WorldWideScience

Sample records for selective polymeric membrane

  1. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  2. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  3. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    Science.gov (United States)

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  4. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng; Chung, Neal Tai-Shung

    2013-01-01

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  5. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.

    Science.gov (United States)

    Sun, Shi-Peng; Chung, Tai-Shung

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m(2), which is equivalent to 13.72 W/m(2) of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation.

  6. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation

    KAUST Repository

    Sun, Shipeng

    2013-11-19

    In this paper, we report the technical breakthroughs to synthesize outer-selective thin-film composite (TFC) hollow fiber membranes, which is in an urgent need for osmotic power generation with the pressure-retarded osmosis (PRO) process. In the first step, a defect-free thin-film composite membrane module is achieved by vacuum-assisted interfacial polymerization. The PRO performance is further enhanced by optimizing the support in terms of pore size and mechanical strength and the TFC layer with polydopamine coating and molecular engineering of the interfacial polymerization solution. The newly developed membranes can stand over 20 bar with a peak power density of 7.63 W/m2, which is equivalent to 13.72 W/m2 of its inner-selective hollow fiber counterpart with the same module size, packing density, and fiber dimensions. The study may provide insightful guidelines for optimizing the interfacial polymerization procedures and scaling up of the outer-selective TFC hollow fiber membrane modules for PRO power generation. © 2013 American Chemical Society.

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  9. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  10. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  11. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1.

    Science.gov (United States)

    Sergeyeva, Tetyana; Yarynka, Daria; Piletska, Elena; Lynnik, Rostyslav; Zaporozhets, Olga; Brovko, Oleksandr; Piletsky, Sergey; El'skaya, Anna

    2017-12-01

    Nanostructured polymeric membranes for selective recognition of aflatoxin B1 were synthesized in situ and used as highly sensitive recognition elements in the developed fluorescent sensor. Artificial binding sites capable of selective recognition of aflatoxin B1 were formed in the structure of the polymeric membranes using the method of molecular imprinting. A composition of molecularly imprinted polymer (MIP) membranes was optimized using the method of computational modeling. The MIP membranes were synthesized using the non-toxic close structural analogue of aflatoxin B1, ethyl-2-oxocyclopentanecarboxylate as a dummy template. The MIP membranes with the optimized composition demonstrated extremely high selectivity towards aflatoxin B1 (AFB1). Negligible binding of close structural analogues of AFB1 - aflatoxins B2 (AFB2), aflatoxin G2 (AFG2), and ochratoxin A (OTA) was demonstrated. Binding of AFB1 by the MIP membranes was investigated as a function of both type and concentration of the functional monomer in the initial monomer composition used for the membranes' synthesis, as well as sample composition. The conditions of the solid-phase extraction of the mycotoxin using the MIP membrane as a stationary phase (pH, ionic strength, buffer concentration, volume of the solution, ratio between water and organic solvent, filtration rate) were optimized. The fluorescent sensor system based on the optimized MIP membranes provided a possibility of AFB1 detection within the range 14-500ngmL -1 demonstrating detection limit (3Ϭ) of 14ngmL -1 . The developed technique was successfully applied for the analysis of model solutions and waste waters from bread-making plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polyion selective polymeric membrane-based pulstrode as a detector in flow-injection analysis.

    Science.gov (United States)

    Bell-Vlasov, Andrea K; Zajda, Joanna; Eldourghamy, Ayman; Malinowska, Elzbieta; Meyerhoff, Mark E

    2014-04-15

    A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis.

  13. Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification

    KAUST Repository

    Ali, Zain

    2017-10-10

    Purification is a major bottleneck towards generating low-cost commercial hydrogen. In this work, inexpensive high-performance H2 separating membranes were fabricated by modifying the commercially successful interfacial polymerization production method for reverse osmosis membranes. Defect-free thin-film composite membranes were formed demonstrating unprecedented mixed-gas H2/CO2 selectivity of ≈ 50 at 140 °C with H2 permeance of 350 GPU, surpassing the permeance/selectivity upper bound of all known polymer membranes by a wide margin. The combination of exceptional separation performance and low manufacturing cost makes them excellent candidates for cost-effective hydrogen purification from steam cracking and similar processes.

  14. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  15. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  16. An investigation on polymeric blend mixed matrix membranes of ...

    African Journals Online (AJOL)

    Polymeric membranes have been vastly used for gas separation purposes however they have an upper-bound trade off problem which is the reason why this research work is focusing on inorganic filler added to polymer blend membranes to enhance the selectivity and permeability of the resulted membranes. Different ...

  17. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  18. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  19. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    International Nuclear Information System (INIS)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan; Madaeni, Sayed Siavash

    2016-01-01

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  20. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  1. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    Science.gov (United States)

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Effect of amine structure on CO2 capture by polymeric membranes.

    Science.gov (United States)

    Taniguchi, Ikuo; Kinugasa, Kae; Toyoda, Mariko; Minezaki, Koki

    2017-01-01

    Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO 2 separation properties over H 2 . However, the CO 2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO 2 determining agent in the current CO 2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO 2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO 2 permeability coefficient of MEA containing membrane was 604 barrer with CO 2 selectivity of 58.5 over H 2 , which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO 2 -selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO 2 separation performance.

  3. Preparation of Zeolitic Imidazolate Framework-8 (ZIF-8) Membrane on Porous Polymeric Support via Contra-Diffusion Method

    KAUST Repository

    Tan, Xiaoyu

    2016-01-01

    way to
fabricate defect-free and thin ZIF-8 membranes on porous polymeric supports showing high selectivity and high gas permeance. The ZIF-8 layers were produced via a contra-diffusion method. Several polymeric membranes were employed as support

  4. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  5. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  6. Functionalization of nanochannels by radio-induced grafting polymerization on PET track-etched membranes

    International Nuclear Information System (INIS)

    Soto Espinoza, S.L.; Arbeitman, C.R.; Clochard, M.C.; Grasselli, M.

    2014-01-01

    The application of swift-heavy ion bombardment to polymers is a well-established technique to manufacture micro- and nanopores onto polymeric films to obtain porous membranes. A few years ago, it was realized that, during ion bombardment, the high energy deposition along the ion path through the polymer reached cylindrical damage regions corresponding to the core trace and the penumbra. After the etching procedure, there are still enough active sites left in the penumbra that can be used to initiate a polymerization process selectively inside the membrane pores. In this study, we report the grafting polymerization of glycidyl methacrylate onto etched PET foils to obtain functionalized nanochannels. Grafted polymers were labeled with a fluorescent tag and analyzed by different fluorescence techniques such as direct fluorescence, fluorescence microscopy and confocal microscopy. These techniques allowed identifying and quantifying the grafted regions on the polymeric foils. - Highlights: • Irradiated PET foils with swift-heavy ions were etched and grafted in a step-by-step process. • Grafting polymerization was performed on the remaining active sites after etching. • Track-etched PET membranes were fluorescently labeled by chemical functionalization. • Functionalized track-etched PET membranes were analyzed by fluorescence and confocal microscopy

  7. Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode

    DEFF Research Database (Denmark)

    Joon, Narender Kumar; He, Ning; Wagner, Michal

    2017-01-01

    In this work, the influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb2+-selective electrode (Pb2+-ISE) was studied. The effects of bovine serum albumin (BSA) adsorption at the surface of the ion-selective membrane combined...... ions studied (Cu2+, Cd2+). Conditioning of the Pb2+-ISE in 0.01 mol dm–3 PBS resulted in a super-Nernstian response which was related to fixation/extraction of Pb2+ in the ion-selective membrane via precipitation of Pb3(PO4)2 by PO43– anions present in PBS. By conditioning of the Pb2+-ISE in 0.01 mol...

  8. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasing pressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranes described by these models develop a local thinning of the membrane which may lead to bursting in finite time. (C) 1999 Elsevier Science B.V. All rights reserved....

  9. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasingpressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranesdescribed by these models develop a local thinning of the membrane which may lead to bursting in finite time....

  10. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  11. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  12. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  13. Concentrated emulsion pathway to novel composite polymeric membranes and their use in pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ruckenstein, E.; Sun, F. [State Univ. of New York, Buffalo, NY (United States). Dept. of Chemical Engineering

    1995-10-01

    Pervaporation is becoming recognized as an energy-efficient alternative to distillation and other separation methods of liquid mixtures, especially in cases in which the traditional separation techniques are not efficient, such as the separation of azeotropic mixtures, close-boiling-point components, isomeric components, and recovery or removal of trace organic substances from aqueous solutions. Novel composite polymeric membranes have been prepared, using concentrated emulsions as precursors, and employed in the pervaporation of various liquid mixtures. In order to improve the stability of the concentrated emulsion, the hydrophilicity and/or the hydrophobicity of the phases involved must be increased by replacing them with their solutions in water and/or in a hydrocarbon, respectively. Another possibility of improving the stability is to increase the viscosity of the phases, by partial polymerization of one or both phases before preparing the concentrated emulsion. The emulsion gel was subsequently transformed into a polymer composite by polymerizing both phases. The dispersed phase should be selected to yield a hydrophobic (hydrophilic) polymer which is compatible with the components selected for separation and incompatible with the other components, while the continuous phase should be selected to yield a hydrophilic (hydrophobic) polymer which is incompatible with all of the components of the mixture, and thus it can ensure the integrity of the membrane. As examples, several composite polymeric membranes were designed, prepared, and employed in the separation by pervaporation of water-ethanol,aromatics-paraffinics, and aromatics-alcohol mixtures.

  14. Cyanex based uranyl sensitive polymeric membrane electrodes.

    Science.gov (United States)

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  15. Extraction or adsorption? Voltammetric assessment of protamine transfer at ionophore-based polymeric membranes.

    Science.gov (United States)

    Garada, Mohammed B; Kabagambe, Benjamin; Amemiya, Shigeru

    2015-01-01

    Cation-exchange extraction of polypeptide protamine from water into an ionophore-based polymeric membrane has been hypothesized as the origin of a potentiometric sensor response to this important heparin antidote. Here, we apply ion-transfer voltammetry not only to confirm protamine extraction into ionophore-doped polymeric membranes but also to reveal protamine adsorption at the membrane/water interface. Protamine adsorption is thermodynamically more favorable than protamine extraction as shown by cyclic voltammetry at plasticized poly(vinyl chloride) membranes containing dinonylnaphthalenesulfonate as a protamine-selective ionophore. Reversible adsorption of protamine at low concentrations down to 0.038 μg/mL is demonstrated by stripping voltammetry. Adsorptive preconcentration of protamine at the membrane/water interface is quantitatively modeled by using the Frumkin adsorption isotherm. We apply this model to ensure that stripping voltammograms are based on desorption of all protamine molecules that are transferred across the interface during a preconcentration step. In comparison to adsorption, voltammetric extraction of protamine requires ∼0.2 V more negative potentials, where a potentiometric super-Nernstian response to protamine is also observed. This agreement confirms that the potentiometric protamine response is based on protamine extraction. The voltammetrically reversible protamine extraction results in an apparently irreversible potentiometric response to protamine because back-extraction of protamine from the membrane extremely slows down at the mixed potential based on cation-exchange extraction of protamine. Significantly, this study demonstrates the advantages of ion-transfer voltammetry over potentiometry to quantitatively and mechanistically assess protamine transfer at ionophore-based polymeric membranes as foundation for reversible, selective, and sensitive detection of protamine.

  16. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  17. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    Science.gov (United States)

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-08

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and

  18. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  19. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno

    2017-05-30

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic solvents. We report for the first time porous polymeric membranes manufactured from poly(oxindolebiphenylylene) (POXI), a polymer with thermal stability as high as 500 °C in oxidative conditions. The membranes were prepared by solution casting and phase inversion by immersion in water. The asymmetric porous morphology was characterized by scanning electronic microscopy. The pristine membranes are stable in alcohols, acetone, acetonitrile and hexane, as well as in aqueous solutions with pH between 0 and 14. The membrane stability was extended for application in other organic solvents by crosslinking, using various dibromides, and the efficiency of the different crosslinkers was evaluated by thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). POXI crosslinked membranes are stable up to 329 °C in oxidative conditions and showed organic solvent resistance in polar aprotic solvents with 99% rejection of Red Direct 80 in DMF at 70 °C. With this development, the application of polymeric membranes could be extended to high temperature and harsh environments, fields currently dominated by ceramic membranes.

  20. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  1. Functionalized nanoparticle interactions with polymeric membranes.

    Science.gov (United States)

    Ladner, D A; Steele, M; Weir, A; Hristovski, K; Westerhoff, P

    2012-04-15

    A series of experiments was performed to measure the retention of a class of functionalized nanoparticles (NPs) on porous (microfiltration and ultrafiltration) membranes. The findings impact engineered water and wastewater treatment using membrane technology, characterization and analytical schemes for NP detection, and the use of NPs in waste treatment scenarios. The NPs studied were composed of silver, titanium dioxide, and gold; had organic coatings to yield either positive or negative surface charge; and were between 2 and 10nm in diameter. NP solutions were applied to polymeric membranes composed of different materials and pore sizes (ranging from ≈ 2 nm [3 kDa molecular weight cutoff] to 0.2 μm). Greater than 99% rejection was observed of positively charged NPs by negatively charged membranes even though pore diameters were up to 20 times the NP diameter; thus, sorption caused rejection. Negatively charged NPs were less well rejected, but behavior was dependent not only on surface functionality but on NP core material (Ag, TiO(2), or Au). NP rejection depended more upon NP properties than membrane properties; all of the negatively charged polymeric membranes behaved similarly. The NP-membrane interaction behavior fell into four categories, which are defined and described here. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment

    KAUST Repository

    Cui, Yue

    2016-12-21

    The thin film composite (TFC) membrane synthesized via interfacial polymerization is the workhorse of the prevalent membrane technologies such as nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), and pressure retarded osmosis (PRO) membranes. The polyamide selective layer usually possesses a high selectivity and permeability, making it the heart of this membrane technology. To further improve and understand its formation, with entirely excluding the effect of substrate, an ultrathin membrane which consists of only the polyamide selective layer has been fabricated via free-standing interfacial polymerization between M-phenylenediamine (MPD) and trimesoyl chloride (TMC) in this study. The influences of monomer concentration on polyamide layer formation is first examined. Different from previous studies which indicated that the variation of MPD concentration might affect the polyamide layer formation even when in excess, the MPD concentration when in excess does not affect membrane properties significantly, while increasing the TMC concentration gradually densifies the polyamide layer and enhances its transport resistance. Adding lithium bromide (LiBr) and sodium dodecyl sulfate (SDS) in MPD solutions is found to facilitate the reaction between the two phases and result in a significant improvement in water permeability. However, a high amount of additives leads to an augmentation in transport resistance. The N,N-dimethylformamide (DMF) treatment on the polyamide membrane shows pronounced improvements on water flux under FO tests and water permeability under RO tests without compromising reverse salt flux and salt rejection because the dense polyamide core stays intact. This study may offer a different perspective on membrane formation and intrinsic properties of the polyamide selective layer and provide useful insights for the development of next-generation TFC membranes.

  3. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization.

    Science.gov (United States)

    Song, Cunfeng; Wang, Meijie; Liu, Xin; Wang, He; Chen, Xiaoling; Dai, Lizong

    2017-09-01

    Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization has been utilized to fabricate high-capacity strong anion-exchange (AEX) membrane for the separation of protein. By means of RAFT polymerization, quaternized poly(3-(methacrylamidomethyl)-pyridine) brushes formed 3-dimensional nanolayers on the surface of porous anodic aluminum oxide (AAO)-silica composite membrane. The surface properties of the membranes were analyzed by SEM, water contact angle, ATR-FTIR, XPS and TGA. To investigate the adsorption performance, the new AEX membranes were applied to recover a model protein, ovalbumin (OVA). High adsorption capacities of 95.8mg/g membranes (static) and 65.3mg/g membranes (dynamic) were obtained at ambient temperature. In the further studies, up to 90% of the adsorbed OVA was efficiently eluted by using phosphate buffer-1M NaCl as elution medium. The successful separation of OVA with high purity from a mixture protein solution was also achieved by using the AEX membranes. The present study demonstrated that under mild reaction condition, RAFT polymerization can be used to fabricate ion-exchange membrane which has many remarkable features, such as high capacity and selectivity, easy elution and so on. Copyright © 2017. Published by Elsevier B.V.

  4. Preparation of Zeolitic Imidazolate Framework-8 (ZIF-8) Membrane on Porous Polymeric Support via Contra-Diffusion Method

    KAUST Repository

    Tan, Xiaoyu

    2016-05-18

    In the last decade, many attempts were made to put metal organic frameworks (MOFs) in industrial applications, but most of these efforts weren’t successfully. As one of the few MOFs produced on industrial scale, ZIF-8 has interesting pore size, huge internal surface area and great thermal and chemical stability. Therefore, ZIF-8 might become the first MOF, which will be applied in industrial separation processes. In this thesis, a synthesis study is presented, which leads to a cheap and convenient way to
fabricate defect-free and thin ZIF-8 membranes on porous polymeric supports showing high selectivity and high gas permeance. The ZIF-8 layers were produced via a contra-diffusion method. Several polymeric membranes were employed as support in this study, such as PAN, PEI, PSU, PA and PTSC. We studied the influence of the polymeric support properties for the ZIF-8 membrane preparation and optimized the ZIF-8 preparation conditions. The ZIF-8 membranes were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). For gas permeation test, we chose a Wicke-Kallenbach apparatus to measure membrane’s gas permeance and selectivity. One of the best ZIF-8 membranes exhibited a hydrogen permeance of 3.45 × 10-8 mol m-2 s-1 Pa-1 and
an ideal selectivity of hydrogen over propane of about 500.

  5. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    Science.gov (United States)

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Reverse-osmosis membranes by plasma polymerization

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  7. Characteristics of polyimide-based composite membranes fabricated by low-temperature plasma polymerization

    International Nuclear Information System (INIS)

    Dung Thi Tran; Mori, Shinsuke; Suzuki, Masaaki

    2008-01-01

    Composite membranes were prepared by the deposition of plasma-polymerized allylamine films onto a porous polyimide substrate. The relationship between the plasma conditions and the membrane characteristics was described in terms of monomer flow rate, plasma discharge power, plasma polymerization time, and so on. Scanning electron microscope (SEM) images indicate that the thickness of the plasma polymer layer increased and the membrane skin pore size decreased gradually with the increasing of plasma polymerization time. Fourier transform infrared (FTIR) spectra demonstrate the appearance of amine groups in the plasma deposited polymer and the contact angle measurements indicate that the hydrophilicity of the membrane surfaces increased significantly after plasma polymerization. The composite membranes can reject salt from sodium chloride feed solution, and membrane separation performance depends strongly on the plasma conditions applied during the preparation of the plasma deposited polymer films

  8. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  9. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Gupta, V.K.; Singh, A.K.; Gupta, Barkha

    2007-01-01

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S 1 ) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S 2 ) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S 1 ) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10 -8 to 1.0 x 10 -1 M Cd 2+ with limit of detection 5.0 x 10 -8 M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants

  10. Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)]. E-mail: vinodfcy@iitr.ernet.in; Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India); Gupta, Barkha [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-02-05

    The construction and performance characteristics of polymeric membrane electrodes based on two neutral ionophores, N,N'-[bis(pyridin-2-yl)formylidene]butane-1,4-diamine (S{sub 1}) and N-(2-pyridinylmethylene)-1,2-benzenediamine (S{sub 2}) for quantification of cadmium ions, are described. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w) of (S{sub 1}) (2.15%):PVC (32.2%):o-NPOE (64.5%):KTpClPB (1.07%). The proposed electrode exhibits Nernstian response in the concentration range of 7.9 x 10{sup -8} to 1.0 x 10{sup -1} M Cd{sup 2+} with limit of detection 5.0 x 10{sup -8} M, performs satisfactorily over wide pH range (2.0-8.0) with a fast response time (10 s). The sensor has been found to work satisfactorily in partially non-aqueous media up to 30% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 2 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of cadmium in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.

  11. New membrane materials for potassium-selective ion-sensitive field-effect transistors

    NARCIS (Netherlands)

    van der Wal, P.D.; van der Wal, Peter D.; Skowronska-Ptasinska, Maria; van den Berg, Albert; Bergveld, Piet; Sudholter, Ernst; Sudholter, Ernst J.R.; Reinhoudt, David

    1990-01-01

    Several polymeric materials were studied as membrane materials for potassium-selective ion-sensitive field-effect transistors (ISFETs) to overcome the problems related with the use of conventional plasticized poly(vinyl chloride) membranes casted on ISFET gate surfaces. Several acrylate materials,

  12. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  13. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Fen Ran

    2016-01-01

    Full Text Available The sodium polyacrylate (PAANa contained polyethersulfone membrane that was fabricated by preparation of PES-NH2 via nonsolvent phase separation method, the introduction of bromine groups as active sites by grafting α-Bromoisobutyryl bromide, and surface-initiated electrochemically atom transfer radical polymerization (SI-eATRP of sodium acrylate (AANa on the surface of PES membrane. The polymerization could be controlled by reaction condition, such as monomer concentration, electric potential, polymerization time, and modifier concentration. The membrane surface was uniform when the monomer concentration was 0.9 mol/L, the electric potential was −0.12 V, the polymerization time was 8 h, and the modifier concentration was 2 wt.%. The membrane showed excellent hydrophilicity and blood compatibility. The water contact angle decreased from 84° to 68° and activated partial thromboplastin increased from 51 s to 84 s after modification of the membranes.

  15. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.......In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional...

  16. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    Science.gov (United States)

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  17. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats

    Science.gov (United States)

    Saleem, Mohammed; Morlot, Sandrine; Hohendahl, Annika; Manzi, John; Lenz, Martin; Roux, Aurélien

    2015-02-01

    In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.

  18. Development and characterization of polymeric membranes for water desalination

    International Nuclear Information System (INIS)

    Bresciani, Danusa; Guimaraes, Danilo H.; Santos, Diego K.M.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    This work reports a development of polymeric membranes for water desalination by reverse osmosis. The polyester was synthesized by the reaction between glycerol, and dicarboxylic acids, and was coded PAF. Cellulose acetate/PAF blends containing 10% and 30% of polyester PAF blends were prepared using compression molding. The materials were characterized by DRX, DSC, TGA and SEM techniques. The results blends showed good thermal resistance and thermal events due to the individual components of the blends. The membranes exhibited a good performance in comparison to the neat cellulose acetate membrane. The addition of PAF in the polyester composition of the polymeric blends caused a significant increase of the salt retention of the studied samples. (author)

  19. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    KAUST Repository

    Wang, Kaiyu

    2011-04-22

    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers for the in-situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab-made polyethersulfone (PES)/sulfonated polysulfone (SPSf)-alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure-retarded osmosis mode. The PES/SPSf thin-film-composite (TFC)-FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC-FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers (AIChE).

  20. Absence of first-order unbinding transitions of fluid and polymerized membranes

    Science.gov (United States)

    Grotehans, Stefan; Lipowsky, Reinhard

    1990-01-01

    Unbinding transitions of fluid and polymerized membranes are studied by renormalization-group (RG) methods. Two different RG schemes are used and found to give rather consistent results. The fixed-point structure of both RG's exhibits a complex behavior as a function of the decay exponent tau for the fluctuation-induced interaction of the membranes. For tau greater than tau(S2) interacting membranes can undergo first-order transitions even in the strong-fluctuation regime. These estimates for tau(S2) imply, however, that both fluid and polymerized membranes unbind in a continuous way in the absence of lateral tension.

  1. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes

    International Nuclear Information System (INIS)

    Zhu Liping; Zhu Baoku; Xu Li; Feng Yongxiang; Liu Fu; Xu Youyi

    2007-01-01

    Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm 2 . In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes

  2. Biofouling of reverse osmosis membranes: effects of cleaning on biofilm microbial communities, membrane performance, and adherence of extracellular polymeric substances.

    Science.gov (United States)

    Al Ashhab, Ashraf; Sweity, Amer; Bayramoglu, Bihter; Herzberg, Moshe; Gillor, Osnat

    2017-05-01

    Laboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria. However, within the phylum Proteobacteria, γ-Proteobacteria dominated the cleaned membrane biofilm, while β-Proteobacteria dominated the control biofilm. The composition of the fungal phyla was also altered by cleaning, with enhancement of Ascomycota and suppression of Basidiomycota. The results suggest that repeated cleaning cycles select for microbial groups that strongly attach to the RO membrane surface by producing rigid and adhesive EPS that hampers membrane performance.

  3. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    International Nuclear Information System (INIS)

    Khamjumphol, Utisawadee; Watchasit, Sarayut; Suksai, Chomchai; Janrungroatsakul, Wanwisa; Boonchiangma, Suthasinee; Tuntulani, Thawatchai; Ngeontae, Wittaya

    2011-01-01

    Highlights: → New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. → Synthesis and characterization data were reported. → Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. → Two TPA units on calixarene showed the best selectivity toward Cd 2+ . → Applied for sensing Cd 2+ from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd 2+ was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd 2+ . The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg -1 ) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 ± 0.6 mV decade -1 of activity for Cd 2+ ions and a working concentration range of 1.6 x 10 -6 -1.0 x 10 -2 M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed as a probe for determining Cd 2+ from the oxidation of CdS QDs

  4. New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Khamjumphol, Utisawadee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Watchasit, Sarayut [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Suksai, Chomchai [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand); Janrungroatsakul, Wanwisa [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Boonchiangma, Suthasinee [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2011-10-17

    Highlights: {yields} New four ionophores having tripodal amine (TPA) unit on anthracene and calixarene. {yields} Synthesis and characterization data were reported. {yields} Incorporated to the plasticized PVC membranes to prepare Cd-ISEs. {yields} Two TPA units on calixarene showed the best selectivity toward Cd{sup 2+}. {yields} Applied for sensing Cd{sup 2+} from the oxidation of CdS QDs solution. - Abstract: Fabrication of PVC membrane electrodes incorporating selective neutral carriers for Cd{sup 2+} was reported. The ionophores were designed to have different topologies, donor atoms and lipophilicity by attaching tripodal amine (TPA) units to the lipophilic anthracene (ionophore I) and p-tert-butylcalix[4]arene (ionophores II, III and IV). The synthesized ionophores were incorporated to the plasticized PVC membranes to prepare Cd(II) ion selective electrodes (ISEs). The membrane electrodes were optimized by changing types and amounts of ionic sites and plasticizers. The selectivity of the membranes fabricated from the synthesized ionophores was evaluated, the relationship between structures of ionophores and membrane characteristics were explored. The ionophore IV which composed of two opposites TPA units on the calix[4]arene compartment showed the best selectivity toward Cd{sup 2+}. The best membrane electrode was fabricated from ionophore IV (10.2 mmol kg{sup -1}) with KTpClPB (50.1 mol% related to the ionophore) as an ion exchanger incorporated in the DOS plasticized PVC membrane (1:2; PVC:DOS). The Cd-ISE fabricated from ionophore IV exhibited good properties with a Nernstian response of 29.4 {+-} 0.6 mV decade{sup -1} of activity for Cd{sup 2+} ions and a working concentration range of 1.6 x 10{sup -6}-1.0 x 10{sup -2} M. The sensor has a fast response time of 10 s and can be used for at least 1 week without any divergence in potential. The electrode can be used in the pH range of 6.0-9.0. The proposed electrodes using ionophores III and IV were employed

  5. Preparation of immobilized enzyme membrane by radiation-cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1989-01-01

    The preparation of immobilized enzyme membranes was studied by radiation cast-polymerization at low temperatures using cellulase enzyme, hydrophilic and hydrophobic monomers. The enzyme activity of the membranes was affected by monomer concentration, membrane thickness, and hydrophilicity of monomer, in which the membranes with 100 μm thickness from high monomer concentration (80%) had high enzyme activity, which was similar to that of the membranes with 1.0 mm thickness from low monomer concentration (20%). (author)

  6. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  7. Solvent sorption measurements in polymeric membranes with ATR-IR spectroscopy

    NARCIS (Netherlands)

    Manito Pereira, A.M.; Lopes, M.C.; Timmer, J.M.K.; Keurentjes, J.T.F.

    2005-01-01

    Long-term stability and performance of polymeric membranes in solvent and mixed solvent media can be reduced due to sorption and swelling of the membrane matrix. For this reason quantification of sorption and swelling is of major importance for the development of future applications of membrane

  8. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  9. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  10. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Science.gov (United States)

    Habel, Joachim; Hansen, Michael; Kynde, Søren; Larsen, Nanna; Midtgaard, Søren Roi; Jensen, Grethe Vestergaard; Bomholt, Julie; Ogbonna, Anayo; Almdal, Kristoffer; Schulz, Alexander; Hélix-Nielsen, Claus

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes. PMID:26264033

  11. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  12. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  13. Permeation of supercritical carbon dioxide through polymeric hollow fiber membranes

    NARCIS (Netherlands)

    Patil, V.E.; Broeke, van den L.J.P.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Permeation of carbon dioxide was measured for two types of composite polymeric hollow fiber membranes for feed pressures up to 18 MPa at a temp. of 313 K. support membrane. The membranes consist of a polyamide copolymer (IPC) layer or a poly(vinyl alc.) (PVA) layer on top of a polyethersulfone

  14. Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization

    Science.gov (United States)

    O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA

    2010-07-13

    A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.

  15. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  16. Porous polymeric membranes with thermal and solvent resistance

    KAUST Repository

    Pulido, Bruno; Waldron, Christopher; Zolotukhin, M.G.; Nunes, Suzana Pereira

    2017-01-01

    Polymeric membranes are highly advantageous over their ceramic counterparts in terms of the simplicity of the manufacturing process, cost and scalability. Their main disadvantages are low stability at temperatures above 200 °C, and in organic

  17. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  18. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  19. DEVELOPMENT OF A UREA BIOSENSOR BASED ON A POLYMERIC MEMBRANE INCLUDING ZEOLITE

    Directory of Open Access Journals (Sweden)

    M. L HAMLAOUI

    2008-06-01

    + -sensitive membrane is based on a zeolite-incorporated polymeric membrane biosensor (clinoptilolite. The sensitivity of ammonium  detection is sub-nernstian (32mV/pNH4 + but the ISFET presents a high selectivity, which is interesting for measurements in biological media. The grafting of urease to the NH4 +-sensitive membrane was permorfed by cross-linking with glutaraldehyde .The sensitivity of the urea ENFET is 15V/purea and this remains stable over 15 days with a detection limit of 3x10-5 M. Finally, in order to test feasibility of the urea biosensor for environmental applications, the remaining activity of the urease was determined after exposure to enzyme inhibiting heavy metals ions such as Hg(II.Using these urea biosensors, a detection limit of less than 5 x 10-8 M was obtained for Hg(II.

  20. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  1. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  2. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  3. Field testing of polymeric mesh and ash-based ceramic membranes ...

    African Journals Online (AJOL)

    This paper presents the initial findings of field testing of 2 low-cost membrane filters, viz. 30 ìm polymeric mesh and 2–6 ìm macroporous waste-ash based ceramic filter, in a submerged membrane bioreactor (MBR) employing batch anoxic and aerobic conditions. The influent was raw wastewater from a residential complex ...

  4. Development of polymeric palladium-nanoparticle membrane-installed microflow devices and their application in hydrodehalogenation.

    Science.gov (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Ohno, Aya; Uozumi, Yasuhiro

    2012-02-13

    We have developed a variety of polymeric palladium-nanoparticle membrane-installed microflow devices. Three types of polymers were convoluted with palladium salts under laminar flow conditions in a microflow reactor to form polymeric palladium membranes at the laminar flow interface. These membranes were reduced with aqueous sodium formate or heat to create microflow devices that contain polymeric palladium-nanoparticle membranes. These microflow devices achieved instantaneous hydrodehalogenation of aryl chlorides, bromides, iodides, and triflates by 10-1000 ppm within a residence time of 2-8 s at 50-90 °C by using safe, nonexplosive, aqueous sodium formate to quantitatively afford the corresponding hydrodehalogenated products. Polychlorinated biphenyl (10-1000 ppm) and polybrominated biphenyl (1000 ppm) were completely decomposed under similar conditions, yielding biphenyl as a fungicidal compound. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y C; Chen Hongmin; Awad, Somia; Zhang Sui; Chen Hangzheng; Lau, Cher Hon; Wang Huan; Li Fuyun; Chung, Tai-Shung; Lee, L James; Huang, James

    2011-01-01

    Positron annihilation spectroscopy coupled with a newly built slow positron beam at National University of Singapore has been used to study the free volume, pore, and depth profile (0 - 10 μm) in cellulose acetate polymeric membrane at the bottom and top sides of membranes for ionic separation in water purification applications. The S and R parameters from Doppler broadening energy of annihilation radiation representing free volumes (0.1-1 nm size) and pores (>1 nm-μm) as a function of depth have been analyzed into multilayers, i.e. skin dense, transition, and porous layers, respectively. The top side of membrane has large free volumes and pores and the bottom side has a skin dense layer, which plays a key role in membrane performance. Positron annihilation lifetime results provide additional information about free-volume size and distribution at the atomic and molecular scale in polymeric membrane systems. Doppler broadening energy and lifetime spectroscopies coupled with a variable mono-energy slow positron beam are sensitive and novel techniques for characterization of polymeric membrane in separation applications.

  6. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    Science.gov (United States)

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  7. A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid

    International Nuclear Information System (INIS)

    Chen Changbao; Chen Yanjun; Zhou Jie; Wu Chunhui

    2006-01-01

    9-Vinyladenine was synthesized as a novel functional monomer for molecular imprinting techniques and its structure was established with elemental analysis and 1 H NMR spectroscopy. The binding mechanism between this functional monomer 9-vinyladenine and the plant hormone 1 H-indole-3-acetic acid in acetonitrile was studied with UV-vis spectrophotometry. Based on this study, using 1 H-indole-3-acetic acid as a template molecule, a specific 9-vinyladenine-based molecularly imprinted polymeric membrane was prepared. Then, the resultant polymeric membrane morphologies were visualized with scanning electron microscopy, and the membrane permselectivity for 1 H-indole-3-acetic acid, 1 H-indole-3-butyric acid and kinetin was tested with separate experiments and competitive diffusion experiments. These results showed that the imprinted polymeric membrane prepared with 9-vinyladenine exhibited higher transport selectivity for the template molecule 1 H-indole-3-acetic acid than 1 H-indole-3-butyric acid or kinetin. The membrane prepared with 9-vinyladenine also took on higher permselectivity for 1 H-indole-3-acetic acid in comparison with the imprinted membrane made with methacrylic acid. It is predicted that the 9-vinyladenine-based molecularly imprinted membrane may be applicable to the assay of 1 H-indole-3-acetic acid or for the preparation of a molecularly imprinted polymer sensor for the analysis of 1 H-indole-3-acetic acid in plant samples

  8. Erythrocyte membrane modified janus polymeric motors for thrombus therapy

    NARCIS (Netherlands)

    Shao, Jingxin; Abdelghani, Mona; Shen, Guizhi; Cao, Shoupeng; Williams, David S.; van Hest, Jan C.M.

    2018-01-01

    We report the construction of erythrocyte membrane-cloaked Janus polymeric motors (EM-JPMs) which are propelled by near-infrared (NIR) laser irradiation and are successfully applied in thrombus ablation. Chitosan (a natural polysaccharide with positive charge, CHI) and heparin (glycosaminoglycan

  9. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    Science.gov (United States)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  10. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  11. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    Science.gov (United States)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  12. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  13. Analysis of ultrasonic techniques for the characterization of microfiltration polymeric membranes

    International Nuclear Information System (INIS)

    Lucas, Carla S.; Baroni, Douglas B.; Costa, Antonio M.L.M.; Bittencourt, Marcelo S.Q.

    2009-01-01

    The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain. (author)

  14. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  15. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  16. Solvent and Thermally Resistant Polymeric Membranes for Different Applications

    KAUST Repository

    Taghreeed, Jalal

    2016-11-01

    In this work polymeric materials were developed to be used as a solvent and heat resistance membrane for different applications. In ultrafiltration, poly (ether imide sulfone) membranes were manufactured by combining phase inversion and functionalization reaction between epoxy groups and amine modified polyether oligomers (Jeffamine®). Polysilsesquioxanes or oligo silsesquioxanes containing epoxy functionalities were in-situ grown in the casting solution and made available for further reaction with amines in the coagulation/annealing baths. Water permeances up to 1500 l m-2 h-1 bar-1 were obtained with sharp pore size distribution and a pore diameter peak at 66 nm, confirmed by porosimetry, allowing 99.2 % rejection of γ-globulin. The membranes were stable in 50:50 dimethylformamide/water, 50:50 N-methyl pyrrolidone/water and 100 % tetrahydrofuran. In pervaporation, Novel hydrophobic Hyflon®/Extem® and Hyflon®/PVDF were developed and investigated for ethylene glycol dehydration and n-butanol dehydration respectively. For ethylene glycol different Extem® concentrations were evaluated with regard to both flux and amount of water in the permeate side. Eighteen (18) wt% gave more than 90 wt% water in the permeate. Increasing feed temperature from 25 to 85°C increased the water flux from 31 to 91 g m-2 h-1 when using 5 wt% water in ethylene glycol as feed. The water flux of 40 wt% water:ethylene glycol at 45°C was found to be 350 g m-2 h-1. And for n-butanol dehydration the coating protocols for thin defect-free Hyflon® selective layer on the PVDF support was optimized. Water and n-butanol transport was measured, analyzing the effect of operating conditions. The water flux through the newly developed membranes was higher than 150 g m-2 h-1 with selectivity for water higher than 99 wt%. The membrane application can be extended to other solvents, supporting an effective and simple method for dehydration with hydrophobic membranes. In membrane distillation, PVDF

  17. Novel Tertiary Amino Containing Blinding Composite Membranes via Raft Polymerization and Their Preliminary CO2 Permeation Performance.

    Science.gov (United States)

    Zhu, Lifang; Zhou, Mali; Yang, Shanshan; Shen, Jiangnan

    2015-04-23

    Facile synthesis of poly (N,N-dimethylaminoethyl methacrylate) (PDMAEMA) star polymers on the basis of the prepolymer chains, PDMAEMA as the macro chain transfer agent and divinyl benzene (DVB) as the cross-linking reagent by reversible addition-fragmentation chain transfer (RAFT) polymerization was described. The RAFT polymerizations of DMAEMA at 70 °C using four RAFT agents with different R and Z group were investigated. The RAFT agents used in these polymerizations were dibenzyl trithiocarbonate (DBTTC), s-1-dodecyl-s'-(α,α'-dimethyl-α-acetic acid) trithiocarbonate (MTTCD), s,s'-bis (2-hydroxyethyl-2'-dimethylacrylate) trithiocarbonate (BDATC) and s-(2-cyanoprop-2-yl)-s-dodecyltrithiocarbonate (CPTCD). The results indicated that the structure of the end-group of RAFT agents had significant effects on the ability to control polymerization. Compared with the above-mentioned RAFT agents, CPTCD provides better control over the molecular weight and molecular weight distribution. The polydispersity index (PDI) was determined to be within the scope of 1.26 to 1.36. The yields, molecular weight, and distribution of the star polymers can be tuned by changing the molar ratio of DVB/PDMAEMA-CPTCD. The chemical composition and structure of the linear and star polymers were characterized by GPC, FTIR, 1H NMR, XRD analysis. For the pure Chitosan membrane, a great improvement was observed for both CO₂ permeation rate and ideal selectivity of the blending composite membrane upon increasing the content of SPDMAEMA-8. At a feed gas pressure of 37.5 cmHg and 30 °C, the blinding composite membrane (Cs: SPDMAEMA-8 = 4:4) has a CO₂ permeation rate of 8.54 × 10⁻⁴ cm³ (STP) cm⁻²∙s⁻¹∙cm∙Hg⁻¹ and a N₂ permeation rate of 6.76 × 10⁻⁵ cm³ (STP) cm⁻²∙s⁻¹∙cm∙Hg⁻¹, and an ideal CO₂/N₂ selectivity of 35.2.

  18. Efficiency of Polymeric Membrane Graphene Oxide-TiO2 for Removal of Azo Dye

    Directory of Open Access Journals (Sweden)

    Elahe Dadvar

    2017-01-01

    Full Text Available Achieving the desired standard of drinking water quality has been one of the concerns across water treatment plants in the developing countries. Processes such as grid chamber, coagulation, sedimentation, clarification, filtration, and disinfection are typically used in water purification plants. Among these methods, unit filtration which employs polymers is one of the new technologies. There have been many studies about the use of semiconductive TiO2 with graphene oxide (GO on the base of different polymeric membranes for the removal of azo dyes, especially methylene blue (MB. Polymeric GO-TiO2 membranes have high photocatalytic, antifouling property and permeate the flux removal of organic pollutants. The aim of this study was to investigate the characteristics of different polymeric membranes such as anionic perfluorinated polymer (Nafion, cellulose acetate, polycarbonate (PC, polysulfone fluoride (PSF, and polyvinylidene fluoride (PVDF. The result of this study showed that the GO-TiO2 membrane can be used in the field of water treatment and will be used for the removal of polycyclic aromatic hydrocarbons (PAHs from wastewater.

  19. Influence of Solutocapillary Convection on Macrovoid Defect Formation in Polymeric Membranes

    Science.gov (United States)

    Greenberg, Alan R.; Krantz, William B.; Todd, Paul

    2003-01-01

    The focus of this research project involved the dry-cast process for polymeric membrane formation, whereby evaporation of solvent from an initially homogeneous polymer/solvent/ nonsolvent solution results in phase separation and the formation of polymer-rich and polymer-lean phases. Under certain conditions the polymer-lean phase gives rise to very large and usually undesirable, tear-drop-shaped pores (size approx. 10 - 50 microns) termed macrovoids (MVs). Although in many cases the presence of MV pores has deleterious effects on membrane performance, there are a number of innovative applications where the presence of such pores is highly desirable. Although researchers have proposed a variety of mechanisms for MV formation over the past three decades, two main hypotheses are currently favored: one asserts that MV growth can be attributed solely to diffusion (the diffusive growth hypothesis), whereas the other states that solutocapillary convection (the SC hypothesis) at the MV interface contributes to growth. The overall goal of this research was to obtain a more comprehensive understanding of the fundamental mechanism of MV growth. This research incorporates a coupled modeling and experimental approach to test a solutocapillary convection hypothesis for the growth of macrovoid pores in polymeric membranes. Specifically, we utilized a modification of the first principles model developed by two of the PIs (ARG and WBK) for dry-cast CA membranes. For the experimental component, two separate and mutually complementary approaches were used to study MV growth. In the first, membranes cast in a zero-g environment aboard the NASA KC-135 aircraft were compared with those cast on the ground to assess the effect of the buoyancy force on membrane morphology and MV size and shape. In the second approach, videomicroscopy flow visualization (VMFV) was utilized to observe MV formation and growth in real time and to assess the effect of surface tension on the MV growth dynamics

  20. Ultra-selective defect-free interfacially polymerized molecular sieve thin-film composite membranes for H2 purification

    KAUST Repository

    Ali, Zain; Pacheco Oreamuno, Federico; Litwiller, Eric; Wang, Yingge; Han, Yu; Pinnau, Ingo

    2017-01-01

    method for reverse osmosis membranes. Defect-free thin-film composite membranes were formed demonstrating unprecedented mixed-gas H2/CO2 selectivity of ≈ 50 at 140 °C with H2 permeance of 350 GPU, surpassing the permeance/selectivity upper bound of all

  1. Mixed-Matrix Membranes containing an Azine-Linked Covalent Organic Framework: Influence of the polymeric matrix on Post-Combustion CO 2 -capture

    KAUST Repository

    Shan, Meixia

    2017-12-07

    The use of an azine-linked covalent organic framework (ACOF-1) as filler in mixed-matrix membranes (MMMs) has been studied for the separation of CO2 from N2. To better understand the mechanisms that govern separation in complex composites, MMMs were prepared with different loadings of ACOF-1 and three different polymers as continuous phase: low flux-mid selectivity Matrimid®, mid flux-high selectivity Polyactive™ and high flux-low selectivity 6FDA:DAM. The homogeneous distribution of ACOF-1 together with the good adhesion between the ACOF-1 particles and the polymer matrices were confirmed by scanning electron microscopy. In mixed-gas CO2/N2 separation a clear influence of the polymer used was observed on the performance of the composite membranes. While for Matrimid® and 6FDA:DAM an overall enhancement of the polymer\\'s separation properties could be achieved, in case of Polyactive™ penetration of the more flexible polymer into the COF porosity resulted in a decreased membrane permeability. The best improvement was obtained for Matrimid®-based MMMs, for which a selectivity increase from 29 to 35, together with an enhancement in permeability from 9.5 to 17.7 Barrer for 16wt% COF loading, was observed. Our results demonstrate that the combination of the filler-polymeric matrix pair chosen is crucial. For a given filler the polymer performance improvement strongly depends on the polymeric matrix selected, where a good match between the discontinuous and continuous phase, both in the terms of compatibility and gas separation properties, is necessary to optimize membrane performance.

  2. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  3. Ultrapermeable, reverse-selective nanocomposite membranes.

    Science.gov (United States)

    Merkel, T C; Freeman, B D; Spontak, R J; He, Z; Pinnau, I; Meakin, P; Hill, A J

    2002-04-19

    Polymer nanocomposites continue to receive tremendous attention for application in areas such as microelectronics, organic batteries, optics, and catalysis. We have discovered that physical dispersion of nonporous, nanoscale, fumed silica particles in glassy amorphous poly(4-methyl-2-pentyne) simultaneously and surprisingly enhances both membrane permeability and selectivity for large organic molecules over small permanent gases. These highly unusual property enhancements, in contrast to results obtained in conventional filled polymer systems, reflect fumed silica-induced disruption of polymer chain packing and an accompanying subtle increase in the size of free volume elements through which molecular transport occurs, as discerned by positron annihilation lifetime spectroscopy. Such nanoscale hybridization represents an innovative means to tune the separation properties of glassy polymeric media through systematic manipulation of molecular packing.

  4. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  5. Surface modification of nanoporous alumina membranes by plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J [Ian Wark Research Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095 (Australia)], E-mail: dusan.losic@unisa.edu.au

    2008-06-18

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  6. Surface modification of nanoporous alumina membranes by plasma polymerization

    International Nuclear Information System (INIS)

    Losic, Dusan; Cole, Martin A; Dollmann, Bjoern; Vasilev, Krasimir; Griesser, Hans J

    2008-01-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes

  7. Self-assembly of tissue spheroids on polymeric membranes.

    Science.gov (United States)

    Messina, Antonietta; Morelli, Sabrina; Forgacs, Gabor; Barbieri, Giuseppe; Drioli, Enrico; De Bartolo, Loredana

    2017-07-01

    In this study, multicellular tissue spheroids were fabricated on polymeric membranes in order to accelerate the fusion process and tissue formation. To this purpose, tissue spheroids composed of three different cell types, myoblasts, fibroblasts and neural cells, were formed and cultured on agarose and membranes of polycaprolactone (PCL) and chitosan (CHT). Membranes prepared by a phase-inversion technique display different physicochemical, mechanical and transport properties, which can affect the fusion process. The membranes accelerated the fusion process of a pair of spheroids with respect to the inert substrate. In this process, a critical role is played by the membrane properties, especially by their mechanical characteristics and oxygen and carbon dioxide mass transfer. The rate of fusion was quantified and found to be similar for fibroblast, myoblast and neural tissue spheroids on membranes, which completed the fusion within 3 days. These spheroids underwent faster fusion and maturation on PCL membrane than on agarose, the rate of fusion being proportional to the value of oxygen and carbon dioxide permeances and elastic characteristics. Consequently, tissue spheroids on the membranes expressed high biological activity in terms of oxygen uptake, making them more suitable as building blocks in the fabrication of tissues and organs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  9. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    International Nuclear Information System (INIS)

    Ramanathan, Madhumati; Wang Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2010-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 μM DFP.

  10. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Madhumati [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States); Wang Lin [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Wild, James R. [Biochemistry and Biophysics Department, Texas A and M University Texas AgriLife Research Program, College Station, TX 77843-2128 (United States); Meyeroff, Mark E. [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Simonian, Aleksandr L., E-mail: simonal@auburn.edu [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States)

    2010-05-14

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 {mu}M DFP.

  11. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    Science.gov (United States)

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  12. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes.

    Science.gov (United States)

    Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V

    2015-12-30

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.

  13. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    KAUST Repository

    Wang, Kaiyu; Chung, Tai Shung Neal; Amy, Gary L.

    2011-01-01

    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers

  14. Nanoporous polymeric nanofibers based on selectively etched PS-b-PDMS block copolymers.

    Science.gov (United States)

    Demirel, Gokcen B; Buyukserin, Fatih; Morris, Michael A; Demirel, Gokhan

    2012-01-01

    One-dimensional nanoporous polymeric nanofibers have been fabricated within an anodic aluminum oxide (AAO) membrane by a facile approach based on selective etching of poly(dimethylsiloxane) (PDMS) domains in polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymers that had been formed within the AAO template. It was observed that prior to etching, the well-ordered PS-b-PDMS nanofibers are solid and do not have any porosity. The postetched PS nanofibers, on the other hand, had a highly porous structure having about 20-50 nm pore size. The nanoporous polymeric fibers were also employed as a drug carrier for the native, continuous, and pulsatile drug release using Rhodamine B (RB) as a model drug. These studies showed that enhanced drug release and tunable drug dosage can be achieved by using ultrasound irradiation. © 2011 American Chemical Society

  15. Modification of the poly(ethylene) terephthalate track membrane structure and surface in the plasma of non-polymerized gases

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    An investigation of the properties of poly(ethylene) terephthalate track membranes (PETTMs) treated with a plasma RF-discharge in non-polymerized gases has been performed. The influence of the plasma treatment conditions on the basic properties of the membranes has been studied. It was arranged that the effect of non-polymerized gases plasma on the PETTMs results to etching a membrane's surface layer. The membranes' pore size and the form in this case change. It is shown that it is possible to change the structure of track membranes directly by gas discharge etching

  16. Mechanism of molecular transport in novel reverse-selective nanocomposite membranes

    International Nuclear Information System (INIS)

    Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; Meakin, P.; Hill, A.J.; Monash University, VIC

    2002-01-01

    Full text: Polymer nanocomposites continue to receive tremendous attention as organic-inorganic hybrid materials exhibiting a wide range of interesting, as well as technologically relevant, properties. This work reports a novel use of polymer nanocomposites as reverse-selective membranes. We have found that physical dispersion of nonporous fumed silica [FS] into glassy poly(4-methyl-2-pentyne) [PMP] simultaneously enhances membrane permeability (by as much as 240%) and selectivity for large organic molecules over small permanent gases. This surprising observation, in stark contrast to conventional filled polymer systems, reflects silica-induced disruption of local polymer chain packing and, as discerned by positron annihilation lifetime spectroscopy [PALS], a resulting subtle increase in the size of free volume elements through which molecular transport occurs. Such nanoscale hybridization represents an innovative means of tuning the transport properties of glassy polymeric media through control of molecular ordering

  17. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography.

    Science.gov (United States)

    Wang, Qiqin; Peng, Kun; Chen, Weijia; Cao, Zhen; Zhu, Peijie; Zhao, Yumei; Wang, Yuqiang; Zhou, Haibo; Jiang, Zhengjin

    2017-01-06

    This study described a simple synthetic methodology for preparing biomembrane mimicking monolithic column. The suggested approach not only simplifies the preparation procedure but also improves the stability of double chain phosphatidylcholine (PC) functionalized monolithic column. The physicochemical properties of the optimized monolithic column were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and nano-LC. Satisfactory column permeability, efficiency, stability and reproducibility were obtained on this double chain PC functionalized monolithic column. It is worth noting that the resulting polymeric monolith exhibits great potential as a useful alternative of commercial immobilized artificial membrane (IAM) columns for in vitro predication of drug-membrane interactions. Furthermore, the comparative study of both double chain and single chain PC functionalized monoliths indicates that the presence or absence of glycerol backbone and the number of acyl chains are not decisive for the predictive ability of IAM monoliths on drug-membrane interactions. This novel PC functionalized monolithic column also exhibited good selectivity for a protein mixture and a set of pharmaceutical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Potentiometric polymeric membrane electrodes for mercury detection using calixarene ionophores.

    Science.gov (United States)

    Tyagi, Sonika; Agarwal, Himanshu; Ikram, Saiqa

    2010-01-01

    It is here established that potentiometric polymeric membrane electrodes based on electrically neutral ionophores are a useful analytical tool for the detection of heavy metal ions from environmental and industrial waste water. PVC based membrane containing p-tert-butyl-calix[4]arenethioether derivative as active material along with sodiumtetraphenylborate (NaTPB) as solvent mediator and dibutylphthalate as a plasticizer in the ratio 45:9:460:310 (w/w%) (I:NaTPB:DBP:PVC) exhibits good properties with a Nernstian response of 29.50+/-1.0 mV per decade of activity and a working concentration range of 7.2 x 10(-8)-1.0 x 10(-1) M. The electrode gave more stable potential readings when used around pH 2.5-6.8 and exhibits fast response time of 14 s. The sensors were found to work satisfactorily in partially non-aqueous media up to 40% (v/v) content of acetone, methanol or ethanol and could be used over a period of 7-9 months. Excellent selectivity for Hg(2+) ions is indicated by match potential method and fixed interference method. The sensors could be used successfully in the estimation of mercury in different sample.

  19. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene comb and poly(amidoamine

    Directory of Open Access Journals (Sweden)

    Taniguchi Ikuo

    2017-11-01

    Full Text Available Due to CO2-philic nature of polyoxyethylene (POE, a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS support by a spray-coating manner, the resulting thin film composite (TFC membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine (PAMAM was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  20. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)

    Science.gov (United States)

    Taniguchi, Ikuo; Wada, Norihisa; Kinugasa, Kae; Higa, Mitsuru

    2017-11-01

    Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  1. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2016-10-01

    Full Text Available A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF membrane and compare with a commercially available polymeric membrane (polyimide through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP/m2 h bar and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure. The highest performance recorded through experiments (CHF and PORCHF was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV was calculated for base case and optimal pressure (50 bar for CHF and PORCHF. The results indicated that recycle ratio (recycle/feed ranged from 0.2 to 10, specific energy from 0.15 to 0.8 (kW/Nm3feed and specific membrane area from 45 to 4700 (m2/Nm3feed. The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for

  2. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications

    NARCIS (Netherlands)

    Diban-Ibrahim Gomez, Nazely; Stamatialis, Dimitrios

    2014-01-01

    Polymeric hollow fiber (HF) membranes are commercially available, i.e. microfiltration and ultrafiltration cartridges or reverse osmosis and gas separation modules, to be applied for separation purposes in industry, for instance to recover valuable raw materials or products, or for the treatment of

  3. Carbon Dioxide Separation Using Thermally Optimized Membranes

    Science.gov (United States)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  4. Crown bridged thiacalix[4]arenes as cesium-selective ionophores in solvent polymeric membrane electrodes

    International Nuclear Information System (INIS)

    Bereczki, Robert; Csokai, Viktor; Gruen, Alajos; Bitter, Istvan; Toth, Klara

    2006-01-01

    Novel 1,3-alternate thiacalix[4]mono- and biscrown-6 ethers were studied as ionophores in poly(vinyl chloride) membrane electrodes. Their selectivity behavior was characterized with respect to large number of cations, including potential interferents in environmental samples, and the membrane composition was optimized for cesium ion response. Among the ionophores, 1,3-alternate thiacalix[4]mono(crown-6) ether showed, especially high selectivity for cesium over other alkali-metal ions. Transition and heavy metal ions did not interfere seriously with the electrode response, which indicates that the bridging sulfur atoms do not take part in the ion recognition process. The potentiometric cesium responses of all electrodes involved in this study were found close to Nernstian and the detection limits were lower than 10 -7 M. The Cs + /Na + selectivity of the different ionophore-based sensors and the solvent extraction ability of the ligands were interpreted based on the respective constants of complex formation

  5. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    Science.gov (United States)

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  6. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.

    Science.gov (United States)

    Mollahosseini, Arash; Rahimpour, Ahmad

    2013-01-01

    A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.

  7. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Alsu A. Akhmetshina

    2015-12-01

    Full Text Available Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide ([emim][Tf2N] immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S.

  8. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    Science.gov (United States)

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  9. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion.

    Science.gov (United States)

    Bandi, Koteswara Rao; Singh, Ashok K; Upadhyay, Anjali

    2014-03-01

    Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion. Copyright © 2013. Published by Elsevier B.V.

  10. High-Performance Thin-Film-Nanocomposite Cation Exchange Membranes Containing Hydrophobic Zeolitic Imidazolate Framework for Monovalent Selectivity

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-05-01

    Full Text Available Zeolitic imidazolate framework-8 (ZIF-8 offers good hydrothermal, chemical, and thermal stabilities, and is therefore of interest in membrane synthesis. In this work, an interfacial polymerization (IP method was applied by anchoring ZIF-8 to the skin layer of thin-film nanocomposite (TFN membranes in order to obtain monovalent selectivity in electrodialysis. Organic trimesoyl chloride (TMC, 0.1 wt % solutions and aqueous m-phenyl diamine (MPD, 2% w/v solutions were used during the interfacial polymerization process. A range of polyamine (PA/ZIF-8 based membranes was fabricated by varying the concentration of ZIF-8 in the organic solution. The properties of the primary and modified membrane were characterized by scanning electron microscope (SEM, energy dispersive X-ray analysis (EDAX, atomic force microscopy (AFM, water uptake, ion exchange capacity, and contact angle measurements. No significant changes of the surface structure of the PA/ZIF-8 based membranes were observed. Nevertheless, the presence of ZIF-8 under the PA layer plays a key role in the separation process. For single salt solutions that were applied in electrodialysis (ED, faster transport of Na+ and Mg2+ was obtained after introducing the ZIF-8 nanoparticles, however, the desalination efficiency remained constant. When the hybrid membranes were applied to electrodialysis for binary mixtures containing Na+ as well as Mg2+, it was demonstrated that the monovalent selectivity and Na+ flux were enhanced by a higher ZIF-8 loading.

  11. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Beckman, S L; Zulewska, J; Newbold, M; Barbano, D M

    2010-10-01

    Most current research has focused on using ceramic microfiltration (MF) membranes for micellar casein concentrate production, but little research has focused on the use of polymeric spiral-wound (SW) MF membranes. A method for the production of a serum protein (SP)-reduced micellar casein concentrate using SW MF was compared with a ceramic MF membrane. Pasteurized (79°C, 18s) skim milk (1,100 kg) was microfiltered at 50°C [about 3 × concentration] using a 0.3-μm polyvinylidene fluoride spiral-wound membrane, bleed-and-feed, 3-stage process, using 2 diafiltration stages, where the retentate was diluted 1:2 with reverse osmosis water. Skim milk, permeate, and retentate were analyzed for SP content, and the reduction of SP from skim milk was determined. Theoretically, 68% of the SP content of skim milk can be removed using a single-stage 3× MF. If 2 subsequent water diafiltration stages are used, an additional 22% and 7% of the SP can be removed, respectively, giving a total SP removal of 97%. Removal of SP greater than 95% has been achieved using a 0.1-μm pore size ceramic uniform transmembrane pressure (UTP) MF membrane after a 3-stage MF with diafiltration process. One stage of MF plus 2 stages of diafiltration of 50°C skim milk using a polyvinylidene fluoride polymeric SW 0.3-μm membrane yielded a total SP reduction of only 70.3% (stages 1, 2, and 3: 38.6, 20.8, and 10.9%, respectively). The SP removal rate for the polymeric SW MF membrane was lower in all 3 stages of processing (stages 1, 2, and 3: 0.05, 0.04, and 0.03 kg/m(2) per hour, respectively) than that of the comparable ceramic UTP MF membrane (stages 1, 2, and 3: 0.30, 0.11, and 0.06 kg/m(2) per hour, respectively), indicating that SW MF is less efficient at removing SP from 50°C skim milk than the ceramic UTP system. To estimate the number of steps required for the SW system to reach 95% SP removal, the third-stage SP removal rate (27.4% of the starting material SP content) was used to

  12. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  13. Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules.

    Science.gov (United States)

    Deng, Jie; Liu, Xinyue; Ma, Lang; Cheng, Chong; Shi, Wenbin; Nie, Chuanxiong; Zhao, Changsheng

    2014-12-10

    In this study, multifunctional and heparin-mimicking star-shaped supramolecules-deposited 3D porous multilayer films with improved biocompatibility were fabricated via a layer-by-layer (LbL) self-assembly method on polymeric membrane substrates. Star-shaped heparin-mimicking polyanions (including poly(styrenesulfonate-co-sodium acrylate; Star-PSS-AANa) and poly(styrenesulfonate-co-poly(ethylene glycol)methyl ether methacrylate; Star-PSS-EGMA)) and polycations (poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate; Star-PMeDMA) were first synthesized by atom transfer radical polymerization (ATRP) from β-cyclodextrin (β-CD) based cores. Then assembly of 3D porous multilayers onto polymeric membrane surfaces was carried out by alternating deposition of the polyanions and polycations via electrostatic interaction. The surface morphology and composition, water contact angle, blood activation, and thrombotic potential as well as cell viability for the coated heparin-mimicking films were systematically investigated. The results of surface ATR-FTIR spectra and XPS spectra verified successful deposition of the star-shaped supramolecules onto the biomedical membrane surfaces; scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations revealed that the modified substrate had 3D porous surface morphology, which might have a great biological influence on the biointerface. Furthermore, systematic in vitro investigation of protein adsorption, platelet adhesion, human platelet factor 4 (PF4, indicates platelet activation), activate partial thromboplastin time (APTT), thrombin time (TT), coagulation activation (thrombin-antithrombin III complex (TAT, indicates blood coagulant)), and blood-related complement activation (C3a and C5a, indicates inflammation potential) confirmed that the heparin-mimicking multilayer coated membranes exhibited ultralow blood component activations and excellent hemocompatibility. Meanwhile, after surface coating

  14. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  15. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Science.gov (United States)

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  16. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  18. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment.

    Science.gov (United States)

    Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit

    2016-07-07

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  19. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Laurent Oligny

    2016-07-01

    Full Text Available This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP due to the export of powdered activated carbon (PAC fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW, chemically enhanced backwashing (CEB and Clean-in-Place (CIP. The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  20. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  1. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  2. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    International Nuclear Information System (INIS)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Yusof, Noor Azah; Tee, Tan Wee; Abdullah, Abd Halim; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Heng, Lee Yook

    2011-01-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl + cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 x 10 -8 to 1.0 x 10 -1 M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu 2+ Ni 2+ and Pb 2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl + cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl + cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 x 10 -8 to 1.0 x 10 -1 M is linear with a Nernstian slope of 57.27 mV.

  3. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Science.gov (United States)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  4. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    International Nuclear Information System (INIS)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-01-01

    The immobilization of biological molecules onto polymeric membranes to produce biofunctional membranes is used for selective catalysis, separation, analysis, and artificial organs. Normally, random immobilization of enzymes onto polymeric membranes leads to dramatic reduction in activity due to chemical reactions involved in enzyme immobilization, multiple-point binding, etc., and the extent of activity reduction is a function of membrane hydrophilicity (e.g. activity in cellulosic membrane >> polysulfone membrane). We have used molecular biology to effect site-specific immobilization of enzymes in a manner that orients the active site away from the polymeric membrane surface, thus resulting in higher enzyme activity that approaches that in solution and in increased stability of the enzyme relative to the enzyme in solution. A prediction of this site-specific method of enzyme immobilization, which in this study with subtilisin and organophosphorus hydrolase consists of a fusion tag genetically added to these enzymes and subsequent immobilization via the anti-tag antibody and membrane-bound protein A, is that the active site conformation will more closely resemble that of the enzyme in solution than is the case for random immobilization. This hypothesis was confirmed using a new electron paramagnetic resonance (EPR) spin label active site titration method that determines the amount of spin label bound to the active site of the immobilized enzyme. This value nearly perfectly matched the enzyme activity, and the results suggested: (a) a spectroscopic method for measuring activity and thus the extent of active enzyme immobilization in membrane, which may have advantages in cases where optical methods can not be used due to light scattering interference; (b) higher spin label incorporation (and hence activity) in enzymes that had been site-specifically immobilized versus random immobilization; (c) higher spin label incorporation in enzymes immobilized onto hydrophilic

  5. Macrovoid Defect Growth during Evaporative Casting of Polymeric Membranes

    Science.gov (United States)

    Greenberg, A. R.; Khare, V. P.; Zartman, J.; Krantz, W. B.; Todd, P.

    2003-01-01

    Macrovoid (MV) formation is a significant problem in evaporatively cast polymeric membranes. MVs are large, elongated or teardrop-shaped pores (10-50 micron) that can impair membrane structural integrity. Although MVs have been extensively studied, there is no general agreement on the mechanisms governing MV growth. Recently, our research group has formulated the solutocapillary convection (SC) hypothesis, which contends that MV growth involves three principal forces: a Marangoni force generated by surface tension gradients within the MV interface, a viscous drag force, and a gravitationally induced body force. Two sets of complementary experiments were conducted to test the SC hypothesis. Ground-based videomicroscopy flow-visualization (VMFV) was utilized to measure the flow velocities at the MV-casting solution interface and deep within the casting solution. The measurements were performed with casting solutions containing 10 wt% cellulose acetate (CA), 30 wt% H2O, 60 wt% acetone, and 200- ppm TiO2 particles for flow visualization, and the surface tension was controlled by surfactant addition. Qualitatively, the experiments indicated that MV growth occurs in three distinct phases: (1) a very rapid initial growth period, (2) a much slower growth phase, and (3) absorption of selected MVs into the expanding demixed region. The presence of tracer particles inside the MVs suggests the presence of a convective flow, which transfers the particles from the bulk solution to the MV interior. Although the VMFV experiments did not establish any surfactant effect on the interfacial velocities, a statistically significant effect on the MV number density was observed. In the second set of experiments, membranes were cast aboard a KC-135 aircraft under 0-g and 2-g conditions. Despite careful attention to the design and fabrication of the membrane casting apparatus (MCA), several problems were encountered, the most significant of which was the contamination of the casting

  6. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pharmacological aspects of release from microcapsules - from polymeric multilayers to lipid membranes.

    Science.gov (United States)

    Wuytens, Pieter; Parakhonskiy, Bogdan; Yashchenok, Alexey; Winterhalter, Mathias; Skirtach, Andre

    2014-10-01

    This review is devoted to pharmacological applications of principles of release from capsules to overcome the membrane barrier. Many of these principles were developed in the context of polymeric multilayer capsule membrane modulation, but they are also pertinent to liposomes, polymersomes, capsosomes, particles, emulsion-based carriers and other carriers. We look at these methods from the physical, chemical or biological driving mechanisms point of view. In addition to applicability for carriers in drug delivery, these release methods are significant for another area directly related to pharmacology - modulation of the permeability of the membranes and thus promoting the action of drugs. Emerging technologies, including ionic current monitoring through a lipid membrane on a nanopore, are also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  9. Preparation of antifouling ultrafiltration membranes via irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Deng Bo; Liu Zhognying; Lu Xiaofeng; Li Jingye; Yang Xuanxuan; Yu Ming; Zhang Bowu

    2010-01-01

    PVDF powders were irradiated in air at dose of 15 kGy by using gamma-rays. Macromolecular peroxides transformed from free radicals in the irradiated PVDF powders in air can be preserved for long-term at appropriate temperature stably. By mixing acrylic monomers with irradiated PVDF powders then the graft polymerization can be initiated by heating. Then a series of hydrophilic ultrafiltration (UF) membranes were fabricated by dissolving the PVDF-g-PAAc powders in the NMP under phase inversion method. The antifouling performances of UF membranes cast from virgin and grafted PVDF powders were compared. (authors)

  10. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  11. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  12. Durability of Selected Membrane Materials when Exposed to Chlorine Gas

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Marianne Soerflaten

    2001-03-01

    This thesis is focusing on the durability of selected membrane materials when exposed to chlorine gas in the temperature range 30-100{sup o}C. Studies of the changes of membrane separation properties and the mechanisms promoting these changes have been studied. The selected membrane materials were poly(dimethylsioxane) (PDMS), Fluorel, fluorosilicone, and blends of PDMS and Fluorel. The thesis is organised in seven chapters. The first chapter gives an introduction to the background of the work. The second chapter presents the theory for gas separation using dense rubbery membranes. The properties of the selected membrane materials are presented in chapter three. The fourth chapter describes degradation mechanisms for polymeric materials in general and for the selected membrane materials in particular. Presentation of the experimental work is given in chapter five, while the results with discussions are presented in chapter six. The conclusions and recommendations for further studies are given in chapter seven. Five appendixes are attached: Appendix A describes the calculations of permeability and solubility coefficients and the accuracy of the experimental measurements. Appendix B summarises the measured values in tables and Appendix C describes the analytical methods. Appendix D gives the properties of the gases used in the experiments. Appendix E is the article ''Durability of Poly(dimethylsiloxane) when Exposed to Chlorine Gas'', submitted to the Journal of Applied Polymer Science. Highly crosslinked PDMS was found to have an initial high permeability for chlorine gas and a high Cl{sub 2}/O{sub 2} selectivity. However when exposed to chlorine gas the permeability decreased significantly. Crosslinking of the PDMS polymer chain and chlorination of the polymer gave a denser polymer structure and thus lower permeability. Fluorel showed very low permeabilities and selectivities for the gases in question and was thus not interesting for this

  13. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  14. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  15. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.

    Science.gov (United States)

    Zulewska, J; Newbold, M; Barbano, D M

    2009-04-01

    Raw milk (2,710 kg) was separated at 4 degrees C, the skim milk was pasteurized (72 degrees C, 16 s), split into 3 batches, and microfiltered using pilot-scale ceramic uniform transmembrane pressure (UTP; Membralox model EP1940GL0.1microA, 0.1 microm alumina, Pall Corp., East Hills, NY), ceramic graded permeability (GP; Membralox model EP1940GL0.1microAGP1020, 0.1 microm alumina, Pall Corp.), and polymeric spiral-wound (SW; model FG7838-OS0x-S, 0.3 microm polyvinylidene fluoride, Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) membranes. There were differences in flux among ceramic UTP, ceramic GP, and polymeric SW microfiltration membranes (54.08, 71.79, and 16.21 kg/m2 per hour, respectively) when processing skim milk at 50 degrees C in a continuous bleed-and-feed 3x process. These differences in flux among the membranes would influence the amount of membrane surface area required to process a given volume of milk in a given time. Further work is needed to determine if these differences in flux are maintained over longer processing times. The true protein contents of the microfiltration permeates from UTP and GP membranes were higher than from SW membranes (0.57, 0.56, and 0.38%, respectively). Sodium-dodecyl-sulfate-PAGE gels for permeates revealed a higher casein proportion in GP and SW permeate than in UTP permeate, with the highest passage of casein through the GP membrane under the operational conditions used in this study. The slight cloudiness of the permeates produced using the GP and SW systems may have been due to the presence of a small amount of casein, which may present an obstacle in their use in applications when clarity is an important functional characteristic. More beta-lactoglobulin passed through the ceramic membranes than through the polymeric membrane. The efficiency of removal of serum proteins in a continuous bleed-and-feed 3x process at 50 degrees C was 64.40% for UTP, 61.04% for GP, and 38.62% for SW microfiltration

  16. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  17. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.

    Science.gov (United States)

    Roy, Sagar; Singha, Nayan Ranjan

    2017-09-08

    Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  18. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    Science.gov (United States)

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  19. Green Modification of Outer Selective P84 Nanofiltration (NF) Hollow Fiber Membranes for Cadmium Removal

    KAUST Repository

    Gao, Jie

    2015-10-26

    Outer-selective thin-film composite (TFC) hollow fiber membranes are normally made from interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). However, the removal of excess MPD solution and the large consumption of alkane solvents are their technical bottlenecks. In this study, green methods to prepare the outer selective TFC hollow fiber membranes were explored by firstly modifying the membrane substrate with polyethyleneimine (PEI) and then by water soluble small molecules such as glutaraldehyde (GA) and epichlorohydrin (ECH). Using P84 polyimide as the substrate, not only do these modifications decrease substrate\\'s pore size, but also vary surface charge by making the membranes less positively charged. As a result, the resultant membranes have higher rejections against salts such as Na2SO4, NaCl and MgSO4. The PEI and then GA modified membrane has the best separation performance with a NaCl rejection over 90% and a pure water permeability (PWP) of 1.74±0.01 Lm−2bar−1h−1. It also shows an impressive rejection to CdCl2 (94%) during long-term stability tests. The CdCl2 rejection remains higher than 90% at operating temperatures from 5 to 60 °C. This study may provide useful insights for green manufacturing of outer-selective nanofiltration (NF) hollow fiber membranes.

  20. Effect of polymer type on characterization and filtration performances of multi-walled carbon nanotubes (MWCNT)-COOH-based polymeric mixed matrix membranes.

    Science.gov (United States)

    Sengur-Tasdemir, Reyhan; Mokkapati, Venkata R S S; Koseoglu-Imer, Derya Y; Koyuncu, Ismail

    2018-05-01

    Multi-walled carbon nanotubes (MWCNTs) can be used for the fabrication of mixed matrix polymeric membranes that can enhance filtration perfomances of the membranes by modifying membrane surface properties. In this study, detailed characterization and filtration performances of MWCNTs functionalized with COOH group, blended into polymeric flat-sheet membranes were investigated using different polymer types. Morphological characterization was carried out using atomic force microscopy, scanning electron microscopy and contact angle measurements. For filtration performance tests, protein, dextran, E. coli suspension, Xanthan Gum and real activated sludge solutions were used. Experimental data and analyses revealed that Polyethersulfone (PES) + MWCNT-COOH mixed matrix membranes have superior performance abilities compared to other tested membranes.

  1. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Yusof, Noor Azah; Tee, Tan Wee; Abdullah, Abd Halim [Department of Chemistry Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia); Rounaghi, Gholamhossein; Mohajeri, Masoomeh [Department of Chemistry, Factuality of Sciences, Islamic Azad University of Mashhad, Mashhad (Iran, Islamic Republic of); Heng, Lee Yook, E-mail: anuar@science.upm.edu.my [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. (Malaysia)

    2011-02-15

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl{sup +} cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 x 10{sup -8} to 1.0 x 10{sup -1}M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu{sup 2+} Ni{sup 2+} and Pb{sup 2+} cations, but the electrode has a wider dynamic range and a lower detection limit to Tl{sup +} cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl{sup +} cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 x 10{sup -8} to 1.0 x 10{sup -1}M is linear with a Nernstian slope of 57.27 mV.

  2. Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (4). Polymeric structures of cation-exchange membranes based on nylon-6 film

    International Nuclear Information System (INIS)

    Miyazawa, Tadashi; Asari, Yuki; Miyoshi, Kazuyoshi; Umeno, Daisuke; Saito, Kyoichi; Nagatani, Takeshi; Yoshikawa, Naohito; Motokawa, Ryuhei; Koizumi, Satoshi

    2010-01-01

    Cation-exchange membranes containing a sulfonic acid group were prepared by electron-beam-induced graft polymerization of sodium styrene sulfonate (SSS) onto a nylon-6 film with a thickness of 25 μm. The lamella sizes and lamella-to-lamella intervals of the resultant cation-exchange membranes (SSS membranes) were evaluated by X-ray diffraction (XRD) analysis and small-angle neutron scattering (SANS), respectively. With increasing degrees of grafting, the lamella size decreased, whereas the lamella-to-lamella interval increased. This can be explained by that the poly-SSS chain grafted to the periphery of the lamella of nylon 6 partially destroys the lamella and invades the amorphous domain among the lamella. The SSS membrane with a degree of grafting of 150% exhibited a similar performance in the electrodialysis of 0.5 M sodium chloride as a current cation-exchange membrane and possessed the lamella sizes and lamella-to-lamella intervals of 7.6 and 13 nm, respectively. (author)

  3. Poly-thiosemicarbazide/gold nanoparticles catalytic membrane: In-situ growth of well-dispersed, uniform and stable gold nanoparticles in a polymeric membrane

    KAUST Repository

    Villalobos, Luis Francisco; Neelakanda, Pradeep; Karunakaran, Madhavan; Cha, Dong Kyu; Peinemann, Klaus-Viktor

    2014-01-01

    This work presents a method that achieves the highest loading, published so far, of non-agglomerated and well-distributed gold nanoparticles (AuNPs) inside a polymeric membrane. The method uses poly-thiosemicarbazide (PTSC) as the starting material

  4. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    International Nuclear Information System (INIS)

    Singh, A.K.; Jain, A.K.; Mehtab, Sameena

    2007-01-01

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10 -7 to 1.0 x 10 -2 M (detection limit 5.5 x 10 -8 M) with a Nernstian slope of 19.7 mV decade -1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb 3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples

  5. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    Science.gov (United States)

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  6. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)], E-mail: akscyfcy@iitr.ernet.in; Jain, A.K.; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-08-10

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10{sup -7} to 1.0 x 10{sup -2} M (detection limit 5.5 x 10{sup -8} M) with a Nernstian slope of 19.7 mV decade{sup -1} of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb{sup 3+} ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  7. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong

    2012-01-01

    -free ABMs that can be easily scaled up. In the current study, a thin film composite (TFC) ABM was prepared by the interfacial polymerization method, where AquaporinZ-containing proteoliposomes were added to the m-phenylene-diamine aqueous solution. Control membranes, either without aquaporins......Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... or with inactive (mutant) aquaporins, were also similarly prepared. The separation performance of these membranes was evaluated by cross-flow reverse osmosis (RO) tests. Compared to the controls, the active ABM achieved significantly higher water permeability (∼4L/m2hbar) with comparable NaCl rejection (∼97...

  8. Biomimetic aquaporin membranes coming of age

    DEFF Research Database (Denmark)

    Tang, Chuyang; Wang, Zhining; Petrinić, Irena

    2015-01-01

    Membrane processes have been widely used for water purification because of their high stability, efficiency, low energy requirement and ease of operation. Traditional desalting membranes are mostly dense polymeric films with a "trade off" effect between permeability and selectivity. Biological...

  9. SORPTION, DIFFUSION AND PERMEATION OF 1,1,1- TRICHLOROETHANE THROUGH ADSORBENT-FILLED POLYMERIC MEMBRANES

    Science.gov (United States)

    Addition of hydrophobic absorbents such as activated carbon into polymeric mebranes increased the sorption capacity for 1,1,1-trichloroethane premeability of the mebranes used in the Pervaporation mode. Water permeability also increased for all filled membranes due to increased w...

  10. Improved PVDF membrane performance by doping extracellular polymeric substances of activated sludge.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Wang, Long-Fei; Yu, Han-Qing

    2017-04-15

    Polyvinylidene fluoride (PVDF) membrane has been widely applied in water and wastewater treatment because of its high mechanical strength, thermal stability and chemical resistance. However, the hydrophobic nature of PVDF membrane makes it readily fouled, substantially reducing water flux and overall membrane rejection ability. In this work, an in-situ blending modifier, i.e., extracellular polymeric substances (EPS) from activated sludge, was used to enhance the anti-fouling ability of PVDF membrane. Results indicate that the pure water flux of the membrane and its anti-fouling performance were substantially improved by blending 8% EPS into the membrane. By introducing EPS, the membrane hydrophilicity was increased and the cross section morphology was changed when it interacted with polyvinl pyrrolidone, resulting in the formation of large cavities below the finger-like pores. In addition, the fraction of pores with a size of 100-500 nm increased, which was also beneficial to improving membrane performance. Surface thermodynamic calculations indicate the EPS-functionalized membrane had a higher cohesion free energy, implying its good pollutant rejection and anti-fouling ability. This work provides a simple, efficient and cost-effective method to improve membrane performance and also extends the applications of EPS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Purifying arsenic and fluoride-contaminated water by a novel graphene-based nanocomposite membrane of enhanced selectivity and sustained flux.

    Science.gov (United States)

    Pal, Madhubonti; Mondal, Mrinal Kanti; Paine, Tapan Kanti; Pal, Parimal

    2018-06-01

    A novel graphene-based nanocomposite membrane was synthesized by interfacial polymerization (IP) through chemical bonding of the graphene oxide (GO) layer to polyethersulfone surface. Detailed characterization of the composite membrane through AFM, SEM, ATR-FTIR, XRD analysis, and Raman spectroscopy indicates strong potential of the membrane in highly selective removal of the toxic contaminants like arsenic and fluoride while permeating the essential minerals like calcium and magnesium. This makes the membrane suitable for production of safe drinking water from contaminated water. The membrane applied in a flat-sheet cross-flow module succeeded in removal of more than 98% arsenic and around 80% fluoride from contaminated water while selectively retaining the useful calcium and magnesium minerals in drinking water. A sustained pure water flux of around 150 LMH (liter per square meter per hour) during operation over long hours (> 150 h) with only 3-5% drop in flux indicates antifouling character of the membrane module.

  12. The use of radiation-induced graft polymerization for modification of polymer track membranes

    International Nuclear Information System (INIS)

    Shtanko, N.I.; Kabanov, V.Ya.; Apel, P.Yu.; Yoshida, M.

    1999-01-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called 'intelligent' materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2 ) and then exposed to the γ-rays from a 60 Co source. The transport properties of the

  13. The use of radiation-induced graft polymerization for modification of polymer track membranes

    Science.gov (United States)

    Shtanko, N. I.; Kabanov, V. Ya.; Apel, P. Yu.; Yoshida, M.

    1999-05-01

    Track membranes (TM) made of poly(ethylene terephtalate) (PET) and polypropylene (PP) films have a number of peculiarities as compared with other ones. They have high mechanical strength at a low thickness, narrow pore size distribution, low content of extractables. However, TM have some disadvantages such as low chemical resistance in alkaline media (PET TM), the low water flow rate due to the hydrophobic nature of their surface. The use of radiation-induced graft polymerization makes it possible to improve the basic characteristics of TM. In this communication our results on the modification of PET and PP TM are presented. The modified membranes were prepared by radiation-induced graft polymerization from the liquid phase. Three methods of grafting were used: (a) the direct method in argon atmosphere; (b) the pre-irradiation of TM in air followed by grafting in argon atmosphere; (c) pre-irradiation in vacuum followed by grafting in vacuum without contacting oxygen. The aim of the work was to investigate some properties of TM modified by grafted poly(methylvinyl pyridine) (PMVP) and poly(N-isopropylacrylamide) (PNIPAAM). It was shown that the modification of TM with hydrophilic polymer results in the growth of the water flow rate. In the past few years many works have been devoted to the synthesis of new polymers - the so-called "intelligent" materials - such as PNIPAAM. However, it is very difficult to make thin membranes of this polymer. Recently, it has been proposed to manufacture composite membranes by grafting stimulus-responsive polymers onto TM. Following this principle, we prepared thermosensitive membranes by the radiation-induced graft polymerization of N-isopropylacrylamide (NIPAAM) onto PET TM. PET TM with the pore size of about 1 μm and pore density of 10 6 cm -2 were first inserted into a solution of NIPAAM containing inhibitor of homopolymerization (CuCl 2) and then exposed to the γ-rays from a 60Co source. The transport properties of the grafted

  14. Simultaneous AuIII Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    Science.gov (United States)

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-04-10

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au III salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au III extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L -1 4-nitrophenol aqueous solution with 10 mmol L -1 NaBH 4 solution within 25 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  16. Dynamic Membrane Formation in Anaerobic Dynamic Membrane Bioreactors: Role of Extracellular Polymeric Substances.

    Directory of Open Access Journals (Sweden)

    Hongguang Yu

    Full Text Available Dynamic membrane (DM formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.

  17. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    Science.gov (United States)

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A facile method to align carbon nanotubes on polymeric membrane substrate

    Science.gov (United States)

    Zhao, Haiyang; Zhou, Zhijun; Dong, Hang; Zhang, Lin; Chen, Huanlin; Hou, Lian

    2013-01-01

    The alignment of carbon nanotubes (CNT) is the fundamental requirement to ensure their excellent functions but seems to be desolated in recent years. A facile method, hot-press combined with peel-off (HPPO), is introduced here, through which CNT can be successfully vertically aligned on the polymeric membrane substrate. Shear force and mechanical stretch are proposed to be the main forces to align the tubes perpendicular to the substrate surface during the peel-off process. The alignment of CNT keeps its orientation in a thin hybrid membrane by dip-coating cellulose acetate dope solution. It is expected that the stable alignment of CNT by HPPO would contribute to the realization of its potential applications. PMID:24326297

  19. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers

    Science.gov (United States)

    Babcock, Walter C.; Friesen, Dwayne T.

    1988-01-01

    Novel semiperimeable membranes and thin film composite (TFC) gas separation membranes useful in the separation of oxygen, nitrogen, hydrogen, water vapor, methane, carbon dioxide, hydrogen sulfide, lower hydrocarbons, and other gases are disclosed. The novel semipermeable membranes comprise the polycondensation reaction product of two complementary polyfunctional compounds, each having at least two functional groups that are mutually reactive in a condensation polymerization reaction, and at least one of which is selected from siloxanes, alkoxsilyls and aryloxysilyls. The TFC membrane comprises a microporous polymeric support, the surface of which has the novel semipermeable film formed thereon, preferably by interfacial polymerization.

  20. Production of selective membranes using plasma deposited nanochanneled thin films

    Directory of Open Access Journals (Sweden)

    Rodrigo Amorim Motta Carvalho

    2006-12-01

    Full Text Available The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1 permeation of polar organic compounds and/or water in gaseous phase and 2 permeation of salt in liquid phase. The efficiency of permeation was tested using a quartz crystal microbalance (QCM technique in gas phase and conductimetric analysis (CA in liquid phase. The substrates used were: silicon for characterization of the deposited films, piezoelectric quartz crystals for tests of selective membranes and cellophane paper for tests of permeation. QCM analysis showed that the nanochannels allow the adsorption and/or permeation of polar organic compounds, such as acetone and 2-propanol, and water. CA showed that the films allow salt permeation after an inhibition time needed for hydrolysis of the organic radicals within the film. Due to their characteristics, the films can be used for grains protection against microorganism proliferation during storage without preventing germination.

  1. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  2. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  3. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  4. Potentiometric determination of trypsin using a polymeric membrane polycation-sensitive electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Chen, Yan; Ding, Jiawang; Qin, Wei

    2012-12-01

    A potentiometric biosensor for the determination of trypsin is described based on current-controlled reagent delivery. A polymeric membrane protamine-sensitive electrode with dinonylnaphthalene sulfonate as cation exchanger is used for in situ generation of protamine. Diffusion of protamine across the polymeric membrane can be controlled precisely by applying an external current. The hydrolysis catalyzed with trypsin in sample solution decreases the concentration of free protamine released at the sample-membrane interface and facilitates the stripping of protamine out of the membrane surface via the ion-exchange process with sodium ions from the sample solution, thus decreasing the membrane potential, by which the protease can be sensed potentiometrically. The influences of anodic current amplitude, current pulse duration and protamine concentration in the inner filling solution on the membrane potential response have been studied. Under optimum conditions, the proposed protamine-sensitive electrode is useful for continuous and reversible detection of trypsin over the concentration range of 0.5-5UmL(-1) with a detection limit of 0.3UmL(-1). The proposed detection strategy provides a rapid and reagentless way for the detection of protease activities and offers great potential in the homogeneous immunoassays using proteases as labels. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  6. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    Science.gov (United States)

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    Science.gov (United States)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  8. Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Fioroni Marco

    2011-03-01

    Full Text Available Abstract Background Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. Results To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext. The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB1000-PEG6000-PIB1000 (PIB = polyisobutylene, PEG = polyethyleneglycol has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine. Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB1000-PEG6000-PIB1000 membrane. Furthermore labeling of the Lys-NH2 groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Conclusion Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  9. Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes.

    Science.gov (United States)

    Muhammad, Noor; Dworeck, Tamara; Fioroni, Marco; Schwaneberg, Ulrich

    2011-03-17

    Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext). The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB(1000)-PEG(6000)-PIB(1000) (PIB = polyisobutylene, PEG = polyethyleneglycol) has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine). Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB(1000)-PEG(6000)-PIB(1000) membrane. Furthermore labeling of the Lys-NH(2) groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  10. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha

    2013-08-02

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. © 2013 American Institute of Chemical Engineers.

  11. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  12. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  13. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    International Nuclear Information System (INIS)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han

    2016-01-01

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  14. Poly-thiosemicarbazide/gold nanoparticles catalytic membrane: In-situ growth of well-dispersed, uniform and stable gold nanoparticles in a polymeric membrane

    KAUST Repository

    Villalobos, Luis Francisco

    2014-11-01

    This work presents a method that achieves the highest loading, published so far, of non-agglomerated and well-distributed gold nanoparticles (AuNPs) inside a polymeric membrane. The method uses poly-thiosemicarbazide (PTSC) as the starting material for fabricating the membranes. This polymer contains one chelate site per monomeric unit, resulting in a high content of adsorption sites. This helps to achieve such high loading without agglomeration, along with the strong interaction of the chelate sites with the metal ions and the fact that they are distributed homogeneously along the membrane structure. The simple and scalable three-step procedure developed in this work resulted in a PTSC membrane containing 33.5 wt.% Au/PTSC in the form of 2.9 nm AuNPs. The membrane demonstrated catalytic activity for the reduction of 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP). © 2013 Elsevier B.V.

  15. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.

    2015-01-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  16. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Qian; Bi Qiuyan; Zhou Bo [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xiaolin, E-mail: xl-wang@tsinghua.edu.cn [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N Prime -ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 {mu}g/cm{sup 2} for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 {mu}g cm{sup -2}, the value of contact angle dropped to 22.1 Degree-Sign and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  17. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    International Nuclear Information System (INIS)

    Li Qian; Bi Qiuyan; Zhou Bo; Wang Xiaolin

    2012-01-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm 2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm -2 , the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  18. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    NARCIS (Netherlands)

    Duval, J.M.; Duval, J.-M.; Folkers, Albertje; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the

  19. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.

    Science.gov (United States)

    Malykh, O V; Golub, A Yu; Teplyakov, V V

    2011-05-11

    Membrane gas separation technologies (air separation, hydrogen recovery from dehydrogenation processes, etc.) use traditionally the glassy polymer membranes with dominating permeability of "small" gas molecules. For this purposes the membranes based on the low free volume glassy polymers (e.g., polysulfone, tetrabromopolycarbonate and polyimides) are used. On the other hand, an application of membrane methods for VOCs and some toxic gas recovery from air, separation of the lower hydrocarbons containing mixtures (in petrochemistry and oil refining) needs the membranes with preferable penetration of components with relatively larger molecular sizes. In general, this kind of permeability is characterized for rubbers and for the high free volume glassy polymers. Data files accumulated (more than 1500 polymeric materials) represent the region of parameters "inside" of these "boundaries." Two main approaches to the prediction of gas permeability of polymers are considered in this paper: (1) the statistical treatment of published transport parameters of polymers and (2) the prediction using model of ≪diffusion jump≫ with consideration of the key properties of the diffusing molecule and polymeric matrix. In the frames of (1) the paper presents N-dimensional methods of the gas permeability estimation of polymers using the correlations "selectivity/permeability." It is found that the optimal accuracy of prediction is provided at n=4. In the frames of the solution-diffusion mechanism (2) the key properties include the effective molecular cross-section of penetrating species to be responsible for molecular transportation in polymeric matrix and the well known force constant (ε/k)(eff i) of {6-12} potential for gas-gas interaction. Set of corrected effective molecular cross-section of penetrant including noble gases (He, Ne, Ar, Kr, Xe), permanent gases (H(2), O(2), N(2), CO), ballast and toxic gases (CO(2), NO(,) NO(2), SO(2), H(2)S) and linear lower hydrocarbons (CH(4

  20. Selective permeation of plutonium(IV) through a supported liquid membrane containing tri-iso-amyl phosphate as an ionophore

    International Nuclear Information System (INIS)

    Shukla, J.P.; Kedari, C.S.; Dharmapurikar, G.R.

    1998-01-01

    Selective ionophoric mobility of plutonium with ease of concentration upgradation from aqueous nitrate solutions was investigated. A thin flat-sheet supported liquid membrane (SLM) impregnated with tri-iso-amyl phosphate (TAP) was used. Accurel polypropylene hydrophobic microporous membrane 'Enka' was tested as the solid polymeric support. The source phase generally contained extremely dilute (ca. 10 -6 mol/dm -3 ) to moderately concentrated plutonium(IV) nitrate solutions (ca. 10 -3 mol/dm -3 ) in about 4 mol/dm -3 HNO 3 . Membrane permeability and selectivity dependency on variables like nitric acid concentration in the source phase, carrier concentration, receiving phase composition, etc. were systematically evaluated. More than 90% pertraction of plutonium could be easily accomplished in single run employing a feed solution consisting of about 1 mg/dm -3 Pu and 4 mol/dm -3 HNO 3 , carrier concentration of 0.8 mol/dm -3 TAP/dodecane; the receiving phase was 0.5 mol/dm -3 sodium carbonate or 0.5 mol/dm -3 ascorbic acid. The selective diffusivity of plutonium(IV) was observed from various effluents originating from fuel reprocessing operations. Reusability of membrane supports was also found to be satisfactory. (author)

  1. Development of a new class of flexible polymeric membranes for sensing, nanofiltration & cascaded separation

    Science.gov (United States)

    Du, Nian

    The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. While the benefits of nanotechnology are widely publicized, the discussion about the transformation of nanomaterials in the environment, and their potential impacts on human health has just begun. Nanoscale particles, whether ultrafine, nano, engineered, intentional, or incidental, pose significant health effects. New approaches for environmental monitoring of nanomaterials at high sensitivity and in real-time are particularly needed. Since nanoparticles must be isolated from complex environmental and biological matrices, the most effective and simple method of isolating engineered nanomaterials from air or water is filtration. Hence the overall project objective of this work is to develop innovative methods that can simultaneously remove, detect and inactivate diverse nanostructured materials. At the center of the technology is a novel class of polymeric filters capable of simultaneously removing and detecting metal and metal oxide nanoparticles. This project reports the development of a new class of self-standing, flexible, phase-inverted, poly(amic) acid membranes with experimentally-controlled nanopores ranging from less than 10nm to greater than 100nm. Compared to most commercial filter membranes, phase-inverted PAA membranes were found to exhibit superior durability and higher efficiency. The filtration efficiency was ˜99.97% for a number of nanoparticles including Quantum Dots, TiO2, Au and Ag. This work also showed that PAA membranes could be used to separate mixtures of nanoparticles. Although the separation does not show much selectivity according to the NPs’ chemical composition, it shows the ability to separate efficiently based on nanoparticle size. PAA showed an excellent performance not only for nanoparticle isolation at sub-nanometer size ranges, but also as a platform for the detection of engineered nanoparticles at low ppb levels

  2. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  3. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  4. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  5. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  6. Novel studies of molecular orientation in synthetic polymeric membranes for gas separation

    International Nuclear Information System (INIS)

    Ismail, Ahmad Fauzi

    1998-01-01

    The main objective of this investigation was to produce a super-selective asymmetric membrane for gas separation. To achieve this, molecular orientation induced by rheological conditions during membrane fabrication was investigated and related to the gas separation performance of flat sheet and hollow fiber membranes. Infrared dichroism, a spectroscopic technique, was developed in the first phase of the research to directly measure molecular orientation in flat sheet membranes. The degree of molecular orientation was found to increase with increasing shear during fabrication which enhanced both pressure-normalised flux and selectivity of the coated membranes. The rheology of polymer solutions and the mechanism of molecular orientation have been treated in detail for membrane production. This is a novel approach since previous fundamental work has focused on the phase inversion process. The current study showed that rheological conditions during membrane fabrication have the utmost importance in enhancing membrane selectivity. The effects of molecular orientation at greater shear, as experienced by hollow fiber membranes during extrusion through the spinneret channel, were investigated in the second phase of this research. In order to produce a good quality fiber, a unique tube-in-orifice spinneret and a modified hollow fiber spinning rig were designed and fabricated. Thus the combined effects of reduced water activity in the bore coagulant during hollow fiber spinning and rheologically induced molecular orientation were investigated. The selectivity of the coated high shear hollow fiber membranes was heightened and even surpassed the recognised intrinsic selectivity of the polymer. Pressure-normalised flux also increased with increasing shear rate. In the third phase of this research phase inversion conditions were further optimised to give a superior skin layer and thus provide an even better platform for the advantageous effects of molecular orientation. These

  7. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lijing, E-mail: zhulijing@nimte.ac.cn; Song, Haiming; Wang, Jiarong; Xue, Lixin, E-mail: xuelx@nimte.ac.cn

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  8. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    International Nuclear Information System (INIS)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-01-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  9. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  10. Hydrophilic Phage-Mimicking Membrane Active Antimicrobials Reveal Nanostructure-Dependent Activity and Selectivity.

    Science.gov (United States)

    Jiang, Yunjiang; Zheng, Wan; Kuang, Liangju; Ma, Hairong; Liang, Hongjun

    2017-09-08

    The prevalent wisdom on developing membrane active antimicrobials (MAAs) is to seek a delicate, yet unquantified, cationic-hydrophobic balance. Inspired by phages that use nanostructured protein devices to invade bacteria efficiently and selectively, we study here the antibiotic role of nanostructures by designing spherical and rod-like polymer molecular brushes (PMBs) that mimic the two basic structural motifs of bacteriophages. Three model PMBs with different well-defined geometries consisting of multiple, identical copies of densely packed poly(4-vinyl-N-methylpyridine iodide) branches are synthesized by controlled/"living" polymerization, reminiscent of the viral structural motifs comprised of multiple copies of protein subunits. We show that, while the individual linear-chain polymer branch that makes up the PMBs is hydrophilic and a weak antimicrobial, amphiphilicity is not a required antibiotic trait once nanostructures come into play. The nanostructured PMBs induce an unusual topological transition of bacterial but not mammalian membranes to form pores. The sizes and shapes of the nanostructures further help define the antibiotic activity and selectivity of the PMBs against different families of bacteria. This study highlights the importance of nanostructures in the design of MAAs with high activity, low toxicity, and target specificity.

  11. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  12. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao; Falivene, Laura; Boffa, Giusi; Sá nchez, Sheila Ortega; Caporaso, Lucia; Grassi, Alfonso; Mecking, Stefan

    2016-01-01

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively

  13. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    OpenAIRE

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Lu?sa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested ...

  14. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.

    Science.gov (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2015-09-30

    Selective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.

  15. Polymer-metal organic frameworks (MOFs) mixed matrix membranes for gas separation applications

    NARCIS (Netherlands)

    Shahid, S.

    2015-01-01

    The performance of polymeric membranes is often limited by a trade-off between membrane permeability and selectivity, the so-called Robeson upper bound. Additionally, in high pressure CO2 capture applications, excessive swelling of the polymer membrane often leads to plasticization resulting in

  16. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  17. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco; Yapici, Tahir; Peinemann, Klaus-Viktor

    2014-01-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer

  18. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  19. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors

    DEFF Research Database (Denmark)

    Tirunehe, Gossay; Norddahl, B.

    2016-01-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....

  20. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  1. Polymeric-silica-based sols for membrane modification applications: sol-gel synthesis and characterization with SAXS

    NARCIS (Netherlands)

    de Lange, Rob; de Lange, R.S.A.; Hekkink, J.H.A.; Hekkink, J.H.A.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1995-01-01

    Polymeric SiO2 and binary SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 sols, for ceramic membrane modification applications, have been prepared by acid-catalyzed hydrolysis and condensation of alkoxides in alcohol. The sols were characterized with small angle X-ray scattering, using synchrotron radiation.

  2. New RO TFC Membranes by Interfacial Polymerization in n-Dodecane with Various co-Solvents.

    Science.gov (United States)

    Al-Hobaib, Abdullah Sulaiman; Al-Suhybani, Mohammed Sulaiman; Al-Sheetan, Khalid Mohammed; Mousa, Hasan; Shaik, Mohammed Rafi

    2016-04-29

    The objective of this research is to prepare and characterize a new and highly efficient polyamide TFC RO membrane by interfacial polymerization in dodecane solvent mixed with co-solvents. Three co-solvents were tested namely; acetone, ethyl acetate, and diethyl ether of concentration of 0.5, 1, 2, 3, and 5 wt %. The modified membranes were characterized by SEM, EDX, AFM and contact angle techniques. The results showed that addition of co-solvent results in a decrease in the roughness, pore size and thickness of the produced membranes. However, as the concentration of the co-solvent increases the pore size of the membranes gets larger. Among the three co-solvents tested, acetone was found to result in membranes with the largest pore size and contact angle followed by diethyl ether then ethyl acetate. Measured contact angle increases as the concentration of the co-solvent increases reaching a constant value except for ethyl acetate where it was found to drop. Investigating flux and salt rejection by the formulated membranes showed that higher flux was attained when acetone was used as a co-solvent followed by diethyl ether then ethyl acetate. However, the highest salt rejection was achieved with diethyl ether.

  3. Polymerization of Phenylacetylene-Based Monodendrons with Alkoxy Peripheral Groups and Oxygen/Nitrogen Permeation Behavior of Their Membranes

    Directory of Open Access Journals (Sweden)

    Takashi Kaneko

    2012-01-01

    Full Text Available Monodendron monomers with alkoxy peripheral groups were synthesized, and the focal point of monodendrons, terminal acetylene, was polymerized with rhodium catalyst to yield corresponding polydendrons with a high molecular weight. The polydendrons were soluble in common organic solvents and readily formed membranes. Oxygen permselectivity was improved in the polydendrons with a space-persistent dendritic crowd. It was found that the well-defined dendritic and rod-like structure of the polydendrons was useful for permselective membrane.

  4. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi

    2018-02-28

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  5. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater

    KAUST Repository

    Jeong, Yeongmi; Kim, Youngjin; Jin, Yongxun; Hong, Seungkwan; Park, Chanhyuk

    2018-01-01

    The feasibility of an anaerobic ceramic membrane bioreactor (AnCMBR) was investigated by comparison with a conventional anaerobic membrane bioreactor (AnMBR). With regard to treatment performance, the AnCMBR achieved higher organic removal rates than the AnMBR because the ceramic membranes retained a high concentration of biomass in the reactor. Despite a high mixed liquor suspended solid (MLSS) concentration, the AnCMBR exhibited lower membrane fouling. To elucidate effects of sludge properties on membrane fouling in the AnCMBR and AnMBR, soluble microbial products (SMPs) and extracellular polymeric substances (EPSs) were analyzed. The SMP and EPS concentrations in the AnCMBR were higher than in the AnMBR. This may be because some suspended solids bio-degraded and likely released protein-like SMPs in the AnCMBR. Hydrophobicity and surface charges were analyzed; the sludge in the AnCMBR was found to be more hydrophobic and less negative than in the AnMBR because protein was abundant in the AnCMBR. Despite the adverse properties of the sludge in the AnCMBR, it showed more stable filtration performance than the AnMBR. This is because the alumina-based ceramic membrane had a superhydrophilic surface and could thus mitigate membrane fouling by hydrophilic-hydrophobic repulsion. The findings from this study have significant implications for extending the application of AnCMBRs to, for example, treatment of high-strength organic waste such as food waste or livestock manure.

  6. Tetra(p-tolyl)borate-functionalized solvent polymeric membrane: a facile and sensitive sensing platform for peroxidase and peroxidase mimetics.

    Science.gov (United States)

    Wang, Xuewei; Qin, Wei

    2013-07-22

    The determination of peroxidase activities is the basis for enzyme-labeled bioaffinity assays, peroxidase-mimicking DNAzymes- and nanoparticles-based assays, and characterization of the catalytic functions of peroxidase mimetics. Here, a facile, sensitive, and cost-effective solvent polymeric membrane-based peroxidase detection platform is described that utilizes reaction intermediates with different pKa values from those of substrates and final products. Several key but long-debated intermediates in the peroxidative oxidation of o-phenylenediamine (o-PD) have been identified and their charge states have been estimated. By using a solvent polymeric membrane functionalized by an appropriate substituted tetraphenylborate as a receptor, those cationic intermediates could be transferred into the membrane from the aqueous phase to induce a large cationic potential response. Thus, the potentiometric indication of the o-PD oxidation catalyzed by peroxidase or its mimetics can be fulfilled. Horseradish peroxidase has been detected with a detection limit at least two orders of magnitude lower than those obtained by spectrophotometric techniques and traditional membrane-based methods. As an example of peroxidase mimetics, G-quadruplex DNAzymes were probed by the intermediate-sensitive membrane and a label-free thrombin detection protocol was developed based on the catalytic activity of the thrombin-binding G-quadruplex aptamer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mixed Matrix Composite Membranes Containing POSS Molecules for Carbon Dioxide Removal Application

    KAUST Repository

    Rini, Eki Listya

    2011-05-10

    CO2 removal by membrane processes is considerably potential for several applications such as natural gas and synthesis gas purification, enhanced oil recovery application, and carbon dioxide capture in combat against global warming. Dense polymeric membranes are commonly utilized for these type of gas separation applications. Nevertheless, the intrinsic properties of dense polymeric membranes, which commonly characterize by the low gas permeability versus high gas selectivity trade–off or vice versa, is less desirable. In order to meet the increased demand of CO2 removal, a strategy to improve the gas separation performance of a polymeric membrane is investigated in this study. With this regard, mixed matrix membranes in which inorganic non porous fillers are incorporated into a polymeric matrix were prepared to achieve the aforementioned objective. The mixed matrix membranes were prepared from Pebax® block copolymers and PEG POSS® molecules. These hybrid membranes were formed as both dense and multilayer composite membranes. The dense transparent membranes with well–dispersed fillers could be obtained by variation of the solvent mixture. The DSC analyses showed that incorporation of PEG POSS® into Pebax® matrix altered the thermal properties of the matrix. The multilayer composite membranes were then prepared from a PTMSP gutter layer deposited on a PAN porous support and an adjacent hybrid Pebax®/PEG POSS® as the top layer. These hybrid multilayer composite membranes exhibited an enhanced CO2 selectiv4 ity by a factor of two relative to the pure Pebax®. In these hybrid systems, the CO2 separation was presumably enhanced by the high ether oxides content from PEG POSS® that has high affinities for CO2. For particular composition of Pebax® and PEG POSS® concentrations, the PTMSP gutter layer harnessed the CO2 selectivity without losing the CO2 permeation rate. At the same time, these membrane, however, suffered severe adhesion between the gutter layer

  9. Polymeric membrane sensors based on Cd(II) Schiff base complexes for selective iodide determination in environmental and medicinal samples.

    Science.gov (United States)

    Singh, Ashok Kumar; Mehtab, Sameena

    2008-01-15

    The two cadmium chelates of schiff bases, N,N'-bis(salicylidene)-1,4-diaminobutane, (Cd-S(1)) and N,N'-bis(salicylidene)-3,4-diaminotoluene (Cd-S(2)), have been synthesized and explored as ionophores for preparing PVC-based membrane sensors selective to iodide(I) ion. Potentiometric investigations indicate high affinity of these receptors for iodide ion. Polyvinyl chloride (PVC)-based membranes of Cd-S(1) and Cd-S(2) using as hexadecyltrimethylammonium bromide (HTAB) cation discriminator and o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), acetophenone (AP) and tributylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as iodide-selective sensors. The best performance was shown by the membrane of composition (w/w) of (Cd-S(1)) (7%):PVC (31%):DBP (60%):HTAB (2%). The sensor works well over a wide concentration range 5.3x10(-7) to 1.0x10(-2)M with Nernstian compliance (59.2mVdecade(-1) of activity) within pH range 2.5-9.0 with a response time of 11s and showed good selectivity for iodide ion over a number of anions. The sensor exhibits adequate life (3 months) with good reproducibility (S.D.+/-0.24mV) and could be used successfully for the determination of iodide content in environmental water samples and mouth wash samples.

  10. Influence of casein on flux and passage of serum proteins during microfiltration using polymeric spiral-wound membranes at 50°C.

    Science.gov (United States)

    Zulewska, Justyna; Barbano, David M

    2013-04-01

    Raw milk (approximately 1,800 kg) was separated at 4°C, pasteurized (at 72°C for 16s), and split into 2 batches. One batch (620 kg) was microfiltered (MF) using pilot-scale ceramic uniform transmembrane pressure Membralox membranes (model EP1940GL0.1 μA, 0.1-μm alumina; Pall Corp., East Hills, NY) to produce retentate and permeate. The permeate from the MF uniform transmembrane pressure was casein-free skim milk (CFSM). The CFSM was MF using polymeric spiral-wound (SW) membranes (model FG7838-OS0x-S, 0.3 μm; Parker-Hannifin Corp., Process Advanced Filtration Division, Tell City, IN) at a concentration factor of 3× and temperature of 50°C. Following the processing of CFSM, the second batch of skim milk (1,105 kg) was processed using the same polymeric membranes to determine how casein content in the feed material for MF with polymeric membranes affects the performance of the system. There was little resistance to passage of milk serum proteins (SP) through a 0.3-μm polyvinylidene fluoride (PVDF) SW membrane at 50°C and no detectable increase in hydraulic resistance of the membrane when processing CFSM. Therefore, milk SP contributed little, if any, to fouling of the PVDF membrane. In contrast, when processing skim milk containing a normal concentration of casein, the flux was much lower than when processing CFSM (17.2 vs. 80.2 kg/m(2) per hour, respectively) and the removal of SP from skim milk with a single-pass 3× bleed-and-feed MF system was also much lower than from CFSM (35.2 vs. 59.5% removal, respectively). Thus, when processing skim milk with a PVDF SW membrane, casein was the major protein foulant that increased hydraulic resistance and reduced passage of SP through the membrane. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Iron-complexed adsorptive membrane for As(V) species in water

    International Nuclear Information System (INIS)

    Shinde, Rakesh N.; Das, Sadananda; Acharya, R.; Rajurkar, N.S.; Pandey, Ashok K.

    2012-01-01

    Highlights: ► Functionalized membrane was prepared by graft polymerization in host membrane. ► Fe 3+ ions fixed in membrane made it selective for As(V) ions. ► As(V) preconcentrated selectively in membrane samples was quantified by INAA. ► As(V) in ground water sample was easily quantified in 2–3 ppb using membrane. ► Total inorganic arsenic could be quantified by oxidation of As(III) to As(V). - Abstract: Selective preconcentration of a target analyte in the solid phase is an effective route not only to enhance detection limit of the conventional analytical method but also for elimination of interfering matrix. An adsorptive membrane was developed for selective preconcentration and quantification of ultra-trace (ppb) amounts of As(V) present in a variety of aqueous samples. The precursor membrane was prepared by UV-initiator induced graft polymerization of sulphate and phosphate bearing monomers (1:1 mol proportion) in pores of the host microporous poly(propylene) membrane. Fe 3+ ions were loaded in the precursor membrane to make it selective for As(V) ions. The presence of phosphate functional groups prevent leaching of Fe 3+ ions from the membrane when it comes in contact with solution like seawater having high ionic strength. The optimized membrane was characterized in terms of its physical structure, chemical structure and experimental conditions affecting As(V) uptake in the membrane. The possibility of quantifying total preconcentration of As content was also explored by converting As(III) to As(V). To quantify As(V), the membrane samples were subjected to instrumental neutron activation analysis (INAA). The studies carried in the present work showed that quantification of inorganic arsenic species in natural water samples is easily possible in 2–3 ppb concentration range.

  12. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  13. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali, E-mail: ma_taher@yahoo.com [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ahmadi, Kyoumars [AJA University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sheikhshoaie, Iran [Department of Chemistry, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-12-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I{sup -} ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 {+-} 0.5 (CPtE) and 60.3 {+-} 0.4 (PME) mV decade{sup -1} in I{sup -} ion over a wide concentration range from 7.9 x 10{sup -7} to 1.0 x 10{sup -1} M for CPtE and 9.1 x 10{sup -6} to 1.0 x 10{sup -1} M I{sup -} for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time (< 10 s). The process of transfer of iodide across the membrane interface was investigated by use of the AC impedance technique. The proposed sensors were successfully applied to direct determination of iodide in samples containing interfering anions, waste water and as indicator electrodes in precipitation titrations. Highlights: {yields} We study new selective membrane electrodes for iodide ions. {yields} To the best of our knowledge this is the first coated platinum disk electrode of I{sup -}. {yields} The sensors have a wide concentration range with a fast response time. {yields} Efforts have been made to improve the selectivity with the use of CPtE.

  14. Surface modification of poly(vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gui-E; Sun, Li; Huang, Hui-Hong; Liu, Yan-Jun [Shanghai Institute of Technology, Shanghai (China); Xu, Zhen-Liang; Yang, Hu [East China University of Science and Technology, Shanghai (China)

    2015-12-15

    The surface modification of poly (vinylidene fluoride) (PVDF) membrane was performed via a two-step polymerization reactions. Poly (acrylic acid) (PAAc) was first grafted onto the membrane surface for the preparation of PVDF-g-PAAc membrane, and then poly (ethylene glycol) 200 (PEG 200) was immobilized on the membrane surface by the esterification reaction for the fabrication of PVDF-g-PEGA membrane. Attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and protein adsorption, water flux, water content and dynamic contact angle were conducted to characterize the structures and performance of the resultant PVDF membranes. The experimental results showed that the adsorption of bovine serum albumin (BSA) on the PVDF-g-PEGA membrane decreased about 80% when the grafting ratio reached to 15 wt%, compared with the pristine PVDF membrane. Moreover, the water contact angle of the membrane dropped to 60.5o, while the membrane pore sizes remained little changed.

  15. Latest Development on Membrane Fabrication for Natural Gas Purification: A Review

    Directory of Open Access Journals (Sweden)

    Dzeti Farhah Mohshim

    2013-01-01

    Full Text Available In the last few decades, membrane technology has been a great attention for gas separation technology especially for natural gas sweetening. The intrinsic character of membranes makes them fit for process escalation, and this versatility could be the significant factor to induce membrane technology in most gas separation areas. Membranes were synthesized with various materials which depended on the applications. The fabrication of polymeric membrane was one of the fastest growing fields of membrane technology. However, polymeric membranes could not meet the separation performances required especially in high operating pressure due to deficiencies problem. The chemistry and structure of support materials like inorganic membranes were also one of the focus areas when inorganic membranes showed some positive results towards gas separation. However, the materials are somewhat lacking to meet the separation performance requirement. Mixed matrix membrane (MMM which is comprising polymeric and inorganic membranes presents an interesting approach for enhancing the separation performance. Nevertheless, MMM is yet to be commercialized as the material combinations are still in the research stage. This paper highlights the potential promising areas of research in gas separation by taking into account the material selections and the addition of a third component for conventional MMM.

  16. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  17. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  18. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    Science.gov (United States)

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  19. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth

    Science.gov (United States)

    Dalai, Punam; Ustriyana, Putu; Sahai, Nita

    2018-02-01

    Early compartmentalization of simple biomolecules by membrane bilayers was, presumably, a critical step in the emergence of the first cell-like entities, protocells. Their membranes were likely composed of single chain amphiphiles (SCAs), but pure SCA membranes especially those with short-chains are highly unstable towards divalent cations, which are ubiquitous in aqueous environments. The prebiotic synthesis of phospholipids (PLs), even in only trace amounts, may also have been possible. PL membranes are much more stable towards divalent cations. Here, we show the transition of fatty acid membranes to mixed fatty acid-PL and, finally, to PL membranes in the presence of Mg2+, which acts as an environmental selection pressure, and we propose different mechanisms for the observed increased Mg2+-immunity. The "fatal" concentration ([Mg2+]fatal) at which vesicles are disrupted increased dramatically by an order of magnitude from OA to mixed to POPC vesicles. Two mechanisms for the increasing immunity were determined. The negative charge density of the vesicles decreased with increasing POPC content, so more Mg2+ was required for disruption. More interestingly, Mg2+ preferentially bound to and abstracted OA from mixed lipid membranes, resulting in relatively POPC-enriched vesicles compared to the initial ratio. The effect was the most dramatic for the largest initial OA-POPC ratio representing the most primitive protocells. Thus, Mg2+ acted to evolve the mixed membrane composition towards PL enrichment. To the best of our knowledge, this is the first report of selective lipid abstraction from mixed SCA-PL vesicles. These results may hold implications for accommodating prebiotic Mg2+-promoted processes such as non-enzymatic RNA polymerization on early Earth.

  20. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  1. Membrane modules for building ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, K.R.; Cussler, E.L.

    2002-01-01

    Hollow fibre and flat sheet membranes with an interfacially polymerized coating of polyamide have a permeance for water vapour of about 0.16 m sec{sup -1}. These membranes can serve as a basis for building ventilation which provides fresh air while recovering about 70% of the specific heat and 60% of the latent heat. Because these membranes are selective for water vapour, the air is exhausted with internal pollutants like carbon monoxide, formaldehyde, and radon. The expense of the ventilator should be recovered in reduced heating costs in about three years. (Author)

  2. Impact of polymeric membrane breakage on drinking water quality and an online detection method of the breakage.

    Science.gov (United States)

    Wu, Qilong; Zhang, Zhenghua; Cao, Guodong; Zhang, Xihui

    2017-10-15

    Polymeric membrane has been widely used for the treatment of drinking water in China, and the total treating capacity has reached up to 3.8 million m 3 /d. However, the membrane breakage found in the membrane modules in many water treatment plants resulted in an increase in turbidity and bacterial amount in the membrane permeate. In this study, a membrane module running for 3 years in a full-scale application was examined in terms of the breaking positions and the numbers of the broken fibers. It was found that most of the breaking positions were mainly on the outlet side of the module and that the distance from these points to the outlet was about 1/10-2/10 length of the membrane module. The lab-scale tests showed that the increase of the numbers of the breaking fibers in the membrane module (the breaking fibers were from 1 to 4 of 75 fibers) resulted in the increase in turbidity, particle count and the amount of total bacteria and coliform bacteria. Meanwhile, the water quality after the filtration with broken membrane fibers was similar to the quality of the raw water, which indicated that once the membrane fiber breakage occurred in the membrane module, the quality of drinking water after membrane filtration was significantly affected. Furthermore, the breaking position closer to the outlet side of the membrane module exposed much higher microbiological risk than those in the middle or near the bottom side. A pilot scale test was conducted by using a membrane module with 6600 fibers, and the effect of the membrane breakage (1-4 broken fibers) on water quality was also investigated. The results indicated that periodical backwashing caused drastic fluctuation of turbidity, particle count and the bacterial amount in the permeate water, which might be due to the washing force and self-blocking action inside the hollow fibers. Moreover, there is a good quantitative relationship (R 2 = 0.945) between particle count and the bacterial amount, which indicated that an

  3. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    Science.gov (United States)

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  5. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes.

    Science.gov (United States)

    Giordano, Lorena; Roizard, Denis; Bounaceur, Roda; Favre, Eric

    2016-12-01

    The article describes data concerning the separation performances of polymeric hollow-fiber membranes. The data were obtained using a model for simulating gas separation, described in the research article entitled "Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process" (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016) [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO 2 separation degree.

  6. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  7. Superwetting nanowire membranes for selective absorption.

    Science.gov (United States)

    Yuan, Jikang; Liu, Xiaogang; Akbulut, Ozge; Hu, Junqing; Suib, Steven L; Kong, Jing; Stellacci, Francesco

    2008-06-01

    The construction of nanoporous membranes is of great technological importance for various applications, including catalyst supports, filters for biomolecule purification, environmental remediation and seawater desalination. A major challenge is the scalable fabrication of membranes with the desirable combination of good thermal stability, high selectivity and excellent recyclability. Here we present a self-assembly method for constructing thermally stable, free-standing nanowire membranes that exhibit controlled wetting behaviour ranging from superhydrophilic to superhydrophobic. These membranes can selectively absorb oils up to 20 times the material's weight in preference to water, through a combination of superhydrophobicity and capillary action. Moreover, the nanowires that form the membrane structure can be re-suspended in solutions and subsequently re-form the original paper-like morphology over many cycles. Our results suggest an innovative material that should find practical applications in the removal of organics, particularly in the field of oil spill cleanup.

  8. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2009-01-01

    The vibrating membrane bioreactor (VMBR) system facilitates the possibility of conducting a separation of macromolecules (BSA) from larger biological components (yeast cells) with a relatively high and stable macromolecular transmission at sub-critical flux. This is not possible to achieve...... for a static non-vibrating membrane module. A BSA transmission of 74% has been measured in the separation of 4g/L BSA from 8 g/L dry weight yeast cells in suspension at sub-critical flux (20L/(m(2) h)). However, this transmission is lower than the 85% BSA transmission measured for at pure 4g/L BSA solution....... This can be ascribed to the presence of extracellular polymeric substances (EPS) from the yeast cells. The initial fouling rate for constant sub-critical flux filtration of unwashed yeast cells is 3-4 times larger than for washed yeast cells (18(mbar/h)/5(mbar/h)). At sub-critical flux, an EPS transmission...

  9. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  10. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    Science.gov (United States)

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  11. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  12. Iodide selective membrane electrodes based on a Molybdenum-Salen as a neutral carrier

    International Nuclear Information System (INIS)

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Ahmadi, Kyoumars; Sheikhshoaie, Iran

    2011-01-01

    A new polymeric membrane electrode (PME) and a coated platinum disk electrode (CPtE) based on Schiff base complex of Mo(VI) as a suitable carrier for I - ion were described. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrodes. The electrodes exhibited a Nernstian slope of 63.0 ± 0.5 (CPtE) and 60.3 ± 0.4 (PME) mV decade -1 in I - ion over a wide concentration range from 7.9 x 10 -7 to 1.0 x 10 -1 M for CPtE and 9.1 x 10 -6 to 1.0 x 10 -1 M I - for PME. The potentiometric response of the electrodes was independent of the pH of the test solution in the pH range 2.0-8.5 with a fast response time ( - . → The sensors have a wide concentration range with a fast response time. → Efforts have been made to improve the selectivity with the use of CPtE.

  13. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  14. High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes

    Science.gov (United States)

    Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew

    Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.

  15. A Review of Carbon Dioxide Selective Membranes: A Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dushyant Shekhawat; David R. Luebke; Henry W. Pennline

    2003-12-01

    Carbon dioxide selective membranes provide a viable energy-saving alternative for CO2 separation, since membranes do not require any phase transformation. This review examines various CO2 selective membranes for the separation of CO2 and N2, CO2 and CH4, and CO2 and H2 from flue or fuel gas. This review attempts to summarize recent significant advances reported in the literature about various CO2 selective membranes, their stability, the effect of different parameters on the performance of the membrane, the structure and permeation properties relationships, and the transport mechanism applied in different CO2 selective membranes.

  16. Preparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin

    Directory of Open Access Journals (Sweden)

    A. Akbari

    2014-04-01

    Full Text Available Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide, and 3- self-assembly of TiO2 nanoparticles on the selective layer as an anti-fouling agent. The rejection of all nanofiltration membranes was more than 99% and only its flux was changed proportional to different conditions. In the presence and absence of TiO2 nanoparticles, the pure water flux of polyamide thin-film membrane also obtained 44.4 and 38.4 L/h.m2 at 4 bar pressure, respectively. These were equal to 34 L/h.m2 for amoxicillin solutions. The results showed that TiO2 nanoparticles increased hydrophilicity of polyamide selective layer and therefore, nanoparticles decreased the fouling level. SEM images illustrated the excellent establishment of polyamide layer and distribution of TiO2 nanoparticles on the selective layer. The properties of membrane surface were taken into consideration by using AFM, indicating the increment of surface roughness with interfacial polymerization and TiO2 nanoparticles self-assembly. The pore size of membranes was in the nanoscale (2.653 and 2.604 nm without and with TiO2 nanoparticles self-assembly, respectively

  17. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, Henricus J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture

  18. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  19. Hydrogen selective membrane for the natural gas system. Development of CO{sub 2}-selective biogas membrane. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vestboe, A.P.

    2012-02-15

    The project started as a literature study and technology development project for a hydrogen selective membrane for the natural gas system. The introduction of hydrogen (for example produced from wind turbines by surplus electricity) in the gas system makes it possible to store energy which can be selectively used with high energy conversion in fuel cells directly located at the end users. In order to make this possible, it is necessary to have a separating unit that can selectively remove hydrogen from the gas mixture and deliver it as fuel to the electrical generator (a fuel cell). In the project, several existing technologies were evaluated with regard to the application in view. It was concluded that while other technologies are ripe, they are costly in energy and unsuitable for the relatively low capacity application that are in question close to the end users. Membrane technology was evaluated to be the most suitable, although the technology is still under development in many cases. In the project it was found that metallic membranes in the form of palladium coated stainless discs would answer the needs for the high purity needed. Laboratory development yielded discs that could separate hydrogen from natural gas, however, the flux was low compared to the needs of the application. It was found that at least 2 bar pressure difference of hydrogen would be needed to get a high enough flux. The way to achieve this pressure would necessitate a compressor which would consume an energy amount high enough to invalidate the concept. When concluding on the results and the study it was found that the direction of the project could be changed towards developing CO{sub 2}-selective membranes with the goal of developing membrane technology that could upgrade biogas by removing CO{sub 2}. The laboratory equipment and setup that were developed in the first part of the project could be used directly in this second part of the project. In this second part of the project it was

  20. Bioinspired tannic acid-copper complexes as selective coating for nanofiltration membranes

    KAUST Repository

    Chakrabarty, Tina

    2017-04-27

    Bio-polyphenols that are present in tea, date fruits, chockolate and many other plants have been recognized as scaffold material for the manufacture of composite filtration membranes. These phenolic biomolecules possess abundant gallol (1,2,3-trihydroxyphenyl) and catechol (1,2-dihydroxyphenyl) functional groups, which allow the spontaneous formation of a thin polymerized layer at the right pH conditions. Here, we report a facile and cost-effective method to coat porous membranes via the complexation of tannic acid (TA) and cupric acetate (mono hydrate) through co-deposition. The modified membranes were investigated by XPS, ATR/FTIR, water contact angle, SEM and water permeance for a structural and morphological analysis. The obtained results reveal that the modified membranes with TA and cupric acetate (CuII) developed a thin skin layer, which showed excellent hydrophilicity with good water permeance. These membranes were tested with different molecular weight polyethylene glycols (PEG) in aqueous solution; the MWCO was around 600 Daltons.

  1. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture

    KAUST Repository

    Karunakaran, Madhavan

    2016-11-28

    Advanced membrane systems with high flux and sufficient selectivity are required for industrial gas separation processes. In order to achieve high flux and high selectivity, the membrane material should be as thin as possible and it should have selective sieving channels and long term stability. This could be achieved by designing a three component material consisting of a blend of an ionic liquid and graphene oxide covered by a highly permeable low selective polymeric coating. By using a simple dip coating technique, we prepared high flux and CO selective ultrathin graphene oxide (GO)/ionic liquid membranes on a porous ultrafiltration support. The ultrathin composite membranes derived from GO/ionic liquid complex displays remarkable combinations of permeability (CO flux: 37 GPU) and selectivity (CO/N selectivity: 130) that surpass the upper bound of ionic liquid membranes for CO/N separation. Moreover, the membranes were stable when tested for 120 hours.

  2. Single-molecule resolution of protein dynamics on polymeric membrane surfaces: the roles of spatial and population heterogeneity.

    Science.gov (United States)

    Langdon, Blake B; Mirhossaini, Roya B; Mabry, Joshua N; Sriram, Indira; Lajmi, Ajay; Zhang, Yanxia; Rojas, Orlando J; Schwartz, Daniel K

    2015-02-18

    Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations

  3. Preparation of Ethylene Vinyl Acetate/Zeolite 4A Mixed Matrix Membrane for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Iman Khalilinejad

    2016-07-01

    Full Text Available A great contribution in research activities on carbon dioxide (CO2 separation, as the most important challenge in greenhouse gases control, has been made to develop new polymeric membranes. In this case, mixed matrix membranes (MMMs, comprised of rigid particles dispersed in a continuous polymeric matrix, was proposed as an effective method to improve the separation properties of polymeric membranes. In this research, ethylene vinyl acetate (EVA copolymer and zeolite 4A powders were applied to prepare MMMs using solution casting/solvent evaporation method and CO2/N2 separation performance of the membranes was examined under different feed pressures (3-8 bar and operating temperatures (25-50°C. Morphological and structural characterizations of the membranes were evaluated using scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, density and solvent-induced swelling measurements. The gas permeability measurements through the constant-volume method showed the permeability of two gases increased in the presence of zeolite 4A nanoparticles in the polymer matrix. Calculation of diffusivity coefficients of gases revealed that improvement in the diffusivity of all gases into membrane matrix was the main reason for permeability enhancement. In addition, the increase in the CO2/N2 ideal selectivity with the presence of zeolite 4A nanoparticles in the polymer matrix was attributed to the increment in CO2/N2 diffusion selectivity. Under optimum condition, with the addition of 10 wt% zeolite 4A nanoparticles into the membrane matrix, the CO2 permeability increased from 20.81 to 35.24 Barrer and its related selectivity increased 20% compared to that of neat EVA membrane. Furthermore, the membrane performances increased upon feed pressure rise, while the selectivity decreased with the increase in temperature.

  4. Ultrathin Polyamide Membranes Fabricated from Free-Standing Interfacial Polymerization: Synthesis, Modifications, and Post-treatment

    KAUST Repository

    Cui, Yue; Liu, Xiang-Yang; Chung, Neal Tai-Shung

    2016-01-01

    ) membranes. The polyamide selective layer usually possesses a high selectivity and permeability, making it the heart of this membrane technology. To further improve and understand its formation, with entirely excluding the effect of substrate, an ultrathin

  5. A polymeric membrane ion selective electrode based on organic-inorganic composite ion exchanger for the determination of thorium(IV)

    International Nuclear Information System (INIS)

    Chandra, Sulekh; Agarwal, Himanshu; Chandan Kumar, Singh; Sindhu, Susheel Kumar; Pankaj Kumar

    2005-01-01

    A poly(vinyl chloride) membrane electrode based on organic- inorganic composite ion exchanger, tin(IV) tungstoselenate-pyridine, has been prepared and tested for the selective determination of thorium(IV) ions. The PVC membrane electrode comprising 16% composite ion exchanger as the electroactive phase, 50% o-dioctyl phthalate as plasticizer, 4% tetraphenyl borate as anionic excluder and 30% poly(vinylchloride) displays a linear response to thorium(IV) ions over a wide concentration range of 1.0 x 10 -1 -8.0 x 10 -6 M with a Nernstain slope of 14.2 mV/ decade. The electrode shows a very short response time (∼15 s) and may be used in the pH range 2.5-9.0. The selectivity coefficient for alkali, alkaline earth and transition is smaller than 4.0 x 10 -4 . The sensor has been successfully used as an indicator electrode in the potentiometric titration of Th 4+ with EDTA as well as also for the determination of Th 4+ in the binary mixtures. (author)

  6. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  7. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  8. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the ''green'' separation of natural gases

    International Nuclear Information System (INIS)

    Madkour, Tarek M

    2013-01-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the

  9. Novel ceramic-polymer composite membranes for the separation of liquid waste. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Cohen, Y.

    1997-01-01

    'The project on ceramic-supported polymer membranes focuses on the development of a novel class of membranes for the separation of organics from both organic-aqueous and organic-organic mixtures, Theses membranes are fabricated by a graft polymerization process where polymer chains are grown onto the surface of a ceramic support membrane. The surface graft polymerization process, developed at UCLA, results in the formation of a thin polymer layer covalently bonded to the membrane pore surface as a layer of terminally anchored polymeric chains. Through the selection of the polymer most appropriate for the desired separation task, the graft polymerized surface layer can be synthesized to impart specific separation properties to the membrane. It is expected that this project will lead to the demonstration of a new technology for the tailor design of a new class of selective and robust ceramic-supported polymer membranes. This new approach will allow the rapid deployment of task-specific membranes for the separation of waste constituents for subsequent recovery, treatment or disposal. Progress to date includes the preparation of successful silica-polyvinylpyrrolidone (PVP) membrane for the treatment of oil-in-water emulsions and a silica-polyvinylacetate (PVAc) pervaporation membrane for the separation of organics from water. Current work is ongoing to study the performance of the pervaporation membrane for the removal of chlorinated organics from water and to develop a pervaporation membrane for organic-organic separation. In another aspect of the study, the authors are studying the hydrophilic PVP CSP membrane for oil-in-water emulsion treatment with the goal of determining the optimal membrane polymer surface structure as a function of various operating conditions (e.g., tube-side Reynolds number and transmembrane pressure), Work is also in progress to characterize the polymer layer by AFM and internal reflection FTIR, and to model the conformation of the polymer

  10. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  11. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  12. Thin porphyrin composite membranes with enhanced organic solvent transport

    KAUST Repository

    Phuoc, Duong

    2018-05-01

    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.

  13. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  14. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Haylett, T.; Thilo, L.

    1986-01-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D 1 , was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  15. Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model.

    Science.gov (United States)

    Bakker, Eric

    2010-02-15

    A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.

  16. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    Science.gov (United States)

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  17. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(1)) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L(2)) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L(2):PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3x10(-8) mol L(-1) for PME and 7.7x10(-9) mol L(-1) for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples. 2010 Elsevier B.V. All rights reserved.

  18. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K., E-mail: akscyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India); Singh, Prerna [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247 667 (India)

    2010-08-24

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 1}) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L{sub 2}) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L{sub 2}:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L{sub 2} was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10{sup -8} mol L{sup -1} for PME and 7.7 x 10{sup -9} mol L{sup -1} for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  19. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle

    International Nuclear Information System (INIS)

    Singh, Ashok K.; Singh, Prerna

    2010-01-01

    Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 1 ) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate- 1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L 2 ) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L 2 :PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L 2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 x 10 -8 mol L -1 for PME and 7.7 x 10 -9 mol L -1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.

  20. Influence of temperature on radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) nuclear membranes and films

    International Nuclear Information System (INIS)

    Zhitaryuk, N.I.; Shtan'ko, N.I.

    1989-01-01

    Temperature effect on kinetics of radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) (PETP) nuclear membranes with various parameters (pore diameter, the average distance between the pores) as well as onto PETP films with different thickness has been studied. Graft polymerization has been carried out by the methods of preirradiation in air and in vacuum. The overall activation energy of grafting as well as the activation energy of swelling of PETP in toluene has been obtained. It was found that in the method of preirradiation in vacuum the initial grafting rate in Arrhenius plot has two linear ranges. Activation energy in low temperature range correlates with activation energy of PETP swelling. Activation energy in high temperature range is determined by kinetics of graft polymerization in the method of preirradiation in air. Arrhenius plot of the initial grafting rate gives the activation energy that approximately corresponds to the initiation of grafting with oxyradicals. Dependence of PETP matrix critical thickness on temperature has also been obtained. The form of this dependence is identical to the one of the rate of graft polymerization. 33 refs.; 6 figs.; 2 tabs

  1. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    Science.gov (United States)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  2. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  3. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    OpenAIRE

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zaj?c, Ma?gorzata; Czajczy?ska-Waszkiewicz, Agnieszka; Piesiak-Pa?czyszyn, Dagmara; Kosior, Piotr; Dobrzy?ski, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved fo...

  4. Electrode-analytical properties of polyvinylchloride membranes based on triple metal-polymeric complexes

    Directory of Open Access Journals (Sweden)

    Katerina V. Matorina

    2015-10-01

    Full Text Available The influence of the nature of the electrode-active substances (EAS, the composition of the external and internal solutions on the formation of the analytical signal of polyvinylchloride (PVC membranes based on associates and triple metal-polymeric complexes (TMPC was established. Dehumidification of synthesized membranes increases with the content of polyvinylpyrrolidone (PVP. The value of the swelling degree is more than two times greater for membranes, which contain as EAS TMPC, relative to membranes based on associates. The value of water absorption of membranes is determined by the nature of EAS. They formed a series of increasing of the swelling degree such as associate < background membrane < TMPC. Swelling of the background membrane is explained by the physical sorption of water molecules on the surface of plasticized membrane. Hydration of PVP macromolecules varies with the introduction of metal ions, macromolecules unit undergoes a conformational transition. PVP macromolecules form tunnels or cavities where complex particles distributed and additional water accumulated through the second coordination layer. Constructed sensors based on TMPC have slope of electrode function equal to 25 mV/pC. Linear dependence of potential on the polymer concentration is observed in the range of 5–7 pC units. Sensors based on associates have slope of the electrode function of 20–25 mV/pC that can be varied depending on the nature of the EAS. Working range is 4–8 pC. Response time of sensor is less than 1 min. The optimal time for conditioning of the synthesized PVC membrane is 24 hours. Potentiometric sensors have been developed for the determination of residual amounts of low molecular PVP which is a food additive E 1201 commonly used for thickening, stabilizing and clarifying of food products. The content of PVP was determined in real objects (apple juice, beer, red wine and cognac with using the polyvinylpyrrolidone sensors (Sr < 0.08. The

  5. Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.

    Science.gov (United States)

    Zhang, Chen; Koros, William J

    2017-09-01

    Membrane-based separations can reduce the energy consumption and the CO 2 footprint of large-scale fluid separations, which are traditionally practiced by energy-intensive thermally driven processes. Here, a new type of membrane structure based on nanoporous carbon is reported, which, according to this study, is best referred to as carbon/carbon mixed-matrix (CCMM) membranes. The CCMM membranes are formed by high-temperature (up to 900 °C) pyrolysis of polyimide precursor hollow-fiber membranes. Unprecedentedly high permselectivities are seen in CCMM membranes for CO 2 /CH 4 , N 2 /CH 4 , He/CH 4 , and H 2 /CH 4 separations. Analysis of permeation data suggests that the ultrahigh selectivities result from substantially increased sorption selectivities, which is hypothetically owing to the formation of ultraselective micropores that selectively exclude the bulkier CH 4 molecules. With tunable sorption selectivities, the CCMM membranes outperform flexible polymer membranes and traditional rigid molecular-sieve membranes. The capability to increase sorption selectivities is a powerful tool to leverage diffusion selectivities, and has opened the door to many challenging and economically important fluid separations that require ultrafine differentiation of closely sized molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  7. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...

  9. Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.

    Science.gov (United States)

    Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech

    2012-07-06

    Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Comparison of Hexane Vapour Permeation in Two Different Polymeric Membranes via an Innovative In-line FID Detection Method

    Directory of Open Access Journals (Sweden)

    Z. Petrusová

    2017-07-01

    Full Text Available This manuscript presents a novel method for the analysis of vapour permeation through polymeric membranes based on in-line analysis of the permeate with an FID detector. The hexane vapour permeation was studied for two commercially available membranes, namely low-density polyethylene (LDPE and thin-film-composite polyamide (PA membrane. The hexane permeation was studied at temperatures of 25–45 °C, hexane vapour activity in the range of 0.2–0.8 and trans-membrane pressures of 5–50 kPa. Two fundamentally different membranes were chosen to demonstrate the potential and sensitivity of the permeation apparatus. Upon increasing the temperature from 25 to 45 °C, the flux in LDPE was found to increase almost fourfold over the whole activity range. The nonlinear increase of the flux with activity indicates plasticization of the polymer by hexane. Contrarily, the flux in the PA membrane increases almost linearly with activity, with only a minor upward curvature. Since the PA is far away from any phase transition, it is less temperature-dependent than LDPE. The activation energy for permeation demonstrates that the temperature dependence in the LDPE membrane is dominated by changes in diffusion, whereas it is dominated by changes in solubility in the PA membrane.

  11. Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes.

    Science.gov (United States)

    Ferrando Chavez, Diana Lila; Nejidat, Ali; Herzberg, Moshe

    2016-09-06

    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of Pseudomonas aeruginosa PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer's shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties.

  12. Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate

    International Nuclear Information System (INIS)

    Zazoua, A.; Zougar, S.; Kherrat, R.; Samar, M.H.; Jaffrezic-Renault, N.; Errachid, A.; Abbaci, A.

    2006-01-01

    This paper presents a first report on chromium ISFET (ion-sensitive field effect transistor) based on a polymeric membrane (siloprene) including an ionophore (tributylphosphate) sensitive for hexavalent chromium. The sensor sensitivity as a function of the pH was studied; its value is minimum in a pH interval from 5.5 to 7.5. The sensitivity for hexavalent chromium was found to be 15 mV/loga Cr 6+ in the range of 10 -4 to 10 -2 M. The detection limit was found to be 10 -5 M. The studied interfering ions are Pb(II) and Cd(II) that do not represent a great perturbation upon the response for hexavalent chromium

  13. Development of a hexavalent chromium ISFET sensor with a polymeric membrane including tributylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Zazoua, A. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Zougar, S. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Kherrat, R. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Samar, M.H. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria); Jaffrezic-Renault, N. [CEGELY-UMR 5005 CNRS, Ecole centrale de Lyon, 69134 Ecully cedex (France)]. E-mail: Nicole.Jaffrezic@ec-lyon.fr; Errachid, A. [Center of Reference for Bioengineering in Catalonia (CREBEC), Laboratory of Nanobioengineering, Parc Cientific de Barcelona, Universidad de Barcelona C/ Josep Samitier 1-5, 08028 Barcelona (Spain); Abbaci, A. [Universite de Annaba, BP 12, El-Hadjar, Annaba (Algeria)

    2006-03-15

    This paper presents a first report on chromium ISFET (ion-sensitive field effect transistor) based on a polymeric membrane (siloprene) including an ionophore (tributylphosphate) sensitive for hexavalent chromium. The sensor sensitivity as a function of the pH was studied; its value is minimum in a pH interval from 5.5 to 7.5. The sensitivity for hexavalent chromium was found to be 15 mV/loga {sub Cr{sup 6+}} in the range of 10{sup -4} to 10{sup -2} M. The detection limit was found to be 10{sup -5} M. The studied interfering ions are Pb(II) and Cd(II) that do not represent a great perturbation upon the response for hexavalent chromium.

  14. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  15. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  16. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane.

    Science.gov (United States)

    Dietz, Carin H J T; Kroon, Maaike C; Di Stefano, Michela; van Sint Annaland, Martin; Gallucci, Fausto

    2017-12-14

    For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined. Subsequently, the supported DES liquid membranes were applied for the recovery of furfural (FF) and hydroxymethylfurfural (HMF) from aqueous solutions. The effects of substrate properties (e.g. pore size), DES properties (e.g. viscosity) and concentrations of FF and HMF in the feed phase on the observed diffusivities and permeabilities were assessed. It was found that the addition of DES enhances the transport of FF and HMF through the polymeric membrane support. In particular, the use of the DES consisting of thymol + lidocaine (in the molar ratio 2 : 1) impregnated in a polyethylene support resulted in enhanced transport for both FF and HMF, and is most interesting for (in situ) isolation of FF and HMF from aqueous solutions, e.g. in biorefinery processes.

  17. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Science.gov (United States)

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  18. Detecting Levels of Polyquaternium-10 (PQ-10) via Potentiometric Titration with Dextran Sulphate and Monitoring the Equivalence Point with a Polymeric Membrane-Based Polyion Sensor

    OpenAIRE

    Ferguson, Stephen A.; Wang, Xuewei; Meyerhoff, Mark E.

    2016-01-01

    Polymeric quaternary ammonium salts (polyquaterniums) have found increasing use in industrial and cosmetic applications in recent years. More specifically, polyquaternium-10 (PQ-10) is routinely used in cosmetic applications as a conditioner in personal care product formulations. Herein, we demonstrate the use of potentiometric polyion-sensitive polymeric membrane-based electrodes to quantify PQ-10 levels. Mixtures containing both PQ-10 and sodium lauryl sulfate (SLS) are used as model sample...

  19. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, Burhannudin

    2016-09-05

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  20. Artificial membranes with selective nanochannels for protein transport

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, Georgios; Mygiakis, E.; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Smilgies, D. M.; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2016-01-01

    A poly(styrene-b-tert-butoxystyrene-b-styrene) copolymer was synthesized by anionic polymerization and hydrolyzed to poly(styrene-b-4-hydroxystyrene-b-styrene). Lamellar morphology was confirmed in the bulk after annealing. Membranes were fabricated by self-assembly of the hydrolyzed copolymer in solution, followed by water induced phase separation. A high density of pores of 4 to 5 nm diameter led to a water permeance of 40 L m−2 h−1 bar−1 and molecular weight cut-off around 8 kg mol−1. The morphology was controlled by tuning the polymer concentration, evaporation time, and the addition of imidazole and pyridine to stabilize the terpolymer micelles in the casting solution via hydrogen bond complexes. Transmission electron microscopy of the membrane cross-sections confirmed the formation of channels with hydroxyl groups beneficial for hydrogen-bond forming sites. The morphology evolution was investigated by time-resolved grazing incidence small angle X-ray scattering experiments. The membrane channels reject polyethylene glycol with a molecular size of 10 kg mol−1, but are permeable to proteins, such as lysozyme (14.3 kg mol−1) and cytochrome c (12.4 kg mol−1), due to the right balance of hydrogen bond interactions along the channels, electrostatic attraction, as well as the right pore sizes. Our results demonstrate that artificial channels can be designed for protein transport via block copolymer self-assembly using classical methods of membrane preparation.

  1. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeonghwan [Department of Environmental Engineering, INHA University, Nam-gu, Yonghyun-dong 253, Incheon 402-751 (Korea, Republic of); Van der Bruggen, Bart, E-mail: bart.vanderbruggen@cit.kuleuven.b [K.U. Leuven, Department of Chemical Engineering, Laboratory for Applied Physical Chemistry and Environmental Technology, W. de Croylaan 46, B-3001 Leuven (Belgium)

    2010-07-15

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  2. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    International Nuclear Information System (INIS)

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-01-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  3. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    Science.gov (United States)

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  5. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  7. Fabrication of green polymeric membranes

    KAUST Repository

    Kim, Dooli

    2017-06-16

    Provided herein are methods of fabricating membranes using polymers with functionalized groups such as sulfone (e.g., PSf and PES), ether (e.g., PES), acrylonitrile (e.g., PAN), fluoride(e.g., pvdf and other fluoropolymers), and imide (e.g., extem) and ionic liquids. Also provided are membranes made by the provided methods.

  8. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  9. Microfluidic systems with ion-selective membranes.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  10. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    Science.gov (United States)

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Development of membrane technology in BARC

    International Nuclear Information System (INIS)

    Misra, B.M.

    2003-01-01

    BARC has been engaged in research and development work on pressure-driven membrane technology from laboratory to pilot plant scale and its commercial scale deployment, for sea and brackish water desalination into potable water, effluent water treatment and water reuse and in various industrial separations including decontamination of radioactive liquid effluents for their safe disposal into the environment. This paper gives a brief description of pressure-driven membrane processes, reverse osmosis, nano filtration, ultrafiltration and micro filtration. Selection of polymeric candidate materials, preparation of semi-permeable membranes and their characterization has been discussed. Various applications of these processes conducted on pilot plant scale have been presented. Large scale deployment of membrane processes for sea water desalination has been indicated. Research and development at BARC has thus resulted in the indigenous development of membrane processes for commercial scale operation. (author)

  13. UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fu Yun; Ong, Yee Kang; Chung, Tai-Shung [Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore (Singapore); Xiao, Youchang [Suzhou Faith and Hope Membrane Technology Co. Ltd., Jiangsu Province (China)

    2012-12-15

    Polymers of intrinsic microporosity (PIM-1) have been known for their super high permeability but average selectivity for medium-size gas pairs. They have unimpressive selectivity for H{sub 2} and CO{sub 2} separation (i.e., {alpha} (H{sub 2}/CO{sub 2}) = 0.6). For the first time, we have discovered that ultraviolet (UV)-rearranged polymers of PIM-1 membranes can be used for H{sub 2}/CO{sub 2} separation with far superior separation performance to others in literatures. The PIM-1 membrane after UV radiation for 4 hours shows H{sub 2} permeability of 452 barrer with H{sub 2}/CO{sub 2} selectivity of 7.3. Experimental data and molecular simulation reveal that the polymer chains of PIM-1 undergo 1,2-migration reaction and transform to close-to-planar like rearranged structure after UV radiation. As a result, the UV-irradiated PIM-1 membrane shows considerable drops in both fractional free volume (FFV) and size of micro-pores. Positron annihilation lifetime (PAL) results have confirmed the chemical and structural changes, suggesting the FFV and pore size drops are mainly ascribed to the destructed spiro-carbon centre during UV radiation. Sorption and x-ray diffractor (XRD) analyses indicate that the impressive H{sub 2}/CO{sub 2} selectivity arises from the significantly enhanced diffusivity selectivity induced by UV radiation, followed by molecular rearrangement, conformation change and chain packing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Use of cold microfiltration retentates produced with polymeric membranes for standardization of milks for manufacture of pizza cheese.

    Science.gov (United States)

    Govindasamy-Lucey, S; Jaeggi, J J; Johnson, M E; Wang, T; Lucey, J A

    2007-10-01

    Pizza cheese was manufactured with milk (12.1% total solids, 3.1% casein, 3.1% fat) standardized with microfiltered (MF) and diafiltered retentates. Polymeric, spiral-wound MF membranes were used to process cold (pizza. Nitrogen recoveries were significantly higher in MF standardized cheeses. Fat recoveries were higher in the pH6.3MF cheese than the control or pH6.4MF cheese. Moisture-adjusted cheese yield was significantly higher in the 2 MF-fortified cheeses compared with the control cheese. Maximum loss tangent (LT(max)) values were not significantly different among the 3 cheeses, suggesting that these cheeses had similar meltability. The LT(max) values increased during ripening. The temperature at which the LT(max) was observed was highest in control cheese and was lower in the pH6.3MF cheese than in the pH6.4MF cheese. The temperature of the LT(max) decreased with age for all 3 cheeses. Values of 12% trichloroacetic acid soluble nitrogen levels were similar in all cheeses. Performance on pizza was similar for all cheeses. The use of MF retentates derived with polymeric membranes was successful in increasing cheese yield, and cheese quality was similar in the control and MF standardized cheeses.

  15. STIR: Redox-Switchable Olefin Polymerization Catalysis: Electronically Tunable Ligands for Controlled Polymer Synthesis

    Science.gov (United States)

    2013-03-28

    production of polyethylene (PE) and polypropylene (PP) topped 53 billion pounds in 2011.1 This extreme demand has ensured that olefin polymerization...is an ideal starting monomer as it is a liquid at room temperature facilitating rapid screening and data collection without the need for cumbersome...elastomers, binders, thermoplastic elastomers, rheology modifiers, permeation selective membranes, and high strength, light-weight structural materials

  16. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  17. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.; Ghosh, Asim K.; Huang, Xiaofei; Liong, Monty; Zink, Jeffrey I.

    2011-01-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  18. Physical–chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes

    KAUST Repository

    Hoek, Eric M.V.

    2011-12-01

    Herein we report on the formation and characterization of mixed-matrix ultrafiltration (UF) membranes hand-cast by nonsolvent induced phase inversion. We evaluated nanometer-to-micrometer sized inorganic fillers (silver, copper, silica, zeolite, and silver-zeolite) materials with polysulfone (PSf) as the polymeric dispersing matrix. In general, mixed-matrix membranes were rougher, more hydrophilic, and more mechanically robust. Only sub-micron zeolite-PSf mixed-matrix membranes exhibited simultaneous improvements in water permeability and solute selectivity; all other mixed-matrix membranes were more permeable, but less selective due to defects associated with poor polymer-filler binding. Protein and bacterial fouling resistance of mixed-matrix membranes containing silver, zeolite, and silver-zeolite nanoparticles were compared to a low-fouling, poly(acrylonitrile) (PAN) UF membrane. Zeolite and silver containing membranes exhibited better protein fouling resistance (due to higher hydrophilicity), whereas silver and silver-zeolite based membranes produce better bacterial fouling resistance due to antimicrobial properties. Overall, zeolite-PSf and silver exchanged zeolite-PSf membranes offered the best combination of improved permeability, selectivity, and fouling resistance - superior to the commercial PAN membrane. © 2011 Elsevier B.V.

  19. Custom-fit polymeric membrane dressing masks in the treatment of second degree facial burns.

    Science.gov (United States)

    Weissman, Oren; Hundeshagen, Gabriel; Harats, Moti; Farber, Nimrod; Millet, Eran; Winkler, Eyal; Zilinsky, Isaac; Haik, Josef

    2013-09-01

    Second degree facial burns usually impart high wound site pain levels and patient discomfort due to the abundance of facial sensory innervation, as well as the development of edema and inflammation that accompany wound healing. Frequent changing of adherent dressings causes additional procedural pain and may prolong healing due to recurring damage to the wound bed. We applied face masks, made on-site from a drug free polymeric membrane dressing, to 8 patients with superficial and deep 2nd degree facial burns. Time to full re-epithlialization was recorded during treatment. Pain, overall comfort, and result satisfaction were evaluated using a questionnaire (10-point Likert scales. From 1=minimum to 10=maximum) on follow-up (mean follow up 14.4 months, range 9-18). These results were compared to a historical cohort of patients with facial burns that were treated with an antibiotic ointment. Results showed mean re-epithelialization time of 6.5 days (as compared to 8.5 days in the cohort group), low pain ratings (mean: 2.6; range: 4.7 in the control group), mixed comfort levels (mean: 4.7/10; 4 in the control group) and high result satisfaction (mean: 7.8; 6.2 in the control group). Nursing staff described pain-free dressing changes and positively noted non-adherence and high absorbance capacity of the polymer, necessitating less dressing changes. Inflammation was contained to the actual site of injury. No complications in terms of infection or allergic reaction were observed. Overall, the polymeric membrane facial dressing seems to be a promising means of reducing pain and ensuring uninterrupted wound healing in 2nd degree facial burns. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  20. Poly-thiosemicarbazide membrane for gold recovery

    KAUST Repository

    Villalobos, Luis Francisco

    2014-11-01

    A novel polymeric membrane adsorber with a high density of adsorption sites that can selectively capture Au(III) ions, is proposed as an efficient alternative to recover gold from dilute solutions. Poly-thiosemicarbazide (PTSC), a polymer that contains one chelate site per monomeric unit, was used to fabricate the membranes. This polymer can be easily processed into membranes by a phase inversion technique, resulting in an open and interconnected porous structure suitable for high flux liquid phase applications. This method overcomes the usual low capacities of membrane adsorbents by selecting a starting material that contains the adsorption sites within it, therefore avoiding the necessity to add an external agent into the membrane matrix. The resulting mechanically stable PTSC membranes can operate in a pressure driven permeation process, which eliminates the diffusion limitations commonly present in packed column adsorption processes. This process can selectively recover 97% of the gold present in a solution containing a 9-fold higher copper concentration, while operating at a flux as high as 1868 L/m2 h. The maximum gold uptake measured without sacrificing the mechanical stability of the membrane was 5.4 mmol Au/g. Furthermore the gold can be easily eluted from the membrane with a 0.1 M thiourea solution and the membrane can be reused for at least three cycles without any decrease in its performance. Finally, the ability of this membrane for recovering metals from real-life samples, like seawater and tap water, was tested with promising results.

  1. Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    Cohen, Y.

    1998-01-01

    'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil components

  2. Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion.

    Science.gov (United States)

    Akbari, Mahdi; Shariaty-Niassar, Mojtaba; Matsuura, Takeshi; Ismail, Ahmad Fauzi

    2018-10-01

    Although polymeric membranes find important role in water and waste water treatment in recent years, their fouling is still an important problem. Application of hydrophilic nanoparticles (NPs) is one of the proposed methods for reducing fouling of membranes but their dispersion and stability in hydrophobic polymer matrix is challenging. In this study Janus functionalization of the NPs was introduced as a promising technique toward achieving this goal. Polysulfone (PSf) membranes containing various concentrations of graphene oxide (GO) nanosheets and Janus graphene oxide (Janus GO) nanosheets (as additives) were fabricated via phase inversion. The synthesized nanosheets were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy and dynamic light scattering (DLS). The prepared membranes also were then characterized by scanning electron microscopy (SEM), contact angle (CA), water uptake, porosity, mean pore size and casting solution viscosity. The membrane performance was also tested by determining pure water flux (PWF), bovine serum albumin (BSA) separation, flux reduction by fouling and flux recovery. CA reduced from 85° to 68° and PWF increased from 23.15 L/m 2  h to 230.61 L/m 2  h for PSF and Janus GO nanosheets containing membrane, respectively. Also investigation of antifouling performance of membranes revealed that membrane with the 1 wt.% of Janus GO nanosheets had higher water flux recovery ratio (FRR) and lower irreversible fouling (R ir ) of 84% and 16%, respectively. These improvements were attributed to the better dispersion and stability of Janus GO nanosheets in the prepared mixed matrix membranes. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes.

    Science.gov (United States)

    Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar

    2018-03-01

    Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment

    Directory of Open Access Journals (Sweden)

    Silvia Simone

    2017-04-01

    Full Text Available In this work, poly(ethersulfone (PES ultrafiltration (UF hollow fibers (HF were modified by introducing TiO2 nanoparticles (TiO2-NPs in the polymeric dope, to endow them with photocatalytic properties. Different dope compositions and spinning conditions for producing “blank” PES UF fibers with suitable properties were investigated. PEO–PPO–PEO (Poly(ethylene glycol-block-poly(propylene glycol-block-poly(ethylene glycol, Pluronic® (Sigma-Aldrich, Milan, Italy was finally selected as the additive and a suitable dope composition was identified. After the detection of an appropriate dope composition and the optimization of the spinning parameters, PES-TiO2 HF was produced. The optimized composition was employed for preparing the mixed matrix HF loaded with TiO2 NPs. The effect of different TiO2 NP (0.3–1 wt % concentrations and bore fluid compositions on the fiber morphology and properties were explored. The morphology of the produced fibers was analyzed by Scanning Electron Microscopy (SEM. Fibers were further characterized by measuring: pore size diameters and thickness, porosity, and pure water permeability (PWP. The photocatalytic activity of the new membranes was also tested by UV light irradiation. The model “foulant” methylene blue (MB was used in order to prove the efficiency of the novel UF membrane for dye photo-degradation.

  5. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes

    KAUST Repository

    Duan, Jintang; Litwiller, Eric; Pinnau, Ingo

    2015-01-01

    osmosis membranes was systematically investigated. Four POSS materials (P-8Phenyl, P-8NH3Cl, P-8NH2 and P-1NH2) were introduced into the selective layer by physical blending or chemical fixation during standard interfacial polymerization. Water flux and Na

  6. Microscopy analysis of reconstituted COPII coat polymerization and Sec16 dynamics.

    Science.gov (United States)

    Iwasaki, Hirohiko; Yorimitsu, Tomohiro; Sato, Ken

    2017-09-01

    The COPII coat and the small GTPase Sar1 mediate protein export from the endoplasmic reticulum (ER) via specialized domains known as the ER exit sites. The peripheral ER protein Sec16 has been proposed to organize ER exit sites. However, it remains unclear how these molecules drive COPII coat polymerization. Here, we characterized the spatiotemporal relationships between the Saccharomyces cerevisiae COPII components during their polymerization by performing fluorescence microscopy of an artificial planar membrane. We demonstrated that Sar1 dissociates from the membrane shortly after the COPII coat recruitment, and Sar1 is then no longer required for the COPII coat to bind to the membrane. Furthermore, we found that Sec16 is incorporated within the COPII-cargo clusters, and that this is dependent on the Sar1 GTPase cycle. These data show how Sar1 drives the polymerization of COPII coat and how Sec16 is spatially distributed during COPII coat polymerization. © 2017. Published by The Company of Biologists Ltd.

  7. Tunable Nanocomposite Membranes for Water Remediation and Separations

    Science.gov (United States)

    Sierra, Sebastian Hernandez

    non-functionalized membrane. Then, throughout a double ion exchange of sodium/iron and a subsequent reduction, bimetallic Fe/Pd nanoparticles were synthesized in-situ. Similarly, it was possible to use the reacted accelerants of the redox polymerization to synthesize Fe0 nanoparticles. These hydrogel-membrane systems with Fe/Pd nanoparticles were studied throughout the reduction of trichloroethylene (TCE). This work has demonstrated an effective improvement in TCE reduction by the variation of the supporting membrane types and the functionalization (polymerization and nanoparticle synthesis) processes. The TCE normalized dechlorination rates (k sa) are 3 times greater and 8 times for hollow fiber and sponge-like flat sheet membranes, respectively, than previous studies. For membrane supported Fe/Pd nanoparticles by redox functionalization, the dechlorination rates are similar to previous works in flat sheet membranes; and for the redox polymerized hydrogel, the dechlorination rates are the highest results with 1.3 times greater than the rates of solution-phase nanoparticles and 10 times the rate values of the membranes. All supports showed nonsignificant nanoparticle loss (up to 1%). Up to 80% of reduction was achieved within 2 hours with chloride production near to stoichiometric values (3:1), demonstrating absence of intermediates. As an extension of the membrane functionalization, it was possible to immobilize Outer membrane protein F precursor (OmpF) from Escherichia coli within the PVDF membrane pore structure, using layer-by-layer (LbL) assembly of polyeletrolytes. This LbL technique allows to reuse the membranes numerous times, having reproducibility and greater selective rejections of uncharged (organic species) over charged solutes (small ions) than similar functionalized membranes without OmpF: 1.7 times and 2.0 times higher for Organic/CaCl2 and Organic/NaCl, respectively. Additionally, the permeability of OmpFmembranes is almost double of the non-OmpF: 2

  8. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    The cornerstone in this dissertation is made up by three individual assessments of the diversity in the macromolecular landscape that can be obtained by applying relatively few efficient chemical tools. The intention is to gain deeper knowledge on the chemical tuning of proton exchange membranes...... of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...... of control by ATRP and click chemistry enables a wide selection of polymer structures with the handles: degree of substitution (DS), polymerization and sulfonation, and blending....

  9. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.

    Science.gov (United States)

    Wang, Xuewei; Yang, Yangang; Li, Long; Sun, Mingshuang; Yin, Haogen; Qin, Wei

    2014-05-06

    The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) has great utility in bioanalysis such as peroxidase/peroxidase mimetic-based biosensing. In this paper, the behaviors of TMB oxidation intermediates/products in liquid/liquid biphasic systems have been investigated for the first time. The free radical, charge transfer complex, and diimine species generated by TMB oxidation are all positively charged under acidic and near-neutral conditions. Electron paramagnetic resonance and visible absorbance spectroscopy data demonstrate that these cationic species can be effectively transferred from an aqueous phase into a water-immiscible liquid phase functionalized by an appropriate cation exchanger. Accordingly, sensitive potential responses of TMB oxidation have been obtained on a cation exchanger-doped polymeric liquid membrane electrode under mildly acidic and near-neutral conditions. By using the membrane electrode responsive to TMB oxidations, two sensitive potentiometric biosensing schemes including the peroxidase-labeled sandwich immunoassay and G-quadruplex DNAzyme-based DNA hybridization assay have been developed. The obtained detection limits for the target antigen and DNA are 0.02 ng/mL and 0.1 nM, respectively. Coupled with other advantages such as low cost, high reliability, and ease of miniaturization and integration, the proposed polymeric liquid membrane electrode holds great promise as a facile and efficient transducer for TMB oxidation and related biosensing applications.

  10. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  11. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures

    Science.gov (United States)

    Iryani, D. A.; Wulandari, N. F.; Cindradewi, AW; Ginting, S. Br; Ernawati, E.; Hasanudin, U.

    2018-03-01

    Pervaporation of ethanol–water can be cost-competitive in the production of renewable biomass ethanol. For the purpose of improving the pervaporation performance of polymeric membranes, we prepared cellulose acetate (CA) filled Lampung Natural Zeolite (LNZ) membranes by incorporating LNZ into CA for pervaporation separation of ethanol-water mixtures. The characteristics and performance of these filled membranes in the varied ratio of CA:LNZ (30:0, 30:5, 30:10, 30: 20, 20:20 and 40:10) wt% were investigated. The prepared membranes were characterized for pervaporation membrane performance such as %water content and membrane swelling degree. Further, the permeation flux and selectivity of membrane were also observed. The results of investigation show that water content of membrane tends to increase with increase of LNZ content. However, the swelling degree of membrane decrease compared than that of CA control membrane. The permeation flux and the selectivity of membranes tend to increase continuously. The CA membrane with ratio of CA:LNZ 30:20 shows the highest selectivity of 80.42 with a permeation flux of 0.986 kg/(m2 h) and ethanol concentration of 99.08 wt%.

  12. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    Science.gov (United States)

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  13. A NEW APPROACH TO THE STUDY OF MUCOADHESIVENESS OF POLYMERIC MEMBRANES USING SILICONE DISCS.

    Science.gov (United States)

    Nowak, Karolina Maria; Szterk, Arkadiusz; Fiedor, Piotr; Bodek, Kazimiera Henryka

    2016-01-01

    The introduction of new test methods and the modification of existing ones are crucial for obtaining reliable results, which contributes to the development of innovative materials that may have clinical applications. Today, silicone is commonly used in medicine and the diversity of its applications are continually growing. The aim of this study is to evaluate the mucoadhesiveness of polymeric membranes by a method that modifies the existing test methods through the introduction of silicone discs. The matrices were designed for clinical application in the management of diseases within the oral cavity. The use of silicone discs allows reliable and reproducible results to be obtained, which allows us to make various tensometric measurements. In this study, different types of polymeric matrices were examined, as well as their crosslinking and the presence for the active pharmaceutical ingredient were compared to the pure dosage form. The lidocaine hydrochloride (Lid(HCl)) was used as a model active substance, due to its use in dentistry and clinical safety. The results were characterized by a high repeatability (RSD < 10.6%). The advantage of silicone material due to its mechanical strength, chemical and physical resistance, allowed a new test method using a texture analyzer to be proposed.

  14. Synthesis of nano-sized arsenic-imprinted polymer and its use as As3+ selective ionophore in a potentiometric membrane electrode: Part 1

    International Nuclear Information System (INIS)

    Alizadeh, Taher; Rashedi, Mariyam

    2014-01-01

    Highlights: • The first arsenic cation-selective membrane electrode was introduced. • A novel procedure was introduced for the preparation of As-imprinted polymer. • It was found that arsenic is recognized by the IIP as As 3+ species. • Nernstian response of 20.4 mV decade −1 and DL of 0.5 μM was obtained. - Abstract: In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate) 3 as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate) 3 . The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As 3+ by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade −1 ) to arsenic ion over a wide concentration range (7.0 × 10 −7 to 1.0 × 10 −1 mol L −1 ) with a lower detection limit of 5.0 × 10 −7 mol L −1 . Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples

  15. Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane.

    Science.gov (United States)

    Ibrahim, G P Syed; Isloor, Arun M; Inamuddin; Asiri, Abdullah M; Ismail, Norafiqah; Ismail, Ahmed Fauzi; Ashraf, Ghulam Md

    2017-11-21

    In this work, poly(MBAAm-co-SBMA) zwitterionic polymer nanoparticles were synthesized in one-step via distillation-precipitation polymerization (DPP) and were characterized. [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) as monomer and N, N'-methylene bis(acrylamide) (MBAAm) as cross-linker are used for the synthesis of nanoparticles. As  far as our knowledge, this is the first such report on the synthesis of poly(MBAAm-co-SBMA) nanoparticles via DPP. The newly synthesized nanoparticles were further employed for the surface modification of polysulfone (PSF) hollow fiber membranes for dye removal. The modified hollow fiber membrane exhibited the improved permeability (56 L/ m 2 h bar) and dye removal (>98% of Reactive Black 5 and >80.7% of Reactive orange 16) with the high permeation of salts. Therefore, the as-prepared membrane can have potential application in textile and industrial wastewater treatment.

  16. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.

    Science.gov (United States)

    Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong

    2012-12-21

    Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO(2) NPs). By employing the F-PBZ/SiO(2) NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N(2) adsorption method has confirmed the major contribution of SiO(2) NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.

  17. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  18. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    Science.gov (United States)

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  19. Increasing selectivity of a heterogeneous ion-exchange membrane

    Czech Academy of Sciences Publication Activity Database

    Křivčík, J.; Neděla, D.; Hadrava, J.; Brožová, Libuše

    2015-01-01

    Roč. 56, č. 12 (2015), s. 3160-3166 ISSN 1944-3994. [International Conference on Membrane and Electromembrane Processes - MELPRO 2014. Prague, 18.05.2014-21.05.2014] Institutional support: RVO:61389013 Keywords : ion-exchange membrane * selectivity * permselectivity Subject RIV: JP - Industrial Processing Impact factor: 1.272, year: 2015

  20. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  1. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  2. Functionalized membranes for environmental remediation and selective separation

    Science.gov (United States)

    Xiao, Li

    ) between UF and RO presents selectivity controlled by both steric and electrostatic repulsions, which are widely used to reject charged species, particularly multivalent ions. In this work, selective permeation of CaCl2 and high sucrose retention are obtained through the modification of nanofiltration membranes with lower charge compared to commercial nanofiltration membrane. The membrane module also shows high stability with constant water permeability in a long-term (two months) test. Extended Nernst-Planck equation were further used to evaluate the experimental results and it fits well. KEY WORDS: Functionalized Membrane, Dechlorination, Responsive, Tunable, Full-scale.

  3. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos, Vazquez De La Parra Luis Francisco

    2016-01-01

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  4. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  5. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    Science.gov (United States)

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  6. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  8. Neuronal Differentiation Modulated by Polymeric Membrane Properties.

    Science.gov (United States)

    Morelli, Sabrina; Piscioneri, Antonella; Drioli, Enrico; De Bartolo, Loredana

    2017-01-01

    In this study, different collagen-blend membranes were successfully constructed by blending collagen with chitosan (CHT) or poly(lactic-co-glycolic acid) (PLGA) to enhance their properties and thus create new biofunctional materials with great potential use for neuronal tissue engineering and regeneration. Collagen blending strongly affected membrane properties in the following ways: (i) it improved the surface hydrophilicity of both pure CHT and PLGA membranes, (ii) it reduced the stiffness of CHT membranes, but (iii) it did not modify the good mechanical properties of PLGA membranes. Then, we investigated the effect of the different collagen concentrations on the neuronal behavior of the membranes developed. Morphological observations, immunocytochemistry, and morphometric measures demonstrated that the membranes developed, especially CHT/Col30, PLGA, and PLGA/Col1, provided suitable microenvironments for neuronal growth owing to their enhanced properties. The most consistent neuronal differentiation was obtained in neurons cultured on PLGA-based membranes, where a well-developed neuronal network was achieved due to their improved mechanical properties. Our findings suggest that tensile strength and elongation at break are key material parameters that have potential influence on both axonal elongation and neuronal structure and organization, which are of fundamental importance for the maintenance of efficient neuronal growth. Hence, our study has provided new insights regarding the effects of membrane mechanical properties on neuronal behavior, and thus it may help to design and improve novel instructive biomaterials for neuronal tissue engineering. © 2017 S. Karger AG, Basel.

  9. Membrane selectivity and disordering mechanism of antimicrobial peptide protegrin-1

    Science.gov (United States)

    Ishitsuka, Yuji

    Protegrin-1 (PG-1) is a beta-sheet antimicrobial peptide (AMP), a class of peptides innate to various organisms and functions as a defense agent against harmful microorganisms by means of membrane disordering. Characteristic chemical and structural properties of AMPs allow selective interaction against invaders' cell membranes. Despite their enormous biomedical potential, progress towards developing them into therapeutic agents has been hampered by a lack of insight into their mechanism of action. AMP insertion assays using Langmuir monolayers reveal that both electrostatic properties of the lipid head group as well as the packing density of the lipid tail group play important roles in determining the membrane selectivity of AMPs. These results help elucidate how the AMP selectively targets the cell membrane of microorganisms over the cell membrane of the host. In addition, these results also explain the higher hemolytic ability of PG-1 against human red blood cells (RBCs) compared to the hemolytic ability of PG-1 against sheep and pig RBCs. Synchrotron X-ray reflectivity shows that PG-1 penetrates into the lipid layer. Grazing incidence X-ray diffraction and fluorescence microscopy indicate that the insertion of PG-1 disorders tail group packing. Membrane selectivity and insertion location information of AMPs with different primary sequence and secondary structure have been obtained by using a truncated version of PG-1: PC-17, and an alpha-helical AMP, LL-37, respectively. The similarity of the membrane disordering process across these various peptides motivated us to test the membrane disordering effect of molecules designed to mimic these peptides. Peptide-mimics based on meta-phenylene ethynylenes demonstrate similar membrane disordering effects, showing that the potency of AMPs is derived from their overall chemical and structural properties, rather than exact peptide sequence. Atomic force microscopy (AFM) was used to directly image first, the PG-1

  10. Selective Acylation Enhances Membrane Charge Sensitivity of the Antimicrobial Peptide Mastoparan-X

    DEFF Research Database (Denmark)

    Etzerodt, Thomas Povl; Henriksen, Jonas Rosager; Rasmussen, Palle

    2011-01-01

    and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared...... to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other...

  11. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane

    International Nuclear Information System (INIS)

    Taton, G; Lagrange, D; Conedera, V; Rossi, C; Renaud, L

    2013-01-01

    We have developed a new nanothermite based polymeric electro-thermal initiator for non-contact ignition of a propellant. A reactive Al/CuO multilayer nanothermite resides on a 100 µm thick SU-8/PET (polyethyleneterephtalate) membrane to insulate the reactive layer from the silicon bulk substrate. When current is supplied to the initiator, the chemical reaction Al+CuO occurs and sparkles are spread to a distance of several millimeters. A micro-manufacturing process for fabricating the initiator is presented and the electrical behaviors of the ignition elements are also investigated. The characteristics of the initiator made on a 100 µm thick SU-8/PET membrane were compared to two bulk electro-thermal initiators: one on a silicon and one on a Pyrex substrate. The PET devices give 100% of Al/CuO ignition success for an electrical current >250 mA. Glass based reactive initiators give 100% of Al/CuO ignition success for an electrical current >500 mA. Reactive initiators directly on silicon cannot initiate even with a 4 A current. At low currents (<1 A), the initiation time is two orders of magnitude longer for Pyrex initiator compared to those obtained for PET initiator technology. We also observed that, the Al/CuO thermite film on PET membrane reacts within 1 ms (sparkles duration) whereas it reacts within 4 ms on Pyrex. The thermite reaction is 40 times greater in intensity using the PET substrate in comparison to Pyrex. (paper)

  12. Dysprosium selective potentiometric membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2013-03-01

    A novel Dy(III) ion-selective PVC membrane sensor was made using a new synthesized organic compound, 3,4-diamino-N Prime -((pyridin-2-yl)methylene)benzohydrazide (L) as an excellent sensing element. The electrode showed a Nernstian slope of 19.8 {+-} 0.6 mV per decade in a wide concentration range of 1.0 Multiplication-Sign 10{sup -6}-1.0 Multiplication-Sign 10{sup -2} mol L{sup -1}, a detection limit of 5.5 Multiplication-Sign 10{sup -7} mol L{sup -1}, a short conditioning time, a fast response time (< 10 s), and high selectivity towards Dy(III) ion in contrast to other cations. The proposed sensor was successfully used as an indicator electrode in the potentiometric titration of Dy(III) ions with EDTA. The membrane sensor was also applied to the F{sup -} ion indirect determination of some mouth washing solutions and to the Dy{sup 3+} determination in binary mixtures. Highlights: Black-Right-Pointing-Pointer The novelty of this work is based on the high affinity of the ionophore toward the Dy{sup 3+} ions. Black-Right-Pointing-Pointer This technique is very simple, fast and inexpensive and it is not necessary to use sophisticated equipment. Black-Right-Pointing-Pointer The newly developed sensor is superior to the formerly reported Dy{sup 3+} sensors in terms of selectivity.

  13. Immobilization of myoglobin in sodium alginate composite membranes

    Directory of Open Access Journals (Sweden)

    Katia Cecília de Souza Figueiredo

    2015-06-01

    Full Text Available AbstractThe immobilization of myoglobin in sodium alginate films was investigated with the aim of evaluating the protein stability in an ionic polymeric matrix. Myoglobin was chosen due to the resemblance to each hemoglobin tetramer. Sodium alginate, being a natural polysaccharide, was selected as the polymeric matrix because of its chemical structure and film-forming ability. To improve the mechanical resistance of sodium alginate films, the polymer was deposited over the surface of a cellulose acetate support by means of ultrafiltration. The ionic crosslink of sodium alginate was investigated by calcium ions. Composite membrane characterization comprised water swelling tests, water flux, SEM images and UV-visible spectroscopy. The electrostatic interaction between the protein and the polysaccharide did not damage the UV-visible pattern of native myoglobin. A good affinity between sodium alginate and cellulose acetate was observed. The top layer of the dense composite membrane successfully immobilized Myoglobin, retaining the native UV-visible pattern for two months.

  14. Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor.

    Science.gov (United States)

    Silva, Ana F; Antunes, Sílvia; Saunders, Aaron; Freitas, Filomena; Vieira, Anabela; Galinha, Claudia F; Nielsen, Per H; Barreto Crespo, Maria Teresa; Carvalho, Gilda

    2016-10-01

    Membrane bioreactors (MBRs) are an advanced technology for wastewater treatment whose wide application has been hindered by rapid fouling of the membranes. MBRs can be operated with long sludge retention time (SRT), a crucial parameter impacting microbial selection in the reactor. This also affects filtration performance, since a major fouling agent are the extracellular polymeric substances (EPS). In this study, the impact of the SRT on the ecophysiology of the MBRs and, consequently, on membrane fouling was evaluated. A MBR was operated under a SRT of 60 days followed by a SRT of 20 days. A comprehensive analysis of the microbial community structure and EPS proteins and polysaccharide profiles of the mixed liquor and cake layer was carried out throughout both operation periods. The results of this study showed that the imposition of a shorter SRT led to a shift in the dominant bacterial populations. The mixed liquor and cake layer communities were very different, with Actinomycetales order standing out in the cake layer at SRT of 20 days. Overall, higher EPS concentrations (particularly proteins) were found at this SRT. Furthermore, EPS profiles were clearly affected by the SRT: it was possible to correlate a group of soluble EPS proteins with the SRT of 60 days, and a lower sludge age led to a lower diversity of polysaccharide sugar monomers, with an increase of glucose and galactose in the cake layer. This study improves our knowledge regarding the molecular reasons for fouling, which may contribute to improve MBR design and operation.

  15. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  16. Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach.

    Science.gov (United States)

    Krishnamoorthy, Kannan; Mahalingam, Manikandan

    2015-03-01

    The present study is aimed to select the suitable method for preparation of camptothecin loaded polymeric nanoparticles by utilizing the multi-criteria decision making method. Novel approaches of drug delivery by formulation using nanotechnology are revolutionizing the future of medicine. Recent years have witnessed unprecedented growth of research and application in the area of nanotechnology. Nanoparticles have become an important area of research in the field of drug delivery because they have the ability to deliver a wide range of drug to varying areas of body. Despite of extensive research and development, polymeric nanoparticles are frequently used to improve the therapeutic effect of drugs. A number of techniques are available for the preparation of polymeric nanoparticles. The Analytical Hierarchy Process (AHP) is a method for decision making, which are derived from individual judgements for qualitative factors, using the pair-wise comparison matrix. In AHP, a decision hierarchy is constructed with a goal, criteria and alternatives. The model uses three main criteria 1) Instrument, 2) Process and Output and 3) Cost. In addition, there are eight sub-criteria's as well as eight alternatives. Pair-wise comparison matrixes are used to obtain the overall priority weight and ranking for the selection of suitable method. Nanoprecipitation technique is the most suitable method for the preparation of camptothecin loaded polymeric nanoparticles with the highest overall priority weight of 0.297 CONCLUSION: In particular, the result indicates that the priority weights obtained from AHP could be defined as a multiple output for finding out the most suitable method for preparation of camptothecin loaded polymeric nanoparticles.

  17. Testing of Synthetic Biological Membranes for Forward Osmosis Applications

    Science.gov (United States)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan

    2016-01-01

    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  18. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  19. Preparation, Characterization and Permeation Behavior of Poly(methyl acrylate-Poly(dimethyl siloxane-Poly(methyl acrylate Block Copolymer/Poly(vinyl acetate Blend Membranes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Semsarzadeh

    2015-03-01

    Full Text Available Structure of polymeric materials is of the most important factors in determination of the characteristics and properties of the membranes. Various research and developments on polymeric membranes confirm the direct correlation between structure-properties of polymeric membranes. In this research, the structural outcome of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate/poly(vinyl acetate blend membranes and its relationship with gas permeation behavior of the blends were investigated. The flexible block copolymer of poly(methyl acrylate-poly(dimethyl siloxane-poly(methyl acrylate (PMA-PDMS-PMA was synthesized via atom transfer radical polymerization. Morphology and chemical structure of the synthesized block copolymer was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, gel permeation chromatography, X-ray diffraction analysis, differential scanning calorimetry and scanning electron microscopy. Blend membranes of PMA-PDMS-PMA and poly(vinyl acetate (PVAc were prepared by solution casting method in different compositions. By adding poly(vinyl acetate to PMA-PDMS-PMA block copolymer, the selectivity of the membranes for carbon dioxide/methane pair gases were increased by 55%. Fractional free volume (an indication of chain packing efficiency in blend membranes and dielectric constant (an indication of the molar volume and molar polarization of the blend membranes were obtained as the factors reflected the microstructural effect of PMA-PDMS-PMA and PVAc blend membranes. The efforts were directed toward expressing more precise structure-properties relationship of PMA-PDMS-PMA/PVAc blend membranes. The experimental permeability values of the blend membranes reported in this research were compared with the modified logarithmic model. The modified logarithmic model was evaluated for other blend membranes.

  20. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  1. BenzoDODA grafted polymeric resin—Plutonium selective solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Ruhela, R., E-mail: riteshr@barc.gov.in [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Panja, S., E-mail: surajit@barc.gov.in [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, A.K. [Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dhami, P.S.; Gandhi, P.M. [Fuel Reprocessing Division, Nuclear Fuels Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-11-15

    Highlights: • BenzoDODA grafted polymeric resin was synthesized and evaluated for sorption of Pu(IV). • Fast sorption kinetics for ‘Pu(IV)’. • Ease of back extraction of ‘Pu’ form loaded resin. • Ease of recyclability and fair stability in HNO{sub 3} medium. - Abstract: A new ligand grafted polymeric resin (BenzoDODA SDVB) was synthesized by covalently attaching plutonium selective ligand (BenzoDODA) on to styrene divinyl benzene (SDVB) polymer matrix. BenzoDODA SDVB resin was evaluated for separation and recovery of plutonium(IV) from nitric acid medium. Sorption of Pu(IV) was found to decrease with the increase in nitric acid concentration, with very small sorption above 7.0 M HNO{sub 3}. Sorption kinetics was fast enough to achieve the equilibrium within 60 min of contact where the kinetic data fitted well to pseudo-second-order model. Sorption isotherm data fitted well to Langmuir model suggesting chemical interaction between the BenzoDODA moiety and plutonium(IV) ions. Sorption studies with some of representative radionuclides of high level waste showed that BenzoDODA SDVB is selective and therefore could be a promising solid sorbent for separation and recovery of plutonium. Further, the theoretical calculations done on BenzoDODA SDVB resin suggested Pu(NO{sub 3}){sub 4}·BenzoDODA (1:1) sorbed complex conformed to generally observed square antiprism geometry of the plutonium complexes, with contributions from oxygen atoms of four nitrate ions as well as from four oxygen atoms present in BenzoDODA (two phenolic ether oxygen atoms and two carbonyl oxygen atoms of amidic moiety).

  2. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode.

    Science.gov (United States)

    Singh, Ashok K; Singh, Prerna; Bhattacharjee, G

    2009-12-15

    Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(1)) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L(2)) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co(2+) selective electrodes. The best performance was observed with the membranes having the composition L(2):PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L(2) was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7x10(-8)M with a Nernstian slope of 29.7 mV decade(-1) of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8x10(-9)M with a Nernstian slope of 29.5 mV decade(-1) of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co(2+) in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.

  3. Study on the thin film composite poly(piperazine-amide) nanofiltration membranes made of different polymeric substrates: Effect of operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misdan, Nurasyikin; Lau, Woei Jye; Ong, Chi Siang; Ismail, Ahmad Fauzi; Matsuura, Takeshi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    Three composite nanofiltration (NF) membranes made of different substrate materials--polysulfone (PSf), polyethersulfone (PES) and polyetherimide (PEI)--were successfully prepared by interfacial polymerization technique. Prior to filtration tests, the composite NF membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscope (XPS). It was observed that the surface properties of composite NF membranes were obviously altered with the use of different substrate materials. The separation performance of the prepared composite NF membranes was further evaluated by varying operating conditions, which included feed salt concentration and operating temperature. Experimental results showed that the water flux of all TFC membranes tended to decrease with increasing Na{sub 2}SO{sub 4} concentration in feed solution, due to the increase in feed osmotic pressure. Of the three TFC membranes studied, PSf-based membrane demonstrated the highest salt rejection but lowest water flux owing to its highest degree of polyamide cross-linking as shown in XPS data. With respect to thermal stability, PEI-based TFC membrane outperformed the rest, overcoming the trade-off effect between permeability and rejection when the feed solution temperature was gradually increased from 30 .deg. C to 80 .deg. C. In addition, the relatively smoother surface of hydrophilic PEI-based membrane when compared with PSf-based membrane was found to be less susceptible to BSA foulants, leading to lower flux decline. This is because smoother surface of polyamide layer would have minimum 'valley clogging,' which improves membrane anti-fouling resistance.

  4. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses.

    Science.gov (United States)

    Gonçalves, Flávia; de Moraes, Míriam Santos; Ferreira, Lorraine Braga; Carreira, Ana Cláudia Oliveira; Kossugue, Patrícia Mayumi; Boaro, Letícia Cristina Cidreira; Bentini, Ricardo; Garcia, Célia Regina da Silva; Sogayar, Mari Cleide; Arana-Chavez, Victor Elias; Catalani, Luiz Henrique

    2016-01-01

    Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.

  5. Biocompatibility of polypropylene non-woven fabric membrane via UV-induced graft polymerization of 2-acrylamido-2-methylpropane sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song Lingjie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao Jie; Yang Huawei; Jin Jing; Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-10-15

    This work described the graft polymerization of a sulfonic acid terminated monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), onto the surface of polypropylene non-woven (NWF PP) membrane by O{sub 2} plasma pretreatment and UV-induced photografting method. The chemical structure and composition of the modified surfaces were analyzed by FTIR-ATR and XPS, respectively. The wettability was investigated by water contact angle and equilibrium water adsorption. And the biocompatibility of the modified NWF PP membranes was evaluated by protein adsorption and platelet adhesion. It was found that the graft density increased with prolonging UV irradiation time and increasing AMPS concentration; the water contact angles of the membranes decreased from 124{sup o} to 26{sup o} with the increasing grafting density of poly(AMPS) from 0 to 884.2 {mu}g cm{sup -2}, while the equilibrium water adsorption raised from 5 wt% to 75 wt%; the protein absorption was effectively suppressed with the introduction of poly(AMPS) even at the low grafting density (132.4 {mu}g cm{sup -2}); the number of platelets adhering to the modified membrane was dramatically reduced when compared with that on its virgin surface. These results indicated that surface modification of NWF PP membrane with AMPS was a facile approach to construct biocompatible surface.

  6. Self-assembled Block Copolymer Membrane

    KAUST Repository

    Peinemann, Klaus-Viktor

    2012-12-20

    Embodiments of the invention include methods for the production of porous membranes. In certain aspects the methods are directed to producing polymeric porous membranes having a narrow pore size distribution.

  7. Self-assembled Block Copolymer Membrane

    KAUST Repository

    Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2012-01-01

    Embodiments of the invention include methods for the production of porous membranes. In certain aspects the methods are directed to producing polymeric porous membranes having a narrow pore size distribution.

  8. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  9. Measure of pore size in micro filtration polymeric membrane using ultrasonic technique and artificial neural networks

    International Nuclear Information System (INIS)

    Lucas, Carla de Souza

    2009-01-01

    This work presents a study of the pore size in micro filtration polymeric membranes, used in the nuclear area for the filtration of radioactive liquid effluent, in the residual water treatment of the petrochemical industry, in the electronic industry for the ultrapure water production for the manufacture of conductors and laundering of microcircuits and in many other processes of separation. Diverse processes for measures of pores sizes in membranes exist, amongst these, electronic microscopy, of bubble point and mercury intrusion porosimetry, however the majority of these uses destructive techniques, of high cost or great time of analysis. The proposal of this work is to measure so great of pore being used ultrasonic technique in the time domain of the frequency and artificial neural networks. A receiving/generator of ultrasonic pulses, a immersion transducer of 25 MHz was used, a tank of immersion and microporous membranes of pores sizes of 0,2 μm, 0,4 μm, 0,6 μm, 8 μm, 10 μm and 12 μm. The ultrasonic signals after to cover the membrane, come back to the transducer (emitting/receiving) bringing information of the interaction of the signal with the membranes. These signals had been used for the training of neural networks, and these had supplied the necessary precision the distinction of the same ones. Soon after, technique with the one of electronic microscopy of sweepings was made the comparison of this. The experiment showed very resulted next to the results gotten with the MEV, what it indicated that the studied technique is ideal for measure of pore size in membranes for being not destructive and of this form to be able to be used also on-line of production. (author)

  10. Direct Synthesis of Telechelic Polyethylene by Selective Insertion Polymerization

    KAUST Repository

    Jian, Zhongbao

    2016-10-14

    A single-step route to telechelic polyethylene (PE) is enabled by selective insertion polymerization. PdII-catalyzed copolymerization of ethylene and 2-vinylfuran (VF) generates α,ω-di-furan telechelic polyethylene. Orthogonally reactive exclusively in-chain anhydride groups are formed by terpolymerization with carbic anhydride. Combined experimental and theoretical DFT studies reveal the key for this direct approach to telechelics to be a match of the comonomers’ different electronics and bulk. Identified essential features of the comonomer are that it is an electron-rich olefin that forms an insertion product stabilized by an additional interaction, namely a π–η3 interaction for the case of VF.

  11. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    Science.gov (United States)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  12. Immobilization of tris(2 pyridyl methylamine in a PVC-Membrane Sensor and Characterization of the Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rezayi Majid

    2012-05-01

    Full Text Available Abstract Background Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor’s response depends on the ionophore and bonding between the ionophore and the target ion. Ionophores with molecule-sized dimensions containing cavities or semi-cavities can surround the target ion. The bond between the ionophore and target ion gives different selectivity and sensitivity toward the other ions. Therefore, ionophores with different binding strengths can be used in the sensor. Results In the present work, poly (vinyl chloride (PVC based membrane incorporating tris (2 pyridyl methylamine (tpm as an ionophore has been prepared and explored as a titanium(III selective sensor. Conclusions The strengths of the ion–ionophore (Ti(OH2+-tpm interactions and the role of ionophore on membrane were tested by various techniques such as elemental analysis, UV–vis, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and powder X-ray diffraction (XRD. All data approved the successful incorporation of organic group via covalent bond.

  13. Solutocapillary Convection Effects on Polymeric Membrane Morphology

    Science.gov (United States)

    Krantz, William B.; Todd, Paul W.; Kinagurthu, Sanjay

    1996-01-01

    Macro voids are undesirable large pores in membranes used for purification. They form when membranes are cast as thin films on a smooth surface by evaporating solvent (acetone) from a polymer solution. There are two un-tested hypotheses explaining the growth of macro voids. One states that diffusion of the non-solvent (water) is solely responsible, while the other states that solutocapillary convection is the primary cause of macro void growth. Solutocapillary convection is flow-caused by a concentration induced surface-tension gradient. Macrovoid growth in the former hypothesis is gravity independent, while in the latter it is opposed by gravity. To distinguish between these two hypotheses, experiments were designed to cast membranes in zero-gravity. A semi-automated apparatus was designed and built for casting membranes during the 20 secs of zero-g time available in parabolic aircraft flight such as NASA's KC-135. The phase changes were monitored optically, and membrane morphology was evaluated by scanning electron microscopy (SEM). These studies appear to be the first quantitative studies of membrane casting in micro-gravity which incorporate real-time data acquisition. Morphological studies of membranes cast at 0, 1, and 1.8 g revealed the presence of numerous, sparse and no macrovoids respectively. These results are consistent with the predictions of the solutocapillary hypothesis of macrovoid growth.

  14. [Evaluation of the Peusner's coefficients matrix for polymeric membrane and ternary non-electrolyte solutions].

    Science.gov (United States)

    Jasik-Slęzak, Jolanta; Slęzak-Prochazka, Izabella; Slęzak, Andrzej

    2014-01-01

    A system of network forms of Kedem-Katchalsky (K-K) equations for ternary non-electrolyte solutions is made of eight matrix equations containing Peusner's coefficients R(ij), L(ij), H(ij), W(ij), K(ij), N(ij), S(ij) or P(ij) (i, j ∈ {1, 2, 3}). The equations are the result of symmetric or hybrid transformation of the classic form of K-K equations by the use of methods of Peusner's network thermodynamics (PNT). Calculating concentration dependences of the determinant of Peusner's coefficients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) and P(ij) (i, j ∈ {1, 2, 3}). The material used in the experiment was a hemodialysis Nephrophan membrane with specified transport properties (L(p), σ, Ω) in aqueous glucose and ethanol solution. The method involved equations for determinants of the matrixes coefficients R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}). The objective of calculations were dependences of determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) within the conditions of solution homogeneity upon an average concentration of one component of solution in the membrane (C1) with a determined value of the second component (C2). The method of calculating the determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) is a new tool that may be applicable in studies on membrane transport. Calculations showed that the coefficients are sensitive to concentration and composition of solutions separated by a polymeric membrane.

  15. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  16. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  17. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  18. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  19. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  20. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-01-01

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  1. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  2. Study on low level radioactive wastewater treatment by inorganic membrane permeation combined with complexation

    International Nuclear Information System (INIS)

    Li Junfeng; Wang Jianlong; Bai Qinzhong

    2007-01-01

    Inorganic membranes exhibit greater mechanical durability in some operations than polymeric membranes. They do not suffer from the performance degradation that was resulted from compaction of the membrane structure under pressure or ageing. Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. Sodium poly-acrylic acid was selected as the complexing agent, the efficiency of inorganic membrane with cut-off 1kD, 3kD, 8kD assisted by sodium poly-acrylic acid of different molecular weight were compared. The removal efficiencies of nuclides such as strontium, cesium and cobalt by were compared. The flux and retention factors of different membrane system were compared. The impacts of complexation agent concentration on permeate flux retention factors were studied. The long term behaviours of the membrane system were also studied. Diatomite filter was selected as the pretreatment method, and the efficiency of diatomite filter for pretreatment was investigated also. (author)

  3. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  4. Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes

    Science.gov (United States)

    Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong

    A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.

  5. Exploring the structure-properties relationships of novel polyamide thin film composite membranes

    DEFF Research Database (Denmark)

    Briceño, Kelly; Javakhishvili, Irakli; Guo, Haofei

    Polysulfone (PSU) is a material widely used in the fabrication of membranes for ultrafiltration and as a support for nanofiltration and reverse osmosis membranes. Interfacial polymerization usually combines amine and acid chloride monomers for the fabrication of thin film composite membranes[1......] . However, only few publications describe it’s usage for the modification of supports for the fabrication of ultrafiltration membranes [2]. This research focuses on the modification of PSU supports to produce new ultrafiltration membranes. The advantages of interfacial polymerization in the fabrication...... of UF membranes includes: Negatively charged PSF surfaces that could be less prone to biofouling Scale up process for the modification of PSU. An alternative to costly and technically challenging processes as in situ interfacial polymerization [3]....

  6. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  7. Ceramic and polymeric devices for breast brachytherapy - Mammographic and CT response

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2009-01-01

    The present research investigates the radiological visibility of ceramic and polymeric devices implanted in breast phantom (in vitro) for future applications in brachytherapy treatments. The main research goal is to investigate the viability of monitoring ceramic and polymeric devices, in vitro based on simple methods of radiological diagnostic, maintaining the easiest access to the population, represented by the conventional X-ray and mammography. The methodology involves the processing of ceramic devices constituted by bioglasses of Sm, SmBa, Ho, HoBa and the production of polymeric devices, such as polymeric membranes incorporating Ho e HoBa. Contrast agent of Barium was introduced in the syntheses of those devices to improve the radiological visibility in breast equivalent-tissue (TE) phantom. The breast phantom is constituted of glandular, adipose and skin TE, reproducing a 5 cm compressed real breast. In the compressed breast phantom, all types of ceramic and polymeric devices were implanted side by side. Radiological images were generated through X-ray equipment, mammography and computerized tomography (TC), for the samples implanted in the compressed breast phantom. The results show that SmBa and HoBa seeds on breast phantom presented suitable radiological visibility, on all the radiological diagnostic methods. However, the X-rays radiological visibility of Sm seeds without contrast was discreet. On mammography and TC images, it was not possible to identify those seeds, because the same ones were degraded after two months immersed in the glandular TE, after placed on the phantom. The Ho seeds were identified on all radiological diagnostic images, although non contrast agent in its constitution was added. However, the holmium polymeric membranes in direct contact with TE did not show Xray radiological visibility. However, the polymeric membranes of HoBa in the same conditions presented efficient X-rays radiological response. For mammography and TC methods

  8. Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine

    KAUST Repository

    Chen, Dennis P.

    2012-10-02

    Perchlorate (ClO4 -) is a persistent contaminant found in drinking groundwater sources in the United States. Ion exchange (IX) with selective and disposable resins based on cross-linked styrene divinylbenzene (STY-DVB) beads is currently the most commonly utilized process for removing low concentrations of ClO4 - (10-100 ppb) from contaminated drinking water sources. However, due to the low exchange capacity of perchlorate-selective STY-DVB resins (∼0.5-0.8 eq/L), the overall cost becomes prohibitive when treating groundwater with higher concentration of ClO4 - (e.g., 100-1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine (PEI) beads obtained from an inverse suspension polymerization process. Batch and column studies show that our new PEI resin with mixed hexyl/ethyl quaternary ammonium chloride exchange sites can selectively extract trace amounts of ClO4 - from a makeup groundwater (to below detection limit) in the presence of competing ions. In addition, this resin has a strong-base exchange capacity of 1.4 eq/L, which is 1.75-2.33 times larger than those of commercial perchlorate-selective STY-DVB resins. The overall results of our studies suggest that branched PEI beads provide versatile and promising building blocks for the preparation of perchlorate-selective resins with high exchange capacity. © 2012 American Chemical Society.

  9. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  10. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  11. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  12. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  13. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    Science.gov (United States)

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  14. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  15. High performance thin-film composite forward osmosis membrane.

    Science.gov (United States)

    Yip, Ngai Yin; Tiraferri, Alberto; Phillip, William A; Schiffman, Jessica D; Elimelech, Menachem

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 mum) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m(2-)h(-1), while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution.

  16. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m2-h-1, while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution. © 2010 American Chemical Society.

  17. Conductor polymeric membranes with potential for application in PEM type fuel cells; Membranas polimericas condutoras com potencialidades para aplicacao em celulas a combustivel do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, Michel de Meireles; Sodre, Livia Farias; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil)

    2006-07-01

    In this work two series of membranes were prepared; they were based on hybrid organic-inorganic or composite materials and presented potentiality for application in Proton Exchange Membrane Fuel Cell, PEMFC. The polymeric phase was constituted of poly(dimethylsiloxane), PDMS, crosslinked with tetra ethoxysilane, TEOS, with a 70%/30% ratio. Phosphotungstic acid (PWA) or the sodium monododecylsulphate (MDS), as proton conductors, were added to the inorganic network, close to the gel point; the mixtures were transferred to a cast. The films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The membranes showed good properties, as flexibility, thermal and mechanical stability with potentiality to be used as conducting membranes in technological applications. (author)

  18. Removal of dyes from textile wastewater by using nanofiltration polyetherimide membrane

    Science.gov (United States)

    Karisma, Doni; Febrianto, Gabriel; Mangindaan, Dave

    2017-12-01

    Followed by rapid development of the textile industries since 19th century the dyeing technology is thriving ever since. However, its progress is followed by lack of responsibility and knowledge in treating the dye-containing wastewater. There are some emerging technologies in treating such kind of wastewater, where membrane technology is one of those technologies that has uniqueness in the performance of separating dyes from wastewater, accompanied with small amount of energy. The development of membrane technology is one of several eco-engineering developments for sustainability in water resource management. However, there are a lot of rooms for improvement for this membrane technology, especially for the application in treating textile wastewater in Indonesia. Based on the demand in Indonesia for clean water and further treatment of dye-containing wastewater, the purpose of this research is to fabricate nanofiltration (NF) membranes to accommodate those problems. Furthermore, the fabricated NF membrane will be modified by interfacial polymerization to impart a new selective layer on top of NF membrane to improve the performance of the separation of the dyes from dye-containing wastewater. This research was conducted into two phases of experiments. In the first phase the formulation of polymeric dope solution of PEI/Acetone/NMP (N-methyl-pyrollidone), using the variation of 15/65/20, 16/64/20, and 17/63/20. This research show that many areas still can be explored in textile wastewater treatment using membrane in Indonesia.

  19. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    Science.gov (United States)

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  1. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes.

    Science.gov (United States)

    Gugliuzza, Annarosa; Perrotta, Maria Luisa; Drioli, Enrico

    2016-05-16

    This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  2. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2016-05-01

    Full Text Available This work provides additional insights into the identification of operating conditions necessary to overcome a current limitation to the scale-up of the breath figure method, which is regarded as an outstanding manufacturing approach for structurally ordered porous films. The major restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of polymeric solutions are properly managed to generate honeycomb membranes with a long-range structurally ordered texture. Water uptake and dynamics are explored as chemical environments are changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation. In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in combination with alcohols at different chain length extents and a traditional polymer such as the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in the bulk of composite solutions are explored and examined in relation to competitive droplet nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric mixture. The experimental findings confirm the consistency of the approach and are expected to give propulsion to the commercially production of breath figures films shortly.

  3. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  4. Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics

    International Nuclear Information System (INIS)

    Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg

    2007-01-01

    The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors

  5. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  6. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.

    Science.gov (United States)

    Altintas, Cigdem; Keskin, Seda

    2017-11-11

    Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between 500-1000 m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.

  7. Incorporation of Graphene-Related Carbon Nanosheets in Membrane Fabrication for Water Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Jenny Lawler

    2016-12-01

    Full Text Available The minimization of the trade-off between the flux and the selectivity of membranes is a key area that researchers are continually working to optimise, particularly in the area of fabrication of novel membranes. Flux versus selectivity issues apply in many industrial applications of membranes, for example the unwanted diffusion of methanol in fuel cells, retention of valuable proteins in downstream processing of biopharmaceuticals, rejection of organic matter and micro-organisms in water treatment, or salt permeation in desalination. The incorporation of nanosheets within membrane structures can potentially lead to enhancements in such properties as the antifouling ability, hydrophilicy and permeability of membranes, with concomitant improvements in the flux/selectivity balance. Graphene nanosheets and derivatives such as graphene oxide and reduced graphene oxide have been investigated for this purpose, for example inclusion of nanosheets within the active layer of Reverse Osmosis or Nanofiltration membranes or the blending of nanosheets as fillers within Ultrafiltration membranes. This review summarizes the incorporation of graphene derivatives into polymeric membranes for water treatment with a focus on a number of industrial applications, including desalination and pharmaceutical removal, where enhancement of productivity and reduction in fouling characteristics have been afforded by appropriate incorporation of graphene derived nanosheets during membrane fabrication.

  8. Synthesis of nano-sized arsenic-imprinted polymer and its use as As{sup 3+} selective ionophore in a potentiometric membrane electrode: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: Alizadeh@uma.ac.ir; Rashedi, Mariyam

    2014-09-16

    Highlights: • The first arsenic cation-selective membrane electrode was introduced. • A novel procedure was introduced for the preparation of As-imprinted polymer. • It was found that arsenic is recognized by the IIP as As{sup 3+} species. • Nernstian response of 20.4 mV decade{sup −1} and DL of 0.5 μM was obtained. - Abstract: In this study, a new strategy was proposed for the preparation of As (III)-imprinted polymer by using arsenic (methacrylate){sub 3} as template. Precipitation polymerization was utilized to synthesize nano-sized As (III)-imprinted polymer. Methacrylic acid and ethylene glycol dimethacrylate were used as the functional monomer and cross-linking agent, respectively. In order to assembly functional monomers around As (III) ion, sodium arsenite and methacrylic acid were heated in the presence of hydroquinone, leading to arsenic (methacrylate){sub 3}. The nano-sized As (III) selective polymer was characterized by FT-IR and scanning electron microscopy techniques (SEM). It was demonstrated that arsenic was recognized as As{sup 3+} by the selective cavities of the synthesized IIP. Based on the prepared polymer, the first arsenic cation selective membrane electrode was introduced. Membrane electrode was constructed by dispersion of As (III)-imprinted polymer nanoparticles in poly(vinyl chloride), plasticized with di-nonylphthalate. The IIP-modified electrode exhibited a Nernstian response (20.4 ± 0.5 mV decade{sup −1}) to arsenic ion over a wide concentration range (7.0 × 10{sup −7} to 1.0 × 10{sup −1} mol L{sup −1}) with a lower detection limit of 5.0 × 10{sup −7} mol L{sup −1}. Unlike this, the non-imprinted polymer (NIP)-based membrane electrode was not sensitive to arsenic in aqueous solution. The selectivity of the developed sensor to As (III) was shown to be satisfactory. The sensor was used for arsenic determination in some real samples.

  9. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  10. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina

    2018-05-17

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  11. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    International Nuclear Information System (INIS)

    Rezaei, B.; Meghdadi, S.; Zarandi, R. Fazel

    2008-01-01

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(α-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf 4+ (Hafnium(IV)) over a wide concentration range (2.0 x 10 -7 to 1.0 x 10 -1 M) with the determination coefficient of 0.9966 and slope of 15.1 ± 0.1 mV decades -1 . The limit of detection is 1.9 x 10 -7 M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf 4+ ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf 4+ in solutions by standard addition method for real sample analysis

  12. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep; Barankova, Eva; Peinemann, Klaus-Viktor

    2015-01-01

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  13. Polymer supported ZIF-8 membranes by conversion of sputtered zinc oxide layers

    KAUST Repository

    Neelakanda, Pradeep

    2015-09-05

    ZIF-8 composite membranes were synthesized at room temperature from aqueous solution by a double-zinc-source method on polyacrylonitrile (PAN) porous supports. The support was coated with zinc oxide (ZnO) by magnetron sputtering prior to ZIF-8 growth to improve the nucleation as well as the adhesion between the ZIF-8 layer and support. By this method, we were able to grow a continuous, dense, very thin (900 nm) and defect free ZIF-8 layer on a polymeric support. The developed ZIF-8 membranes had a gas permeance of 1.23 x 10-7 mol m-2 sec-1 Pa-1 for hydrogen and a selectivity of 26 for hydrogen/propane gases which is 5 times higher than the Knudsen selectivity. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis were done to characterize the membranes.

  14. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  15. Metal-organic frameworks in mixed-matrix membranes for gas separation.

    Science.gov (United States)

    Tanh Jeazet, Harold B; Staudt, Claudia; Janiak, Christoph

    2012-12-14

    Mixed-matrix membranes (MMMs) with metal-organic frameworks (MOFs) as additives (fillers) exhibit enhanced gas permeabilities and possibly also selectivities when compared to the pure polymer. Polyimides (Matrimid®) and polysulfones are popular polymer matrices for MOF fillers. Presently investigated MOFs for MMMs include [Cu(SiF(6))(4,4'-BIPY)(2)], [Cu(3)(BTC)(2)(H(2)O)(3)] (HKUST-1, Cu-BTC), [Cu(BDC)(DMF)], [Zn(4)O(BDC)(3)] (MOF-5), [Zn(2-methylimidazolate)(2)] (ZIF-8), [Zn(purinate)(2)] (ZIF-20), [Zn(2-carboxyaldehyde imidazolate)(2)] (ZIF-90), Mn(HCOO)(2), [Al(BDC)(μ-OH)] (MIL-53(Al)), [Al(NH(2)-BDC)(μ-OH)] (NH(2)-MIL-53(Al)) and [Cr(3)O(BDC)(3)(F,OH)(H(2)O)(2)] (MIL-101) (4,4'-BIPY = 4,4'-bipyridine, BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, terephthalate). MOF particle adhesion to polyimide and polysulfone organic polymers does not represent a problem. MOF-polymer MMMs are investigated for the permeability of the single gases H(2), N(2), O(2), CH(4), CO(2) and of the gas mixtures O(2)/N(2), H(2)/CH(4), CO(2)/CH(4), H(2)/CO(2), CH(4)/N(2) and CO(2)/N(2) (preferentially permeating gas named first). Permeability increases can be traced to the MOF porosity. Since the porosity of MOFs can be tuned very precisely, which is not possible with polymeric material, MMMs offer the opportunity of significantly increasing the selectivity compared to the pure polymeric matrix. Additionally in most of the cases the permeability is increased for MMM membranes compared to the pure polymer. Addition of MOFs to polymers in MMMs easily yields performances similar to the best polymer membranes and gives higher selectivities than those reported to date for any pure MOF membrane for the same gas separation. MOF-polymer MMMs allow for easier synthesis and handability compared to pure MOF membranes.

  16. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    Science.gov (United States)

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM Membranes

    Science.gov (United States)

    Bissadi, Golnaz

    Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS). The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique. The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass

  18. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    Directory of Open Access Journals (Sweden)

    Maciej Janeczek

    2016-01-01

    Full Text Available Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  19. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  20. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  1. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Sahraoui

    2014-01-15

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  2. Elasto-plasticity in wrinkled polymerized lipid membranes

    KAUST Repository

    Chaieb, Saharoui

    2014-01-01

    Biomembranes shown to behave like elastic sheets, can also suffer plastic deformations. Neutron scattering experiments on partially polymerised wrinkled membranes revealed that when a critical degree of polymerisation is crossed, the wrinkled membranes do not resume their spherical shapes. Instead they remain wrinkled and rigid while their non-polymerised counterparts resume their spherical floppy shapes. The yield stress of these membranes, measured for the first time via the fractal dimension, is intimately related to the degree of polymerisation probably through a 2D disorder that quenches the lateral diffusion of the lipid molecules. This work might shed light on the physical reason behind the irreversible deformation of echinocytes, acanthocytes and malaria infected red blood cells.

  3. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    Science.gov (United States)

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  4. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  6. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  7. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  9. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  10. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents.

    Science.gov (United States)

    Sekizkardes, Ali K; Kusuma, Victor A; Dahe, Ganpat; Roth, Elliot A; Hill, Lawrence J; Marti, Anne; Macala, Megan; Venna, Surendar R; Hopkinson, David

    2016-09-27

    This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO 2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO 2 permeability (7200 Barrer) and selectivity over N 2 (15). The selected hybrid membrane was further tested for CO 2 separation using actual flue gas from a coal-fired power plant.

  12. Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior

    Science.gov (United States)

    Park, Ho Bum; Lee, Sun Yong; Lee, Young Moo

    2005-04-01

    Pyrolytic carbon membrane containing silica (C-SiO 2) is a new-class material for gas separation, and in the present work we will deal with it in view of the morphological changes arising from the difference in the molecular structure of the polymeric precursors. The silica embedded carbon membranes were fabricated by a predetermined pyrolysis step using imide-siloxane copolymers (PISs) that was synthesized from benzophenone tetracarboxylic dianhydrides (BTDA), 4,4'-oxydianiline (ODA), and amine-terminated polydimethylsiloxane (PDMS). To induce different morphologies at the same chemical composition, the copolymers were prepared using one-step (preferentially a random segmented copolymer) sand two-step polymerization (a block segmented copolymer) methods. The polymeric precursors and their pyrolytic C-SiO 2 membranes were analyzed using thermal analysis, atomic force microscopy, and transmission electron microscopy, etc. It was found that the C-SiO 2 membrane derived from the random PIS copolymer showed a micro-structure containing small well-dispersed silica domains, whereas the C-SiO 2 membrane from the block PIS copolymer exhibited a micro-structure containing large silica domains in the continuous carbon matrix. Eventually, the gas transport through these C-SiO 2 membranes was significantly affected by the morphological changes of the polymeric precursors.

  13. All-solid-state potassium-selective electrode using graphene as the solid contact

    DEFF Research Database (Denmark)

    Li, Fenghua; Ye, Junjin; Zhou, Min

    2012-01-01

    Graphene sheets are used for the first time to fabricate a new type of solid-contact ion-selective electrode (SC-ISE) as the intermediate layer between an ionophore-doped solvent polymeric membrane and a glassy carbon electrode. The new transducing layer was characterized by transmission electron...

  14. Membrane gas separation. January 1970-September 1989 (Citations from the NTIS data base). Report for January 1970-September 1989

    International Nuclear Information System (INIS)

    1989-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 100 citations, 18 of which are new entries to the previous edition.)

  15. Membrane gas separation. January 1970-September 1988 (Citations from the NTIS data base). Report for January 1970-September 1988

    International Nuclear Information System (INIS)

    1988-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 150 citations, 27 of which are new entries to the previous edition.)

  16. Modelling and essay or the polarization curve of a polymeric membrane fuel cell; Modelagem e ensaio da curva de polarizacao de uma celula a combustivel de membrana polimerica

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de; Xavier, Bruno Domont; Gatti, George Cassani; Ribeiro, Rodrigo Minguita [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Mecanica]. E-mails: silvioa@gmail.com; brunodomont@gmail.com; gatti_ufrj@yahoo.com.br; rminguita@yahoo.com.br; Furtado, Jose Geraldo de Melo [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil). Dept. de Tecnologias Especiais]. E-mail: furtado@cepel.br

    2006-07-01

    This paper describes the essays performed with a polymeric membrane fuel cell (PEMFC) at the test laboratories of the ELETROBRAS Electric Energy Research Center (CEPEL/ELETROBRAS) manufactured by the Eletrocell, which allows to study the influence of some functional parameters (voltage, current, mass and pressure fluxes)

  17. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Neelakandan, S.; Kanagaraj, P. [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India); Sabarathinam, R.M. [Functional Material Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Nagendran, A., E-mail: nagimmm@yahoo.com [PG & Research Department of Chemistry, Polymeric Materials Research Lab, Alagappa Government Arts College, Karaikudi 630003 (India)

    2015-12-30

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm{sup 3} s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10{sup −7} cm{sup 2} s{sup −1}, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10{sup 4} S cm{sup −3} s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  18. Polypyrrole layered SPEES/TPA proton exchange membrane for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Neelakandan, S.; Kanagaraj, P.; Sabarathinam, R.M.; Nagendran, A.

    2015-01-01

    Graphical abstract: - Highlights: • A series of Ppy layered SPEES/TPA composite membranes were prepared. • SPEES/TPA-Ppy hybrid membranes displayed efficient methanol resistance than Nafion 117. • SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity of 2.86 × 104 S cm"3 s. • Increasing Ppy layer on membrane surface reduces the leaching out of tungstophosphoric acid. - Abstract: Hybrid membranes based on sulfonated poly(1,4-phenylene ether ether sulfone) (SPEES)/tungstophosphoric acid (TPA) were prepared. SPEES/TPA membrane surfaces were modified with polypyrrole (Ppy) by in situ polymerization method to reduce the TPA leaching. The morphology and electrochemical property of the surface coated membranes were studied by SEM, AFM, water uptake, ion exchange capacity, proton conductivity, methanol permeability and tensile strength. The water uptake and the swelling ratio of the surface coated membranes decreased with increasing the Ppy layer. The surface roughness of the hybrid membrane was decreased with an increase in Ppy layer on the membrane surface. The methanol permeability of SPEES/TPA-Ppy4 hybrid membrane was significantly suppressed and found to be 2.1 × 10"−"7 cm"2 s"−"1, which is 1.9 times lower than pristine SPEES membrane. The SPEES/TPA-Ppy4 membrane exhibits highest relative selectivity (2.86 × 10"4 S cm"−"3 s) than the other membrane with low TPA leaching. The tensile strength of hybrid membranes was improved with the introduction of Ppy layer. Combining their lower swelling ratio, high thermal stability and selectivity, SPEES/TPA-Ppy4 membranes could be a promising material as PEM for DMFC applications.

  19. Autocatalytic polymerization generates persistent random walk of crawling cells.

    Science.gov (United States)

    Sambeth, R; Baumgaertner, A

    2001-05-28

    The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.

  20. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  1. Method of Making Reaction Induced Phase Separation Membranes and Uses Thereof

    KAUST Repository

    Peinemann, Klaus-Viktor; Aburabie, Jamaliah Hani; Villalobos, Luis Francisco

    2017-01-01

    Provided herein are methods of making asymmetric membranes comprising a first layer and a second layer. The methods include preparing a polymeric solution comprising one or more polymers, casting the polymeric solution to form a polymeric film

  2. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  3. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    International Nuclear Information System (INIS)

    Singh, Hukum

    2011-01-01

    Polymethylmethacrylate—graft—polybisphenol—A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The graft co-polymerization of methylmethacrylate (0.036 mol · lit −1 ) onto polybisphenol—A-carbonate (0.5 g) in the presence of a redox couple formed from potassium persulphate (40 mol · lit −1 ) and thio-urea (30 mmol · lit −1 ) in aqueous nitric acid (0.18 M, 100 ml) in air at (45±2) °C for 3.0 h. Condensation of (PMMA-G-PC) with N- [p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH). The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH). In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  5. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  6. Synthesis of Nanogels via Cell Membrane-Templated Polymerization.

    Science.gov (United States)

    Zhang, Jianhua; Gao, Weiwei; Fang, Ronnie H; Dong, Anjie; Zhang, Liangfang

    2015-09-09

    The synthesis of biomimetic hydrogel nanoparticles coated with a natural cell membrane is described. Compared to the existing strategy of wrapping cell membranes onto pre-formed nanoparticle substrates, this new approach forms the cell membrane-derived vesicles first, followed by growing nanoparticle cores in situ. It adds significant controllability over the nanoparticle properties and opens unique opportunities for a broad range of biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    KAUST Repository

    Almaythalony, Bassem

    2015-02-11

    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal crystallization method. The absence of pinhole defects in the film was confirmed and supported by the occurrence of quantifiable time-lags, for all studied gases, during constant volume/variable pressure permeation tests. For both pure and mixed gas feeds, the sod-ZMOF-1 membrane exhibits favorable permeation selectivity toward carbon dioxide over relevant industrial gases such as H2, N2, and CH4, and it is mainly governed by favorable CO2 adsorption.

  8. Manufacturing microporous membrane by polymerisation

    International Nuclear Information System (INIS)

    Tanny, G.B.

    1984-01-01

    The starting materials for the practice of the present invention are (1) one or more organic monomers or oligomers which upon irradiation very rapidly undergo a polymerization reaction to form a solid polymer; and (2) a liquid vehicle in which the one or more organic monomers or oligomers are soluble but in which the polymer formed is insoluble. For the manufacture of microporous membrane in accordance with the invention the monomers or oligomers are dissolved in the liquid vehicle, the resulting solution is formed into a thin layer, and the thin layer of the solution is then irradiated as with ultraviolet or electron beam radiation whereupon the rapid polymerization reaction immediately ensues and the polymer formed immediately segregates from the vehicle thereby resulting in microporous membrane from which the vehicle can be removed as by evaporation or washing. Because the radiation-induced polymerization reaction and the segregation of the polymer formed are so rapid, the membrane formed has cells and communications therebetween of very small dimensions thereby providing the microporous structure. Where ultra-violet radiation is used the solution also includes a photo-initiator. (author)

  9. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  10. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  11. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  12. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  13. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO

    KAUST Repository

    Gong, Dirong; Jia, Xiaoyu; Wang, Baolin; Zhang, Xuequan; Huang, Kuo-Wei

    2014-01-01

    Tridentate chromium complexes (Cr1-Cr7) incorporated with symmetrical pincer ligand bis(arylimino)pyridine and bis(pyrzaolyl)pyridine have been synthesized and characterized by elemental analyis, FT-IR as well as ESI-MS. X-ray diffraction reveals solids-state structures of Cr2, Cr4 and Cr6 all adopt pseudo-octahedral coordination environment with respect to metal center. All complexes have been tested in stereoregulated polymerization of butadiene under various polymerization conditions. The trans-1,4 and cis-1,4 enchainment of resultant polymer are found to be dependent on the structure of ligand and amount of activator used. Under the optimized condition, free ortho-substitutes Cr catalysts Cr1, Cr3, Cr4 and Cr6 are capable of initiating high trans-1,4 selectivity (trans-1,4: 89.2%-92.0%) with good polymer yields (71.5%-78.0%), while counterparts with ortho-positioned alkyl groups Cr2, Cr5 and Cr7 display mixed selectivities with moderate polymer yields. The sterical effect of ligand and amount of MMAO on the catalytic performance, in particular, the stereoselectivity and polymer yield, has been also elucidated by conjugated diene polymerization mechanism. © 2014 Elsevier B.V. All rights reserved.

  14. Trans-1,4 selective polymerization of 1,3-butadiene with symmetry pincer chromium complexes activated by MMAO

    KAUST Repository

    Gong, Dirong

    2014-09-01

    Tridentate chromium complexes (Cr1-Cr7) incorporated with symmetrical pincer ligand bis(arylimino)pyridine and bis(pyrzaolyl)pyridine have been synthesized and characterized by elemental analyis, FT-IR as well as ESI-MS. X-ray diffraction reveals solids-state structures of Cr2, Cr4 and Cr6 all adopt pseudo-octahedral coordination environment with respect to metal center. All complexes have been tested in stereoregulated polymerization of butadiene under various polymerization conditions. The trans-1,4 and cis-1,4 enchainment of resultant polymer are found to be dependent on the structure of ligand and amount of activator used. Under the optimized condition, free ortho-substitutes Cr catalysts Cr1, Cr3, Cr4 and Cr6 are capable of initiating high trans-1,4 selectivity (trans-1,4: 89.2%-92.0%) with good polymer yields (71.5%-78.0%), while counterparts with ortho-positioned alkyl groups Cr2, Cr5 and Cr7 display mixed selectivities with moderate polymer yields. The sterical effect of ligand and amount of MMAO on the catalytic performance, in particular, the stereoselectivity and polymer yield, has been also elucidated by conjugated diene polymerization mechanism. © 2014 Elsevier B.V. All rights reserved.

  15. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    International Nuclear Information System (INIS)

    Li, Peiyuan; Yang, Fang; Li, Xiangcheng; He, Chunling; Su, Wei; Chen, Jinhao; Huo, Lini; Chen, Rui; Lu, Chensheng; Liang, Lifang

    2013-01-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  16. Site-selective metallization of polymeric substrates by the hyperbranched polymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peiyuan, E-mail: lipearpear@163.com [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Yang, Fang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Xiangcheng [School of Computer, Electronics and Information, Guangxi University, Nanning 530001 (China); He, Chunling [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Su, Wei, E-mail: suwmail@163.com [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Huo, Lini; Chen, Rui; Lu, Chensheng [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-09-01

    We demonstrate a simple, cost-effective and universal technique for the fabrication of copper circuit pattern on flexible polymeric substrate. This method relies on a ternary polyethylenimine-poly(acrylic acid)-substrate film incorporating palladium catalysts, which are used as adhesive interlayers for the copper metallization of flexible polymeric substrates. We demonstrated the fabrication of patterned copper films on a variety of flexible polymers with minimum feature sizes of 200 μm. And the resulting copper circuit showed strong adhesion with underlying flexible polymeric substrates. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM and SEM. The direct patterning of metallic circuit on flexible polymeric substrate indicates great potential for the use in electronics industry.

  17. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  18. Contribution to the study of fluoride dosing by using a membrane selective electrode

    International Nuclear Information System (INIS)

    Rivas, Jean de

    1972-01-01

    As the method of dosing fluoride ions by precipitation with lead fluorochloride is not very satisfying, the author reports the study of a new process for the dosing of the fluorine ion by using a selective electrode. After some generalities on selective electrodes (principle, types, operation principle) and some recalls and definitions (Galvani and Volta potential, stability constants of complexes, principles of diffusion in solids), the author reports the study of the diffusion potential in glass membranes, the study of the membrane potential, and the study of the ion exchange equilibrium. He presents methods of calculation of selectivity coefficients of membrane electrodes, and the reports experiments performed in laboratory

  19. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    Science.gov (United States)

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  20. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N.; Luonsi, A.; Levaenen, E.; Maentylae, T.; Vilen, J. [Haemeen ympaeristoekeskus, Tampere (Finland)

    1998-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  1. Ceramic membrane in production of recycled water; Keraamikalvo uusioveden valmistuksessa - EKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, N; Luonsi, A; Levaenen, E; Maentylae, T; Vilen, J [Haemeen ympaeristoekeskus, Tampere (Finland)

    1999-12-31

    Applicability of ceramic ultrafiltration membrane modifications were studied with laboratory units to purify clear filtrate and biologically treated combined wastewater from high quality board manufacturing process for reuse. Also performance of polymeric membrane and ceramic membrane was compared. The performance of the membrane filtration cell, developed according to requirements of the fixed dimensions of ceramic membrane was compared with the performance of the cross-rotational commercial test unit (CR-filter) of polymeric membranes. The quality of ultrafiltration permeate, namely suspended solids, turbidity and colour, was better than the quality of lake water used in the mill. The permeate fluxes were in the range of 60-75 l/m{sup 2}h. The fouling layer primarily controlled the flux and the retention, leaving the effects of surface modifications as the secondary function. The flux was slightly higher with the biologically treated wastewater. Differences in membrane material and pore size had an effect on the cleaning ability of the membranes. The polymeric membrane and the membrane with smaller pore size were easier to clean. Tests with the CR-filter showed that the rotor increases shear forces, reduces the filtration resistance and thus increases the flux compared to the cell for ceramic membranes where the increase of shear forces can be done by increasing the flow velocities. (orig.)

  2. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald

    2015-12-01

    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  3. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    Science.gov (United States)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  4. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    International Nuclear Information System (INIS)

    Bozzi, Annick; Chapiro, Adolphe

    1988-01-01

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60 0 C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and P' a small fragment, and on the other hand trapped PO 2 sup(·) radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy. (author)

  5. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  6. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes

    KAUST Repository

    Duan, Jintang

    2015-01-01

    The application of nanotechnology to thin-film nanocomposites (TFN) is a new route to enhance membrane performance in water desalination. Here, the potential of polyhedral oligomeric silsesquioxane (POSS) as the nanofiller in polyamide (PA) reverse osmosis membranes was systematically investigated. Four POSS materials (P-8Phenyl, P-8NH3Cl, P-8NH2 and P-1NH2) were introduced into the selective layer by physical blending or chemical fixation during standard interfacial polymerization. Water flux and NaCl rejection were measured with 2000ppm NaCl solution under 15.5bar pressure, and SEM and TEM images of membrane selective layers were obtained. Membranes prepared without POSS showed water flux of 20.0±0.5L/m2·h and salt rejection of 98.0±0.2%. TFN membranes prepared with 0.4% (w/v) P-8Phenyl in the organic phase showed a 65% increase in water flux compared to the pristine PA membrane while maintaining high salt rejection. The selective layer of this membrane maintained the typical ridge-and-valley structure of aromatic PA. Results with P-8NH3Cl and P-8NH2 added to the organic phase were similar. TFN membranes prepared with monoamine P-1NH2 in the organic phase had poor water flux of 3.2L/m2·h, a smooth and more hydrophobic surface, and a much thicker (~400nm) selective layer. One of the four POSS compounds studied, P-8NH3Cl, is sufficiently soluble in water for incorporation into the selective layer via the aqueous phase. Membranes were prepared with P-8NH3Cl in the aqueous phase at varying reaction time, loading, and additive (triethylamine) concentration. With these parameters optimized, water flux increased to 35.4L/m2·h.

  7. Polymeric membranes obtained from S-PEEK for application in PEM fuel cells; Caracterizacao de membranas polimericas obtidas a partir dos S-PEEK para aplicacao em celulas combustiveis do tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Ednardo G.; Fiuza, Raildo A.; Catao, Ronei S.; Jose, Nadia M.; Boaventura, Jaime S. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica], e-mail: ednardobarreto@yahoo.com.br, e-mail: raildofiuza@gmail.com, e-mail: roneicatao@ig.com.br, e-mail: nadia@ufba.br, e-mail: bventura@ufba.br; Pepe, Yuri [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Fisica

    2007-07-01

    This work had the objective to develop and to characterize S-PEEK membranes (sulfonated poly ether ether ketone) through chemical and electrochemical analyses. Conductivity test in function of the frequency and tension had been carried through; as well as, the open circuit tension of a fuel cell using the S-PEEK as electrolyte. Additional tests included TGA (Thermogravimetric Analysis), water absorption test, DSC (Differential Scanning Calorimetry), as tools to characterize conducting, thermal and mechanical proprieties of polymeric membrane. (author)

  8. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity

    KAUST Repository

    Swaidan, Raja; Ma, Xiaohua; Litwiller, Eric; Pinnau, Ingo

    2013-01-01

    Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving

  9. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Bajraktari, Niada

    Membrane processes have in recent years found increasing uses in several sectors where separation of one or more components from a solvent, typically water, is required. The most widespread types of membranes are polymeric and pressure driven, but the high pressures that are required results...... consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...

  10. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    Directory of Open Access Journals (Sweden)

    Madhavan Karunakaran

    2017-07-01

    Full Text Available In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol methyl ether methacrylate (PAN-r-PEGMA copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44–56 kDa. We were able to fabricate thin film composite (TFC membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM and atomic force microscopy (AFM were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32–1.42 μm. The resulting composite membrane has CO2 a permeance of 1.37 × 10−1 m3/m2·h·bar and an ideal CO2/N2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N2 > CO2/CH4 > CO2/H2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  11. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    KAUST Repository

    Karunakaran, Madhavan

    2017-07-06

    In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol) methyl ether methacrylate (PAN-r-PEGMA) copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44-56 kDa. We were able to fabricate thin film composite (TFC) membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32-1.42 mu m. The resulting composite membrane has CO2 a permeance of 1.37 x 10(-1) m(3)/m(2).h.bar and an ideal CO2/N-2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N-2 > CO2/CH4 > CO2/H-2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  12. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater

    Science.gov (United States)

    Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei

    2015-01-01

    Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014

  13. Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingmei Sun; Jiangxiu Rong; Lifeng Dai; Baoshan Liu; Wenting Zhu

    2011-01-01

    Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR).Control of membrane foulin can extend the membrane life and reduce water treatment cost effectively.A pilot scale anoxic/aerobic-membrane bioreactor (A/O MBR,40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin,China.Impact factors including mixed liquid sludge suspension (MLSS),sludge viscosity (μ),microorganisms,extracellular polymeric substances (EPS),aeration intensity and suction/suspended time on membrane fouling and pollution control were studied.The relationships among various factors associated with membrane fouling were analyzed.Results showed that there was a positive correlation among MLSS,sludge viscosity and trans-membrane pressure (TMP).Considering water treatment efficiency and stable operation of the membrane module,MLSS of 5 g/L was suggested for the process.There was a same trend among EPS,sludge viscosity and TMP.Numbers and species of microorganisms affected membrane fouling.Either too high or too low aeration intensity was not conducive to membrane fouling control.Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process.A long suction time caused a rapid increase in membrane resistance.However,long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface.The suction/suspended time of 12 min/3 min was selected for the process.The interaction of various environmental factors and operation conditions must be considered synthetically.

  14. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers

    KAUST Repository

    Li, Tao

    2013-01-01

    Mixed matrix materials made from selective inorganic fillers and polymers are very attractive for the manufacturing of gas separation membranes. But only few of these materials could be manufactured into high-performance asymmetric or composite membranes. We report here the first mixed matrix composite membrane made of commercially available poly (amide-b-ethylene oxide) (Pebax®1657, Arkema) mixed with the nano-sized zeolitic imidazole framework ZIF-7. This hybrid material has been successfully deposited as a thin layer (less than 1μm) on a porous polyacrylonitrile (PAN) support. An intermediate gutter layer of PTMSP was applied to serve as a flat and smooth surface for coating to avoid polymer penetration into the porous support. Key features of this work are the preparation and use of ultra-small ZIF-7 nano-particles (around 30-35nm) and the membrane processability of Pebax®1657. SEM pictures show that excellent adhesion and almost ideal morphology between the two phases has been obtained simply by mixing the as-synthesized ZIF-7 suspension into the Pebax®1657 dope, and no voids or clusters can be observed. The performance of the composite membrane is characterized by single gas permeation measurement of CO2, N2 and CH4. Both, permeability (PCO2 up to 145barrer) and gas selectivity (CO2/N2 up to 97 and CO2/CH4 up to 30) can be increased at low ZIF- loading. The CO2/CH4 selectivity can be further increased to 44 with the filler loading of 34wt%, but the permeability is reduced compared to the pure Pebax®1657 membrane. Polymer chain rigidification at high filler loading is supposed to be a reason for the reduced permeability. The composite membranes prepared in this work show better performance in terms of permeance and selectivity when compared with asymmetric mixed matrix membranes described in the recent literature. Overall, the ZIF 7/Pebax mixed matrix membranes show a high performance for CO2 separation from methane and other gas streams. They are easy to

  15. Synthesis and Characterization of Molecularly Imprinted Polymer Membrane for the Removal of 2,4-Dinitrophenol

    Directory of Open Access Journals (Sweden)

    Md. Jelas Haron

    2013-02-01

    Full Text Available Molecularly imprinted polymers (MIPs were prepared by bulk polymerization in acetonitrile using 2,4-dinitrophenol, acrylamide, ethylene glycol dimethacrylate, and benzoyl peroxide, as the template, functional monomer, cross-linker, and initiator, respectively. The MIP membrane was prepared by hybridization of MIP particles with cellulose acetate (CA and polystyrene (PS after being ground and sieved. The prepared MIP membrane was characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters studied for the removal of 2,4-dinitrophenol included the effect of pH, sorption kinetics, and the selectivity of the MIP membrane. Maximum sorption of 2,4-nitrophenol by the fabricated CA membrane with MIP (CA-MIP and the PS membrane with MIP (PS-MIP was observed at pH 7.0 and pH 5.0, respectively. The sorption of 2,4-dinitrophenol by CA-MIP and PS-MIP followed a pseudo–second-order kinetic model. For a selectivity study, 2,4-dichlorophenol, 3-chlorophenol, and phenol were selected as potential interferences. The sorption capability of CA-MIP and PS-MIP towards 2,4-dinitrophenol was observed to be higher than that of 2,4-dichlorophenol, 3-chlorophenol, or phenol.

  16. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes

    KAUST Repository

    Puspasari, Tiara

    2016-08-30

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m−2 h−1 bar−1 when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5–3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months.

  17. Characterization of the proton binding sites of extracellular polymeric substances in an anaerobic membrane bioreactor.

    Science.gov (United States)

    Liu, Yi; Chang, Sheng; Defersha, Fantahun M

    2015-07-01

    This paper focuses on the characterization of the chemical compositions and acidic constants of the extracellular polymeric substances (EPSs) in an anaerobic membrane bioreactor treating synthetic brewery wastewater by using chemical analysis, linear programming analysis (LPA) of titration data, and FT-IR analysis. The linear programming analysis of titration data revealed that the EPSs have proton binding sites with pKa values from pKa ≤ 6, between 6 and 7, and approximately 9.8. The strong acidic sites (pKa ≤ 6) and some weak acidic sites (7.5 membrane filtration. In addition, the FT-IR analysis confirmed the presence of proteins, carbohydrates, nucleic acids, and lipids in the EPS samples. Based on the FT-IR analysis and the main chemical functional groups at the bacterial cell surfaces, the identified proton binding sites were related to carboxyl, phosphate, and hydroxyl/amine groups with pKa values of 4.6 ± 0.7, 6.6 ± 0.01, and 9.7 ± 0.1, respectively, with the corresponding respective intensities of 0.31 ± 0.05, 0.96 ± 0.3, and 1.53 ± 0.3 mmole/g-EPS. The pKa values and intensities of the proton binding sites are the fundamental molecular properties of EPSs that affect the EPS charge, molecular interactions, and metal complexation characteristics. Determination of such properties can advance Derjaguin-Landau-Verwey-Overbeek (DLVO)-based concentration polarization modeling, facilitate the estimation of the osmotic pressure of the EPS concentration polarization layers, and lead to a deeper understanding of the role of metal complexation in membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association.

    Science.gov (United States)

    Zhang, Wenting; Zheng, Wenjie; Toh, Yukimatsu; Betancourt-Solis, Miguel A; Tu, Jiagang; Fan, Yanlin; Vakharia, Vikram N; Liu, Jun; McNew, James A; Jin, Meilin; Tao, Yizhi J

    2017-08-08

    Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.

  19. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  20. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity

    KAUST Repository

    Swaidan, Raja

    2013-11-01

    Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. © 2013 Elsevier B.V.

  1. Salt Rejection of Non-Ionic Polymeric Membranes

    DEFF Research Database (Denmark)

    Bo, P.; Stannett, V.

    1976-01-01

    A modified solution-diffusion model for the description of salt and water transport through homogeneous membranes is introduced. It is compared with the current solution-diffusion model and the combined flow-diffusion model for the description of transport under reverse osmosis conditions....... The advantage of the modified description over the current solution-diffusion model is the inclusion of a salt-water coupling transport coefficient which allows the description to be extended to membranes of high water permeability (high water content). The advantage of the modified solution-diffusion model...

  2. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  3. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-01-01

    polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures

  4. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  5. Polymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride

    Directory of Open Access Journals (Sweden)

    Sahar Mohamaddoust Aliabadi

    2015-07-01

    Full Text Available Objective(s: Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer matrix. Materials and Methods: These nanoparticles were made of the copolymer poly (N-isopropylacrylamide-co-methaçrylic acid by an aqueous dispersion polymerization process and are responsible for dual sensitivity to temperature and pH. Morphology study with SEM, swelling behavior with Dynamic Light Scattering Technique, in vitro drug release behavior with side-by-side Diffusion Cells were also investigated in this paper. Doxorubicin hydrochloride was used as a model solute. Results:The study on the release of doxorubicin hydrochloride showed that the release rate was higher at pH 5 than pH 7.4, increased with the increase of temperature. Nevertheless, ionic strength only poses a minor direct effect at higher pH. Conclusion:Such system may be potentially used as a tumor-targeting doxorubicin hydrochloride delivery in the body.

  6. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine as a neutral carrier

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, B. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: rezaei@cc.iut.ac.ir; Meghdadi, S.; Zarandi, R. Fazel [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis({alpha}-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf{sup 4+} (Hafnium(IV)) over a wide concentration range (2.0 x 10{sup -7} to 1.0 x 10{sup -1} M) with the determination coefficient of 0.9966 and slope of 15.1 {+-} 0.1 mV decades{sup -1}. The limit of detection is 1.9 x 10{sup -7} M. The electrode has a fast response time of 18 s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf{sup 4+} ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf{sup 4+} in solutions by standard addition method for real sample analysis.

  7. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  8. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  9. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    Science.gov (United States)

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  10. Separations using biological carriers immobilized in porous polymeric and sol-gel template synthesized nanotubular membranes

    Science.gov (United States)

    Lakshmi, Brinda B.

    1998-12-01

    The overall goal of the dissertation was to use immobilized biological carriers in membranes to separate compounds as challenging as enantiomers. The membranes were prepared by a process called 'template synthesis'. Template synthesis has been used to synthesize semiconductor nanostructures and also membranes which do the enantioseparation by a process called facilitated transport. The immobilized proteins act as carriers facilitating the transport of the substrate molecules through the membrane. The apoenzymes are enzymes devoid of cofactor. Apoenzymes will possess the molecular recognition site for the substrate but will not catalyze the reaction. Apoenzymes immobilized in the pores of porous polycarbonate membrane was used as a carrier. The ends of the pores were closed with porous polypyrrole. Compounds as interesting as enantiomers were separated with these membranes. Template synthesis has been extended to the synthesis of many important semiconductor oxide naostructures like TiO2, SiO2, ZnO, Co3O4 and MnO2. These structures were made by dipping the alumina template membrane in the sol and heating. Ti0 2 tubules and fibers were obtained by this method. The fibers were used to study photocatalysis reaction of organic compounds in sunlight. Proteins were immobilized within the inner surface of the tubules using Sn chemistry. Bovine serum albumn (BSA) immobilized within the different diameter tubules showed varying degree of facilitation with phenylalanine. The membranes also show interesting switching of selectivity from L to D depending on the tube size and feed concentration.

  11. High-definition polymeric membranes: construction of 3D lithographed channel arrays through control of natural building blocks dynamics.

    Science.gov (United States)

    Speranza, Valentina; Trotta, Francesco; Drioli, Enrico; Gugliuzza, Annarosa

    2010-02-01

    The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. Here, high-definition membrane-like arrays are developed through the self-assembly of water droplets, which work as natural building blocks for the construction of ordered channels. Solution viscosity together with the dynamics of the water droplets can decide the final formation of three-dimensional well-ordered patterns resembling anodic structures, especially because solvents denser than water are used. Particularly, the polymer solution viscosity is demonstrated to be a powerful tool for control of the mobility of submerged droplets during the microfabrication process. The polymeric patterns are structured at very high levels of organization and exhibit well-established transport-surface property relationships, considered basics for any types of advanced biotechnologies.

  12. Potentiometric sensing of iodide using polymeric membranes of microwave stabilized β-AgI

    International Nuclear Information System (INIS)

    James, Dhanya; Rao, T. Prasada

    2012-01-01

    Highlights: ► Stable β-phase was obtained by post MW irradiation of AgI precipitate. ► Constructed ISEby dispersing stable β-AgI crystals in polyvinyl chloride. ► Designed iodide ISE exhibited wide linear range and fast response. ► Highly selective with selectivity factors less than 10 −6 . ► Successfully applied to natural waters, table salt and human urine samples. - Abstract: A polymer based heterogeneous ion selective electrode (ISE) membrane was fabricated for the potentiometric sensing of iodide. The sensing element used for the preparation of the ISE membrane was microwave stabilized β-AgI. Because microwave energy was found to be beneficial for causing hysteresis at the phase transition temperature of AgI, an attempt has been made to prepare stable and conductive β-AgI crystals by post microwave irradiation under high pressure. A conventionally precipitated AgI based ISE was also fabricated for comparative studies. The β-AgI based ISE could respond to a wide range of iodide concentrations (1 × 10 −8 to 1 M) within 60 s with a detection limit of 10 nM. The ISE gave stable response to iodide ions in a pH range of 2.0–8.0 and was highly selective in the presence of various interfering ions. The performance of the proposed iodide ISE in the analysis of natural and seawater samples was encouraging, and the determination of iodide in table salt and human urine samples was explained using the developed sensor.

  13. Relating transport modeling to nanofiltration membrane fabrication: Navigating the permeability-selectivity trade-off in desalination pretreatment

    OpenAIRE

    Labban, Omar; Lienhard, John H

    2018-01-01

    Faced with a pressing need for membranes with a higher permeability and selectivity, the field of membrane technology can benefit from a systematic framework for designing membranes with the necessary physical characteristics. In this work, we present an approach through which transport modeling is employed in fabricating specialized nanofiltration membranes, that experimentally demonstrate enhanced selectivity. Specifically, the Donnan-Steric Pore Model with dielectric exclusion (DSPM-DE) is...

  14. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  15. Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?

    Science.gov (United States)

    Grandinetti, Giovanna; Smith, Adam E.; Reineke, Theresa M.

    2012-01-01

    The aim of this study is to compare the cytotoxicity mechanisms of linear PEI to two analogous polymers synthesized by our group: a hydroxyl-containing poly(L-tartaramidoamine) (T4) and a version containing an alkyl chain spacer poly(adipamidopentaethylenetetramine) (A4) by studying the cellular responses to polymer transfection. We have also synthesized analogues of T4 with different molecular weights (degrees of polymerization of 6, 12, and 43) to examine the role of molecular weight on the cytotoxicity mechanisms. Several mechanisms of polymer-induced cytotoxicity are investigated, including plasma membrane permeabilization, the formation of potentially harmful polymer degradation products during transfection including reactive oxygen species, and nuclear membrane permeabilization. We hypothesized that since cationic polymers are capable of disrupting the plasma membrane, they may also be capable of disrupting the nuclear envelope, which could be a potential mechanism of how the pDNA is delivered into the nucleus (other than nuclear envelope breakdown during mitosis). Using flow cytometry and confocal microscopy, we show that the polycations with the highest amount of protein expression and toxicity, PEI and T443, are capable of inducing nuclear membrane permeability. This finding is important for the field of nucleic acid delivery in that not only could direct nucleus permeabilization be a mechanism for pDNA nuclear import but also a potential mechanism of cytotoxicity and cell death. We also show that the production of reactive oxygen species is not a main mechanism of cytotoxicity, and that the presence or absence of hydroxyl groups as well as polymer length plays a role in polyplex size and charge in addition to protein expression efficiency and toxicity. PMID:22175236

  16. Poly(hydroxyethyl methacrylate) based affinity membranes for in vitro removal of anti-dsDNA antibodies from SLE plasma.

    Science.gov (United States)

    Uzun, Lokman; Yavuz, Handan; Osman, Bilgen; Celik, Hamdi; Denizli, Adil

    2010-07-01

    The preparation of polymeric membrane using affinity technology for application in blood filtration devices is described here. DNA attached poly(hydroxyethyl methacrylate) (PHEMA) based microporous affinity membrane was prepared for selective removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma in in vitro. In order to further increase blood-compatibility of affinity membrane, aminoacid based comonomer N-methacryloyl-L-alanine (MAAL) was included in the polymerization recipe. PHEMAAL membrane was produced by a photopolymerization technique and then characterized by swelling tests and scanning electron microscope (SEM) studies. Blood-compatibility tests were also performed. The water swelling ratio of PHEMAAL membrane increased significantly (133.2%) compared with PHEMA (58%). PHEMAAL membrane has large pores around in the range of 5-10 microm. All the clotting times increased when compared with PHEMA membrane. Loss of platelets and leukocytes was very low. DNA loading was 7.8 mg/g. There was a very low anti-dsDNA-antibody adsorption onto the plain PHEMAAL membrane, about 78 IU/g. The PHEMAAL-DNA membrane adsorbed anti-dsDNA-antibody in the range of 10-68 x 10(3)IU/g from SLE plasma. Anti-dsDNA-antibody concentration decreased significantly from 875 to 144 IU/ml with the time. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount. (c) 2010 Elsevier B.V. All rights reserved.

  17. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.

    2017-08-09

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  18. Thin Film Polyamide Membranes with Photoresponsive Antibacterial Activity

    KAUST Repository

    Duong, Phuoc H. H.; Hong, Pei-Ying; Musteata, Valentina-Elena; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira

    2017-01-01

    Membranes containing a photosensitizer molecule as part of the selective layer are proposed with demonstrated anti-biofouling activity. For the membrane preparation, mixtures of an amine-functionalized photosensitizer molecule, (5,10,15,20-(tetra-4-aminophenyl)porphyrin) and m-phenylene diamine (MPD) reacted with trimesoyl chloride (TMC) by interfacial polymerization to form thin polyamide films on top of an asymmetric porous support. A highly permeable membrane (35.4 Lm−2h−1bar−1) with 99 % rejection of Brilliant Blue R (826 g/mol) was obtained using 0.25 wt% porphyrin and 0.75 wt% MPD as amine monomers. Under visible light exposure, singlet oxygen (1O2) is generated in the porphyrin containing-polyamide film, reaching the bacteria in the feed by diffusion and enhancing the biofouling resistance and anti-microbial activity. Anti-biofouling and anti-microbial photoactivity in solution are demonstrated on Staphylococcus aureus at different porphyrin concentrations and light exposure time.

  19. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  20. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation.

    Science.gov (United States)

    Lo, Yu-Hsiang; Yang, Ching-Yu; Chang, Haw-Kai; Hung, Wei-Chen; Chen, Po-Yu

    2017-05-03

    Membranes with selective superwettability for oil/water separation have received significant attention during the past decades. Hierarchical structures and surface roughness are believed to improve the oil repellency and the stability of Cassie-Baxter state. Diatoms, unicellular photosynthetic algae, possess sophisticated skeletal shells (called frustules) which are made of hydrated silica. Motivated by the hierarchical micro- and nanoscale features of diatom, we fabricate a hierarchical diatomite membrane which consists of aligned micro-sized channels by the freeze casting process. The fine nano-porous structures of frustules are well preserved after the post sintering process. The bioinspired diatomite membrane performs both underwater superoleophobicity and superhydrophobicity under various oils. Additionally, we demonstrate the highly efficient oil/water separation capabililty of the membranes in various harsh environments. The water flux can be further adjusted by tuning the cooling rates. The eco-friendly and robust bioinspired membranes produced by the simple, cost-effective freeze casting method can be potentially applied for large scale and efficient oil/water separation.