse. These behavioral patterns are influenced by ontogenic changes in neurotransmitter systems, particularly the dopamine system, which is fundamentally involved in the neural coding of reward and motivated approach behavior. During adolescence, this system evidences a peak in activity. At the same time, the dopamine system is neuroplastically altered by substance abuse, impacting subsequent function. Here, we describe properties of the dopamine system that change with typical adolescent development and that are altered with substance abuse. Much of this work has been gleaned from animal models due to limitations in measuring dopamine in pediatric samples. Structural and functional neuroimaging techniques have been used to examine structures that are heavily DA-innervated; they measure morphological and functional changes with age and with drug exposure. Presenting marijuana abuse as an exemplar, we consider recent findings that support an adolescent peak in DA-driven reward-seeking behavior and related deviations in motivational systems that are associated with marijuana abuse/dependence. Clinicians are advised that (1) chronic adolescent marijuana use may lead to deficiencies in incentive motivation, (2) that this state is due to marijuana’s interactions with the developing DA system, and (3) that treatment strategies should be directed to remediating resultant deficiencies in goal-directed activity. PMID:26095977

  18. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakaso

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn. Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O was detected in PC12-TetOFF-α-syn. Met(O was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O. Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  19. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    Science.gov (United States)

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-12-15

    Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine

  20. Myocardial accumulation of a dopamine D[sub 2] receptor-binding radioligand, 2'-iodospiperone

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Hideo; Yonekura, Yoshiharu; Tanahashi, Kiyoko; Iida, Yasuhiko; Iwasaki, Yasushi; Magata, Yasuhiro; Konishi, Junji; Yokoyama, Akira [Kyoto Univ. (Japan). Faculty of Medicine

    1993-08-01

    [sup 125]I-iodospiperone (2'-ISP), which has a high and selective affinity for dopamine D[sub 2] receptors, produced a high myocardial accumulation of radioactivity in the early phase after intravenous injection into mice. A human scintigraphic study also showed that the myocardium was clearly visualized soon after intravenous injection of the tracer. Analysis of the myocardial homogenate obtained from mice showed that [sup 125]I-2'-ISP was metabolically stable and was taken up by the myocardium in its intact form. Administration of spiperone significantly reduced the myocardial uptake of [sup 125]I-2'-ISP in mice. Treatment with haloperidol and (+) butaclamol, which have a high affinity for dopamine D[sub 2] receptors, also tended to reduce the myocardial uptake of radioactivity, while (-)-butaclamol, which has no affinity for dopamine D[sub 2] receptors, caused no change in uptake. These findings suggest that the myocardial accumulation of 2'-ISP occurred in association with dopamine D[sub 2] (DA[sub 2]) receptors. (author).

  1. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  2. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  3. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  4. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    Science.gov (United States)

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. Copyright © 2014 the American Physiological Society.

  5. Low Dopamine D2 Receptor Increases Vulnerability to Obesity Via Reduced Physical Activity, Not Increased Appetitive Motivation.

    Science.gov (United States)

    Beeler, Jeff A; Faust, Rudolf P; Turkson, Susie; Ye, Honggang; Zhuang, Xiaoxi

    2016-06-01

    The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a reward deficiency and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. The KD mice did not gain more weight or show increased appetitive motivation compared with wild-type mice in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than wild-type mice, obtaining no protective benefit from exercise opportunities. These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Essential Oils from the Medicinal Herbs Upregulate Dopamine Transporter in Rat Pheochromocytoma Cells.

    Science.gov (United States)

    Choi, Min Sun; Choi, Bang-sub; Kim, Sang Heon; Pak, Sok Cheon; Jang, Chul Ho; Chin, Young-Won; Kim, Young-Mi; Kim, Dong-il; Jeon, Songhee; Koo, Byung-Soo

    2015-10-01

    The dopamine transporter (DAT) protein, a component of the dopamine system, undergoes adaptive neurobiological changes from drug abuse. Prevention of relapse and reduction of withdrawal symptoms are still the major limitations in the current pharmacological treatments of drug addiction. The present study aimed to investigate the effects of essential oils extracted from Elsholtzia ciliata, Shinchim, Angelicae gigantis Radix, and Eugenia caryophyllata, well-known traditional Korean medicines for addiction, on the modulation of dopamine system in amphetamine-treated cells and to explore the possible mechanism underlying its therapeutic effect. The potential cytotoxic effect of essential oils was evaluated in PC12 rat pheochromocytoma cells using cell viability assays. Quantification of DAT, p-CREB, p-MAPK, and p-Akt was done by immunoblotting. DAT was significantly reduced in cells treated with 50 μM of amphetamine in a time-dependent manner. No significant toxicity of essential oils from Elsholtzia ciliata and Shinchim was observed at doses of 10, 25, and 50 μg/mL. However, essential oils from A. gigantis Radix at a dose of 100 μg/mL and E. caryophyllata at doses of 50 and 100 μg/mL showed cytotoxicity. Treatment with GBR 12909, a highly selective DAT inhibitor, significantly increased DAT expression compared with that of amphetamine only by enhancing phosphorylation of mitogen-activated protein kinases (MAPK) and Akt. In addition, essential oils effectively induced hyperphosphorylation of cyclic-AMP response element-binding protein (CREB), MAPK, and Akt, which resulted in DAT upregulation. Our study implies that the essential oils may rehabilitate brain dopamine function through increased DAT availability in abstinent former drug users.

  7. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  8. No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using (123I)FP-CIT (DaTSCAN) and SPECT

    DEFF Research Database (Denmark)

    Thomsen, G; Knudsen, Gitte Moos; Jensen, PS

    2013-01-01

    BACKGROUND: Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D2-like...... receptors. Molecular imaging studies of the relationship between DAT availability/dopamine synthesis capacity and active cigarette smoking have shown conflicting results. Through the collaboration between 13 SPECT centres located in 10 different European countries, a database of FP-CIT-binding in healthy...... controls was established. We used the database to test the hypothesis that striatal DAT availability is changed in active smokers compared to non-smokers and ex-smokers. METHODS: A total of 129 healthy volunteers were included. Subjects were divided into three categories according to past and present...

  9. Effect of Zishenpingchan Granule on Neurobehavioral Manifestations and the Activity and Gene Expression of Striatal Dopamine D1 and D2 Receptors of Rats with Levodopa-Induced Dyskinesias

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2014-01-01

    Full Text Available This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID. We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.

  10. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    Science.gov (United States)

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of dopamine on pentagastrin-stimulated gastric antral motility in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Bech, K; Hovendal, C P; Andersen, D

    1982-01-01

    The purpose of the present study was to evaluate the effect of dopamine on gastric antral motility in conscious dogs with gastric fistula by using miniature strain-gauge transducers. Infusion of pentagastrin changed the contractile activity to a digestive state. Dopamine, an endogenous...

  12. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons.

    Science.gov (United States)

    Liu, Zhenyi; Brown, Andrew; Fisher, Dan; Wu, Yumei; Warren, Joe; Cui, Xiaoxia

    2016-01-01

    The rat is a preferred model system over the mouse for neurological studies, and cell type-specific Cre expression in the rat enables precise ablation of gene function in neurons of interest, which is especially valuable for neurodegenerative disease modeling and optogenetics. Yet, few such Cre rats are available. Here we report the characterization of two Cre rats, tyrosine hydroxylase (TH)-Cre and dopamine active transporter (DAT or Slc6a3)-Cre, by using a combination of immunohistochemistry (IHC) and mRNA fluorescence in situ hybridization (FISH) as well as a fluorescent reporter for Cre activity. We detected Cre expression in expected neurons in both Cre lines. Interestingly, we also found that in Th-Cre rats, but not DAT-Cre rats, Cre is expressed in female germ cells, allowing germline excision of the floxed allele and hence the generation of whole-body knockout rats. In summary, our data demonstrate that targeted integration of Cre cassette lead to faithful recapitulation of expression pattern of the endogenous promoter, and mRNA FISH, in addition to IHC, is an effective method for the analysis of the spatiotemporal gene expression patterns in the rat brain, alleviating the dependence on high quality antibodies that are often not available against rat proteins. The Th-Cre and the DAT-Cre rat lines express Cre in selective subsets of dopaminergic neurons and should be particularly useful for researches on Parkinson's disease.

  13. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  14. Dopamine and cognitive control: sex-by-genotype interactions influence the capacity to switch attention.

    Science.gov (United States)

    Gurvich, C; Rossell, S L

    2015-03-15

    Cognitive performance in healthy persons varies widely between individuals. Sex differences in cognition are well reported, and there is an emerging body of evidence suggesting that the relationship between dopaminergic neurotransmission, implicated in many cognitive functions, is modulated by sex. Here, we examine the influence of sex and genetic variations along the dopaminergic pathway on aspects of cognitive control. A total of 415 healthy individuals, selected from an international consortium linked to Brain Research and Integrative Neuroscience Network (BRAINnet), were genotyped for two common and functional genetic variations of dopamine regulating genes: the catechol-O-methyltransferase [COMT] gene (rs4680) and the dopamine receptor D2 [DRD2] gene (rs6277). Cognitive measures were selected to explore sustained attention (using a continuous performance task), switching of attention (using a Trails B adaptation) and working memory (a visual computerised adaptation of digit span). While there were no main effects for genotype across any tasks, analyses revealed significant sex by genotype interactions for the capacity to switch attention. In relation to COMT, superior performance was noted in females with the Val/Val genotype and for DRD2, superior performance was seen for TT females and CC males. These findings highlight the importance of considering genetic variation in baseline dopamine levels in addition to sex, when considering the impact of dopamine on cognition in healthy populations. These findings also have important implications for the many neuropsychiatric disorders that implicate dopamine, cognitive changes and sex differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A combination of dopamine genes predicts success by professional Wall Street traders.

    Science.gov (United States)

    Sapra, Steve; Beavin, Laura E; Zak, Paul J

    2012-01-01

    What determines success on Wall Street? This study examined if genes affecting dopamine levels of professional traders were associated with their career tenure. Sixty professional Wall Street traders were genotyped and compared to a control group who did not trade stocks. We found that distinct alleles of the dopamine receptor 4 promoter (DRD4P) and catecholamine-O-methyltransferase (COMT) that affect synaptic dopamine were predominant in traders. These alleles are associated with moderate, rather than very high or very low, levels of synaptic dopamine. The activity of these alleles correlated positively with years spent trading stocks on Wall Street. Differences in personality and trading behavior were also correlated with allelic variants. This evidence suggests there may be a genetic basis for the traits that make one a successful trader.

  16. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  18. Cyclic Voltammetric Investigation of Dopamine at Poly-(Gabapentin Modified Carbon Paste Electrode

    Directory of Open Access Journals (Sweden)

    M. T. Shreenivas

    2011-01-01

    Full Text Available The poly (gabapentin film was prepared on the surface of carbon paste electrode by electrochemical method using cyclic voltammetric technique. The poly (gabapentin film-modified carbon paste electrode was calibrated with standard potassium ferrocyanide solution in 1 M KCl as a supporting electrolyte. The prepared poly (gabapentin film-coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at physiological pH. The scan rate effect was found to be diffusion-controlled electrode process. The concentration effect of dopamine was studied, and the redox peak potentials of dopamine were dependant on pH.

  19. Comparison of dopamine kinetics in the larval Drosophila ventral nerve cord and protocerebrum with improved optogenetic stimulation.

    Science.gov (United States)

    Privman, Eve; Venton, B Jill

    2015-11-01

    Dopamine release and uptake have been studied in the Drosophila larval ventral nerve cord (VNC) using optogenetics to stimulate endogenous release. However, other areas of the central nervous system remain uncharacterized. Here, we compare dopamine release in the VNC and protocerebrum of larval Drosophila. Stimulations were performed with CsChrimson, a new, improved, red light-activated channelrhodopsin. In both regions, dopamine release was observed after only a single, 4 ms duration light pulse. Michaelis-Menten modeling was used to understand release and uptake parameters for dopamine. The amount of dopamine released ([DA]p ) on the first stimulation pulse is higher than the average [DA]p released from subsequent pulses. The initial and average amount of dopamine released per stimulation pulse is smaller in the protocerebrum than in the VNC. The average Vmax of 0.08 μM/s in the protocerebrum was significantly higher than the Vmax of 0.05 μM/s in the VNC. The average Km of 0.11 μM in the protocerebrum was not significantly different from the Km of 0.10 μM in the VNC. When the competitive dopamine transporter (DAT) inhibitor nisoxetine was applied, the Km increased significantly in both regions while Vmax stayed the same. This work demonstrates regional differences in dopamine release and uptake kinetics, indicating important variation in the amount of dopamine available for neurotransmission and neuromodulation. We use a new optogenetic tool, red light activated CsChrimson, to stimulate the release of dopamine in the ventral nerve cord and medial protocerebrum of the larval Drosophila central nervous system. We monitored extracellular dopamine by fast scan cyclic voltammetry and used Michaelis-Menten modeling to probe the regulation of extracellular dopamine, discovering important similarities and differences in these two regions. © 2015 International Society for Neurochemistry.

  20. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Science.gov (United States)

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  1. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  2. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  3. Selective labelling of dopamine (D2) receptors in rat striatum by [3H]domperidone but not by [3H]spiperone

    International Nuclear Information System (INIS)

    Lazareno, S.; Nahorski, S.R.

    1982-01-01

    Specific binding of [ 3 H]spiperone and [ 3 H]domperidone, displaceable by 1 μM d-butaclamol, was examined in rat striatal membranes. Initial saturation and displacement experiments indicated that [ 3 H]spiperone bound to more sites than [ 3 H]domperidone and that, whilst all displacing drugs were more potent against [ 3 H]domperidone, this difference in potency was greatest for dopamine agonists and specific antagonists and least for 5HT-related drugs. Sulpiride displaced [ 3 H]spiperone biphasically, and was used at a concentration of 50 μM to examine two classes of [ 3 H]spiperone binding: site 1 displaceable by sulpiride, and site 2 displaceable by butaclamol but not by sulpiride. Site 1 had twice the capacity of site 2 and ten times the affinity for [ 3 H]spiperone. Dopaminergic drugs displaced preferentially from site 1, whilst 5HT-related drugs were more potent against site 2. GTP reduced the potency of dopamine, noradrenaline and, to a lesser extent, 5HT at site 1, but had no effect at site 2. [ 3 H]Domperidone sites had the same capacity as [ 3 H]spiperone site 1, and dopamine, noradrenaline and 5HT, in the absence or presence of GTP, and sulpiride had essentially identical affinities for [ 3 H]domperidone sites and [ 3 H]spiperone site 1. It is concluded that [ 3 H]domperidone and [ 3 H]spiperone label an identical population of dopamine (D 2 ) receptors, whilst [ 3 H]spiperone also labels a substantial number of non-dopamine sites, at least some of which are 5TH-related. [ 3 H]Domperidone is the better radioligand for dopamine receptors. (Auth.)

  4. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  5. Functional Selectivity of Allosteric Interactions within G Protein–Coupled Receptor Oligomers: The Dopamine D1-D3 Receptor Heterotetramer

    Science.gov (United States)

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T.; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I.; Casadó, Vicent; McCormick, Peter J.

    2014-01-01

    The dopamine D1 receptor–D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa–induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R–D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. PMID:25097189

  6. Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson's disease?

    Science.gov (United States)

    Laloux, C; Gouel, F; Lachaud, C; Timmerman, K; Do Van, B; Jonneaux, A; Petrault, M; Garcon, G; Rouaix, N; Moreau, C; Bordet, R; Duce, J A; Devedjian, J C; Devos, D

    2017-07-01

    In Parkinson's disease (PD) depletion of dopamine in the nigro-striatal pathway is a main pathological hallmark that requires continuous and focal restoration. Current predominant treatment with intermittent oral administration of its precursor, Levodopa (l-dopa), remains the gold standard but pharmacological drawbacks trigger motor fluctuations and dyskinesia. Continuous intracerebroventricular (i.c.v.) administration of dopamine previously failed as a therapy because of an inability to resolve the accelerated dopamine oxidation and tachyphylaxia. We aim to overcome prior challenges by demonstrating treatment feasibility and efficacy of continuous i.c.v. of dopamine close to the striatum. Dopamine prepared either anaerobically (A-dopamine) or aerobically (O-dopamine) in the presence or absence of a conservator (sodium metabisulfite, SMBS) was assessed upon acute MPTP and chronic 6-OHDA lesioning and compared to peripheral l-dopa treatment. A-dopamine restored motor function and induced a dose dependent increase of nigro-striatal tyrosine hydroxylase positive neurons in mice after 7days of MPTP insult that was not evident with either O-dopamine or l-dopa. In the 6-OHDA rat model, continuous circadian i.c.v. injection of A-dopamine over 30days also improved motor activity without occurrence of tachyphylaxia. This safety profile was highly favorable as A-dopamine did not induce dyskinesia or behavioral sensitization as observed with peripheral l-dopa treatment. Indicative of a new therapeutic strategy for patients suffering from l-dopa related complications with dyskinesia, continuous i.c.v. of A-dopamine has greater efficacy in mediating motor impairment over a large therapeutic index without inducing dyskinesia and tachyphylaxia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Synaptic Effects of Dopamine Breakdown and Their Relation to Schizophrenia-Linked Working Memory Deficits

    Directory of Open Access Journals (Sweden)

    Andrew D. Bolton

    2018-06-01

    Full Text Available Working memory is the ability to hold information “online” over a time delay in order to perform a task. This kind of memory is encoded in the brain by persistent neural activity that outlasts the presentation of a stimulus. Patients with schizophrenia perform poorly in working memory tasks that require the brief memory of a target location in space. This deficit indicates that persistent neural activity related to spatial locations may be impaired in the disease. At the circuit level, many studies have shown that NMDA receptors and the dopamine system are involved in both schizophrenia pathology and working memory-related persistent activity. In this Hypothesis and Theory article, we examine the possible connection between NMDA receptors, the dopamine system, and schizophrenia-linked working memory deficits. In particular, we focus on the dopamine breakdown product homocysteine (HCY, which is consistently elevated in schizophrenia patients. Our previous studies have shown that HCY strongly reduces the desensitization of NMDA currents. Here, we show that HCY likely affects NMDA receptors in brain regions that support working memory; this is because these areas favor dopamine breakdown over transport to clear dopamine from synapses. Finally, within the context of two NMDA-based computational models of working memory, we suggest a mechanism by which HCY could give rise to the working memory deficits observed in schizophrenia patients.

  8. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  9. Effects of cysteamine on dopamine-mediated behaviors: evidence for dopamine-somatostatin interactions in the striatum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Iverson, M.T.; Radke, J.M.; Vincent, S.R.

    1986-06-01

    The effects of prior treatment with cysteamine, a drug which appears to deplete selectively the neuropeptide somatostatin, on apomorphine-induced stereotypy and amphetamine-induced locomotor activity and conditioned place preferences were investigated. Twelve hours following systemic cysteamine injections apomorphine-induced stereotypy was attenuated and striatal somatostatin levels were reduced by half. Systemic cysteamine also decreased the motor stimulant effects of amphetamine, without influencing the rewarding properties as determined by the conditioned place preference procedure. Direct injections of cysteamine into the nucleus accumbens also decreased the locomotor response to amphetamine, and produced a local reduction in somatostatin levels in the accumbens. Cysteamine did not appear to alter monoamine turnover in the striatum after either systemic or intra-accumbens injections. These results suggest that somatostatin in the nucleus accumbens and caudate-putamen modulates the motor, but not the reinforcing properties of dopaminergic drugs, possibly via an action postsynaptic to dopamine-releasing terminals. Furthermore, it is evident from these results that cysteamine is an important tool with which to study the central actions of somatostatin.

  10. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

    2011-05-01

    Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.

  11. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    International Nuclear Information System (INIS)

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-01-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent [ 3 H]acetylcholine release from rabbit retina labeled in vitro with [ 3 H]choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of [ 3 H]acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of [ 3 H]acetylcholine with the following order of potency: apomorphine ≤ SKF(R)82526 3 H]acetylcholine: SCH 23390 (IC50 = 1 nM) 3 H]acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by [ 3 H]SCH 23390, or as determined by adenylate cyclase activity. [ 3 H]SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of [ 3 H]SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate [ 3 H]acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at [ 3 H]SCH 23390 binding sites (r = 0.755, P < .05, n = 8)

  12. Effects of hypoxia on dopamine concentration and the immune response of White Shrimp ( Litopenaeus vannamei)

    Science.gov (United States)

    Hu, Fawen; Pan, Luqing; Jing, Futao

    2009-03-01

    Effects of hypoxia on the dopamine concentration and the immune response of White Shrimp Litopenaeus vannamei were studied. The results showed that hypoxia had significant effects on the concentration of dopamine (DA) in the haemolymph, haemocyte count, phenoloxidase activity, phagocytic activity of haemocytes and bacteriolytic and antibacterial activity in the haemolymph ( P<0.05). The concentration of the dopamine in haemolymph reached its maximum in the 3.0 and 1.5 mg L-1 DO groups at 12 h and 6 h, and then returned to normal after 24 h and 12 h, respectively. All immune parameters decreased with the reduction of dissolved oxygen. Total haemocyte count (THC), the hyaline cells and semi-granular cells in the 3.0 mg L-1 DO group became stable after 12 h, while granular cells did so after 24 h. The THC and different haemocyte count (DHC) in the 1.5 mg L-1 DO group became stable after 24 h. Phenoloxidase activity and bacteriolytic activity in the 3.0 and 1.5 mg L-1 DO groups reached their stable levels after 24 h and 12 h respectively, while phagocytic activity and antibacterial activity became stable after 24 and 12, and 36 and 24 h, respectively. It was also indicated that the changes of dopamine concentrations in haemolymph, haemocyte count and phenoloxidase activity were obviously related to the exposure time under hypoxic conditions.

  13. Induction of dopamine biosynthesis by l-DOPA in PC12 cells: implications of L-DOPA influx and cyclic AMP.

    Science.gov (United States)

    Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo

    2008-09-04

    The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).

  14. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I

    DEFF Research Database (Denmark)

    Ziebell, Morten; Holm-Hansen, Signe; Thomsen, Gerda

    2010-01-01

    Current SPECT radioligands available for in vivo imaging of the dopamine transporter (DAT) also show affinity for monoamine transporters other than DAT, especially the serotonin transporter (SERT). The effect of this lack of selectivity for in vivo imaging is unknown. In this study, we compared...

  15. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  16. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    OpenAIRE

    Maria A de Souza Silva; C. eMattern; C. eMattern; C.I. eDecheva; Joseph P. Huston; A. eSadile; M. eBeu; H.W. eMüller; Susanne eNikolaus

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We ...

  17. Dextroamphetamine (but Not Atomoxetine Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence.

    Directory of Open Access Journals (Sweden)

    Jonathan D Kenny

    Full Text Available Methylphenidate induces reanimation (active emergence from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each. When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6. After a single dose of propofol (8 mg/kg i.v., the mean emergence times for rats that received normal saline (vehicle and dextroamphetamine (1 mg/kg i.v. were 641 sec and 404 sec, respectively (n = 8 each. The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8, this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1-4 Hz to θ (4-8 Hz during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation

  18. Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence

    Science.gov (United States)

    Kenny, Jonathan D.; Taylor, Norman E.; Brown, Emery N.; Solt, Ken

    2015-01-01

    Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg IV), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg IV) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1–4 Hz) to θ (4–8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes

  19. Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence.

    Science.gov (United States)

    Kenny, Jonathan D; Taylor, Norman E; Brown, Emery N; Solt, Ken

    2015-01-01

    Methylphenidate induces reanimation (active emergence) from general anesthesia in rodents, and recent evidence suggests that dopaminergic neurotransmission is important in producing this effect. Dextroamphetamine causes the direct release of dopamine and norepinephrine, whereas atomoxetine is a selective reuptake inhibitor for norepinephrine. Like methylphenidate, both drugs are prescribed to treat Attention Deficit Hyperactivity Disorder. In this study, we tested the efficacy of dextroamphetamine and atomoxetine for inducing reanimation from general anesthesia in rats. Emergence from general anesthesia was defined by return of righting. During continuous sevoflurane anesthesia, dextroamphetamine dose-dependently induced behavioral arousal and restored righting, but atomoxetine did not (n = 6 each). When the D1 dopamine receptor antagonist SCH-23390 was administered prior to dextroamphetamine under the same conditions, righting was not restored (n = 6). After a single dose of propofol (8 mg/kg i.v.), the mean emergence times for rats that received normal saline (vehicle) and dextroamphetamine (1 mg/kg i.v.) were 641 sec and 404 sec, respectively (n = 8 each). The difference was statistically significant. Although atomoxetine reduced mean emergence time to 566 sec (n = 8), this decrease was not statistically significant. Spectral analysis of electroencephalogram recordings revealed that dextroamphetamine and atomoxetine both induced a shift in peak power from δ (0.1-4 Hz) to θ (4-8 Hz) during continuous sevoflurane general anesthesia, which was not observed when animals were pre-treated with SCH-23390. In summary, dextroamphetamine induces reanimation from general anesthesia in rodents, but atomoxetine does not induce an arousal response under the same experimental conditions. This supports the hypothesis that dopaminergic stimulation during general anesthesia produces a robust behavioral arousal response. In contrast, selective noradrenergic stimulation causes

  20. Strong adsorption characteristics of a novel overoxidized poly(3,4-ethylenedioxythiophene) film and application for dopamine sensing

    International Nuclear Information System (INIS)

    Lin, Jia-Min; Su, Ya-Ling; Chang, Wei-Ting; Su, Wan-Yu; Cheng, Shu-Hua

    2014-01-01

    Highlights: • A novel overoxidized poly(3,4-ethylenedioxythiophene) film is obtained. • The film structure favors the adsorption of dopamine. • The sensor is able to detect dopamine in the presence of ascorbic acid (1000X). - Abstract: An overoxidized poly(3,4-ethylenedioxythiophene) film-modified screen-printed carbon electrodes (SPCE/PEDOT ox ) was prepared and characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle techniques. The obtained film is a porous structure with highly abundant oxygen functionality. The SPCE/PEDOT ox could adsorb cations strongly and perform catalytic oxidation of biomolecules. The potential-induced adsorption of dopamine was observed for SPCE/PEDOT ox . A simple medium-exchange procedure was developed for the selective determination of dopamine by the use of the dopamine-adsorbed electrode. Under optimal differential pulse voltammetry (DPV), the proposed assay can be employed in the determination of submicromolar concentration of dopamine without the coexisting interferences of ascorbic acid (1000-fold) and uric acid (10-fold)

  1. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    Science.gov (United States)

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  2. Modulation of [3H]-dopamine binding by cholecystokinin octapeptide (CCK-8)

    International Nuclear Information System (INIS)

    Murphy, R.B.; Schuster, D.I.

    1982-01-01

    Cholecystokinin-octapeptide (CCK-8) is a putative neurotransmitter which has been demonstrated previously to occur in midbrain dopamine neurones. We observe that CCK-8 causes changes in both the affinity and density of binding sites for [ 3 H]-dopamine in rat striatal homogenates, in vitro, upon incubation with the peptide at a concentration of 1 micromolar. A dose-response study of the competetion of CCK-8 with [ 3 H]-dopamine binding indicates an IC50 for the peptide of 450 nM; desulfated CCK-8 and the related peptide caerulin are at least 4-fold less active than CCK-8. CCK-8 was also administered to rats in a separate study; the binding of [ 3 H]-dopamine was evaluated to homogenates of striata and olfactory tubercles obtained from these animals, which had been treated with systemic injection at a dose of 20 micrograms/kg, daily, for four days. A decrease in the number of striatal binding sites for the radioligand was observed, with a concomitant increase in the number of binding sites in the olfactory tubercle. These data collectively suggest a possible regulatory role for CCK-8 in the ascending dopamine systems

  3. Interactions between dopamine and oxytocin in the control of sexual behaviour.

    Science.gov (United States)

    Baskerville, Tracey A; Douglas, Alison J

    2008-01-01

    Dopamine and oxytocin are two key neuromodulators involved in reproductive behaviours, such as mating and maternal care. Much evidence underlies their separate roles in such behaviours, but particularly in sexual behaviour. It is generally believed that central dopaminergic and oxytocinergic systems work together to regulate the expression of penile erection, but relatively little is known regarding how they interact. Thus, this review aims to discuss neuroanatomical proof, neuromodulator secretory profiles in the hypothalamus and behavioural pharmacological evidence which support a dopamine-oxytocin link in three hypothalamic nuclei that have been implicated in sexual behaviour, namely the medial preoptic nucleus, supraoptic nucleus and paraventricular nucleus (PVN). We also aim to provide an overview of potential dopamine-mediated transduction pathways that occur within these nuclei and are correlated with the exhibition of penile erection. The PVN provides the most convincing evidence for a dopamine-oxytocin link and it is becoming increasingly apparent that parvocellular oxytocinergic neurons in the PVN, in part, mediate the effects of dopamine to elicit penile erection. However, while we show that oxytocin neurons express dopamine receptors, other evidence on whether dopaminergic activation of PVN oxytocin cells involves a direct and/or indirect mechanism is inconclusive and further evidence is required to establish whether the two systems interact synergistically or sequentially in the regulation of penile erection.

  4. Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes.

    Science.gov (United States)

    Vauzour, David; Buonfiglio, Maria; Corona, Giulia; Chirafisi, Joselita; Vafeiadou, Katerina; Angeloni, Cristina; Hrelia, Silvana; Hrelia, Patrizia; Spencer, Jeremy P E

    2010-04-01

    The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.

  5. The postirradiation effect of noradrenaline, serotonin and dopamine on Na-K-pump activity in rat brain sections

    International Nuclear Information System (INIS)

    Dvoretskij, A.I.; Kulikova, I.A.

    1993-01-01

    Whole-body X-irradiation with doses of 0.155 and 0.310 C/kg was shown to modify in different ways the activating effects of noradrenaline and serotonin, as well as a biphase effect of dopamine of neuronal membranes. The resulting effect was a function of a combination of radiation doses and neurotransmitter concentrations and thus showed different modes of interaction between neurotransmitter and ion-transport systems of brain cells in radiation sickness

  6. Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3H]raclopride

    International Nuclear Information System (INIS)

    Lidow, M.S.; Goldman-Rakic, P.S.; Rakic, P.; Innis, R.B.

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D 1 receptors in the cortex have been well documented. Comparable information on cortical D 2 sites is lacking. The authors report here the results of binding studied in the cortex and neostriatum of rat and monkey using the D 2 selective antagonist [ 3 H]raclopride. In both structures [ 3 H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D 2 receptors. D 2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study established the presence and widespread distribution of dopamine D 2 receptors in the cortex

  7. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  8. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  9. Tyrosine hydroxylase in the ventral tegmental area of rams with high or low libido-A role for dopamine.

    Science.gov (United States)

    Kramer, A C; Mirto, A J; Austin, K J; Roselli, C E; Alexander, B M

    2017-12-01

    Dopamine synthesis in the ventral tegmental area (VTA) is necessary for the reinforcement of sexual behavior. The objective of this study determined if sexual stimuli initiates reward, and whether reward is attenuated in sexually inactive rams. Sexually active rams were exposed to urine from estrous (n=4) or ovariectomized (n=3) ewes with inactive rams (n=3) exposed to urine from estrous ewes. Following exposure, rams were exsanguinated and brains perfused. Alternating sections of the VTA were stained for Fos related antigens (FRA), tyrosine hydroxylase, and dopamine beta-hydroxylase activity. Forebrain tissue, mid-sagittal ventral to the anterior corpus callosum, was stained for dopamine D 2 receptors. Concentrations of cortisol was determined prior to and following exposure. Exposure to ovariectomized-ewe urine in sexually active rams did not influence (P=0.6) FRA expression, but fewer (PSexually inactive rams had fewer (Psexually active rams following exposure to estrous ewe urine. VTA neurons staining positive for dopamine beta-hydroxylase did not differ by sexual activity (P=0.44) or urine exposure (P=0.07). Exposure to stimulus did not influence (P=0.46) numbers of forebrain neurons staining positive for dopamine D2 receptors in sexually active rams, but fewer (P=0.04) neurons stain positive in inactive rams. Serum concentrations of cortisol did not differ (P≥0.52) among rams prior to or following stimulus. In conclusion sexual inactivity is unlikely due to stress, but may be partially a result of decreased tyrosine hydroxylase and/or the response to dopamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Beyond the Dopamine Receptor: Regulation and Roles of Serine/Threonine Protein Phosphatases

    Directory of Open Access Journals (Sweden)

    Sven I Walaas

    2011-08-01

    Full Text Available Dopamine plays an important modulatory role in the central nervous system, helping to control critical aspects of motor function and reward learning. Alteration in normal dopaminergic neurotransmission underlies multiple neurological diseases including schizophrenia, Huntington's disease and Parkinson's disease. Modulation of dopamine-regulated signaling pathways is also important in the addictive actions of most drugs of abuse. Our studies over the last 30 years have focused on the molecular actions of dopamine acting on medium spiny neurons, the predominant neurons of the neostriatum. Striatum-enriched phosphoproteins, particularly DARPP-32, RCS (Regulator of Calmodulin Signaling and ARPP-16, mediate pleiotropic actions of dopamine. Notably, each of these proteins, either directly or indirectly, regulates the activity of one of the three major subclasses of serine/threonine protein phosphatases, PP1, PP2B and PP2A, respectively. For example, phosphorylation of DARPP-32 at Thr34 by protein kinase A results in potent inhibition of PP1, leading to potentiation of dopaminergic signaling at multiple steps from the dopamine receptor to the nucleus. The discovery of DARPP-32 and its emergence as a critical molecular integrator of striatal signaling will be discussed, as will more recent studies that highlight novel roles for RCS and ARPP-16 in dopamine-regulated striatal signaling pathways.

  11. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  12. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  13. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.

    Science.gov (United States)

    Becker, J B; Rudick, C N; Jenkins, W J

    2001-05-01

    Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.

  14. Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2016-04-05

    Cellular and brain metabolism of dopamine can be correlated with a number of neurodegenerative disorders, and as such, in vivo analysis of dopamine in the presence of structurally related neurotransmitters (NT) represents a holy grail of neuroscience. Interference from those NTs generally does not allow selective electroanalysis of dopamine, which redox transformation overlaps with those of other catecholamines. In our previous work, we reported an electrochemical RNA-aptamer-based biosensor for specific analysis of dopamine (Analytical Chemistry, 2013; Vol. 85, p 121). However, the overall design of the biosensor restricted its stability and impeded its operation in serum. Here, we show that specific biorecognition and electroanalysis of dopamine in serum can be performed by the RNA aptamer tethered to cysteamine-modified gold electrodes via the alkanethiol linker. The stabilized dopamine aptasensor allowed continuous 20 h amperometric analysis of dopamine in 10% serum within the physiologically important 0.1-1 μM range and in the presence of catechol and such dopamine precursors and metabolites as norepinephrine and l-DOPA. In a flow-injection mode, the aptasensor response to dopamine was ∼1 s, the sensitivity of analysis, optimized by adjusting the aptamer surface coverage, was 67 ± 1 nA μM(-1) cm(-2), and the dopamine LOD was 62 nM. The proposed design of the aptasensor, exploiting both the aptamer alkanethiol tethering to the electrode and screening of the catecholamine-aptamer electrostatic interactions, allows direct monitoring of dopamine levels in biological fluids in the presence of competitive NT and thus may be further applicable in biomedical research.

  15. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model­

    Directory of Open Access Journals (Sweden)

    Judith R. Homberg

    2016-10-01

    Full Text Available Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1. Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.

  16. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  17. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  18. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    Science.gov (United States)

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author

  19. Smoking-induced dopamine release studied with [11C]raclopride PET

    International Nuclear Information System (INIS)

    Kim, Yu Kyeong; Cho, Sang Soo; Lee, Do Hoon

    2005-01-01

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with and regulates the activation of the dopaminergic neuron. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [ 11 C]raclopride. Four male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.3±2.6 years) were enrolled in this study. Dopamine D2 receptor radioligand, [ 11 C]raclopride was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3x20s, 2x60s, 2x120s, 1x180s and 22x300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurements of plasma nicotine levels were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as striatal-cerebellar/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean change in binding potential between the baseline and smoking in caudate, Putamen and ventral striatum was 3.7 % , 4.0 % and 8.6 %, respectively. This indicated the striatal dopamine release by smoking. The reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (r 2 =0.91, p=0.04). These data demonstrate that in vivo imaging with [ 11 C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking

  20. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP

    OpenAIRE

    Winner, Brittany M.; Zhang, Harue; Farthing, McKenzie M.; Karchalla, Lalitha M.; Lookingland, Keith J.; Goudreau, John L.

    2017-01-01

    Parkinson disease (PD) is prevalent in elderly individuals and is characterized by selective degeneration of n igro s triatal d op a mine (NSDA) neurons. Interestingly, not all dopamine (DA) neurons are affected equally by PD and aging, particularly m eso l imbic (ML) DA neurons. Here, effects of aging were examined on presynaptic DA synthesis, reuptake, metabolism and neurotoxicant susceptibility of NSDA and mesolimbic dopamine (MLDA) neurons and astrocyte DA metabolism. There were no differ...

  1. A novel l-leucine modified Sol-Gel-Carbon electrode for simultaneous electrochemical detection of homovanillic acid, dopamine and uric acid in neuroblastoma diagnosis.

    Science.gov (United States)

    Khamlichi, Redouan El; Bouchta, Dounia; Anouar, El Hassane; Atia, Mounia Ben; Attar, Aisha; Choukairi, Mohamed; Tazi, Saloua; Ihssane, Raissouni; Faiza, Chaoukat; Khalid, Draoui; Khalid, Riffi Temsamani

    2017-02-01

    Neuroblastoma is a pediatric neuroblastic tumor arising in the sympathetic nervous crest cells. A high grade of Neuroblastoma is characterized by a high urinary excretion of homovanillic acid and dopamine. In this work l-leucine modified Sol-Gel-Carbon electrode was used for a sensitive voltammetric determination of homovanillic acid and dopamine in urine. The electrochemical response characteristics were investigated by cyclic and differential pulse voltammetry; the modified electrode has shown an increase in the effective area of up to 40%, a well-separated oxidation peaks and an excellent electrocatalytic activity. High sensitivity and selectivity in the linear range of 0,4-100μML -1 of homovanillic acid and 10-120μML -1 of dopamine were also obtained. Moreover, a sub-micromolar limit of detection of 0.1μM for homovanillic acid and 1.0μM for the dopamine was achieved. Indeed, high reproducibility with simple preparation and regeneration of the electrode surface made this electrode very suitable for the determination of homovanillic acid and dopamine in pharmaceutical and clinical preparations. The mechanism of homovanillic acid and the electrochemical oxidation at l-leucine modified Sol-Gel-Carbon electrode is described out the B3P86/6-31+G(d,p) level of theory as implemented in Gaussian software. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dorsolateral neostriatum contribution to incentive salience: Opioid or dopamine stimulation makes one reward cue more motivationally attractive than another

    OpenAIRE

    DiFeliceantonio, Alexandra G.; Berridge, Kent C.

    2016-01-01

    Pavlovian cues for rewards can become attractive incentives: approached and ‘wanted’ as the rewards themselves. The motivational attractiveness of a previously learned cue is not fixed, but can be dynamically amplified during re-encounter by simultaneous activation of brain limbic circuitry. Here we report that opioid or dopamine microinjections in the dorsolateral quadrant of the neostriatum (DLS) of rats selectively amplify attraction toward a previously learned Pavlovian cue in an individu...

  3. Effect of dopamine on bethanechol-stimulated gastric mucosal blood flow and gastric acid secretion in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K

    1982-01-01

    of gastric mucosal blood flow, whereas stimulation of beta, muscarinic, and 'gastrinergic' receptors mainly occurs indirectly via changes in parietal cell function. The main effect of dopamine seems to be on gastric motility, whereas the effect on gastric acid secretion is of minor importance.......The aim of the present study was to investigate the effect of Dopamine on bethanechol-stimulated gastric acid secretion and mucosal blood flow. dopamine was used alone and in conjunction with selective blockade of the alpha, beta, and dopaminergic receptors. An increasing and dose......-dependent stimulation of gastric acid secretion was found for dopamine at 1, 5, and 10 micrograms/kg/min. A significant inhibition of gastric acid secretion was found with the highest dose of dopamine (40 micrograms/kg/min). the stimulatory effect seems to be mediated by more than one receptor, whereas the inhibition...

  4. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson's disease.

    Science.gov (United States)

    Pissadaki, Eleftheria K; Bolam, J Paul

    2013-01-01

    Dopamine neurons of the substantia nigra pars compacta (SNc) are uniquely sensitive to degeneration in Parkinson's disease (PD) and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated axonal arbor that is orders of magnitude larger than other neuronal types. We suggest that this puts them under such a high energy demand that any stressor that perturbs energy production leads to energy demand exceeding supply and subsequent cell death. One prediction of this hypothesis is that those dopamine neurons that are selectively vulnerable in PD will have a higher energy cost than those that are less vulnerable. We show here, through the use of a biology-based computational model of the axons of individual dopamine neurons, that the energy cost of axon potential propagation and recovery of the membrane potential increases with the size and complexity of the axonal arbor according to a power law. Thus SNc dopamine neurons, particularly in humans, whose axons we estimate to give rise to more than 1 million synapses and have a total length exceeding 4 m, are at a distinct disadvantage with respect to energy balance which may be a factor in their selective vulnerability in PD.

  5. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  6. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard

    2014-01-01

    Background One of the best validated findings in schizophrenia is an association between increased presynaptic striatal dopaminergic activity and psychotic symptoms. We have previously reported an association between positive symptoms and dopamine D2 receptor binding potentials (BPs) in frontal...... cortex in antipsychotic-naïve first-episode male schizophrenia patients(1). Preclinical studies suggest an inverse relationship between frontal and striatal dopamine activity. This activity can indirectly be expressed by the BP of dopamine receptors using Single Photon Emission Computed Tomography (SPECT......) where low striatal BP is believed to reflect high dopamine availability. We aim to assess the association between D2 receptor BPs in antipsychotic-naïve first-episode schizophrenia patients and their response to the first treatment with an antipsychotic compound. We hypothesise that patients with low...

  7. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum

    DEFF Research Database (Denmark)

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J. M.

    2015-01-01

    Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug......-related stimuli towards drug-related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs......) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N = 27). All participants also underwent 6-[18F]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation...

  8. Convergent processing of both positive and negative motivational signals by the VTA dopamine neuronal populations.

    Directory of Open Access Journals (Sweden)

    Dong V Wang

    2011-02-01

    Full Text Available Dopamine neurons in the ventral tegmental area (VTA have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.

  9. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2002-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  10. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2005-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is a widespread problem and drug of abuse throughout the U.S...

  11. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  12. In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine

    International Nuclear Information System (INIS)

    Wang, A.-J.; Feng, J.-J.; Xi, J.-L.; Dong, W.-J.; Li, Y.-F.

    2010-01-01

    Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs-PANI) via the direct electroreduction of the adsorbed AuCl 4 - ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs-PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 μM, with a low detection limit of 0. 8 μM (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability. (author)

  13. Glutamate Receptors within the Mesolimbic Dopamine System Mediate Alcohol Relapse Behavior.

    Science.gov (United States)

    Eisenhardt, Manuela; Leixner, Sarah; Luján, Rafael; Spanagel, Rainer; Bilbao, Ainhoa

    2015-11-25

    Glutamatergic input within the mesolimbic dopamine (DA) pathway plays a critical role in the development of addictive behavior. Although this is well established for some drugs of abuse, it is not known whether glutamate receptors within the mesolimbic system are involved in mediating the addictive properties of chronic alcohol use. Here we evaluated the contribution of mesolimbic NMDARs and AMPARs in mediating alcohol-seeking responses induced by environmental stimuli and relapse behavior using four inducible mutant mouse lines lacking the glutamate receptor genes Grin1 or Gria1 in either DA transporter (DAT) or D1R-expressing neurons. We first demonstrate the lack of GluN1 or GluA1 in either DAT- or D1R-expressing neurons in our mutant mouse lines by colocalization studies. We then show that GluN1 and GluA1 receptor subunits within these neuronal subpopulations mediate the alcohol deprivation effect, while having no impact on context- plus cue-induced reinstatement of alcohol-seeking behavior. We further validated these results pharmacologically by demonstrating similar reductions in the alcohol deprivation effect after infusion of the NMDAR antagonist memantine into the nucleus accumbens and ventral tegmental area of control mice, and a rescue of the mutant phenotype via pharmacological potentiation of AMPAR activity using aniracetam. In conclusion, dopamine neurons as well as D1R-expressing medium spiny neurons and their glutamatergic inputs via NMDARs and AMPARs act in concert to influence relapse responses. These results provide a neuroanatomical and molecular substrate for relapse behavior and emphasize the importance of glutamatergic drugs in modulating relapse behavior. Here we provide genetic and pharmacological evidence that glutamate receptors within the mesolimbic dopamine system play an essential role in alcohol relapse. Using various inducible and site-specific transgenic mouse models and pharmacological validation experiments, we show that critical

  14. Syntheses of two potential dopamine D{sub 4} receptor radioligands: {sup 18}F labelled chromeno[3,4-c]pyridin-5-ones

    Energy Technology Data Exchange (ETDEWEB)

    Gu-Cai Li; Duan-Zhi Yin; Ming-Wei Wang; Deng-Feng Cheng; Yong-Xian Wang [Research Center of Radiopharmaceuticals, Shanghai Inst. of Applied Physics, Chinese Academy of Sciences, Shanghai, SH (China)

    2006-07-01

    The dopamine D{sub 4} receptor is hypothesized to relate with the pathophysiology and pharmacotherapy of schizophrenia while its level in brain regions is much lower and to date no suitable tracer is available for the study of D{sub 4} receptor in vivo. Therefore, selective imaging agents for the D{sub 4} subtype are badly needed. Based on the structure-activity analysis of chromeno[3,4-c]pyridin-5-ones as dopamine D{sub 4} receptor ligands, two fluorine-18 labelled chromeno[3,4-c] pyridin-5-one derivatives, 3-(4-[{sup 18}F]fluorobenzyl)-8-hydroxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one and 3-(4-[{sup 18}F]fluorobenzyl)-8,9-dimethoxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one were synthesized through a two-step one-pot method. Their radiochemical yields were around 19.7% (decay-corrected) and radiochemical purities were higher than 95% with specific activities of about 120 GBq/{mu}mol. (orig.)

  15. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    Science.gov (United States)

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  16. Autoradiographic localization of mu and delta opioid receptors in the mesocorticolimbic dopamine system

    Energy Technology Data Exchange (ETDEWEB)

    Dilts, R.P. Jr.

    1989-01-01

    In vitro autoradiographic techniques were coupled with selective chemical lesions of the A10 dopamine cells and intrinsic perikarya of the region to delineate the anatomical localization of mu and delta opioid receptors, as well as, neurotensin receptors. Mu opioid receptors were labeled with {sup 125}I-DAGO. Delta receptors were labeled with {sup 125}I-DPDPE. Neurotensin receptors were labeled with {sup 125}I-NT3. Unilateral lesions of the dopamine perikarya were produced by injections of 6-OHDA administered in the ventral mesencephalon. Unilateral lesions of intrinsic perikarya were induced by injections of quinolinic acid in to the A10 dopamine cell region. Unilateral lesions produced with 6-OHDA resulted in the loss of neurotensin receptors in the A10 region and within the terminal fields. Mu opioid receptors were unaffected by this treatment, but delta opioid receptors increased in the contralateral striatum and nucleus accumbens following 6-OHDA administration. Quinolinic acid produced a reduction of mu opioid receptors within the A10 region with a concomitant reduction in neurotensin receptors in both the cell body region and terminal fields. These results are consistent with a variety of biochemical and behavioral data which suggest the indirect modulation of dopamine transmission by the opioids. In contrast these results strongly indicate a direct modulation of the mesolimbic dopamine system by neurotensin.

  17. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Halldin, C.; Sedvall, G.

    1988-01-01

    Using positron emission tomography and the carbon 11-labeled ligand raclopride, central D2-dopamine receptor occupancy in the putamen was determined in psychiatric patients treated with clinical doses of psychoactive drugs. Receptor occupancy in drug-treated patients was defined as the percent reduction of specific carbon 11-raclopride binding in relation to the expected binding in the absence of drug treatment. Clinical treatment of schizophrenic patients with 11 chemically distinct antipsychotic drugs (including both classic and atypical neuroleptics such as clozapine) resulted in a 65% to 85% occupancy of D2-dopamine receptors. In a depressed patient treated with the tricyclic antidepressant nortriptyline, no occupancy was found. The time course for receptor occupancy and drug levels was followed after withdrawal of sulpiride or haloperidol. D2-dopamine receptor occupancy remained above 65% for many hours despite a substantial reduction of serum drug concentrations. In a sulpiride-treated patient, the dosage was reduced in four steps over a nine-week period and a curvilinear relationship was demonstrated between central D2-dopamine receptor occupancy and serum drug concentrations. The results demonstrate that clinical doses of all the currently used classes of antipsychotic drugs cause a substantial blockade of central D2-dopamine receptors in humans. This effect appears to be selective for the antipsychotics, since it was not induced by the antidepressant nortriptyline

  18. Antidepressant activity of curcumin: involvement of serotonin and dopamine system.

    Science.gov (United States)

    Kulkarni, Shrinivas K; Bhutani, Mohit Kumar; Bishnoi, Mahendra

    2008-12-01

    Curcumin is a major active principle of Curcuma longa, one of the widely used preparations in the Indian system of medicine. It is known for its diverse biological actions. The present study was designed to investigate the involvement of monoaminergic system(s) in the antidepressant activity of curcumin and the effect of piperine, a bioavailability enhancer, on the bioavailability and biological effects of curcumin. Behavioral (forced swim test), biochemical (monoamine oxidase (MAO) enzyme inhibitory activity), and neurochemical (neurotransmitter levels estimation) tests were carried out. Curcumin (10-80 mg/kg, i.p.) dose dependently inhibited the immobility period, increased serotonin (5-hydroxytryptamine, 5-HT) as well as dopamine levels (at higher doses), and inhibited the monoamine oxidase enzymes (both MAO-A and MAO-B, higher doses) in mice. Curcumin (20 mg/kg, i.p.) enhanced the anti-immobility effect of subthreshold doses of various antidepressant drugs like fluoxetine, venlafaxine, or bupropion. However, no significant change in the anti-immobility effect of imipramine and desipramine was observed. Furthermore, combination of subthreshold dose of curcumin and various antidepressant drugs resulted in synergistic increase in serotonin (5-HT) levels as compared to their effect per se. There was no change in the norepinephrine levels. The coadministration of piperine (2.5 mg/kg, i.p.), a bioavailability enhancing agent, with curcumin (20 and 40 mg/kg, i.p.) resulted in potentiation of pharmacological, biochemical, and neurochemical activities. The study provides evidences for mechanism-based antidepressant actions of curcumin. The coadministration of curcumin along with piperine may prove to be a useful and potent natural antidepressant approach in the management of depression.

  19. Cerebral vascular effects of hypovolemia and dopamine infusions

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2012-01-01

    Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature.......Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature....

  20. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Directory of Open Access Journals (Sweden)

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  1. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  2. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    DEFF Research Database (Denmark)

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia

    2013-01-01

    that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigral dopamine neurons are closely linked to a progressive decline in markers of lysosome function, accompanied by cytoplasmic retention of transcription factor EB (TFEB), a major transcriptional regulator...... in both A9 and A10 dopamine neurons. Delayed activation of TFEB function through inhibition of mammalian target of rapamycin blocked α-synuclein induced neurodegeneration and further disease progression. The results provide a mechanistic link between α-synuclein toxicity and impaired TFEB function......The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  3. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2001-01-01

    .... Similarly, the psychostimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  4. Oxytocin receptor antagonist treatments alter levels of attachment to mothers and central dopamine activity in pre-weaning mandarin vole pups.

    Science.gov (United States)

    He, Zhixiong; Hou, Wenjuan; Hao, Xin; Dong, Na; Du, Peirong; Yuan, Wei; Yang, Jinfeng; Jia, Rui; Tai, Fadao

    2017-10-01

    Oxytocin (OT) is known to be important in mother-infant bonding. Although the relationship between OT and filial attachment behavior has been studied in a few mammalian species, the effects on infant social behavior have received little attention in monogamous species. The present study examined the effects of OT receptor antagonist (OTA) treatment on attachment behavior and central dopamine (DA) activity in male and female pre-weaning mandarin voles (Microtus mandarinus). Our data showed that OTA treatments decreased the attachment behavior of pups to mothers, measured using preference tests at postnatal day 14, 16, 18 and 20. OTA treatments reduced serum OT concentration in pre-weaning pups and decreased tyrosine hydroxylase (TH) levels in the ventral tegmental area (VTA), indicating a decrease in central DA activity. In male and female pups, OTA reduced DA levels, DA 1-type receptor (D1R) and DA 2-type receptor (D2R) protein expression in the nucleus accumbens (NAcc). Our results indicate that OTA treatment inhibits the attachment of pre-weaning pups to mothers. This inhibition is possibly associated with central DA activity and levels of two types of dopamine receptor in the NAcc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Improved delineation of human dopamine receptors using [18F]-N-methylspiroperidol and PET

    International Nuclear Information System (INIS)

    Arnett, C.D.; Wolf, A.P.; Shiue, C.Y.; Fowler, J.S.; MacGregor, R.R.; Christman, D.R.; Smith, M.R.

    1986-01-01

    The brain uptake of [18F]-N-methylspiroperidol, a butyrophenone neuroleptic with high selectivity for the dopamine receptor, has been measured in three normal human volunteers using positron emission tomography for times up to 12 hr postinjection. These studies demonstrated two unique findings concerning the in vivo distribution of this neuroleptic: (a) it is tightly bound to dopamine D-2 receptors in the caudate-putamen brain regions, and (b) these regions are the only large brain structures which exhibit appreciable long-term retention. In addition, radioactivity clears rapidly from plasma, and the percentage of unchanged [18F]-N-methylspiroperidol in plasma declines rapidly. These results suggest that this compound binds irreversibly to dopamine D-2 receptors, and that there are few if any dopamine D-2 receptors in the human frontal cortex. These studies emphasize not only the importance of characterizing neurotransmitter receptors in living human brain using a ligand labeled with a positron emitting nuclide of sufficiently long half-life to allow monitoring of brain radioactivity distribution for several hours after the injection of radioligand, but also of accurately determining the amount of unchanged tracer in plasma for tracer kinetic modeling

  6. Parkinsonism in phenylketonuria: a consequence of dopamine depletion?

    NARCIS (Netherlands)

    Velema, Marieke; Boot, Erik; Engelen, Marc; Hollak, Carla

    2015-01-01

    Phenylketonuria (PKU) is caused by a deficiency or inactivity of the enzyme phenylalanine hydroxylase that converts phenylalanine (Phe) to tyrosine (Tyr). It has been proposed that a reduction of brain Tyr levels, as well as reduced activity of the key regulatory enzyme of dopamine (DA) synthesis

  7. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  8. The dopamine metabolite 3-methoxytyramine is a neuromodulator.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    2010-10-01

    Full Text Available Dopamine (3-hydroxytyramine is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT, can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1. Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

  9. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  10. Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus

    International Nuclear Information System (INIS)

    Kemel, M.L.; Desban, M.; Glowinski, J.; Gauchy, C.

    1989-01-01

    By use of a sensitive in vitro microsuperfusion method, the cholinergic presynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [ 3 H]dopamine continuously synthesized from [ 3 H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [ 3 H]dopamine were calcium-dependent in both compartments. With 10 -6 M tetrodotoxin, 5 x 10 -5 M acetylcholine stimulated [ 3 H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine, thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) in contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10 -6 M atropine completely abolished the cholinergic stimulatory effect on [ 3 H]dopamine release in striosomal area, delayed and prolonged stimulation of [ 3 H] dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine. Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [ 3 H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [ 3 H]dopamine release mediated by muscarinic and nicotinic receptors, respectively

  11. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data

    Science.gov (United States)

    2016-01-01

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS. PMID:27548680

  12. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environment, Metabolic and Oxidative Stress

    National Research Council Canada - National Science Library

    Yamamoto, Bryan

    2000-01-01

    .... Similarly, the psycho stimulant drug, methamphetamine also produces relatively selective damage to nigrostriatal dopamine neurons and is rapidly becoming a widespread problem and drug of abuse throughout the U.S...

  13. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease.

    Science.gov (United States)

    Zucca, Fabio A; Segura-Aguilar, Juan; Ferrari, Emanuele; Muñoz, Patricia; Paris, Irmgard; Sulzer, David; Sarna, Tadeusz; Casella, Luigi; Zecca, Luigi

    2017-08-01

    There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs

    DEFF Research Database (Denmark)

    Lillethorup, Thea Pinholt; Glud, Andreas Nørgaard; Alstrup, Aage Kristian Olsen

    2018-01-01

    weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs....... In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies...

  15. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus

    NARCIS (Netherlands)

    Dirkx, M.F.M.; Ouden, H.E.M. den; Aarts, E.; Timmer, M.H.M.; Bloem, B.R.; Toni, I.; Helmich, R.C.G.

    2017-01-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic

  16. Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy.

    Science.gov (United States)

    Aguila, Julio C; Hedlund, Eva; Sanchez-Pernaute, Rosario

    2012-01-01

    Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  17. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  18. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  19. A Role for D1 Dopamine Receptors in Striatal Methamphetamine-Induced Neurotoxicity

    OpenAIRE

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 Dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Import...

  20. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    Science.gov (United States)

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  1. From the Cover: Harmane-Induced Selective Dopaminergic Neurotoxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Sammi, Shreesh Raj; Agim, Zeynep Sena; Cannon, Jason R

    2018-02-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disease. Although numerous exposures have been linked to PD etiology, causative factors for most cases remain largely unknown. Emerging data on the neurotoxicity of heterocyclic amines suggest that this class of compounds should be examined for relevance to PD. Here, using Caenorhabditis elegans as a model system, we tested whether harmane exposure produced selective toxicity to dopamine neurons that is potentially relevant to PD. Harmane is a known tremorigenic β-carboline (a type of heterocyclic amine) found in cooked meat, roasted coffee beans, and tobacco. Thus, this compound represents a potentially important exposure. In the nematode model, we observed dopaminergic neurons to be selectively vulnerable, showing significant loss in terms of structure and function at lower doses than other neuronal populations. In examining mechanisms of toxicity, we observed significant harmane-induced decreases in mitochondrial viability and increased reactive oxygen species levels. Blocking transport through the dopamine transporter (DAT) was not neuroprotective, suggesting that harmane is unlikely to enter the cell through DAT. However, a mitochondrial complex I activator did partially ameliorate neurodegeneration. Further, mitochondrial complex I activator treatment reduced harmane-induced dopamine depletion, measured by the 1-nonanol assay. In summary, we have shown that harmane exposure in C. elegans produces selective dopaminergic neurotoxicity that may bear relevance to PD, and that neurotoxicity may be mediated through mitochondrial mechanisms. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Smoking-induced dopamine release studied with [{sup 11}C]raclopride PET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Cho, Sang Soo; Lee, Do Hoon [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2005-07-01

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with and regulates the activation of the dopaminergic neuron. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [{sup 11}C]raclopride. Four male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.3{+-}2.6 years) were enrolled in this study. Dopamine D2 receptor radioligand, [{sup 11}C]raclopride was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3x20s, 2x60s, 2x120s, 1x180s and 22x300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurements of plasma nicotine levels were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as striatal-cerebellar/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean change in binding potential between the baseline and smoking in caudate, Putamen and ventral striatum was 3.7 % , 4.0 % and 8.6 %, respectively. This indicated the striatal dopamine release by smoking. The reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (r{sup 2}=0.91, p=0.04). These data demonstrate that in vivo imaging with [{sup 11}C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking.

  3. Modification of dopamine D2 receptor activity by pergolide in Parkinson's disease : An in vivo study by PET

    NARCIS (Netherlands)

    Linazasoro, G; Obeso, JA; Gomez, JC; Martinez, M; Antonini, A; Leenders, KL

    1999-01-01

    It is well known that chronic administration of pergolide and other dopamine agonists may induce a downregulation of dopamine D2 receptors in the rat model of Parkinson's disease (PD). To our knowledge, this effect has not been demonstrated in vivo in patients with PD. At present, the status of

  4. Effect of dopamine injection on the hemocyte count and prophenoloxidase system of the white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Pan, Luqing; Hu, Fawen; Zheng, Debin

    2011-09-01

    Effects of dopamine injection on the hemocyte count, phenoloxidase activity, serine proteinase activity, proteinase inhibitor activity and α2-macroglobulin-like activity in L. vannamei were studied. Results showed that dopamine injection resulted in a significant effect on the parameters measured ( P < 0.05), while no significant difference was observed in the control group (0.85% NaCl). In the experimental groups, the hemocyte count reached the minimum in 3 h; granular and semi-granular cells became stable after 12 h and hyaline cells and the total hemocyte count became stable after 18 h. Phenoloxidase activity reached the minimum in 6 h, and then became stable after 9 h. Serine protease activity and proteinase inhibitor activity reached the minimum in 3 h, and α2-macroglobulin-like activity reached the maximum in 3 h, and all the three parameters became stable after 12 h. The results suggest that the activating mechanisms of the proPO system triggered by dopamine are different from those triggered by invasive agents or spontaneously activated under a normal physical condition.

  5. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  6. A computational model of Dopamine and Acetylcholine aberrant learning in Basal Ganglia.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    Basal Ganglia (BG) are implied in many motor and cognitive tasks, such as action selection, and have a central role in many pathologies, primarily Parkinson Disease. In the present work, we use a recently developed biologically inspired BG model to analyze how the dopamine (DA) level can affect the temporal response during action selection, and the capacity to learn new actions following rewards and punishments. The model incorporates the 3 main pathways (direct, indirect and hyperdirect) working in BG functioning. The behavior of 2 alternative networks (the first with normal DA levels, the second with reduced DA) is analyzed both in untrained conditions, and during training performed in different epochs. The results show that reduced DA causes delayed temporal responses in the untrained network, and difficult of learning during training, characterized by the necessity of much more epochs. The results provide interesting hints to understand the behavior of healthy and dopamine depleted subjects, such as parkinsonian patients.

  7. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    Science.gov (United States)

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  8. No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [I-123]FP-CIT (DaTSCAN) and SPECT

    NARCIS (Netherlands)

    Thomsen, Gerda; Knudsen, Gitte Moos; Jensen, Peter S.; Ziebell, Morten; Holst, Klaus K.; Asenbaum, Susanne; Booij, Jan; Darcourt, Jacques; Dickson, John C.; Kapucu, Ozlem L.; Nobili, Flavio; Sabri, Osama; Sera, Terez; Tatsch, Klaus; Tossici-Bolt, Livia; van Laere, Koen; Borght, Thierry Vander; Varrone, Andrea; Pagani, Marco; Pinborg, Lars Hageman

    2013-01-01

    Background: Mesolimbic and nigrostriatal dopaminergic pathways play important roles in both the rewarding and conditioning effects of drugs. The dopamine transporter (DAT) is of central importance in regulating dopaminergic neurotransmission and in particular in activating the striatal D-2-like

  9. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    Science.gov (United States)

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  10. Hypothermia-induced loss of endothelial barrier function is restored after dopamine pretreatment : Role of p42/p44 activation

    NARCIS (Netherlands)

    Brinkkoetter, Paul-Thomas; Beck, Grietje C.; Gottmann, Uwe; Loesel, Ralf; Schnetzke, Ulf; Rudic, Boris; Hanusch, Christine; Rafat, Neysan; Liu, Zhenzi; Weiss, Christel; Leuvinik, Henri G. D.; Ploeg, Rutger; Braun, Claude; Schnuelle, Peter; van der Woude, Fokko J.; Yard, Benito A.

    2006-01-01

    Background. Donor dopamine usage is associated with improved immediate graft function after renal transplantation. Although prolonged cold preservation results in an increased vascular permeability, the present study was conducted to examine in vitro and in vivo if dopamine Pretreatment influences

  11. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  12. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    Science.gov (United States)

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  13. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  14. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    Science.gov (United States)

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  15. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  16. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution*

    Science.gov (United States)

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C.

    2017-01-01

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo. Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. PMID:27998980

  17. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    Science.gov (United States)

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  18. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  19. Dopamine agonist withdrawal syndrome: implications for patient care.

    Science.gov (United States)

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  20. Systemic effects of low-dose dopamine during administration of cytarabine.

    Science.gov (United States)

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  1. Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.

    Science.gov (United States)

    Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J

    2016-01-01

    The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.

  2. A specific radioenzymatic assay for dihydroxyphenylalanine (DOPA). Plasma DOPA may be the precursor of urine free dopamine

    International Nuclear Information System (INIS)

    Brown, M.J.; Dollery, C.T.

    1981-01-01

    A sensitive radioenzymatic assay was developed, in which DOPA is enzymatically decarboxylated to dopamine and the latter converted to [ 3 H]-methoxytryamine in the presence of [ 3 H]-S-adenosyl-L-methionine and catechol-o-methyltransferase. The assay was specific for DOPA, and was sensitive to 50 pg/ml. Endogenous DOPA was found to be present in the plasma of eight human volunteers at a concentration of 10.46 +- 2.42 nmol/l. Simultaneous urine collections in the same subjects showed a free dopamine excretion of 68.88 +- 17.70 nmol/h. There was a significant correlation (P < 0.01) between plasma DOPA concentration and urine free dopamine excretion (r = 0.84). After the oral administration of 250 mg levodopa, plasma DOPA and urine dopamine both increased by a similar proportion (98 +- 8.4-fold, and 93.4 +- 6.9-fold respectively). These compare with an increase in plasma dopamine of only 26 +- 15-fold (P<0.01). Following the oral dose of DOPA, the increase in plasma DOPA, but not plasma dopamine, could account for the increase in urine dopamine. The calculated clearance of plasma DOPA by renal decarboxylation to dopamine was 114 +- 20 ml/min. This is not significantly different from the apparent clearance of endogenous DOPA by renal decarboxylation to dopamine, and suggests that there is adequate renal decarboxylase activity for DOPA to be the precursor for renal dopamine formation. (author)

  3. Comparing the Rates of Dopamine Hemodynamic Effect Onset after Infusion through Peripheral Veins in Three Regions

    Directory of Open Access Journals (Sweden)

    Deokkyu Kim

    2017-02-01

    Full Text Available Background Dopamine is an inotropic agent that is often selected for continuous infusion. For hemodynamic stability, the rate of infusion is controlled in the range of 5-15 μg/kg/min. This study aimed to compare the time intervals from the administration of dopamine to the onset of its hemodynamic effects when dopamine was administered through three different peripheral veins (the cephalic vein [CV], the great saphenous vein [GSV], and the external jugular vein [EJV]. Methods Patients in group 1, group 2, and group 3 received dopamine infusions in the CV, GSV, and EJV, respectively. A noninvasive continuous cardiac output monitor (NICCOMO™, Medis, Ilmenau, Germany was used to assess cardiac output (CO and systemic vascular resistance (SVR. Six minutes after intubation, baseline heart rate (HR, systolic blood pressure (BP, diastolic BP, mean arterial pressure (MAP, CO, and SVR values were recorded and dopamine infusion was initiated at a dose of 10 μg/kg/min. Hemodynamic changes at 0, 4, 8, 12, and 15 minutes postinfusion were recorded. Results No statistically significant differences were observed among the three groups with respect to the rate of hemodynamic change. In all groups, systolic BP, diastolic BP, MAP, and SVR tended to increase after decreasing for the first 4 minutes; in contrast, HR and CO decreased until 8 minutes, after which they tended to reach a plateau. Conclusions For patients under general anesthesia receiving dopamine at 10 μg/kg/min, there were no clinical differences in the effect of dopamine administered through three different peripheral veins.

  4. Dopamine elevates intracellular zinc concentration in cultured rat embryonic cortical neurons through the cAMP-nitric oxide signaling cascade.

    Science.gov (United States)

    Hung, Hui-Hsing; Kao, Lung-Sen; Liu, Pei-Shan; Huang, Chien-Chang; Yang, De-Ming; Pan, Chien-Yuan

    2017-07-01

    Zinc ion (Zn 2+ ), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn 2+ concentrations ([Zn 2+ ] i ) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn 2+ ] i and the effect of [Zn 2+ ] i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn 2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn 2+ ] i . PKA activators and NO generators directly increased [Zn 2+ ] i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn 2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn 2+ ] i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  6. Preparation of a potential positron emission tomographic radioligand for the dopamine transporter

    International Nuclear Information System (INIS)

    Mueller, L.; Halldin, C.; Foged, C.; Karlsson, P.; Hall, H.; Swahn, C.G.; Suzdak, P.D.; Hohlweg, R.; Nielsen, E.B.; Frade, L.

    1994-01-01

    NNC 12-0722 (1-[2-(bis(4-fluorophenyl)-methoxy)ethyl]-4-methyl piperazine) is a new selective inhibitor of the dopamine transporter. [ 11 C]NNC 12-0722 was prepared by N-methylation of the desmethyl compound with [ 11 C]methyl iodide. The total radiochemical yield of [ 11 C]NNC 12-0722 was 40%-50% with an overall synthesis time of 30-35 min. The radiochemical purity was higher than 99% and the specific radioactivity about 1500 Ci/mmol (55 GBq/μmol). Autoradiographic examination of [ 11 C]NNC 12-0722 binding on whole hemisphere cryosections from human brain post mortem demonstrated specific binding in the caudate nucleus and putamen. In a positron emission tomographic examination of [ 11 C]NNC 12-0722 in a cynomolgus monkey there was a rapid uptake of radioactivity in the brain. In the striatum, a region with a high density of dopamine transporters, the radioactivity was two times higher than in the cerebellum. These results indicate that [ 11 C]NNC 12-0722 may be a useful radioligand for labelling of the dopamine transporter in man. (orig.)

  7. Enhanced selectivity of boron doped diamond electrodes for the detection of dopamine and ascorbic acid by increasing the film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yao; Long, Hangyu [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Ma, Li, E-mail: marycsupm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Quiping, E-mail: qiupwei@csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Site [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming [School of Material Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Hu, Jingyuan [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Liu, Peizhi [Key laboratory of interface science and engineering in advanced materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024,PR China (China); Wang, Yijia [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Meng, Lingcong [Department of Chemistry, University of Warwick, Coventry, West Midlands CV4 7AL (United Kingdom)

    2016-12-30

    Highlights: • BDD electrodes with different thickness have been fabricated. • BDD electrodes are used for simultaneous detection of DA and AA. • Anodic pretreatment enhance the separation of DA and AA oxidation peak potential. • Thicker BDD electrode show better performance for DA detection coexisting with AA. - Abstract: In this paper, boron doped diamond (BDD) with different thickness were prepared by hot filament chemical vapor deposition. The performance of BDD electrodes for detecting dopamine (DA) and ascorbic acid (AA) were investigated. Scanning electron microscopy and Raman spectra reveal the grain size increases and the film quality improves with the increase of film thickness. Electrochemical test show that the transfer coefficient in [Fe{sub 3} (CN) {sub 6}]{sup 3−/4−} redox system increases with the increase of the film thickness. The results of selectivity and sensitivity for DA mixed with AA detection show that 8h-BDD and 12h-BDD electrodes possess well selective separated oxidation peaks of DA and AA, and the 12h-BDD electrode exhibits optimal sensitivity until the DA concentration drops to 1 μ M.

  8. Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

    Directory of Open Access Journals (Sweden)

    Erik Södersten

    2014-09-01

    Full Text Available Polycomb group (PcG proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq in combination with expression analysis by RNA-sequencing (RNA-seq showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.

  9. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  10. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    Science.gov (United States)

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Illicit dopamine transients: reconciling actions of abused drugs.

    Science.gov (United States)

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  13. Decreased dopamine activity predicts relapse in methamphetamine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Wang G. J.; Wang, G.-J.; Smith, L.; Volkow, N.D.; Telang, F.; Logan, J.; Tomasi, D.; Wong, C.T.; Hoffman, W.; Jayne, M.; Alia-Klein, N.; Thanos, P.; Fowler, J.S.

    2011-01-20

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [{sup 11}C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.

  14. Decreased dopamine activity predicts relapse in methamphetamine abusers

    International Nuclear Information System (INIS)

    Wang, G.J.; Smith, L.; Volkow, N.D.; Telang, F.; Logan, J.; Tomasi, D.; Wong, C.T.; Hoffman, W.; Jayne, M.; Alia-Klein, N.; Thanos, P.; Fowler, J.S.

    2011-01-01

    Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and ( 11 C)raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.

  15. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Mizushima Jin

    2012-07-01

    Full Text Available Abstract Dopamine dysregulation syndrome (DDS consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson’s disease (PD. Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  16. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    OpenAIRE

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  17. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution.

    Science.gov (United States)

    Nishi, Akinori; Matamales, Miriam; Musante, Veronica; Valjent, Emmanuel; Kuroiwa, Mahomi; Kitahara, Yosuke; Rebholz, Heike; Greengard, Paul; Girault, Jean-Antoine; Nairn, Angus C

    2017-01-27

    The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca 2+ -regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Brain serotonin and dopamine transporter bindings in adults with high-functioning autism.

    Science.gov (United States)

    Nakamura, Kazuhiko; Sekine, Yoshimoto; Ouchi, Yasuomi; Tsujii, Masatsugu; Yoshikawa, Etsuji; Futatsubashi, Masami; Tsuchiya, Kenji J; Sugihara, Genichi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Suda, Shiro; Sugiyama, Toshiro; Takei, Nori; Mori, Norio

    2010-01-01

    Autism is a neurodevelopmental disorder that is characterized by repetitive and/or obsessive interests and behavior and by deficits in sociability and communication. Although its neurobiological underpinnings are postulated to lie in abnormalities of the serotoninergic and dopaminergic systems, the details remain unknown. To determine the occurrence of changes in the binding of serotonin and dopamine transporters, which are highly selective markers for their respective neuronal systems. Using positron emission tomography, we measured the binding of brain serotonin and dopamine transporters in each individual with the radioligands carbon 11 ((11)C)-labeled trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652) and 2beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane ([(11)C]WIN-35,428), respectively. Statistical parametric mapping was used for between-subject analysis and within-subject correlation analysis with respect to clinical variables. Participants recruited from the community. Twenty men (age range, 18-26 years; mean [SD] IQ, 99.3 [18.1]) with autism and 20 age- and IQ-matched control subjects. Serotonin transporter binding was significantly lower throughout the brain in autistic individuals compared with controls (P dopamine transporter binding was significantly higher in the orbitofrontal cortex of the autistic group (P dopamine transporter binding was significantly inversely correlated with serotonin transporter binding (r = -0.61; P = .004). The brains of autistic individuals have abnormalities in both serotonin transporter and dopamine transporter binding. The present findings indicate that the gross abnormalities in these neurotransmitter systems may underpin the neurophysiologic mechanism of autism. Our sample was not characteristic or representative of a typical sample of adults with autism in the community.

  19. Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter

    DEFF Research Database (Denmark)

    Norregaard, Lene; Loland, Claus Juul; Gether, Ulrik

    2003-01-01

    . Inhibitors such as cocaine did not alter the effect of MTSET in M371C. The protection of M371C inactivation by dopamine required Na+. Because dopamine binding is believed to be Na+-independent, this suggests that dopamine induces a transport-associated conformational change that decreases the reactivity of M......371C with MTSET. In contrast to M371C, cocaine decreased the reaction rate of A399C with MTSET, whereas dopamine had no effect. The protection by cocaine can either reflect that Ala-399 lines the cocaine binding crevice or that cocaine induces a conformational change that decreases the reactivity of A...

  20. Dopamine receptors in the guinea-pig heart. A binding study

    International Nuclear Information System (INIS)

    Sandrini, M.; Benelli, A.; Baraldi, M.

    1984-01-01

    The binding of dopaminergic agonists and antagonists to guinea-pig myocardial membrane preparations was studied using 3 H-dopamine and 3 H-spiperone as radioligand. 3 H-Dopamine bound specifically to heart membranes while 3 H-spiperone did not. A Scatchard analysis of 3 H-dopamine binding showed a curvilinear plot indicating the presence of two dopamine receptor populations that we have termed high- (K/sub d/ = 1.2 nM, B/sub mx/ = 52.9 fmol/mg prot.) and low- (K/sub d/ = 11.8 nM, B/sub mx/ = 267.3 fmol/gm prot.) affinity binding sites, respectively. The charactization of the high-affinity component of 3 H-dopamine binding indicated that the binding is rapid, saturable, stereospecific, pH- and temperature-dependent, and displaced by dopaminergic agonists and antagonists known to act similarly in vivo. The finding that pretreatment with dibenamine (which has been described as an α-adrenoceptor irreversible blocker) did not affect the binding of dopamine to cardiac membrane preparations suggests that α-adrenoceptors and dopamine receptors have separate recognition sites in the heart. It is concluded that 3 H-dopamine binds to specific dopamine receptors in the heart of guinea-pigs

  1. Sex differences in effects of dopamine D1 receptors on social withdrawal.

    Science.gov (United States)

    Campi, Katharine L; Greenberg, Gian D; Kapoor, Amita; Ziegler, Toni E; Trainor, Brian C

    2014-02-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Distinct roles of presynaptic dopamine receptors in the differential modulation of the intrinsic synapses of medium-spiny neurons in the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Schmauss Claudia

    2007-01-01

    Full Text Available Abstract Background In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy. Results Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon. Conclusion Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of

  4. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats

    Directory of Open Access Journals (Sweden)

    Toshikatsu Okumura

    2016-02-01

    Subcutaneously (80 mg/rat or intracisternally (2.5 μg/rat administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain.

  5. Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes

    International Nuclear Information System (INIS)

    Berduque, Alfonso; Zazpe, Raul; Arrigan, Damien W.M.

    2008-01-01

    The detection of protonated dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at arrays of micro-interfaces between two immiscible electrolyte solutions (μITIES) is presented. Microfabricated porous silicon membranes (consisting of eight pores, 26.6 μm in radius and 500 μm pore-pore separation, in a hexagonal layout) were prepared by photolithographic and etching procedures. The membrane pores were fabricated with hydrophobic internal walls so that the organic phase filled the pores and created the liquid interface at the aqueous side of the membrane. These were used for harnessing the benefits of three-dimensional diffusion to the interface and for interface stabilisation. The liquid-liquid interface provides a simple method to overcome the major problem in the voltammetric detection of dopamine at solid electrodes due to the co-existence of ascorbate at higher concentrations. Selectivity for dopamine over ascorbate was achieved by the use of dibenzo-18-crown-6 (DB18C6) for the facilitated ion transfer of dopamine across the μITIES array. Under these conditions, the presence of ascorbate in excess did not interfere in the detection of dopamine and the lowest concentration detectable was ca. 0.5 μM. In addition, the drawback of current signal saturation (non-linear increase of the peak current with the concentration of dopamine) observed at conventional (millimetre-sized) liquid-liquid interfaces was overcome using the microfabricated porous membranes

  6. Depression of brain dopamine and its metabolite after mating in European honeybee (Apis mellifera) queens

    Science.gov (United States)

    Harano, Ken-Ichi; Sasaki, Ken; Nagao, Takashi

    2005-07-01

    To explore neuro-endocrinal changes in the brain of European honeybee (Apis mellifera) queens before and after mating, we measured the amount of several biogenic amines, including dopamine and its metabolite in the brain of 6- and 12-day-old virgins and 12-day-old mated queens. Twelve-day-old mated queens showed significantly lower amounts of dopamine and its metabolite (N-acetyldopamine) than both 6- and 12-day-old virgin queens, whereas significant differences in the amounts of these amines were not detected between 6- and 12-day-old virgin queens. These results are explained by down-regulation of both synthesis and secretion of brain dopamine after mating. It is speculated that higher amounts of brain dopamine in virgin queens might be involved in activation of ovarian follicles arrested in previtellogenic stages, as well as regulation of their characteristic behaviors.

  7. ORAL IBOPAMINE SUBSTITUTION IN PATIENTS WITH INTRAVENOUS DOPAMINE DEPENDENCE

    NARCIS (Netherlands)

    GIRBES, ARJ; MILNER, AR; MCCLOSKEY, BV; ZWAVELING, JH; VANVELDHUISEN, DJ; ZIJLSTRA, JG; LIE, KI

    1995-01-01

    In a prospective open study we evaluated whether intravenous dopamine infusions can be safely switched to enterally administered ibopamine in dopamine-dependent patients. Six patients defined as being clinically stable, normovolaemic, but dopamine dependent, i.e. with repeated inability to stop

  8. Dopamine hypothesis of mania

    OpenAIRE

    Cookson, John

    2014-01-01

    s­of­the­Speakers­/­Konuşmacı­leriThe discovery of dopamine and its pathwaysDopamine (DA) was first synthesized in 1910 from 3,4-dihydroxy phenyl alanine (DOPA) by Barger and Ewens at Wellcome Laboratories in London. It is a cathecholamine and in the 1940s Blaschko in Cambridge proposed that DA was a precursor in synthesis of the cat-echolamine neurotransmitters noradrenaline (norepinephrine) and adrenaline (epinephrine). In 1957 it was shown to be present in the brain with other catecholamin...

  9. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  10. Determination of dopamine in presence of ascorbic acid and uric acid using poly (Spands Reagent) modified carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Veera Manohara Reddy, Y.; Prabhakara Rao, V.; Vijaya Bhaskar Reddy, A.; Lavanya, M.; Venu, M.; Lavanya, M.; Madhavi, G., E-mail: gmchem01@gmail.com

    2015-12-01

    In this paper, we have fabricated a modified carbon paste electrode (CPE) by electropolymerisation of spands reagent (SR) onto surface of CPE using cyclic voltammetry (CV). The developed electrode was abbreviated as poly(SR)/CPE and the surface morphology of the modified electrode was studied by using scanning electron microscopy (SEM). The developed electrode showed higher electrocatalytic properties towards the detection of dopamine (DA) in 0.1 M phosphate buffer solution (PBS) at pH 7.0. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at poly(SR)/CPE. The poly(SR)/CPE was successfully used as a sensor for the selective determination of DA in presence of ascorbic acid (AA) and uric acid (UA) without any interference. The poly(SR)/CPE showed a good detection limit of 0.7 μM over the linear dynamic range of 1.6 μM to 16 μM, which is extremely lower than the reported methods. The prepared poly(SR)/CPE exhibited good stability, high sensitivity, better reproducibility, low detection limit towards the determination of DA. The developed method was also applied for the determination of DA in real samples. - Highlights: • Electropolymerization of spands reagent was fabricated by cyclic voltammetry • The Poly (spands reagent) electrode shows excellent electrocatalytic activity for the detection of dopamine. • The detection limit for dopamine was found to be 0.7 μM. • The proposed method can be applied for DA in injection and human blood serum samples.

  11. Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU)

    Science.gov (United States)

    Harding, Cary O.; Winn, Shelley R.; Gibson, K. Michael; Arning, Erland; Bottiglieri, Teodoro; Grompe, Markus

    2014-01-01

    Summary Monoamine neurotransmitter deficiency has been implicated in the etiology of neuropsychiatric symptoms associated with chronic hyperphenylalaninemia in phenylketonuria (PKU). Two proposed explanations for neurotransmitter deficiency in PKU include first, that chronically elevated blood L-phenylalanine (Phe) inhibits the transport of L-tyrosine (Tyr) and L-tryptophan (Trp), the substrates for dopamine and serotonin synthesis respectively, into brain. In the second hypothesis, elevated Phe competitively inhibits brain tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activities, the rate limiting steps in dopamine and serotonin synthesis. Dietary supplementation with large neutral amino acids (LNAA) including Tyr and Trp has been recommended for individuals with chronically elevated blood Phe in an attempt to restore amino acid and monoamine homeostasis in brain. As a potential alternative treatment approach, we demonstrate that pharmacologic inhibition of Tyr degradation through oral administration of nitisinone (NTBC) yielded sustained increases in blood and brain Tyr, decreased blood and brain Phe, and consequently increased dopamine synthesis in a murine model of PKU. Our results suggest that Phe-mediated inhibition of TH activity is the likely mechanism of impaired dopamine synthesis in PKU. Pharmacologic inhibition of Tyr degradation may be a promising adjunct therapy for CNS monoamine neurotransmitter deficiency in hyperphenylalaninemic individuals with PKU. PMID:24487571

  12. Running from Disease: Molecular Mechanisms Associating Dopamine and Leptin Signaling in the Brain with Physical Inactivity, Obesity, and Type 2 Diabetes.

    Science.gov (United States)

    Ruegsegger, Gregory N; Booth, Frank W

    2017-01-01

    Physical inactivity is a primary contributor to diseases such as obesity, cardiovascular disease, and type 2 diabetes. Accelerometry data suggest that a majority of US adults fail to perform substantial levels of physical activity needed to improve health. Thus, understanding the molecular factors that stimulate physical activity, and physical inactivity, is imperative for the development of strategies to reduce sedentary behavior and in turn prevent chronic disease. Despite many of the well-known health benefits of physical activity being described, little is known about genetic and biological factors that may influence this complex behavior. The mesolimbic dopamine system regulates motivating and rewarding behavior as well as motor movement. Here, we present data supporting the hypothesis that obesity may mechanistically lower voluntary physical activity levels via dopamine dysregulation. In doing so, we review data that suggest mesolimbic dopamine activity is a strong contributor to voluntary physical activity behavior. We also summarize findings suggesting that obesity leads to central dopaminergic dysfunction, which in turn contributes to reductions in physical activity that often accompany obesity. Additionally, we highlight examples in which central leptin activity influences physical activity levels in a dopamine-dependent manner. Future elucidation of these mechanisms will help support strategies to increase physical activity levels in obese patients and prevent diseases caused by physical inactivity.

  13. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.

    Science.gov (United States)

    Pham, A Ninh; Waite, T David

    2014-08-01

    Spontaneous oxidation of dopamine (DA) and the resultant formation of free radical species within dopamine neurons of the substantia nigra (SN) is thought to bestow a considerable oxidative load upon these neurons and may contribute to their vulnerability to degeneration in Parkinson's disease (PD). An understanding of DA oxidation under physiological conditions is thus critical to understanding the relatively selective vulnerability of these dopaminergic neurons in PD and may support the development of novel neuro-protective approaches for this disorder. In this study, the oxidation of dopamine (0.2-10μM) was investigated both in the absence and the presence of copper (0.01-0.4μM), a redox active metal that is present at considerable concentrations in the SN, over a range of background chloride concentrations (0.01-0.7M), different oxygen concentrations and at physiological pH7.4. DA was observed to oxidize extremely slowly in the absence of copper and at moderate rates only in the presence of copper but without chloride. The oxidation of DA however was significantly enhanced in the presence of both copper and chloride with the rate of DA oxidation greatest at intermediate chloride concentrations (0.05-0.2M). The variability of the catalytic effect of Cu(II) on DA oxidation at different chloride concentrations can be explained and successfully modeled by appropriate consideration of the reaction of Cu(II) species with DA and the conversion of Cu(I) to Cu(II) through oxygenation. This model suggests that the speciation of Cu(II) and Cu(I) is critically important to the kinetics of DA oxidation and thus the vulnerability to degradation of dopaminergic neuron in the brain milieu. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electrochemical determination of dopamine in the presence of ascorbic acid based on the gold nanorods/carbon nanotubes composite film

    Energy Technology Data Exchange (ETDEWEB)

    Deng Chunyan, E-mail: dengchunyan81@126.com [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China); Chen Jinzhuo; Yang Minghui [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China); Nie Zhou [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Si Shihui [Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083 (China)

    2011-10-01

    Highlights: > The GNR/CNT/GC electrode was fabricated simply. It has higher catalytic activity towards the oxidation of DA and ascorbic acid (AA). The selective determination of DA was carried out with low detection limit (0.8 nM, S/N = 3). The proposed method was feasible to detect the concentration of DA in human blood serum. - Abstract: In this paper, the gold nanorods (GNRs)/multiwalled carbon nanotubes (CNT) composite film-modified glassy carbon (GC) electrode was fabricated simply by the electrostatic interaction between the positively charged GNRs and the negatively charged CNT. And the GNRs/CNT/GC electrode was used for the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA). It was found that the GNRs/CNT/GC electrode had higher catalytic activity towards the oxidation of DA and ascorbic acid (AA) comparing with the bare GC and CNT/GC electrodes. It may be due to the synergic effect of GNRs and CNT, because the surface area of the GNRs/CNT/GC electrode increased, the edge plan sites presented on the CNT surface can improve the electron transfer between the modified electrode and DA, and the rod-shaped gold may be served as the mediator for the oxidation of dopamine and provided the electrocatalytic ability. Moreover, the voltammetric peaks of AA and DA were separated enough at the GNRs/CNT/GC electrode, which was sufficiently enough for the selective determination of DA. Thus, the selective determination of DA was carried out with low detection limit (0.8 nM, S/N = 3). Also it was obtained that the proposed method was feasible to detect the concentration of DA in human blood serum. Therefore, it can be concluded that the GNRs/CNT modified electrode may be advantageous for the DA determination.

  15. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    Science.gov (United States)

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  16. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    Science.gov (United States)

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  17. Improvement of dizocilpine-induced social recognition deficits in mice by brexpiprazole, a novel serotonin-dopamine activity modulator.

    Science.gov (United States)

    Yoshimi, Noriko; Futamura, Takashi; Hashimoto, Kenji

    2015-03-01

    Cognitive impairment, including impaired social cognition, is largely responsible for the deterioration in social life suffered by patients with psychiatric disorders, such as schizophrenia and major depressive disorder (MDD). Brexpiprazole (7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one), a novel serotonin-dopamine activity modulator, was developed to offer efficacious and tolerable therapy for different psychiatric disorders, including schizophrenia and adjunctive treatment of MDD. In this study, we investigated whether brexpiprazole could improve social recognition deficits (one of social cognition deficits) in mice, after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (dizocilpine). Dosing with dizocilpine (0.1mg/kg) induced significant impairment of social recognition in mice. Brexpiprazole (0.01, 0.03, 0.1mg/kg, p.o.) significantly ameliorated dizocilpine-induced social recognition deficits, without sedation or a reduction of exploratory behavior. In addition, brexpiprazole alone had no effect on social recognition in untreated control mice. By contrast, neither risperidone (0.03mg/kg, p.o.) nor olanzapine (0.03mg/kg, p.o.) altered dizocilpine-induced social recognition deficits. Finally, the effect of brexpiprazole on dizocilpine-induced social recognition deficits was antagonized by WAY-100,635, a selective serotonin 5-HT1A antagonist. These results suggest that brexpiprazole could improve dizocilpine-induced social recognition deficits via 5-HT1A receptor activation in mice. Therefore, brexpiprazole may confer a beneficial effect on social cognition deficits in patients with psychiatric disorders. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  18. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis

    Directory of Open Access Journals (Sweden)

    Albert C. Yang

    2017-08-01

    Full Text Available Schizophrenia has been primarily associated with dopamine dysfunction, and treatments have been developed that target the dopamine pathway in the central nervous system. However, accumulating evidence has shown that the core pathophysiology of schizophrenia might involve dysfunction in dopaminergic, glutamatergic, serotonergic, and gamma-aminobutyric acid (GABA signaling, which may lead to aberrant functioning of interneurons that manifest as cognitive, behavioral, and social dysfunction through altered functioning of a broad range of macro- and microcircuits. The interactions between neurotransmitters can be modeled as nodes and edges by using graph theory, and oxidative balance, immune, and glutamatergic systems may represent multiple nodes interlocking at a central hub; imbalance within any of these nodes might affect the entire system. Therefore, this review attempts to address novel treatment targets beyond the dopamine hypothesis, including glutamate, serotonin, acetylcholine, GABA, and inflammatory cytokines. Furthermore, we outline that these treatment targets can be possibly integrated with novel treatment strategies aimed at different symptoms or phases of the illness. We anticipate that reversing anomalous activity in these novel treatment targets or combinations between these strategies might be beneficial in the treatment of schizophrenia.

  19. Smoking-induced dopamine release studied with [{sup 11}C]Raclopride PET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Kyeong; Cho, Sang Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Do Hoon [Center for Clinical Services, National Cancer Certer, Goyang (Korea, Republic of)] (and others)

    2005-10-15

    It has been postulated that dopamine release in the striatum underlies the reinforcing properties of nicotine. Substantial evidence in the animal studies demonstrates that nicotine interacts with dopaminergic neuron and regulates the activation of the dopaminergic system. The aim of this study was to visualize the dopamine release by smoking in human brain using PET scan with [{sup 11}C]raclopride. Five male non-smokers or ex-smokers with an abstinence period longer than 1 year (mean age of 24.4 {+-} 1.7 years) were enrolled in this study. [{sup 1C}]raclopride, a dopamine D2 receptor radioligand, was administrated with bolus-plus-constant infusion. Dynamic PET was performed during 120 minutes (3 x 20s, 2 x 60s, 2 x 120s, 1 x 180s and 22 x 300s). Following the 50 minute-scanning, subjects smoked a cigarette containing 1 mg of nicotine while in the scanner. Blood samples for the measurement of plasma nicotine level were collected at 0, 5, 10, 15, 20, 25, 30, 45, 60, and 90 minute after smoking. Regions for striatal structures were drawn on the coronal summed PET images guided with co-registered MRI. Binding potential, calculated as (striatal-cerebellar)/cerebellar activity, was measured under equilibrium condition at baseline and smoking session. The mean decrease in binding potential of [{sup 1C}]raclopride between the baseline and smoking in caudate head, anterior putamen and ventral striatum was 4.7%, 4.0% and 7.8%, respectively. This indicated the striatal dopamine release by smoking. Of these, the reduction in binding potential in the ventral striatum was significantly correlated with the cumulated plasma level of the nicotine (Spearman's rho=0.9, {rho} =0.4). These data demonstrate that in vivo imaging with [{sup 11}C]raclopride PET could measure nicotine-induced dopamine release in the human brain, which has a significant positive correlation with the amount of nicotine administered by smoking.

  20. Visual Attention in Flies-Dopamine in the Mushroom Bodies Mediates the After-Effect of Cueing.

    Science.gov (United States)

    Koenig, Sebastian; Wolf, Reinhard; Heisenberg, Martin

    2016-01-01

    Visual environments may simultaneously comprise stimuli of different significance. Often such stimuli require incompatible responses. Selective visual attention allows an animal to respond exclusively to the stimuli at a certain location in the visual field. In the process of establishing its focus of attention the animal can be influenced by external cues. Here we characterize the behavioral properties and neural mechanism of cueing in the fly Drosophila melanogaster. A cue can be attractive, repulsive or ineffective depending upon (e.g.) its visual properties and location in the visual field. Dopamine signaling in the brain is required to maintain the effect of cueing once the cue has disappeared. Raising or lowering dopamine at the synapse abolishes this after-effect. Specifically, dopamine is necessary and sufficient in the αβ-lobes of the mushroom bodies. Evidence is provided for an involvement of the αβposterior Kenyon cells.

  1. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels

    NARCIS (Netherlands)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-01-01

    Background: Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine

  2. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  3. Limonene inhibits methamphetamine-induced locomotor activity via regulation of 5-HT neuronal function and dopamine release.

    Science.gov (United States)

    Yun, Jaesuk

    2014-05-15

    Methamphetamine is a psychomotor stimulant that produces hyperlocomotion in rodents. Limonene (a cyclic terpene from citrus essential oils) has been reported to induce sedative effects. In this study, we demonstrated that limonene administration significantly inhibited serotonin (5-hydroxytryptamine, 5-HT)-induced head twitch response in mice. In rats, pretreatment with limonene decreased hyperlocomotion induced by methamphetamine injection. In addition, limonene reversed the increase in dopamine levels in the nucleus accumbens of rats given methamphetamine. These results suggest that limonene may inhibit stimulant-induced behavioral changes via regulating dopamine levels and 5-HT receptor function. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. INCREASE IN DOPAMINE RELEASE FROM THE NUCLEUS-ACCUMBENS IN RESPONSE TO FEEDING - A MODEL TO STUDY INTERACTIONS BETWEEN DRUGS AND NATURALLY ACTIVATED DOPAMINERGIC-NEURONS IN THE RAT-BRAIN

    NARCIS (Netherlands)

    WESTERINK, BHC; TEISMAN, A; DEVRIES, JB

    The aim of the present study was to investigate the interactions between the in vivo release of dopamine and certain drugs, during conditions of increased dopaminergic activity. Dopaminergic neurons in the nucleus accumbens were activated by feeding hungry rats. 48-96 h after implantation of a

  5. Developmental Changes in Dopamine Neurotransmission in Adolescence: Behavioral Implications and Issues in Assessment

    Science.gov (United States)

    Wahlstrom, Dustin; Collins, Paul; White, Tonya; Luciana, Monica

    2010-01-01

    Adolescence is characterized by increased risk-taking, novelty-seeking, and locomotor activity, all of which suggest a heightened appetitive drive. The neurotransmitter dopamine is typically associated with behavioral activation and heightened forms of appetitive behavior in mammalian species, and this pattern of activation has been described in…

  6. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study

    International Nuclear Information System (INIS)

    Reddaiah, K.; Madhusudana Reddy, T.; Venkata Ramana, D.K.; Subba Rao, Y.

    2016-01-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm"3 phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10"−"7 mol/dm"3 and 6.312 × 10"−"7 mol/dm"3 respectively with a dynamic range from 1 × 10"−"6 to 1.8 × 10"−"5 mol/dm"3. The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. - Highlights: • The poly-AzrS/MWCNTs/GCE showed good sensitivity towards DA sensing. • The sensor reduced the overoxidation potentials for DA. • This electrode was successfully used for simultaneous sensing of DA and 5-HT. • The electrode was effectively used for the determination of DA in pharmaceutical formulations.

  7. Poly-Alizarin red S/multiwalled carbon nanotube modified glassy carbon electrode for the boost up of electrocatalytic activity towards the investigation of dopamine and simultaneous resolution in the presence of 5-HT: A voltammetric study

    Energy Technology Data Exchange (ETDEWEB)

    Reddaiah, K. [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Madhusudana Reddy, T., E-mail: tmsreddysvu@gmail.com [Electrochemical Research Laboratory, Department of Chemistry, S.V.U. College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455 (United States); Venkata Ramana, D.K. [Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju, Gyeongbuk 780 714 (Korea, Republic of); Subba Rao, Y. [DST-PURSE Centre, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh (India)

    2016-05-01

    Poly-Alizarin red S/multiwalled carbon nanotube film on the surface of glassy carbon electrode (poly-AzrS/MWCNT/GCE) was synthesized by electrochemical process and was used for the sensitive and selective determination of dopamine (DA) by employing voltammetric techniques. The electrocatalytic response of the modified electrode was found to exhibit admirable activity. The simultaneous determination of dopamine in the presence of serotonin (5-HT) was found to exhibit very good response at poly-AzrS/MWCNTs/GCE. The effect of pH, scan rate, accumulation time and concentration of dopamine was studied at the developed poly-AzrS/MWCNTs/GCE. The poly-AzrS/MWCNTs/GCE exhibited an efficient electron mediating behavior together with well resolved peaks for dopamine, in 0.1 mol/dm{sup 3} phosphate buffer (PBS) solution of pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) were found to be as 1.89 × 10{sup −7} mol/dm{sup 3} and 6.312 × 10{sup −7} mol/dm{sup 3} respectively with a dynamic range from 1 × 10{sup −6} to 1.8 × 10{sup −5} mol/dm{sup 3}. The interfacial electron transfer behavior of DA was studied by electrochemical impedance spectroscopy (EIS); the studies showed that the charge transfer rate was enhanced at poly-AzrS/MWCNTs/GCE when compared with bare GCE and poly-AzrS/GCE. - Highlights: • The poly-AzrS/MWCNTs/GCE showed good sensitivity towards DA sensing. • The sensor reduced the overoxidation potentials for DA. • This electrode was successfully used for simultaneous sensing of DA and 5-HT. • The electrode was effectively used for the determination of DA in pharmaceutical formulations.

  8. Multiple cone pathways are involved in photic regulation of retinal dopamine.

    Science.gov (United States)

    Qiao, Sheng-Nan; Zhang, Zhijing; Ribelayga, Christophe P; Zhong, Yong-Mei; Zhang, Dao-Qi

    2016-06-30

    Dopamine is a key neurotransmitter in the retina and plays a central role in the light adaptive processes of the visual system. The sole source of retinal dopamine is dopaminergic amacrine cells (DACs). We and others have previously demonstrated that DACs are activated by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) upon illumination. However, it is still not clear how each class of photosensitive cells generates light responses in DACs. We genetically isolated cone function in mice to specifically examine the cone-mediated responses of DACs and their neural pathways. In addition to the reported excitatory input to DACs from light-increment (ON) bipolar cells, we found that cones alternatively signal to DACs via a retrograde signalling pathway from ipRGCs. Cones also produce ON and light-decrement (OFF) inhibitory responses in DACs, which are mediated by other amacrine cells, likely driven by type 1 and type 2/3a OFF bipolar cells, respectively. Dye injections indicated that DACs had similar morphological profiles with or without ON/OFF inhibition. Our data demonstrate that cones utilize specific parallel excitatory and inhibitory circuits to modulate DAC activity and efficiently regulate dopamine release and the light-adaptive state of the retina.

  9. iPSC-Derived Dopamine Neurons Reveal Differences between Monozygotic Twins Discordant for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Chris M. Woodard

    2014-11-01

    Full Text Available Parkinson’s disease (PD has been attributed to a combination of genetic and nongenetic factors. We studied a set of monozygotic twins harboring the heterozygous glucocerebrosidase mutation (GBA N370S but clinically discordant for PD. We applied induced pluripotent stem cell (iPSC technology for PD disease modeling using the twins’ fibroblasts to evaluate and dissect the genetic and nongenetic contributions. Utilizing fluorescence-activated cell sorting, we obtained a homogenous population of “footprint-free” iPSC-derived midbrain dopaminergic (mDA neurons. The mDA neurons from both twins had ∼50% GBA enzymatic activity, ∼3-fold elevated α-synuclein protein levels, and a reduced capacity to synthesize and release dopamine. Interestingly, the affected twin’s neurons showed an even lower dopamine level, increased monoamine oxidase B (MAO-B expression, and impaired intrinsic network activity. Overexpression of wild-type GBA and treatment with MAO-B inhibitors normalized α-synuclein and dopamine levels, suggesting a combination therapy for the affected twin.

  10. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  11. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    International Nuclear Information System (INIS)

    Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, J.; Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [ 11 C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  12. Dopamine system dysregulation by the ventral subiculum as the common pathophysiological basis for schizophrenia psychosis, psychostimulant abuse, and stress.

    Science.gov (United States)

    Grace, Anthony A

    2010-11-01

    The dopamine system is under multiple forms of regulation, and in turn provides effective modulation of system responses. Dopamine neurons are known to exist in several states of activity. The population activity, or the proportion of dopamine neurons firing spontaneously, is controlled by the ventral subiculum of the hippocampus. In contrast, burst firing, which is proposed to be the behaviorally salient output of the dopamine system, is driven by the brainstem pedunculopontine tegmentum (PPTg). When an animal is exposed to a behaviorally salient stimulus, the PPTg elicits a burst of action potentials in the dopamine neurons. However, this bursting only occurs in the portion of the dopamine neuron population that is firing spontaneously. This proportion is regulated by the ventral subiculum. Therefore, the ventral subiculum provides the gain, or the amplification factor, for the behaviorally salient stimulus. The ventral subiculum itself is proposed to carry information related to the environmental context. Thus, the ventral subiculum will adjust the responsivity of the dopamine system based on the needs of the organism and the characteristics of the environment. However, this finely tuned system can be disrupted in disease states. In schizophrenia, a disruption of interneuronal regulation of the ventral subiculum is proposed to lead to an overdrive of the dopamine system, rendering the system in a constant hypervigilant state. Moreover, amphetamine sensitization and stressors also appear to cause an abnormal dopaminergic drive. Such an interaction could underlie the risk factors of drug abuse and stress in the precipitation of a psychotic event. On the other hand, this could point to the ventral subiculum as an effective site of therapeutic intervention in the treatment or even the prevention of schizophrenia.

  13. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sven Kroener

    2009-08-01

    Full Text Available The importance of dopamine (DA for prefrontal cortical (PFC cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (> or = 1 microM concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 microM had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1-1 microM of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.

  14. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  15. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    Science.gov (United States)

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  16. Synthesis of the possible receptor Ligand [125I]-spiperone for D2-dopamine receptor and in-vivo biodistribution

    International Nuclear Information System (INIS)

    Amin, A.M.; Shoukry, M.; Abd EL-Bary, A.

    2009-01-01

    The spiperone is a selective D2-dopamine receptor antagonist radioiodination of spiperone is of interest for dopamine (DA) receptor studies both in vivo and in vitro. The labeling of spiperone with iodine-125 was extremely done in a neutral ph 7, using chloramine-T as oxidizing agent via heating the reaction mixture at 70 C (degree) for 10 - 15 minutes producing radiochemical yield of 97 %. In vivo biodistribution studies showed that the initial brain uptake correlated fairly well with the brain uptake index and that the kinetics of the radioactivity specifically bound to the striatum were strongly influenced by the dopamine receptor binding affinity of the compound. The brain uptake of 125 I-Spiperone was high and equal to 3.5, 3.25,2.75 and 1.7 % per gram tissue at 5, 30, 60 and 120 minutes post injection, respectively. 125 I-Spiperone binds with high affinity to dopamine receptors in vivo. Specific binding is about 65% of the total binding as is displaced stereo-specifically by clozapine. 125 I-spiperone may prove to be a useful ligand in studies examining D2-dopamine receptors. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123 I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.

  17. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Science.gov (United States)

    Mensen, Armand; Poryazova, Rositsa; Huegli, Gordana; Baumann, Christian R; Schwartz, Sophie; Khatami, Ramin

    2015-01-01

    The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP), which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN) potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  18. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Directory of Open Access Journals (Sweden)

    Armand Mensen

    Full Text Available The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP, which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  19. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra

    Directory of Open Access Journals (Sweden)

    Purves-Tyson Tertia D

    2012-08-01

    Full Text Available Abstract Background Increased risk of schizophrenia in adolescent males indicates that a link between the development of dopamine-related psychopathology and testosterone-driven brain changes may exist. However, contradictions as to whether testosterone increases or decreases dopamine neurotransmission are found and most studies address this in adult animals. Testosterone-dependent actions in neurons are direct via activation of androgen receptors (AR or indirect by conversion to 17β-estradiol and activation of estrogen receptors (ER. How midbrain dopamine neurons respond to sex steroids depends on the presence of sex steroid receptor(s and the level of steroid conversion enzymes (aromatase and 5α-reductase. We investigated whether gonadectomy and sex steroid replacement could influence dopamine levels by changing tyrosine hydroxylase (TH protein and mRNA and/or dopamine breakdown enzyme mRNA levels [catechol-O-methyl transferase (COMT and monoamine oxygenase (MAO A and B] in the adolescent male rat substantia nigra. We hypothesized that adolescent testosterone would regulate sex steroid signaling through regulation of ER and AR mRNAs and through modulation of aromatase and 5α-reductase mRNA levels. Results We find ERα and AR in midbrain dopamine neurons in adolescent male rats, indicating that dopamine neurons are poised to respond to circulating sex steroids. We report that androgens (T and DHT increase TH protein and increase COMT, MAOA and MAOB mRNAs in the adolescent male rat substantia nigra. We report that all three sex steroids increase AR mRNA. Differential action on ER pathways, with ERα mRNA down-regulation and ERβ mRNA up-regulation by testosterone was found. 5α reductase-1 mRNA was increased by AR activation, and aromatase mRNA was decreased by gonadectomy. Conclusions We conclude that increased testosterone at adolescence can shift the balance of sex steroid signaling to favor androgenic responses through promoting

  20. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.