WorldWideScience

Sample records for selective recombinant genotyping

  1. Precise genotyping and recombination detection of Enterovirus

    Science.gov (United States)

    2015-01-01

    Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution. PMID:26678286

  2. Heterogeneous recombination among Hepatitis B virus genotypes.

    Science.gov (United States)

    Castelhano, Nadine; Araujo, Natalia M; Arenas, Miguel

    2017-10-01

    The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  4. A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences.

    Science.gov (United States)

    Alcantara, Luiz Carlos Junior; Cassol, Sharon; Libin, Pieter; Deforche, Koen; Pybus, Oliver G; Van Ranst, Marc; Galvão-Castro, Bernardo; Vandamme, Anne-Mieke; de Oliveira, Tulio

    2009-07-01

    Human immunodeficiency virus type-1 (HIV-1), hepatitis B and C and other rapidly evolving viruses are characterized by extremely high levels of genetic diversity. To facilitate diagnosis and the development of prevention and treatment strategies that efficiently target the diversity of these viruses, and other pathogens such as human T-lymphotropic virus type-1 (HTLV-1), human herpes virus type-8 (HHV8) and human papillomavirus (HPV), we developed a rapid high-throughput-genotyping system. The method involves the alignment of a query sequence with a carefully selected set of pre-defined reference strains, followed by phylogenetic analysis of multiple overlapping segments of the alignment using a sliding window. Each segment of the query sequence is assigned the genotype and sub-genotype of the reference strain with the highest bootstrap (>70%) and bootscanning (>90%) scores. Results from all windows are combined and displayed graphically using color-coded genotypes. The new Virus-Genotyping Tools provide accurate classification of recombinant and non-recombinant viruses and are currently being assessed for their diagnostic utility. They have incorporated into several HIV drug resistance algorithms including the Stanford (http://hivdb.stanford.edu) and two European databases (http://www.umcutrecht.nl/subsite/spread-programme/ and http://www.hivrdb.org.uk/) and have been successfully used to genotype a large number of sequences in these and other databases. The tools are a PHP/JAVA web application and are freely accessible on a number of servers including: http://bioafrica.mrc.ac.za/rega-genotype/html/, http://lasp.cpqgm.fiocruz.br/virus-genotype/html/, http://jose.med.kuleuven.be/genotypetool/html/.

  5. Existence of various human parvovirus B19 genotypes in Chinese plasma pools: genotype 1, genotype 3, putative intergenotypic recombinant variants and new genotypes.

    Science.gov (United States)

    Jia, Junting; Ma, Yuyuan; Zhao, Xiong; Huangfu, Chaoji; Zhong, Yadi; Fang, Chi; Fan, Rui; Lv, Maomin; Zhang, Jingang

    2016-09-17

    Human parvovirus B19 (B19V) is a frequent contaminant of blood and plasma-derived medicinal products. Three distinct genotypes of B19V have been identified. The distribution of the three B19V genotypes has been investigated in various regions or countries. However, in China, data on the existence of different B19V genotypes are limited. One hundred and eighteen B19V-DNA positive source plasma pool samples collected from three Chinese blood products manufacturers were analyzed. The subgenomic NS1/VP1u region junction of B19V was amplified by nested PCR. These amplified products were then cloned and subsequently sequenced. For genotyping, their phylogenetic inferences were constructed based on the NS1/VP1-unique region. Then putative recombination events were analyzed and identified. Phylogenetic analysis of 118 B19V sequences attributed 61.86 % to genotype 1a, 10.17 % to genotype 1b, and 17.80 % to genotype 3b. All the genotype 3b sequences obtained in this study grouped as a specific, closely related cluster with B19V strain D91.1. Four 1a/3b recombinants and 5 new atypical B19V variants with no recombination events were identified. There were at least 3 subtypes (1a, 1b and 3b) of B19V circulating in China. Furthermore, putative B19V 1a/3b recombinants and unclassified strains were identified as well. Such recombinant and unclassified strains may contribute to the genetic diversity of B19V and consequently complicate the B19V infection diagnosis and NAT screening. Further studies will be required to elucidate the biological significance of the recombinant and unclassified strains.

  6. Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam--genotypes B4 and C1 predominate.

    Science.gov (United States)

    Phung, Thi Bich Thuy; Alestig, Erik; Nguyen, Thanh Liem; Hannoun, Charles; Lindh, Magnus

    2010-08-01

    There are eight known genotypes of hepatitis B virus, A-H, and several subgenotypes, with rather well-defined geographic distributions. HBV genotypes were evaluated in 153 serum samples from Hanoi, Vietnam. Of the 87 samples that could be genotyped, genotype B was found in 67 (77%) and genotype C in 19 (22%). All genotype C strains were of subgenotype C1, and the majority of genotype B strains were B4, while a few were B2. The genotype X/C recombinant strain, identified previously in Swedish patients of indigenous Vietnamese origin, was found in one sample. This variant, proposed to be classified as genotype I, has been found recently also by others in Vietnam and Laos. The current study indicates that the genotype X/C recombinant may represent approximately 1% of the HBV strains circulating in Vietnam. (c) 2010 Wiley-Liss, Inc.

  7. Impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott RealTime HCV Genotype II assay for hepatitis C genotyping.

    Science.gov (United States)

    Sridhar, Siddharth; Yip, Cyril C Y; Chan, Jasper F W; To, Kelvin K W; Cheng, Vincent C C; Yuen, Kwok-Yung

    2018-05-01

    The Abbott RealTime HCV Genotype II assay (Abbott-RT-HCV assay) is a real-time PCR based genotyping method for hepatitis C virus (HCV). This study measured the impact of inter-genotypic recombination and probe cross-reactivity on the performance of the Abbott-RT-HCV assay. 517 samples were genotyped using the Abbott-RT-HCV assay over a one-year period, 34 (6.6%) were identified as HCV genotype 1 without further subtype designation raising the possibility of inaccurate genotyping. These samples were subjected to confirmatory sequencing. 27 of these 34 (79%) samples were genotype 1b while five (15%) were genotype 6. One HCV isolate was an inter-genotypic 1a/4o recombinant. This is a novel natural HCV recombinant that has never been reported. Inter-genotypic recombination and probe cross-reactivity can affect the accuracy of the Abbott-RT-HCV assay, both of which have significant implications on antiviral regimen choice. Confirmatory sequencing of ambiguous results is crucial for accurate genotyping. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  9. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  10. Selection of Common Bean Lines, Recombinant Inbred Lines and Commercial Genotypes Tolerant to Low Phosphorus Availability in an Acrisol Soil on the Basis of Root Traits and Grain Yield

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, L. A.; Morales, A. [Instituto de Suelos, MINAG (Cuba); others, and

    2013-11-15

    Common bean (Phaseolus vulgaris L.) is the most important food legume for human consumption worldwide and especially in Latin America and Africa, but low soil phosphorus (P) availability limits grain production in these areas. For these reason eighty five recombinant inbred lines (RILs) of BAT 477 x DOR 364 and twenty commercial bean genotypes were sown in plots in an Acrisol soil with low P availability to evaluate nine root traits and grain yield. The study was carried out in Pinar del Rio province in Cuba between November 2006 and February 2009. The plots received basal fertilization (N and K) and P fertilization between 15 and 90 kg P{sub 2}O{sub 5} ha{sup -1}. Ten plants were sampled from each plot at R{sub 6} pod fill to evaluate root traits and shoot biomass, and at R{sub 9} physiological maturity to estimate grain yield. The 85 RILs showed great variability for root traits, grain yield and P stress tolerance calculated as relative grain yield. The commercial bean lines also showed large diversity in yield parameters. Principal Component Analysis showed that there were high and significant correlations between root traits (basal root number, primary root depth, adventitious root length and adventitious root number) and grain yield parameters (grain yield at 15 P level and relative grain yields). Adventitious root traits showed the greatest correlation with yield under low P. Promising RILs included 75.1.1, 60.1.1, 38.1.1, 14.1.1 and 38.1.1 and promising commercial bean lines included ICA Pijao, BAT 482, ICA 23, BAT 24 and BAT 832. (author)

  11. Genome characterization of sugarcane yellow leaf virus from China reveals a novel recombinant genotype.

    Science.gov (United States)

    Lin, Yi-Hua; Gao, San-Ji; Damaj, Mona B; Fu, Hua-Ying; Chen, Ru-Kai; Mirkov, T Erik

    2014-06-01

    Sugarcane yellow leaf virus (SCYLV; genus Polerovirus, family Luteoviridae) is a recombinant virus associated with yellow leaf disease, a serious threat to sugarcane in China and worldwide. Among the nine known SCYLV genotypes existing worldwide, COL, HAW, REU, IND, CHN1, CHN2, BRA, CUB and PER, the last five have been reported in China. In this study, the complete genome sequences (5,880 nt) of GZ-GZ18 and HN-CP502 isolates from the Chinese provinces of Guizhou and Hainan, respectively, were cloned, sequenced and characterized. Phylogenetic analysis showed that, among 29 SCYLV isolates described worldwide, the two Chinese isolates clustered together into an independent clade based on the near-complete genome nucleotide (ORF0-ORF5) or amino acid sequences of individual genes, except for the MP protein (ORF4). We propose that the two isolates represent a novel genotype, CHN3, diverging from other genotypes by 1.7-13.6 % nucleotide differences in ORF0-ORF5, and 2.7-28.1 %, 1.8-20.4 %, 0.5-5.1 % and 2.7-15.9 % amino acid differences in P0 (ORF0), RdRp (RNA-dependent RNA polymerase) (ORF1+2), CP (coat protein) (ORF3) and RT (readthrough protein) (ORF3+5), respectively. CHN3 was closely related to the BRA, HAW and PER genotypes, differing by 1.7-3.8 % in the near-complete genome nucleotide sequence. Recombination analysis further identified CHN3 as a new recombinant strain, arising from the major parent CHN-HN1 and the minor parent CHN-GD-WY19. Recombination breakpoints were distributed mostly within the RdRp region in CHN3 and the four significant recombinant genotypes, IND, REU, CUB and BRA. Recombination is considered to contribute significantly to the evolution and emergence of such new SCYLV variants.

  12. Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.

    Directory of Open Access Journals (Sweden)

    Mark D Stenglein

    2015-05-01

    Full Text Available Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L and small (S genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on

  13. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    Science.gov (United States)

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  14. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas.

    Directory of Open Access Journals (Sweden)

    Gwanghun Kim

    2017-03-01

    Full Text Available Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine.To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes.Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus.

  15. Identification of a natural intergenotypic recombinant hepatitis delta virus genotype 1 and 2 in Vietnamese HBsAg-positive patients.

    Science.gov (United States)

    Sy, B T; Nguyen, H M; Toan, N L; Song, L H; Tong, H V; Wolboldt, C; Binh, V Q; Kremsner, P G; Velavan, T P; Bock, C-T

    2015-01-01

    Hepatitis D virus (HDV) infection is acquired as a co- /superinfection of Hepatitis B virus (HBV) and can modulate the pathophysiology of chronic hepatitis B and related liver diseases including hepatocellular carcinoma. Among the eight distinct HDV genotypes reported, relatively few studies have attempted to investigate the prevalence of HDV mixed genotypes and RNA recombination of HDV. With a recorded prevalence of 10-20% HBV infection in Vietnam, this study investigated the HDV variability, HDV genotypes and HDV recombination among twenty-one HDV isolates in Vietnamese HBsAg-positive patients. HDV subgenomic and full-length genome sequences were obtained using newly established HDV-specific RT-PCR techniques. The nucleotide homology was observed from 74.6% to 99.4% among the investigated full-length genome of the HDV isolates. We observed HDV genotype 1 and HDV genotype 2 in the investigated Vietnamese patients. Although no HDV genotype mixtures were observed, we report here a newly identified recombinant of HDV genotypes (HDV 1 and HDV 2). The identified recombinant HDV isolate C03 revealed sequence homology to both HDV genotype 1 (nt1 to nt907) and HDV genotype 2 (nt908 to nt1675; HDAg coding region) with a breakpoint at nt908. Our findings demonstrate the prevalence of intergenotypic recombination between HDV genotypes 1 and 2 in a Vietnamese HBsAg-positive patient. Extended investigation on the distribution and prevalence of HDV, HDV mixed genotypes and recombinant HDV genotypes in a larger Vietnamese population offers vital insights into understanding of the micro-epidemiology of HDV and subsequent pathophysiology in chronic HBV- /HDV-related liver diseases. © 2014 John Wiley & Sons Ltd.

  16. A new screening method for selection of desired recombinant ...

    African Journals Online (AJOL)

    A new screening method for selection of desired recombinant plasmids in molecular cloning. ... African Journal of Biotechnology ... Regarding the facts of this study, after digestion process, the products directly were subjected to ligation. Due to ...

  17. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits.

    Science.gov (United States)

    Aggarwal, Dau Dayal; Rashkovetsky, Eugenia; Michalak, Pawel; Cohen, Irit; Ronin, Yefim; Zhou, Dan; Haddad, Gabriel G; Korol, Abraham B

    2015-11-27

    Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.

  18. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  19. Highly productive mutant genotypes in barley - direct use in practice and in successive recombination

    International Nuclear Information System (INIS)

    Gustafsson, Aa.; Lundqvist, U.

    1984-01-01

    Three special cases of induced mutations in barley are discussed in this paper. They are denoted here as the Gunilla, the Pallas and the Mari cases, after the three named varieties to which the original mutants gave rise. The original mutants described represent just a small sample of the induced mutants, many of which have been tested in practice and have been further studied in basic genetics and evolutionary research. The three approved varieties have given rise to further recombination families, which also to some extent have been fused. Two of the mutant cases - Pallas and Mari - were directly useful in practice and officially approved. The third case involved a mutant of special appearance - a ''bushy type'' with an intense blue wax coating and with a supreme lodging resistance. The mutant was used in developing the Gunilla variety, which arose by recombination breeding. This variety has been highly satisfactory in further gene recombination work. A similar situation has prevailed with regard to the Pallas and Mari families arising after gene recombination, too. Up to now, the Gunilla, Pallas and Mari families include a long series of released and officially approved varieties. Several of them represent valuable agricultural contributions with wide areas of cultivation. These three mutants - with their recombination families - led to greatly increased straw stiffness and high grain production. Their phenotypic expression often corresponds to a dwarf or semidwarf description. One of the mutants - the Mari genotype - represents a group of genes and alleles which give rise to profound changes in the photoperiod (and partially also in the thermoperiod) behaviour. In fact, often even such small changes have a fundamental influence on adaptation and distribution. Data are presented analysing the property of lodging resistance with the background of plant, tiller and internode structure. A method of partial back-mutation was worked out in separating traits generally

  20. Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters.

    Science.gov (United States)

    Orbanz, Jeannette; Finke, Stefan

    2010-10-01

    Bat lyssaviruses (Fam. Rhabdoviridae) represent a source for the infection of terrestial mammals and the development of rabies disease. Molecular differences in the replication of bat and non-bat lyssaviruses and their contribution to pathogenicity, however, are unknown. One reason for this is the lack of reverse genetics systems for bat-restricted lyssaviruses. To investigate bat lyssavirus replication and host adaptation, we developed a reverse genetics system for European bat lyssavirus type 1 (EBLV-1; genotype 5). This was achieved by co-transfection of HEK-293T cells with a full-length EBLV-1 genome cDNA and expression plasmids for EBLV-1 proteins, resulting in recombinant EBLV-1 (rEBLV-1). Replication of rEBLV-1 was comparable to that of parental virus, showing that rEBLV-1 is a valid tool to investigate EBLV-1 replication functions. In a first approach, we tested whether the terminal promoter sequences of EBLV-1 are genotype-specific. Although genotype 1 (rabies virus) minigenomes were successfully amplified by EBLV-1 helper virus, in the context of the complete virus, only the antigenome promoter (AGP) sequence of EBLV-1 was replaceable, as indicated by comparable replication of rEBLV-1 and the chimeric virus. These analyses demonstrate that the terminal AGPs of genotype 1 and genotype 5 lyssaviruses are compatible with those of the heterologous genotype.

  1. Recombination difference between sexes: a role for haploid selection.

    Directory of Open Access Journals (Sweden)

    Thomas Lenormand

    2005-03-01

    Full Text Available Why the autosomal recombination rate differs between female and male meiosis in most species has been a genetic enigma since the early study of meiosis. Some hypotheses have been put forward to explain this widespread phenomenon and, up to now, only one fact has emerged clearly: In species in which meiosis is achiasmate in one sex, it is the heterogametic one. This pattern, known as the Haldane-Huxley rule, is thought to be a side effect, on autosomes, of the suppression of recombination between the sex chromosomes. However, this rule does not hold for heterochiasmate species (i.e., species in which recombination is present in both sexes but varies quantitatively between sexes and does not apply to species lacking sex chromosomes, such as hermaphroditic plants. In this paper, we show that in plants, heterochiasmy is due to a male-female difference in gametic selection and is not influenced by the presence of heteromorphic sex chromosomes. This finding provides strong empirical support in favour of a population genetic explanation for the evolution of heterochiasmy and, more broadly, for the evolution of sex and recombination.

  2. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping

    2013-01-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi...... to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations...

  3. Improving the precision of genotype selection in wheat performance trials

    Directory of Open Access Journals (Sweden)

    Giovani Benin

    2013-12-01

    Full Text Available The aim of this study was to verify whether using the Papadakis method improves model assumptions and experimental accuracy in field trials used to determine grain yield for wheat lineages indifferent Value for Cultivation and Use (VCU regions. Grain yield data from 572 field trials at 31 locations in the VCU Regions 1, 2, 3 and 4 in 2007-2011 were used. Each trial was run with and without the use of the Papadakis method. The Papadakis method improved the indices of experimental precision measures and reduced the number of experimental repetitions required to predict grain yield performance among the wheat genotypes. There were differences among the wheat adaptation regions in terms of the efficiency of the Papadakis method, the adjustment coefficient of the genotype averages and the increases in the selective accuracy of grain yield.

  4. Evidence of recombination and positive selection in cetacean papillomaviruses

    International Nuclear Information System (INIS)

    Robles-Sikisaka, Refugio; Rivera, Rebecca; Nollens, Hendrik H.; St Leger, Judy; Durden, Wendy N.; Stolen, Megan; Burchell, Jennifer; Wellehan, James F.X.

    2012-01-01

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  5. Evidence of recombination and positive selection in cetacean papillomaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Sikisaka, Refugio, E-mail: refugio.robles1@gmail.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Rivera, Rebecca, E-mail: RRivera@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Nollens, Hendrik H., E-mail: Hendrik.Nollens@SeaWorld.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); St Leger, Judy, E-mail: Judy.St.Leger@SeaWorld.com [SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); Durden, Wendy N., E-mail: WNoke@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Stolen, Megan, E-mail: MStolen@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Burchell, Jennifer, E-mail: JBurchell@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Wellehan, James F.X., E-mail: WellehanJ@ufl.edu [College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)

    2012-06-05

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  6. A simple negative selection method to identify adenovirus recombinants using colony PCR

    Directory of Open Access Journals (Sweden)

    Yongliang Zhao

    2014-01-01

    Conclusions: The negative selection method to identify AdEasy adenovirus recombinants by colony PCR can identify the recombined colony within a short time-period, and maximally avoid damage to the recombinant plasmid by limiting recombination time, resulting in improved adenovirus packaging.

  7. Dynamic HIV-1 genetic recombination and genotypic drug resistance among treatment-experienced adults in northern Ghana.

    Science.gov (United States)

    Nii-Trebi, Nicholas Israel; Brandful, James Ashun Mensah; Ibe, Shiro; Sugiura, Wataru; Barnor, Jacob Samson; Bampoh, Patrick Owiredu; Yamaoka, Shoji; Matano, Tetsuro; Yoshimura, Kazuhisa; Ishikawa, Koichi; Ampofo, William Kwabena

    2017-11-01

    There have been hardly any reports on the human immunodeficiency virus type 1 (HIV-1) drug-resistance profile from northern Ghana since antiretroviral therapy (ART) was introduced over a decade ago. This study investigated prevailing HIV-1 subtypes and examined the occurrence of drug resistance in ART-experienced patients in Tamale, the capital of the Northern Region of Ghana. A cross-sectional study was carried out on HIV-infected adult patients receiving first-line ART. HIV viral load (VL) and CD4 + T-cell counts were measured. The pol gene sequences were analysed for genotypic resistance by an in-house HIV-1 drug-resistance test; the prevailing HIV-1 subtypes were analysed in detail.Results/Key findings. A total of 33 subjects were studied. Participants comprised 11 males (33.3 %) and 22 (66.7 %) females, with a median age of 34.5 years [interquartile range (IQR) 30.0-40.3]. The median duration on ART was 12 months (IQR 8.0-24). Of the 24 subjects successfully genotyped, 10 (41.7 %) viruses possessed at least one mutation conferring resistance to nucleoside or non-nucleoside reverse-transcriptase inhibitors (NRTIs/NNRTIs). Two-class drug resistance to NRTI and NNRTI was mostly detected (25 %, 6/24). The most frequent mutations were lamivudine-resistance M184V and efavirenz/nevirapine-resistance K103N. HIV-1 subtype CRF02_AG was predominant (79.2 %). Other HIV-1 subtypes detected were G (8.3 %), A3 (4.2 %) and importantly two (8.3 %) unique HIV-1 recombinant forms with CRF02_AG/A3 mosaic. HIV-1 shows high genetic diversity and on-going viral genetic recombination in the study region. Nearly 42 % of the patients studied harboured a drug-resistant virus. The study underscores the need for continued surveillance of HIV-1 subtype diversity; and of drug-resistance patterns to guide selection of second-line regimens in northern Ghana.

  8. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  9. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    Science.gov (United States)

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  10. Most of the benefits from genomic selection can be realised by genotyping a proportion of selection candidates

    DEFF Research Database (Denmark)

    Henryon, Mark; Berg, Peer; Sørensen, Anders Christian

    2012-01-01

    allocated to male and female candidates at ratios of 100:0, 75:25, 50:50, 25:75, and 0:100. For genotyped candidates, a direct-genomic value (DGV) was sampled with reliabilities 0.10, 0.50, and 0.90. Ten sires and 300 dams with the highest breeding values after genotyping were selected at each generation......We reasoned that there are diminishing marginal returns from genomic selection as the proportion of genotyped selection candidates is increased and breeding values based on a priori information are used to choose the candidates that are genotyped. We tested this premise by stochastic simulation...... of breeding schemes that resembled those used for pigs. We estimated rates of genetic gain and inbreeding realized by genomic selection in breeding schemes where candidates were phenotyped before genotyping and 0-100% of the candidates were genotyped based on predicted breeding values. Genotypings were...

  11. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  12. Evaluation of some Phenological and Pomological Characteristics of Selected Walnut Genotypes from Shahroud-Iran

    Directory of Open Access Journals (Sweden)

    Sara Akhiani

    2017-05-01

    Full Text Available The first step in walnut breeding programs is to identify and evaluate superior genotypes of fruit trees. Hence, there are various walnut breeding programs in various areas of Iran. A study aimed to evaluate the morphological and chemical characteristics of selected superior genotypes of walnut was conducted in the Shahroud region in 2011-2012.  The following genotypes were selected in this study as the best walnut genotypes:  X-18 homogamous genotypes due to desirable late leafing;   genotype X-11 for its high percentage of kernel production, easily removal of shell, thin shell; genotype X-52 due to its kernel plumpness compared to other genotypes, thin shell and high percentage of kernel and genotype X-70 for its kernel brightness, easily kernel extracting and high percentage of kernels. The X-49 and X-5 genotypes had the highest amount of linoleic and linolenic fatty acids and higher nutritional quality compared to other genotypes. Three genotypes, X-3, X-11 and X-22, had the highest amount of oil. Genotypes X-9 and X-45 had the highest amount of protein. The difference between oil content and fatty acid compositions was presumably due to genetic diversity and ecological conditions of the studied genotypes cultivation.

  13. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  14. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle.

    Science.gov (United States)

    Serre, Stéphanie B N; Jensen, Sanne B; Ghanem, Lubna; Humes, Daryl G; Ramirez, Santseharay; Li, Yi-Ping; Krarup, Henrik; Bukh, Jens; Gottwein, Judith M

    2016-06-01

    Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research

  15. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  16. Efficient hepatitis c virus genotype 1b core-NS5A recombinants permit efficacy testing of protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Pham, Long V.; Ramirez Almeida, Santseharay; Carlsen, Thomas H R

    2017-01-01

    Hepatitis C virus (HCV) strains belong to seven genotypes with numerous subtypes that respond differently to antiviral therapies. Genotype 1, and primarily subtype 1b, is the most prevalent genotype worldwide. The development of recombinant HCV infectious cell culture systems for different variants......, permitted by the high replication capacity of strain JFH1 (genotype 2a), has advanced efficacy and resistance testing of antivirals. However, efficient infectious JFH1-based cell cultures of subtype 1b are limited and comprise only the 5= untranslated region (5=UTR)-NS2, NS4A, or NS5A regions. Importantly...

  17. participatory selection of mungbean genotypes in uganda abstract

    African Journals Online (AJOL)

    ACSS

    2017-05-29

    May 29, 2017 ... that there were no significant differences in genotype choices based on gender ... However, there were significant genotype preference differences between eastern and northern regions (χ2 = ..... for southern Ethiopia. ... of improved cowpea cultivars in the Guinea and Sudan savanna zones of north east.

  18. Toward fully automated genotyping: Allele assignment, pedigree construction, phase determination, and recombination detection in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Burks, M.B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Hoop, R.C.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, PA (United States)

    1994-10-01

    Human genetic maps have made quantum leaps in the past few years, because of the characterization of >2,000 CA dinucleotide repeat loci: these PCR-based markers offer extraordinarily high PIC, and within the next year their density is expected to reach intervals of a few centimorgans per marker. These new genetic maps open new avenues for disease gene research, including large-scale genotyping for both simple and complex disease loci. However, the allele patterns of many dinucleotide repeat loci can be complex and difficult to interpret, with genotyping errors a recognized problem. Furthermore, the possibility of genotyping individuals at hundreds or thousands of polymorphic loci requires improvements in data handling and analysis. The automation of genotyping and analysis of computer-derived haplotypes would remove many of the barriers preventing optimal use of dense and informative dinucleotide genetic maps. Toward this end, we have automated the allele identification, genotyping, phase determinations, and inheritance consistency checks generated by four CA repeats within the 2.5-Mbp, 10-cM X-linked dystrophin gene, using fluorescein-labeled multiplexed PCR products analyzed on automated sequencers. The described algorithms can deconvolute and resolve closely spaced alleles, despite interfering stutter noise; set phase in females; propagate the phase through the family; and identify recombination events. We show the implementation of these algorithms for the completely automated interpretation of allele data and risk assessment for five Duchenne/Becker muscular dystrophy families. The described approach can be scaled up to perform genome-based analyses with hundreds or thousands of CA-repeat loci, using multiple fluorophors on automated sequencers. 16 refs., 5 figs., 1 tab.

  19. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  20. Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination.

    Science.gov (United States)

    Ito, Mika; Kuroda, Moegi; Masuda, Tsuneyuki; Akagami, Masataka; Haga, Kei; Tsuchiaka, Shinobu; Kishimoto, Mai; Naoi, Yuki; Sano, Kaori; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Aoki, Hiroshi; Ichimaru, Toru; Mukono, Itsuro; Ouchi, Yoshinao; Yamasato, Hiroshi; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-06-01

    Porcine astroviruses (PoAstVs) are ubiquitous enteric virus of pigs that are distributed in several countries throughout the world. Since PoAstVs are detected in apparent healthy pigs, the clinical significance of infection is unknown. However, AstVs have recently been associated with a severe neurological disorder in animals, including humans, and zoonotic potential has been suggested. To date, little is known about the epidemiology of PoAstVs among the pig population in Japan. In this report, we present an analysis of nearly complete genomes of 36 PoAstVs detected by a metagenomics approach in the feces of Japanese pigs. Based on a phylogenetic analysis and pairwise sequence comparison, 10, 5, 15, and 6 sequences were classified as PoAstV2, PoAstV3, PoAstV4, and PoAstV5, respectively. Co-infection with two or three strains was found in individual fecal samples from eight pigs. The phylogenetic trees of ORF1a, ORF1b, and ORF2 of PoAstV2 and PoAstV4 showed differences in their topologies. The PoAstV3 and PoAstV5 strains shared high sequence identities within each genotype in all ORFs; however, one PoAstV3 strain and one PoAstV5 strain showed considerable sequence divergence from the other PoAstV3 and PoAstV5 strains, respectively, in ORF2. Recombination analysis using whole genomes revealed evidence of multiple possible intra-genotype recombination events in PoAstV2 and PoAstV4, suggesting that recombination might have contributed to the genetic diversity and played an important role in the evolution of Japanese PoAstVs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recombination in hepatitis C virus genotype 1 evaluated by phylogenetic and population-genetic methods

    NARCIS (Netherlands)

    Mes, Ted H. M.; van Doornum, Gerard J. J.

    Although hepatitis C virus (HCV) is a major cause of viral hepatitis and hepatocellular carcinoma, many aspects of its evolution remain poorly understood. Relevant to its evolution and the development of antiviral drug resistance is the role of recombination in HCV, which has not been resolved using

  2. High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior

    DEFF Research Database (Denmark)

    Sirviö, A.; Gadau, J.; Rueppell, O.

    2006-01-01

    Honeybees are known to have genetically diverse colonies because queens mate with many males and the recombination rate is extremely high. Genetic diversity among social insect workers has been hypothesized to improve general performance of large and complex colonies, but this idea has not been t...

  3. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  4. Linkage disequilibrium in HLA cannot be explained by selective recombination.

    Science.gov (United States)

    Termijtelen, A; D'Amaro, J; van Rood, J J; Schreuder, G M

    1995-11-01

    Some combinations of HLA-A, -B and -DR antigens occur more frequently than would be expected from their gene frequencies in the population. This phenomenon, referred to as Linkage Disequilibrium (LD) has been the origin of many speculations. One hypothesis to explain LD is that some haplotypes are protected from recombination. A second hypothesis is that these HLA antigens preferentially recombine after cross-over to create an LD haplotype. We tested these 2 hypotheses: from a pool of over 10,000 families typed in our department, we analyzed 126 families in which HLA-A:B or B:DR recombinant offspring was documented. To overcome a possible bias in our material, we used the non-recombined haplotypes from the same 126 families as a control group. Our results show that the number of cross-overs through LD haplotypes is not significantly lower then would be expected if recombination occurred randomly. Also the number of LD haplotypes created upon recombination was not significantly increased.

  5. Engineering recombinant EF-hand peptides for selective uranium uptake

    Energy Technology Data Exchange (ETDEWEB)

    Berthomieu, C.; Pardoux, R.; Beccia, M.R.; Lemaire, D.; Sauge-Merle, S. [CEA, DSV, IBEB, UMR7265 CNRS CEA Aix-Marseille Univ. (France); Guilbaud, P. [CEA, DRCPC, SMCS, LILA (France); Delangle, P. [CEA, INAC, Service de Chimie Inorganique et Biologique (France)

    2014-07-01

    In spite of an increasing number of publications in recent years, information regarding the mechanism of uranium interaction with proteins at the molecular level is limited and few quantitative studies have investigated the binding properties of uranyl with proteins or peptides. It is thus of great interest to better characterize these interactions, and to analyze structural factors governing uranyl binding and thermodynamic stabilization in proteins. Research in this direction will benefit our understanding of the molecular factors governing uranyl toxicity and speciation in cells and will also aid in developing new molecules for selectively binding uranium that could be used for uranium bioremediation purposes. Uranyl coordination properties have similarities with those of calcium, i.e electrostatic interactions preferentially with hard donor oxygen ligands and pentagonal bipyramidal structures. The EF-hand structural motif is the most prevalent Ca2{sup +-}binding site in proteins and is very appealing to analyse uranyl binding properties and develop affine and specific uranyl binding sites for biotechnology approaches. We selected the recombinant N-terminal domain of calmodulin from A. thaliana as a structured template that contains two EF-hand motifs (site I and site II) to analyze its uranyl binding properties and to engineer peptide variants with increased uranyl affinity and specificity. We showed that both site I and site II bind uranyl, with a dissociation constant in the nano-molar range for site I (K{sub d} ≅ 25 nM at pH 6). Using in vitro phosphorylation of a threonine located in the uranyl binding loop, we measured how adding a phosphoryl group affects the calcium and uranium binding affinities. The phosphorylated peptide exhibited a very large affinity for uranyl at pH 7, with a dissociation constant in the sub-nano-molar range K{sub d} = 0.25 ±0.06 nM, and FTIR analysis demonstrated that the phosphoryl group plays a determining role in uranyl

  6. Impact of selective genotyping in the training population on accuracy and bias of genomic selection.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Longin, Friedrich H; Würschum, Tobias; Ranc, Nicolas; Reif, Jochen C

    2012-08-01

    Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.

  7. Anisakis simplex complex: ecological significance of recombinant genotypes in an allopatric area of the Adriatic Sea inferred by genome-derived simple sequence repeats.

    Science.gov (United States)

    Mladineo, Ivona; Trumbić, Željka; Radonić, Ivana; Vrbatović, Anamarija; Hrabar, Jerko; Bušelić, Ivana

    2017-03-01

    The genus Anisakis includes nine species which, due to close morphological resemblance even in the adult stage, have previously caused many issues in their correct identification. Recently observed interspecific hybridisation in sympatric areas of two closely related species, Anisakis simplex sensu stricto (s.s.) and Anisakis pegreffii, has raised concerns whether a F1 hybrid generation is capable of overriding the breeding barrier, potentially giving rise to more resistant/pathogenic strains infecting humans. To assess the ecological significance of anisakid genotypes in the Adriatic Sea, an allopatric area for the two above-mentioned species, we analysed data from PCR-RFLP genotyping of the ITS region and the sequence of the cytochrome oxidase 2 (cox2) mtDNA locus to discern the parental genotype and maternal haplotype of the individuals. Furthermore, using in silico genome-wide screening of the A. simplex database for polymorphic simple sequence repeats or microsatellites in non-coding regions, we randomly selected potentially informative loci that were tested and optimised for multiplex PCR. The first panel of microsatellites developed for Anisakis was shown to be highly polymorphic, sensitive and amplified in both A. simplex s.s. and A. pegreffii. It was used to inspect genetic differentiation of individuals showing mito-nuclear mosaicism which is characteristic for both species. The observed low level of intergroup heterozygosity suggests that existing mosaicism is likely a retention of an ancestral polymorphism rather than a recent recombination event. This is also supported by allopatry of pure A. simplex s.s. and A. pegreffii in the geographical area under study. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. β-Carotene content of selected banana genotypes from Uganda

    African Journals Online (AJOL)

    carotene with values as high as 2594.0 μg/100 g edible pulp. A positive correlation existed between pulp color intensity and β-carotene concentration. Accessions with relatively high levels of β-carotene,especially the PNG genotypes, could be ...

  9. Responses of some selected Malaysian rice genotypes to callus ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... embryogenic callus culture (Yin et al., 1993). In this study, overall, the callus from the MS medium had a good texture. Furthermore, some genotypes also produced better callus in other concentrations of 2,4-D treatment, however, the quality of callus was not as good as those in. 10 µM 2,4-D. Notably, the ...

  10. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  11. Identification of Novel Recombinant Forms of Hepatitis B Virus Generated from Genotypes Ae and G in HIV-1-Positive Japanese Men Who Have Sex with Men.

    Science.gov (United States)

    Kojima, Yoko; Kawahata, Takuya; Mori, Haruyo; Furubayashi, Keiichi; Taniguchi, Yasushi; Itoda, Ichiro; Komano, Jun

    2015-07-01

    The rare hepatitis B virus (HBV) genotype G (HBV/G) coinfects HIV-1-positive individuals along with HBV/A and generates recombinants. However, the circulation of HBV A/G recombinants remains poorly understood. This molecular epidemiologic study examined HBV A/G recombinants in Japanese HIV-1-positive men who have sex with men (MSM). Initially, blood specimens submitted for confirmatory tests of HIV infection in Osaka and Tokyo, Japan, from 2006 to 2013 were examined for HIV-1, and HIV-1-positive specimens were screened for HBV. Among 817 specimens from HIV-1-positive individuals, HBsAg was detected in 59 specimens; of these, HBV/Ae (alternatively A2), a subgenotype of HBV/A prevalent in Europe and North America, was identified in 70.2%, HBV/C in 17.5%, and HBV/G in 10.5%, and HBV/E in 1.8% according to the core gene sequence. The full-length genome analysis of HBV was performed on HBV/G-positive specimens because some HBV A/G recombinants were historically overlooked by genotyping based on a partial genome analysis. It revealed that five of the specimens contained novel Ae/G recombinants, the core gene of which had a high sequence similarity to HBV/G. Detailed analyses showed that novel recombinants were coinfected with HBV/Ae in a recombinant-dominant fashion. No major drug-resistant mutations were found in the newly identified HBV Ae/G recombinants. Some of the individuals asymptomatically coinfected with HIV/HBV suffered mild liver injury. This study demonstrated that novel Ae/G HBV recombinants were identified in Japanese HIV-1-positive MSM. The pathogenicity of novel HBV Ae/G recombinants should be examined in a future longitudinal study. Surveillance of such viruses in HIV-1-positive individuals should be emphasized.

  12. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes

    Directory of Open Access Journals (Sweden)

    Jon Mark Scriber

    2013-12-01

    Full Text Available Comprising 50%–75% of the world’s fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including “invasive species” in various ecosystems as they may become disrupted in different ways by rapid climate change. “Invasive genes” (into new species and populations need to be recognized for their positive creative potential and addressed in conservation programs. “Genetic rescue” via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae with their long-term historical data base (phylogeographical diversity changes and recent (3-decade climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced “reshuffling” (recombinations of species composition, genotypes

  13. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    Science.gov (United States)

    Scriber, Jon Mark

    2013-12-24

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  14. Simultaneous selection for cowpea (Vigna unguiculata L.) genotypes with adaptability and yield stability using mixed models.

    Science.gov (United States)

    Torres, F E; Teodoro, P E; Rodrigues, E V; Santos, A; Corrêa, A M; Ceccon, G

    2016-04-29

    The aim of this study was to select erect cowpea (Vigna unguiculata L.) genotypes simultaneously for high adaptability, stability, and yield grain in Mato Grosso do Sul, Brazil using mixed models. We conducted six trials of different cowpea genotypes in 2005 and 2006 in Aquidauana, Chapadão do Sul, Dourados, and Primavera do Leste. The experimental design was randomized complete blocks with four replications and 20 genotypes. Genetic parameters were estimated by restricted maximum likelihood/best linear unbiased prediction, and selection was based on the harmonic mean of the relative performance of genetic values method using three strategies: selection based on the predicted breeding value, having considered the performance mean of the genotypes in all environments (no interaction effect); the performance in each environment (with an interaction effect); and the simultaneous selection for grain yield, stability, and adaptability. The MNC99542F-5 and MNC99-537F-4 genotypes could be grown in various environments, as they exhibited high grain yield, adaptability, and stability. The average heritability of the genotypes was moderate to high and the selective accuracy was 82%, indicating an excellent potential for selection.

  15. Genetic parameters and simultaneous selection for root yield, adaptability and stability of cassava genotypes

    Directory of Open Access Journals (Sweden)

    João Tomé de Farias Neto

    2013-12-01

    Full Text Available The objective of this work was to estimate genetic parameters and to evaluate simultaneous selection for root yield and for adaptability and stability of cassava genotypes. The effects of genotypes were assumed as fixed and random, and the mixed model methodology (REML/Blup was used to estimate genetic parameters and the harmonic mean of the relative performance of genotypic values (HMRPGV, for simultaneous selection purposes. Ten genotypes were analyzed in a complete randomized block design, with four replicates. The experiment was carried out in the municipalities of Altamira, Santarém, and Santa Luzia do Pará in the state of Pará, Brazil, in the growing seasons of 2009/2010, 2010/2011, and 2011/2012. Roots were harvested 12 months after planting, in all tested locations. Root yield had low coefficients of genotypic variation (4.25% and broad-sense heritability of individual plots (0.0424, which resulted in low genetic gain. Due to the low genotypic correlation (0.15, genotype classification as to root yield varied according to the environment. Genotypes CPATU 060, CPATU 229, and CPATU 404 stood out as to their yield, adaptability, and stability.

  16. Novel HBV recombinants between genotypes B and C in 3'-terminal reverse transcriptase (RT) sequences are associated with enhanced viral DNA load, higher RT point mutation rates and place of birth among Chinese patients.

    Science.gov (United States)

    Liu, Baoming; Yang, Jing-Xian; Yan, Ling; Zhuang, Hui; Li, Tong

    2018-01-01

    As one of the major global public health concerns, hepatitis B virus (HBV) can be divided into at least eight genotypes, which may be related to disease severity and treatment response. We previously demonstrated that genotypes B and C HBV, with distinct geographical distribution in China, had divergent genotype-dependent amino acid polymorphisms and variations in reverse transcriptase (RT) gene region, a target of antiviral therapy using nucleos(t)ide analogues. Recently recombination between HBV genotypes B and C was reported to occur in the RT region. However, their frequency and clinical significance is poorly understood. Here full-length HBV RT sequences from 201 Chinese chronic hepatitis B (CHB) patients were amplified and sequenced, among which 31.34% (63/201) were genotype B whereas 68.66% (138/201) genotype C. Although no intergenotypic recombination was detected among C-genotype HBV, 38.10% (24/63) of B-genotype HBV had recombination with genotype C in the 3'-terminal RT sequences. The patients with B/C intergenotypic recombinants had significantly (Pdistribution feature in China. Our findings provide novel insight into the virological, clinical and epidemiological features of new HBV B/C intergenotypic recombinants at the 3' end of RT sequences among Chinese CHB patients. The highly complex genetic background of the novel recombinant HBV carrying new mutations affecting RT protein may contribute to an enhanced heterogeneity in treatment response or prognosis among CHB patients. Published by Elsevier B.V.

  17. A selectable and excisable marker system for the rapid creation of recombinant poxviruses.

    Directory of Open Access Journals (Sweden)

    Julia L Rintoul

    Full Text Available Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications.

  18. Development and validation of a genotype 3 recombinant protein-based immunoassay for hepatitis E virus serology in swine

    Directory of Open Access Journals (Sweden)

    W.H.M. van der Poel

    2014-04-01

    Full Text Available Hepatitis E virus (HEV is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3 infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been developed, at first mainly based on HEV genotype 1 (Gt1 antigens. To develop a sensitive HEV Gt3 ELISA, a recombinant baculovirus expression product of HEV Gt3 open reading frame-2 was produced and coated onto polystyrene ELISA plates. After incubation of porcine sera, bound HEV antibodies were detected with anti-porcine anti-IgG and anti-IgM conjugates. For primary estimation of sensitivity and specificity of the assay, sets of sera were used from pigs experimentally infected with HEV Gt3. For further validation of the assay and to set the cutoff value, a batch of 1100 pig sera was used. All pig sera were tested using the developed HEV Gt3 assay and two other serologic assays based on HEV Gt1 antigens. Since there is no gold standard available for HEV antibody testing, further validation and a definite setting of the cutoff of the developed HEV Gt3 assay were performed using a statistical approach based on Bayes' theorem. The developed and validated HEV antibody assay showed effective detection of HEV-specific antibodies. This assay can contribute to an improved detection of HEV antibodies and enable more reliable estimates of the prevalence of HEV Gt3 in swine in different regions.

  19. KIR genotyping in the selected population in Andhra Pradesh (India).

    Science.gov (United States)

    Vaishnav, G; Krupanidhi, S; Sanjeevi, C B

    2014-01-01

    The population is not always homogeneous in relation to the representation and functioning of genes. Therefore, the presence of allogenicity is a universal phenomenon. The profound variability is noticed among the members of the human population with reference to the resistance against infections and late onset of diseases. In this line, a few sets of alleles which come under the domain of immune function namely KIRs (Killer immunoglobulin-like receptor genes) and HLA-I have been chosen to report in the population of Puttaparthi (India). The genotyping of the population is the current ongoing focus of our team wherein the distribution of the following alleles has been taken up in the mixed ethnic groups of Puttaparthi as a prelude to earmark them as genotypic markers in future studies relating to susceptible diseases. The PCR protocols for the identified immune related genes viz., KIR- 2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 3DL1, 3DL2, 3DL3, 3DS1, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 2DP1, 3DP1; HLA- C1 and HLA-C2 have been standardized. In the present study, except KIR 2DL2, the other non-framework inhibitory KIR genes were represented at higher percentage and ranged from 57% to 80% in the chosen population which would suggest its higher survival adaptation. Interestingly, the majority of activating KIR genes were least represented and varied between 5% to 32.5% which is also in compliance with the survival adaptation of the chosen population. The carrier gene frequencies of KIRs were compared with the other populations' viz., Chinese Mongolian, Chinese Han, Greek and Brazilian data. The expected heterozygosity of KIR alleles and their rank in gene diversity among the population of Puttaparthi were also discussed.

  20. Ikaros controls isotype selection during immunoglobulin class switch recombination.

    Science.gov (United States)

    Sellars, MacLean; Reina-San-Martin, Bernardo; Kastner, Philippe; Chan, Susan

    2009-05-11

    Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.

  1. reaction of selected common bean genotypes to physiological races

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Department of Biological Sciences, Egerton University, P. O. Box 536, Egerton, Kenya. 1Department of Plant ... order to identify potential sources of resistance to angular leaf spot. Selected bean ...... phaseolicola (Burk, 1926) Young, Dye and.

  2. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions

    Directory of Open Access Journals (Sweden)

    Han Mulder

    2016-10-01

    Full Text Available Genotype by environment interactions (GxE are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g. environmental perturbations such as heat stress or disease. In livestock breeding, there is tendency to ignore GxE because of increased complexity of models for genetic evaluations and lack of accuracy in extreme environments. GxE, however, creates opportunities to increase resilience of animals towards environmental perturbations. The main aim of the paper is to investigate to which extent GxE can be exploited with traditional and genomic selection methods. Furthermore, we investigated the benefit of reaction norm models compared to conventional methods ignoring GxE. The questions were addressed with selection index theory. GxE was modelled according to a linear reaction norm model in which the environmental gradient is the contemporary group mean. Economic values were based on linear and non-linear profit equations.Accuracies of environment-specific (GEBV were highest in intermediate environments and lowest in extreme environments. Reaction norm models had higher accuracies of (GEBV in extreme environments than conventional models ignoring GxE. Genomic selection always resulted in higher response to selection in all environments than sib or progeny testing schemes. The increase in response was with genomic selection between 9% and 140% compared to sib testing and between 11% and 114% compared to progeny testing when the reference population consisted of 1 million animals across all environments. When the aim was to decrease environmental sensitivity, the response in slope of the reaction norm model with genomic selection was between 1.09 and 319 times larger than with sib or progeny testing and in the right direction in contrast to sib and progeny testing that still increased environmental sensitivity. This shows that genomic selection

  3. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.

    Science.gov (United States)

    Yu, Yuan; Bai, Jinhe; Chen, Chunxian; Plotto, Anne; Baldwin, Elizabeth A; Gmitter, Frederick G

    2018-02-01

    Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. In vitro application of integrated selection index for screening drought tolerant genotypes in common wheat

    Directory of Open Access Journals (Sweden)

    Ezatollah FARSHADFAR

    2016-10-01

    Full Text Available This experiment was conducted on 20 wheat genotypes during 2010-2011 growing season at the Razi University, Kermanshah, Iran. A completely randomized design with six replications was used for callus induction and a 20 × 2 factorial experiment with three replications was used for response of genotypes to in vitro drought stress. ANOVA exhibited highly significant differences among the genotypes for callus growth rate, relative fresh mass growth, relative growth rate, callus water content, percent of callus chlorosis and proline content under stress condition (15 % PEG. PCA showed that the integrated selection index was correlated with callus growth index, relative fresh mass growth, relative growth rate and proline content indicating that these screening techniques can be useful for selecting drought tolerant genotypes. Screening drought tolerant genotypes and in vitro indicators of drought tolerance using mean rank, standard deviation of ranks and biplot analysis, discriminated genotypes 2, 18 and 10 as the most drought tolerant. Therefore they are recommended to be used as parents for genetic analysis, gene mapping and improvement of drought tolerance.

  5. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  6. Differential sensitivity of 5'UTR-NS5A recombinants of hepatitis C virus genotypes 1-6 to protease and NS5A inhibitors

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Humes, Daryl

    2014-01-01

    BACKGROUND & AIMS: Hepatitis C virus (HCV) therapy will benefit from the preclinical evaluation of direct-acting antiviral (DAA) agents in infectious culture systems that test the effects on different virus genotypes. We developed HCV recombinants comprising the 5' untranslated region-NS5A (5-5A...... daclatasvir. The 1a(TN) 5-5A and JFH1-independent full-length viruses had similar levels of sensitivity to the DAA agents, validating the 5-5A recombinants as surrogates for full-length viruses in DAA testing. Compared with the 1a(TN) full-length virus, the 3a(S52) 5-5A recombinant was highly resistant to all...... protease inhibitors, and the 4a(ED43) recombinant was highly resistant to telaprevir and boceprevir, but most sensitive to other protease inhibitors. Compared with other protease inhibitors, MK-5172 had exceptional potency against all HCV genotypes. The NS5A inhibitor daclatasvir had the highest potency...

  7. Class switch recombination in selective IgA-deficient subjects

    DEFF Research Database (Denmark)

    Jensen, Lone Hummelshøj; Ryder, L P; Nielsen, L K

    2006-01-01

    Selective IgA deficiency is a common immunodeficiency in Caucasians, but the molecular basis of the disorder remains elusive. To address this issue we examined the molecular events leading to IgA production. Naive IgD positive B cells were purified from four donors with IgA deficiency and four...

  8. Genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses using mixed models.

    Science.gov (United States)

    Oliveira, D G; Rocha, M M; Damasceno-Silva, K J; Sá, F V; Lima, L R L; Resende, M D V

    2017-08-17

    The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: genotypic variation coefficient, genotypic determination coefficient, experimental quality indicator and selection reliability, estimated genotypic values ​​- BLUE, genotypic correlation coefficient among traits, and genotypic gain with simultaneous selection of all traits. The genotypic gain was estimated based on tree selection indexes: classical, multiplicative, and the sum of ranks. The genotypic variation coefficient was higher than the environmental variation coefficient for the number of days to start flowering, plant type, the weight of one hundred grains, grain index, and protein concentration. The majority of the traits presented genotypic determination coefficient from medium to high magnitude. The identification of increases in the production components is associated with decreases in protein concentration, and the increase in precocity leads to decreases in protein concentration and cooking time. The index based on the sum of ranks was the best alternative for simultaneous selection of traits in the cowpea segregating populations resulting from the crosses and backcrosses evaluated, with emphasis on the F 4 BC 12 , F 4 C 21 , and F 4 C 12 populations, which had the highest genotypic gains.

  9. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na; Murillo, Gabriel; Su, Xiaoquan; Zeng, Xiaowei; Xu, Jian; Ning, Kang; Zhang, ShouDong; Zhu, Jian-Kang; Cui, Xinping

    2012-01-01

    calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts

  10. Mapping quantitative trait loci in a selectively genotyped outbred population using a mixture model approach

    NARCIS (Netherlands)

    Johnson, David L.; Jansen, Ritsert C.; Arendonk, Johan A.M. van

    1999-01-01

    A mixture model approach is employed for the mapping of quantitative trait loci (QTL) for the situation where individuals, in an outbred population, are selectively genotyped. Maximum likelihood estimation of model parameters is obtained from an Expectation-Maximization (EM) algorithm facilitated by

  11. Estimating diversifying selection and functional constraint in the presence of recombination.

    Science.gov (United States)

    Wilson, Daniel J; McVean, Gilean

    2006-03-01

    Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high levels of recombination, the identification of sites experiencing diversifying selection can suffer from a false-positive rate as high as 90%. We present a model that uses a population genetics approximation to the coalescent with recombination and use reversible-jump MCMC to perform Bayesian inference on both the dN/dS ratio and the recombination rate, allowing each to vary along the sequence. We demonstrate that the method has the power to detect variation in the dN/dS ratio and the recombination rate and does not suffer from a high false-positive rate. We use the method to analyze the porB gene of Neisseria meningitidis and verify the inferences using prior sensitivity analysis and model criticism techniques.

  12. Interplay of recombination and selection in the genomes of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Dean Deborah

    2011-05-01

    Full Text Available Abstract Background Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection in this pathogen and to understand the major evolutionary forces acting on the genome of this bacterium. Results The conserved core genes of C. trachomatis are a large proportion of the pan-genome: we identified 836 core genes in C. trachomatis out of a range of 874-927 total genes in each genome. The ratio of recombination events compared to mutation (ρ/θ was 0.07 based on ancestral reconstructions using the ClonalFrame tool, but recombination had a significant effect on genetic diversification (r/m = 0.71. The distance-dependent decay of linkage disequilibrium also indicated that C. trachomatis populations behaved intermediately between sexual and clonal extremes. Fifty-five genes were identified as having a history of recombination and 92 were under positive selection based on statistical tests. Twenty-three genes showed evidence of being under both positive selection and recombination, which included genes with a known role in virulence and pathogencity (e.g., ompA, pmps, tarp. Analysis of inter-clade recombination flux indicated non-uniform currents of recombination between clades, which suggests the possibility of spatial population structure in C. trachomatis infections. Conclusions C. trachomatis is the archetype of a bacterial species where recombination is relatively frequent yet gene gains by horizontal gene transfer (HGT and losses (by deletion are rare. Gene conversion occurs at sites across the whole C. trachomatis genome but may be more often fixed in genes that are under diversifying selection. Furthermore, genome sequencing will reveal patterns of serotype specific gene exchange and selection that will generate important

  13. Cow genotyping strategies for genomic selection in a small dairy cattle population.

    Science.gov (United States)

    Jenko, J; Wiggans, G R; Cooper, T A; Eaglen, S A E; Luff, W G de L; Bichard, M; Pong-Wong, R; Woolliams, J A

    2017-01-01

    This study compares how different cow genotyping strategies increase the accuracy of genomic estimated breeding values (EBV) in dairy cattle breeds with low numbers. In these breeds, few sires have progeny records, and genotyping cows can improve the accuracy of genomic EBV. The Guernsey breed is a small dairy cattle breed with approximately 14,000 recorded individuals worldwide. Predictions of phenotypes of milk yield, fat yield, protein yield, and calving interval were made for Guernsey cows from England and Guernsey Island using genomic EBV, with training sets including 197 de-regressed proofs of genotyped bulls, with cows selected from among 1,440 genotyped cows using different genotyping strategies. Accuracies of predictions were tested using 10-fold cross-validation among the cows. Genomic EBV were predicted using 4 different methods: (1) pedigree BLUP, (2) genomic BLUP using only bulls, (3) univariate genomic BLUP using bulls and cows, and (4) bivariate genomic BLUP. Genotyping cows with phenotypes and using their data for the prediction of single nucleotide polymorphism effects increased the correlation between genomic EBV and phenotypes compared with using only bulls by 0.163±0.022 for milk yield, 0.111±0.021 for fat yield, and 0.113±0.018 for protein yield; a decrease of 0.014±0.010 for calving interval from a low base was the only exception. Genetic correlation between phenotypes from bulls and cows were approximately 0.6 for all yield traits and significantly different from 1. Only a very small change occurred in correlation between genomic EBV and phenotypes when using the bivariate model. It was always better to genotype all the cows, but when only half of the cows were genotyped, a divergent selection strategy was better compared with the random or directional selection approach. Divergent selection of 30% of the cows remained superior for the yield traits in 8 of 10 folds. Copyright © 2017 American Dairy Science Association. Published by

  14. Genotyping by sequencing (GBS, an ultimate marker-assisted selection (MAS tool to accelerate plant breeding

    Directory of Open Access Journals (Sweden)

    Jiangfeng eHe

    2014-09-01

    Full Text Available Marker-assisted selection (MAS refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP, have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping by sequencing (GBS has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS, genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection (GS under a large scale of plant breeding programs.

  15. Ultrafast and band-selective Auger recombination in InGaN quantum wells

    International Nuclear Information System (INIS)

    Williams, Kristopher W.; Monahan, Nicholas R.; Zhu, X.-Y.; Koleske, Daniel D.; Crawford, Mary H.

    2016-01-01

    In InGaN quantum well based light-emitting diodes, Auger recombination is believed to limit the quantum efficiency at high injection currents. Here, we report the direct observation of carrier loss from Auger recombination on a sub-picosecond timescale in a single InGaN quantum well using time-resolved photoemission. Selective excitations of different valence sub-bands reveal that the Auger rate constant decreases by two orders of magnitude as the effective hole mass decreases, confirming the critical role of momentum conservation.

  16. Multi-generational imputation of single nucleotide polymorphism marker genotypes and accuracy of genomic selection.

    Science.gov (United States)

    Toghiani, S; Aggrey, S E; Rekaya, R

    2016-07-01

    Availability of high-density single nucleotide polymorphism (SNP) genotyping platforms provided unprecedented opportunities to enhance breeding programmes in livestock, poultry and plant species, and to better understand the genetic basis of complex traits. Using this genomic information, genomic breeding values (GEBVs), which are more accurate than conventional breeding values. The superiority of genomic selection is possible only when high-density SNP panels are used to track genes and QTLs affecting the trait. Unfortunately, even with the continuous decrease in genotyping costs, only a small fraction of the population has been genotyped with these high-density panels. It is often the case that a larger portion of the population is genotyped with low-density and low-cost SNP panels and then imputed to a higher density. Accuracy of SNP genotype imputation tends to be high when minimum requirements are met. Nevertheless, a certain rate of genotype imputation errors is unavoidable. Thus, it is reasonable to assume that the accuracy of GEBVs will be affected by imputation errors; especially, their cumulative effects over time. To evaluate the impact of multi-generational selection on the accuracy of SNP genotypes imputation and the reliability of resulting GEBVs, a simulation was carried out under varying updating of the reference population, distance between the reference and testing sets, and the approach used for the estimation of GEBVs. Using fixed reference populations, imputation accuracy decayed by about 0.5% per generation. In fact, after 25 generations, the accuracy was only 7% lower than the first generation. When the reference population was updated by either 1% or 5% of the top animals in the previous generations, decay of imputation accuracy was substantially reduced. These results indicate that low-density panels are useful, especially when the generational interval between reference and testing population is small. As the generational interval

  17. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  18. Characterization and Selection of Phosphorus Deficiency Tolerant Rice Genotypes in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Y.C. Aluwihare

    2016-07-01

    Full Text Available Phosphorus (P deficiency in soil is a major constrain for rice production. An important set of rice genotypes (landraces, old improved and new improved varieties were screened for P deficiency tolerance in two major cropping seasons of Sri Lanka, in 2012. The Ultisol soil, which was collected from a plot cultivated with rice without fertilizer application for past 40 years (P0 at the Rice Research and Development Institute (RRDI, Bathalagoda, Sri Lanka, was used as the potting medium for greenhouse trials. Two field trials were conducted in the same plots at RRDI. Both P0 and P30 (30 mg/kg P2O5 conditions were used in the two greenhouse trials. At the early vegetative (three weeks after transplanting, late vegetative (six weeks after transplanting and flowering stages, plant height and number of tillers per plant were recorded. At the flowering stage, shoots were harvested and shoot dry weight, shoot P concentration, shoot P uptake and P utilization efficiency were measured. All data were statistically analyzed using analysis of variance, regression and cluster procedures. The measured parameters were significantly different between P0 and P30 conditions (P < 0.05. Higher shoot dry weight was reported by the rice genotypes H4 and Marss under P0 conditions. The regression analysis between shoot dry weight and P utilization efficiency revealed that the studied rice genotypes could be categorized to three P deficiency tolerance classes. A total of 13 genotypes could be considered as highly tolerant and 4 genotypes as sensitive for P deficiency. These results could be used to select parental genotypes for breeding and genetic studies and also to select interesting varieties or landraces for organic rice production.

  19. Accounting for linkage disequilibrium in genome scans for selection without individual genotypes: The local score approach.

    Science.gov (United States)

    Fariello, María Inés; Boitard, Simon; Mercier, Sabine; Robelin, David; Faraut, Thomas; Arnould, Cécile; Recoquillay, Julien; Bouchez, Olivier; Salin, Gérald; Dehais, Patrice; Gourichon, David; Leroux, Sophie; Pitel, Frédérique; Leterrier, Christine; SanCristobal, Magali

    2017-07-01

    Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single-marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behaviour in quail and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genomewide analyses such as GWAS. © 2017 John Wiley & Sons Ltd.

  20. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow.

    Science.gov (United States)

    Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian

    2016-06-01

    Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. © 2016 John Wiley & Sons Ltd.

  1. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions

    NARCIS (Netherlands)

    Mulder, Herman

    2016-01-01

    Genotype by environment interactions (GxE) are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g., environmental perturbations such as heat stress or disease. In livestock breeding,

  2. Dynamic variable selection in SNP genotype autocalling from APEX microarray data

    Directory of Open Access Journals (Sweden)

    Zamar Ruben H

    2006-11-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are DNA sequence variations, occurring when a single nucleotide – adenine (A, thymine (T, cytosine (C or guanine (G – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX. This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Results Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU of St. Paul's Hospital (plus one negative PCR control sample. Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. Conclusion The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our

  3. Selection and Evaluation of Maize Genotypes Tolerance to Low Phosphorus Soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. C.; Jiang, H. M.; Zhang, J. F.; Li, L. L.; Li, G. H. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (China)

    2013-11-15

    Maize species differ in their ability to take up phosphorus (P) from the soil, and these differences are attributed to the morphology and physiology of plants relative to their germplasm base. An effective method of increasing P efficiency in maize is to select and evaluate genotypes that can produce a high yield under P deficient conditions. In this study, 116 maize inbred lines with various genetic backgrounds collected from several Agricultural Universities and Institutes in China were evaluated in a field experiment to identify genotypic differences in P efficiency in 2007. Overall, 15 maize inbred lines were selected from the 116 inbred lines during the 5-year field experimental period based on their 100-grain weight in P-deficient soil at maturity, when compared to the characteristics exhibited in P-sufficient soil. All of the selected lines were evaluated in field experiments from 2008 to 2010 for their tolerance to low-P at the seedling and maturity stages. Inhibition (%) was used and defined as the parameter measured under P limitation compared to the parameters measured under P sufficiency to evaluate the genotypic variation in tolerance. Inhibition of root length, root surface area, volume, root: shoot ratio and P uptake efficiency could be used as indices to assess the genotypic tolerance to P limitation. Low-P tolerant genotypes could uptake more P and accumulate more dry matter at the seedling stage. A strong relationship between the total biomass and root length was exhibited. In order to understand the mechanisms of the genotypic tolerance to low-P soil to utilize P from the sparing soluble P forms, 5 maize genotypes selected out of the 15 maize inbred lines, according to the four quadrant distribution, was used as the criteria in a {sup 32}P isotope tracer experiment to follow the recovery of {sup 32}P in soil P fractions. The {sup 32}P tracer results showed a higher rate for water- soluble P transformation to slowly available P in P deficient soil

  4. Effectiveness of Stability Indices for Bread Wheat Genotypes Selection to Water Deficit Tolerant

    Directory of Open Access Journals (Sweden)

    A Naderi

    2013-12-01

    Full Text Available In countries such as Iran which will be faced water deficit as the main challenge in the future and the food production is going to be dependent to water recourses, wheat water-deficit tolerant and adapted genotypes release is one of the most important strategies under such a condition. In order to study the adaptation and terminal water deficit stress tolerance, fifteen bread wheat lines and Chamran cultivar as the check were evaluated. This research was carried out at Ahvaz, Dezfool, Zabol and Darab, south warm region research stations, in 2007-08 and 2008-09, in two separated experiments (1-well-watered and 2- terminal water deficit stress, using complete randomized block design with three replications. Data were analyzed and genotypes response was evaluated based on tolerance indices. Results showed that the difference among stations, years, genotypes and double and triple effects of source variations were significant at 1% probability level. Mean grain yield was 4300 Kg/ha in first year, while grain yield increased significantly in second year and reached to 5692 Kg/ha. Mean grain yield were 5840 and 4591Kg/ha under well-watered and terminal water deficit stress conditions, respectively. Correlation coefficients among STI, GMP ،MP and K1STI were significant. Correlation coefficient between slop of linear regression of grain yield in response to drought stress intensity and grain yield under terminal water deficit stress was positively and, with K2STI, TOL and SSI was negatively significant. Grain yield index, (YIR the proportion of grain yield of each genotype to grand mean of grain yield of all genotypes was the most important components to define grain yield in stepwise regression under both experiment conditions. According to the results of this research and based on tolerance indices, lines No. 2, 14 and 15 were selected as the high potential- terminal water deficit stress tolerant genotypes.

  5. The joint effects of background selection and genetic recombination on local gene genealogies.

    Science.gov (United States)

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  6. Entry into Midgut Epithelial Cells is a Key Step in the Selection of Genotypes in a Nucleopolyhedrovirus

    Institute of Scientific and Technical Information of China (English)

    Gabriel Clavijo; Trevor Williams; Delia Mu(n)oz; Miguel L(o)pez-Ferber; Primitivo Caballero

    2009-01-01

    An isolate of the Spodoptera frugiperda multiple nucleopolyhedrovirus comprises a stable proportion of deletion genotypes (e.g., SfNIC-C), that lack pif1 and pif2 rendering them noninfectious per os, and that survive by complementation with a complete genotype (SfNIC-B) in coinfected cells. To determine whether selection for particular ratios of complete and deletion genotypes occurs mainly during the establishment of the primary infection in insect midgut cells or during subsequent systemic infection, we examined genotype frequencies in insects that fed on OBs comprising different co-occluded mixtures of genotypes. Dramatic changes in genotype frequencies were observed between the OB inoculum and budded virus (BV) samples taken from larvae inoculated with OBs comprising 10% SfNIC-B + 90% SfNIC-C indicating that a marked reduction of SfNIC-C genotype had occurred in the insect midgut due to the immediate elimination of all OBs that originated from cells that had been infected only by SfNIC-C. In contrast, immediate changes were not observed in OBs comprising mixtures of 50% SfNIC-B + 50% SfNIC-C or those comprising 10% SfNIC-B + 90% SfNIC-C as most of the OBs in these mixtures originated from cells that had been infected by both genotypes. Subsequent changes in genotypic frequencies during five days of systemic infection were fairly small in magnitude for all genotypic mixtures. We conclude that the prevalence of defective genotypes in the SfNIC population is likely determined by a balance between host selection against OBs produced in cells infected by SfNIC-C alone and within-host selection for fast-replicating deletion genotypes. The strength of intra-host selection is likely modulated by changes in MOI during the infection period.

  7. Estimating Diversifying Selection and Functional Constraint in the Presence of Recombination

    OpenAIRE

    Wilson, Daniel J.; McVean, Gilean

    2006-01-01

    Models of molecular evolution that incorporate the ratio of nonsynonymous to synonymous polymorphism (dN/dS ratio) as a parameter can be used to identify sites that are under diversifying selection or functional constraint in a sample of gene sequences. However, when there has been recombination in the evolutionary history of the sequences, reconstructing a single phylogenetic tree is not appropriate, and inference based on a single tree can give misleading results. In the presence of high le...

  8. Adapted J6/JFH1-based Hepatitis C virus recombinants with genotype-specific NS4A show similar efficacies against lead protease inhibitors, alpha interferon, and a putative NS4A inhibitor

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Sanne B; Serre, Stéphanie B N

    2013-01-01

    To facilitate studies of hepatitis C virus (HCV) NS4A, we aimed at developing J6/JFH1-based recombinants with genotype 1- to 7-specific NS4A proteins. We developed efficient culture systems expressing NS4A proteins of genotypes (isolates) 1a (H77 and TN), 1b (J4), 2a (J6), 4a (ED43), 5a (SA13), 6a...... (HK6a), and 7a (QC69), with peak infectivity titers of ∼3.5 to 4.5 log10 focus-forming units per ml. Except for genotype 2a (J6), growth depended on adaptive mutations identified in long-term culture. Genotype 1a, 1b, and 4a recombinants were adapted by amino acid substitutions F772S (p7) and V1663A...... (NS4A), while 5a, 6a, and 7a recombinants required additional substitutions in the NS3 protease and/or NS4A. We demonstrated applicability of the developed recombinants for study of antivirals. Genotype 1 to 7 NS4A recombinants showed similar responses to the protease inhibitors telaprevir (VX-950...

  9. Evidence for positive selection and recombination hotspots in Deformed wing virus (DWV).

    Science.gov (United States)

    Dalmon, A; Desbiez, C; Coulon, M; Thomasson, M; Le Conte, Y; Alaux, C; Vallon, J; Moury, B

    2017-01-25

    Deformed wing virus (DWV) is considered one of the most damaging pests in honey bees since the spread of its vector, Varroa destructor. In this study, we sequenced the whole genomes of two virus isolates and studied the evolutionary forces that act on DWV genomes. The isolate from a Varroa-tolerant bee colony was characterized by three recombination breakpoints between DWV and the closely related Varroa destructor virus-1 (VDV-1), whereas the variant from the colony using conventional Varroa management was similar to the originally described DWV. From the complete sequence dataset, nine independent DWV-VDV-1 recombination breakpoints were detected, and recombination hotspots were found in the 5' untranslated region (5' UTR) and the conserved region encoding the helicase. Partial sequencing of the 5' UTR and helicase-encoding region in 41 virus isolates suggested that most of the French isolates were recombinants. By applying different methods based on the ratio between non-synonymous (dN) and synonymous (dS) substitution rates, we identified four positions that showed evidence of positive selection. Three of these positions were in the putative leader protein (Lp), and one was in the polymerase. These findings raise the question of the putative role of the Lp in viral evolution.

  10. Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress.

    Science.gov (United States)

    Borba, M E A; Maciel, G M; Fraga Júnior, E F; Machado Júnior, C S; Marquez, G R; Silva, I G; Almeida, R S

    2017-06-20

    Water stress can affect the yield in tomato crops and, despite this, there are few types of research aiming to select tomato genotypes resistant to the water stress using physiological parameters. This experiment aimed to study the variables that are related to the gas exchanges and the efficiency in water use, in the selection of tomato genotypes tolerant to water stress. It was done in a greenhouse, measuring 7 x 21 m, in a randomized complete block design, with four replications (blocks), being five genotypes in the F 2 BC 1 generation, which were previously obtained from an interspecific cross between Solanum pennellii versus S. lycopersicum and three check treatments, two susceptible [UFU-22 (pre-commercial line) and cultivar Santa Clara] and one resistant (S. pennellii). At the beginning of flowering, the plants were submitted to a water stress condition, through irrigation suspension. After that CO 2 assimilation, internal CO 2 , stomatal conductance, transpiration, leaf temperature, instantaneous water use efficiency, intrinsic efficiency of water use, instantaneous carboxylation efficiency, chlorophyll a and b, and the potential leaf water (Ψf) were observed. Almost all variables that were analyzed, except CO 2 assimilation and instantaneous carboxylation efficiency, demonstrated the superiority of the wild accession, S. pennellii, concerning the susceptible check treatments. The high photosynthetic rate and the low stomatal conductance and transpiration, presented by the UFU22/F 2 BC 1 #2 population, allowed a better water use efficiency. Because of that, these physiological characteristics are promising in the selection of tomato genotypes tolerant to water stress.

  11. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut

    Science.gov (United States)

    Peanut (Arachis hypogaea; 2n=4x=40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. ...

  12. Selection of common bean genotypes for the Cerrado/Pantanal ecotone via mixed models and multivariate analysis.

    Science.gov (United States)

    Corrêa, A M; Pereira, M I S; de Abreu, H K A; Sharon, T; de Melo, C L P; Ito, M A; Teodoro, P E; Bhering, L L

    2016-10-17

    The common bean, Phaseolus vulgaris, is predominantly grown on small farms and lacks accurate genotype recommendations for specific micro-regions in Brazil. This contributes to a low national average yield. The aim of this study was to use the methods of the harmonic mean of the relative performance of genetic values (HMRPGV) and the centroid, for selecting common bean genotypes with high yield, adaptability, and stability for the Cerrado/Pantanal ecotone region in Brazil. We evaluated 11 common bean genotypes in three trials carried out in the dry season in Aquidauana in 2013, 2014, and 2015. A likelihood ratio test detected a significant interaction between genotype x year, contributing 54% to the total phenotypic variation in grain yield. The three genotypes selected by the joint analysis of genotypic values in all years (Carioca Precoce, BRS Notável, and CNFC 15875) were the same as those recommended by the HMRPGV method. Using the centroid method, genotypes BRS Notável and CNFC 15875 were considered ideal genotypes based on their high stability to unfavorable environments and high responsiveness to environmental improvement. We identified a high association between the methods of adaptability and stability used in this study. However, the use of centroid method provided a more accurate and precise recommendation of the behavior of the evaluated genotypes.

  13. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato.

    Science.gov (United States)

    Belabess, Z; Urbino, C; Granier, M; Tahiri, A; Blenzar, A; Peterschmitt, M

    2018-01-02

    TYLCV-IS76 is an unusual recombinant between the highly recombinogenic tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), two Mediterranean begomoviruses (Geminiviridae). In contrast with the previously reported TYLCV/TYLCSV recombinants, it has a TYLCSV derived fragment of only 76 nucleotides, and has replaced its parental viruses in natural conditions (Morocco, Souss region). The viral population shift coincided with the deployment of the popular Ty-1 resistant tomato cultivars, and according to experimental studies, has been driven by a strong positive selection in such resistant plants. However, although Ty-1 cultivars were extensively used in Mediterranean countries, TYLCV-IS76 was not reported outside Morocco. This, in combination with its unusual recombination pattern suggests that it was generated through a rare and possibly multistep process. The potential generation of a recombination breakpoint (RB) at locus 76 (RB76) was investigated over time in 10 Ty-1 resistant and 10 nearly isogenic susceptible tomato plants co-inoculated with TYLCV and TYLCSV clones. RB76 could not be detected in the recombinant progeny using the standard PCR/sequencing approach that was previously designed to monitor the emergence of TYLCV-IS76 in Morocco. Using a more sensitive PCR test, RB76 was detected in one resistant and five susceptible plants. The results are consistent with a very low intra-plant frequency of RB76 bearing recombinants throughout the test and support the hypothesis of a rare emergence of TYLCV-IS76. More generally, RBs were more scattered in resistant than in susceptible plants and an unusual RB at position 141 (RB141) was positively selected in the resistant cultivar; interestingly, RB141 bearing recombinants were detected in resistant tomato plants from the field. Scenarios of TYLCV-IS76 pre-emergence are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of Drought Tolerance in Some Wheat Genotypes Based on Selection Indices

    Directory of Open Access Journals (Sweden)

    M Mohseni

    2016-02-01

    Full Text Available Introduction Wheat is a major crop among cereals and plays a vital role in the national economy of developing countries. Wheat (Triticum aestivum L. is one of the most important crops in terms of acreage and production rates in the world. This crop has an important role in the food supply. According to the FAO (2010 statistics report, the average wheat yield in Iran was 2136 kg ha-1, while the worldwide average yield was 3009 kg ha-1. Iran, with an average annual rainfall of 250 mm, is located in the world desert belt. Yield loss due to drought stress is likely higher than other stresses. Therefore, introducing plants with high production under both drought stress and non-stress conditions is highly regarded. Stress tolerance indices are used for screening drought tolerant varieties. Tolerance (TOL, mean productivity (MP, stress susceptibility index (SSI, geometric mean productivity (GMP, stress tolerance index (STI and modified STI (MSTI have been employed under various conditions. Fischer and Maurer (1978 explained that cultivars with an SSI less than a unit are stress tolerant, since their yield reduction under stress conditions is smaller than the mean yield reduction of all cultivars (Bruckner and Frohberg, 1987. Mean productivity, GMP, harmonic mean (HM and STI were reported as preferred criteria in selection of drought-tolerant barley genotypes by Baheri et al. (2003. Yield Index (YI proposed by Gavuzzi et al. (1997, was significantly correlated with stress yield which ranks cultivars on the basis of their yield under stress. The genotypes with a high Yield Stability Index (YSI are expected to have higher yield under both stress and non-stress conditions (Bouslama and Schapaugh, 1984. Mousavi et al (2008 introduced Stress Susceptibility Percentage Index (SSPI as a powerful index to select extreme tolerant genotypes with yield stability. Fischer and Wood (1979 suggested that relative drought index (RDI is a positive index for indicating

  15. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications.

    Science.gov (United States)

    D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata

    2018-05-03

    We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.

  16. Development and Validation of a Genotype 3 Recombinant Protein based Immunoassay for Hepatitis E Virus Serology in Swine

    NARCIS (Netherlands)

    Poel, van der W.H.M.; Pavio, N.; Goot, van der J.; Es, van M.; Martin, M.; Engel, B.

    2014-01-01

    Hepatitis E virus (HEV) is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3) infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been

  17. Determination of yield related traits of sesame genotypes selected from world collection and mutant material

    International Nuclear Information System (INIS)

    Silme, R. S.; Cagirgan, M. I.

    2009-01-01

    Sesame (Sesamum indicum L.) is an important plant of Turkey that secondary gen center and very used of food industry's a lot of area. Mutation breeding of sesame research continued coordinately with IAEA since 1993. it is aimed in these breeding programmes to improve lines that have dehiscent capsule, determinate growth and resistance to wilting traits. This study was conducted in Antalya City, at Akdeniz University Agricultural Faculty experiment fields under second crop conditions in 2007. At this study, 19 genotypes selected from world sesame collection, 4 mutant genotypes and 2 local cultivars were sown. The experiments were conducted according to Complete Randomized Block Design with three replications. It was found that first flowering date varied between 35 to 45 days, 50% flowering date from 39 to 54 days, last flowering date from 63 to 88 days, first capsule date from 42 to 51 days, first capsule height from 44 to 116 cm, plant height from 102 to 177 cm, number of branch per plant from 0.1 to 2.7, number of pod per plant from 28 to 63, number of seeds in capsule 2.3-4.3 g, 1000 seed weight ranged from 2.3 to 4.3 g, seed yield per da from 18 to 77 kg. The highest yield per da (77 kg/da) was obtained from mutant genotype, wt-5.

  18. Strategy for selection of soybean genotypes tolerant to drought during germination.

    Science.gov (United States)

    Dantas, S A G; Silva, F C S; Silva, L J; Silva, F L

    2017-05-10

    Water deficit is the main reason for instability in the context of soybean culture. The development of strategies for the selection of more tolerant genotypes is necessary. These strategies include the use of polyethylene glycol 6000 solutions (PEG-6000) for conducting the germination test under conditions of water restriction. Thus, the objective of this study was to determine the osmotic potential and the main characteristics that promote the discrimination of soybean genotypes with regard to water stress tolerance during germination and the vigor test. Thirteen soybean cultivars were used. The seeds were allowed to germinate on sheets of germitest paper moistened in solution with PEG-6000, simulating different levels of water availability, which is expressed as osmotic potential (0.0, -0.2, -0.4, and -0.6 MPa). We assessed germination, length, and dry mass for seedlings and seeds, as well as reserve dynamics. Germination and variables related to the dynamics of reservation have great influence on the expression of variability in environments under stress. Among the different osmotic potentials, the -0.2 MPa was the most efficient for the expression of genetic variability among the cultivars. Conducting the germination test with PEG-6000 solution to -0.2 MPa was efficient for selecting soybean cultivars tolerant to water stress. This was accomplished by evaluating the percentage of germination, along with variables related to the dynamics of reservation.

  19. The effects of stabilizing and directional selection on phenotypic and genotypic variation in a population of RNA enzymes.

    Science.gov (United States)

    Hayden, Eric J; Bratulic, Sinisa; Koenig, Iwo; Ferrada, Evandro; Wagner, Andreas

    2014-02-01

    The distribution of variation in a quantitative trait and its underlying distribution of genotypic diversity can both be shaped by stabilizing and directional selection. Understanding either distribution is important, because it determines a population's response to natural selection. Unfortunately, existing theory makes conflicting predictions about how selection shapes these distributions, and very little pertinent experimental evidence exists. Here we study a simple genetic system, an evolving RNA enzyme (ribozyme) in which a combination of high throughput genotyping and measurement of a biochemical phenotype allow us to address this question. We show that directional selection, compared to stabilizing selection, increases the genotypic diversity of an evolving ribozyme population. In contrast, it leaves the variance in the phenotypic trait unchanged.

  20. Effective selection criteria for screening drought tolerant recombinant inbred lines of sunflower

    Directory of Open Access Journals (Sweden)

    Abdi Nishtman

    2013-01-01

    Full Text Available In this study, seventy two sunflower recombinant inbred lines were tested for their yielding ability under both water-stressed and well-watered states. The inbred lines were evaluated in a rectangular 8´9 lattice design with two replications in both well-watered and water-stressed conditions, separately. Eight drought tolerance indices including stability tolerance index (STI, mean productivity (MP, geometric mean productivity (GMP, harmonic mean (HM, stress susceptibility index (SSI, tolerance index (TOL, yield index (YI and yield stability index (YSI were calculated based on grain yield for every genotype. Results showed the highest values of mean productivity (MP index, geometric mean productivity (GMP, yield index (YI, harmonic mean (HM and stress tolerance index (STI indices for ‘C134a’ inbred line and least values of stress susceptibility index (SSI and tolerance (TOL for C61 inbred line. According to correlation of indices with yield performance under both drought stress and non-stress states and principle component analysis, indices including HM, MP, GMP and STI could properly distinguish drought tolerant sunflower inbred lines with high yield performance under both states. Cluster analysis of inbred lines using Ys, Yp and eight indices, categorized them into four groups including 19, 6, 26 and 19 inbred lines.

  1. Evaluation and Selection of Maize (Zea Mays L.) Genotypes Tolerant to Low N Soil

    Energy Technology Data Exchange (ETDEWEB)

    The, C. [West Africa Centre for Crop Improvement (WACCI), Legon, Accra (Ghana); Ngonkeu, M. L.; Zonkeng, C.; Apala, H. M. [Institute of Agricultural Research for Development (IRAD), Yaounde (Cameroon)

    2013-11-15

    The identification and/or the development of germplasm with traits which enhance N uptake and N use efficiency in low N soil could significantly sustain maize production on stress environments. The use of secondary traits highly correlated with grain yield and high heritability, could speed up the development of genotypes adapted to low N environments. Arbuscular mycorrhiza fungi are known to enhance P uptake, but its role on plant N nutrition has not been extensively studied. The study aimed to (i) identify tolerant and/or low N responsive genotypes (ii) measure the correlated response of grain yield with some agronomic plant characteristic under low N and under mycorrhiza inoculation (iii) measure the combining ability and the gene effects of the lines under low and high N and (iv) to identify stable and high yielding hybrids adapted to low and high N condition. Initial screening of 99 genotypes for two years identified 30 inbred lines that were evaluated in split plots for: grain yield, root volume, chlorophyll content, leaf area index, and mycorrhizal colonization. Significant genotype x soil N level interactions were obtained among the tested inbreds for all measured traits, except for chlorophyll content which exhibited similar ranking from one soil N level to another. In addition to selection for grain yield, 5 lines were retained for their good root volume, 4 for their chlorophyll content and stay green traits, 3 for their leaf area index and the last 3 for their mycorrhizal colonization. Diallel crosses among the 15 selected lines yielded 105 F1 hybrids evaluated in split plots, with 3 soil treatment levels (20 kg-N ha{sup -1}, 20 kg-N ha{sup -1} + mycorrhiza and 100 kg-N h{sup a-1}). Significant differences were detected among the 3 soil treatments as well as for genotypes x soil interaction for all measured traits. On 20 N plots, 10 hybrids yielded at least as good as the check hybrid: Expl{sub 24} x 87036 (3.0 t ha{sup -1}). Among the 20 parents

  2. Natural selection interacts with recombination to shape the evolution of hybrid genomes.

    Science.gov (United States)

    Schumer, Molly; Xu, Chenling; Powell, Daniel L; Durvasula, Arun; Skov, Laurits; Holland, Chris; Blazier, John C; Sankararaman, Sriram; Andolfatto, Peter; Rosenthal, Gil G; Przeworski, Molly

    2018-05-11

    To investigate the consequences of hybridization between species, we studied three replicate hybrid populations that formed naturally between two swordtail fish species, estimating their fine-scale genetic map and inferring ancestry along the genomes of 690 individuals. In all three populations, ancestry from the "minor" parental species is more common in regions of high recombination and where there is linkage to fewer putative targets of selection. The same patterns are apparent in a reanalysis of human and archaic admixture. These results support models in which ancestry from the minor parental species is more likely to persist when rapidly uncoupled from alleles that are deleterious in hybrids. Our analyses further indicate that selection on swordtail hybrids stems predominantly from deleterious combinations of epistatically interacting alleles. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Selection, Recombination and History in a Parasitic Flatworm (Echinococcus Inferred from Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    Haag KL

    1998-01-01

    Full Text Available Three species of flatworms from the genus Echinococcus (E. granulosus, E. multilocularis and E. vogeli and four strains of E. granulosus (cattle, horse, pig and sheep strains were analysed by the PCR-SSCP method followed by sequencing, using as targets two non-coding and two coding (one nuclear and one mitochondrial genomic regions. The sequencing data was used to evaluate hypothesis about the parasite breeding system and the causes of genetic diversification. The calculated recombination parameters suggested that cross-fertilisation was rare in the history of the group. However, the relative rates of substitution in the coding sequences showed that positive selection (instead of purifying selection drove the evolution of an elastase and neutrophil chemotaxis inhibitor gene (AgB/1. The phylogenetic analyses revealed several ambiguities, indicating that the taxonomic status of the E. granulosus horse strain should be revised

  4. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats.

    Science.gov (United States)

    Sacchi, Paola; Rasero, Roberto; Ru, Giuseppe; Aiassa, Eleonora; Colussi, Silvia; Ingravalle, Francesco; Peletto, Simone; Perrotta, Maria Gabriella; Sartore, Stefano; Soglia, Dominga; Acutis, Pierluigi

    2018-03-06

    The European Union has implemented breeding programmes to increase scrapie resistance in sheep. A similar approach can be applied also in goats since the K222 allele provides a level of resistance equivalent to that of ARR in sheep. The European Food Safety Authority stated that breeding for resistance could be offered as an option for Member States to control classical scrapie in goats. We assessed the impact of different breeding strategies on PRNP genotype frequencies using a mathematical model that describes in detail the evolution of K222 in two goat breeds, Chamois Coloured and Saanen. Different patterns of age structure and replacement rate were modelled as factors affecting response to selection. Breeding for scrapie resistance can be implemented in goats, even though the initial K222 frequencies in these breeds are not particularly favourable and the rate at which the resistant animals increase, both breeding and slaughtered for meat production, is slow. If the goal is not to achieve the fixation of resistance allele, it is advisable to carry out selection only until a desired frequency of K222-carriers has been attained. Nucleus selection vs. selection on the overall populations is less expensive but takes longer to reach the desired output. The programme performed on the two goat breeds serves as a model of the response the selection could have in other breeds that show different initial frequencies and population structure. In this respect, the model has a general applicability.

  5. Selectivity control of photosensitive structures based on gallium arsenide phosphide solid solutions by changing the rate of surface recombination

    International Nuclear Information System (INIS)

    Tarasov, S A; Andreev, M Y; Lamkin, I A; Solomonov, A V

    2016-01-01

    In this paper, we demonstrate the effect of surface recombination on spectral sensitivity of structures based on gallium arsenide phosphide solid solutions. Simulation of the effect for structures based on a p-n junction and a Schottky barrier was carried out. Photodetectors with different rates of surface recombination were fabricated by using different methods of preliminary treatment of the semiconductor surface. We experimentally demonstrated the possibility to control photodetector selectivity by altering the rate of surface recombination. The full width at half maximum was reduced by almost 4 times, while a relatively small decrease in sensitivity at the maximum was observed. (paper)

  6. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom......The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations...... and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted...... in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon...

  7. SNP calling using genotype model selection on high-throughput sequencing data

    KAUST Repository

    You, Na

    2012-01-16

    Motivation: A review of the available single nucleotide polymorphism (SNP) calling procedures for Illumina high-throughput sequencing (HTS) platform data reveals that most rely mainly on base-calling and mapping qualities as sources of error when calling SNPs. Thus, errors not involved in base-calling or alignment, such as those in genomic sample preparation, are not accounted for.Results: A novel method of consensus and SNP calling, Genotype Model Selection (GeMS), is given which accounts for the errors that occur during the preparation of the genomic sample. Simulations and real data analyses indicate that GeMS has the best performance balance of sensitivity and positive predictive value among the tested SNP callers. © The Author 2012. Published by Oxford University Press. All rights reserved.

  8. Effect of participatory selection of varieties on the identification of outstanding common bean genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Alexis Lamz Piedra

    2017-10-01

    Full Text Available Among the main factors affecting bean production is poor distribution of varieties for different environmental conditions in which its are grown. The aim of this work was to evaluate the impact of participatory selection of foreign genetic materials and national commercial and pre-commercial common bean in identifying genotypes for their outstanding performance and resistance to common bacteriosis (Xanthomonas campestris pv. phaseoli (Smith Dye (Xcp. In the "El Mulato" farm belonging to the Empowered Cooperative of Credit and Services (CCSF "Orlando Cuellar" in the municipality San José de las Lajas, Mayabeque, two experiments were conducted. In the first one, 15 genotypes were planted in 13 September 2014 (early season in experimental plots to develop a diversity Fair and evaluate the natural incidence of common bean bacteriosis. In the second experiment, they were sown on 25 December (late season the materials selected by farmers with superior agronomic performance (7 genotypes to validate the stability of its performance. Among the results, an effective range of 93,33 % between the selected materials and selective criteria that this diversity was identified were high performance, resistance to common bacteriosis and color of beans. It was found that the selection of the diversity of beans by farmers is not influenced by the origin of materials and participatory selection identified common bean genotypes with high yield potential and stability between planting seasons.

  9. The effects of recombination, mutation and selection on the evolution of the Rp1 resistance genes in grasses.

    Science.gov (United States)

    Jouet, Agathe; McMullan, Mark; van Oosterhout, Cock

    2015-06-01

    Plant immune genes, or resistance genes, are involved in a co-evolutionary arms race with a diverse range of pathogens. In agronomically important grasses, such R genes have been extensively studied because of their role in pathogen resistance and in the breeding of resistant cultivars. In this study, we evaluate the importance of recombination, mutation and selection on the evolution of the R gene complex Rp1 of Sorghum, Triticum, Brachypodium, Oryza and Zea. Analyses show that recombination is widespread, and we detected 73 independent instances of sequence exchange, involving on average 1567 of 4692 nucleotides analysed (33.4%). We were able to date 24 interspecific recombination events and found that four occurred postspeciation, which suggests that genetic introgression took place between different grass species. Other interspecific events seemed to have been maintained over long evolutionary time, suggesting the presence of balancing selection. Significant positive selection (i.e. a relative excess of nonsynonymous substitutions (dN /dS >1)) was detected in 17-95 codons (0.42-2.02%). Recombination was significantly associated with areas with high levels of polymorphism but not with an elevated dN /dS ratio. Finally, phylogenetic analyses show that recombination results in a general overestimation of the divergence time (mean = 14.3%) and an alteration of the gene tree topology if the tree is not calibrated. Given that the statistical power to detect recombination is determined by the level of polymorphism of the amplicon as well as the number of sequences analysed, it is likely that many studies have underestimated the importance of recombination relative to the mutation rate. © 2015 John Wiley & Sons Ltd.

  10. A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Directory of Open Access Journals (Sweden)

    Lydia Dmochewitz

    Full Text Available BACKGROUND: The C3bot1 protein (~23 kDa from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.

  11. Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis

    International Nuclear Information System (INIS)

    Shamim, F.; Waheed, A.; Saqlan, S.M.; Athar, H.U.R.

    2014-01-01

    Drought is one of the most important abiotic stresses reducing crop growth and yield of tomato. Development of water stress tolerant cultivars through screening and selection is one important strategy to overcome this problem. In the present study, seeds of 120 local and exotic lines of tomato were allowed to germinate at varying levels of polyethylene glycol (PEG8000) induced water stress (PEG8000 0, 2.5%, 5.0% and 7.5%) for two weeks. Increasing PEG concentrations in the growth medium (water stress) caused a consistent decrease in seed germination percentage and seedling growth of all tomato cultivars. Moreover, a significant amount of genetic variability was found in all attributes of 120 genotypes of tomato. All lines/cultivars of tomato were ranked on the basis of relative water stress tolerance using 13 morphometric traits and categorized in four groups (tolerant, moderately tolerant, moderately sensitive, and sensitive) through multivariate analysis. Of 120 lines, 18, 25, 29 and 48 lines were ranked as tolerant, moderately tolerant, moderately sensitive and sensitive respectively. The germination percentage or speeds of germination were not found as effective indicator of genotypic differences for water stress at the seedling stage. Moreover, degree of water stress tolerance at the germination and seedling growth stage did not maintain in all tomato lines. Thus, it is not certain whether such variation is detectable at the later vegetative or reproductive growth stages. This needs to be further investigated. Overall, lines 19905, 19906, LA0716, and LA0722 were found to be water stress tolerant at least at early growth stages. (author)

  12. Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability.

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  13. Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  14. Neutralizing antibodies induced by recombinant virus-like particles of enterovirus 71 genotype C4 inhibit infection at pre- and post-attachment steps.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Ku

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is a major causative agent of hand, foot and mouth disease, which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Antibodies elicited by experimental EV71 vaccines could neutralize infection in vitro and passively protect animal models from lethal challenge, indicating that neutralizing antibodies play an essential role in protection. However, how neutralizing antibodies inhibit infection in vitro remains unclear. METHODS/FINDINGS: In the present study, we explored the mechanisms of neutralization by antibodies against EV71 virus-like particles (VLPs. Recombinant VLPs of EV71 genotype C4 were produced in insect cells using baculovirus vectors. Immunization with the VLPs elicited a high-titer, EV71-specific antibody response in mice. Anti-VLP mouse sera potently neutralized EV71 infection in vitro. The neutralizing antibodies in the anti-VLP mouse sera were found to target mainly an extremely conserved epitope (FGEHKQEKDLEYGAC located at the GH loop of the VP1 protein. The neutralizing anti-VLP antisera were able to inhibit virus binding to target cells efficiently. In addition, post-attachment treatment of virus-bound cells with the anti-VLP antisera also neutralized virus infection, although the antibody concentration required was higher than that of the pre-attachment treatment. CONCLUSIONS: Collectively, our findings represent a valuable addition to the understanding of mechanisms of EV71 neutralization and have strong implications for EV71 vaccine development.

  15. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  16. Genotype-by-environment interactions leads to variable selection on life-history strategy in Common Evening Primrose (Oenothera biennis).

    Science.gov (United States)

    Johnson, M T J

    2007-01-01

    Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.

  17. Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua

    Science.gov (United States)

    Wetzstein, Hazel Y.; Porter, Justin A.; Janick, Jules; Ferreira, Jorge F. S.; Mutui, Theophilus M.

    2018-01-01

    Artemisinin, produced in the glandular trichomes of Artemisia annua L. is a vital antimalarial drug effective against Plasmodium falciparum resistant to quinine-derived medicines. Although work has progressed on the semi-synthetic production of artemisinin, field production of A. annua remains the principal commercial source of the compound. Crop production of artemisia must be increased to meet the growing worldwide demand for artemisinin combination therapies (ACTs) to treat malaria. Grower artemisinin yields rely on plants generated from seeds from open-pollinated parents. Although selection has considerably increased plant artemisinin concentration in the past 15 years, seed-generated plants have highly variable artemisinin content that lowers artemisinin yield per hectare. Breeding efforts to produce improved F1 hybrids have been hampered by the inability to produce inbred lines due to self-incompatibility. An approach combining conventional hybridization and selection with clonal propagation of superior genotypes is proposed as a means to enhance crop yield and artemisinin production. Typical seed-propagated artemisia plants produce less than 1% (dry weight) artemisinin with yields below 25 kg/ha. Genotypes were identified producing high artemisinin levels of over 2% and possessing improved agronomic characteristics such as high leaf area and shoot biomass production. Field studies of clonally-propagated high-artemisinin plants verified enhanced plant uniformity and an estimated gross primary productivity of up to 70 kg/ha artemisinin, with a crop density of one plant m-2. Tissue culture and cutting protocols for the mass clonal propagation of A. annua were developed for shoot regeneration, rooting, acclimatization, and field cultivation. Proof of concept studies showed that both tissue culture-regenerated plants and rooted cutting performed better than plants derived from seed in terms of uniformity, yield, and consistently high artemisinin content. Use of

  18. [Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].

    Science.gov (United States)

    Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing

    2010-10-01

    This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.

  19. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

    OpenAIRE

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broad...

  20. Selection of autochthonous sour cherry (Prunus cerasus L. genotypes in Feketić region

    Directory of Open Access Journals (Sweden)

    Radičević Sanja

    2012-01-01

    Full Text Available Autochthonous genotypes of fruit species are very important source of genetic variability and valuable material for breeding work. Fruit Research Institute-Čačak has a long tradition of studying autochthonous genotypes of temperate fruits sporadically spread and preserved in some localities in Serbia. Over 2005-2006, the following properties of nine autochthonous sour cherry genotypes grown in Feketic region were investigated: flowering and ripening time, pomological properties, biochemical composition of fruits and field resistance to causal agents of cherry diseases - cherry leaf spot (Blumeriella jaapii (Rehm. v. Arx., shot-hole (Clasterosporium carpophilum (Lév. Aderh. and brown rot (Monilinia laxa /Ader et Ruhl./ Honey ex Whetz.. The genotypes were tested for the presence of Prune dwarf virus and Prunus necrotic ring spot virus. In majority of genotypes fruits were large, with exceptional organoleptical properties, whereas ripening time was in the first ten or twenty days of June. The highest fruit weight was observed in F-1 genotype (8.1 g. The highest soluble solids and total sugars content were found in F- 4 genotype (17.60% and 14.25%, respectively. As for field resistance to causal agents of diseases and good pomo-technological properties, F-1, F-2, F-3, F-7 and F-8 genotypes were singled out. [Projekat Ministarstva nauke Republike Srbije, br. TR31064

  1. Adaptive mutations enhance assembly and cell-to-cell transmission of a high-titer hepatitis C virus genotype 5a Core-NS2 JFH1-based recombinant

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Prentoe, Jannick; Meredith, Luke W

    2015-01-01

    UNLABELLED: Recombinant hepatitis C virus (HCV) clones propagated in human hepatoma cell cultures yield relatively low infectivity titers. Here, we adapted the JFH1-based Core-NS2 recombinant SA13/JFH1C3405G,A3696G (termed SA13/JFH1orig), of the poorly characterized genotype 5a, to Huh7.5 cells......-titer production of diverse HCV strains would be advantageous. Our study offers important functional data on how cell culture-adaptive mutations identified in genotype 5a JFH1-based HCVcc permit high-titer culture by affecting HCV genesis through increasing virus assembly and HCV fitness by enhancing the virus...... specific infectivity and cell-to-cell transmission ability, without influencing the biophysical particle properties. High-titer HCVcc like the one described in this study may be pivotal in future vaccine-related studies where large quantities of infectious HCV particles are necessary....

  2. Tuberous root characteristics of sweet potato clones using multivariate techniques for selection of superior genotypes

    Directory of Open Access Journals (Sweden)

    Jackson da Silva

    2018-01-01

    Full Text Available The objective of this study was to evaluate the tuberous root characteristics of sweet potato clones using multivariate techniques for selection of superior genotypes, the present research was carried out in the Experimental area of the Plant Genetic Breeding Sector of the Agrarian Sciences Center of the Federal University of Alagoas (SMGP/CECA/UFAL. Were evaluated 44 new clones originated from progenies of half-siblings and germanic siblings, in addition to the cultivar Sergipana Vermelha, in lines of 5 m in length, spacing 1.0 mx 0.5 m, totaling a total area of 5 m²/clone. The harvest was done at 120 days after planting the branches, in which the production of non-commercial tuberous roots (PRTNC was evaluated, production of commercial tuberous roots (PRTC, production of tuberous roots (PTRT, total number of tuberous roots (NTRT, average weight of commercial tuberous roots (PMRTC, predominant color of tuberous root skin (CPPERT and predominant color of the tuberosal root pulp (CPPORT. Descriptive statistics, correlation technique and principal component analysis were used. It was observed that clones 23, 36, 17 and 37 presented interesting agronomic characteristics, being recommended for the cultivation and in the analysis of main components, the variables PTRT and PRTC presented greater importance, reflecting that they discriminate the clones satisfactorily.

  3. Genotype selection of Pouteria sapota (Jacq. H.E. Moore & Stearn, under a multivariate framework

    Directory of Open Access Journals (Sweden)

    Renan Mercuri Pinto

    2016-07-01

    Full Text Available The pouteria sapota, also popularly known as sapote or mamey sapote, is a fruit tree of sapotaceae family originally from the tropical region of Central America with a great importance due to the almost complete utilization of the tree (fruit, seeds and wood by industries. Thus, the study of its features becomes indispensable for selecting the most promising genotypes to increase the profitability of its production. In this study, it was used a dataset of 63 sapote trees placed in the botanical garden of Centro Agronómico Tropical de Investigación y Enseñanza (CATIE, located in Turrialba, Costa Rica. 17 quantitative characteristics were measured from trees, in order to evaluate the yield potential through the application of two multivariate statistical techniques: factor analysis (FA and cluster analysis (CA. Firstly, the FA was performed and the 17 initial characteristics were reduced to four common factors that might describe particular characteristics like “fruit”, “seed”, “wood” and “leaf”. Thereafter, a CA was performed, with scores of FA, allowing the formation of five groups of trees with different traits. This methodology revealed the most promising trees in the economic point of view for every industry that uses the tree as raw material.

  4. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding.

    Science.gov (United States)

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.

  5. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes

    Directory of Open Access Journals (Sweden)

    Nathalie Kin

    2015-05-01

    Full Text Available Human coronavirus OC43 (HCoV-OC43 is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses.

  6. Selection of new clones of linalool chemotype from genetic recombination in Lippia alba

    Directory of Open Access Journals (Sweden)

    Elcio Rodrigo Rufino

    2012-01-01

    Full Text Available The aromatic and medicinal species Lippia alba is vigorous and rugged native to the South America (Atlantic Rainforest. Because it is an allogamous and self-incompatible species, natural populations have high morphological and chemical variability. This work had as objective to conduct a preliminary screening to identify new promising clones from a novel (recombinant base population of Lippia alba with regard to its agronomic and phytochemical traits, using the linalool oil or chemotype as model. The two superior linalool clones, obtained by collection, were used as controls. Traits evaluated included: dry mass of leaves (DML, oil yield percentage (EOY%, oil production per plant (OP, and linalool percentage (LN%. Forty linalool chemotype clones were evaluated in three experiments, in a random block design with four replicates and four cuttings (clones per plot. Besides means comparisons, multivariate analysis was used in order to aid in the preliminary selection of clones. There were positive correlations from moderate to strong for DML vs. EOY%, OP vs. EOY% and DML vs. OP. Linalool clones superior or similar to both controls were identified for the DML, EOY%, OP, and LN% traits (univariate analyses, aimed at further validating experimentation. Five distinct groups were defined in the cluster analysis (UPGMA, each containing subgroups as well.

  7. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    Science.gov (United States)

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  8. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes.

    Science.gov (United States)

    Price, Morgan N; Arkin, Adam P

    2015-12-15

    Free-living bacteria are usually thought to have large effective population sizes, and so tiny selective differences can drive their evolution. However, because recombination is infrequent, "background selection" against slightly deleterious alleles should reduce the effective population size (Ne) by orders of magnitude. For example, for a well-mixed population with 10(12) individuals and a typical level of homologous recombination (r/m = 3, i.e., nucleotide changes due to recombination [r] occur at 3 times the mutation rate [m]), we predict that Ne is selection should be sufficient to drive evolution if Ne × s is >1, where s is the selection coefficient. We found that this remains approximately correct if background selection is occurring or when population structure is present. Overall, we predict that even for free-living bacteria with enormous populations, natural selection is only a significant force if s is above 10(-7) or so. Because bacteria form huge populations with trillions of individuals, the simplest theoretical prediction is that the better allele at a site would predominate even if its advantage was just 10(-9) per generation. In other words, virtually every nucleotide would be at the local optimum in most individuals. A more sophisticated theory considers that bacterial genomes have millions of sites each and selection events on these many sites could interfere with each other, so that only larger effects would be important. However, bacteria can exchange genetic material, and in principle, this exchange could eliminate the interference between the evolution of the sites. We used simulations to confirm that during multisite evolution with realistic levels of recombination, only larger effects are important. We propose that advantages of less than 10(-7) are effectively neutral. Copyright © 2015 Price and Arkin.

  9. Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination.

    Science.gov (United States)

    Esposito, Fabrizio; Capitelli, Mario

    2009-12-31

    Formation of rovibrational excited molecular hydrogen from atomic recombination has been computationally studied using three body dynamics and orbiting resonance theory. Each of the two methods in the frame of classical mechanics, that has been used for all of the calculations, appear complementary rather than complete, with similar values in the low temperature region, and predominance of three body dynamics for temperatures higher than about 1000 K. The sum of the two contributions appears in fairly good agreement with available data from the literature. Dependence of total recombination on the temperature over pressure ratio is stressed. Detailed recombination toward rovibrational states is presented, with large evidence of importance of rotation in final products. Comparison with gas-surface recombination implying only physiadsorbed molecules shows approximate similarities at T = 5000 K, being on the contrary different at lower temperature.

  10. Genomic selection strategies in breeding programs: Strong positive interaction between application of genotypic information and intensive use of young bulls on genetic gain

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Sørensen, Morten Kargo; Berg, Peer

    2012-01-01

    We tested the following hypotheses: (i) breeding schemes with genomic selection are superior to breeding schemes without genomic selection regarding annual genetic gain of the aggregate genotype (ΔGAG), annual genetic gain of the functional traits and rate of inbreeding per generation (ΔF), (ii......) a positive interaction exists between the use of genotypic information and a short generation interval on ΔGAG and (iii) the inclusion of an indicator trait in the selection index will only result in a negligible increase in ΔGAG if genotypic information about the breeding goal trait is known. We examined......, greater contributions of the functional trait to ΔGAG and lower ΔF than the two breeding schemes without genomic selection. Thus, the use of genotypic information may lead to more sustainable breeding schemes. In addition, a short generation interval increases the effect of using genotypic information...

  11. Selection of lettuce genotypes for phosphorus uptaking efficiency - DOI: 10.4025/actasciagron.v25i1.2348

    OpenAIRE

    Cock, Wallace Rudeck Sthel; UENF; Tardin, Flávio Dessaune; UENF; Amaral Júnior, Antônio Teixeira do; UENF; Scapim, Carlos Alberto; UEM; Amaral, José Francisco Teixeira do; UFES; Cunha, Gláucio de Mello; UFES; Bressan-Smith, Ricardo Enrique; UENF; Pinto, Ronald José Barth; UEM

    2008-01-01

    Nineteen late flowering lettuce genotypes from the UENF horticultural germoplasm bank were evaluated for phosphorus utilization efficiency under a 10 mg.dm-3 P level. A biometrical analysis of genetic parameters and genetic, phenotypic and environment correlations between shoot and root dry matter production, P content in roots and shoot Puptake, P-translocation and P utilization efficiency was undertaken. Genetic variability, which could be promising to obtain positive response to selection,...

  12. Toxoplasma gondii seroprevalence and genotype diversity in select wildlife species from the southeastern United States

    Directory of Open Access Journals (Sweden)

    Richard W. Gerhold

    2017-10-01

    Full Text Available Abstract Background Toxoplasma gondii is a widespread protozoan parasite that infects humans and other animals. Previous studies indicate some genotypes of T. gondii are more frequently isolated in wildlife than agricultural animals, suggesting a wild/feral animal diversity model. To determine seroprevalence and genetic diversity of T. gondii in southeastern US wildlife, we collected sera from 471 wild animals, including 453 mammals and 18 birds, between 2011 and 2014. These serum samples were assayed for T. gondii infection using the modified agglutination test (MAT. Heart or tongue tissues from 66 seropositive animals were bioassayed in mice and 19 isolates were obtained. The isolated parasites were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method employing 10 genetic markers. Results One hundred and ninety-six of 471 samples (41.6% had a titer ≥1:32 and were considered positive for T. gondii infection. Of 453 mammals, 195 (43% were seropositive, whereas only one (5.6% of 18 birds was seropositive. The seroprevalence in mammals was significantly higher than in the birds. Mammalian hosts with adequate samples size (≥ 20 comprised white-tailed deer (n = 241, feral hogs (n = 100, raccoons (n = 34 and coyotes (n = 22, with seroprevalences of 41.0%, 51.0%, 50.0% and 72.7%, respectively. Coyotes had significantly higher seroprevalence than the white-tailed deer. Genotyping revealed five distinct genotypes, including the ToxoDB PCR-RFLP genotype #5 (a.k.a type 12 for 15 isolates, genotype #3 (a.k.a. type II for 1 isolate, and genotypes #154, #167 and #216, each for 1 isolate. The results showed moderate to high infection rates of T. gondii in white-tailed deer, feral hogs, raccoons and coyotes. Genotyping results indicated limited genetic diversity and a dominance of genotype #5, which has been reported as a major type in wildlife in North America. Conclusions We conclude that T. gondii

  13. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  14. Selective host range restriction of goat cells for recombinant murine leukemia virus and feline leukemia virus type A.

    OpenAIRE

    Fischinger, P J; Thiel, H J; Blevins, C S; Dunlop, N M

    1981-01-01

    We isolated a strain of normal goat fibroblasts which was uniquely selective in that it allowed the replication of xenotropic murine leukemia virus but not polytropic recombinant murine leukemia virus. In addition, feline leukemia virus type A replication was severely diminished in these goat cells, whereas feline leukemia virus type B and feline endogenous RD114-CCC viruses replicated efficiently. No other known cells exhibit this pattern of virus growth restriction. These goat cells allow t...

  15. Genomic Selection Using Genotyping-By-Sequencing Data with Different Coverage Depth in Perennial Ryegrass

    DEFF Research Database (Denmark)

    Cericola, Fabio; Fé, Dario; Janss, Luc

    2015-01-01

    the diagonal elements by estimating the amount of genetic variance caused by the reduction of the coverage depth. Secondly we developed a method to scale the relationship matrix by taking into account the overall amount of pairwise non-missing loci between all families. Rust resistance and heading date were......Genotyping by sequencing (GBS) allows generating up to millions of molecular markers with a cost per sample which is proportional to the level of multiplexing. Increasing the sample multiplexing decreases the genotyping price but also reduces the numbers of reads per marker. In this work we...... investigated how this reduction of the coverage depth affects the genomic relationship matrices used to estimated breeding value of F2 family pools in perennial ryegrass. A total of 995 families were genotyped via GBS providing more than 1.8M allele frequency estimates for each family with an average coverage...

  16. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  17. Stress selection indices an acceptable tool to screen superior wheat genotypes under irrigated and rain-fed conditions

    International Nuclear Information System (INIS)

    Ullah, H.; Alam, M.

    2014-01-01

    The climate is changing day by day and water scarcity has developed a milieu for the breeder to think accordingly. Twenty-four advanced wheat lines along with four prominent check cultivars were evaluated independently in irrigated (IRE) and rain-fed environments (RFE) for yield related traits at Khyber Pakhtunkhwa, Pakistan during 2010-11, using randomized complete block design with three replications under each test environment. Analysis of variance across the two environments exhibited highly significant variation (p=0.01) among the genotypes for yield and associated traits. Differences among the two test environments (E) were significant for tillers m/sup -2/, 1000-grain weight and harvest index. Genotype * environment interaction (G*E) effects were significant only for 1000-grain weight and grain yield. There was general reduction in 1000-grain weight, biological yield and grain yield of all genotypes under RFE as compared to IRE. Magnitude of heritabilities estimates were greater for tillers m/sup -2/, spikelets spike-1 and grains spike-1 under IRE than RFE. Heritabilities were greater in RFE than IRE for spike length (0.31 vs 0.26), biological yield (0.80 vs 0.22), grain yield (0.94 vs 0.20) and harvest index (0.41 and 0.39). Relative high expected selection response was recorded for all characters under IRE except spike length, grains spike-1 and grain yield. In IRE, highest grain yield was produced by genotypes BRF-7 (5123 kg ha/sup -1/), B-VI(N)16 (5111 kg ha/sup -1/), B-IV(N)1 (5086 kg ha/sup -1/) and B-VI(N)5 (5049 kg ha/sup -1/), while genotypes B-VI(N)5 (4649 kg ha/sup -1/), B-IV(N)1 (4595 kg ha/sup -1/), BRF-7 (4486 kg ha/sup -1/) and B-IV(N)16 (4462 kg ha/sup -1/) were high yielding under RFE. Prominent stress selection indices used in the experiments were mean productivity (MP), tolerance (TOL), stress tolerance index (STI), trait index (TI) and trait stability index (TSI). MP and STI were the efficient and reliable selection indices in both

  18. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    Science.gov (United States)

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-05-01

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  20. dbVOR: a database system for importing pedigree, phenotype and genotype data and exporting selected subsets.

    Science.gov (United States)

    Baron, Robert V; Conley, Yvette P; Gorin, Michael B; Weeks, Daniel E

    2015-03-18

    When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources. We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format. dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register . Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html .

  1. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  2. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies

    DEFF Research Database (Denmark)

    Noh, Soo Min; Shin, Seunghyeon; Min Lee, Gyun

    2018-01-01

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1...... and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated...... in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation...

  3. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  4. Selective constraints, molecular recombination structure and phylogenetic reconstruction of isometric plant RNA viruses of the families Luteoviridae and Tymoviridae.

    Science.gov (United States)

    Boulila, Moncef

    2011-02-01

    In an effort to enhance the knowledge on molecular evolution of currently the known members of the families Luteoviridae and Tymoviridae, in-depth molecular investigations in the entire genome of 147 accessions retrieved from the international databases, were carried out. Two algorithms (RECCO and RDP version 3.31β) adapted to the mosaic structure of viruses were utilized. The recombination frequency along the sequences was dissected and demonstrated that the three virus genera of the family Luteoviridae comprise numerous members subjected to recombination. It has pointed out that the major viruses swapped a few but long genomic segments. In addition, in Barley yellow dwarf virus, heredity material might be exchanged between two different serotypes. Even more, putative recombination events occurred between two different genera. Based on Fisher's Exact Test of Neutrality, positive selection acting on protein expression was detected only in the poleroviruses Cereal yellow dwarf virus, Potato leafroll virus and Wheat yellow dwarf virus. In contrast, several components of the family Tymoviridae were highly recombinant. Genomic portion exchange arose in many positions consisting of short fragments. Furthermore, no positive selection was detected. The evolutionary history showed, in the Luteoviridae, that all screened isolates split into three clusters corresponding to the three virus genera forming this family. Moreover, in the serotype PAV of Barley yellow dwarf virus, two major clades corresponding to PAV-USA and PAV-China, were delineated. Similarly, in the Tymoviridae, all analyzed isolates fell into four groups corresponding to the three virus genera composing this family along with the unclassified Tymoviridae. Inferred phylogenies reshuffled the existing classification and showed that Wheat yellow dwarf virus-RPV was genetically closely related to Cereal yellow dwarf virus and the unclassified Tymoviridae Grapevine syrah virus-1 constituted an integral part of

  5. Does selection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems?

    Science.gov (United States)

    Thoa, Ngo Phu; Ninh, Nguyen Huu; Knibb, Wayne; Nguyen, Nguyen Hong

    2016-02-19

    This study assessed whether selection for high growth in a challenging environment of medium salinity produces tilapia genotypes that perform well across different production environments. We estimated the genetic correlations between trait expressions in saline and freshwater using a strain of Nile tilapia selected for fast growth under salinity water of 15-20 ppt. We also estimated the heritability and genetic correlations for new traits of commercial importance (sexual maturity, feed conversion ratio, deformity and gill condition) in a full pedigree comprising 36,145 fish. The genetic correlations for the novel characters between the two environments were 0.78-0.99, suggesting that the effect of genotype by environment interaction was not biologically important. Across the environments, the heritability for body weight was moderate to high (0.32-0.62), indicating that this population will continue responding to future selection. The estimates of heritability for sexual maturity and survival were low but significant. The additive genetic components also exist for FCR, gill condition and deformity. Genetic correlations of harvest body weight with sexual maturity were positive and those between harvest body weight with FCR were negative. Our results indicate that the genetic line selected under a moderate saline water environment can be cultured successfully in freshwater systems.

  6. Trait based selection of superior Kodo millet (Paspalum scrobiculatum L.) genotypes

    OpenAIRE

    A.Subramanian, A.Nirmalakumari and P.Veerabadhiran

    2010-01-01

    One hundred and eighty eight germ plasm accessions of Kodo millet (Paspalum scrobiculatum L.) were evaluated in a fieldstudy to assess genetic variability, heritability and genetic advance for eight yield component traits. The ANOVA revealedthat there were significant differences among the accessions for all the traits studied. High genotypic variance, phenotypicvariance, GCV and PCV were observed for dry fodder yield, plant height and grain yield per plant. Broad sense heritabilityranged fro...

  7. The Physiological Response of Soybean Genotypes to VAM Inoculation on Selected Drought Stress Levels

    Directory of Open Access Journals (Sweden)

    HAPSOH

    2006-06-01

    Full Text Available Present research was aimed to study physiological changes of soybean which were inoculated with vesicular arbuscular mycorrhizal fungi (VAM. Glomus etunicatum was exposed to moderate and severe drought condition. Symbiotic association with VAM improved adaptability as it was shown by the increasing leaf proline content. The MLG 3474 and Sindoro are the more tolerant genotypes while the responses of plant to VAM on improving the adaptability to drought were larger on Lokon.

  8. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  9. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  10. A non-destructive genotyping system from a single seed for marker-assisted selection in watermelon.

    Science.gov (United States)

    Meru, G; McDowell, D; Waters, V; Seibel, A; Davis, J; McGregor, C

    2013-03-11

    Genomic tools for watermelon breeding are becoming increasingly available. A high throughput genotyping system would facilitate the use of DNA markers in marker-assisted selection. DNA extraction from leaf material requires prior seed germination and is often time-consuming and cost prohibitive. In an effort to develop a more efficient system, watermelon seeds of several genotypes and various seed sizes were sampled by removing ⅓ or ½ sections from the distal ends for DNA extraction, while germinating the remaining proximal parts of the seed. Removing ⅓ of the seed from the distal end had no effect on seed germination percentage or seedling vigor. Different DNA extraction protocols were tested to identify a method that could yield DNA of sufficient quality for amplification by polymerase chain reaction. A sodium dodecyl sulfate extraction protocol with 1% polyvinylpyrrolidone yielded DNA that could be amplified with microsatellite primers and was free of pericarp contamination. In this study, an efficient, non-destructive genotyping protocol for watermelon seed was developed.

  11. Correlation study of resistance components in the selection of Capsicum genotypes resistant to the fungus Colletotrichum gloeosporioides.

    Science.gov (United States)

    Maracahipes, A C; Correa, J W S; Teodoro, P E; Araújo, K L; Barelli, M A A; Neves, L G

    2017-08-17

    Anthracnose is among the major diseases of the Capsicum culture. It is caused by different species of the genus Colletotrichum, which may result in major damages to the cultivation of this genus. Studies aiming to search for cultivars resistant to diseases are essential to reduce financial and agricultural losses. The objective of this study was to evaluate the correlation between the variables analyzed to select Capsicum genotypes resistant to the fungus Colletotrichum gloeosporioides. The experimental design was completely randomized blocks with three replications, 88 treatments, four ripe fruits, and four unripe fruits per replication. Accessions of Capsicum from the Germplasm Active Bank of Universidade do Estado de Mato Grosso (UNEMAT) were evaluated as for resistance to the fungus. Fruits were collected from each plot and taken to the laboratory for disinfestation. A lesion was performed in the middle region of the fruit using a sterile needle, where a spore suspension drop, adjusted to 10 6 spores/mL, was deposited. An ultrapure water drop was deposited into control fruits. The fruits were placed in humid chambers, and the evaluation was performed by measuring the diameter and the length of lesions using a caliper for 11 days. After data were obtained, analyses of variance, correlation, and path analysis were performed using the GENES software and R. According to the likelihood-ratio test, the effects of genotypes (G), fruit stage (F), and its interaction (G x F) were significant (P < 0.05). There were differences between the magnitudes of genotype correlations according to fruit stage. Different variables must be taken into account for an indirect selection in this culture in function of fruit stage since the variable AUDPC is an important criterion for selecting resistant accessions. We found through the path analysis that the variables DULRD and DULRL exerted the greatest effects on AUDPC.

  12. Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support.

    Science.gov (United States)

    Schellenberg, Matthew J; Petrovich, Robert M; Malone, Christine C; Williams, R Scott

    2018-03-25

    Recombinant protein expression systems that produce high yields of pure proteins and multi-protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X-ray crystallography and cryo-electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion-tag to generate recombinant proteins using suspension-cultured HEK293F cells. YFP is a dual-function tag that enables direct visualization and fluorescence-based selection of high expressing clones for and rapid purification using a high-stringency, high-affinity anti-GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression. Published 2018. This article is a US Government work and is in the public domain in the USA.

  13. Directed Selection of Recombinant Human Monoclonal Antibodies to Herpes Simplex Virus Glycoproteins from Phage Display Libraries

    Science.gov (United States)

    Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.

    1995-07-01

    Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.

  14. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates

    Directory of Open Access Journals (Sweden)

    Liang Hong-Erh

    2009-07-01

    Full Text Available Abstract Background Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeting vectors where the two loxP sites are placed far apart. These limitations have been overcome in the recent past by using homologous recombination of bacterial artificial chromosomes (BACs in Escherichia coli to produce large targeting vector containing two different loxP-flanked selection cassettes so that a single targeting event is sufficient to introduce loxP-sites a great distances into the mouse genome. However, the final targeted allele should be free of selection cassettes and screening for correct removal of selection cassettes can be a laborious task. Therefore, we developed a new strategy to rapidly identify ES cells containing the desired allele. Results Using BAC recombineering we generated a single targeting vector which contained two different selection cassettes that were flanked by loxP-loxP sites or by FRT-FRT/loxP sites so that they could be deleted sequentially by Cre- and FLPe-recombinases, respectively. Transfected ES cells were first selected in the presence of both antibiotics in vitro before correctly targeted clones were identified by Southern blot. After transfection of a Cre recombinase expression plasmid ES cell clones were selected on replicate plates to identify those clones which maintained the FRT-FRT/loxP flanked cassette and lost the loxP-loxP flanked cassette. Using this strategy facilitated the identification of ES cell clones containing the desired allele before blastocyst injection. Conclusion The strategy of ES cell cultures in replicate plates proved to be very efficient in identifying ES cells that had

  15. L-Lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches.

    Science.gov (United States)

    Karkovska, Maria; Smutok, Oleh; Stasyuk, Nataliya; Gonchar, Mykhailo

    2015-11-01

    In the recent years, nanotechnology is the most developing branch due to a wide variety of potential applications in biomedical, biotechnological and agriculture fields. The binding nanoparticles with various biological molecules makes them attractive candidates for using in sensor technologies. The particularly actual is obtaining the bionanomembranes based on biocatalytic elements with improved sensing characteristics. The aim of this investigation is to study the properties of microbial L-lactate-selective sensor based on using the recombinant Hansenula polymorpha yeast cells overproducing flavocytochrome b2 (FC b2), as well as additionally enriched by the enzyme bound with gold nanoparticles (FC b2-nAu). Although, the high permeability of the living cells to nanoparticles is being intensively studied (mostly for delivery of drugs), the idea of using both recombinant technology and nanotechnology to increase the amount of the target enzyme in the biosensing layer is really novel. The FC b2-nAu-enriched living and permeabilized yeast cells were used for construction of a bioselective membrane of microbial L-lactate-selective amperometric biosensor. Phenazine methosulphate was served as a free defusing electron transfer mediator which provides effective electron transfer from the reduced enzyme to the electrode surface. It was shown that the output to L-lactate of FC b2-nAu-enriched permeabilized yeast cells is 2.5-fold higher when compared to the control cells. The obtained results confirm that additional enrichment of the recombinant yeast cell by the enzyme bound with nanoparticles improves the analytical parameters of microbial sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Female genotype influences the behavioral performance of mice selected for reproductive traits.

    Science.gov (United States)

    Weisker, S M; Barkley, M

    1991-10-01

    The behavioral performance of mice that differ in regularity of the estrous cycle and litter size was studied after female exposure to a male of the same or a different strain. Emotional reactivity was measured using the pole, straightaway and open field tests. Factor interpretations of emotionality included motor discharge, autonomic imbalance and acrophobia. Mice characterized by regular estrous cycles and large litters (line E) were more explorative and emotionally reactive with respect to motor discharge and autonomic imbalance. In contrast, mice with less regular estrous cycles and small litter size (line CN-) were more acrophobic. These strain differences in behavioral performance were influenced by the genotype of the female rather than the cohabitating male.

  17. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  18. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies.

    Science.gov (United States)

    Noh, Soo Min; Shin, Seunghyeon; Lee, Gyun Min

    2018-03-29

    To characterize a glutamine synthetase (GS)-based selection system, monoclonal antibody (mAb) producing recombinant CHO cell clones were generated by a single round of selection at various methionine sulfoximine (MSX) concentrations (0, 25, and 50 μM) using two different host cell lines (CHO-K1 and GS-knockout CHO). Regardless of the host cell lines used, the clones selected at 50 μM MSX had the lowest average specific growth rate and the highest average specific production rates of toxic metabolic wastes, lactate and ammonia. Unlike CHO-K1, high producing clones could be generated in the absence of MSX using GS-knockout CHO with an improved selection stringency. Regardless of the host cell lines used, the clones selected at various MSX concentrations showed no significant difference in the GS, heavy chain, and light chain gene copies (P > 0.05). Furthermore, there was no correlation between the specific mAb productivity and these three gene copies (R 2  ≤ 0.012). Taken together, GS-mediated gene amplification does not occur in a single round of selection at a MSX concentration up to 50 μM. The use of the GS-knockout CHO host cell line facilitates the rapid generation of high producing clones with reduced production of lactate and ammonia in the absence of MSX.

  19. Chronic exposure to sublethal doses of radiation mimetic ZeocinTM selects for clones deficient in homologous recombination

    International Nuclear Information System (INIS)

    Delacote, Fabien; Deriano, Ludovic; Lambert, Sarah; Bertrand, Pascale; Saintigny, Yannick; Lopez, Bernard S.

    2007-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions leading to genome variability/instability. The balance between homologous recombination (HR) and non-homologous end-joining (NHEJ), two alternative DSB repair systems, is essential to ensure genome maintenance in mammalian cells. Here, we transfected CHO hamster cells with the pcDNA TM 3.1/Zeo plasmid, and selected transfectants with Zeocin TM , a bleomycin analog which produces DSBs. Despite the presence of a Zeocin TM resistance gene in pcDNA TM 3.1/Zeo, Zeocin TM induced 8-10 γ-H2AX foci per cell. This shows that the Zeocin TM resistance gene failed to fully detoxify cells treated with Zeocin TM , and that during selection cells were submitted to a chronic sublethal DSB stress. Selected clones show decreases in both spontaneous and induced intrachromosomal HR. In contrast, in an in vitro assay, these clones show an increase in NHEJ products specific to the KU86 pathway. We selected cells, in the absence of pcDNA TM 3.1/Zeo, with low and sublethal doses of Zeocin TM , producing a mean 8-10 γ-H2AX foci per cell. Newly selected clones exhibited similar phenotypes: HR decrease accompanied by an increase in KU86-dependent NHEJ efficiency. Thus chronic exposure to sublethal numbers of DSBs selects cells whose HR versus NHEJ balance is altered. This may well have implications for radio- and chemotherapy, and for management of environmental hazards

  20. Multiplicative Genotype-Environment Interaction as a Cause of Reversed Response to Directional Selection

    OpenAIRE

    Gimelfarb, A.

    1986-01-01

    In experiments with directional selection on a quantitative character a "reversed response" to selection is occasionally observed, when selection of individuals for a higher (lower) value of the character results in a lower (higher) value of the character among their offspring. A sudden change in environments or random drift is often assumed to be responsible for this. It is demonstrated in this paper that these two causes cannot account for the reversed response at least in some of the exper...

  1. ALIS-FLP: Amplified ligation selected fragment-length polymorphism method for microbial genotyping

    DEFF Research Database (Denmark)

    Brillowska-Dabrowska, A.; Wianecka, M.; Dabrowski, Slawomir

    2008-01-01

    A DNA fingerprinting method known as ALIS-FLP (amplified ligation selected fragment-length polymorphism) has been developed for selective and specific amplification of restriction fragments from TspRI restriction endonuclease digested genomic DNA. The method is similar to AFLP, but differs...

  2. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Munck, Christian; Ellabaan, Mostafa M Hashim

    2017-01-01

    independently of the selection regime. Yet, lineages that underwent evolution under mild selection displayed a growth advantage independently of the acquired level of antibiotic resistance compared to lineages adapted under maximal selection in a drug gradient. Our data suggests that even though different......Antibiotic resistance is a global threat to human health, wherefore it is crucial to study the mechanisms of antibiotic resistance as well as its emergence and dissemination. One way to analyze the acquisition of de novo mutations conferring antibiotic resistance is adaptive laboratory evolution....... However, various evolution methods exist that utilize different population sizes, selection strengths, and bottlenecks. While evolution in increasing drug gradients guarantees high-level antibiotic resistance promising to identify the most potent resistance conferring mutations, other selection regimes...

  3. Co-circulation of multiple subtypes of enterovirus A71 (EV- A71) genotype C, including novel recombinants characterised by use of whole genome sequencing (WGS), Denmark 2016

    DEFF Research Database (Denmark)

    Midgley, Sofie E; Nielsen, Astrid G; Trebbien, Ramona

    2017-01-01

    In Europe, enterovirus A71 (EV-A71) has primarily been associated with sporadic cases of neurological disease. The recent emergence of new genotypes and larger outbreaks with severely ill patients demonstrates a potential for the spread of new, highly pathogenic EV-A71 strains. Detection and char......In Europe, enterovirus A71 (EV-A71) has primarily been associated with sporadic cases of neurological disease. The recent emergence of new genotypes and larger outbreaks with severely ill patients demonstrates a potential for the spread of new, highly pathogenic EV-A71 strains. Detection...

  4. Within-host dynamics of the emergence of Tomato yellow leaf curl virus recombinants.

    Directory of Open Access Journals (Sweden)

    Cica Urbino

    Full Text Available Tomato yellow leaf curl virus (TYLCV is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi, and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection-a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our

  5. Recombinant HCV variants with NS5A from genotypes 1-7 have different sensitivities to an NS5A inhibitor but not interferon-a

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Gottwein, Judith M; Mikkelsen, Lotte S

    2011-01-01

    Heterogeneity in the hepatitis C virus (HCV) protein NS5A influences its sensitivity to interferon-based therapy. Furthermore, NS5A is an important target for development of HCV-specific inhibitors. We aimed to develop recombinant infectious cell culture systems that express NS5A from isolates...

  6. Global Variation of Human Papillomavirus Genotypes and Selected Genes Involved in Cervical Malignancies.

    Science.gov (United States)

    Husain, R S Akram; Ramakrishnan, V

    2015-01-01

    Carcinoma of the cervix is ranked second among the top 5 cancers affecting women globally. Parallel to other cancers, it is also a complex disease involving numerous factors such as human papillomavirus (HPV) infection followed by the activity of oncogenes and environmental factors. The incidence rate of the disease remains high in developing countries due to lack of awareness, followed by mass screening programs, various socioeconomic issues, and low usage of preventive vaccines. Over the past 3 decades, extensive research has taken place in cervical malignancy to elucidate the role of host genes in the pathogenesis of the disease, yet it remains one of the most prevalent diseases. It is imperative that recent genome-wide techniques be used to determine whether carcinogenesis of oncogenes is associated with cervical cancer at the molecular level and to translate that knowledge into developing diagnostic and therapeutic tools. The aim of this study was to discuss HPV predominance with their genotype distribution worldwide, and in India, as well as to discuss the newly identified oncogenes related to cervical cancer in current scenario. Using data from various databases and robust technologies, oncogenes associated with cervical malignancies were identified and are explained in concise manner. Due to the advent of recent technologies, new candidate genes are explored and can be used as precise biomarkers for screening and developing drug targets. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Digest: Plants adapt under attack: genotypic selection and phenotypic plasticity under herbivore pressure.

    Science.gov (United States)

    Hawkins, Nichola J

    2018-03-31

    Plant species adapt to changing environmental conditions through phenotypic plasticity and natural selection. Agrawal et al. (2018) found that dandelions responded to the presence of insect pests by producing higher levels of defensive compounds. This defensive response resulted both from phenotypic plasticity, with individual plants' defenses triggered by insect attack, and from evolution by natural selection acting on genetic variation in the plant population. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  8. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    Science.gov (United States)

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  9. Effective selection of informative SNPs and classification on the HapMap genotype data

    Directory of Open Access Journals (Sweden)

    Wang Lipo

    2007-12-01

    Full Text Available Abstract Background Since the single nucleotide polymorphisms (SNPs are genetic variations which determine the difference between any two unrelated individuals, the SNPs can be used to identify the correct source population of an individual. For efficient population identification with the HapMap genotype data, as few informative SNPs as possible are required from the original 4 million SNPs. Recently, Park et al. (2006 adopted the nearest shrunken centroid method to classify the three populations, i.e., Utah residents with ancestry from Northern and Western Europe (CEU, Yoruba in Ibadan, Nigeria in West Africa (YRI, and Han Chinese in Beijing together with Japanese in Tokyo (CHB+JPT, from which 100,736 SNPs were obtained and the top 82 SNPs could completely classify the three populations. Results In this paper, we propose to first rank each feature (SNP using a ranking measure, i.e., a modified t-test or F-statistics. Then from the ranking list, we form different feature subsets by sequentially choosing different numbers of features (e.g., 1, 2, 3, ..., 100. with top ranking values, train and test them by a classifier, e.g., the support vector machine (SVM, thereby finding one subset which has the highest classification accuracy. Compared to the classification method of Park et al., we obtain a better result, i.e., good classification of the 3 populations using on average 64 SNPs. Conclusion Experimental results show that the both of the modified t-test and F-statistics method are very effective in ranking SNPs about their classification capabilities. Combined with the SVM classifier, a desirable feature subset (with the minimum size and most informativeness can be quickly found in the greedy manner after ranking all SNPs. Our method is able to identify a very small number of important SNPs that can determine the populations of individuals.

  10. Distinct Escape Pathway by Hepatitis C Virus Genotype 1a from a Dominant CD8+ T Cell Response by Selection of Altered Epitope Processing.

    Science.gov (United States)

    Walker, Andreas; Skibbe, Kathrin; Steinmann, Eike; Pfaender, Stephanie; Kuntzen, Thomas; Megger, Dominik A; Groten, Svenja; Sitek, Barbara; Lauer, Georg M; Kim, Arthur Y; Pietschmann, Thomas; Allen, Todd M; Timm, Joerg

    2016-01-01

    Antiviral CD8(+) T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8(+) T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI1373-1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8(+) T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8(+) T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. HCV is able to evolutionary adapt to CD8(+) T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the

  11. Photophysics of size-selected InP nanocrystals: Exciton recombination kinetics

    International Nuclear Information System (INIS)

    Kim, S.; Wolters, R.H.; Heath, J.R.

    1996-01-01

    We report here on the size-dependent kinetics of exciton recombination in a III endash V quantum dot system, InP. The measurements reported include various frequency dependent quantum yields as a function of temperature, frequency dependent luminescence decay curves, and time-gated emission spectra. This data is fit to a three-state quantum model which has been previously utilized to explain photophysical phenomena in II endash VI quantum dots. The initial photoexcitation is assumed to place an electron in a (delocalized) bulk conduction band state. Activation barriers for trapping and detrapping of the electron to surface states, as well as activation barriers for surface-state radiationless relaxation processes are measured as a function of particle size. The energy barrier to detrapping is found to be the major factor limiting room temperature band-edge luminescence. This barrier increases with decreasing particle size. For 30 A particles, this barrier is found to be greater than 6 kJ/mol emdash a barrier which is more than an order of magnitude larger than that previously found for 32 A CdS nanocrystals. copyright 1996 American Institute of Physics

  12. CYP450 genotype and aggressive behavior on selective serotonin reuptake inhibitors

    NARCIS (Netherlands)

    Ekhart, Corine; Matic, Maja; Kant, Agnes; Schaik, Ron van; van Puijenbroek, Eugène

    2017-01-01

    AIM: Genetic variants for selective serotonin reuptake inhibitor (SSRI) metabolizing enzymes have been hypothesized to be a risk factor for aggression as adverse drug effect of SSRIs. Our aim was to assess the possible involvement of these polymorphisms on aggression when using SSRIs. MATERIALS &

  13. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    DEFF Research Database (Denmark)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia

    2017-01-01

    -linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer......-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment...... of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4...

  14. Genetic parameters and selection for resistance to bacterial spot in recombinant F6 lines of Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Messias Gonzaga Pereira

    2009-01-01

    Full Text Available This study aimed to advance generations and select superior sweet pepper genotypes with resistance tobacterial spot, using the breeding method Single Seed Descent (SSD based on the segregating population derived from thecross between Capsicum annuum L. UENF 1421 (susceptible, non-pungent and UENF 1381 (resistant, pungent. Thesegregating F3 generation was grown in pots in a greenhouse until the F5 generation. The F6 generation was grown in fieldconditions. The reaction to bacterial spot was evaluated by inoculation with isolate ENA 4135 of Xanthomonas campestris pv.vesicatoria, based on a score scale and by calculating the area under the disease progress curve (AUDPC. The presence orabsence of capsaicin was also assessed. Eighteen F6 lines were bacterial leaf spot-resistant. Since no capsaicin was detectedin the F6 lines 032, 316, 399, 434, and 517, these will be used in the next steps of the sweet pepper breeding program.

  15. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-07-01

    Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Human recombinant beta-secretase immobilized enzyme reactor for fast hits' selection and characterization from a virtual screening library.

    Science.gov (United States)

    De Simone, Angela; Mancini, Francesca; Cosconati, Sandro; Marinelli, Luciana; La Pietra, Valeria; Novellino, Ettore; Andrisano, Vincenza

    2013-01-25

    In the present work, a human recombinant BACE1 immobilized enzyme reactor (hrBACE1-IMER) has been applied for the sensitive fast screening of 38 compounds selected through a virtual screening approach. HrBACE1-IMER was inserted into a liquid chromatograph coupled with a fluorescent detector. A fluorogenic peptide substrate (M-2420), containing the β-secretase site of the Swedish mutation of APP, was injected and cleaved in the on-line HPLC-hrBACE1-IMER system, giving rise to the fluorescent product. The compounds of the library were tested for their ability to inhibit BACE1 in the immobilized format and to reduce the area related to the chromatographic peak of the fluorescent enzymatic product. The results were validated in solution by using two different FRET methods. Due to the efficient virtual screening methodology, more than fifty percent of the selected compounds showed a measurable inhibitory activity. One of the most active compound (a bis-indanone derivative) was characterized in terms of IC(50) and K(i) determination on the hrBACE1-IMER. Thus, the hrBACE1-IMER has been confirmed as a valid tool for the throughput screening of different chemical entities with potency lower than 30μM for the fast hits' selection and for mode of action determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Tagging of four Rf genes with selective genotyping analysis in rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Yarahmadi Saeid

    2017-01-01

    Full Text Available Wild abortive type of cytoplasmic male sterility (WA-CMS is commercially used for hybrid rice seed production. The linked markers can be used for selection of plants with desirable traits. Tagging of Rf genes was carried out using recessive and dominant class analysis in a large F2 population from the cross IR58025A×IR42686R. Pollen fertility and seed setting were evaluated at the flowering and maturity stages, respectively. Forty-seven highly sterile and 23 fertile homozygous plants were selected from F2 population for molecular marker assay. Four Rf genes identified in a good restorer line with high-quality derived from a random mating composite population at the International Rice Research Institute (IRRI. The genetic distance from Rf3 locus with flanking markers RM443 and RM315 on chromosome 1 was 3.7 and 21.2 cM, respectively. RM258, RM591, RM271 and RM6737 on the long arm of chromosome 10 were linked with the Rf6 gene with distance of 7.4, 22.6, 6 and 2.9 cM, respectively. Rf6 was flanked by RM6737 and RM591. The Rf4 gene located on chromosome 7 was linked with RM6344 at a genetic distance of 10.6 cM. RM519 and RM7003 were linked with other Rf gene on chromosome 12 at a genetic distance of 8.5 and 20.8 cM, respectively. Closely linked markers identified in this study could be used for marker assisted selection in a hybrid rice breeding program. A new Rf locus on chromosome 12 that designated Rf7 was linked with RM7003 and RM519.

  18. Genetic Diversity and Selective Pressure in Hepatitis C Virus Genotypes 1-6: Significance for Direct-Acting Antiviral Treatment and Drug Resistance.

    Science.gov (United States)

    Cuypers, Lize; Li, Guangdi; Libin, Pieter; Piampongsant, Supinya; Vandamme, Anne-Mieke; Theys, Kristof

    2015-09-16

    Treatment with pan-genotypic direct-acting antivirals, targeting different viral proteins, is the best option for clearing hepatitis C virus (HCV) infection in chronically infected patients. However, the diversity of the HCV genome is a major obstacle for the development of antiviral drugs, vaccines, and genotyping assays. In this large-scale analysis, genome-wide diversity and selective pressure was mapped, focusing on positions important for treatment, drug resistance, and resistance testing. A dataset of 1415 full-genome sequences, including genotypes 1-6 from the Los Alamos database, was analyzed. In 44% of all full-genome positions, the consensus amino acid was different for at least one genotype. Focusing on positions sharing the same consensus amino acid in all genotypes revealed that only 15% was defined as pan-genotypic highly conserved (≥99% amino acid identity) and an additional 24% as pan-genotypic conserved (≥95%). Despite its large genetic diversity, across all genotypes, codon positions were rarely identified to be positively selected (0.23%-0.46%) and predominantly found to be under negative selective pressure, suggesting mainly neutral evolution. For NS3, NS5A, and NS5B, respectively, 40% (6/15), 33% (3/9), and 14% (2/14) of the resistance-related positions harbored as consensus the amino acid variant related to resistance, potentially impeding treatment. For example, the NS3 variant 80K, conferring resistance to simeprevir used for treatment of HCV1 infected patients, was present in 39.3% of the HCV1a strains and 0.25% of HCV1b strains. Both NS5A variants 28M and 30S, known to be associated with resistance to the pan-genotypic drug daclatasvir, were found in a significant proportion of HCV4 strains (10.7%). NS5B variant 556G, known to confer resistance to non-nucleoside inhibitor dasabuvir, was observed in 8.4% of the HCV1b strains. Given the large HCV genetic diversity, sequencing efforts for resistance testing purposes may need to be

  19. Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells.

    Science.gov (United States)

    Wang, F; Marchini, A; Kieff, E

    1991-04-01

    The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative

  20. Multivariate analysis and determination of the best indirect selection criteria to genetic improvement the biological nitrogen fixation ability in common bean genotypes (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Golparvar Reza Ahmad

    2012-01-01

    Full Text Available In order to determine the best indirect selection criteria for genetic improvement of biological nitrogen fixation, sixty four common bean genotypes were cultivated in two randomized complete block design. Genotypes were inoculated with bacteria Rhizobium legominosarum biovar Phaseoli isolate L-109 only in one of the experiments. The second experiment was considered as check for the first. Correlation analysis showed positive and highly significant correlation of majority of the traits with percent of nitrogen fixation. Step-wise regression designated that traits percent of total nitrogen of shoot, number of nodule per plant and biological yield accounted for 92.3 percent of variation exist in percent of nitrogen fixation. Path analysis indicated that these traits have direct and positive effect on percent of nitrogen fixation. Hence, these traits are promising indirect selection criteria for genetic improvement of nitrogen fixation capability in common bean genotypes especially in early generations.

  1. Three vibrio-resistance related EST-SSR markers revealed by selective genotyping in the clam Meretrix meretrix.

    Science.gov (United States)

    Nie, Qing; Yue, Xin; Chai, Xueliang; Wang, Hongxia; Liu, Baozhong

    2013-08-01

    The clam Meretrix meretrix is an important commercial bivalve distributed in the coastal areas of South and Southeast Asia. In this study, marker-trait association analyses were performed based on the stock materials of M. meretrix with different vibrio-resistance profile obtained by selective breeding. Forty-eight EST-SSR markers were screened and 27 polymorphic SSRs of them were genotyped in the clam stocks with different resistance to Vibrio parahaemolyticus (11-R and 11-S) and to Vibrio harveyi (09-R and 09-C). Allele frequency distributions of the SSRs among different stocks were compared using Pearson's Chi-square test, and three functional EST-SSR markers (MM959, MM4765 and MM8364) were found to be associated with vibrio-resistance trait. The 140-bp allele of MM959 and 128-bp allele of MM4765 had significantly higher frequencies in resistant groups (11-R and 09-R) than in susceptive/control groups (11-S and 09-C) (P SSR markers were consistent with the three subgroups distinctions. The putative functions of contig959, contig4765 and contig8364 also suggested that the three SSR-involved genes might play important roles in immunity of M. meretrix. All these results supported that EST-SSR markers MM959, MM4765 and MM8364 were associated with vibrio-resistance and would be useful for marker-assisted selection (MAS) in M. meretrix genetic breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kiminori [Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, Oxford (United Kingdom); Liddell, Paul; Gust, Devens [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, 85287-1604 (United States); Hore, P. J. [Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford (United Kingdom)

    2013-12-21

    Spin-selective reactions of radical pairs are conventionally modelled using an approach that dates back to the 1970s [R. Haberkorn, Mol. Phys. 32, 1491 (1976)]. An alternative approach based on the theory of quantum measurements has recently been suggested [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. We present here the first experimental attempt to discriminate between the two models. Pulsed electron paramagnetic resonance spectroscopy has been used to investigate intramolecular electron transfer in the radical pair form of a carotenoid-porphyrin-fullerene molecular triad. The rate of spin-spin relaxation of the fullerene radical in the triad was found to be inconsistent with the quantum measurement description of the spin-selective kinetics, and in accord with the conventional model when combined with spin-dephasing caused by rotational modulation of the anisotropic g-tensor of the fullerene radical.

  3. Sibling genes as environment: Sibling dopamine genotypes and adolescent health support frequency dependent selection.

    Science.gov (United States)

    Rauscher, Emily; Conley, Dalton; Siegal, Mark L

    2015-11-01

    While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Science.gov (United States)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  5. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings.

    Science.gov (United States)

    Wang, Jianzhong; Cong, Yanlong; Yin, Renfu; Feng, Na; Yang, Songtao; Xia, Xianzhu; Xiao, Yueqiang; Wang, Wenxiu; Liu, Xiufan; Hu, Shunlin; Ding, Chan; Yu, Shengqing; Wang, Chunfeng; Ding, Zhuang

    2015-05-04

    Newcastle disease virus (NDV) and Goose parvovirus (GPV) are considered to be two of the most important and widespread viruses infecting geese. In this study, we generated a recombinant rmNA-VP3, expressing GPV VP3 using a modified goose-origin NDV NA-1 by changing the multi-basic cleavage site motif RRQKR↓F of the F protein to the dibasic motif GRQGR↓L as that of the avirulent strain LaSota as a vaccine vector. Expression of the VP3 protein in rmNA-VP3 infected cells was detected by immunofluorescence and Western blot assay. The genetic stability was examined by serially passaging 10 times in 10-day-old embryonated SPF chicken eggs. Goslings were inoculated with rmNA-VP3 showed no apparent signs of disease and developed a strong GPV and NDV neutralizing antibodies response. This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    Directory of Open Access Journals (Sweden)

    Vaishali P. Waman

    2016-08-01

    Full Text Available Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae. There are four serotypes of Dengue Virus (DENV-1 to DENV-4, each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis

  7. Selecting sagebrush seed sources for restoration in a variable climate: ecophysiological variation among genotypes

    Science.gov (United States)

    Germino, Matthew J.

    2012-01-01

    Big sagebrush (Artemisia tridentata) communities dominate a large fraction of the United States and provide critical habitat for a number of wildlife species of concern. Loss of big sagebrush due to fire followed by poor restoration success continues to reduce ecological potential of this ecosystem type, particularly in the Great Basin. Choice of appropriate seed sources for restoration efforts is currently unguided due to knowledge gaps on genetic variation and local adaptation as they relate to a changing landscape. We are assessing ecophysiological responses of big sagebrush to climate variation, comparing plants that germinated from ~20 geographically distinct populations of each of the three subspecies of big sagebrush. Seedlings were previously planted into common gardens by US Forest Service collaborators Drs. B. Richardson and N. Shaw, (USFS Rocky Mountain Research Station, Provo, Utah and Boise, Idaho) as part of the Great Basin Native Plant Selection and Increase Project. Seed sources spanned all states in the conterminous Western United States. Germination, establishment, growth and ecophysiological responses are being linked to genomics and foliar palatability. New information is being produced to aid choice of appropriate seed sources by Bureau of Land Management and USFS field offices when they are planning seed acquisitions for emergency post-fire rehabilitation projects while considering climate variability and wildlife needs.

  8. Phenotyping, Genotyping, and Selections within Italian Local Landraces of Romanesco Globe Artichoke

    Directory of Open Access Journals (Sweden)

    Paola Crinò

    2017-03-01

    Full Text Available Ten Italian globe artichoke clones belonging to the Romanesco typology were characterized in the western coastal area of Italy (Cerveteri, Rome, using a combination of morphological (UPOV descriptors, biochemical (HPLC analysis, and molecular (AFLP, ISSR, and SSR markers traits. Significant differences among clones were found for many of the quantitative and qualitative morphological traits. Multivariate analyses (Principal Component Analysis showed that, of the 47 morphological descriptors assessed, four (i.e., plant height, central flower-head weight, earliness, and total flower-head weight presented a clear grouping of the clones. Biochemical analyses showed that the clones significantly differed in the polyphenolic profiles of the flower-head, with the suggestion that some of these, such as S2, S3, S5, and S18, are more suitable for the fresh market. The clones, clustered by a UPGMA dendrogram based on 393 polymorphic AFLP and ISSR loci, showed that the clones were genetically separated from each other. This highlights the importance of characterizing, evaluating, and conserving autochthonous germplasm for future plant breeding activities. Overall, these studies resulted in the identification of two new clones, selected on the basis of flower-head morphology and earliness. These clones, named Michelangelo and Raffaello, are registered on the Italian National Register of Varieties (DM n. 6135, 3/29/2013 G.U. 91, 18 April 2013.

  9. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.

    Science.gov (United States)

    Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu

    2018-06-01

    Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Selective Permeation and Organic Extraction of Recombinant Green Fluorescent Protein (gfpuv from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ishii Marina

    2002-04-01

    Full Text Available Abstract Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside, express the green fluorescent protein (gfpuv during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1 of transformed (pGFP Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm were sonicated in successive intervals of sonication (25 vibrations/pulse to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations. The intracellular permeate with gfpuv in extraction buffer (TE solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF was subjected to the three-phase partitioning (TPP method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0. Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA, after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP

  11. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2015-06-01

    expression of rice plants' genetic potential, thereby creating more productive and robust phenotypes from given rice genotypes. Data indicate that increased plant density does not necessarily enhance crop yield potential, as classical breeding methods suggest. Developing cultivars that can achieve their higher productivity under a wide range of plant densities—breeding for density-neutral cultivars using alternative selection strategies—will enable more effective exploitation of available crop growth resources. Density-neutral cultivars that achieve high productivity under ample environmental growth resources can also achieve optimal productivity under limited resources, where lower densities can avert crop failure due to overcrowding. This will become more important to the extent that climatic and other factors become more adverse to crop production. Focusing more on which management practices can evoke the most productive and robust phenotypes from given genotypes is important for rice breeding and improvement programs since it is phenotypes that feed our human populations.

  12. Selection-Based Instruction with Touch-Screen Video and the Emergence of Exact, Recombinative, and Novel Topography-Based Responses to Interview Questions

    Science.gov (United States)

    O'Neill, John; Rehfeldt, Ruth Anne

    2016-01-01

    The purpose of the present experiment was to replicate and extend the literature on using selection-based instruction to teach responses to interview questions by (a) evaluating the emergence of recombinative (i.e., combinations of taught) and novel (i.e., untaught) topography-based intraverbal responses, in addition to exact repetitions of taught…

  13. Disclosure of selective advantages in the "modern" sublineage of the Mycobacterium tuberculosis Beijing genotype family by quantitative proteomics

    NARCIS (Netherlands)

    Keijzer, J. de; Haas, P.E. de; Ru, A.H. de; Veelen, P.A. van; Soolingen, D. van

    2014-01-01

    The Mycobacterium tuberculosis Beijing genotype, consisting of the more ancient (atypical) and modern (typical) emerging sublineage, is one of the most prevalent and genetically conserved genotype families and has often been associated with multidrug resistance. In this study, we employed a

  14. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  15. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  16. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    Science.gov (United States)

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  17. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  18. Empirical evaluation of selective DNA pooling to map QTL in dairy cattle using a half-sib design by comparison to individual genotyping and interval mapping

    Directory of Open Access Journals (Sweden)

    Robinson Nicholas

    2007-04-01

    Full Text Available Abstract This study represents the first attempt at an empirical evaluation of the DNA pooling methodology by comparing it to individual genotyping and interval mapping to detect QTL in a dairy half-sib design. The findings indicated that the use of peak heights from the pool electropherograms without correction for stutter (shadow product and preferential amplification performed as well as corrected estimates of frequencies. However, errors were found to decrease the power of the experiment at every stage of the pooling and analysis. The main sources of errors include technical errors from DNA quantification, pool construction, inconsistent differential amplification, and from the prevalence of sire alleles in the dams. Additionally, interval mapping using individual genotyping gains information from phenotypic differences between individuals in the same pool and from neighbouring markers, which is lost in a DNA pooling design. These errors cause some differences between the markers detected as significant by pooling and those found significant by interval mapping based on individual selective genotyping. Therefore, it is recommended that pooled genotyping only be used as part of an initial screen with significant results to be confirmed by individual genotyping. Strategies for improving the efficiency of the DNA pooling design are also presented.

  19. Influence of Changing Rainfall Patterns on the Yield of Rambutan (Nephelium lappaceum L. and Selection of Genotypes in Known Drought-tolerant Fruit Species for Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Pablito M. Magdalita

    2015-06-01

    Full Text Available In fruit crop production, rainfall, water stress, temperature, and wind are key variables for success, and the present changes in rainfall patterns could affect the flowering and yield of the rambutan (Nephelium lappaceum L. Other fruit species like macopa (Syzygium samarangense, siniguelas (Spondias purpurea, and native santol or cotton fruit (Sandoricum koetjape remain productive despite extreme climatic changes. This study assessed the influence of rainfall on rambutan yield and evaluated and selected tree genotypes of known drought-tolerant fruit species. Rambutan yield in a selected farm in Calauan, Laguna, Philippines, dropped remarkably from 152.2 kg/tree in 2008 to 8.6 kg/tree in 2009. This reduction could be attributed to the high rainfall in April 2009 at 334.4 mm, and possibly other environmental factors like temperature, relative humidity, solar radiation, and strong wind. Furthermore, wet months in 2009 also inhibited the flowering of rambutan. However, a low yield obtained in 2010 at 45.5 kg/tree could be partly attributed to the very low rainfall in May 2010 at only 9.1 mm. On the other hand, in relation to changing climate, selection of tree genotypes for use as varieties in known drought- and flood-tolerant fruit species based on important fruit qualities like sweetness, juiciness, and high edible portion was done. Among 103 macopa genotypes, Mc-13, 43, and 91 were selected and the best (i.e. , Mc-13 had sweet (7.15 °Brix and crispy fruits weighing 49.44 g, creamy white (RHCC 155 A, and had high edible portion (EP, 93.22%. Among 114 siniguelas genotypes, Sg-41, 42 and 105 were selected and the best selection (i.e., Sg-41, had sweet (12.50 °Brix and juicy fruit weighing 20.42 g, ruby red (RHCC 59 A, and had high EP (83.27%. Among 101 native santol genotypes, Sn-47, 59, and 74 were selected and the best selection (i.e. , Sn-59 had relatively sweet (5.56 °Brix and juicy fruits weighing 51.96 g, maize yellow (RHCC 21 B, and had

  20. Using artificial neural networks to select upright cowpea (Vigna unguiculata) genotypes with high productivity and phenotypic stability.

    Science.gov (United States)

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Nascimento, A C C; Azevedo, C F; Teixeira, F R F

    2016-11-03

    Cowpea (Vigna unguiculata) is grown in three Brazilian regions: the Midwest, North, and Northeast, and is consumed by people on low incomes. It is important to investigate the genotype x environment (GE) interaction to provide accurate recommendations for farmers. The aim of this study was to identify cowpea genotypes with high adaptability and phenotypic stability for growing in the Brazilian Cerrado, and to compare the use of artificial neural networks with the Eberhart and Russell (1966) method. Six trials with upright cowpea genotypes were conducted in 2005 and 2006 in the States of Mato Grosso do Sul and Mato Grosso. The data were subjected to adaptability and stability analysis by the Eberhart and Russell (1966) method and artificial neural networks. The genotypes MNC99-537F-4 and EVX91-2E-2 provided grain yields above the overall environment means, and exhibited high stability according to both methods. Genotype IT93K-93-10 was the most suitable for unfavorable environments. There was a high correlation between the results of both methods in terms of classifying the genotypes by their adaptability and stability. Therefore, this new approach would be effective in quantifying the GE interaction in upright cowpea breeding programs.

  1. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  2. Genetic recombination of the hepatitis C virus: clinical implications.

    Science.gov (United States)

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  3. Effects of acute dopamine precusor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype.

    Science.gov (United States)

    Kelm, Mary Katherine; Boettiger, Charlotte A

    2013-12-01

    Little agreement exists as to acute dopamine (DA) manipulation effects on intertemporal choice in humans. We previously found that catechol-O-methyltransferase (COMT) Val158Met genotype predicts individual differences in immediate reward selection bias among adults. Moreover, we and others have shown that the relationship between COMT genotype and immediate reward bias is inverted in adolescents. No previous pharmacology studies testing DA manipulation effects on intertemporal choice have accounted for COMT genotype, and many have included participants in the adolescent age range (18-21 years) as adults. Moreover, many studies have included female participants without strict cycle phase control, although recent evidence demonstrates that cyclic estradiol elevations interact with COMT genotype to affect DA-dependent cognition. These factors may have interacted with DA manipulations in past studies, potentially occluding detection of effects. Therefore, we predicted that, among healthy male adults (ages 22-40 years), frontal DA tone, as indexed by COMT genotype, would interact with acute changes in DA signaling to affect intertemporal choice. In a double-blind, placebo-controlled design, we decreased central DA via administration of an amino acid beverage deficient in the DA precursors, phenylalanine and tyrosine, and tested effects on immediate reward bias in a delay-discounting (DD) task and working memory (WM) in an n-back task. We found no main effect of beverage on DD or WM performance but did find significant beverage*genotype effects. These results suggest that the effect of DA manipulations on DD depends on individual differences in frontal DA tone, which may have impeded some past efforts to characterize DA's role in immediate reward bias in humans.

  4. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  5. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  6. Sex in a test tube: testing the benefits of in vitro recombination.

    Science.gov (United States)

    Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M

    2016-10-19

    The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  7. Transient dominant host-range selection using Chinese hamster ovary cells to generate marker-free recombinant viral vectors from vaccinia virus.

    Science.gov (United States)

    Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D

    2017-04-01

    Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.

  8. Evaluation of the Abbott realtime HCV genotype II RUO (GT II) assay with reference to 5'UTR, core and NS5B sequencing.

    Science.gov (United States)

    Mallory, Melanie A; Lucic, Danijela X; Sears, Mitchell T; Cloherty, Gavin A; Hillyard, David R

    2014-05-01

    HCV genotyping is a critical tool for guiding initiation of therapy and selecting the most appropriate treatment regimen. To evaluate the concordance between the Abbott GT II assay and genotyping by sequencing subregions of the HCV 5'UTR, core and NS5B. The Abbott assay was used to genotype 127 routine patient specimens and 35 patient specimens with unusual subtypes and mixed infection. Abbott results were compared to genotyping by 5'UTR, core and NS5B sequencing. Sequences were genotyped using the NCBI non-redundant database and the online genotyping tool COMET. Among routine specimens, core/NS5B sequencing identified 93 genotype 1s, 13 genotype 2s, 15 genotype 3s, three genotype 4s, two genotype 6s and one recombinant specimen. Genotype calls by 5'UTR, core, NS5B sequencing and the Abbott assay were 97.6% concordant. Core/NS5B sequencing identified two discrepant samples as genotype 6 (subtypes 6l and 6u) while Abbott and 5'UTR sequencing identified these samples as genotype 1 with no subtype. The Abbott assay subtyped 91.4% of genotype 1 specimens. Among the 35 rare specimens, the Abbott assay inaccurately genotyped 3k, 6e, 6o, 6q and one genotype 4 variant; gave indeterminate results for 3g, 3h, 4r, 6m, 6n, and 6q specimens; and agreed with core/NS5B sequencing for mixed specimens. The Abbott assay is an automated HCV genotyping method with improved accuracy over 5'UTR sequencing. Samples identified by the Abbott assay as genotype 1 with no subtype may be rare subtypes of other genotypes and thus require confirmation by another method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Evidence of recombination in natural populations of hepatitis A virus

    International Nuclear Information System (INIS)

    Costa-Mattioli, Mauro; Ferre, Virginie; Casane, Didier; Perez-Bercoff, Raoul; Coste-Burel, Marianne; Imbert-Marcille, Berthe-Marie; Andre, Elisabeth Claude Monique; Bressollette-Bodin, Celine; Billaudel, Sylviane; Cristina, Juan

    2003-01-01

    Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. At least seven HAV genotypes have been identified all over the world, including four human genotypes (I, II, III, and VII) and three simian strains (IV, V, and VI). Phylogenetic analysis using full-length VP1 sequences revealed that human strain 9F94 has a close genetic relation with strain SLF-88 (sub-genotype VII). Nevertheless, the same analysis using full-length VP2 or VP3 sequences revealed that strain 9F94 has a close genetic relation with strain MBB (sub-genotype IB). To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossing over had taken place in the VP1 capsid protein. These findings indicate that capsid-recombination can play a significant role in shaping the genetic diversity of HAV and, as such, can have important implications for its evolution, biology, and control

  10. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale.

    Science.gov (United States)

    Schiffer, Lina; Anderko, Simone; Hobler, Anna; Hannemann, Frank; Kagawa, Norio; Bernhardt, Rita

    2015-02-25

    Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which

  11. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  12. Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis.

    Science.gov (United States)

    Andrews, T Daniel; Gojobori, Takashi

    2004-01-01

    The PilE protein is the major component of the Neisseria meningitidis pilus, which is encoded by the pilE/pilS locus that includes an expressed gene and eight homologous silent fragments. The silent gene fragments have been shown to recombine through gene conversion with the expressed gene and thereby provide a means by which novel antigenic variants of the PilE protein can be generated. We have analyzed the evolutionary rate of the pilE gene using the nucleotide sequence of two complete pilE/pilS loci. The very high rate of evolution displayed by the PilE protein appears driven by both recombination and positive selection. Within the semivariable region of the pilE and pilS genes, recombination appears to occur within multiple small sequence blocks that lie between conserved sequence elements. Within the hypervariable region, positive selection was identified from comparison of the silent and expressed genes. The unusual gene conversion mechanism that operates at the pilE/pilS locus is a strategy employed by N. meningitidis to enhance mutation of certain regions of the PilE protein. The silent copies of the gene effectively allow "parallelized" evolution of pilE, thus enabling the encoded protein to rapidly explore a large area of sequence space in an effort to find novel antigenic variants.

  13. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  14. Analysis of ORF5 and Full-Length Genome Sequences of Porcine Reproductive and Respiratory Syndrome Virus Isolates of Genotypes 1 and 2 Retrieved Worldwide Provides Evidence that Recombination Is a Common Phenomenon and May Produce Mosaic Isolates

    DEFF Research Database (Denmark)

    Martín-Valls, G. E.; Kvisgaard, Lise Kirstine; Tello, M.

    2014-01-01

    Recombination is currently recognized as a factor for high genetic diversity, but the frequency of such recombination events and the genome segments involved are not well known. In the present study, we initially focused on the detection of recombinant porcine reproductive and respiratory syndrom...

  15. Epigenetic silencing of V(DJ recombination is a major determinant for selective differentiation of mucosal-associated invariant t cells from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Yutaka Saito

    Full Text Available Mucosal-associated invariant T cells (MAITs are innate-like T cells that play a pivotal role in the host defense against infectious diseases, and are also implicated in autoimmune diseases, metabolic diseases, and cancer. Recent studies have shown that induced pluripotent stem cells (iPSCs derived from MAITs selectively redifferentiate into MAITs without altering their antigen specificity. Such a selective differentiation is a prerequisite for the use of MAITs in cell therapy and/or regenerative medicine. However, the molecular mechanisms underlying this phenomenon remain unclear. Here, we performed methylome and transcriptome analyses of MAITs during the course of differentiation from iPSCs. Our multi-omics analyses revealed that recombination-activating genes (RAG1 and RAG2 and DNA nucleotidylexotransferase (DNTT were highly methylated with their expression being repressed throughout differentiation. Since these genes are essential for V(DJ recombination of the T cell receptor (TCR locus, this indicates that nascent MAITs are kept from further rearrangement that may alter their antigen specificity. Importantly, we found that the repression of RAGs was assured in two layers: one by the modulation of transcription factors for RAGs, and the other by DNA methylation at the RAG loci. Together, our study provides a possible explanation for the unaltered antigen specificity in the selective differentiation of MAITs from iPSCs.

  16. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.).

    Science.gov (United States)

    Cardeñosa, Vanessa; Girones-Vilaplana, Amadeo; Muriel, José Luis; Moreno, Diego A; Moreno-Rojas, José M

    2016-07-01

    Demand for and availability of blueberries has increased substantially over recent years, driven in part by their health-promoting properties. Three blueberry varieties ('Rocío', V2, and V3) were grown under two cultivation systems (open-field and plastic tunnels) and subjected to two irrigations regimes (100% and 80% of crop evapotranspiration) in two consecutive years (2011-2012). They were evaluated for their phytochemical composition and antioxidant capacity. Genotype influenced the antioxidant capacity and the content of the three groups of phenolics in the blueberries. The antioxidant activity and total flavonols content increased when the blueberries were grown under open-field conditions. Deficit irrigation conditions led to additional positive effects on their phenolics (delphinidn-3-acetilhexoside content was increased under plastic tunnel with deficit irrigation). In conclusion, the amount of phenolic compounds and the antioxidant capacity of blueberries were not negatively affected by water restriction; Moreover, several changes were recorded due to growing system and genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    Science.gov (United States)

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  18. A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans

    DEFF Research Database (Denmark)

    Law, John Lok Man; Chen, Chao; Wong, Jason

    2013-01-01

    of genotype 1a). Cross neutralization was tested in Huh-7.5 human hepatoma cell cultures using infectious recombinant HCV (HCVcc) expressing structural proteins of heterologous HCV strains from all known major genotypes, 1-7. Vaccination induced significant neutralizing antibodies against heterologous HCV...... genotype 1a virus which represents the most common genotype in North America. Of the 16 vaccinees tested, 3 were selected on the basis of strong 1a virus neutralization for testing of broad cross-neutralizing responses. At least 1 vaccinee was shown to elicit broad cross-neutralization against all HCV...

  19. A novel prokaryotic vector for identification and selection of recombinants: Direct use of the vector for expression studies in E. coli

    Directory of Open Access Journals (Sweden)

    Apte-Deshpande Anjali

    2010-05-01

    Full Text Available Abstract Background The selection of bacterial recombinants that harbour a desired insert, has been a key factor in molecular cloning and a series of screening procedures need to be performed for selection of clones carrying the genes of interest. The conventional cloning techniques are reported to have problems such as screening high number of colonies, generation of false positives, setting up of control ligation mix with vector alone etc. Results We describe the development of a novel dual cloning/expression vector, which enables to screen the recombinants directly and expression of the gene of interest. The vector contains Green fluorescence protein (GFP as the reporter gene and is constructed in such a way that the E. coli cells upon transformation with this vector does not show any fluorescence, but readily fluoresce upon insertion of a foreign gene of interest. The same construct could be easily used for screening of the clones and expression studies by mere switching to specific hosts. Conclusions This is the first vector reported that takes the property of colour or fluorescence to be achieved only upon cloning while all the other vectors available commercially show loss of colour or loss of fluorescence upon cloning. As the fluorescence of GFP depends on the solubility of the protein, the intensity of the fluorescence would also indicate the extent of solubility of the expressed target protein.

  20. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    Science.gov (United States)

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  1. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants

    DEFF Research Database (Denmark)

    Serre, Stéphanie B N; Jensen, Sanne B; Ghanem, Lubna

    2016-01-01

    , grazoprevir, paritaprevir and deldeprevir identified positions 156 and 168 as hotspots for resistance; substitution Y56H emerged for 3 newer PIs. Substitution selection also depended on the specific recombinant. Identified substitutions conferred cross-resistance to several PIs, however, most substitutions...... fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was primarily due to decreased replication. Most identified combinations of substitutions increased resistance or fitness. Combinations of resistance substitutions...... with fitness compensating substitutions either rescued replication or compensated for decreased replication with increased assembly. This comprehensive study provides insight into selection patterns and effects of PI resistance substitutions for HCV genotypes 1-6 in the context of the infectious viral life...

  2. Quick survey for detection, identification and characterization of Acanthamoeba genotypes from some selected soil and water samples in Pakistan

    Directory of Open Access Journals (Sweden)

    Tania Tanveer

    2015-05-01

    Full Text Available Acanthamoeba is an opportunistic protozoan pathogen which is widely distributed in nature and plays a pivotal role in ecosystem. Acanthamoeba species may cause blinding keratitis and fatal granulomatous encephalitis involving central nervous system. In this study, we investigated the presence of Acanthamoeba in soil and water resources of Pakistan. Here, Acanthamoeba were recovered on non-nutrient agar plate lawn with E.coli and identified by morphological characteristics of the cyst. Furthermore PCR was performed with genus-specific primers followed by direct sequencing of the PCR product for molecular identification. Overall our PCR and sequencing results confirmed pathogenic genotypes including T4 and T15 from both soil and water samples. This is our first report of Acanthamoeba isolation from both soil and water resources of Pakistan which may serve as a potential treat to human health across the country.

  3. Limited protective effect of the CCR5Delta32/CCR5Delta32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K N; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)-infected patients with hemophilia. One patient (0.6%) had the CCR5Delta32/CCR5Delta32 genotype (which occurs in approximately 2% of the Scand......The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)-infected patients with hemophilia. One patient (0.6%) had the CCR5Delta32/CCR5Delta32 genotype (which occurs in approximately 2...

  4. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    Science.gov (United States)

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  5. Seletividade de herbicidas a genótipos de cana-de-açúcar Herbicide selectivity to sugarcane genotypes

    Directory of Open Access Journals (Sweden)

    L Galon

    2009-12-01

    a variation between sugarcane genotypes regarding herbicide tolerance. This work evaluated the tolerance of three genotypes to the herbicides ametryn, trifloxysulfuron-sodium and their commercial formulated mixture in 0.0, 0.5, 1.0 and 3.0 times the recommended commercial dose. The experiment was conducted under protected environmental conditions. A completely randomized design was used, with four replications. The treatments were composed by genotypes SP80-1816, RB855113, RB867515 associated to herbicides ametryn, trifloxysulfuron-sodium and sodium-ametryn + trifloxysulfuron, at doses of 0, 0.5, 1.0 and 3.0 times the recommended commercial dose. Intoxication of the plants (% was assessed at 14, 28 and 42 days after application of the herbicides (DAT. The other variables measured at 80 days after crop emergence were leaf area and shoot dry matter. In general, the genotypes SP80-1816 and RB855113 were less tolerant to the herbicides ametryn, trifloxysulfuron- sodium and the mixture ametryn + trifloxysulfuron-sodium than the RB867515 at all tested doses. They showed high intoxication levels at 14, 28 and 42 days after herbicide application. It was concluded that genotype RB855113 was the most sensitive to the herbicides, followed by SP80-1816, with RB867515 being the most tolerant.

  6. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome.

    Science.gov (United States)

    Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M

    2017-12-01

    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in

  7. Limited protective effect of the CCR5Δ32/CCR5Δ32 genotype on human immunodeficiency virus infection incidence in a cohort of patients with hemophilia and selection for genotypic X4 virus

    DEFF Research Database (Denmark)

    Iversen, Astrid K. N.; Christiansen, Claus Bohn; Attermann, Jørn

    2003-01-01

    The relationship among CCR5 genotype, cytomegalovirus infection, and disease progression and death was studied among 159 human immunodeficiency virus (HIV)–infected patients with hemophilia. One patient (0.6%) had the CCR5Δ32/CCR5Δ32 genotype (which occurs in ∼2% of the Scandinavian population...

  8. Characterization of a recombinant humanized anti-cocaine monoclonal antibody produced from multiple clones for the selection of a master cell bank candidate.

    Science.gov (United States)

    Wetzel, Hanna N; Webster, Rose P; Saeed, Fatima O; Kirley, Terence L; Ball, William J; Norman, Andrew B

    2017-06-03

    We have generated a humanized anti-cocaine monoclonal antibody (mAb), which is at an advanced stage of pre-clinical development. We report here in vitro binding affinity studies, and in vivo pharmacokinetic and efficacy studies of the recombinant mAb. The overall aim was to characterize the recombinant antibody from each of the three highest producing transfected clones and to select one to establish a master cell bank. In mAb pharmacokinetic studies, after injection with h2E2 (120 mg/kg iv) blood was collected from the tail tip of mice over 28 days. Antibody concentrations were quantified using ELISA. The h2E2 concentration as a function of time was fit using a two-compartment pharmacokinetic model. To test in vivo efficacy, mice were injected with h2E2 (120 mg/kg iv), then one hour later injected with an equimolar dose of cocaine. Blood and brain were collected 5 min after cocaine administration. Cocaine concentrations were quantified using LC/MS. The affinity of the antibody for cocaine was determined using a [ 3 H] cocaine binding assay. All three antibodies had long elimination half-lives, 2-5 nM Kd for cocaine, and prevented cocaine's entry into the brain by sequestering it in the plasma. Pharmacokinetic and radioligand binding assays supported designation of the highest producing clone 85 as the master cell bank candidate. Overall, the recombinant h2E2 showed favorable binding properties, pharmacokinetics, and in vivo efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  10. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    Science.gov (United States)

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  11. Selection and Breeding of Suitable Crop Genotypes for Drought and Heat Periods in a Changing Climate: Which Morphological and Physiological Properties Should Be Considered?

    Directory of Open Access Journals (Sweden)

    Lyudmila Simova-Stoilova

    2016-06-01

    Full Text Available Selection and breeding of genotypes with improved drought/heat tolerance become key issues in the course of global change with predicted increased frequency of droughts or heat waves. Several morphological and physiological plant traits must be considered. Rooting depth, root branching, nutrient acquisition, mycorrhization, nodulation in legumes and the release of nutrients, assimilates or phytohormones to the shoot are relevant in root systems. Xylem embolism and its repair after a drought, development of axillary buds and solute channeling via xylem (acropetal and phloem (basipetal and acropetal are key processes in the stem. The photosynthetically active biomass depends on leaf expansion and senescence. Cuticle thickness and properties, epicuticular waxes, stomatal regulation including responses to phytohormones, stomatal plugs and mesophyll resistance are involved in optimizing leaf water relations. Aquaporins, dehydrins, enzymes involved in the metabolism of compatible solutes (e.g., proline and Rubisco activase are examples for proteins involved in heat or drought susceptibility. Assimilate redistribution from leaves to maturing fruits via the phloem influences yield quantity and quality. Proteomic analyses allow a deeper insight into the network of stress responses and may serve as a basis to identify suitable genotypes, although improved stress tolerance will have its price (often lowered productivity under optimal conditions.

  12. Homologous recombination is a force in the evolution of canine distemper virus.

    Science.gov (United States)

    Yuan, Chaowen; Liu, Wenxin; Wang, Yingbo; Hou, Jinlong; Zhang, Liguo; Wang, Guoqing

    2017-01-01

    Canine distemper virus (CDV) is the causative agent of canine distemper (CD) that is a highly contagious, lethal, multisystemic viral disease of receptive carnivores. The prevalence of CDV is a major concern in susceptible animals. Presently, it is unclear whether intragenic recombination can contribute to gene mutations and segment reassortment in the virus. In this study, 25 full-length CDV genome sequences were subjected to phylogenetic and recombinational analyses. The results of phylogenetic analysis, intragenic recombination, and nucleotide selection pressure indicated that mutation and recombination occurred in the six individual genes segment (H, F, P, N, L, M) of the CDV genome. The analysis also revealed pronounced genetic diversity in the CDV genome according to the geographically distinct lineages (genotypes), namely Asia-1, Asia-2, Asia-3, Europe, America-1, and America-2. The six recombination events were detected using SimPlot and RDP programs. The analysis of selection pressure demonstrated that a majority of the nucleotides in the CDV individual gene were under negative selection. Collectively, these data suggested that homologous recombination acts as a key force driving the genetic diversity and evolution of canine distemper virus.

  13. Parallel or convergent evolution in human population genomic data revealed by genotype networks.

    Science.gov (United States)

    R Vahdati, Ali; Wagner, Andreas

    2016-08-02

    Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The structure of these networks varies widely among genes, indicating different patterns of variation despite a shared evolutionary history. We focus on those genes whose genotype networks show many cycles, which can indicate homoplasy, i.e., parallel or convergent evolution, on the sequence level. For 42 genes, the observed number of cycles is so large that it cannot be explained by either chance homoplasy or recombination. When analyzing possible explanations, we discovered evidence for positive selection in 21 of these genes and, in addition, a potential role for constrained variation and purifying selection. Balancing selection plays at most a small role. The 42 genes with excess cycles are enriched in functions related to immunity and response to pathogens. Genotype networks are representations of genetic variation data that can help understand unusual patterns of genomic variation.

  14. Effects of soil type and genotype on lead concentration in rootstalk vegetables and the selection of cultivars for food safety.

    Science.gov (United States)

    Ding, Changfeng; Zhang, Taolin; Wang, Xingxiang; Zhou, Fen; Yang, Yiru; Yin, Yunlong

    2013-06-15

    Lead (Pb) contamination of soil poses severe health risks to humans through vegetable consumption. The variations of Pb concentration in different parts of rootstalk vegetables (radish, carrot and potato) were investigated by using twelve cultivars grown in acidic Ferralsols and neutral Cambisols under two Pb treatments (125 mg kg(-1) and 250 mg kg(-1) for Ferralsols; 150 mg kg(-1) and 300 mg kg(-1) for Cambisols) in a pot experiment. The Pb concentration in edible parts was higher in Ferralsols under two Pb treatments, with range from 0.28 to 4.14, 0.42-10.66 mg kg(-1) (fresh weight) respectively, and all of them exceeded the food safety standard (0.1 mg kg(-1)) recommended by the Codex Alimentarius Commission of FAO and WHO. The Pb concentration in edible parts was significantly affected by genotype, soil type and the interaction between these two factors. The variation of Pb concentration in different cultivars was partially governed by Pb absorption and the transfer of Pb from aerial to edible part. The results revealed that caution should be paid to the cultivation of rootstalk vegetables in Pb-contaminated Ferralsols without any agronomic management to reduce Pb availability and plant uptake. For Cambisols with slight to moderate Pb contamination, growing potato cultivar Shandong No.1 and Chongqing No.1 was effective in reducing the risk of Pb entering human food chain. The results suggest the possibility of developing cultivar- and soil-specific planting and monitoring guidelines for the cultivation of rootstalk vegetables on slight to moderate Pb-contaminated soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A selective genotyping approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes associated with production and carcass traits in Italian heavy pigs

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2011-04-01

    Full Text Available Several studies have shown that porcine chromosome 2 (SSC2 harbors important quantitative trait loci (QTL for production traits. In particular, an imprinted QTL for muscle mass production is determined by a mutation in the IGF2 gene (intron3-g.3072G>A. We recently identified and analysed single nucleotide polymorphisms (SNPs in genes (cathepsin D, CTSD g.70G>A; cathepsin F, CTSF g.22G>C; lactate dehydrogenase A, LDHA g.46G>T localized on SSC2 (including the IGF2 intron3-g.3072G>A SNP showing association with production traits in Italian Large White pigs and/or localizing them on QTL regions. Here we analysed these markers applying a selective genotyping approach based on estimated breeding values (EBVs. Three groups of Italian Large White pigs each made by animals with the most positive (n. 50 and most negative (n. 50 EBVs for average daily gain (ADG, backfat thickness (BFT or weight of lean cuts (LC and one group of Italian Duroc pigs made by 50 animals with most positive and 50 animals with most negative EBV for visible intermuscular fat (VIF were genotyped. In Italian Large White pigs, allele frequency differences for the IGF2 intron3-g.3072G>A SNP between the two extreme tails for all groups were highly significant (considering all analysed animals: P=9.53E-20 for LC; P=3.16E-15 for BFT; P=4.41E-6 for ADG. Significant allele frequency differences were also observed for the CTSD g.70G>A (P=0.0002 for ADG; P=0.00068 and LDHA g.46G>T (P=2.32E-5 for ADG polymorphisms. These results provide further support on the effects of these polymorphisms or genes whose application on marker assisted selection programs could be envisaged.

  16. A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection

    Directory of Open Access Journals (Sweden)

    Tetreau Guillaume

    2008-10-01

    Full Text Available Abstract Background For most organisms, developing hundreds of genetic markers spanning the whole genome still requires excessive if not unrealistic efforts. In this context, there is an obvious need for methodologies allowing the low-cost, fast and high-throughput genotyping of virtually any species, such as the Diversity Arrays Technology (DArT. One of the crucial steps of the DArT technique is the genome complexity reduction, which allows obtaining a genomic representation characteristic of the studied DNA sample and necessary for subsequent genotyping. In this article, using the mosquito Aedes aegypti as a study model, we describe a new genome complexity reduction method taking advantage of the abundance of miniature inverted repeat transposable elements (MITEs in the genome of this species. Results Ae. aegypti genomic representations were produced following a two-step procedure: (1 restriction digestion of the genomic DNA and simultaneous ligation of a specific adaptor to compatible ends, and (2 amplification of restriction fragments containing a particular MITE element called Pony using two primers, one annealing to the adaptor sequence and one annealing to a conserved sequence motif of the Pony element. Using this protocol, we constructed a library comprising more than 6,000 DArT clones, of which at least 5.70% were highly reliable polymorphic markers for two closely related mosquito strains separated by only a few generations of artificial selection. Within this dataset, linkage disequilibrium was low, and marker redundancy was evaluated at 2.86% only. Most of the detected genetic variability was observed between the two studied mosquito strains, but individuals of the same strain could still be clearly distinguished. Conclusion The new complexity reduction method was particularly efficient to reveal genetic polymorphisms in Ae. egypti. Overall, our results testify of the flexibility of the DArT genotyping technique and open new

  17. Molecular characterization of hepatitis B virus in Bangladesh reveals a highly recombinant population.

    Directory of Open Access Journals (Sweden)

    Saif Ullah Munshi

    Full Text Available The natural history and treatment outcome of hepatitis B viruses (HBV infection is largely dependent on genotype, subgenotype, and the presence or absence of virulence associated mutations. We have studied the prevalence of genotype and subgenotype as well as virulence and drug resistance associated mutations and prevalence of recombinant among HBV from Bangladesh. A prospective cross-sectional study was conducted among treatment naïve chronic HBV patients attending at Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh for HBV viral load assessment between June and August 2015. Systematical selected 50% of HBV DNA positive patients (every second patient were enrolled. Biochemical and serological markers for HBV infection and whole genome sequencing (WGS was performed on virus positive sample. Genotype, subgenotype, virulence, nucleos(tide analogue (NA resistance (NAr mutations, and the prevalence of recombinant isolates were determined. Among 114 HBV DNA positive patients, 57 were enrolled in the study and 53 HBV WGS were generated for downstream analysis. Overall, 38% (22/57 and 62% (35/57 of patients had acute and chronic HBV infections, respectively. The prevalence of genotypes A, C, and D was 18.9% (10/53, 45.3% (24/53, and 35.8% (19/53, respectively. Among genotype A, C and D isolates subgenotype A1 (90%; 9/10, C1 (87.5%; 21/24 and D2 (78.9%; 15/19 predominates. The acute infection, virulence associated mutations, and viral load was higher in the genotype D isolates. Evidence of recombination was identified in 22.6% (12/53 of the HBV isolates including 20.0% (2/10, and 16.7% (4/24 and 31.6% (6/19 of genotype A, C and D isolates, respectively. The prevalence of recombination was higher in chronic HVB patients (32.2%; 10/31 versus 9.1%; 2/22; p<0.05. NAr mutations were identified in 47.2% (25/53 of the isolates including 33.9% novel mutations (18/53. HBV genotype C and D predominated in this population in Bangladesh; a

  18. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    OpenAIRE

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reac...

  19. Mortality selection during the 2003 European heat wave in three-spined sticklebacks: effects of parasites and MHC genotype

    Directory of Open Access Journals (Sweden)

    Milinski Manfred

    2008-04-01

    Full Text Available Abstract Background Ecological interaction strength may increase under environmental stress including temperature. How such stress enhances and interacts with parasite selection is almost unknown. We studied the importance of resistance genes of the major histocompatibility complex (MHC class II in 14 families of three-spined sticklebacks Gasterosteus aculeatus exposed to their natural macroparasites in field enclosures in the extreme summer of 2003. Results After a mass die-off during the 2003-European heat wave killing 78% of 277 experimental fish, we found strong differences in survival among and within families. In families with higher average parasite load fewer individuals survived. Multivariate analysis revealed that the composition of the infecting parasite fauna was family specific. Within families, individuals with an intermediate number of MHC class IIB sequence variants survived best and had the lowest parasite load among survivors, suggesting a direct functional link between MHC diversity and fitness. The within family MHC effects were, however, small compared to between family effects, suggesting that other genetic components or non-genetic effects were also important. Conclusion The correlation between parasite load and mortality that we found at both individual and family level might have appeared only in the extraordinary heatwave of 2003. Due to global warming the frequency of extreme climatic events is predicted to increase, which might intensify costs of parasitism and enhance selection on immune genes.

  20. Prevalence of at-risk genotypes for genotoxic effects decreases with age in a randomly selected population in Flanders: a cross sectional study

    Directory of Open Access Journals (Sweden)

    van Delft Joost HM

    2011-10-01

    Full Text Available Abstract Background We hypothesized that in Flanders (Belgium, the prevalence of at-risk genotypes for genotoxic effects decreases with age due to morbidity and mortality resulting from chronic diseases. Rather than polymorphisms in single genes, the interaction of multiple genetic polymorphisms in low penetrance genes involved in genotoxic effects might be of relevance. Methods Genotyping was performed on 399 randomly selected adults (aged 50-65 and on 442 randomly selected adolescents. Based on their involvement in processes relevant to genotoxicity, 28 low penetrance polymorphisms affecting the phenotype in 19 genes were selected (xenobiotic metabolism, oxidative stress defense and DNA repair, respectively 13, 6 and 9 polymorphisms. Polymorphisms which, based on available literature, could not clearly be categorized a priori as leading to an 'increased risk' or a 'protective effect' were excluded. Results The mean number of risk alleles for all investigated polymorphisms was found to be lower in the 'elderly' (17.0 ± 2.9 than the 'adolescent' (17.6 ± 3.1 subpopulation (P = 0.002. These results were not affected by gender nor smoking. The prevalence of a high (> 17 = median number of risk alleles was less frequent in the 'elderly' (40.6% than the 'adolescent' (51.4% subpopulation (P = 0.002. In particular for phase II enzymes, the mean number of risk alleles was lower in the 'elderly' (4.3 ± 1.6 than the 'adolescent' age group (4.8 ± 1.9 P 4 = median number of risk alleles was less frequent in the 'elderly' (41.3% than the adolescent subpopulation (56.3%, P 8 = median number of risk alleles for DNA repair enzyme-coding genes was lower in the 'elderly' (37,3% than the 'adolescent' subpopulation (45.6%, P = 0.017. Conclusions These observations are consistent with the hypothesis that, in Flanders, the prevalence of at-risk alleles in genes involved in genotoxic effects decreases with age, suggesting that persons carrying a higher number of

  1. Evaluation of common bean (Phaseolus vulgaris L. genotypes for drought stress adaptation in Ethiopia

    Directory of Open Access Journals (Sweden)

    Kwabena Darkwa

    2016-10-01

    Full Text Available Drought stress linked with climate change is one of the major constraints faced by common bean farmers in Africa and elsewhere. Mitigating this constraint requires the selection of resilient varieties that withstand drought threats to common bean production. This study assessed the drought response of 64 small red-seeded genotypes of common bean grown in a lattice design replicated twice under contrasting moisture regimes, terminal drought stress and non-stress, in Ethiopia during the dry season from November 2014 to March 2015. Multiple plant traits associated with drought were assessed for their contribution to drought adaptation of the genotypes. Drought stress determined by a drought intensity index was moderate (0.3. All the assessed traits showed significantly different genotypic responses under drought stress and non-stress conditions. Eleven genotypes significantly (P ≤ 0.05 outperformed the drought check cultivar under both drought stress and non-stress conditions in seed yielding potential. Seed yield showed positive and significant correlations with chlorophyll meter reading, vertical root pulling resistance force, number of pods per plant, and seeds per pod under both soil moisture regimes, indicating their potential use in selection of genotypes yielding well under drought stress and non-stress conditions. Clustering analysis using Mahalanobis distance grouped the genotypes into four groups showing high and significant inter-cluster distance, suggesting that hybridization between drought-adapted parents from the groups will provide the maximum genetic recombination for drought tolerance in subsequent generations.

  2. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  3. Androstenedione response to recombinant human FSH is the most valid predictor of the number of selected follicles in polycystic ovarian syndrome: (a case-control study).

    Science.gov (United States)

    Ozyurek, Eser Sefik; Yoldemir, Tevfik; Artar, Gokhan

    2017-05-12

    We aimed to test the hypothesis that the correlation of the changes in the blood Androstenedione (A 4 ) levels to the number of selected follicles during ovulation induction with low-dose recombinant human follicle stimulating hormone (rhFSH) is as strong as the correlation to changes in the blood Estradiol (E 2 ) levels in polycystic ovary syndrome (PCOS). Prospective Case-control study conducted from October 2014 to January 2016. 61 non-PCOS control (Group I) and 46 PCOS (Group II) patients treated with the chronic low-dose step up protocosl with rhFSH. A 4 , E 2 , progesterone blood levels and follicular growth were monitored.. Univariate and hierarchical multivariable analysis were performed for age, BMI, HOMA-IR, A 4 and E 2 (with the number of selected follicles as the dependent variable in both groups). ROC analysis was performed to define threshold values for the significant determinants of the number of selected follicles to predict cyle cancellations due to excessive ovarian response. The control group (Group I) was comprised of 61 cycles from a group of primary infertile non-PCOS patients, and the study group (Group II) of 46 cycles of PCOS patients. The analysis revealed that the strongest independent predictor of the total number of selected follicles in Group I was the E 2 (AUC) (B = 0.0006[0.0003-0.001]; P ovarian response and accurate titration of the rhFSH doses. The study was registered as a prospective case-control study in the ClinicalTrials.gov registry with the identifier NCT02329483 .

  4. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera.

    Science.gov (United States)

    Langberg, Kurt; Phillips, Matthew; Rueppell, Olav

    2018-04-01

    The rate of genomic recombination displays evolutionary plasticity and can even vary in response to environmental factors. The western honey bee (Apis mellifera L.) has an extremely high genomic recombination rate but the mechanistic basis for this genome-wide upregulation is not understood. Based on the hypothesis that meiotic recombination and DNA damage repair share common mechanisms in honey bees as in other organisms, we predicted that oxidative stress leads to an increase in recombination rate in honey bees. To test this prediction, we subjected honey bee queens to oxidative stress by paraquat injection and measured the rates of genomic recombination in select genome intervals of offspring produced before and after injection. The evaluation of 26 genome intervals in a total of over 1750 offspring of 11 queens by microsatellite genotyping revealed several significant effects but no overall evidence for a mechanistic link between oxidative stress and increased recombination was found. The results weaken the notion that DNA repair enzymes have a regulatory function in the high rate of meiotic recombination of honey bees, but they do not provide evidence against functional overlap between meiotic recombination and DNA damage repair in honey bees and more mechanistic studies are needed.

  5. Binary and ternary recombination of para-H3(+) and ortho-H3(+) with electrons: state selective study at 77-200 K.

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Varju, Jozef; Rubovič, Peter; Roučka, Štěpán; Kotrík, Tomáš; Plašil, Radek; Glosík, Juraj; Johnsen, Rainer

    2012-06-28

    Measurements in H(3)(+) afterglow plasmas with spectroscopically determined relative abundances of H(3)(+) ions in the para-nuclear and ortho-nuclear spin states provide clear evidence that at low temperatures (77-200 K) para-H(3)(+) ions recombine significantly faster with electrons than ions in the ortho state, in agreement with a recent theoretical prediction. The cavity ring-down absorption spectroscopy used here provides an in situ determination of the para/ortho abundance ratio and yields additional information on the translational and rotational temperatures of the recombining ions. The results show that H(3)(+) recombination with electrons occurs by both binary recombination and third-body (helium) assisted recombination, and that both the two-body and three-body rate coefficients depend on the nuclear spin states. Electron-stabilized (collisional-radiative) recombination appears to make only a small contribution.

  6. Binary and ternary recombination of para-H3+ and ortho-H3+ with electrons: State selective study at 77-200 K

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Varju, Jozef; Rubovič, Peter; Roučka, Štěpán; Kotrík, Tomáš; Plašil, Radek; Glosík, Juraj; Johnsen, Rainer

    2012-06-01

    Measurements in H_3^+ afterglow plasmas with spectroscopically determined relative abundances of H_3^+ ions in the para-nuclear and ortho-nuclear spin states provide clear evidence that at low temperatures (77-200 K) para-H_3^+ ions recombine significantly faster with electrons than ions in the ortho state, in agreement with a recent theoretical prediction. The cavity ring-down absorption spectroscopy used here provides an in situ determination of the para/ortho abundance ratio and yields additional information on the translational and rotational temperatures of the recombining ions. The results show that H_3^+ recombination with electrons occurs by both binary recombination and third-body (helium) assisted recombination, and that both the two-body and three-body rate coefficients depend on the nuclear spin states. Electron-stabilized (collisional-radiative) recombination appears to make only a small contribution.

  7. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    Science.gov (United States)

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Desmanthus GENOTYPES

    Directory of Open Access Journals (Sweden)

    JOSÉ HENRIQUE DE ALBUQUERQUE RANGEL

    2015-01-01

    Full Text Available Desmanthus is a genus of forage legumes with potential to improve pastures and livestock produc-tion on clay soils of dry tropical and subtropical regions such as the existing in Brazil and Australia. Despite this patterns of natural or enforced after-ripening of Desmanthus seeds have not been well established. Four year old seed banks of nine Desmanthus genotypes at James Cook University were accessed for their patterns of seed softe-ning in response to a range of temperatures. Persistent seed banks were found to exist under all of the studied ge-notypes. The largest seeds banks were found in the genotypes CPI 78373 and CPI 78382 and the smallest in the genotypes CPI’s 37143, 67643, and 83563. An increase in the percentage of softened seeds was correlated with higher temperatures, in two patterns of response: in some accessions seeds were not significantly affected by tempe-ratures below 80º C; and in others, seeds become soft when temperature rose to as little as 60 ºC. At 80 °C the heat started to depress germination. High seed production of Desmanthus associated with dependence of seeds on eleva-ted temperatures to softening can be a very important strategy for plants to survive in dry tropical regions.

  9. Epstein-Barr virus (EBV) recombinants: use of positive selection markers to rescue mutants in EBV-negative B-lymphoma cells.

    OpenAIRE

    Wang, F; Marchini, A; Kieff, E

    1991-01-01

    The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recove...

  10. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance.

    Science.gov (United States)

    LaJeunesse, Todd C; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E

    2010-10-07

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally 'sensitive' symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1(Aiptasia), genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997-1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral-algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities.

  11. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance

    Science.gov (United States)

    LaJeunesse, Todd C.; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T.; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L.; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E.

    2010-01-01

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally ‘sensitive’ symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies recovered quickly while others suffered partial or complete mortality. In most colonies, no appreciable change was observed in the identity of the original symbiont, indicating that these partnerships are stable. During the initial phases of recovery, a third species of symbiont B1Aiptasia, genetically identical to that harboured by the invasive anemone, Aiptasia sp., grew opportunistically and was visible as light-yellow patches on the branch tips of several colonies. However, this symbiont did not persist and was displaced in all cases by C1b-c several months later. Colonies with D1 were abundant at inshore habitats along the continental eastern Pacific, where seasonal turbidity is high relative to offshore islands. Environmental conditions of the central and southern coasts of Mexico were not sufficient to explain the exclusivity of D1 Pocillopora in these regions. It is possible that mass mortalities associated with major thermal disturbances during the 1997–1998 El Niño Southern Oscillation eliminated C1b-c holobionts from these locations. The differential loss of Pocillopora holobionts in response to thermal stress suggests that natural selection on existing variation can cause rapid and significant shifts in the frequency of particular coral–algal partnerships. However, coral populations may take decades to recover following episodes of severe selection, thereby raising considerable uncertainty about the long-term viability of these communities

  12. HBV genotypic variability in Cuba.

    Directory of Open Access Journals (Sweden)

    Carmen L Loureiro

    Full Text Available The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%, mainly A2 (149, 60% but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%, with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7. Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions.

  13. HBV Genotypic Variability in Cuba

    Science.gov (United States)

    Loureiro, Carmen L.; Aguilar, Julio C.; Aguiar, Jorge; Muzio, Verena; Pentón, Eduardo; Garcia, Daymir; Guillen, Gerardo; Pujol, Flor H.

    2015-01-01

    The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%), mainly A2 (149, 60%) but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%), with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7). Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions. PMID:25742179

  14. Application of NIR - CRDS for state selective study of recombination of para and ortho H3+ ions with electrons in low temperature plasma

    Science.gov (United States)

    Varju, J.; Roučka, Š.; Kotrík, T.; Plašil, R.; Glosík, J.

    2010-05-01

    We present a study of H3+ recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer (~1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient αbin (77 K) = 1.2×10-7 cm3s-1. We have also observed ternary helium assisted recombination of both para and ortho H3+. The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H3+ recombination rate coefficient was measured at a known population of para and ortho H3+ ions in decaying plasma.

  15. Application of NIR - CRDS for state selective study of recombination of para and ortho H3+ ions with electrons in low temperature plasma

    International Nuclear Information System (INIS)

    Varju, J; Roucka, S; KotrIk, T; Plasil, R; Glosik, J

    2010-01-01

    We present a study of H 3 + recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer (∼1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient α bin (77 K) = 1.2x10 -7 cm 3 s -1 . We have also observed ternary helium assisted recombination of both para and ortho H 3 + . The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H 3 + recombination rate coefficient was measured at a known population of para and ortho H 3 + ions in decaying plasma.

  16. Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14, and 21: implications for recombination between nonhomologues and Robertsonian translocations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, K H; Vissel, B; Brown, R; Filby, R G; Earle, E

    1988-02-25

    The authors report a new subfamily of alpha satellite DNA (pTRA-2) which is found on all the human acrocentric chromosomes. The alphoid nature of the cloned DNA was established by partial sequencing. Southern analysis of restriction enzyme-digested DNA fragments from mouse/human hybrid cells containing only human chromosome 21 showed that the predominant higher-order repeating unit for pTRA-2 is a 3.9 kb structure. Analysis of a consensus in situ hybridization profile derived from 13 normal individuals revealed the localization of 73% of all centromeric autoradiographic grains over the five acrocentric chromosomes, with the following distribution: 20.4%, 21.5%, 17.1%, 7.3% and 6.5% on chromosomes 13, 14, 21, 15 and 22 respectively. An average of 1.4% of grains was found on the centromere of each of the remaining 19 nonacrocentric chromosomes. These results indicate the presence of a common subfamily of alpha satellite DNA on the five acrocentric chromosomes and suggest an evolutionary process consistent with recombination exchange of sequences between the nonhomologues. The results further suggests that such exchanges are more selective for chromosomes 13, 14 and 21 than for chromosomes 15 and 22. The possible role of centromeric alpha satellite DNA in the aetiology of 13q14q and 14q21q Robertsonian translocation involving the common and nonrandom association of chromosomes 13 and 14, and 14 and 21 is discussed.

  17. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    Science.gov (United States)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    2017-12-05

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  18. Effect of mutagens, chemotherapeutic agents and defects in DNA repair genes on recombination in F' partial diploid Escherichia coli

    International Nuclear Information System (INIS)

    Norin, A.J.; Goldschmidt, E.P.

    1979-01-01

    The ability of mutagenic agents, nonmutagenic substances and defects in DNA repair to alter the genotype of F' partial diploid (F30) Escherichia coli was determined. The frequency of auxotrophic mutants and histidine requiring (His - ) haploid colonies was increased by mutagen treatment but Hfr colonies were not detected in F30 E. coli even with specific selection techniques. Genotype changes due to nonreciprocal recombination were determined by measuring the frequency of His - homogenotes, eg. F' hisC780, hisI + /hisC780, hisI + , arising from a His + heterogenote, F' hisC780 hisI + /hisC + , his1903. At least 75% of the recombinants were homozygous for histidine alleles which were present on the F' plasmid (exogenote) of the parental hetergenote rather than for histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which block DNA synthesis and a defective DNA polymerase I gene, polA1, were found to increase the frequency of nonreciprocal recombination. A defect in the ability to excise thymine dimers, uvrC34, did not increase spontaneous nonreciprocal recombination. However, UV irradiation but not methyl methanesulfonate (MMS) induced greater recombination in this excision-repair defective mutant than in DNA-repair-proficient strains. (Auth.)

  19. Industrial case study: evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli.

    Science.gov (United States)

    Kaleas, Kimberly A; Schmelzer, Charles H; Pizarro, Shelly A

    2010-01-08

    Mixed-mode chromatography resins are gaining popularity as effective purification tools for challenging feedstocks. This study presents the development of an industrial application to selectively capture recombinant human vascular endothelial growth factor (rhVEGF) on Capto MMC from an alkaline feedstock. Capto MMC resin contains a ligand that has the potential to participate in ionic, hydrophobic, and hydrogen boding interactions with proteins and is coupled to a highly cross-linked agarose bead matrix. VEGF is a key growth factor involved in angiogenesis and has therapeutic applications for wound healing. In this process, it is expressed in Escherichia coli as inclusion bodies. Solids are harvested from the cell lysate, and the rhVEGF is solubilized and refolded at pH 9.8 in the presence of urea and redox reagents. The unique mixed-mode characteristics of Capto MMC enabled capture of this basic protein with minimal load conditioning and delivered a concentrated pool for downstream processing with >95% yields while reducing host cell protein content to study explores the impact of loading conditions and residence time on the dynamic binding capacity as well as the development of elution conditions for optimal purification performance. After evaluating various elution buffers, l-arginine HCl was shown to be an effective eluting agent for rhVEGF desorption from the Capto MMC mixed-mode resin since it successfully disrupted the multiple interactions between the resin and rhVEGF. The lab scale effort produced a robust chromatography step that was successfully implemented at commercial manufacturing scale. Copyright 2009 Elsevier B.V. All rights reserved.

  20. An approximate confidence interval for recombination fraction in ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... whose parents are not in the pedigree) and θ be the recombination fraction. ( )|. P x g is the penetrance probability, that is, the probability that an individual with genotype g has phenotype x . Let (. ) | , k k k f m. P g g g be the transmission probability, that is, the probability that an individual having genotype k.

  1. Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in Italian Large White pigs using a selective genotyping approach.

    Science.gov (United States)

    Fontanesi, L; Galimberti, G; Calò, D G; Fronza, R; Martelli, P L; Scotti, E; Colombo, M; Schiavo, G; Casadio, R; Buttazzoni, L; Russo, V

    2012-08-01

    Combining different approaches (resequencing of portions of 54 obesity candidate genes, literature mining for pig markers associated with fat deposition or related traits in 77 genes, and in silico mining of porcine expressed sequence tags and other sequences available in databases), we identified and analyzed 736 SNP within candidate genes to identify markers associated with back fat thickness (BFT) in Italian Large White sows. Animals were chosen using a selective genotyping approach according to their EBV for BFT (276 with most negative and 279 with most positive EBV) within a population of ≈ 12,000 pigs. Association analysis between the SNP and BFT has been carried out using the MAX test proposed for case-control studies. The designed assays were successful for 656 SNP: 370 were excluded (low call rate or minor allele frequency A polymorphism (P(nominal) G polymorphism (P(nominal) = 8.0E-05). The third top SNP (P(nominal) = 6.2E-04) was the intronic TBC1D1 g.219G>A polymorphic site, in agreement with our previous results obtained in an independent study. The list of significant markers also included SNP in additional genes (ABHD16A, ABHD5, ACP2, ALMS1, APOA2, ATP1A2, CALR, COL14A1, CTSF, DARS, DECR1, ENPP1, ESR1, GH1, GHRL, GNMT, IKBKB, JAK3, MTTP, NFKBIA, NT5E, PLAT, PPARG, PPP2R5D, PRLR, RRAGD, RFC2, SDHD, SERPINF1, UBE2H, VCAM1, and WAT). Functional relationships between genes were obtained using the Ingenuity Pathway Analysis (IPA) Knowledge Base. The top scoring pathway included 19 genes with a P(nominal) < 0.1, 2 of which (IKBKB and NFKBIA) are involved in the hypothalamic IKKβ/NFκB program that could represent a key axis to affect fat deposition traits in pigs. These results represent a starting point to plan marker-assisted selection in Italian Large White nuclei for BFT. Because of similarities between humans and pigs, this study might also provide useful clues to investigate genetic factors affecting human obesity.

  2. High Prevalence of Co-Infections by Invasive and Non-Invasive Chlamydia trachomatis Genotypes during the Lymphogranuloma Venereum Outbreak in Spain.

    Directory of Open Access Journals (Sweden)

    Mario Rodriguez-Dominguez

    Full Text Available The evolution of Chlamydia trachomatis is mainly driven by recombination events. This fact can be fuelled by the coincidence in several European regions of the high prevalence of non-invasive urogenital genotypes and lymphogranuloma venereum (LGV outbreaks. This scenario could modify the local epidemiology and favor the selection of new C. trachomatis variants. Quantifying the prevalence of co-infection could help to predict the potential risk in the selection of new variants with unpredictable results in pathogenesis or transmissibility. In the 2009-2013 period, 287 clinical samples with demonstrated presence of C. trachomatis were selected. They were divided in two groups. The first group was constituted by 137 samples with C. trachomatis of the LGV genotypes, and the second by the remaining 150 samples in which the presence of LGV genotypes was previously excluded. They were analyzed to detect the simultaneous presence of non-LGV genotypes based on pmpH and ompA genes. In the first group, co-infections were detected in 10.9% of the cases whereas in the second group the prevalence was 14.6%, which is the highest percentage ever described among European countries. Moreover, bioinformatic analyses suggested the presence among men who have sex with men of a pmpH-recombinant variant, similar to strains described in Seattle in 2002. This variant was the result of genetic exchange between genotypes belonging to LGV and members of G-genotype. Sequencing of other genes, phylogenetically related to pathotype, confirmed that the putative recombinant found in Madrid could have a common origin with the strains described in Seattle. Countries with a high prevalence of co-infections and high migration flows should enhance surveillance programs in at least their vulnerable population.

  3. High Prevalence of Co-Infections by Invasive and Non-Invasive Chlamydia trachomatis Genotypes during the Lymphogranuloma Venereum Outbreak in Spain.

    Science.gov (United States)

    Rodriguez-Dominguez, Mario; Gonzalez-Alba, Jose Maria; Puerta, Teresa; Menendez, Blanca; Sanchez-Diaz, Ana Maria; Canton, Rafael; del Romero, Jorge; Galan, Juan Carlos

    2015-01-01

    The evolution of Chlamydia trachomatis is mainly driven by recombination events. This fact can be fuelled by the coincidence in several European regions of the high prevalence of non-invasive urogenital genotypes and lymphogranuloma venereum (LGV) outbreaks. This scenario could modify the local epidemiology and favor the selection of new C. trachomatis variants. Quantifying the prevalence of co-infection could help to predict the potential risk in the selection of new variants with unpredictable results in pathogenesis or transmissibility. In the 2009-2013 period, 287 clinical samples with demonstrated presence of C. trachomatis were selected. They were divided in two groups. The first group was constituted by 137 samples with C. trachomatis of the LGV genotypes, and the second by the remaining 150 samples in which the presence of LGV genotypes was previously excluded. They were analyzed to detect the simultaneous presence of non-LGV genotypes based on pmpH and ompA genes. In the first group, co-infections were detected in 10.9% of the cases whereas in the second group the prevalence was 14.6%, which is the highest percentage ever described among European countries. Moreover, bioinformatic analyses suggested the presence among men who have sex with men of a pmpH-recombinant variant, similar to strains described in Seattle in 2002. This variant was the result of genetic exchange between genotypes belonging to LGV and members of G-genotype. Sequencing of other genes, phylogenetically related to pathotype, confirmed that the putative recombinant found in Madrid could have a common origin with the strains described in Seattle. Countries with a high prevalence of co-infections and high migration flows should enhance surveillance programs in at least their vulnerable population.

  4. Application of NIR - CRDS for state selective study of recombination of para and ortho H{sub 3}{sup +} ions with electrons in low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Varju, J; Roucka, S; KotrIk, T; Plasil, R; Glosik, J, E-mail: Juraj.Glosik@mff.cuni.c [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holesovickach 2, Prague 8 (Czech Republic)

    2010-05-01

    We present a study of H{sub 3}{sup +} recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer ({approx}1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient {alpha}{sub bin} (77 K) = 1.2x10{sup -7} cm{sup 3}s{sup -1}. We have also observed ternary helium assisted recombination of both para and ortho H{sub 3}{sup +}. The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H{sub 3}{sup +} recombination rate coefficient was measured at a known population of para and ortho H{sub 3}{sup +} ions in decaying plasma.

  5. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    Science.gov (United States)

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  6. Evaluation of Diversity Based on Morphological Variabilities and ISSR Molecular Markers in Iranian Cynodon dactylon (L.) Pers. Accessions to Select and Introduce Cold-Tolerant Genotypes.

    Science.gov (United States)

    Akbari, M; Salehi, H; Niazi, A

    2018-04-01

    , Naein, Aligoudarz, and the foreign cultivar. This study may provide useful information for further breeding programs on common bermudagrass. Selected genotypes can be evaluated for other abiotic stresses such as drought and salinity.

  7. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  8. Serendipitous identification of natural intergenotypic recombinants of hepatitis C in Ireland.

    LENUS (Irish Health Repository)

    Moreau, Isabelle

    2006-01-01

    BACKGROUND: Recombination between hepatitis C single stranded RNA viruses is a rare event. Natural viable intragenotypic and intergenotypic recombinants between 1b-1a, 1a-1c and 2k-1b, 2i-6p, respectively, have been reported. Diagnostically recombinants represent an intriguing challenge. Hepatitis C genotype is defined by interrogation of the sequence composition of the 5\\' untranslated region [5\\'UTR]. Occasionally, ambiguous specimens require further investigation of the genome, usually by interrogation of the NS5B region. The original purpose of this study was to confirm the existence of a suspected mixed genotype infection of genotypes 2 and 4 by clonal analysis at the NS5B region of the genome in two specimens from two separate individuals. This initial identification of genotype was based on analysis of the 5\\'UTR of the genome by reverse line probe hybridisation [RLPH]. RESULTS: The original diagnosis of a mixed genotype infection was not confirmed by clonal analysis of the NS5B region of the genome. The phylogenetic analysis indicated that both specimens were natural intergenotypic recombinant forms of HCV. The recombination was between genotypes 2k and 1b for both specimens. The recombination break point was identified as occurring within the NS2 region of the genome. CONCLUSION: The viral recombinants identified here resemble the recombinant form originally identified in Russia. The RLPH pattern observed in this study may be a signature indicative of this particular type of intergenotype recombinant of hepatitis C meriting clonal analysis of NS2.

  9. A novel complex A/C/G intergenotypic recombinant of hepatitis B virus isolated in southern China.

    Directory of Open Access Journals (Sweden)

    Heling Su

    Full Text Available Hepatitis B virus (HBV genotypes and subgenotypes may vary in geographical distribution and virological features. Previous investigations, including ours, showed that HBV genotypes B and C were respectively predominant in South and North China, while genotypes A and D were infrequently detected and genotype G was not found. In this study, a novel A/C/G intergenotype was identified in patients with chronic HBV infection in Guilin, a city in southern China. Initial phylogenetic analysis based on the S gene suggested the HBV recombinant to be genotype G. However, extended genotyping based on the entire HBV genome indicated it to be an A/C/G intergenotype with a closer relation to genotype C. Breakpoint analysis using the SIMPLOT program revealed that the recombinant had a recombination with a arrangement of genotypes A, G, A and C fragments. Compared with the HBV recombinants harboring one or two genotype G fragments found in Asian countries, this Guilin recombinant was highly similar to the Vietnam (98-99% and Long An recombinants (96-99%, but had a relatively low similarity to the Thailand one (89%. Unlike those with the typical genotype G of HBV, the patients with the Guilin recombinant were seropositive for HBeAg. Moreover, a relatively high HBV DNA viral load (>2 × 10(6 IU/ml was detected in the patients, and the analysis of viral replication capacity showed that the Guilin recombinant strains had a competent replication capacity similar to genotypes B and C strains. These findings can aid in not only the clarification of the phylogenetic origin of the HBV recombinants with the genotype G fragment found in Asian countries, but also the understanding of the virological properties of these complicated HBV recombinants.

  10. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    Energy Technology Data Exchange (ETDEWEB)

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individuals leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)

  11. Genotype by environment interactions and yield stability of stem ...

    African Journals Online (AJOL)

    In a maize breeding program, potential genotypes are usually evaluated in different environments before desirable ones are selected. Genotype x environment (G x E) interaction is associated with the differential performance of genotypes tested at different locations and in different years, and influences selection and ...

  12. Sequence and recombination analyses of the geminivirus replication

    Indian Academy of Sciences (India)

    Prakash

    2006-09-18

    Sep 18, 2006 ... Recombination can provide selective advantage in the evolution of viruses .... Program (v 1.08): Recombination Detection Program (RDP). (Martin and Rybicki ..... Sweet potato leaf curl virus - [US:Louisiana:1994]. AF104036.

  13. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    Science.gov (United States)

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  14. Genotyping-by-Sequencing and Its Exploitation for Forage and Cool-Season Grain Legume Breeding

    Science.gov (United States)

    Annicchiarico, Paolo; Nazzicari, Nelson; Wei, Yanling; Pecetti, Luciano; Brummer, Edward C.

    2017-01-01

    Genotyping-by-Sequencing (GBS) may drastically reduce genotyping costs compared with single nucleotide polymorphism (SNP) array platforms. However, it may require optimization for specific crops to maximize the number of available markers. Exploiting GBS-generated markers may require optimization, too (e.g., to cope with missing data). This study aimed (i) to compare elements of GBS protocols on legume species that differ for genome size, ploidy, and breeding system, and (ii) to show successful applications and challenges of GBS data on legume species. Preliminary work on alfalfa and Medicago truncatula suggested the greater interest of ApeKI over PstI:MspI DNA digestion. We compared KAPA and NEB Taq polymerases in combination with primer extensions that were progressively more selective on restriction sites, and found greater number of polymorphic SNP loci in pea, white lupin and diploid alfalfa when adopting KAPA with a non-selective primer. This protocol displayed a slight advantage also for tetraploid alfalfa (where SNP calling requires higher read depth). KAPA offered the further advantage of more uniform amplification than NEB over fragment sizes and GC contents. The number of GBS-generated polymorphic markers exceeded 6,500 in two tetraploid alfalfa reference populations and a world collection of lupin genotypes, and 2,000 in different sets of pea or lupin recombinant inbred lines. The predictive ability of GBS-based genomic selection was influenced by the genotype missing data threshold and imputation, as well as by the genomic selection model, with the best model depending on traits and data sets. We devised a simple method for comparing phenotypic vs. genomic selection in terms of predicted yield gain per year for same evaluation costs, whose application to preliminary data for alfalfa and pea in a hypothetical selection scenario for each crop indicated a distinct advantage of genomic selection. PMID:28536584

  15. Genotyping-by-Sequencing and Its Exploitation for Forage and Cool-Season Grain Legume Breeding

    Directory of Open Access Journals (Sweden)

    Paolo Annicchiarico

    2017-05-01

    Full Text Available Genotyping-by-Sequencing (GBS may drastically reduce genotyping costs compared with single nucleotide polymorphism (SNP array platforms. However, it may require optimization for specific crops to maximize the number of available markers. Exploiting GBS-generated markers may require optimization, too (e.g., to cope with missing data. This study aimed (i to compare elements of GBS protocols on legume species that differ for genome size, ploidy, and breeding system, and (ii to show successful applications and challenges of GBS data on legume species. Preliminary work on alfalfa and Medicago truncatula suggested the greater interest of ApeKI over PstI:MspI DNA digestion. We compared KAPA and NEB Taq polymerases in combination with primer extensions that were progressively more selective on restriction sites, and found greater number of polymorphic SNP loci in pea, white lupin and diploid alfalfa when adopting KAPA with a non-selective primer. This protocol displayed a slight advantage also for tetraploid alfalfa (where SNP calling requires higher read depth. KAPA offered the further advantage of more uniform amplification than NEB over fragment sizes and GC contents. The number of GBS-generated polymorphic markers exceeded 6,500 in two tetraploid alfalfa reference populations and a world collection of lupin genotypes, and 2,000 in different sets of pea or lupin recombinant inbred lines. The predictive ability of GBS-based genomic selection was influenced by the genotype missing data threshold and imputation, as well as by the genomic selection model, with the best model depending on traits and data sets. We devised a simple method for comparing phenotypic vs. genomic selection in terms of predicted yield gain per year for same evaluation costs, whose application to preliminary data for alfalfa and pea in a hypothetical selection scenario for each crop indicated a distinct advantage of genomic selection.

  16. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    Science.gov (United States)

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  17. FTO genotype and weight loss

    DEFF Research Database (Denmark)

    Livingstone, Katherine M; Celis-Morales, Carlos; Papandonatos, George D

    2016-01-01

    : Ovid Medline, Scopus, Embase, and Cochrane from inception to November 2015. ELIGIBILITY CRITERIA FOR STUDY SELECTION: Randomised controlled trials in overweight or obese adults reporting reduction in body mass index, body weight, or waist circumference by FTO genotype (rs9939609 or a proxy) after...

  18. Evaluation of the Abbott Real Time HCV genotype II assay for Hepatitis C virus genotyping.

    Science.gov (United States)

    Sariguzel, Fatma Mutlu; Berk, Elife; Gokahmetoglu, Selma; Ercal, Baris Derya; Celik, Ilhami

    2015-01-01

    The determination of HCV genotypes and subtypes is very important for the selection of antiviral therapy and epidemiological studies. The aim of this study was to evaluate the performance of Abbott Real Time HCV Genotype II assay in HCV genotyping of HCV infected patients in Kayseri, Turkey. One hundred patients with chronic hepatitis C admitted to our hospital were evaluated between June 2012 and December 2012, HCV RNA levels were determined by the COBAS® AmpliPrep/COBAS® TaqMan® 48 HCV test. HCV genotyping was investigated by the Abbott Real Time HCV Genotype II assay. With the exception of genotype 1, subtypes of HCV genotypes could not be determined by Abbott assay. Sequencing analysis was used as the reference method. Genotypes 1, 2, 3 and 4 were observed in 70, 4, 2 and 24 of the 100 patients, respectively, by two methods. The concordance between the two systems to determine HCV major genotypes was 100%. Of 70 patients with genotype 1, 66 showed infection with subtype 1b and 4 with subtype 1a by Abbott Real Time HCV Genotype II assay. Using sequence analysis, 61 showed infection with subtype 1b and 9 with subtype 1a. In determining of HCV genotype 1 subtypes, the difference between the two methods was not statistically significant (P>0.05). HCV genotype 4 and 3 samples were found to be subtype 4d and 3a, respectively, by sequence analysis. There were four patients with genotype 2. Sequence analysis revealed that two of these patients had type 2a and the other two had type 2b. The Abbott Real Time HCV Genotype II assay yielded results consistent with sequence analysis. However, further optimization of the Abbott Real Time HCV Genotype II assay for subtype identification of HCV is required.

  19. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  20. Plasma-wall interactions data compendium-2. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan); Morita, Kenji [Nagoya Univ. (Japan)

    2002-08-01

    This report will present additional data to those included in the previous report of this series. These new data are on the hydrogen (deuterium) trapping properties of graphite materials. The units on the data on hydrogen (deuterium) diffusion and surface recombination coefficients have been updated to adopt the SI unit system. Also, the graphic representations of previously compiled data on hydrogen (deuterium) retention have been improved for better understanding. For the sake of completeness, this report will present all these data in the improved format. (author)

  1. Reflexos da interação genótipo X ambiente e suas implicações nos ganhos de seleção em genótipos de feijão (Phaseolus vulgaris L. Reflexes of the interaction genotype X environment and their implications in the gains of selection in genotypes of bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Jefferson Luís Meirelles Coimbra

    1999-09-01

    Full Text Available A importância das leguminosas de grãos na alimentação humana, principalmente do feijão preto (Phaseolus vulgaris, tem estimulado os melhoristas a selecionar genótipos com alto potencial de rendimento de grãos e com adaptabilidade às diferentes condições de cultivo do sul do Brasil. O presente trabalho foi realizado com o objetivo de avaliar os reflexos da interação genótipo x ambiente e suas implicações nos ganhos genéticos com diferentes critérios de seleção. Os resultados revelaram que o componente da interação genótipo x ambiente superestima a predição dos parâmetros genéticos, como por exemplo a variância genética e a herdabilidade. As diferenças observadas entre estas estimativas parecem ocorrer devido à alta percentagem da parte complexa da interação. Além disto, os ganhos genéticos obtidos com a seleção direta foram sempre superiores à resposta indireta. Comparativamente, o par de ambientes 1x3 revelou uma resposta correlacionada inferior e de sinal contrário às demais estimativas para os outros pares de ambientes estudados neste trabalho. O primeiro ambiente foi o que mais acumulou a interação genótipo x ambiente. Portanto, pode ser concluído que o componente da interação tem grande relevância nas estimativas dos ganhos genéticos, evidenciando que essa influência deva ser considerada na seleção e na recomendação de genótipos específicos nos programas de melhoramento genético da cultura do feijoeiro.The importance of grains of legume plants for human feeding, specially black beans (Phaseolus vulgaris L., has stimulated the breeders to select genotypes with high grains yield potential and wide adaptability to different conditions of cultivation in southern Brazil. The present work aimed at evaluating the reflexes of the genotype x environment interaction and its implications in the genetic gains of different selection approaches. The results revealed that the component of the

  2. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  3. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. In vitro recombination of bacteriophage T7 DNA damaged by uv radiation

    International Nuclear Information System (INIS)

    Masker, W.E.; Kuemmerle, N.B.

    1980-01-01

    A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of uv radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When uv-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to uv. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules

  5. Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis

    International Nuclear Information System (INIS)

    Hu, Z.; Li, Ch.; Chen, K.; Wang, L.E.; Sturgis, E.M.; Spitz, M.R.; Wei, Q.; Sturgis, E.M.

    2008-01-01

    Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we geno typed 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in , −938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases

  6. Deep sequencing analysis of HBV genotype shift and correlation with antiviral efficiency during adefovir dipivoxil therapy.

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    Full Text Available Viral genotype shift in chronic hepatitis B (CHB patients during antiviral therapy has been reported, but the underlying mechanism remains elusive.38 CHB patients treated with ADV for one year were selected for studying genotype shift by both deep sequencing and Sanger sequencing method.Sanger sequencing method found that 7.9% patients showed mixed genotype before ADV therapy. In contrast, all 38 patients showed mixed genotype before ADV treatment by deep sequencing. 95.5% mixed genotype rate was also obtained from additional 200 treatment-naïve CHB patients. Of the 13 patients with genotype shift, the fraction of the minor genotype in 5 patients (38% increased gradually during the course of ADV treatment. Furthermore, responses to ADV and HBeAg seroconversion were associated with the high rate of genotype shift, suggesting drug and immune pressure may be key factors to induce genotype shift. Interestingly, patients with genotype C had a significantly higher rate of genotype shift than genotype B. In genotype shift group, ADV treatment induced a marked enhancement of genotype B ratio accompanied by a reduction of genotype C ratio, suggesting genotype C may be more sensitive to ADV than genotype B. Moreover, patients with dominant genotype C may have a better therapeutic effect. Finally, genotype shifts was correlated with clinical improvement in terms of ALT.Our findings provided a rational explanation for genotype shift among ADV-treated CHB patients. The genotype and genotype shift might be associated with antiviral efficiency.

  7. Expression of recombinant Antibodies

    Directory of Open Access Journals (Sweden)

    André eFrenzel

    2013-07-01

    Full Text Available Recombinant antibodies are highly specific detection probes in research, diagnostics and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines and transgenic plants are promising to obtain antibodies with human-like post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  8. Plasma-wall interactions data compendium-1. ''Hydrogen retention property, diffusion and recombination coefficients database for selected plasma-facing materials''

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Hirotomo [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Matsuhiro, Kenjirou [Osaka Univ., Osaka (Japan); Hirooka, Yoshi [National Inst. for Fusion Science, Toki, Gifu (Japan); Yamamura, Yasunori [Okayama Univ. of Scinece, Okayama (Japan)

    2002-05-01

    A summary on the recent activities of the plasma-wall interactions database task group at the National Institute for Fusion Science is presented in this report. These activities are focused on the compilation of literature data on the key parameters related to wall recycling characteristics that affect dynamic particle balance during plasma discharges and also on-site tritium inventory. More specifically, in this task group a universal fitting formula has been proposed and successfully applied to help compile hydrogen implantation-induced retention data. Also, presented here are the data on hydrogen diffusion and surface recombination coefficients, both critical in modeling dynamic wall recycling behavior. Data compilation has been conducted on beryllium, carbon, tungsten and molybdenum, all currently used for plasma-facing components in magnetic fusion experiments. (author)

  9. Exceptionally high levels of recombination across the honey bee genome.

    Science.gov (United States)

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  10. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  11. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  12. Effects of citalopram and escitalopram on fMRI response to affective stimuli in healthy volunteers selected by serotonin transporter genotype.

    Science.gov (United States)

    Henry, Michael E; Lauriat, Tara L; Lowen, Steven B; Churchill, Jeffrey H; Hodgkinson, Colin A; Goldman, David; Renshaw, Perry F

    2013-09-30

    This study was designed to assess whether functional magnetic resonance imaging (fMRI) following antidepressant administration (pharmaco-fMRI) is sufficiently sensitive to detect differences in patterns of activation between enantiomers of the same compound. Healthy adult males (n=11) participated in a randomized, double-blind, cross-over trial with three medication periods during which they received citalopram (racemic mixture), escitalopram (S-citalopram alone), or placebo for 2 weeks. All participants had high expression serotonin transporter genotypes. An fMRI scan that included passive viewing of overt and covert affective faces and affective words was performed after each medication period. Activation in response to overt faces was greater following escitalopram than following citalopram in the right insula, thalamus, and putamen when the faces were compared with a fixation stimulus. For the rapid covert presentation, a greater response was observed in the left middle temporal gyrus in the happy versus fearful contrast following escitalopram than following citalopram. Thus, the combination of genomics and fMRI was successful in discriminating between two very similar drugs. However, the pattern of activation observed suggests that further studies are indicated to understand how to optimally combine the two techniques. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  14. Investigations of the fate of radiation-induced mutations in dependence of selection and recombination with recessive gene marks in experimental populations of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Pfriem, P.

    1978-01-01

    Three dichromosomal experimental populations of Drosophila melanogaster were started with heterozygons dp b/+ +- animals with identical dp b- and + +- II-chromosomes for all three populations. The male ++/++- parents had been exposed to 9000 r prior to the experiments. In 7 random samples of the first 15 generations of the experiment, the incidence of the mutant alleles dp and b, the exchange inequilibrium between the alleles of the two labelled loci, and the letthal factor frequency were investigatet. It was found that - The b allele had an equilibrium frequency of about 57% in all populations, while the frequency of the dp allele decreased to about 10% within the first 15 generations. - The association values a as measures of an exchange inequilibrium showed a fast development towards exchange inequilibrium within these 15 generations for the three populations. - The incidence of lethal factors remained constant throughout the generations for the tested type ++ and + b chromosomes, in irradiated ++- chromosomes, it was higher on an average than in the + b- chromosomes. The total lethal factor incidence was about 30%. - The alleling rate of lethal factors and the viability values of several distinguishable genotypes indicated individualities of the three populations in spite of their identical behaviour. In two of the three populations, the near-constant incidence of lethal factors was supposed to be due to a small number of lethal which accurred with high frequency. (orig.) [de

  15. Efficient cell culture system for hepatitis C virus genotype 6A

    DEFF Research Database (Denmark)

    2013-01-01

    The present inventors developed hepatitis C virus 6a/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and the complete NS2 were replaced by the corresponding genes of the genotype 6a reference strain HK6a. Sequence analysis of recovered 6a/2a recombinants from...

  16. Efficient cell culture system for hepatitis C virus genotype 2B

    DEFF Research Database (Denmark)

    2014-01-01

    The present inventors developed hepatitis C virus 2b/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and the complete NS2 were replaced by the corresponding genes of the genotype 2b reference strain J8. Sequence analysis of recovered 2b/2a recombinants from 2...

  17. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  18. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  19. Efficient cell culture system for hepatitis C virus genotype 7a

    DEFF Research Database (Denmark)

    2013-01-01

    Genotype 7a has been identified recently, thus not much is known about the biology of this new, major HCV genotype. The present inventors developed hepatitis C virus 7a/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and the complete NS2 were replaced...

  20. Resolving ambiguity in the phylogenetic relationship of genotypes A, B, and C of hepatitis B virus

    Science.gov (United States)

    2013-01-01

    Background Hepatitis B virus (HBV) is an important infectious agent that causes widespread concern because billions of people are infected by at least 8 different HBV genotypes worldwide. However, reconstruction of the phylogenetic relationship between HBV genotypes is difficult. Specifically, the phylogenetic relationships among genotypes A, B, and C are not clear from previous studies because of the confounding effects of genotype recombination. In order to clarify the evolutionary relationships, a rigorous approach is required that can effectively explore genetic sequences with recombination. Result In the present study, phylogenetic relationship of the HBV genotypes was reconstructed using a consensus phylogeny of phylogenetic trees of HBV genome segments. Reliability of the reconstructed phylogeny was extensively evaluated in agreements of local phylogenies of genome segments. The reconstructed phylogenetic tree revealed that HBV genotypes B and C had a closer phylogenetic relationship than genotypes A and B or A and C. Evaluations showed the consensus method was capable to reconstruct reliable phylogenetic relationship in the presence of recombinants. Conclusion The consensus method implemented in this study provides an alternative approach for reconstructing reliable phylogenetic relationships for viruses with possible genetic recombination. Our approach revealed the phylogenetic relationships of genotypes A, B, and C of HBV. PMID:23758960

  1. Genotyping of Madurella mycetomatis by selective amplification of restriction fragments (amplified fragment length polymorphism) and subtype correlation with geographical origin and lesion size.

    NARCIS (Netherlands)

    W.W.J. van de Sande (Wendy); R.F.J. Gorkink (Raymond); G. Simons (Guus); A. Ott (Alewijn); A. Ahmed (Asif); H.A. Verbrugh (Henri); A.F. van Belkum (Alex)

    2005-01-01

    textabstractOne of the causative organisms of mycetoma is the fungus Madurella mycetomatis. Previously, extensive molecular typing studies identified Sudanese isolates of this fungus as clonal, but polymorphic genetic markers have not yet been identified. Here, we report on the selective

  2. Evaluation of genome-enabled selection for bacterial cold water disease resistance using progeny performance data in Rainbow Trout: Insights on genotyping methods and genomic prediction models

    Science.gov (United States)

    Bacterial cold water disease (BCWD) causes significant economic losses in salmonid aquaculture, and traditional family-based breeding programs aimed at improving BCWD resistance have been limited to exploiting only between-family variation. We used genomic selection (GS) models to predict genomic br...

  3. Evolution of molecular phenotypes under stabilizing selection

    International Nuclear Information System (INIS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes. (paper)

  4. Seleção preliminar de genótipos de pinheira em Bom Jesus-PI Preliminary selection of sugar apple genotypes in Bom Jesus county, Piauí state, Brazil

    Directory of Open Access Journals (Sweden)

    Ítalo Herbert Lucena Cavalcante

    2011-01-01

    Full Text Available A pinheira (Annona squamosa L. ocorre espontaneamente no Nordeste Brasileiro, onde é explorada de forma extrativista, caracterizando-se pela falta de manejo adequado e material genético selecionado. Nesse sentido, foi realizado um experimento com objetivo de avaliar a produtividade, as características físicas e químicas de frutos de dez genótipos de pinheira no município de Bom Jesus, PI. Adotou-se delineamento inteiramente casualizado, com tratamentos representados por dez genótipos de pinheira e três repetições. Foram avaliadas as seguintes variáveis: vitamina C, acidez titulável, sólidos solúveis, relação SS/AT "ratio", diâmetros longitudinal e transversal, relação DL/DT, número se sementes por fruto, massa dos frutos e produção por planta. Os genótipos apresentam diferenças quanto às características químicas, físicas e produtivas dos frutos. Os genótipos foram agrupados em sete grupos, com destaque para o grupo III (Gen-02 e grupo IV (Gen-05, fato que explicitou as diferenças entre os genótipos de pinheira quanto às características produtivas e químicas e físicas dos frutos. Genótipos Gen-01 e Gen-02 apresentam potencial para instalação em plantios comerciais, pela produtividade, formato do fruto ou por caracterizarem fontes naturais de vitamina C.The sugar apple (Annona squamosa L. is native to tropical America, occurring spontaneously in Northeastern Brazil, where it is exploited mainly as subsistence without adequate management and without genetic material selection. An experiment was developed aiming to evaluate yield, physical and chemical characteristics of the fruits of ten sugar apple genotypes in Bom Jesus, Piauí State, Brazil. A completely randomized design with treatments represented by ten genotypes and three replications was adopted. The following variables were evaluated: vitamin C, titratable acidity, soluble solids, SS/TA ratio, longitudinal diameter and transverse, LD/TD, number of

  5. Genotypic characterization of Azotobacteria isolated from Argentinean soils and plant-growth-promoting traits of selected strains with prospects for biofertilizer production.

    Science.gov (United States)

    Rubio, Esteban Julián; Montecchia, Marcela Susana; Tosi, Micaela; Cassán, Fabricio Darío; Perticari, Alejandro; Correa, Olga Susana

    2013-01-01

    The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 μ g IAA mL(-1), 0.3-0.7 μ g GA3 mL(-1), and 0.5-1.2 μ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  6. Genotypic Characterization of Azotobacteria Isolated from Argentinean Soils and Plant-Growth-Promoting Traits of Selected Strains with Prospects for Biofertilizer Production

    Directory of Open Access Journals (Sweden)

    Esteban Julián Rubio

    2013-01-01

    Full Text Available The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA, gibberellin (GA3 and zeatin (Z biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2–18.2 μg IAA mL−1, 0.3–0.7 μg GA3 mL−1, and 0.5–1.2 μg Z mL−1. Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.

  7. Production of recombinant Ig molecules from antigen-selected single B cells and restricted usage of Ig-gene segments by anti-D antibodies

    NARCIS (Netherlands)

    Dohmen, Serge E.; Mulder, Arend; Verhagen, Onno J. H. M.; Eijsink, Chantal; Franke-van Dijk, Marry E. I.; van der Schoot, C. Ellen

    2005-01-01

    The Ig-genes of the heavy chains in anti-D-specific hybridomas and Fab/scFv-fragments selected from phage-display libraries are restricted to a group of closely related genes (IGHV3s genes). We analyzed the Ig-gene repertoire in anti-D-specific B cells of two hyperimmunized donors using a completely

  8. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  9. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  10. Identifying a few foot-and-mouth disease virus signature nucleotide strings for computational genotyping

    Directory of Open Access Journals (Sweden)

    Xu Lizhe

    2008-06-01

    Full Text Available Abstract Background Serotypes of the Foot-and-Mouth disease viruses (FMDVs were generally determined by biological experiments. The computational genotyping is not well studied even with the availability of whole viral genomes, due to uneven evolution among genes as well as frequent genetic recombination. Naively using sequence comparison for genotyping is only able to achieve a limited extent of success. Results We used 129 FMDV strains with known serotype as training strains to select as many as 140 most serotype-specific nucleotide strings. We then constructed a linear-kernel Support Vector Machine classifier using these 140 strings. Under the leave-one-out cross validation scheme, this classifier was able to assign correct serotype to 127 of these 129 strains, achieving 98.45% accuracy. It also assigned serotype correctly to an independent test set of 83 other FMDV strains downloaded separately from NCBI GenBank. Conclusion Computational genotyping is much faster and much cheaper than the wet-lab based biological experiments, upon the availability of the detailed molecular sequences. The high accuracy of our proposed method suggests the potential of utilizing a few signature nucleotide strings instead of whole genomes to determine the serotypes of novel FMDV strains.

  11. Alterações fenotípicas em cultivares de alface selecionadas para calor Phenotypical alterations in lettuce genotypes selected for heat tolerance

    Directory of Open Access Journals (Sweden)

    José Henrique Conti

    2000-11-01

    Full Text Available Cultivares de alface selecionadas para o pendoamento lento e as mesmas que lhes deram origem foram analisadas quanto a variações morfológicas, com o objetivo de quantificar possíveis modificações adaptativas para as condições de cultivo em épocas de calor. Cultivares dos grupos "manteiga" (Regina, Glória, IAC 303, IAC 202, Sem Rival e Luciana "folha crespa" (Grand Rapids e Brisa e "americana" (Great Lakes e Mesa 659, foram avaliadas em dois plantios de verão, em Piracicaba, em delineamento de blocos casualizados. No primeiro experimento, (novembro/90, foram avaliadas as características de número de estômatos, espessura de folha e quantidade de clorofila total. No segundo, (setembro/91, foram avaliados o peso seco, peso fresco, porcentagem de matéria seca, tempo para pendoamento e número de folhas. As cultivares selecionadas para calor no grupo "manteiga" (Glória e Regina, apresentaram maior número de estômatos (respectivamente 9487/cm² e 7973/cm² e folhas mais grossas (respectivamente 556 mm e 439 mm e também, acumularam maior quantidade de matéria seca (respectivamente 24,55 g e 25,50 g. A cultivar selecionada para calor do grupo "folha crespa" (Brisa acumulou maior quantidade de matéria verde (446,77g e seca (22,40 g, da mesma forma que apresentou maior quantidade de estômatos (7.279/cm². Para as cultivares do grupo "americana", observou-se diferença significativa apenas para espessura de folha, sendo que a cultivar Mesa 659 apresentou folhas mais grossas (589 mm. Constataram-se aumentos significativos da biomassa vegetal nas cultivares selecionadas para calor em relação àquelas não selecionadas. As cultivares que atingiram maior produtividade de matéria seca por planta foram Mesa 659 (28,74 g, Great Lakes (27,17 g e Regina. Os resultados comprovaram que a seleção para o pendoamento lento indiretamente produziu variações adaptativas nas plantas de alface.Lettuce cultivars selected for slow bolting and

  12. Genotypic diversity of root and shoot characteristics of

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available Root and shoot characteristics of chickpea (Cicer arietinum L. genotypes are believed to be important in drought tolerance. There is a little information about the response of genotypes root growth in hydroponics and greenhouse culture, also the relationships between root size and drought tolerance. This study was conducted to observe whether genotypes differ in root size, and to see that root size is associated with drought tolerance during early vegetative growth. We found significant differences (p0.01 in root dry weight, total root length, tap root length, root area, leaf dry weight, leaf area and shoot biomass per plant among 30 genotypes of chickpea grown in hydroponics culture for three weeks. Each of these parameters correlated with all others, positively. Among 30 genotypes, 10 genotypes with different root sizes were selected and were grown in a greenhouse in sand culture experiment under drought stress (FC %30 for three weeks. There were not linear or non-linear significant correlations between root characters in hydroponics and greenhouse environments. It seems that environmental factors are dominant on genetic factors in seedling stage and so, the expression of genotypics potential for root growth characteristics of genotypes are different in hydroponic and greenhouse conditions. In this study, the selection of genotypes with vigorous roots system in hydroponic condition did not lead to genotypes with the same root characters in greenhouse environment. The genotype×drought interactions for root characters of chickpea seedlings in 30 days were not significant (p

  13. Developmental plasticity: re-conceiving the genotype.

    Science.gov (United States)

    Sultan, Sonia E

    2017-10-06

    In recent decades, the phenotype of an organism (i.e. its traits and behaviour) has been studied as the outcome of a developmental 'programme' coded in its genotype. This deterministic view is implicit in the Modern Synthesis approach to adaptive evolution as a sorting process among genetic variants. Studies of developmental pathways have revealed that genotypes are in fact differently expressed depending on environmental conditions. Accordingly, the genotype can be understood as a repertoire of potential developmental outcomes or norm of reaction. Reconceiving the genotype as an environmental response repertoire rather than a fixed developmental programme leads to three critical evolutionary insights. First, plastic responses to specific conditions often comprise functionally appropriate trait adjustments, resulting in an individual-level, developmental mode of adaptive variation. Second, because genotypes are differently expressed depending on the environment, the genetic diversity available to natural selection is itself environmentally contingent. Finally, environmental influences on development can extend across multiple generations via cytoplasmic and epigenetic factors transmitted to progeny individuals, altering their responses to their own, immediate environmental conditions and, in some cases, leading to inherited but non-genetic adaptations. Together, these insights suggest a more nuanced understanding of the genotype and its evolutionary role, as well as a shift in research focus to investigating the complex developmental interactions among genotypes, environments and previous environments.

  14. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    Directory of Open Access Journals (Sweden)

    Matthew Marr

    2018-01-01

    Full Text Available Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1 showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.

  15. [Genomic characteristics and recombination of enterovirus 71 strains isolated in Henan Province between 2008 and 2010].

    Science.gov (United States)

    Wei, Hai-Yan; Xu, Yu-Ling; Huang, Xue-Yong; Ma, Hong; Chen, Hao-Min; Xu, Bian-Li

    2011-09-01

    To reveal the genetic features and recombination of enterovirus 71 isolates between 2008 and 2010. A total of 5 enterovirus 71 isolates were sequenced completely and phylogenetic analysis and recombination were performed. Phylogenetic analysis based on VP1 regions revealed that the Henan enterovirus 71 between 2008 and 2010 belonged to C4a in subgenotype C4. Bootscan analyses and phylogenetic analysis based on the 5'UTR, P1, P2, P3 genomic regions revealed the recombinations between EV71 genotypes B and C at the 2A-2B junction, and between EV71 genotype B and CA16 strain G-10 at the 3B-3C junction. Henan enterovirus 71 isolates between 2008 and 2010 belonged to C4a in subgenotype C4 which was the predominant virus genotype circulating in mainland China since 2004, a combination of intratypic and intertypic recombination were found in EV71 subgenotype C4.

  16. Utilização do inseticida Methomyl na seleção de genótipos de aveia resistentes à helmintosporiose User of Methomyl insecticide for the selection of spot blotch resistant oat genotypes

    Directory of Open Access Journals (Sweden)

    Cristine Luise Handel

    1999-06-01

    Full Text Available A helmintosporiose é uma moléstia que afeta a cultura da aveia, reduzindo seu rendimento e qualidade de grão. A seleção de genótipos resistentes com utilização de filtrados tóxicos do fungo Helminthosporium sativum é eficaz, pois delimita a variabilidade do patógeno e reduz a interferência do ambiente na expressão do genótipo. Contudo, a obtenção dos filtrados tóxicos deste fungo é um processo lento e delicado. Dessa forma, a possibilidade do uso de substâncias sintéticas que simulem seu efeito, inibindo o transporte de elétrons da cadeia respiratória, é de grande interesse. O inseticida Methomyl é eficaz para simular o efeito da toxina do fungo que causa a helmintosporiose em milho, tendo o presente trabalho visado testar sua eficiência na cultura da aveia. Para isso, foi avaliado o crescimento de calos e raízes de aveia expostas ao Methomyl, quando crescimentos maiores indicaram maior resistência ao produto, e possível resistência à moléstia. Os resultados indicam que o Methomyl afeta o crescimento de raízes e calos de aveia e pode ser utilizado para separar os grupos de genótipos com e sem resistência à helmintosporiose. Assim, UFRGS 14, com maior sensibilidade aos filtrados tóxicos de H. sativum em outros estudos, também apresentou crescimento mais afetado pelo Methomyl em todos os experimentos aqui conduzidos.Spot Blotch is a plant disease which causes yield losses in oat and other cereals. Selection for resistant genotypes using Helminthosporium sativum toxic filtrates is an efficient technique, which reduces the pathogen variability and the influence of the environment over the genotype expression. The filtrates extraction is time consuming and a difficult process, and the possibility of using a synthetic product to simulate its action of inhibiting the cell electron transport chain would be useful. The Methomyl insecticide is an efficient product to simulate the effects of the fungus that causes spot

  17. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  18. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  19. Relationship of some upland rice genotype after gamma irradiation

    Science.gov (United States)

    Suliartini, N. W. S.; Wijayanto, T.; Madiki, A.; Boer, D.; Muhidin; Juniawan

    2018-02-01

    The objective of the research was to group local upland rice genotypes after being treated with gamma irradiation. The research materials were upland rice genotypes resulted from mutation of the second generation and two parents: Pae Loilo (K3D0) and Pae Pongasi (K2D0) Cultivars. The research was conducted at the Indonesian Sweetener and Fiber Crops Research Institute, Malang Regency, and used the augmented design method. Research data were analyzed with R Program. Eight hundred and seventy one genotypes were selected with the selection criteria were based on yields on the average parents added 1.5 standard deviation. Based on the selection, eighty genotypes were analyzed with cluster analyses. Nine observation variables were used to develop cluster dendrogram using average linked method. Genetic distance was measured by euclidean distance. The results of cluster dendrogram showed that tested genotypes were divided into eight groups. Group 1, 2, 7, and 8 each had one genotype, group 3 and 6 each had two genotypes, group 4 had 25 genotypes, and group 5 had 51 genotypes. Check genotypes formed a separate group. Group 6 had the highest yield per plant of 126.11 gram, followed by groups 5 and 4 of 97.63 and 94.08 gram, respectively.

  20. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    Science.gov (United States)

    Dumont, Beth L

    2017-04-01

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus , were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females. Copyright © 2017 by the Genetics Society of America.

  1. Genomic evaluations with many more genotypes

    Directory of Open Access Journals (Sweden)

    Wiggans George R

    2011-03-01

    Full Text Available Abstract Background Genomic evaluations in Holstein dairy cattle have quickly become more reliable over the last two years in many countries as more animals have been genotyped for 50,000 markers. Evaluations can also include animals genotyped with more or fewer markers using new tools such as the 777,000 or 2,900 marker chips recently introduced for cattle. Gains from more markers can be predicted using simulation, whereas strategies to use fewer markers have been compared using subsets of actual genotypes. The overall cost of selection is reduced by genotyping most animals at less than the highest density and imputing their missing genotypes using haplotypes. Algorithms to combine different densities need to be efficient because numbers of genotyped animals and markers may continue to grow quickly. Methods Genotypes for 500,000 markers were simulated for the 33,414 Holsteins that had 50,000 marker genotypes in the North American database. Another 86,465 non-genotyped ancestors were included in the pedigree file, and linkage disequilibrium was generated directly in the base population. Mixed density datasets were created by keeping 50,000 (every tenth of the markers for most animals. Missing genotypes were imputed using a combination of population haplotyping and pedigree haplotyping. Reliabilities of genomic evaluations using linear and nonlinear methods were compared. Results Differing marker sets for a large population were combined with just a few hours of computation. About 95% of paternal alleles were determined correctly, and > 95% of missing genotypes were called correctly. Reliability of breeding values was already high (84.4% with 50,000 simulated markers. The gain in reliability from increasing the number of markers to 500,000 was only 1.6%, but more than half of that gain resulted from genotyping just 1,406 young bulls at higher density. Linear genomic evaluations had reliabilities 1.5% lower than the nonlinear evaluations with 50

  2. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  3. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Science.gov (United States)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  4. Performance of chickpea genotypes under Swat valley conditions

    International Nuclear Information System (INIS)

    Khan, A.; Rahim, M.; Ahmad, F.; Ali, A.

    2004-01-01

    Twenty-two genetically diverse chickpeas genotypes were studied for their physiological efficiency to select the most desirable genotype/genotypes for breeding program on chickpea. Genotype 'CM7-1' was found physiologically efficient stain with maximum harvest index (37.33%) followed by genotype 'CM1571-1-A' with harvest index of 35.73%. Genotype '90206' produced maximum biological yield (7463 kg ha/sup -1/) followed by genotypes 'CM31-1' and 'E-2034' with biological yield of 7352 and 7167 kg ha/sup -1/, respectively. Harvest index and economic yield showed significant positive correlation value of (r=+0.595), while negative correlation value of (r = -0.435) was observed between harvest index and biological yield. (author)

  5. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity.

    Science.gov (United States)

    Moreb, Eirik Adim; Hoover, Benjamin; Yaseen, Adam; Valyasevi, Nisakorn; Roecker, Zoe; Menacho-Melgar, Romel; Lynch, Michael D

    2017-12-15

    Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.

  6. Seleção para resistência de genótipos de cenoura aos nematóides-das-galhas Selection for carrot genotypes resistance to root-knot nematodes in field and greenhouse

    Directory of Open Access Journals (Sweden)

    Giovani O da Silva

    2011-09-01

    identify for which ones it is possible to differentiate among genotypes and to verify the possibility of evaluation only in one environment or the elimination of characters with high correlation. Thirty eight and thirty one families from the carrot populations '0812518' and '0812519', and the cultivars Brasília and Kuronan as tolerant and susceptible standards, respectively, were evaluated. In a field whose soil was naturally infected by a mix of Meloidogyne incognita race 1 and Meloidogyne javanica, the selection to resistance to root-knot nematode was based on lower percentage of infection in the root, of the major genotypes of carrot production in t/ha and reproduction factor; and in greenhouse, to each one of the same nematode species and too for a mix of both, was evaluated the index of gall and index of egg mass. There is no possibility of selection in only one condition or the elimination of some characters, indicating that, to obtain more yielding and more tolerant cultivars, the combined selection in the various characters and environments are necessary. In the field experiment, it was only possible to differentiate the genotypes for root yield. In the greenhouse, it was possible to identify superior genotypes for all characters tested. However, the average population was not better than the 'Brasilia' standard that originated these populations. This result confirms the necessity to search for more efficient methods of selection.

  7. APOE Genotyping, Cardiovascular Disease

    Science.gov (United States)

    ... Resources For Health Professionals Subscribe Search APOE Genotyping, Cardiovascular Disease Send Us Your Feedback Choose Topic At a ... help understand the role of genetic factors in cardiovascular disease . However, the testing is sometimes used in clinical ...

  8. Radiosensitivity of fingermillet genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Raveendran, T S; Nagarajan, C; Appadurai, R; Prasad, M N; Sundaresan, N [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1984-07-01

    Varietal differences in radiosensitivity were observed in a study involving 4 genotypes of fingermillet (Eleusine coracana (Linn.) Gaertn.) subjected to gamma-irradiation. Harder seeds were found to tolerate a higher dose of the mutagen.

  9. Characterization of recombination features and the genetic basis in multiple cattle breeds.

    Science.gov (United States)

    Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E; Ma, Li

    2018-04-27

    Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an

  10. Recombination pattern reanalysis of some HIV-1 circulating recombination forms suggest the necessity and difficulty of revision.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may

  11. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment

    Directory of Open Access Journals (Sweden)

    Sabrina Bagaglio

    2016-03-01

    Full Text Available Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV was higher in G1b compared to G1a (37/1552 (2.4% in 1b sequences and 15/1209 (1.2% in 1a isolates, p = 0.040. Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1% G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5% harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001. Finally, 28 (2.3% G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001. In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs.

  12. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate.

    Science.gov (United States)

    Mahmoud, Amer F; Hassan, Mohamed I; Amein, Karam A

    2015-12-01

    Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 2 rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

  13. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  14. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  15. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  16. Use of chronic irradiation in formation of new rape genotypes

    International Nuclear Information System (INIS)

    Fabry, A.; Zukalova, H.; Cerny, J.; Folk, A.

    1980-01-01

    Chronic irradiation of hybrid plants of F 1 generation obtained by crossing the Canadian rape without erucic acid with European winter varieties containg this acid, doubled the frequency of winter genotypes and increased significantly the frequency of required recombinations of winter character and absence of erucic acid in F 2 -M 2 . Genotypes with a more favourable ratio between linoleic and linolenic acids were obtained in the irradiated F 2 -M 2 population. The obtained radio-induced mutants are used for the production of new varieties of winter rape without erucic acid at the Slapy Breeding Station. (author)

  17. A Glance at Recombination Hotspots in the Domestic Cat.

    Directory of Open Access Journals (Sweden)

    Hasan Alhaddad

    Full Text Available Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i infer the population-scaled recombination rate (ρ, and (ii identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701 were genotyped in twenty-two East Asian feral cats (random bred. The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements.

  18. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  19. Selection of Gossypium hirsutum genotypes for interspecific ...

    African Journals Online (AJOL)

    FORRESTER

    ARS), Crop Genetics Research Unit in. Stoneville, Mississippi ... Key words: Cotton, germplasm, immature embryo, tissue culture, wide-hybridization. INTRODUCTION. Tetraploid upland cotton, Gossypium hirsutum L., is comprised of over 90% ...

  20. SIMULTANEOUS SELECTION FOR GENOTYPIC PRODUCTION, ADAPTABILITY, AND STABILITY IN CASHEW CLONES BY MIXED MODELS SELEÇÃO SIMULTÂNEA PARA PRODUÇÃO, ADAPTABILIDADE E ESTABILIDADE GENOTÍPICAS EM CLONES DE CAJUEIRO, VIA MODELOS MISTOS

    Directory of Open Access Journals (Sweden)

    José Jaime Vasconcelos Cavalcanti

    2009-01-01

    genotypic adaptability and stability. The experiments were set up employing a complete block design, with eleven treatments, three repetitions and five plants per plot. The results showed an alteration in the clone order, in the different environments, as reflected from the genotypic correlation of average magnitude (0.58. The heritability of clones presented moderate to high magnitude for the different traits, indicating excellent possibilities for selection, allowing selective accuracy of 83%. The methods MHVG, PRVG, and MHPRVG can be part of selective criteria in the cashew breeding program.

     

    KEY-WORDS: Anacardium occidentale; genotype x environment interaction; BLUP/REML.

  1. Dielectronic recombination measurements using the Electron Beam Ion Trap

    International Nuclear Information System (INIS)

    Knapp, D.A.

    1991-01-01

    We have used the Electron Beam Ion Trap at LLNL to study dielectronic recombination in highly charged ions. Our technique is unique because we observe the x-rays from dielectronic recombination at the same time we see x-rays from all other electron-ion interactions. We have recently taken high-resolution, state-selective data that resolves individual resonances

  2. Methods for discovering and validating relationships among genotyped animals

    Science.gov (United States)

    Genomic selection based on single-nucleotide polymorphisms (SNPs) has led to the collection of genotypes for over 2.2 million animals by the Council on Dairy Cattle Breeding in the United States. To assure that a genotype is assigned to the correct animal and that the animal’s pedigree is correct, t...

  3. Application of mixed models for the assessment genotype and ...

    African Journals Online (AJOL)

    Application of mixed models for the assessment genotype and environment interactions in cotton ( Gossypium hirsutum ) cultivars in Mozambique. ... The cultivars ISA 205, STAM 42 and REMU 40 showed superior productivity when they were selected by the Harmonic Mean of Genotypic Values (HMGV) criterion in relation ...

  4. Clusters of incompatible genotypes evolve with limited dispersal

    Science.gov (United States)

    Erin L. Landguth; Norman A. Johnson; Samuel A. Cushman

    2015-01-01

    Theoretical and empirical studies have shown heterogeneous selection to be the primary driver for the evolution of reproductively isolated genotypes in the absence of geographic barriers. Here, we ask whether limited dispersal alone can lead to the evolution of reproductively isolated genotypes despite the absence of any geographic barriers or heterogeneous...

  5. Genetic evidence for inducibility of recombination competence in yeast

    International Nuclear Information System (INIS)

    Fabre, F.; Roman, H.

    1977-01-01

    Recombination between unirradiated chromosomes was induced by UV or x-ray irradiation of haploids followed by a mating with heteroallelic diploids of Saccharomyces cerevisiae. The selected event of intragenic recombination did not involve the participation of the irradiated chromosome and apparently was not caused by lesions introduced into the unirradiated chromosomes by some indirect process. The results favor the idea that recombination is repressed in the majority of vegetative cells and that one effect of radiation is the release of some factor(s) necessary for recombination. Consequently, the proportion of competent cells (i.e., cells able to recombine) in the population increases. This competent state seems necessary not only for the recombinational repair of radiation-induced lesions but also, since recombinants are produced in the absence of such lesions, for spontaneous recombination. Photoreactivation of the UV-irradiated haploids led to a decrease in the production of recombinants. Hence, lesions in the DNA appear to be responsible for the induction of the recombinational ability

  6. Creating Porcine Biomedical Models Through Recombineering

    Directory of Open Access Journals (Sweden)

    Lawrence B. Schook

    2006-03-01

    Full Text Available Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates traditionally used as models as well as new candidates (pigs and cattle. In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to ‘forward genetics’, in which gene(s responsible for a particular phenotype are identified by positional cloning (phenotype to genotype, the ‘reverse genetics’ approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype. The convergence of classical and reverse genetics, along with genomics, provides a working definition of a ‘genetic model’ organism (3. The recent construction of phenotypic maps defining quantitative trait loci (QTL in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT technology can provide ‘clones’ of genetically modified animals.

  7. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  8. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  9. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... for a better monitoring of global epidemiology, to clarify the virus evolution, and evaluate the impact of recombinant forms on the efficacy of oncoming combination drug therapies. For the latter, frequency and location of recombination events could affect the efficacy of multidrug regimens. This review...

  10. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  11. Analysis of the genetic diversity of four rabbit genotypes using ...

    African Journals Online (AJOL)

    Dr.Ola

    2013-05-15

    May 15, 2013 ... consumption and low cost, it has been widely utilized in genetics analysis in ... isozyme variation among the selected individuals within each rabbit genotype. ... with different embryo survival (Bolet and Theau-Clement, 1994).

  12. Applications of blood group genotyping

    Directory of Open Access Journals (Sweden)

    Mariza A. Mota

    2006-03-01

    Full Text Available Introduction: The determination of blood group polymorphism atthe genomic level facilitates the resolution of clinical problemsthat cannot be addressed by hemagglutination. They are useful to(a determine antigen types for which currently available antibodiesare weakly reactive; (b type patients who have been recentlytransfused; (c identify fetuses at risk for hemolytic disease of thenewborn; and (d to increase the reliability of repositories of antigennegative RBCs for transfusion. Objectives: This review assessedthe current applications of blood group genotyping in transfusionmedicine and hemolytic disease of the newborn. Search strategy:Blood group genotyping studies and reviews were searched ingeneral database (MEDLINE and references were reviewed.Selection criteria: All published data and reviews were eligible forinclusion provided they reported results for molecular basis ofblood group antigens, DNA analysis for blood group polymorphisms,determination of fetal group status and applications of blood groupgenotyping in blood transfusion. Data collection: All data werecollected based on studies and reviews of blood grouppolymorphisms and their clinical applications.

  13. Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus

    DEFF Research Database (Denmark)

    Meunier, Jean-Christophe; Gottwein, Judith M; Houghton, Michael

    2011-01-01

    We detected cross-reactive neutralizing antibodies (NtAb) against hepatitis C virus (HCV) in chimpanzees vaccinated with HCV-1 (genotype 1a) recombinant E1/E2 envelope glycoproteins. Five vaccinated chimpanzees, protected following HCV-1 challenge, were initially studied using the heterologous H77......a, with limited reactivity against 2a and 3a. Our study provides encouragement for the development of a recombinant envelope-based vaccine against hepatitis C....

  14. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)

    2015-01-01

    A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses ...

  16. Evaluation and Selection of Common Bean (Phaseolus Vulgaris L.) Genotypes for Root Traits Associated with Phosphorus (P) Acquisition Efficiency and the Use of {sup 32}P Isotope in Studies on P Uptake by Root Hairs

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, M. A.; Jochua, C. [Agricultural Research Institute of Mozambique (IIAM), Maputo (Mozambique); Lynch, J. P. [Pennsylvania State University, University Park, PA (United States)

    2013-11-15

    Low phosphorus (P) availability is one of the main edaphic constraints limiting crop production and productivity in most of the tropical agro-ecosystems. Several root traits are known to be associated with P acquisition efficiency in low P soils. These root traits include root hairs. Computer modeling, laboratory and field studies show the depletion of {sup 32}P-phosphate around roots and that the depletion zone is influenced by the length and density of root hairs. We conducted a study involving a series of experiments with the objective of evaluating the variability of root traits associated with P uptake efficiency among common bean (Phaseolus vulgaris L.) genotypes, and to understand the mechanisms of long root hairs leading to the increase in P uptake in common bean. The study included (a) the screening of common bean genotypes in the laboratory and in the field for root traits, and (b) the use of radioactive phosphorus ({sup 32}P) in the experiments conducted in the greenhouse. For laboratory screening, seedlings were germinated in paper rolls in a growth media for 3 days before evaluation for basal root whorl number (BRWN), basal root number (BRN), basal root growth angle (BRGA) and root hair length (RHL). Common bean genotypes were planted in the field with low P for 45 days after planting (DAP) before evaluation. For the {sup 32}P study four contrasting genotypes for root hairs were grown for 28 DAP in the greenhouse using 15-20 liter pots filled with a mixture of sand and vermiculate as the growth media. The radioactive P was incorporated in the growth medium in the form of alumina-P fertilizer. Normal phosphorus (non-radioactive {sup 31}P) was included in the nutrient solution in the form of calcium phosphate, Ca{sub 3}(PO{sub 4}){sub 2}, and supplied through irrigation. Screened genotypes exhibited different root traits associated with P uptake efficiency, and that a given genotype can have one or more root traits responsible for it P uptake efficiency

  17. Parton recombination model

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1978-08-01

    Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references

  18. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations

    Science.gov (United States)

    Kuster, Ryan; Miller, Katelyn; Fouks, Bertrand; Rubio Correa, Sara; Collazo, Juan; Phaincharoen, Mananya; Tingek, Salim; Koeniger, Nikolaus

    2016-01-01

    Abstract Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species. PMID:28173114

  19. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    Science.gov (United States)

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  20. Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype.

    Science.gov (United States)

    Dolz, Roser; Pujols, Joan; Ordóñez, German; Porta, Ramon; Majó, Natàlia

    2006-04-01

    As part of an epidemiological surveillance of infectious bronchitis virus (IBV) in Spain, four Spanish field isolates showed high S1 spike sequence similarities with an IBV sequence from the GenBank database named Italy 02. Given that little was known about this new emergent IBV strain we have characterized the four isolates by sequencing the entire S1 part of the spike protein gene and have compared them with many reference IBV serotypes. In addition, cross-virus neutralization assays were conducted with the main IBV serotypes present in Europe. The four Spanish field strains and the Italy 02 S1 sequence from the NCBI database were established as a new genotype that showed maximum amino acid identities with the 4/91 serotype (81.7% to 83.7%), the D274 group that included D207, D274 and D3896 strains (79.8% to 81.7%), and the B1648 serotype (79.3% to 80%). Furthermore, on the basis of these results, it was demonstrated that the Italy 02 genotype had been circulating in Spain since as early as 1997. Based on the average ratio of synonymous:non-synonymous (dS/dN) amino acid substitutions within Italy 02 sequences, no positive selection pressures were related with changes observed in the S1 gene. Moreover, phylogenetic analysis of the S1 gene suggested that the Italy 02 genotype has undergone a recombination event. Virus neutralization assays demonstrated that little antigenic relatedness (less than 35%) exists between Italy 02 and some of the reference IBV serotypes, and indicated that Italy 02 is likely to be a new serotype.

  1. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  2. Looking for the optimal rate of recombination for evolutionary dynamics

    Science.gov (United States)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  3. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  4. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping

    2013-01-01

    . In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a......) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6...

  5. Recombination epoch revisited

    International Nuclear Information System (INIS)

    Krolik, J.H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons. 18 references

  6. Dielectronic recombination theory

    International Nuclear Information System (INIS)

    LaGattuta, K.J.

    1991-01-01

    A theory now in wide use for the calculation of dielectronic recombination cross sections (σ DR ) and rate coefficients (α DR ) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of σ DR have been described by Fano and by Seaton. We will not consider those theories here. Calculations of α DR have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of σ DR . While the measurements of σ DR for δn ≠ 0 excitations have tended to agree very well with calculations, the case of δn = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain

  7. Identification of zoonotic genotypes of Giardia duodenalis.

    Directory of Open Access Journals (Sweden)

    Hein Sprong

    Full Text Available Giardia duodenalis, originally regarded as a commensal organism, is the etiologic agent of giardiasis, a gastrointestinal disease of humans and animals. Giardiasis causes major public and veterinary health concerns worldwide. Transmission is either direct, through the faecal-oral route, or indirect, through ingestion of contaminated water or food. Genetic characterization of G. duodenalis isolates has revealed the existence of seven groups (assemblages A to G which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals, but the role of animals in the epidemiology of human infection is still unclear, despite the fact that the zoonotic potential of Giardia was recognised by the WHO some 30 years ago. Here, we performed an extensive genetic characterization of 978 human and 1440 animal isolates, which together comprise 3886 sequences from 4 genetic loci. The data were assembled into a molecular epidemiological database developed by a European network of public and veterinary health Institutions. Genotyping was performed at different levels of resolution (single and multiple loci on the same dataset. The zoonotic potential of both assemblages A and B is evident when studied at the level of assemblages, sub-assemblages, and even at each single locus. However, when genotypes are defined using a multi-locus sequence typing scheme, only 2 multi-locus genotypes (MLG of assemblage A and none of assemblage B appear to have a zoonotic potential. Surprisingly, mixtures of genotypes in individual isolates were repeatedly observed. Possible explanations are the uptake of genetically different Giardia cysts by a host, or subsequent infection of an already infected host, likely without overt symptoms, with a different Giardia species, which may cause disease. Other explanations for mixed genotypes, particularly for assemblage B, are substantial allelic sequence heterogeneity and/or genetic recombination. Although the

  8. Identification of polymorphic inversions from genotypes

    Directory of Open Access Journals (Sweden)

    Cáceres Alejandro

    2012-02-01

    Full Text Available Abstract Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data 1, utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS. Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model 2. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU and Yoruba (YRI HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions

  9. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    Science.gov (United States)

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-02

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Oilseed rape genotypes response to boron toxicity

    Directory of Open Access Journals (Sweden)

    Savić Jasna

    2013-01-01

    Full Text Available Response of 16 oilseed rape genotypes to B (boron toxicity was analyzed by comparing the results of two experiments conducted in a glasshouse. In Experiment 1 plants were grown in standard nutrient solutions with 10 µMB (control and 1000 µM B. Relative root and shoot growth varied from 20-120% and 31-117%, respectively. Variation in B concentration in shoots was also wide (206.5-441.7 µg B g-1 DW as well as total B uptake by plant (62.3-281.2 µg B g1. Four selected genotypes were grown in Experiment 2 in pots filled with high B soil (8 kg ha-1 B; B8. Shoot growth was not affected by B8 treatment, while root and shoot B concentration was significantly increased compared to control. Genotypes Panther and Pronto which performed low relative root and shoot growth and high B accumulation in plants in Experiment 1, had good growth in B8 treatment. In Experiment 2 genotype NS-L-7 had significantly lower B concentration in shots under treatment B8, but also very high B accumulation in Experiment 1. In addition, cluster analyses classified genotypes in three groups according to traits contrasting in their significance for analyzing response to B toxicity. The first group included four varieties based on their shared characteristics that have small value for the relative growth of roots and shoots and large values of B concentration in shoot. In the second largest group were connected ten genotypes that are heterogeneous in traits and do not stand out on any characteristic. Genotypes NS-L-7 and Navajo were separated in the third group because they had big relative growth of root and shoot, but also a high concentration of B in the shoot, and high total B uptake. Results showed that none of tested genotypes could not be recommended for breeding process to tolerance for B toxicity. [Projekat Ministarstva nauke Republike Srbije, br. OI 173028

  11. Cultivating Insect Cells To Produce Recombinant Proteins

    Science.gov (United States)

    Spaulding, Glenn; Goodwin, Thomas; Prewett, Tacey; Andrews, Angela; Francis, Karen; O'Connor, Kim

    1996-01-01

    Method of producing recombinant proteins involves growth of insect cells in nutrient solution in cylindrical bioreactor rotating about cylindrical axis, oriented horizontally and infecting cells with viruses into which genes of selected type cloned. Genes in question those encoding production of desired proteins. Horizontal rotating bioreactor preferred for use in method, denoted by acronym "HARV", described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662).

  12. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    Science.gov (United States)

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  13. Recombination rate variation in mice from an isolated island.

    Science.gov (United States)

    Wang, Richard J; Gray, Melissa M; Parmenter, Michelle D; Broman, Karl W; Payseur, Bret A

    2017-01-01

    Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. © 2016 John Wiley & Sons Ltd.

  14. Response to angiotensin-converting enzyme inhibition is selectively blunted by high sodium in angiotensin-converting enzyme DD genotype: evidence for gene-environment interaction in healthy volunteers.

    Science.gov (United States)

    Lely, A Titia; Heerspink, Hiddo J Lambers; Zuurman, Mike; Visser, Folkert W; Kocks, Menno J A; Boomsma, Frans; Navis, Gerjan

    2010-12-01

    Renin-angiotensin-aldosterone system blockade is a cornerstone in cardiovascular protection. Angiotensin-converting enzyme (ACE)-DD genotype has been associated with resistance to angiotensin-converting enzyme inhibition (ACEi), but data are conflicting. As sodium intake modifies the effect of ACEi as well as the genotype-phenotype relationship, we hypothesize gene-environment interaction between sodium-status, the response to ACEi, and ACE genotype. Thirty-five male volunteers (26 ± 9 years; II n = 6, ID n = 18, DD n = 11) were studied during placebo and ACEi (double blind, enalapril 20 mg/day) on low [7 days 50 mmol Na/day (low salt)] and high [7 days 200 mmol Na/day (high salt)] sodium, with a washout of 6 weeks in-between. After each period mean arterial pressure (MAP) was measured before and during graded infusion of angiotensin II (Ang II). During high salt, ACEi reduced MAP in II and ID, but not in DD [II: 88 (78-94) versus 76 (72-88); ID: 87 (84-91) versus 83 (79-87); both P DD: 86 (82-96) versus 88 (80-90); ns, P DD: 84 (80-91) versus 81 (75-85); all P DD, with an 18% rise in MAP during the highest dose versus 22 and 31% in ID and II (P DD genotype during high salt, accompanied by blunted sensitivity to Ang II. Low salt corrects both abnormalities. Further analysis of this gene-environment interaction in patients may contribute to strategies for improvement of individual treatment efficacy.

  15. Non-genotype-specific role of the hepatitis C virus 5' untranslated region in virus production and in inhibition by interferon

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Gottwein, Judith M

    2011-01-01

    The 5' untranslated region (5'UTR) of hepatitis C virus (HCV) is structured into four domains (I-IV) with numerous genotype-specific nucleotides. It is unknown whether the polymorphisms confer genotype-specific functions to the 5'UTR. Using viable JFH1-based Core-NS2 recombinants, we developed...

  16. Assessing accuracy of genotype imputation in American Indians.

    Directory of Open Access Journals (Sweden)

    Alka Malhotra

    Full Text Available Genotype imputation is commonly used in genetic association studies to test untyped variants using information on linkage disequilibrium (LD with typed markers. Imputing genotypes requires a suitable reference population in which the LD pattern is known, most often one selected from HapMap. However, some populations, such as American Indians, are not represented in HapMap. In the present study, we assessed accuracy of imputation using HapMap reference populations in a genome-wide association study in Pima Indians.Data from six randomly selected chromosomes were used. Genotypes in the study population were masked (either 1% or 20% of SNPs available for a given chromosome. The masked genotypes were then imputed using the software Markov Chain Haplotyping Algorithm. Using four HapMap reference populations, average genotype error rates ranged from 7.86% for Mexican Americans to 22.30% for Yoruba. In contrast, use of the original Pima Indian data as a reference resulted in an average error rate of 1.73%.Our results suggest that the use of HapMap reference populations results in substantial inaccuracy in the imputation of genotypes in American Indians. A possible solution would be to densely genotype or sequence a reference American Indian population.

  17. Seleção de genótipos de arroz tolerantes à salinidade durante a fase vegetativa Selection of genotypes of salinity tolerance rice during the vegetative phase

    Directory of Open Access Journals (Sweden)

    Palmira Cabral Sales de Melo

    2006-02-01

    Full Text Available O objetivo deste trabalho foi avaliar o grau de tolerância e sensibilidade à salinidade de genótipos de arroz durante a fase vegetativa da planta. O experimento foi conduzido sob condições de telado, nas dependências da Empresa Pernambucana de Pesquisa Agropecuária-IPA (Recife-PE, em 1996. Foram avaliados doze genótipos de arroz, sendo dez tolerantes e dois sensíveis à salinidade no estádio de desenvolvimento vegetativo. O delineamento experimental foi em blocos ao acaso com arranjo fatorial (doze genótipos x quatro níveis de NaCl, em três repetições. Os resultados constataram existência de variabilidade entre os genótipos de arroz na população estudada para tolerância e sensibilidade à salinidade. As linhagens PR492, PR504, CNA8250, CNA8262 e CNA8267 são tolerantes e a CNA8270, CNA8258, CNA8269, PR475 e PR477 são sensíveis à salinidade dos solos durante a fase vegetativa.The objective of this work was to evaluate the degree of tolerance and sensibility to the salinity of genoty,pes of rice (Oryza sativa L. during the vegetative phase of the plant. The experiment was lead under greenhouse conditions at IPA (Empresa Pernambucana de Pesquisa Agropecuária, in 1996. Twelve genotypes of rice had been evaluated, being ten tolerant and two sensible ones to salinity in the vegetative development stadium. The randomized blocks design were performed into three repetitions of factorials arrangements (twelve genotypes x four levels of NaCl. Results had evidenced variability existence among the genotypes of rice, in the specific population, for tolerance and sensitivity to the salinity. Samples PR492, PR504, CNA8250, CNA8262 and CNA8267 can be considered tolerant to salinity, while the genotypes CNA8270, CNA8258, CNA8269, PR475 and PR477 are sensible to salinity of soil during the vegetative phase.

  18. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  19. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  20. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Science.gov (United States)

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  2. Recombinant Protein Production and Insect Cell Culture and Process

    Science.gov (United States)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  3. Recombinant Innovation and Endogenous Transitions

    OpenAIRE

    Koen Frenken; Luis R. Izquierdo; Paolo Zeppini

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...

  4. Common genotypes of hepatitis B virus

    International Nuclear Information System (INIS)

    Idrees, M.; Khan, S.; Riazuddin, S.

    2004-01-01

    Objective: To find out the frequency of common genotypes of hepatitis-B virus (HBV). Subjects and Methods: HBV genotypes were determined in 112 HBV DNA positive sera by a simple and precise molecular genotyping system base on PCR using type-specific primers for the determination of genotypes of HBV A through H. Results: Four genotypes (A,B,C and D) out of total eight reported genotypes so far were identified. Genotypes A, B and C were predominant. HBV genotype C was the most predominant in this collection, appearing in 46 samples (41.7%). However, the genotypes of a total of 5 (4.46%) samples could not be determined with the present genotyping system. Mixed genotypes were seen in 8(7.14% HBV) isolates. Five of these were infected with genotypes A/D whereas two were with genotypes C/D. One patient was infected with 4 genotypes (A/B/C/D). Genotype A (68%) was predominant in Sindh genotype C was most predominant in North West Frontier Province (NWFP) (68.96) whereas genotype C and B were dominant in Punjab (39.65% and 25.86% respectively). Conclusion: All the four common genotypes of HBV found worldwide (A,B,C and D) were isolated. Genotype C is the predominant Genotypes B and C are predominant in Punjab and N.W.F.P. whereas genotype A is predominant in Sindh. (author)

  5. On the relict recombination lines

    International Nuclear Information System (INIS)

    Bershtejn, I.N.; Bernshtejn, D.N.; Dubrovich, V.K.

    1977-01-01

    Accurate numerical calculation of intensities and profiles of hydrogen recombination lines of cosmological origin is made. Relie radiation distortions stipulated by recombination quantum release at the irrevocable recombination are investigated. Mean number calculation is given for guantums educing for one irrevocably-lost electron. The account is taken of the educed quantums interraction with matter. The main quantum-matter interrraction mechanisms are considered: electronic blow broadening; free-free, free-bound, bound-bound absorptions Recombination dynamics is investigated depending on hydrogen density and total density of all the matter kinds in the Universe

  6. Screening cotton genotypes for seedling drought tolerance

    Directory of Open Access Journals (Sweden)

    Penna Julio C. Viglioni

    1998-01-01

    Full Text Available The objectives of this study were to adapt a screening method previously used to assess seedling drought tolerance in cereals for use in cotton (Gossypium hirsutum L. and to identify tolerant accessions among a wide range of genotypes. Ninety genotypes were screened in seven growth chamber experiments. Fifteen-day-old seedlings were subjected to four 4-day drought cycles, and plant survival was evaluated after each cycle. Three cycles are probably the minimum required in cotton work. Significant differences (at the 0.05 level or lower among entries were obtained in four of the seven experiments. A "confirmation test" with entries previously evaluated as "tolerant" (high survival and "susceptible" (low survival was run. A number of entries duplicated their earlier performance, but others did not, which indicates the need to reevaluate selections. Germplasms considered tolerant included: `IAC-13-1', `IAC-RM4-SM5', `Minas Sertaneja', `Acala 1517E-1' and `4521'. In general, the technique is simple, though time-consuming, with practical value for screening a large number of genotypes. Results from the screening tests generally agreed with field information. The screening procedure is suitable to select tolerant accessions from among a large number of entries in germplasm collections as a preliminary step in breeding for drought tolerance. This research also demonstrated the need to characterize the internal lack of uniformity in growth chambers to allow for adequate designs of experiments.

  7. Root response of Jerusalem artichoke genotypes to different water regimes

    Science.gov (United States)

    The objective of this study was to determine effects of drought on selected root growth parameters and develop relationships between root parameters and tuber yield for selected Jerusalem artichoke (JA) genotypes. Three water regimes (Field capacity, 50% available water (AW) and 25% AW) and five JA...

  8. Among-year variation in selection during early life stages and the genetic basis of fitness in Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Ågren, Jon

    2018-04-19

    Incomplete information regarding both selection regimes and the genetic basis of fitness limits our understanding of adaptive evolution. Among-year variation in the genetic basis of fitness is rarely quantified, and estimates of selection are typically based on single components of fitness, thus potentially missing conflicting selection acting during other life-history stages. Here, we examined among-year variation in selection on a key life-history trait and the genetic basis of fitness covering the whole life cycle in the annual plant Arabidopsis thaliana. We planted freshly-matured seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally-adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified selection against the nonlocal Italian genotype, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on timing of germination during different life stages. In all three years, the local Swedish genotype outperformed the non-local Italian genotype. However, both the contribution of early life stages to relative fitness, and the effects of fitness QTL varied among years. Timing of germination was under conflicting selection through seedling establishment vs. adult survival and fecundity, and both the direction and magnitude of net selection varied among years. Our results demonstrate that selection during early life stages and the genetic basis of fitness can vary markedly among years, emphasizing the need for multi-year studies considering the whole life cycle for a full understanding of natural selection and mechanisms maintaining local adaptation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    Science.gov (United States)

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers—alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis—present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination. PMID:22143919

  10. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    Science.gov (United States)

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended

  11. Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses.

    Science.gov (United States)

    Gronert, K; Martinsson-Niskanen, T; Ravasi, S; Chiang, N; Serhan, C N

    2001-01-01

    Aspirin-triggered lipoxin A(4) (ATL, 15-epi-LXA(4)) and leukotriene D(4) (LTD(4)) possess opposing vascular actions mediated via receptors distinct from the LXA(4) receptor (ALX) that is involved in leukocyte trafficking. Here, we identified these receptors by nucleotide sequencing and demonstrate that LTD(4) receptor (CysLT(1)) is induced in human vascular endothelia by interleukin-1beta. Recombinant CysLT(1) receptor gave stereospecific binding with both [(3)H]-LTD(4) and a novel labeled mimetic of ATL ([(3)H]-ATLa) that was displaced with LTD(4) and ATLa ( approximately IC(50) 0.2 to 0.9 nmol/L), but not with a bioinactive ATL isomer. The clinically used CysLT(1) receptor antagonist, Singulair, showed a lower rank order for competition with [(3)H]-ATLa (IC(50) approximately 8.3 nmol/L). In contrast, LTD(4) was an ineffective competitive ligand for recombinant ALX receptor with [(3)H]-ATLa, and ATLa did not compete for [(3)H]-LTB(4) binding with recombinant LTB(4) receptor. Endogenous murine CysLT(1) receptors also gave specific [(3)H]-ATLa binding that was displaced with essentially equal affinity by LTD(4) or ATLa. Systemic ATLa proved to be a potent inhibitor (>50%) of CysLT(1)-mediated vascular leakage in murine skin (200 microg/kg) in addition to its ability to block polymorphonuclear leukocyte recruitment to dorsal air pouch (4 microg/kg). These results indicate that ATL and LTD(4) bind and compete with equal affinity at CysLT(1), providing a molecular basis for aspirin-triggered LXs serving as a local damper of both vascular CysLT(1) signals as well as ALX receptor-regulated polymorphonuclear leukocyte traffic.

  12. Molecular characterization of varicella-zoster virus clinical isolates from 2006 to 2008 in a tertiary care hospital, Dublin, Ireland, using different genotyping methods.

    LENUS (Irish Health Repository)

    Roycroft, Emma

    2012-10-01

    Varicella-zoster virus (VZV), a herpesvirus, is a ubiquitous organism that causes considerable morbidity worldwide and can cause severe complications on reactivation. Phylogenetic analysis was performed on 19 clinical VZV isolates (16 zoster and 3 varicella) found in Ireland, between December 2006 and November 2008, in order to determine whether previously reported viral heterogeneity was still present and whether viral recombination was evident. Open reading-frames (ORFs) from genes 1, 21, 50, and 54, were sequenced. Clades 1, 2, 3, and 5 were identified. Four putative recombinant isolates were detected (three clade 3\\/1 and one clade 5\\/3\\/1). Further sequencing and examination of ORF 22 and 21\\/50, did not elucidate the putative recombinant genotypes further. These two previously published genotyping schemes were examined in light of the new consensus genotyping scheme proposed in 2010. Remarkable VZV heterogeneity remains prevalent in Ireland. This is the first evidence of putative VZV recombination found in Ireland.

  13. Why Do Sex Chromosomes Stop Recombining?

    Science.gov (United States)

    Ponnikas, Suvi; Sigeman, Hanna; Abbott, Jessica K; Hansson, Bengt

    2018-04-28

    It is commonly assumed that sex chromosomes evolve recombination suppression because selection favours linkage between sex-determining and sexually antagonistic genes. However, although the role of sexual antagonism during sex chromosome evolution has attained strong support from theory, experimental and observational evidence is rare or equivocal. Here, we highlight alternative, often neglected, hypotheses for recombination suppression on sex chromosomes, which invoke meiotic drive, heterozygote advantage, and genetic drift, respectively. We contrast the hypotheses, the situations when they are likely to be of importance, and outline why it is surprisingly difficult to test them. Lastly, we discuss future research directions (including modelling, population genomics, comparative approaches, and experiments) to disentangle the different hypotheses of sex chromosome evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Experimental study of para- and ortho-H3+ recombination

    International Nuclear Information System (INIS)

    Plasil, R; Varju, J; Hejduk, M; Dohnal, P; KotrIk, T; Glosik, J

    2011-01-01

    Recombination of H 3 + with electrons is a key process for many plasmatic environments. Recent experiments on storage ring devices used ion sources producing H 3 + with enhanced populations of H 3 + ions in the para nuclear spin configuration to shed light on the theoretically predicted faster recombination of para states. Although increased recombination rates were observed, no in situ characterization of recombining ions was performed. We present a state selective recombination study of para- and ortho-H 3 + ions with electrons at 77 K in afterglow plasma in a He/Ar/H 2 gas-mixture. Both spin configurations of H 3 + have been observed in situ with a near infrared cavity ring down spectrometer (NIR-CRDS) using the two lowest energy levels of H 3 + . Using hydrogen with an enhanced population of H 2 molecules in para states allowed us to influence the [para-H 3 + ]/[ortho-H 3 + ] ratio in the discharge and in the afterglow. We observed an increase in the measured effective recombination rate coefficients with the increase of the fraction of para-H 3 + . Measurements with different fractions of para-H 3 + at otherwise identical conditions allowed us to determine the binary recombination rate coefficients for pure para-H 3 + p α bin (77 K) = (2.0±0.4)x10 -7 cm 3 s -1 and pure ortho-H 3 + o α bin (77 K) = (4±3)x10 -8 cm 3 s -1 .

  15. Antixenosis of bean genotypes to Chrysodeixis includens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Rafaela Morando

    2015-06-01

    Full Text Available The objective of this work was to evaluate bean genotypes for resistance to soybean looper (Chrysodeixis includens. Initially, free-choice tests were carried out with 59 genotypes, divided into three groups according to leaf color intensity (dark green, light green, and medium green, in order to evaluate oviposition preference. Subsequently, 12 genotypes with high potential for resistance were selected, as well as two susceptible commercial standards. With these genotypes, new tests were performed for oviposition in a greenhouse, besides tests for attractiveness and consumption under laboratory conditions (26±2ºC, 65±10% RH, and 14 h light: 10 h dark photophase. In the no-choice test with adults, in the greenhouse, the 'IAC Jabola', Arcelina 1, 'IAC Boreal', 'Flor de Mayo', and 'IAC Formoso' genotypes were the least oviposited, showing antixenosis-type resistance for oviposition. In the free-choice test with larvae, Arcelina 4, 'BRS Horizonte', 'Pérola', H96A102-1-1-1-52, 'IAC Boreal', 'IAC Harmonia', and 'IAC Formoso' were the less consumed genotypes, which indicates antixenosis to feeding. In the no-choice test, all genotypes (except for 'IAPAR 57' expressed moderate levels of antixenosis to feeding against C. includens larvae.

  16. Dissociative recombination of dications

    International Nuclear Information System (INIS)

    Seiersen, K.; Heber, O.; Jensen, M.J.; Safvan, C.P.; Andersen, L. H.

    2003-01-01

    Dissociative recombination (DR) of doubly-charged positive ions has been studied at the heavy ion storage ring ASTRID. Low-energy electrons were scattered on the dication of the N 2 molecule, and the absolute cross section was measured in the energy range of 10 -4 -50 eV. From the measured cross section, a thermal rate coefficient of 5.8x10 -7 cm 3 s -1 at 300 K was extracted. Furthermore, we present new results on the CO 2+ DR rate, and a summary and comparison of measured DR rate coefficients for both the singly and doubly-charged ions of CO, CO 2 , and N 2 is presented

  17. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  18. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  19. Report of recombinant norovirus GII.g/GII.12 in Beijing, China.

    Science.gov (United States)

    Sang, Shaowei; Zhao, Zhongtang; Suo, Jijiang; Xing, Yubin; Jia, Ning; Gao, Yan; Xie, Lijun; Du, Mingmei; Liu, Bowei; Ren, Shiwang; Liu, Yunxi

    2014-01-01

    Norovirus (NoV) has been recognized as the most important cause of nonbacterial acute gastroenteritis affecting all age group people in the world. Genetic recombination is a common occurance in RNA viruses and many recombinant NoV strains have been described since it was first reported in 1997. However, the knowledge of recombinant NoV in China is extremely limited. A total of 685 stool specimens were tested for NoV infection from the acute gastroenteritis patients who visited one general hospital in Beijing from April 2009 to November 2011. The virus recombination was identified by constructing phylogenetic trees of two genes, further SimPlot and the maximum chi-square analysis. The overall positive rate was 9.6% (66/685). GII.4 New Orleans 2009 and GII.4 2006b variants were the dominant genotype. Four GII.g/GII.12 and one GII.12/GII.3 recombinant strains were confirmed, and all derived from adult outpatients. The predictive recombination point occurred at the open reading frame (ORF)1/ORF2 overlap. The GII.g ORF1/GII.12ORF2 recombinant has been reported in several countries and it was the first report of this recombinant in China.

  20. Report of recombinant norovirus GII.g/GII.12 in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Shaowei Sang

    Full Text Available BACKGROUND: Norovirus (NoV has been recognized as the most important cause of nonbacterial acute gastroenteritis affecting all age group people in the world. Genetic recombination is a common occurance in RNA viruses and many recombinant NoV strains have been described since it was first reported in 1997. However, the knowledge of recombinant NoV in China is extremely limited. METHODS: A total of 685 stool specimens were tested for NoV infection from the acute gastroenteritis patients who visited one general hospital in Beijing from April 2009 to November 2011. The virus recombination was identified by constructing phylogenetic trees of two genes, further SimPlot and the maximum chi-square analysis. RESULTS: The overall positive rate was 9.6% (66/685. GII.4 New Orleans 2009 and GII.4 2006b variants were the dominant genotype. Four GII.g/GII.12 and one GII.12/GII.3 recombinant strains were confirmed, and all derived from adult outpatients. The predictive recombination point occurred at the open reading frame (ORF1/ORF2 overlap. CONCLUSIONS: The GII.g ORF1/GII.12ORF2 recombinant has been reported in several countries and it was the first report of this recombinant in China.

  1. Evaluation of Soybean and Cowpea Genotypes for Phosphorus Use Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kumaga, F. K.; Ofori, K.; Adiku, S. K.; Kugblenu, Y. O.; Asante, W.; Seidu, H. [College of Agriculture and Consumer Sciences, University of Ghana, Legon, Accra (Ghana); Adu-Gyamfi, J. J. [Soil and Water Management and Crop Nutrition Laboratory, International Atomic Energy Agency, Vienna (Austria)

    2013-11-15

    Initial screening of one hundred and fifty-two (152) and fifty (50) genotypes of soybean and cowpea, respectively, were conducted at the early growth stage to evaluate root traits associated with phosphorus (P) efficiency. Fifty soybean genotypes were subsequently selected and evaluated on a tropical low P soil (Lixisol) for growth and yield under low and adequate P availability. Plants were sampled at twelve and thirty days after sowing and at maturity. Six cowpea genotypes were also selected and evaluated in pots filled with Alfisol under low, moderate and high P availability. Plants were sampled at forty days and assessed for shoot yield and nodulation under low P availability. Using Principal Component Analysis (PCA), Phosphorus Efficiency Index (PEI) was used to determine P efficiency of soybean and cowpea genotypes. A wide variation in root traits for soybean and cowpea at the early growth stage was found, and allometric analysis showed a significant correlation between the root and shoot parameters at this stage. The study provided an opportunity to compare root traits of newly developed cowpea genotypes (early maturing, medium maturing, dual purpose and Striga resistant lines) with older released cultivars. There were significant differences in root length among the groups. In general, dual purpose, Striga resistant and medium/early maturing genotypes showed the longest roots while the older varieties showed the least total root length. Field and pot results also showed differential growth of soybean and cowpea with low P availability. Further, PCA of the results indicated that soybean genotypes could be grouped into three distinct P efficiency categories. Retaining the PC and the relative weight for each genotype in combination with yield potential under high P, four categories of responsiveness to P were obtained. Cowpea genotypes were grouped into three P efficiency categories and two categories of responsiveness to P. The study also found genetic

  2. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  3. Recombination between Homeologous Chromosomes in Lager Yeasts leads to Loss of Function of the Hybrid GPH1 Gene.

    OpenAIRE

    BOND, URSULA

    2009-01-01

    PUBLISHED Yeasts used in the production of lagers contain complex allopolyploid genomes, resulting from the fusion of two different yeast species closely related to Saccharomyces cerevisiae and Saccharomyces bayanus. Recombination between the homoeologous chromosomes has generated a number of hybrid chromosomes. These recombination events provide potential for adaptive evolution through the loss or gain of gene function. We have examined the genotypic and phenotypic effects of one of the c...

  4. Negative frequency-dependent selection between Pasteuria penetrans and its host Meloidogyne arenaria

    Science.gov (United States)

    In negative frequency-dependant selection (NFDS), parasite genotypes capable of infecting the numerically dominant host genotype are favored, while host genotypes resistant to the dominant parasite genotype are favored, creating a cyclical pattern of resistant genotypes in the host population and, a...

  5. Neutralizing antibodies in patients with chronic hepatitis C, genotype 1, against a panel of genotype 1 culture viruses

    DEFF Research Database (Denmark)

    Pedersen, Jannie; Jensen, Tanja B; Carlsen, Thomas H R

    2013-01-01

    , infection treated with pegylated interferon-α and ribavirin. Thirty-nine patients with chronic hepatitis C, genotype 1a or 1b, with either sustained virologic response (n = 23) or non-sustained virologic response (n = 16) were enrolled. Samples taken prior to treatment were tested for their ability...... to neutralize 6 different HCV genotype 1 cell culture recombinants (1a: H77/JFH1, TN/JFH1, DH6/JFH1; 1b: J4/JFH1, DH1/JFH1, DH5/JFH1). The results were expressed as the highest dilution yielding 50% neutralization (NAb50-titer). We observed no genotype or subtype specific differences in NAb50-titers between......The correlation of neutralizing antibodies to treatment outcome in patients with chronic hepatitis C virus (HCV) infection has not been established. The aim of this study was to determine whether neutralizing antibodies could be used as an outcome predictor in patients with chronic HCV, genotype 1...

  6. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  7. Genetic diversity for grain Zn concentration in finger millet genotypes: Potential for improving human Zn nutrition

    Directory of Open Access Journals (Sweden)

    Ramegowda Yamunarani

    2016-06-01

    Full Text Available Nearly half of the world population suffers from micronutrient malnutrition, particularly Zn deficiency. It is important to understand genetic variation for uptake and translocation behaviors of Zn in relevant crop species to increase Zn concentration in edible parts. In the present study, genetic variation in grain Zn concentration of 319 finger millet genotypes was assessed. Large genetic variation was found among the genotypes, with concentrations ranging from 10 to 86 μg g− 1 grain. Uptake and translocation studies with Zn/65Zn application in 12 selected low-Zn genotypes showed wide variation in root uptake and shoot translocation, with genotypes GEC331 and GEC164 showing greater uptake and translocation. Genotypes GEC164 and GEC543 showed increased grain Zn concentration. Genotypes GEC331 and GEC164 also showed improved yield under Zn treatment. Appreciable variation in grain Zn concentration among finger millet genotypes found in this study offers opportunities to improve Zn nutrition through breeding.

  8. Selective and genetic constraints on pneumococcal serotype switching.

    Directory of Open Access Journals (Sweden)

    Nicholas J Croucher

    2015-03-01

    Full Text Available Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes, which can be classified into "serogroups" based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps locus. Twenty such "serotype switching" events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001 enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β-lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern.

  9. Comparative salinity responses among tomato genotypes and rootstocks

    International Nuclear Information System (INIS)

    Oztekin, G.B.; Tuzel, Y.

    2011-01-01

    Salinity is a major constraint limiting agricultural crop productivity in the world. However, plant species and cultivars differ greatly in their response to salinity. This study was conducted in a greenhouse to determine the response of 4 commercial tomato rootstocks, 21 cultivars and 8 candidate varieties to salinity stress. Seeds were germinated in peat and when the plants were at the fifth-true leaf stage, salt treatment was initiated except control treatment. NaCl was added to nutrient solution daily with 25 mM concentration and had been reached to 200 mM final concentration. On harvest day, genotypes were classified based on the severity of leaf symptoms caused by NaCl treatment. After symptom scoring, the plants were harvested and leaf number, root length, stem length and diameter per plant were measured. The plants were separated into shoots and roots for dry matter production. Our results showed that, on average, NaCl stress decreased all parameters and the rootstocks gave the highest performance than genotypes. Among all rootstocks, three varieties (2211 and 2275) and ten genotypes (Astona, Astona RN, Caracas, Deniz, Durinta, Export, Gokce, Target, Yeni Talya and 144 HY) were selected as tolerant with slight chlorosis whereas the genotype Malike was selected as sensitive with severe chlorosis. Candidate varieties 2316 and 1482 were the most sensitive ones. Plant growth and dry matter production differed among the tested genotypes. However no correlation was found between plant growth and dry matter production. Rootstock Beaufort gave the highest shoot dry matter although Heman had highest root dry matter. Newton showed more shoot and root dry matter than other genotypes. It is concluded that screening of genotypes based on severity of symptoms at early stage of development and their dry matter production could be used as a tool to indicate genotypic variation to salt stress. (author)

  10. Echinococcus granulosus genotypes in Iran

    Science.gov (United States)

    Sharafi, Seyedeh Maryam; Rostami-Nejad, Mohammad; Moazeni, Mohammad; Yousefi, Morteza; Saneie, Behnam; Hosseini-Safa, Ahmad

    2014-01-01

    Hydatidosis, caused by Echinococcus granulosus is one of the most important zoonotic diseases, throughout most parts of the world. Hydatidosis is endemic in Iran and responsible for approximately 1% of admission to surgical wards. There are extensive genetic variations within E. granulosus and 10 different genotypes (G1–G10) within this parasite have been reported. Identification of strains is important for improvement of control and prevention of the disease. No new review article presented the situation of Echinococcus granulosus genotypes in Iran in the recent years; therefore in this paper we reviewed the different studies regarding Echinococcus granulosus genotypes in Iran. PMID:24834298

  11. Estudio de parámetros hídricos foliares en trigo (Triticum aestivum L. y su uso en selección de genotipos resistentes a sequía Leaf water parameters of wheat (Triticum aestivum L. and their use in the selection of drought resistant genotypes

    Directory of Open Access Journals (Sweden)

    MAURICIO ORTIZ

    2003-06-01

    , CRA y AO, y otra que consideró la pendiente y el promedio de psish y CRA. Luego se correlacionó el orden de los genotipos de ambas selecciones con los ordenes establecidos para los métodos de calculo de AO y se estableció que el orden que considera la pendiente y el promedio de ysh, CRA y AO se correlaciona con los ordenes establecidos por los tres métodos de cálculo de AO. Los parámetros hídricos foliares CRA, psish y AO no estuvieron correlacionados con el rendimiento bajo estrés hídrico. La pendiente de psish se correlacionó negativamente con el rendimiento, lo que indica que el AO permite a la planta sobrevivir al estrés pero no tener mayor rendimiento. Se concluye que con la metodología utilizada es posible seleccionar genotipos resistentes a sequía en base a la pendiente y el promedio de los parámetros psish, CRA y AO obtenidos en campo, removiendo parte del ruido ambientalThe leaf water parameters ys (solute potential, RWC (relative water content and OA (osmotic adjustment characterize the response of plants to water stress and presumably allow the identification of better adapted genotypes. These parameters, however, are highly influenced by the environment what makes their analysis difficult. In this work we hypothesize that it is possible to characterize and select drought resistant wheat genotypes based on the field value of the leaf water parameters using the appropriate analytical techniques. Thirty one wheat (Triticum aestivum L. genotypes were grown in two field trials, one irrigated and one non-irrigated that received 218.3 mm of winter rain. The statistical design was a randomized complete block with two replicates. Between 77 and 121 days after emergence (DC 41 to DC 77, five samplings of relative water content (RWC and solute potential of hydrated flag leaves (psish were made in each replication of each trial (10 observations per trial. The replicates were sampled in alternate days with a 24-h interval between 12:00 and 14:00 h

  12. Hepatitis virus genotyping by Polymerase Chain Reaction and DNA Enzyme immunoassay among Saudi patients in the Western Province, Saudi Arabia

    International Nuclear Information System (INIS)

    Osoba, A.O.; Ibrahim, M.; Abdelaal, M.A.; Al-Mowallad, A.; Al-Shareef, B.; Hussein, B.A.

    2000-01-01

    The distribution of hepatitis C virus (HCV) genotypes in the Western Province of Saudi Arabia is unknown. The purpose of our study was to determine the prevalent HCV genotypes among HCV seropositive Saudi patients in the Western Province and to study the relationship between types/subtypes, clinical status and liver histology. Serum samples were collected from 140 consecutive patients attending the Hematology Clinic with varying grades of liver diseases, high almandine transferees (ALT) for > 6 months, positive HCV, qualitative PCR and who had liver biopsy. HCV genotyping was determined on patients who had tested positive by both HCV enzyme immunoassay (EIA) and the recombinant immunoblot assay (RIBA). Of the 140 patients, 97 (69.2%) had genotype 4, 18 (12.8%) had genotype 1a, and 16 (11.4%) had genotype 1b. Genotype 2b and 5 were found in two patients (1.4%) each, while 5 patients (3.6%) had mixed infections with genotype 4 and 5. Of the 97 patients infected with genotype 4, 84 (86.6%) had chronic active hepatitis (CAH), two (2.1%) had CAH with active cirrhosis, 9(9.3%) had cirrhosis and two (2.1%) had normal liver histology (NLH). The most prevalent HCV genotype in the Western Province of Saudi Arabia was genotype 4 (69.2%). Genotype 1b was encountered in 16 (11.4%) patients. For the first time, genotype 5 was identified in the Western Province of Saudi Arabia. Genotype 1b and 4 were associated with different histological grades of liver disease. (author)

  13. Measurements of experimental precision for trials with cowpea (Vigna unguiculata L. Walp.) genotypes.

    Science.gov (United States)

    Teodoro, P E; Torres, F E; Santos, A D; Corrêa, A M; Nascimento, M; Barroso, L M A; Ceccon, G

    2016-05-09

    The aim of this study was to evaluate the suitability of statistics as experimental precision degree measures for trials with cowpea (Vigna unguiculata L. Walp.) genotypes. Cowpea genotype yields were evaluated in 29 trials conducted in Brazil between 2005 and 2012. The genotypes were evaluated with a randomized block design with four replications. Ten statistics that were estimated for each trial were compared using descriptive statistics, Pearson correlations, and path analysis. According to the class limits established, selective accuracy and F-test values for genotype, heritability, and the coefficient of determination adequately estimated the degree of experimental precision. Using these statistics, 86.21% of the trials had adequate experimental precision. Selective accuracy and the F-test values for genotype, heritability, and the coefficient of determination were directly related to each other, and were more suitable than the coefficient of variation and the least significant difference (by the Tukey test) to evaluate experimental precision in trials with cowpea genotypes.

  14. Genome-wide variation in recombination rate in Eucalyptus.

    Science.gov (United States)

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst

  15. Evidence of intratypic recombination in natural populations of hepatitis C virus

    International Nuclear Information System (INIS)

    Colina, R.; Garcia-Aguirre, L.; Cristina, J.; Casane, D.; Vasquez, S.; Khan, Baldip

    2004-01-01

    Hepatitis C virus (HCV) has high genomic variability and, since its discovery, at least six different types and an increasing number of subtypes have been reported. Genotype 1 is the most prevalent genotype found in South America. In the present study, three different genomic regions (5 UTR, core and NS5B) of four HCV strains isolated from Peruvian patients were sequenced in order to investigate the congruence of HCV genotyping for these three genomic regions. Phylogenetic analysis using 5 UTR-core sequences found strain PE22 to be related to subtype 1a. To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossover event had taken place in the NS5B protein. We discuss the consequences of this observation on HCV genotype classification, laboratory diagnosis and treatment of HCV infection

  16. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  17. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  18. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar)

    Science.gov (United States)

    2014-01-01

    Background Dense single nucleotide polymorphism (SNP) genotyping arrays provide extensive information on polymorphic variation across the genome of species of interest. Such information can be used in studies of the genetic architecture of quantitative traits and to improve the accuracy of selection in breeding programs. In Atlantic salmon (Salmo salar), these goals are currently hampered by the lack of a high-density SNP genotyping platform. Therefore, the aim of the study was to develop and test a dense Atlantic salmon SNP array. Results SNP discovery was performed using extensive deep sequencing of Reduced Representation (RR-Seq), Restriction site-Associated DNA (RAD-Seq) and mRNA (RNA-Seq) libraries derived from farmed and wild Atlantic salmon samples (n = 283) resulting in the discovery of > 400 K putative SNPs. An Affymetrix Axiom® myDesign Custom Array was created and tested on samples of animals of wild and farmed origin (n = 96) revealing a total of 132,033 polymorphic SNPs with high call rate, good cluster separation on the array and stable Mendelian inheritance in our sample. At least 38% of these SNPs are from transcribed genomic regions and therefore more likely to include functional variants. Linkage analysis utilising the lack of male recombination in salmonids allowed the mapping of 40,214 SNPs distributed across all 29 pairs of chromosomes, highlighting the extensive genome-wide coverage of the SNPs. An identity-by-state clustering analysis revealed that the array can clearly distinguish between fish of different origins, within and between farmed and wild populations. Finally, Y-chromosome-specific probes included on the array provide an accurate molecular genetic test for sex. Conclusions This manuscript describes the first high-density SNP genotyping array for Atlantic salmon. This array will be publicly available and is likely to be used as a platform for high-resolution genetics research into traits of evolutionary and economic importance in

  19. A robust, simple genotyping-by-sequencing (GBS approach for high diversity species.

    Directory of Open Access Journals (Sweden)

    Robert J Elshire

    Full Text Available Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs. This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM and barley (Oregon Wolfe Barley recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

  20. Seleção de genótipos de milho mais promissores para o consumo in natura Selection of corn on the cob genotypes more appropriate to the in natura consumption

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Ganassali Oliveira Jr.

    2006-03-01

    Full Text Available Seis genótipos pertencentes ao programa de melhoramento de milho da UENF: H43IN, P43, C43, 43IN, HDC e Uenf506-8 foram avaliados, objetivando-se identificar aqueles com melhores características agronômicas e preferidos para o consumo de milho verde. O trabalho foi desenvolvido entre setembro de 2003 e janeiro de 2004, seguindo delineamento experimental de blocos inteiramente casualizados e plantio em dois locais distintos. Estudaram-se as seguintes características agronômicas: produtividade com palha (PrCP, produtividade sem palha (PrSP, porcentagem de espigas comerciais (EC comprimento de espigas sem palha (CESP, diâmetro de espigas sem palha (DE e rendimento de espiga (R, além de ter sido avaliada a preferência do consumidor para os produtos em relação ao sabor, doçura e maciez. Considerando apenas os resultados agronômicos, o milho mais indicado para ser consumido na forma de milho verde foi o híbrido comum Uenf506-8. Porém, observando os resultados do teste de preferência realizado com consumidores do produto, verificou-se que o referido milho não alcançou adequada aceitação pelos participantes, em função da maciez e da doçura inadequadas, sendo mais indicado o H43IN e HDC.Six genotypes belonging to the UENF sweet corn improvement program: H43IN, P43, C43, 43IN, HDC and Uenf506-8 were evaluated aiming at identifying those with better agronomic characteristics and preferred for the consumption of corn on the cob. This investigation was conducted from September 2003 to January 2004, following a randomized complete block design, with four replications and two locations. The following agronomic traits were evaluated: yield with straw (PrCP, productivity without straw (PrSP, percentage of commercial ears (EC, length of ears without straw (CESP, diameter of ears without straw (OF and ears yielding (R. Besides, the consumer preference for the products in relation to the flavor, sweetness, and softness was investigated. The

  1. The potential of different lime tree (Tilia spp genotypes for phytoextraction of heavy metals

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2012-01-01

    Full Text Available The research of heavy metals contents (Pb, Mn, Zn, Ni, Fe in soil in the area of the National Park „Fruška gora”, along the highway M21 shows lower values for manganese, zinc and iron than the maximum allowed quantity prescribed by law. For nickel and lead it shows higher values than maximum allowed quantity. The heavy metals contents in leaves of lime tree in 12 analyzed genotypes are far below average values in accordance with ECCE with all genotypes except genotype 7 for lead and genotypes 7 and 8 for iron. The results of analysis of variance components show that out of four components (locality, genotype, locality x genotype and error only the interaction between locality and genotype does not contribute to variance. The contents of Pb, Mn, Fe and Zn in leaves is primarily influenced by genotype while Ni contents may be considered a consequence of locality. The selection of genotypes which is able to uptake greater quantities of heavy metals than other genotypes may serve as a solid basis for phytoextraction of heavy metals as a technology by which heavy metals, metalloids and radionuclides are extracted from environment through usage of suitable species and plant genotypes able to uptake and accumulate the given pollutants in parts of plant tissue. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studying climate change and its influence on the environment: Impacts, adaptation and mitigation

  2. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  3. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  4. Efficient cell culture system for hepatitis C virus genotype 1a and 1b

    DEFF Research Database (Denmark)

    2013-01-01

    isolate in generating efficient cell culture systems for other isolates by transfer of mutations across isolates, subtypes or major genotypes. Furthermore neutralization studies showed that viruses of e.g. genotype 1 were efficiently neutralized by genotype Ia, 4a and 5a serum, an effect that could......The present inventors developed hepatitis C virus 1a/2a and 1b/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and NS2 were replaced by the corresponding genes of the genotype Ia reference strain H77C or TN or the corresponding genes of the genotype Ib...... reference strain J4. Sequence analysis of recovered 1a/2a and 1b/2a recombinants from 2 serial passages and subsequent reverse genetic studies revealed adaptive mutations in e.g. p7, NS2 and/or NS3. In addition, the inventors demonstrate the possibility of using adaptive mutations identified for one HCV...

  5. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  6. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  7. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  8. Evolutionary advantage via common action of recombination and neutrality

    Science.gov (United States)

    Saakian, David B.; Hu, Chin-Kun

    2013-11-01

    We investigate evolution models with recombination and neutrality. We consider the Crow-Kimura (parallel) mutation-selection model with the neutral fitness landscape, in which there is a central peak with high fitness A, and some of 1-point mutants have the same high fitness A, while the fitness of other sequences is 0. We find that the effect of recombination and neutrality depends on the concrete version of both neutrality and recombination. We consider three versions of neutrality: (a) all the nearest neighbor sequences of the peak sequence have the same high fitness A; (b) all the l-point mutations in a piece of genome of length l≥1 are neutral; (c) the neutral sequences are randomly distributed among the nearest neighbors of the peak sequences. We also consider three versions of recombination: (I) the simple horizontal gene transfer (HGT) of one nucleotide; (II) the exchange of a piece of genome of length l, HGT-l; (III) two-point crossover recombination (2CR). For the case of (a), the 2CR gives a rather strong contribution to the mean fitness, much stronger than that of HGT for a large genome length L. For the random distribution of neutral sequences there is a critical degree of neutrality νc, and for μmutations affect the mean-field-like and fluctuation-like factors similarly. Consequently, recombination can accelerate the non-mean-field (fluctuation) type dynamics without considerably affecting the mean-field-like factors.

  9. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  10. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  11. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Science.gov (United States)

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  12. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Evelyn Stelzl

    Full Text Available Hepatitis C virus (HCV intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2 and Azerbaijan (n = 1, the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  13. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Science.gov (United States)

    Brueggemann, Angela B; Pai, Rekha; Crook, Derrick W; Beall, Bernard

    2007-11-01

    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  14. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    Directory of Open Access Journals (Sweden)

    Brian O'Farrell

    Full Text Available Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of 200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  15. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  16. Genotypic character relationship and phenotypic path coefficient analysis in chili pepper genotypes grown under tropical condition.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Oladosu, Yusuff; Kashiani, Pedram

    2017-03-01

    Studies on genotypic and phenotypic correlations among characters of crop plants are useful in planning, evaluating and setting selection criteria for the desired characters in a breeding program. The present study aimed to estimate the phenotypic correlation coefficients among yield and yield attributed characters and to work out the direct and indirect effects of yield-related characters on yield per plant using path coefficient analysis. Twenty-six genotypes of chili pepper were laid out in a randomized complete block design with three replications. Yield per plant showed positive and highly significant (P ≤ 0.01) correlations with most of the characters studied at both the phenotypic and genotypic levels. By contrast, disease incidence and days to flowering showed a significant negative association with yield. Fruit weight and number of fruits exerted positive direct effect on yield and also had a positive and significant (P ≤ 0.01) correlation with yield per plant. However, fruit length showed a low negative direct effect with a strong and positive indirect effect through fruit weight on yield and had a positive and significant association with yield. Longer fruits, heavy fruits and a high number of fruits are variables that are related to higher yields of chili pepper under tropical conditions and hence could be used as a reliable indicator in indirect selection for yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Directory of Open Access Journals (Sweden)

    Ireen E Kiwelu

    Full Text Available The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR of 38 (28-50 sequences per subject. Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84% subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60% subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69% to 36 (82% over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  18. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges

  19. 42 CFR 73.4 - Overlap select agents and toxins.

    Science.gov (United States)

    2010-10-01

    ... genetically modified. (d) Overlap select agents or toxins that meet any of the following criteria are excluded... Equine Encephalitis virus (c) Genetic Elements, Recombinant Nucleic Acids, and Recombinant Organisms: (1...

  20. 7 CFR 331.3 - PPQ select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ...) Select agents and toxins listed in paragraph (b) of this section that have been genetically modified. (d... variegated chlorosis strain). (c) Genetic elements, recombinant nucleic acids, and recombinant organisms: (1...

  1. Sex and PRNP genotype determination in preimplantation caprine embryos.

    Science.gov (United States)

    Guignot, F; Perreau, C; Cavarroc, C; Touzé, J-L; Pougnard, J-L; Dupont, F; Beckers, J-F; Rémy, B; Babilliot, J-M; Bed'Hom, B; Lamorinière, J M; Mermillod, P; Baril, G

    2011-08-01

    The objective of this study was to test the accuracy of genotype diagnosis after whole amplification of DNA extracted from biopsies obtained by trimming goat embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer. Whole genome amplification (WGA) was performed using Multiple Displacement Amplification (MDA). Sex and prion protein (PRNP) genotypes were determined. Sex diagnosis was carried out by PCR amplification of ZFX/ZFY and Y chromosome-specific sequences. Prion protein genotype determination was performed on codons 142, 154, 211, 222 and 240. Embryos were collected at day 7 after oestrus and biopsied either immediately after collection (blastocysts and expanded blastocysts) or after 24 h of in vitro culture (compacted morulae). Biopsied embryos were frozen by vitrification. Vitrified whole embryos were kept as control. DNA of biopsies was extracted and amplified using MDA. Sex diagnosis was efficient for 97.4% of biopsies and PRNP genotyping was determined in 78.7% of biopsies. After embryo transfer, no significant difference was observed in kidding rate between biopsied and vitrified control embryos, whereas embryo survival rate was different between biopsied and whole vitrified embryos (p = 0.032). At birth, 100% of diagnosed sex and 98.2% of predetermined codons were correct. Offspring PRNP profiles were in agreement with parental genotype. Whole genome amplification with MDA kit coupled with sex diagnosis and PRNP genotype predetermination are very accurate techniques to genotype goat embryos before transfer. These novel results allow us to plan selection of scrapie-resistant genotypes and kid sex before transfer of cryopreserved embryo. © 2010 Blackwell Verlag GmbH.

  2. Evaluation of allelopathic potential of safflower genotypes (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Motamedi Marzieh

    2016-12-01

    Full Text Available Forty safflower genotypes were grown under normal irrigation and drought stress. In the first experiment, the allelopathic potential of shoot residues was evaluated using the sandwich method. Each genotype residue (0.4 g was placed in a sterile Petri dish and two layers of agar were poured on that. Radish seeds were placed on agar medium. The radish seeds were cultivated without safflower residues as the controls. The length of the radicle, hypocotyl, and fresh biomass weight and seed germination percentages were measured. A pot experiment was also done on two genotypes with the highest and two with the lowest allelopathic activity selected after screening genotypes in the first experiment. Before entering the reproductive phase, irrigation treatments (normal irrigation and drought stress were applied. Shoots were harvested, dried, milled and mixed with the topsoil of new pots and then radish seeds were sown. The pots with safflower genotypes were used to evaluate the effect of root residue allelopathy. The shoot length, fresh biomass weight, and germination percentage were measured. Different safflower genotypes showed varied allelopathic potential. The results of the first experiment showed that Egypt and Iran-Khorasan genotypes caused maximum inhibitory responses and Australia and Iran-Kerman genotypes resulted in minimum inhibitory responses on radish seedling growth. Fresh biomass weight had the most sensitivity to safflower residues. The results of the pot experiment were consistent with the results of in vitro experiments. Residues produced under drought stress had more inhibitory effects on the measured traits. Safflower root residue may have a higher level of allelochemicals or different allelochemicals than shoot residue.

  3. A new method for detecting the contribution of high Rydberg states to electron-ion recombination

    International Nuclear Information System (INIS)

    Orban, I; Boehm, S; Fogle, M; Paal, A; Schuch, R

    2007-01-01

    A position sensitive detector for measuring field ionized electrons in the fringe field of a dipole magnet is presented. The detector provides a means to study, in a state selective fashion, recombination into high Rydberg states and offers a new method to investigate recombination enhancement effects. Several experimental considerations and possibilities are discussed in the text

  4. Recombining overlapping BACs into a single larger BAC

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2004-01-01

    Full Text Available Abstract Background BAC clones containing entire mammalian genes including all the transcribed region and long range controlling elements are very useful for functional analysis. Sequenced BACs are available for most of the human and mouse genomes and in many cases these contain intact genes. However, large genes often span more than one BAC, and single BACs covering the entire region of interest are not available. Here we describe a system for linking two or more overlapping BACs into a single clone by homologous recombination. Results The method was used to link a 61-kb insert carrying the final 5 exons of the human CFTR gene onto a 160-kb BAC carrying the first 22 exons. Two rounds of homologous recombination were carried out in the EL350 strain of bacteria which can be induced for the Red genes. In the first round, the inserts of the two overlapping BACs were subcloned into modified BAC vectors using homologous recombination. In the second round, the BAC to be added was linearised with the very rare-cutting enzyme I-PpoI and electroporated into recombination efficient EL350 bacteria carrying the other BAC. Recombined BACs were identified by antibiotic selection and PCR screening and 10% of clones contained the correctly recombined 220-kb BAC. Conclusion The system can be used to link the inserts from any overlapping BAC or PAC clones. The original orientation of the inserts is not important and desired regions of the inserts can be selected. The size limit for the fragments recombined may be larger than the 61 kb used here and multiple BACs in a contig could be combined by alternating use of the two pBACLink vectors. This system should be of use to many investigators wishing to carry out functional analysis on large mammalian genes which are not available in single BAC clones.

  5. A window into the transcriptomic basis of genotype-by-genotype interactions in the legume-rhizobia mutualism.

    Science.gov (United States)

    Wood, Corlett W; Stinchcombe, John R

    2017-11-01

    The maintenance of genetic variation in the benefits provided by mutualists is an evolutionary puzzle (Heath & Stinchcombe, ). Over time, natural selection should favour the benefit strategy that confers the highest fitness, eroding genetic variation in partner quality. Yet abundant genetic variation in partner quality exists in many systems (Heath & Stinchcombe, ). One possible resolution to this puzzle is that the genetic identity of both a host and its partner affects the benefits each mutualist provides to the other, a pattern known as a genotype-by-genotype interaction (Figure ). Mounting evidence suggests that genotype-by-genotype interactions between partners are pervasive at the phenotypic level (Barrett, Zee, Bever, Miller, & Thrall, ; Heath, ; Hoeksema & Thompson, ). Ultimately, however, to link these phenotypic patterns to the maintenance of genetic variation in mutualisms we need to answer two questions: How much variation in mutualism phenotypes is attributable to genotype-by-genotype interactions, and what mutualistic functions are influenced by each partner and by the interaction between their genomes? In this issue of Molecular Ecology, Burghardt et al. (2017) use transcriptomics to address both questions in the legume-rhizobia mutualism. © 2017 John Wiley & Sons Ltd.

  6. Does Sex Trade with Violence among Genotypes in Drosophila melanogaster?

    Science.gov (United States)

    Cabral, Larry G.; Foley, Brad R.; Nuzhdin, Sergey V.

    2008-01-01

    The evolutionary forces shaping the ability to win competitive interactions, such as aggressive encounters, are still poorly understood. Given a fitness advantage for competitive success, variance in aggressive and sexual display traits should be depleted, but a great deal of variation in these traits is consistently found. While life history tradeoffs have been commonly cited as a mechanism for the maintenance of variation, the variability of competing strategies of conspecifics may mean there is no single optimum strategy. We measured the genetically determined outcomes of aggressive interactions, and the resulting effects on mating success, in a panel of diverse inbred lines representing both natural variation and artificially selected genotypes. Males of one genotype which consistently lost territorial encounters with other genotypes were nonetheless successful against males that were artificially selected for supernormal aggression and dominated all other lines. Intransitive patterns of territorial success could maintain variation in aggressive strategies if there is a preference for territorial males. Territorial success was not always associated with male mating success however and females preferred ‘winners’ among some male genotypes, and ‘losers’ among other male genotypes. This suggests that studying behaviour from the perspective of population means may provide limited evolutionary and genetic insight. Overall patterns of competitive success among males and mating transactions between the sexes are consistent with mechanisms proposed for the maintenance of genetic variation due to nonlinear outcomes of competitive interactions. PMID:18414669

  7. Histomorphological changes in hepatitis C non-responders with respect to viral genotypes

    International Nuclear Information System (INIS)

    Adnan, U.; Mirza, T.; Naz, E.; Aziz, S.

    2013-01-01

    Objective: To evaluate the distinct histopathological changes of chronic hepatitis C (CHC) non-responders in association with viral genotypes. Methods: This cross-sectional study was conducted at the histopathology section of the Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences in collaboration with Sarwar Zuberi Liver Centre, Civil Hospital, Karachi from September 2009 to August 2011. Seventy-five non-responders (end-treatment-response [ETR] positive patients) from a consecutive series of viral-RNA positive CHC patients with known genotypes were selected. Their genotypes and pertinent clinical history was recorded. They were subjected to liver biopsies which were assessed for grade, stage, steatosis, stainable iron and characteristic histological lesions. Results: Majority of the patients (63, 84%) had genotype 3 while 12(16%) cases had genotype 1. The genotype 1 patients had significantly higher scores of inflammation (p<0.03) and fibrosis (p<0.04) as compared to genotype 3. Steatosis was significantly present in all genotype 3 patients in higher scores (p<0.001) compared to genotype 1. Stainable iron scores were generally low in the patients in this study, however, it was more commonly seen in genotype 3. The distribution of characteristic histological lesions was noteworthy in both the groups, irrespective of genotype. Conclusion: In this series, the predominant genotype was 3. However, genotype 1 patients were more prone to the aggressive nature of the disease with significantly higher scores of inflammation and fibrosis. Steatosis was characteristically observed in genotype 3 group. Stainable iron could not be attributed as a cause of non-response. (author)

  8. DNA landmarks for genetic diversity assessment in tea genotypes ...

    African Journals Online (AJOL)

    Tea (Camellia sinensis) is one of the most important non-alcoholic beverages of the world. Natural genetic diversity in tea has been reduced due to continue selection in favor of desirable traits. The present study was conducted to estimate genetic diversity in tea genotypes cultivated in Pakistan using 20 randomly amplified ...

  9. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  10. Comparison and suitability of genotype by environment analysis ...

    African Journals Online (AJOL)

    Pearl millet (Pennisetum glaucum (L.) R. Br.) is an important food security and income crop for households living in semi-arid zones in Uganda. However, the genotype by environment interaction, in addition to the several methods used for its assessment, complicates selection of varieties adapted to such semi-arid areas.

  11. genotype by environment interaction and grain yield stability

    African Journals Online (AJOL)

    Preferred Customer

    among environments, GXE interaction and Interaction Principal Component Analysis (IPCA-I) but ... value closer to zero, Genotype Selection Index (GSI) of 4 each and AMMI stability value (ASV) of 0.124 and. 0.087 ..... Analysis of variance for grain yield using Additive Mean Effect and Multiple Interactions (AMMI) model.

  12. Genetic recombination in Venturia effusa, causal agent of pecan scab

    Science.gov (United States)

    Venturia effusa causes pecan scab, the most prevalent disease of pecan in the southeastern USA. Mating type idiomorphs were recently characterized and the sexual stage was subsequently produced in vitro. To investigate sexual reproduction and recombination of traits in V. effusa, select isolates wer...

  13. Natural and recombinant fungal laccases for paper pulp bleaching

    NARCIS (Netherlands)

    Sigoillot, C.; Record, E.; Belle, V.; Robert, J.L.; Levasseur, A.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Fournel, A.; Sigoillot, J.C.; Asther, M.

    2004-01-01

    Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding

  14. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.

    Science.gov (United States)

    Zhang, Xuecai; Pérez-Rodríguez, Paulino; Burgueño, Juan; Olsen, Michael; Buckler, Edward; Atlin, Gary; Prasanna, Boddupalli M; Vargas, Mateo; San Vicente, Félix; Crossa, José

    2017-07-05

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS) for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C 0 ) training population. A total of 1000 ear-to-row C 0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C 1 ). Predictions of the genotyped individuals forming cycle C 1 were made, and the best predicted grain yielders were selected as parents of C 2 ; this was repeated for more cycles (C 2 , C 3 , and C 4 ), thereby achieving two cycles per year. Multi-environment trials of individuals from populations C 0, C 1 , C 2 , C 3 , and C 4 , together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C 1 to C 4 reached 0.225 ton ha -1 per cycle, which is equivalent to 0.100 ton ha -1  yr -1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C 0 ), genetic diversity narrowed only slightly during the last GS cycles (C 3 and C 4 ). Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time. Copyright © 2017 Zhang et al.

  15. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  16. Variation in recombination frequency and distribution across eukaryotes: patterns and processes

    Science.gov (United States)

    Feulner, Philine G. D.; Johnston, Susan E.; Santure, Anna W.; Smadja, Carole M.

    2017-01-01

    Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109219

  17. The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data.

    Science.gov (United States)

    Booker, Tom R; Ness, Rob W; Keightley, Peter D

    2017-09-01

    Characterizing variation in the rate of recombination across the genome is important for understanding several evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the hotspot diversity of natural populations or whether broad-scale variation in the rate of recombination is conserved between subspecies. In this study, we constructed fine-scale recombination rate maps for a natural population of the Eastern house mouse, Mus musculus castaneus We performed simulations to assess the accuracy of recombination rate inference in the presence of phase errors, and we used a novel approach to quantify phase error. The spatial distribution of recombination events is strongly positively correlated between our castaneus map, and a map constructed using inbred lines derived predominantly from M. m. domesticus Recombination hotspots in wild castaneus show little overlap, however, with the locations of double-strand breaks in wild-derived house mouse strains. Finally, we also find that genetic diversity in M. m. castaneus is positively correlated with the rate of recombination, consistent with pervasive natural selection operating in the genome. Our study suggests that recombination rate variation is conserved at broad scales between house mouse subspecies, but it is not strongly conserved at fine scales. Copyright © 2017 by the Genetics Society of America.

  18. The JP2 genotype of Aggregatibacter actinomycetemcomitans and marginal periodontitis in the mixed dentition

    DEFF Research Database (Denmark)

    Jensen, Anne Birkeholm; Ennibi, Oum Keltoum; Ismaili, Zouheir

    2016-01-01

    AIM: To perform a cross-sectional study on the carrier frequency of JP2 and non-JP2 genotypes of A. actinomycetemcomitans in Moroccan schoolchildren and relate the presence of these genotypes to the periodontal status in the mixed dentition. MATERIAL AND METHODS: A plaque sample from 513 children...... the JP2 genotype and 186 (36.3%) were positive for non-JP2 genotypes, whereas A. actinomycetemcomitans could not be detected in the remaining 281 subjects. Among 75 subjects with mixed dentition and selected for clinical examination, clinical attachment loss (CAL) ≥3 mm at two or more periodontal sites...

  19. [Occurrence of Giardia species and genotypes in humans and animals in Wielkopolska region, Poland].

    Science.gov (United States)

    Solarczyk, Piotr

    2009-01-01

    Giardia is the most common intestinal protozoan parasite found in humans and animals worldwide. Although it has been known for three hundred years, the nomenclature, taxonomy, host specificity, and pathogenicity of Giardia still arouse numerous controversies and ambiguities. Giardia is classified into six species, that are characterised by various ranges of hosts. The most dubious species is G. intestinalis, which includes a dozen or so genotypes, and only two of them (genotype A and B) have wide ranges of hosts, including humans. Moreover, in some genotype assemblages of G. intestinalis certain subgenotypes were distinguished and it was proven that in the same host species various subgenotypes of this parasite may occur. Bearing in mind the significant genetic heterogeneity of G. intestinalis and the fact that various genotypes and subgenotypes of this parasite are characterised by the broad or narrow host specificity, the data concerning the frequency of giardiosis occurrence are insufficient. It is necessary to use molecular biology techniques in order to define the genotype and/or the subgenotype of G. intestinalis that are found in humans and in certain animal species. Furthermore, since more and more pieces of evidence connected with a possibility of the sexual recombination of Giardia are gathered, it is unknown if genotypes and subgenotypes of this parasite are stable in time. The aim of this thesis was to define the frequency of Giardia occurrence in humans and animals in Wielkopolska region, to identify species and genotypes of Giardia that occur in humans and animals, as well as to obtain an axenic culture of the chosen isolates of Giardia from animals and to compare the sequence of the beta-giardin gene fragment obtained from the DNA isolated from cysts and trophozoites in order to check if the axenisation of G. intestinalis leads to the selection of genotypes or if Giardia genotypes are stable in time. Altogether, 2183 faecal samples were examined for

  20. Selected topics from classical bacterial genetics.

    Science.gov (United States)

    Raleigh, Elisabeth A; Elbing, Karen; Brent, Roger

    2002-08-01

    Current cloning technology exploits many facts learned from classical bacterial genetics. This unit covers those that are critical to understanding the techniques described in this book. Topics include antibiotics, the LAC operon, the F factor, nonsense suppressors, genetic markers, genotype and phenotype, DNA restriction, modification and methylation and recombination.

  1. A simple bias correction in linear regression for quantitative trait association under two-tail extreme selection.

    Science.gov (United States)

    Kwan, Johnny S H; Kung, Annie W C; Sham, Pak C

    2011-09-01

    Selective genotyping can increase power in quantitative trait association. One example of selective genotyping is two-tail extreme selection, but simple linear regression analysis gives a biased genetic effect estimate. Here, we present a simple correction for the bias.

  2. Structural Variation Shapes the Landscape of Recombination in Mouse.

    Science.gov (United States)

    Morgan, Andrew P; Gatti, Daniel M; Najarian, Maya L; Keane, Thomas M; Galante, Raymond J; Pack, Allan I; Mott, Richard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination

  3. BK polyomavirus genotypes Ia and Ib1 exhibit different biological properties in renal transplant recipients.

    Science.gov (United States)

    Varella, Rafael B; Zalona, Ana Carolina J; Diaz, Nuria C; Zalis, Mariano G; Santoro-Lopes, Guilherme

    2018-01-02

    BK polyomavirus (BKV) is an opportunist agent associated with nephropathy (BKVAN) in 1-10% of kidney transplant recipients. BKV is classified into genotypes or subgroups according to minor nucleotidic variations with unknown biological implications. Studies assessing the possible association between genotypes and the risk of BKVAN in kidney transplant patients have presented conflicting results. In these studies, genotype Ia, which is highly prevalent in Brazil, was less frequently found and, thus, comparative data on the biological properties of this genotype are lacking. In this study, BKV Ia and Ib1 genotypes were compared according to their viral load, genetic evolution (VP1 and NCCR) - in a cohort of renal transplant recipients. The patients infected with Ia (13/23; 56.5%) genotype exhibited higher viral loads in urine [>1.4 log over Ib1 (10/23; 43.5%); p=0.025]. In addition, genotype Ia was associated with diverse mutations at VP1 loops and sites under positive selection outside loops, which were totally absent in Ib1. Although the number of viremic patients was similar, the three patients who had BK nephropathy (BKVAN) were infected with Ia genotype. NCCR architecture (ww or rr) were not distinctive between Ia and Ib1 genotypes. Ia genotype, which is rare in other published BKV cohorts, presented some diverse biological properties in transplanted recipients in comparison to Ib1. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genonets server-a web server for the construction, analysis and visualization of genotype networks.

    Science.gov (United States)

    Khalid, Fahad; Aguilar-Rodríguez, José; Wagner, Andreas; Payne, Joshua L

    2016-07-08

    A genotype network is a graph in which vertices represent genotypes that have the same phenotype. Edges connect vertices if their corresponding genotypes differ in a single small mutation. Genotype networks are used to study the organization of genotype spaces. They have shed light on the relationship between robustness and evolvability in biological systems as different as RNA macromolecules and transcriptional regulatory circuits. Despite the importance of genotype networks, no tool exists for their automatic construction, analysis and visualization. Here we fill this gap by presenting the Genonets Server, a tool that provides the following features: (i) the construction of genotype networks for categorical and univariate phenotypes from DNA, RNA, amino acid or binary sequences; (ii) analyses of genotype network topology and how it relates to robustness and evolvability, as well as analyses of genotype network topography and how it relates to the navigability of a genotype network via mutation and natural selection; (iii) multiple interactive visualizations that facilitate exploratory research and education. The Genonets Server is freely available at http://ieu-genonets.uzh.ch. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  6. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  7. A Multipoint Method for Detecting Genotyping Errors and Mutations in Sibling-Pair Linkage Data

    OpenAIRE

    Douglas, Julie A.; Boehnke, Michael; Lange, Kenneth

    2000-01-01

    The identification of genes contributing to complex diseases and quantitative traits requires genetic data of high fidelity, because undetected errors and mutations can profoundly affect linkage information. The recent emphasis on the use of the sibling-pair design eliminates or decreases the likelihood of detection of genotyping errors and marker mutations through apparent Mendelian incompatibilities or close double recombinants. In this article, we describe a hidden Markov method for detect...

  8. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    Science.gov (United States)

    2013-01-01

    Background Introgressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution. Results The hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F1 map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic a