WorldWideScience

Sample records for selective oxidation reactions

  1. Selection of Suitable Microorganism for Biocatalytic Oxidation Reaction of Racemic Propranolol

    Directory of Open Access Journals (Sweden)

    Rahime SONGÜR

    2017-12-01

    Full Text Available Propranolol is one of the β-blockers which are pharmaceutically important, especially used for treatment of cardiovasculer disease. In this study, the production of enantiomerically pure propranolol was aimed via biocatalytic deracemization including tandem oxidation-reduction reactions of racemic propranolol. Within this content, firstly suitable microorganism for the oxidation of racemic propranolol was investigated. Alcohol dehydrogenase (ADH enzyme for oxidation of propranolol and NADH oxidase enzyme for cofactor regeneration were necessary for the oxidation reactions. For this reason, ADH and NADH oxidase enzymes activities of different microorganisms were measured to select the microorganism for using as enzyme source. These microorganisms are Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus. The highest ADH and NADH oxidase activities were obtained for L. kefir.

  2. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Bartling, Stephan; Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-01-01

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  3. Computerized infrared spectroscopic study of surface reactions on selected lanthanide oxides

    International Nuclear Information System (INIS)

    Dellisante, G.N.

    1982-01-01

    The natures of adsorption sites on La 2 O 3 , Nd 2 O 3 , and selected praseodymium oxides were investigated by examining surface reactions of probe molecules using computerized transmission ir spectroscopy on unsupported samples. Additionally, the rehydration/dehydration behavior and crystallographic phase transitions of these oxides were examined in pretreatment temperature experiments involving rehydration of the sesquioxides to hydroxides by water exposure. Following rehydration of La 2 O 3 to La(OH) 3 , the effect of increasing vacuum pretreatment temperature (350 to 1000 0 C) is to gradually remove surface hydroxyl and carbonate entities (up to 650 0 C), and increase the degree of A-type crystallinity. Increasing crystallinity causes a concomitant decrease in surface oxide basicity. The removal of hydroxyl and carbonate species, as well as increases in oxide basicity, strongly correlated to increases in certain catalytic activities. The adsorption of NH 3 , CO 2 , mixtures of NH 3 and CO 2 , formic acid, acetic acid, acetaldehyde, and ethanol on the oxides was determined to weakly coordinate in Ln 3 + sites, and the surface reactions are discussed. Heating was found to desorb the adsorbed compounds and/or causes changes of the originally adsorbed form into other compounds. The effects of temperature on both adsorption and desorption are reported

  4. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  5. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  6. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst

    International Nuclear Information System (INIS)

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-01-01

    The CaFe 2 O 4 spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 o C which was lower than that of ferrite prepared by other methods. CaFe 2 O 4 catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H 2 O 2 (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 ± 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 ± 2 mol% and minor product phenyl acetaldehyde up to 9 ± 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H 2 O 2 molar ratio and solvents on the conversion and product distribution were studied.

  7. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  8. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  9. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  10. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  11. Problems of selectivity in liquid-phase oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Emanuel, N M

    1978-07-01

    Based on a kinetic analysis of a generalized scheme for radical-chain process and on published experimental results, factors determining the selectivities of various liquid-phase oxidations of organic compounds are examined, including the kinetic chain length, molecular and chain decomposition of products, and competing routes in the initiated oxidation or autoxidation of hydrocarbons to peroxides. Also discussed are selective inhibition of undesirable routes in chain reactions, e.g., styrene and acetaldehyde co-oxidation; activation of molecular oxygen by variable-valence metal compounds used as homogeneous catalysts; modeling of fermentative processes by oxidation of hydrocarbons in complex catalytic systems, e.g., hydroxylation of alkanes, epoxidation or carbonylation of olefins, or oxidation of alcohols and ketones to acids; and the mechanisms of heterogeneous catalysis in liquid-phase reactions, e.g., oxidation of alkylaromatic hydrocarbons to peroxides and co-oxidation of propylene and acetaldehyde.

  12. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  13. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  14. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  15. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  16. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  17. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction.

    Science.gov (United States)

    Parker, Julie; Novakovic, Katarina

    2017-08-05

    Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. Kinetics and selectivity of the oxidation of methylbenzenes in Co(III)-CH3COOH-CF3COOH solutions. Comparison with nitration and hydroxylation reactions

    International Nuclear Information System (INIS)

    Rudakov, E.S.; Lobachev, V.L.

    1989-01-01

    Data have been obtained concerning the kinetics, substrate selectivity, and kinetic isotope effect for the first stage in the oxidation of a series of arenes, from benzene to hexamethylbenzene, by Co(III) acetate in CH 3 COOH-CF 3 COOH (1.9 M) solutions at 25 degree C. A similarity was noted between substrate selectivity for reactions of alkylbenzenes with Co(III) and electrophilic nitration reactions, which occur via an electron transfer step. It was also found that substrate selectivity for these reactions differs significantly from that found for electrophilic hydroxylation reactions, which occur via an intermediate slow step involving σ-complex formation

  19. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  1. The Enhancement of the Selectivity of Complex Reactions by a Catalytic Membrane Reactor -Ethylene Oxidation Over a Ag Catalyst Supported in a Ceramic Membrane-

    OpenAIRE

    馮, 臨; 小林, 正義; Lin, FENG; Masayoshi, KOBAYASHI

    1991-01-01

    This research demonstrated that, using a membrane reactor consisting of a tubular, microporous, glass-ceramic membrane, it is possible to achieve selective oxidation of ethylene to ethylene oxide with an Ag catalyst. In experiments which a reaction temperature range of 115 to 300℃ and a contact time of 1.5 to 5 seconds, resulting data illustrated the following characteristics of this membrane reactor : 1) compared with a classic tubular reactor, the selectivity of ethylene oxide is increased ...

  2. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  3. Selected oxidized fragrance terpenes are common contact allergens.

    Science.gov (United States)

    Matura, Mihaly; Sköld, Maria; Börje, Anna; Andersen, Klaus E; Bruze, Magnus; Frosch, Peter; Goossens, An; Johansen, Jeanne D; Svedman, Cecilia; White, Ian R; Karlberg, Ann-Therese

    2005-06-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance terpenes and some oxidation fractions and compounds. Oxidized linalool and its hydroperoxide fraction were found to be common contact allergens. Of the patients tested, 1.3% showed a positive reaction to oxidized linalool and 1.1% to the hydroperoxide fraction. About 0.5% of the patients reacted to oxidized caryophyllene whereas 1 patient reacted to oxidized myrcene. Of the patients reacting to the oxidized terpenes, 58% had fragrance-related contact allergy and/or a positive history for adverse reaction to fragrances. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

  4. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  5. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  6. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  7. Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amin Ebadi

    2017-01-01

    Full Text Available Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for the oxidation of alcohols such as cyclohexanol (83.4% conversion; 100% selectivity, benzyl alcohol (70.5% conversion; 100% selectivity and hexanol (62.3% conversion; 100% selectivity. The influences of reaction time, various metals and type of substrates and oxidants on the oxidation of alcohols were also studied, and optimized conditions were investigated. Under these reaction conditions, the activity of the catalysts decreases in the following order:  CoPc/nano-ZnO > FePc/nano-ZnO > MnPc/nano-ZnO. It shows that TBHP is more efficient oxidant due to weaker O-O bond with respect to H2O2 and the following order has been observed for the percentage of conversions of alcohols: 2º > benzylic > 1º.

  8. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  9. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  10. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    Science.gov (United States)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  11. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  12. Selective C(sp3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow.

    Science.gov (United States)

    Laudadio, Gabriele; Govaerts, Sebastian; Wang, Ying; Ravelli, Davide; Koolman, Hannes F; Fagnoni, Maurizio; Djuric, Stevan W; Noël, Timothy

    2018-04-03

    A mild and selective C(sp 3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  14. The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction.

    Science.gov (United States)

    Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R

    2008-02-07

    This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

  15. Selected oxidized fragrance terpenes are common contact allergens

    DEFF Research Database (Denmark)

    Matura, Mihaly; Sköld, Maria; Börje, Anna

    2005-01-01

    Terpenes are widely used fragrance compounds in fine fragrances, but also in domestic and occupational products. Terpenes oxidize easily due to autoxidation on air exposure. Previous studies have shown that limonene, linalool and caryophyllene are not allergenic themselves but readily form...... allergenic products on air-exposure. This study aimed to determine the frequency and characteristics of allergic reactions to selected oxidized fragrance terpenes other than limonene. In total 1511 consecutive dermatitis patients in 6 European dermatology centres were patch tested with oxidized fragrance...

  16. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  17. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  18. Research advances in the catalysts for the selective oxidation of ethane to aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHAO Zhen; XU Chunming

    2005-01-01

    Selective oxidation of ethane to aldehydes is one of the most difficult processes in the catalysis researches of low alkanes. The development of selective oxidation of ethane to aldehydes (formaldehyde, acetaldehyde and acrolein) is discussed. The latest progress of the catalysts, including bulk or supported metal oxide catalysts, highly dispersed and isolated active sites catalysts, and the photo-catalytic ethane oxidation catalysts, partial oxidation of ethane in the gas phase, and the proposed reaction pathways from ethane to aldehydes are involved.

  19. Evaluation of reaction selectivity at various Pt/C electrocatalysts using a porous microelectrode in the presence of methanol and oxygen

    International Nuclear Information System (INIS)

    Shironita, Sayoko; Zhang, Weiqi; Sakai, Tsukasa; Umeda, Minoru

    2014-01-01

    Pt is most useful metal for various electrochemical reactions as an electrocatalyst. In a direct methanol fuel cell, Pt performs a catalytic activity for both the methanol oxidation reaction and oxygen reduction reaction; therefore, a Pt-based catalyst is used as an anode and a cathode. For the coexistence of methanol and oxygen due to methanol crossover through an electrolyte membrane during the cell operation, the direct methanol fuel cell performance decreases. However, if a higher selective reaction electrocatalyst can be developed, the cell performance will not be suppressed. In this study, the reaction selectivities of seven types of Pt supported on carbon (Pt/C) electrocatalysts were evaluated using a porous microelectrode in the presence of methanol and oxygen. As a result, some Pt/C catalysts showed a methanol oxidation selectivity, while the other catalysts showed an oxygen reduction selectivity. It was found that the percentage of edge-atom in the Pt particle is related to the methanol oxidation selectivity or the oxygen reduction selectivity. Moreover, each current density decreases with the increasing chemical shift in the Pt binding energy

  20. Selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis in flow

    NARCIS (Netherlands)

    Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H.; Fagnoni, M.; Djuric, S.; Noel, T.

    2018-01-01

    A mild and selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both

  1. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  2. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  3. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  4. Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones

    Directory of Open Access Journals (Sweden)

    Yingting Wang

    2018-02-01

    Full Text Available A highly efficient catalyst Fe–Co/sulfonated polystyrene (Fe–Co/SPS was introduced and synthesized, which catalyzed BV oxidation of ketones with aqueous hydrogen peroxide to give the corresponding lactones in high yield and selectivity. Solid acid catalyst of Fe–Co/SPS has been prepared by using the 98-wt% sulfuric acid as the sulfonating agent and CoCl2 combined FeCl3 as sources of metal ions. Various physical–chemical characterizations including FT-IR, XRD, SEM and TGA, revealed that bimetallic ions Fe3+–Co2+ species in the sulfonated polystyrene framework were responsible for the catalytic activities. The BV reaction catalyzed by Fe–Co/SPS highlighted the special effects between metal ions and protonic acids as well as solvent-free heterogeneous catalytic oxidation with excellent conversion.

  5. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanocarbons as catalyst for selective oxidation of acrolein to acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Frank, B.; Blume, R.; Rinaldi, A.; Trunschke, A.; Schloegl, R. [Fritz Haber Institute of the Max Planck Society, Berlin (Germany). Dept. of Inorganic Chemistry

    2011-07-01

    Selective oxidations are key steps of industrial oil and gas processing for the synthesis of high-value chemicals. Mixed metal oxides based on redox active V or Mo are frequently used for oxidative C-H bond activation. However, multiple processes require precious metals or suffer from low product selectivity demanding an ongoing search for cost-effective alternatives. Recently, the nanostructured carbon was reported to catalyze the metal-free selective alkane activation by oxidative dehydrogenation (ODH). Electron-rich surface carbonyls coordinate this reaction and mimic the active oxygen species in metal oxide catalysts. Here we show that the graphitic carbon, beyond ODH, has the potential to selectively mediate the insertion of an oxygen atom into an organic molecule, i.e., acrolein. Multi-step atom rearrangements considerably exceed the mechanistic complexity of hydrogen abstraction and were so far believed to be the exclusive domain of metal (oxide) catalysis. In the carbon catalyzed process, the nucleophilic oxygen atoms terminating the graphite (0001) surface abstract the formyl hydrogen and the activated aldehyde gets oxidized by epoxide-type mobile oxygen, thus the sp{sup 2} carbon acts as a bifunctional catalyst. Substantial similarities between the metal oxide- and carbon-catalyzed reactions could be identified. Our results shed light on a rarely known facet of applications of nanostructured carbon materials being decorated with diverse oxygen functionalities to coordinate complex catalytic processes. We could successfully transfer the results obtained from the graphite model to carbon nanotubes (CNTs) providing a higher surface area, defect density, and intrinsic activity, to substantially increase the reactivity per catalyst volume. Indeed, low dimensional nanostructured carbon is a highly flexible and robust material which can be modified in a multiple manner to optimize its properties with respect to the intended application. The exploration of

  7. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  8. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  10. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  11. Isotopes in oxidation reactions

    International Nuclear Information System (INIS)

    Stewart, R.

    1976-01-01

    The use of isotopes in the study of organic oxidation mechanisms is discussed. The help provided by tracer studies to demonstrate the two-equivalent path - hydride transfer, is illustrated by the examples of carbonium oxidants and the Wacker reaction. The role of kinetic isotope effects in the study of the scission of carbon-hydrogen bonds is illustrated by hydride abstraction, hydrogen atom abstraction, proton abstraction and quantum mechanical tunnelling. Isotopic studies on the oxidation of alcohols, carbonyl compounds, amines and hydrocarbons are discussed. The role of isotopes in the study of biochemical oxidation is illustrated with a discussion on nicotinamide and flavin coenzymes. (B.R.H.)

  12. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  13. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu

    2017-10-01

    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  14. Oxidation reactions of bilirubin in aqueous solutions

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1990-01-01

    The radical cation of bilirubin (BR) has been tentatively identified as a transient intermediate in the reactions of BR with different oxidizing species such as Br 2 - , I 2 - and CH 3 I . OH. The rate constants for these reactions have been determined as 2.4 x 10 9 , l.0 x 10 9 and 2.7 x 10 9 dm 3 mol -1 s -1 , respectively. Biliverdin is likely to be among the stable products formed on oxidation of BR by these oxidizing species. (author)

  15. Quinone-Catalyzed Selective Oxidation of Organic Molecules

    Science.gov (United States)

    Wendlandt, Alison E.

    2016-01-01

    Lead In Quinones are common stoichiometric reagents in organic chemistry. High potential para-quinones, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in Copper Amine Oxidases and mediate efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed via electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and have important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  16. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    Science.gov (United States)

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  17. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  18. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  19. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  20. Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Heterogeneous ruthenium-based catalysts were applied in the selective, aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, to form 2,5-furandicarboxylic acid. The oxidation reactions were performed in water with dioxygen as the oxidant at different pressures without...

  1. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    Science.gov (United States)

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  3. Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Abderrazak Aberkouks

    2018-01-01

    Full Text Available Various ratio of Co-Ag supported on ZnO have been evaluated in the selective catalytic oxidation of styrene to benzaldehyde, using H2O2 as an oxidant. The catalysts were prepared by a sol-gel process and were characterized using XRD, FT-IR, TG-DTG, BET, and SEM/EDX. The performance of the prepared catalyst was investigated under different parameters such as solvent, temperature, substrate/oxidant molar ratios, reaction time, and doping percent. The Zn1−x−yAgxCoyO catalysts exhibit a good activity and a high selectivity towards benzaldehyde (95% with the formation of only 5% of acetophenone.

  4. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    Science.gov (United States)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  5. Fischer–Tropsch Synthesis at a Low Pressure on Subnanometer Cobalt Oxide Clusters: The Effect of Cluster Size and Support on Activity and Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungsik; Lee, Byeongdu; Seifert, Sönke; Winans, Randall E.; Vajda, Stefan

    2015-05-21

    In this study, the catalytic activity and changes in the oxidation state during the Fischer Tropsch (FT) reaction was investigated on subnanometer size-selected cobalt clusters deposited on oxide (Al2O3, MgO) and carbon-based (ultrananocrystalline diamond UNCD) supports by temperature programmed reaction (TPRx) combined with in-situ grazing-incidence X-ray absorption characterization (GIXAS). The activity and selectivity of ultrasmall cobalt clusters exhibits a very strong dependence on cluster size and support. The evolution of the oxidation state of metal cluster during the reaction reveals that metal-support interaction plays a key role in the reaction.

  6. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  7. Titanium Oxide/Platinum Catalysis: Charge Transfer from a Titanium Oxide Support Controls Activity and Selectivity in Methanol Oxidation on Platinum

    KAUST Repository

    Hervier, Antoine

    2011-11-24

    Platinum films of 1 nm thickness were deposited by electron beam evaporation onto 100 nm thick titanium oxide films (TiOx) with variable oxygen vacancy concentrations and fluorine (F) doping. Methanol oxidation on the platinum films produced formaldehyde, methyl formate, and carbon dioxide. F-doped samples demonstrated significantly higher activity for methanol oxidation when the TiOx was stoichiometric (TiO 2), but lower activity when it was nonstoichiometric (TiO 1.7 and TiO1.9). These results correlate with the chemical behavior of the same types of catalysts in CO oxidation. Fluorine doping of stoichiometric TiO2 also increased selectivity toward partial oxidation of methanol to formaldehyde and methyl formate, but had an opposite effect in the case of nonstoichiometric TiOx. Introduction of oxygen vacancies and fluorine doping both increased the conductivity of the TiO x film. For oxygen vacancies, this occurred by the formation of a conduction channel in the band gap, whereas in the case of fluorine doping, F acted as an n-type donor, forming a conduction channel at the bottom of the conduction band, about 0.5-1.0 eV higher in energy. The higher energy electrons in F-doped stoichiometric TiOx led to higher turnover rates and increased selectivity toward partial oxidation of methanol. This correlation between electronic structure and turnover rate and selectivity indicates that the ability of the support to transfer charges to surface species controls in part the activity and selectivity of the reaction. © 2011 American Chemical Society.

  8. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    Science.gov (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  9. Selective scanning tunnelling microscope electron-induced reactions of single biphenyl molecules on a Si(100) surface.

    Science.gov (United States)

    Riedel, Damien; Bocquet, Marie-Laure; Lesnard, Hervé; Lastapis, Mathieu; Lorente, Nicolas; Sonnet, Philippe; Dujardin, Gérald

    2009-06-03

    Selective electron-induced reactions of individual biphenyl molecules adsorbed in their weakly chemisorbed configuration on a Si(100) surface are investigated by using the tip of a low-temperature (5 K) scanning tunnelling microscope (STM) as an atomic size source of electrons. Selected types of molecular reactions are produced, depending on the polarity of the surface voltage during STM excitation. At negative surface voltages, the biphenyl molecule diffuses across the surface in its weakly chemisorbed configuration. At positive surface voltages, different types of molecular reactions are activated, which involve the change of adsorption configuration from the weakly chemisorbed to the strongly chemisorbed bistable and quadristable configurations. Calculated reaction pathways of the molecular reactions on the silicon surface, using the nudge elastic band method, provide evidence that the observed selectivity as a function of the surface voltage polarity cannot be ascribed to different activation energies. These results, together with the measured threshold surface voltages and the calculated molecular electronic structures via density functional theory, suggest that the electron-induced molecular reactions are driven by selective electron detachment (oxidation) or attachment (reduction) processes.

  10. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  11. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    Science.gov (United States)

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  12. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  13. Regioselective Carbohydrate Oxidations : A Nuclear Magnetic Resonance (NMR) Study on Selectivity, Rate, and Side-Product Formation

    NARCIS (Netherlands)

    Eisink, Niek N. H. M.; Witte, Martin D.; Minnaard, Adriaan J.

    Palladium/neocuproine catalyzed oxidation of glucosides shows an excellent selectivity for the C3-OH, but in mannosides and galactosides, unselective oxidation was initially observed. For further application in more-complex (oligo)saccharides, a better understanding of the reaction, in terms of

  14. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  15. Selective oxidation of benzene and cyclohexane using amorphous microporous mixed oxides; Selektive Oxidation von Benzol und Cyclohexan mit amorphen mikroporoesen Mischoxiden

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckmann, M.

    2000-07-01

    Phenol was to be produced by direct oxidation of benzene with environment-friendly oxidants like hydrogen peroxide, oxygen, or ozone. Catalysts were amorphous microporous mixed oxides whose properties can be selected directly in the sol-gel synthesis process. Apart from benzene, also cyclohexane was oxidized with ozone using AMM catalysts in order to get more information on the potential of ozone as oxidant in heterogeneously catalyzed reactions. [German] Ziel dieser Arbeit war die Herstellung von Phenol durch die Direktoxidation von Benzol mit umweltfreundlichen Oxidationsmitteln wie Wasserstoffperoxid, Sauerstoff oder Ozon. Als Katalysatoren dienten amorphe mikroporoese Mischoxide, da deren Eigenschaften direkt in der Synthese durch den Sol-Gel-Prozess gezielt eingestellt werden koennen. Neben Benzol wurde auch Cyclohexan mit Ozon unter der Verwendung von AMM-Katalysatoren oxidiert, um das Potential von Ozon als Oxiationsmittel in heterogen katalysierten Reaktionen naeher zu untersuchen. (orig.)

  16. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  17. Preparation and characterization of mesoporous VO(x)-TiO2 complex oxides for the selective oxidation of methanol to dimethoxymethane.

    Science.gov (United States)

    Liu, Jingwei; Sun, Qing; Fu, Yuchuan; Shen, Jianyi

    2009-07-15

    Mesoporous VO(x)-TiO(2) with high surface areas were prepared using the procedure of evaporation-induced self-assembly combined with ammonia posttreatment. The samples were characterized by X-ray diffraction (XRD), laser Raman spectroscopy (LRS), transmission electron microscopy (TEM), N(2) adsorption, temperature-programmed reduction (H(2)-TPR), microcalorimetry for the adsorption of NH(3), and isopropanol probe reaction. Their catalytic activities were evaluated for the reaction of selective oxidation of methanol to dimethoxymethane (DMM). It was found that the VO(x)-TiO(2) materials exhibited high surface areas with pore diameters of 4 nm. The vanadia species were highly dispersed in the VO(x)-TiO(2) within 30 wt% VO(x) content, evidenced by the results of XRD and LRS. The VO(x)-TiO(2) samples exhibited both surface acidic and redox properties. The surface acidity was further enhanced on the addition of SO(4)2-. The catalyst SO(4)2-/30VO(x)-TiO(2) exhibited good performance for the selective oxidation of methanol (57% conversion) to DMM (83% selectivity) at 423 K.

  18. Atmospheric oxidation of selected hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Benter, T.; Olariu, R.I.

    2002-02-01

    This work presents investigations on the gas-phase chemistry of phenol and the cresol isomers performed in a 1080 l quartz glass reactor in Wuppertal and in a large-volume outdoor photoreactor EUPHORE in Valencia, Spain. The studies aimed at clarifying the oxidation mechanisms of the reactions of these compounds with OH and NO{sub 3} radicals. Product investigations on the oxidation of phenol and the cresol isomers initiated by OH radicals were performed in the 1080 l quartz glass reactor with analyses by in situ FT-IR absorption spectroscopy. The primary focus of the investigations was on the determination of product yields. This work represents the first determination and quantification of 1,2-dihydroxybenzenes in the OH oxidation of phenolic compounds. Possible reaction pathways leading to the observed products have been elucidated. (orig.)

  19. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  20. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K H; Cavalli, F

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  1. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  2. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  3. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 1

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Sugiura, Toshio.

    1977-01-01

    The formation mechanism of protonated molecular ions by cross-reactions in ethylene oxide-trioxane mixtures has been studied with use of a modified time-of-flight mass spectrometer. The precursors of the product ions were determined by analysis of the fine structure of their ionization efficiency curves using deuterated ethylene oxide. Protonated ethylene oxide is formed by the hydrogen atom transfer reaction of ethylene oxide molecular ion with trioxane, and protonated trioxane by the proton transfer reaction of CHO + (from ethylene oxide) with trioxane. In the ion-molecule reactions of ethylene-d 4 oxide-trioxane mixtures, appreciable isotope effect was observed. The CHO + from ethylene oxide is an important reactant ion as compared with that from trioxane in the proton transfer reaction, and CHO + from ethylene oxide was suggested as a thermal reactive ion. The order of proton affinity could be estimated from the proton transfer reactions involving CHO + . It was found that the proton affinity of trioxane is smaller than that of ethylene oxide. (auth.)

  4. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  5. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  6. A novel tandem Betti/Ullmann oxidation reaction as an efficient route ...

    Indian Academy of Sciences (India)

    Betti reaction; cross-coupling reaction; oxidation; heterogeneous catalysis. Abstract. A novel tandem Betti/Ullmann/oxidation reaction was used for synthesis of new oxazepine derivatives containing kojic acid. This protocol ... This method provides a new and useful strategy for the construction of heterocycles. Also novel Betti ...

  7. Oxidative Heck Reaction as a Tool for Para-selective Olefination of Aniline: A DFT Supported Mechanism.

    Science.gov (United States)

    Moghaddam, Firouz Matloubi; Pourkaveh, Raheleh; Karimi, Ashkan

    2017-10-06

    This study describes the first para-selective palladium-catalyzed alkenylation of tertiary amines. This regioselective C-H activation was conducted without any chelation moieties. A series of olefins were reacted under mild reaction conditions at 60 °C, and the corresponding products were obtained in good yields with high selectivity.

  8. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    Formaldehyde (CH2O) may be synthesized industrially by selective oxidation of methanol over an iron-molybdate (Fe-Mo) oxide catalyst according to: CH3OH + ½O2 →CH2O + H2O. The reaction is normally carried out in a multitubular reactor with excess of air at 250-400 °C (yield = 90-95 %), known...... the activity of the catalyst [2]. Pure MoO3 in itself has low activity. Literature from the last decades agrees that the major reason for the deactivation is loss of molybdenum from the catalyst. Molybdenum forms volatile species with methanol, which can leave behind Mo poor zones. The catalyst is usually...

  9. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction...... is markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline...

  10. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  11. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  12. Reactions of organic zinc- and cadmium elementoxides with ethylene oxide

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Krasnov, Yu.N.

    1980-01-01

    Studied are reactions of triphenylmethoxy, -triphenylsiloxyethylzinc and -cadmium with ethylene oxide in ratio of 1:1. Reactions have been carried out in tolyene solutions in ampules sealed in argon atmosphere. It is found that interaction of triphenylsiloxy-, triphenylmethoxyethylcadmium and triphenylsiloxyethylzinc with ethylene oxide occurs at the metal-carbon bond with formation of implantation products. Triphenylmethoxyethylzinc reacts with ethylene oxide both at the metal-carbon and metal-oxygen bonds. Alkoxytriphenylsiloxyderivatives of zinc and cadmium are thermally instable and decompose under the conditions of reaction (130 deg C) with migration of phenyl group from silicon to zinc or cadmium, giving alkoxyphenylderivative and with bensene splitting out

  13. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  14. Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2010-01-01

    with excellent selectivity (above 98%) at moderate conversion under optimized conditions. The effect of catalytic amounts of different bases was studied, along with reaction temperature and time. Utilisation of a selective catalyst system that uses dioxygen as an oxidant and only produces water as by...

  15. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  16. Oxidative coupling of methane. Still a challenge for catalyst development and reaction engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schomaecker, R.; Arnd, S.; Beck, B. [Technical Univ. of Berlin (Germany). Dept. of Chemistry] [and others

    2013-11-01

    The oxidative coupling of methane to ethylene offers great industrial potential, because it would broaden the feedstock basis for chemical industry. Because methane is the most stable hydrocarbon, its activation requires high temperatures and it is a great scientific challenge to overcome the apparent yield limit of about 25%. This barrier has never been exceeded since the beginning of OCM research more than 20 years ago. Results and Discussion: This challenge is one of the key projects of the Cluster of Excellence UNICAT and requires joined efforts and contributions from many disciplines, because this reaction shows a combined surface/gas phase reaction mechanism which results in very unusual and complex dependencies on the reaction conditions. Although dozens of materials are known to catalyze the reaction, the selection of a catalyst suitable for an industrial process is difficult, due to severe stability problems of many materials. Li/MgO was chosen by the UNICAT-team as model catalyst, because of the extended literature about it. But it shows uncontrollable deactivation, no matter what precursor and method were used for its preparation. Nevertheless, it is a suitable catalyst for fundamental studies, due to its formal chemical simplicity. A key result of the joined research activities was the disproval of the Lunsford mechanism and the elucidation of the real function of lithium as a surface modifier creating a rough and defect-rich surface. For the development of an OCM process another catalyst, Na{sub 2}WO{sub 4}/Mn/SiO{sub 2}, was chosen from the rich literature on OCM. Although less is known about its structure and the reaction mechanism at this catalyst, its stability was the most important reason to select it for further engineering studies. Kinetic isotope measurements and studies in a TAP reactor demonstrate the similarity of the reaction mechanisms at both catalysts, despite the completely different materials. The selectivity is largely controlled by

  17. Base-Free Selective Oxidation of Glycerol over LDH Hosted Transition Metal Complexes Using 3% H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-07-01

    Full Text Available A series of transition metal sulphonato-Schiff base complexes were intercalated into Mg–Al layered-double hydroxides (LDHs. The obtained catalysts were characterized by FTIR, XRD, N2 sorption, SEM and elemental analysis, and then were used in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that their catalytic performances were closely related to the loading of active complexes, the Schiff base ligands and the metal centers of the catalysts, as well as the reaction conditions. The optimal conversion of GLY was 85.0%, while the selectivity of 1,3-dihydroxyacetone (DHA was 56.5%. Moreover, the catalysts could be reused at least 10 times.

  18. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    de Lange, M.W.; van Ommen, J.G.; Lefferts, Leonardus

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  19. Palladium-catalysed anti-Markovnikov selective oxidative amination

    Science.gov (United States)

    Kohler, Daniel G.; Gockel, Samuel N.; Kennemur, Jennifer L.; Waller, Peter J.; Hull, Kami L.

    2018-03-01

    In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon-nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

  20. Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J; Kaplan, A F H [Department of Applied Physics and Mechanical Engineering, Luleaa University of Technology, SE-971 87 Luleaa (Sweden); Petring, D [Fraunhofer-Institute for Laser Technology (ILT), Steinbachstrasse 15, Aachen (Germany); Kumar, R V [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Al-Mashikhi, S O; Voisey, K T [Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)], E-mail: jpowell@laserexp.co.uk

    2009-01-07

    In a considerable proportion of the published work on the subject of laser-oxygen cutting of mild steel, the details of the oxidation reaction are overlooked or confused. For example, it is not uncommon for the oxidized material to be attributed with the physical characteristics of iron rather than iron oxide. Also, the fact that the oxidation reaction cannot take place above a certain temperature limit is usually overlooked. This paper presents, for the first time, an in-depth analysis of the Iron to FeO oxidation reaction in the context of laser-oxygen cutting of mild steel. The paper concludes by presenting a number of guidelines for future theoretical models.

  1. Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction

    International Nuclear Information System (INIS)

    Powell, J; Kaplan, A F H; Petring, D; Kumar, R V; Al-Mashikhi, S O; Voisey, K T

    2009-01-01

    In a considerable proportion of the published work on the subject of laser-oxygen cutting of mild steel, the details of the oxidation reaction are overlooked or confused. For example, it is not uncommon for the oxidized material to be attributed with the physical characteristics of iron rather than iron oxide. Also, the fact that the oxidation reaction cannot take place above a certain temperature limit is usually overlooked. This paper presents, for the first time, an in-depth analysis of the Iron to FeO oxidation reaction in the context of laser-oxygen cutting of mild steel. The paper concludes by presenting a number of guidelines for future theoretical models.

  2. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  3. Study of selective oxidation of methane catalyzed by solid superacid in unique reaction field; Tokushu hannoba no kotai chokyosan wo mochiiru methane no sentaku sanka hanno ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Misonoo, M; Tatsumi, T; Mizuno, T; Inumaru, T [The University of Tokyo, Tokyo (Japan)

    1997-02-01

    Selective oxidation of lower alkanes by use of heteropolymeric compounds is studied. Alkanes are activated on Cs2.5H0.5PW12O40 serving as catalyst, and their activity and selectivity improve when the catalyst is developed into a dual function catalyst in which Cs and Pt are combined. A success is reported of the synthesis of a heteropolymeric acid in which two molecules of the coordination element wolfram are replaced with a transition metal of the first period, on which acid the oxidation of cyclohexane is enhanced. Cs2.5Ni0.08H1.34PVMo11O40 as a metal/heteropolymeric acid dual function catalyst enables the direct oxidation (9% recovered at 340{degree}C) of isobutane into a methacrylic acid, which is attributed to the harmonious coordination of the oxidizing work of the catalyst and acidity. It is possible to oxidize propane into the acrylic acid, but not ethane into the acetic acid. In the case of Pd/Cs2.5H1.5PVMo11O40, the formic acid, methanol, etc., are produced upon addition of hydrogen to the system. This reaction in the hydrogen/oxygen system is supposed to take place via activated oxygen seeds as in the case of oxidation by hydrogen peroxide. 10 refs.

  4. Chemical tailoring of teicoplanin with site-selective reactions.

    Science.gov (United States)

    Pathak, Tejas P; Miller, Scott J

    2013-06-05

    Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.

  5. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  6. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  7. Comparison of Oxidation Characteristics of Selected Nuclear Graphite Grades

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Kim, Gen Chan

    2010-02-01

    The oxidation behavior of some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) were compared in view of their filler coke type and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 ∼ 960 .deg. C in air by using a three-zone vertical tube furnace at a 10 L/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600 ∼ 950 .deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5∼10 % weight loss at the six temperatures were nearly the same except for 702 and 808 .deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608 ∼ 808 .deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control

  8. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    Science.gov (United States)

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  9. The GC/AED studies on the reactions of sulfur mustard with oxidants

    International Nuclear Information System (INIS)

    Popiel, StanisIaw; Witkiewicz, Zygfryd; Szewczuk, Aleksander

    2005-01-01

    A gas chromatograph coupled with an atomic emission detector was used to identify and to determine the products formed on oxidation of sulfur mustard. The oxidation rate and the resulting oxidates were studied in relation to oxidant type and reaction medium parameters. Hydrogen peroxide, sodium hypochlorite, sodium perborate, potassium monopercarbonate, ammonium peroxydisulfate, potassium peroxymonosulfate (oxone), and tert-butyl peroxide were used as oxidants. Oxidations were run in aqueous media or in solvents of varying polarities. The oxidation rate was found to be strongly related to oxidant type: potassium peroxymonosulfate (oxone) and sodium hypochlorite were fast-acting oxidants; sodium perborate, hydrogen peroxide, ammonium peroxydisulfate, and sodium monopercarbonate were moderate oxidants; tert-butyl peroxide was the slowest-acting oxidant. In non-aqueous solvents, the oxidation rate was strongly related to solvent polarity. The higher the solvent polarity, the faster the oxidation rate. In the acid and neutral media, the mustard oxidation rates were comparable. In the alkaline medium, oxidation was evidently slower. A suitable choice of the initial oxidant-to-mustard concentration ratio allowed to control the type of the resulting mustard oxidates. As the pH of the reaction medium was increased, the reaction of elimination of hydrogen chloride from mustard oxidates becomes more and more intensive

  10. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

    DEFF Research Database (Denmark)

    Carroll, L.; Davies, Michael J.; Pattison, D. I.

    2015-01-01

    Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised...... the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected...... examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation...

  11. Structural Evolution under Reaction Conditions of Supported (NH43HPMo11VO40 Catalysts for the Selective Oxidation of Isobutane

    Directory of Open Access Journals (Sweden)

    Fangli Jing

    2015-03-01

    Full Text Available When using heteropolycompounds in the selective oxidation of isobutane to methacrolein and methacrylic acid, both the keeping of the primary structure (Keggin units and the presence of acidic sites are necessary to obtain the desired products. The structural evolution of supported (NH43HPMo11VO40 (APMV catalysts under preliminary thermal oxidizing and reducing treatments was investigated. Various techniques, such as TGA/DTG (Thermo-Gravimetric Analysis/Derivative Thermo-Gravimetry, H2-TPR (Temperature Programed Reduction, in situ XRD (X-Ray Diffraction and XPS (X-ray Photoelectron Spectroscopy, were applied. It was clearly evidenced that the thermal stability and the reducibility of the Keggin units are improved by supporting 40% APMV active phase on Cs3PMo12O40 (CPM. The partial degradation of APMV takes place depending on temperature and reaction conditions. The decomposition of ammonium cations (releasing NH3 leads to the formation of vacancies favoring cationic exchanges between vanadium coming from the active phase and cesium coming from the support. In addition, the vanadium expelled from the Keggin structure is further reduced to V4+, species, which contributes (with Mo5+ to activate isobutane. The increase in reducibility of the supported catalyst is assumed to improve the catalytic performance in comparison with those of unsupported APMV.

  12. Overview of selective photo-reaction

    International Nuclear Information System (INIS)

    Arisawa, Takashi

    1995-01-01

    Selective reaction process especially isotope separation is a key technology for the development of the technologies related to the nuclear energy. However only a few species are separated on a production scale using the conventional processes such as thermal diffusion, chemical exchange reaction and distillation for lighter isotopes, and gas centrifuge and gaseous diffusion for uranium. As these methods are based on statistical thermodynamics and have low enrichment factors, they need repetitive operations of separation with many separating units combined together. Electro-magnetic separation method known as the one with high separation factor can be applied to most of the elements, but extremely low production rate is realized, which is uneconomical. From the above point of view, much attention has been pain to the laser process. This method can be applied to either gas, liquid or solid phase, and high separation factors are basically realized only in gaseous phase. Since the beginning of the studies on isotope separation in early 1970s, many ideas have been proposed for the selective photo-reaction process such as photoionization, multiphoton dissociation and state selective chemical reaction. As a result of experimental and theoretical efforts, large scale production of some isotopes have been intended. Production of deuterium by infrared multi-photodissociation method was studied aiming at the replacement of the conventional dual temperature exchange process, and lots of experiments have been achieved intensively for the uranium enrichment. A stepwise selective photoionization method has also been studied for the isotopic separation of many elements, especially uranium enrichment. To implement the laser processes on a large scale production system, advanced performances are required not only for the tunable laser systems but also for many related technologies such as atomic/molecular source, photo-reactor and extractor of products. (author)

  13. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the Fischer Tropsch reaction

    NARCIS (Netherlands)

    Dijk, van W.L.; Niemantsverdriet, J.W.; Kraan, van der A.M.; van der Baan, Hessel

    1982-01-01

    Although it has been claimed by various authors that the addition of manganese oxide, MnO, to an iron catalyst gives a marked increase in the olefin selectivity of iron catalysts, we have been unable to confirm these claims in Fischer Tropsch experiments at 513 K for an iron manganese oxide catalyst

  14. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  15. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    Science.gov (United States)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  16. Selectivity in heavy ion transfer reactions

    International Nuclear Information System (INIS)

    Boucenna, A.

    1989-01-01

    One-two-and three-nucleon stripping reactions induced by 480 MeV 12 C and by 793 MeV 16 O have been studied on 12 C, 16 O, 28 Si, 40 Ca, and 54 Fe targets. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one and two orders of magnitude less for 2p- and 3 He-transfers, respectively. These reactions are governed by two selection rules contained in the semi-classical model of Brink: i) Large orbital final momentum states are selectively populated and ii) The most highly populated states correspond to no-flip transitions. Two-proton transfer reactions induced by 112 MeV 12 C on even Ni and Zn isotopes are found to be less selective than two-neutron transfer reactions induced by the same projectile on the same targets in a similar incident energy range. The additional collective aspects observed in the two-proton transfers are examined in view of a semiphenomenological model of two quasi-particles coupled to a triaxial asymmetric rotor. The energy of excited states is well reproduced by simple shell model calculations. Such estimates are useful in proposing spins of newly observed states, especially as the shapes of the measured angular distributions are independant of the final spin of the residual nucleus. The experimental results of two-proton and two-neutron stripping reactions and the simple shell model allow an estimate of two-body matrix elements describing the nucleon-nucleon interaction and of the Coulomb energy [fr

  17. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  18. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  19. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  20. Ionic Conductivity and its Role in Oxidation Reactions

    Science.gov (United States)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  1. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  2. Internal Displacement Reactions in Multicomponent Oxides: Part I. Line Compounds with Narrow Homogeneity Range

    OpenAIRE

    Reddy, SNS; Leonard, DN; Wiggins, LB; Jacob, KT

    2005-01-01

    As a model of an internal displacement reaction involving a ternary oxide line compound, the following reaction was studied at 1273 K as a function of time, t: $Fe+NiTiO_3 = Ni + FeTiO_3$ Both polycrystalline and single-crystal materials were used as the starting $NiTiO_3$ oxide. During the reaction, the Ni in the oxide compound is displaced by Fe and it precipitates as a \\gamma -(Ni-Fe) alloy. The reaction preserves the starting ilmenite structure. The product oxide has a consta...

  3. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  4. Developing Selective Oxidation Catalysts of Light Alkanes:. from Fundamental Understanding to Rational Design

    Science.gov (United States)

    Fu, Gang; Yi, Xiaodong; Huang, Chuanjing; Xu, Xin; Weng, Weizheng; Xia, Wensheng; Wan, Hui-Lin

    Selective oxidation of light alkanes remains to be a great challenge for the wider use of alkanes as feedstocks. To achieve high activity and at the same time high selectivity, some key issues have to be addressed: (1) the stability of the desired products with respect to the reactants; (2) the roles of the active components in the catalysts, the structure and the functionality of the active centers; (3) the reducibility of the metal cations, the Lewis acid sites and their synergic effects with the basic sites of the lattice oxygen anions; (4) spatial isolation of the active centers; and (5) the mechanisms for the formation and transformation of the intermediates and their kinetic controls. In this contribution, we took selective oxidation of propane to acrolein as our target reaction, and reviewed mainly our own work, trying to provide some thinking and answers to these five questions.

  5. Things fall apart: Fragmentation reactions in the oxidative aging of organic species

    Science.gov (United States)

    Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.

    2016-12-01

    The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.

  6. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  7. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  8. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [fr

  9. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  10. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  11. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  12. Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides

    Science.gov (United States)

    Rafiee, Ezzat; Shahebrahimi, Shabnam

    2017-07-01

    Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.

  13. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  14. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling.

    Science.gov (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin

    2018-04-26

    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  15. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet

    2012-11-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  16. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet; da Silva, Gabriel; Chung, Suk-Ho

    2012-01-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  17. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  18. Selective oxidation catalysis with Mn and H2O2 : Conversion of alkenes to α-hydroxy ketones, C=C cleavage and mechanistic insights.

    NARCIS (Netherlands)

    Mecozzi, Francesco

    2016-01-01

    Oxidation is a term used to cover a wide range of processes that are central to life. Although we associate oxidation with ageing it is in fact central to living – from the uncontrolled radical chain reactions that drive combustion to the highly selective stepwise oxidations that your body uses to

  19. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  20. Kinetics and Mechanism of the Reaction of Coherently Synchronized Oxidation and Dehydrogenation of Cyclohexane by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Aghamammadova S.

    2016-01-01

    Based on this experimental researches, the complex reaction, consisting of parallel-sequential oxidation and dehydrogenation reactions, which are coherently synchronized, proceeds during the process of cyclohexane oxidation with biomimetic catalyst. Depending on the reaction parameters it is possible to deliberately adjust the direction of oxidation reaction and reaction rate.

  1. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Science.gov (United States)

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  3. A Bioinspired Organocatalytic Cascade for the Selective Oxidation of Amines under Air.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2017-05-17

    A bioinspired organocatalytic cascade reaction for the selective aerobic oxidative cross-coupling of primary amines to imines is described. This approach takes advantages of commercially available pyrogallol monomeric precursor to deliver low loadings of natural purpurogallin in situ, under air. This is further engaged in a catalytic process with the amine substrate affording, under single turnover, the active biomimetic quinonoid organocatalyst and the homocoupled imine intermediate, which is then converted into cross-coupled imine after dynamic transimination. This organocatalytic cascade inspired by both purpurogallin biosynthesis and copper amine oxidases allows the aerobic oxidation of non-activated primary amines that non-enzymatic organocatalysts were not able to accomplish alone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  5. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  6. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  7. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    Sulphation of metal oxides has an important role in many industrial processes. In different applications sulphation reactions have different aims and characteristics. In the flash smelting process sulphation of oxidic flue dust is a spontaneous and inevitable phenomena, which takes place in the waste heat boiler (WHB) when cooling down hot dust laden off-gases from sulphide smelters. Oxidic dust particles (size 0 - 50 {mu}m) react with O{sub 2} and SO{sub 2} or SO{sub 3} in a certain temperature range (500 - 800 deg C). Sulphation reactions are highly exothermic releasing large amount of heat, which affects the gas cooling and thermal performance of the boiler. Thermodynamics and kinetics of the system have to be known to improve the process and WHB operation. The rate of sulphation is affected by the prevailing conditions (temperature, gas composition) and particle size and microstructure (porosity, surface area). Some metal oxides (CuO) can react readily with SO{sub 2} and O{sub 2} and act as self-catalysts, but others (NiO) require the presence of an external catalyst to enhance the SO{sub 3} formation and sulphation to proceed. Some oxides (NiO) sulphate directly, some (CuO) may form first intermediate phases (basic sulphates) depending on the reaction conditions. Thus, the reaction mechanisms are very complex. The aim of this report was to search information about the factors affecting the dust sulphation reactions and suggested reaction mechanisms and kinetics. Many investigators have studied sulphation thermodynamics and reaction kinetics and mechanisms of macroscopical metal oxide pieces, but only few articles have been published about sulphation of microscopical particles, like dust. All the found microscale studies dealt with sulphation reactions of calcium oxide, which is not present in the flash smelting process, but used as an SO{sub 2} absorbent in the combustion processes. However, also these investigations may give some hints about the sulphation

  8. Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-04-01

    Full Text Available Selective oxidation of saturated hydrocarbons with molecular oxygen has been of great interest in catalysis, and the development of highly efficient catalysts for this process is a crucial challenge. A new kind of heterogeneous catalyst, cobalt-doped carbon nitride polymer (g-C3N4, was harnessed for the selective oxidation of cyclohexane. X-ray diffraction, Fourier transform infrared spectra and high resolution transmission electron microscope revealed that Co species were highly dispersed in g-C3N4 matrix and the characteristic structure of polymeric g-C3N4 can be retained after Co-doping, although Co-doping caused the incomplete polymerization to some extent. Ultraviolet–visible, Raman and X-ray photoelectron spectroscopy further proved the successful Co doping in g-C3N4 matrix as the form of Co(IIN bonds. For the selective oxidation of cyclohexane, Co-doping can markedly promote the catalytic performance of g-C3N4 catalyst due to the synergistic effect of Co species and g-C3N4 hybrid. Furthermore, the content of Co largely affected the activity of Co-doped g-C3N4 catalysts, among which the catalyst with 9.0 wt% Co content exhibited the highest yield (9.0% of cyclohexanone and cyclohexanol, as well as a high stability. Meanwhile, the reaction mechanism over Co-doped g-C3N4 catalysts was elaborated. Keywords: Selective oxidation of cyclohexane, Oxygen oxidant, Carbon nitride, Co-doping

  9. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors

    International Nuclear Information System (INIS)

    Xiang, Ling; Lin, Yuqing; Yu, Ping; Su, Lei; Mao, Lanqun

    2007-01-01

    This study demonstrates a new electrochemical method for the selective determination of dopamine (DA) with the coexistence of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) with laccase/multi-walled carbon nanotube (MWNT)-based biosensors prepared by cross-linking laccase into MWNT layer confined onto glassy carbon electrodes. The method described here is essentially based on the chemical reaction properties of DA including oxidation, intramolecular cyclization and disproportionation reactions to finally give 5,6-dihydroxyindoline quinone and on the uses of the two-electron and two-proton reduction of the formed 5,6-dihydroxyindoline quinone to constitute a method for the selective determination of DA at a negative potential that is totally separated from those for the redox processes of AA and DOPAC. Instead of the ECE reactions of DA with the first oxidation of DA being driven electrochemically, laccase is used here as the biocatalyst to drive the first oxidation of DA into its quinone form and thus initialize the sequential reactions of DA finally into 5,6-dihydroxyindoline quinone. In addition, laccase also catalyzes the oxidation of AA and DOPAC into electroinactive species with the concomitant reduction of O 2 . As a consequence, a combinational exploitation of the chemical properties inherent in DA and the multifunctional catalytic properties of laccase as well as the excellent electrochemical properties of carbon nanotubes substantially enables the prepared laccase/MWNT-based biosensors to be well competent for the selective determination of DA with the coexistence of physiological levels of AA and DOPAC. This demonstration offers a new method for the selective determination of DA, which could be potentially employed for the determination of DA in biological systems

  10. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  11. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    Science.gov (United States)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  12. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  13. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  14. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  15. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  16. Catalytic activity of bimetallic AuPd alloys supported MgO and MnO2 nanostructures and their role in selective aerobic oxidation of alcohols

    Directory of Open Access Journals (Sweden)

    Hamed Alshammari

    2017-10-01

    Full Text Available The use of metal oxides as supports for gold and palladium (Au-Pd nano alloys constitutes new horizons to improve catalysts materials for very important reactions. From the literatures, Pd-based bimetallic nanostructures have great properties and active catalytic performance. In this study, nanostructures of magnesium oxide (MgO and manganese dioxide (MnO₂ were synthesised and utilized as supports for Au-Pd nanoparticle catalysts. Gold and palladium were deposited on these supports using sol-immobilisation method. The MgO and MnO2 supported Au-Pd catalysts were evaluated for the oxidation of benzyl alcohol and 1-octanol, respectively. These catalysts were found to be more selective, active and reusable than the corresponding monometallic Au and Pd catalysts. The effect of base supports on the disproportionation reaction during the oxidation process was investigated. The results show that MgO stopped the disproportionation reaction for both aromatic and aliphatic alcohols while MnO₂ stopped it in the case of benzyl alcohol only. The outcomes of this work shed light on the selective aerobic oxidation of alcohols using bimetallic Au-Pd nanoalloys and pave the way to a complete investigation of more basic metal oxides for various aliphatic alcohols.

  17. Iron-tellurium-selenium mixed oxide catalysts for the selective oxidation of propylene to acrolein

    International Nuclear Information System (INIS)

    Patel, B.M.; Price, G.L.

    1990-01-01

    This paper reports on iron-tellurium-selenium mixed oxide catalysts prepared by coprecipitation from aqueous solution investigated for the propylene to acrolein reaction in the temperature range 543-773 K. Infrared spectroscopy, electron dispersive X-ray analysis, X-ray diffraction, and isotopic tracer techniques have also been employed to characterize this catalytic system. Properties of the Fe-Te-Se mixed oxide catalysts have been compared with Fe-Te mixed oxides in an effort to deduce the functionality of Se. The selenium in the Fe-Te-Se-O catalyst has been found to be the hydrocarbon activating site. The activation energies for the acrolein and carbon dioxide formation are 71 and 54 kJ/mol, respectively. Reactions carried out with 18 O 2 have shown lattice oxygen to be primarily responsible for the formation of both acrolein and carbon dioxide. The initial and rate-determining step for acrolein formation is hydrogen abstraction as determined by an isotope effect associated with the C 3 D 6 reaction. No isotope effect is observed for carbon dioxide formation from C 3 D 6 suggesting that CO 2 is formed by parallel, not consecutive, oxidation of propylene

  18. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    Science.gov (United States)

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  19. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    Science.gov (United States)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  20. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  1. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  2. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  3. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  4. A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide

    Science.gov (United States)

    Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi

    2018-05-01

    The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.

  5. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  6. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.

    Science.gov (United States)

    Lin, Yangming; Wu, Kuang-Hsu Tim; Yu, Linhui; Heumann, Saskia; Su, Dang Sheng

    2017-09-11

    Selective oxidation of alcohols to aldehydes is widely applicable to the synthesis of various green chemicals. The poor chemoselectivity for complicated primary aldehydes over state-of-the-art metal-free or metal-based catalysts represents a major obstacle for industrial application. Bucky nanodiamond is a potential green catalyst that exhibits excellent chemoselectivity and cycling stability for the selective oxidation of primary alcohols in diverse structures (22 examples, including aromatic, substituted aromatic, unsaturated, heterocyclic, and linear chain alcohols) to their corresponding aldehydes. The results are comparable to reported transition-metal catalysts including conventional Pt/C and Ru/C catalysts for certain substrates under solvent-free conditions. The possible activation process of the oxidant and substrates by the surface oxygen groups and defect species are revealed with model catalysts, ex situ electrochemical measurements, and ex situ attenuated total reflectance. The zigzag edges of sp 2 carbon planes are shown to play a key role in these reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  9. Kinetics of reactions of chromium, molybdenum and tungsten hexacarbonyls with hydroxylamine and trimethylamine oxide

    International Nuclear Information System (INIS)

    Maksakov, V.A.; Ershova, V.A.

    1994-01-01

    Mechanism of M(CO) 6 (M = Cr, Mo, W) reaction with hydroxylamine was studied. On the basis of kinetic data it was ascertained that as a result of the reaction CO oxidation to CO 2 and intramolecular transfer of amine formed to the central atom of metal occur. Mechanisms of M(CO) 6 reactions with hydroxylamine and trimethylamine oxide are compared

  10. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  11. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  12. Partial oxidation of jet fuels over Rh/Al_2O_3. Design and reaction kinetics of sulfur-containing surrogates

    International Nuclear Information System (INIS)

    Baer, Julian Nicolaas

    2016-01-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al_2O_3 at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al_2O_3, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product distribution. An

  13. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  14. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  15. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    Science.gov (United States)

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  17. Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2010-11-01

    Full Text Available The heterogeneous reactions of carbonyl sulfide (OCS on the typical mineral oxides in the mineral dust particles were investigated using a Knudsen cell flow reactor and a diffuse reflectance UV-vis spectroscopy. The reaction pathway for OCS on mineral dust was identified based on the gaseous products and surface species. The hydrolysis of OCS and succeeding oxidation of intermediate products readily took place on α-Al2O3, MgO, and CaO. Reversible and irreversible adsorption of OCS were observed on α-Fe2O3 and ZnO, respectively, whereas no apparent uptake of OCS by SiO2 and TiO2 was observed. The reactivity of OCS on these oxides depends on both the basicity of oxides and the decomposition reactivity of oxides for H2S. Based on the individual uptake coefficients and chemical composition of authentic mineral dust, the uptake coefficient (γBET of mineral dust was estimated to be in the range of 3.84×10−7–2.86×10−8. The global flux of OCS due to heterogeneous reactions and adsorption on mineral dust was estimated at 0.13–0.29 Tg yr−1, which is comparable to the annual flux of OCS for its reaction with ·OH.

  18. Selective oxidation of methyl {alpha}-D-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)

    1997-09-01

    The selective oxidation of alcohols and carbohydrates with molecular oxygen in aqueous media is an industrial and environmental attractive process. A kinetic model is presented, which describes the platinum-catalyzed selective oxidation of methyl {alpha}-D-glucopyranoside to sodium methyl {alpha}-D-glucuronate with molecular oxygen in the presence of deactivation by overoxidation. Overoxidation is completely reversible and most adequately described by a reversible transformation of oxygen adatoms into inactive subsurface oxygen. A clear distinction is made between the rapid establishment of the steady-state degree of coverage by the reaction intermediates at the platinum surface and the much slower reversible process of overoxidation. This clear distinction is reflected in the rate equation, which can be written as the product of an initial rate and a deactivation function. The deactivation function is given as a function of the degree of coverage by inactive subsurface oxygen. The rate-determining step in the selective oxidation consists of the reaction between dissociatively chemisorbed oxygen and physisorbed methyl {alpha}-D-glucopyranoside. The corresponding standard activation entropy and enthalpy amount to respectively {minus}111 {+-} 12 J/mol K and 51 {+-} 4 kJ/mol. The standard reaction entropy for the transformation of oxygen atoms into subsurface oxygen amounts to {minus}35 {+-} 16 J/mol K and the standard reaction enthalpy to {minus}36 {+-} 15 kJ/mol.

  19. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural

    Science.gov (United States)

    Pacheco, Joshua J.; Davis, Mark E.

    2014-01-01

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  20. OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Directory of Open Access Journals (Sweden)

    Y. J. O. Asencios

    Full Text Available Abstract In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD, Temperature Programmed Reduction (H2-TPR, Scanning Electron Microscopy (SEM/EDX and Adsorption-Desorption of nitrogen (BET area. The reactions were carried out at 750 °C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%. In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2 with 15% nickel (15NiPrZr catalyst showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H2 and CO. The results suggest that the promoter PrO2 and the Niº centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.

  1. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  2. Method for Selection of Solvents for Promotion of Organic Reactions

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Jiménez-González, Concepción; Constable, David J.C.

    2005-01-01

    is to produce, for a given reaction, a short list of chemicals that could be considered as potential solvents, to evaluate their performance in the reacting system, and, based on this, to rank them according to a scoring system. Several examples of application are given to illustrate the main features and steps......A method to select appropriate green solvents for the promotion of a class of organic reactions has been developed. The method combines knowledge from industrial practice and physical insights with computer-aided property estimation tools for selection/design of solvents. In particular, it employs...... estimates of thermodynamic properties to generate a knowledge base of reaction, solvent and environment related properties that directly or indirectly influence the rate and/or conversion of a given reaction. Solvents are selected using a rules-based procedure where the estimated reaction-solvent properties...

  3. Selective oxidation of propane over cation exchanged zeolites

    NARCIS (Netherlands)

    Xu, J.

    2005-01-01

    This thesis focuses on investigation of the fundamental knowledge on a new method for selective oxidation of propane with O2 at low temperature (< 100°C). The relation between propane catalytic selective oxidation and physicochemical properties of cation exchanged Y zeolite has been studied. An

  4. Bond-selective control of a gas-surface reaction

    Science.gov (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  5. Nucleophile-directed selectivity towards linear carbonates in the niobium pentaethoxide-catalysed cycloaddition of CO2 and propylene oxide

    KAUST Repository

    Dutta, Barnali

    2014-01-01

    Homoleptic Nb-complexes combined with selected organic nucleophiles generate very active catalytic systems for the cycloaddition of propylene oxide and CO2 under ambient conditions. An unprecedented reaction pathway towards an acyclic organic carbonate is observed when extending the study to [Nb(OEt)5] in combination with 4-dimethylamino-pyridine (DMAP) or tetra-n-butylammonium bromide (TBAB). Mechanistic insights of the reaction are provided based on experimental and spectroscopic evidences. This journal is © the Partner Organisations 2014.

  6. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  7. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Science.gov (United States)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  8. Reaction of iodine oxidation by potassium permanganate in tributyl phosphate

    International Nuclear Information System (INIS)

    Khokhlov, M.L.; Legin, E.K.

    1990-01-01

    Stoichiometry was determined and kinetics of iodine oxidation by potassium permanganate in tributylphosphate was studied. Kinetic scheme, which agrees with stoichiometry and experimental kinetic equation of the reaction, is suggested. A mixture is the reaction product. It is ascertained that when the mixture is heated, thermal decomposition of iodate to iodide occurs without elementary iodine separation, which is catalyzed by polymanganate

  9. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.

    Science.gov (United States)

    Hanson, Susan K; Baker, R Tom

    2015-07-21

    This work began as part of a biomass conversion catalysis project with UC Santa Barbara funded by the first NSF Chemical Bonding Center, CATSB. Recognizing that catalytic aerobic oxidation of diol C-C bonds could potentially be used to break down lignocellulose, we began to synthesize oxovanadium complexes and explore their fundamental reactivity. Of course there were theories regarding the oxidation mechanism, but our mechanistic studies soon revealed a number of surprises of the type that keep all chemists coming back to the bench! We realized that these reactions were also exciting in that they actually used the oxygen-on-every-carbon property of biomass-derived molecules to control the selectivity of the oxidation. When we found that these oxovanadium complexes tended to convert sugars predominantly to formic acid and carbon dioxide, we replaced one of the OH groups with an ether and entered the dark world of lignin chemistry. In this Account, we summarize results from our collaboration and from our individual labs. In particular, we show that oxidation selectivity (C-C vs C-O bond cleavage) of lignin models using air and vanadium complexes depends on the ancillary ligands, the reaction solvent, and the substrate structure (i.e., phenolic vs non-phenolic). Selected vanadium complexes in the presence of added base serve as effective alcohol oxidation catalysts via a novel base-assisted dehydrogenation pathway. In contrast, copper catalysts effect direct C-C bond cleavage of these lignin models, presumably through a radical pathway. The most active vanadium catalyst exhibits unique activity for the depolymerization of organosolv lignin. After Weckhuysen's excellent 2010 review on lignin valorization, the number of catalysis studies and approaches on both lignin models and extracts has expanded rapidly. Today we are seeing new start-ups and lignin production facilities sprouting up across the globe as we all work to prove wrong the old pulp and paper chemist

  10. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  11. Controlled nitric oxide production via O(1D  + N2O reactions for use in oxidation flow reactor studies

    Directory of Open Access Journals (Sweden)

    A. Lambe

    2017-06-01

    Full Text Available Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3 is photolyzed at 254 nm to produce O(1D radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA formation pathways. Simple addition of nitric oxide (NO results in fast conversion of NOx (NO + NO2 to nitric acid (HNO3, making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2 radicals as a sink for organic peroxy (RO2 radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS measurements with nitrate (NO3− reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  12. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    Science.gov (United States)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  13. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  14. Highly selective oxidative dehydrogenation of ethane with supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.A.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen (Germany). Catalysis Research Center

    2011-07-01

    Ethene production is one of the most important transformations in chemical industry, given that C{sub 2}H{sub 4} serves as building block for many mass-market products. Besides conventional thermal processes like steam cracking of ethane, ethane can be produced selectively by catalytic processes. One of the classes of catalysts that have been reported in literature as active and highly selective for the oxidative dehydrogenation of ethane is that of supported molten chloride catalysts, containing an alkali chloride overlayer on a solid support. This work deals with fundamental aspects of the catalytic action in latter class of catalysts. Results from kinetic reaction studies are related to observations in detailed characterization and lead to a comprehensive mechanistic understanding. Of fundamental importance towards mechanistic insights is the oxygen storage capacity of the catalysts that has been determined by transient step experiments. (orig.)

  15. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  16. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  17. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  18. The effect of interfaces on solid-state reactions between oxides

    International Nuclear Information System (INIS)

    Johnson, M.T.; Carter, C.B.

    1998-01-01

    A thin-film geometry has been used to study fundamental solid-state reaction processes occurring at interfaces in two spinel-forming oxide systems. In the first system, NiO/Al 2 O 3 , epitactic NiO films were deposited on various orientations of single-crystal α-Al 2 O 3 . In this case, the reaction kinetics were studied and correlated with the interfacial structure (or substrate orientation). In the second, In 2 O 3 /MgO, solid-state reactions were studied under the influence of an electric field. The electric field provides a driving force for mass transport that affects both the reaction process and the morphological stability of an interface

  19. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  20. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 2

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Arakawa, Kazuo; Sugiura, Toshio.

    1978-01-01

    The ion-molecule reactions in the binary mixture of ethylene oxide and trioxane have been studied with use of a modified time-of-flight mass spectrometer. As cross-reaction product ions, C 3 H 5 O 2 + , C 3 H 6 O 2 +sup(, and C**3**H**7**O**2**)+sup( were observed under the conditions of long delay times and elevated pressure. It was found that these ions are formed by the dissociation of unstable intermediate-complex resulting from the reaction of ethylene oxide molecular ion with trioxane. It was proposed that the complex is of cyclic structure in which positive charge is delocalized. From the consideration of isotopic distribution of the product ions in ethylene-d**4** oxide-trioxane mixtures, the skeletal structures of the product ions were investigated. The rate constants of the formation reactions of C**3**H**5**O**2**)+sup(, C**3**H**6**O**2**)+sup(, and C**3**H**7**O**2**)+sup( in ethylene oxide-trioxane mixtures were found to be 2.20 x 10)-10sup(, 2.61 x 10)-10sup(, and 1.74 x 10)-10sup( cm)3sup( molecule)-1sup(s)-1 , respectively. (auth.)

  1. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  2. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  3. PET-modified red mud as catalysts for oxidative desulfurization reactions.

    Science.gov (United States)

    do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S

    2017-07-01

    This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.

  4. Chemiluminescence from the reaction of Ba 3D with nitric oxide

    International Nuclear Information System (INIS)

    Johnson, S.A.; Solarz, R.W.; Dubrin, J.W.; Brotzmann, R.

    1977-01-01

    The reaction of laser excited Ba*( 3 D) states with nitric oxide is presented. BaO product is not detected, although the channel is thermodynamically open, and instead chemiluminescence is observed. Experiments which suggest that radiative recombination, Ba + NO → BaNO* → BaNO, is the observed reaction channel will also be presented

  5. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, William David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  6. Simulation of the selective oxidation process of semiconductors

    International Nuclear Information System (INIS)

    Chahoud, M.

    2012-01-01

    A new approach to simulate the selective oxidation of semiconductors is presented. This approach is based on the so-called b lack box simulation method . This method is usually used to simulate complex processes. The chemical and physical details within the process are not considered. Only the input and output data of the process are relevant for the simulation. A virtual function linking the input and output data has to be found. In the case of selective oxidation the input data are the mask geometry and the oxidation duration whereas the output data are the oxidation thickness distribution. The virtual function is determined as four virtual diffusion processes between the masked und non-masked areas. Each process delivers one part of the oxidation profile. The method is applied successfully on the oxidation system silicon-silicon nitride (Si-Si 3 N 4 ). The fitting parameters are determined through comparison of experimental and simulation results two-dimensionally.(author)

  7. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer–Tropsch synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Bell, Alexis T. (LBNL); (UCB)

    2016-06-17

    Metal oxides of Ce, Gd, La, Mn, and Zr were investigated as promoters for improving the activity and selectivity of Co-based FTS catalysts. The extent to which these promoters decrease the selectivity toward CH4 and increase the selectivity toward C5+ hydrocarbons was found to depend on both the loading and the composition of the oxide promoter. Elemental mapping by STEM–EDS revealed that the propensity for a given metal oxide to associate with Co affects the sensitivity of the product distribution to changes in promoter loading. For all promoters, a sufficiently high loading resulted in the product distributions becoming insensitive to further increases in promoter loading, very likely due to the formation of a half monolayer of promoter oxide over the Co surface. Simulations suggest that the fraction of Co active sites that are adjacent to the promoter moieties approaches unity at this degree of coverage. The oxidation state of the promoter metal cation under reaction conditions, determined by in situ XANES measurements, was used to calculate relative Lewis acidity of the promoter metal cation. A strong positive correlation was found between the C5+ product selectivity and the Lewis acidity of the promoter metal cations, suggesting that the promotional effects are a consequence of Lewis acid–base interactions between the reaction intermediates and the promoter metal cations. Rate data obtained at different pressures were used to estimate the apparent rate coefficient and the CO adsorption constant appearing in the Langmuir–Hinshelwood expression that describes the CO consumption kinetics for both unpromoted and the metal oxide-promoted catalysts. Both parameters exhibited positive correlations with the promoter Lewis acidity. In conclusion, these results are consistent with the hypothesis that the metal cations of the promoter act as Lewis acids that interact with the O atom of adsorbed CO to facilitate CO adsorption and

  8. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  9. Partial oxidation of jet fuels over Rh/Al{sub 2}O{sub 3}. Design and reaction kinetics of sulfur-containing surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Julian Nicolaas

    2016-07-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al{sub 2}O{sub 3} at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al{sub 2}O{sub 3}, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product

  10. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Directory of Open Access Journals (Sweden)

    Zen Maeno

    2015-02-01

    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  11. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  12. Kinetic and reaction pathways of methanol oxidation on platinum

    International Nuclear Information System (INIS)

    McCabe, R.W.; McCready, D.F.

    1986-01-01

    Methanol oxidation kinetics were measured on Pt wires in a flow reactor at pressures between 30 and 130 Pa. The kinetics were measured as a function of oxygen-to-methanol equivalence ratio phi and wire temperature. In methanol-lean feeds (phi 2 CO, CO 2 , and H 2 O were the only products; in methanol-rich feeds (phi > 1), CO, H 2 , H 2 CO, CO 2 , and H 2 O were observed. Experiments with 18 O 2 showed that the principal methanol oxidation pathway does not involve C-O bond dissociation. However, the 18 O 2 experiments, together with other features of the methanol oxidation data, also provided evidence for a minor oxidation pathway (accounting for less than 1% of the product CO 2 ) which proceeds through a carbon intermediate. A mathematical model is presented which describes the principal CH 3 OH oxidation pathway as a series reaction involving adsorbed H 2 CO and CO intermediates. Consistent with experimental results, the model predicts that inhibition by adsorbed CO should be weaker for CH 3 OH and H 2 CO oxidation than for CO oxidation. 34 references, 10 figures, 2 tables

  13. Deciphering Selectivity in Organic Reactions: A Multifaceted Problem.

    Science.gov (United States)

    Balcells, David; Clot, Eric; Eisenstein, Odile; Nova, Ainara; Perrin, Lionel

    2016-05-17

    Computational chemistry has made a sustained contribution to the understanding of chemical reactions. In earlier times, half a century ago, the goal was to distinguish allowed from forbidden reactions (e.g., Woodward-Hoffmann rules), that is, reactions with low or high to very high activation barriers. A great achievement of computational chemistry was also to contribute to the determination of structures with the bonus of proposing a rationalization (e.g., anomeric effect, isolobal analogy, Gillespie valence shell pair electron repulsion rules and counter examples, Wade-Mingos rules for molecular clusters). With the development of new methods and the constant increase in computing power, computational chemists move to more challenging problems, close to the daily concerns of the experimental chemists, in determining the factors that make a reaction both efficient and selective: a key issue in organic synthesis. For this purpose, experimental chemists use advanced synthetic and analytical techniques to which computational chemists added other ways of determining reaction pathways. The transition states and intermediates contributing to the transformation of reactants into the desired and undesired products can now be determined, including their geometries, energies, charges, spin densities, spectroscopy properties, etc. Such studies remain challenging due to the large number of chemical species commonly present in the reactive media whose role may have to be determined. Calculating chemical systems as they are in the experiment is not always possible, bringing its own share of complexity through the large number of atoms and the associated large number of conformers to consider. Modeling the chemical species with smaller systems is an alternative that historically led to artifacts. Another important topic is the choice of the computational method. While DFT is widely used, the vast diversity of functionals available is both an opportunity and a challenge. Though

  14. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  15. Nitroxide-catalyzed selective oxidation of alcohols and polysaccharides

    International Nuclear Information System (INIS)

    Ponedel'kina, I Yu; Khaibrakhmanova, E A; Odinokov, Viktor N

    2010-01-01

    The use of nitroxide radicals in the selective oxidation of alcohols is considered. Attention is focused on the oxidation of polysaccharides as a method of preparation of polyuronic acids, aldehydes and hemiacetals.

  16. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  17. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project

  18. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  19. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  20. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microbial Fe(II) oxidation at circumneutral pH: Reaction kinetics, mineral products, and distribution of neutrophilic iron oxidizers in wetland soils

    NARCIS (Netherlands)

    Vollrath, S.

    2012-01-01

    Multiple studies have shown that neutrophilic Fe(II) oxidizers can conserve energy from Fe(II) oxidation, however, it is still unclear how they can compete against the fast abiotic reaction at neutral pH, or to which extent these bacteria increase the overall Fe(II) oxidation rate. Similar to

  2. Label-Free and Ultrasensitive Biomolecule Detection Based on Aggregation Induced Emission Fluorogen via Target-Triggered Hemin/G-Quadruplex-Catalyzed Oxidation Reaction.

    Science.gov (United States)

    Li, Haiyin; Chang, Jiafu; Gai, Panpan; Li, Feng

    2018-02-07

    Fluorescence biosensing strategy has drawn substantial attention due to their advantages of simplicity, convenience, sensitivity, and selectivity, but unsatisfactory structure stability, low fluorescence quantum yield, high cost of labeling, and strict reaction conditions associated with current fluorescence methods severely prohibit their potential application. To address these challenges, we herein propose an ultrasensitive label-free fluorescence biosensor by integrating hemin/G-quadruplex-catalyzed oxidation reaction with aggregation induced emission (AIE) fluorogen-based system. l-Cysteine/TPE-M, which is carefully and elaborately designed and developed, obviously contributes to strong fluorescence emission. In the presence of G-rich DNA along with K + and hemin, efficient destruction of l-cysteine occurs due to hemin/G-quadruplex-catalyzed oxidation reactions. As a result, highly sensitive fluorescence detection of G-rich DNA is readily realized, with a detection limit down to 33 pM. As a validation for the further development of the proposed strategy, we also successfully construct ultrasensitive platforms for microRNA by incorporating the l-cysteine/TPE-M system with target-triggered cyclic amplification reaction. Thus, this proposed strategy is anticipated to find use in basic biochemical research and clinical diagnosis.

  3. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    Science.gov (United States)

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the

  4. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  5. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    Science.gov (United States)

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  6. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    Science.gov (United States)

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  7. Correlation of serum Dickkopf-1 content with bone destruction, inflammatory response and oxidation reaction in patients with gouty arthritis

    Directory of Open Access Journals (Sweden)

    Yu-Mei He

    2017-09-01

    Full Text Available Objective: To study the correlation of serum Dickkopf-1 (DKK-1 content with bone destruction, inflammatory response and oxidation reaction in patients with gouty arthritis. Methods: A total of 40 patients with acute gouty arthritis who were treated in our hospital between 2013 and 2016 were selected as the group A of the study, 56 patients with asymptomatic hyperuricemia who were treated in our hospital during the same period were selected as the group B of the study, and 60 healthy volunteers who received physical examination in our hospital during the same period were selected as the control group of the study. The serum was collected to detect the contents of DKK-1, bone destruction indexes, inflammatory response indexes and oxidation reaction indexes. Results: Serum DKK-1, TRACP5b, RANKL, β-CTX, PGE2, sICAM-1, sVCAM-1, sCD14, MDA, 8-OHdG and 3-NT levels of group A and group B were significantly higher than those of control group while SOD and GSH-Px levels were significantly lower than those of control group; serum DKK-1, TRACP5b, RANKL, β-CTX, PGE2, sICAM-1, sVCAM-1, sCD14, MDA, 8-OHdG and 3-NT levels of group A were significantly higher than those of group B while SOD and GSH-Px levels were significantly lower than those of group B; serum DKK-1 level was positively correlated with TRACP5b, RANKL, β-CTX, PGE2, sICAM-1, sVCAM-1, sCD14, MDA, 8-OHdG and 3-NT levels, and negatively correlated with SOD and GSH-Px levels. Conclusion: Abnormally elevated DKK-1 in patients with gouty arthritis can induce articular bone destruction as well as inflammatory response and oxidative stress response activation.

  8. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  9. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)

    Unknown

    The notable feature in this study is that none of the kinetic traces are expo- nential. A representative plot is given in figure 1 and the quantitative spectrum of TTBP• radical in dichloromethane is given in figure 2 (bold line). In this oxidation reaction under all the conditions, non-exponential kinetic traces were always obser-.

  10. Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons.

    Science.gov (United States)

    Isaacman, Gabriel; Chan, Arthur W H; Nah, Theodora; Worton, David R; Ruehl, Chris R; Wilson, Kevin R; Goldstein, Allen H

    2012-10-02

    Motor oil serves as a useful model system for atmospheric oxidation of hydrocarbon mixtures typical of anthropogenic atmospheric particulate matter, but its complexity often prevents comprehensive chemical speciation. In this work we fully characterize this formerly "unresolved complex mixture" at the molecular level using recently developed soft ionization gas chromatography techniques. Nucleated motor oil particles are oxidized in a flow tube reactor to investigate the relative reaction rates of observed hydrocarbon classes: alkanes, cycloalkanes, bicycloalkanes, tricycloalkanes, and steranes. Oxidation of hydrocarbons in a complex aerosol is found to be efficient, with approximately three-quarters (0.72 ± 0.06) of OH collisions yielding a reaction. Reaction rates of individual hydrocarbons are structurally dependent: compared to normal alkanes, reaction rates increased by 20-50% with branching, while rates decreased ∼20% per nonaromatic ring present. These differences in rates are expected to alter particle composition as a function of oxidation, with depletion of branched and enrichment of cyclic hydrocarbons. Due to this expected shift toward ring-opening reactions heterogeneous oxidation of the unreacted hydrocarbon mixture is less likely to proceed through fragmentation pathways in more oxidized particles. Based on the observed oxidation-induced changes in composition, isomer-resolved analysis has potential utility for determining the photochemical age of atmospheric particulate matter with respect to heterogeneous oxidation.

  11. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  12. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  13. Unprecedented Selective Oxidation of Styrene Derivatives using a Supported Iron Oxide Nanocatalyst in Aqueous Medium

    Science.gov (United States)

    Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as a green oxidant. Catalysts could be easily recovered after completion of the reac...

  14. The Nernst equation applied to oxidation-reduction reactions in myoglobin and hemoglobin. Evaluation of the parameters.

    Science.gov (United States)

    Saroff, Harry A

    Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.

  15. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  16. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  17. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    Science.gov (United States)

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Hydrogen Oxidation-Selective Electrocatalysis by Fine Tuning of Pt Ensemble Sites to Enhance the Durability of Automotive Fuel Cells.

    Science.gov (United States)

    Yun, Su-Won; Park, Shin-Ae; Kim, Tae-June; Kim, Jun-Hyuk; Pak, Gi-Woong; Kim, Yong-Tae

    2017-02-08

    A simple, inexpensive approach is proposed for enhancing the durability of automotive proton exchange membrane fuel cells by selective promotion of the hydrogen oxidation reaction (HOR) and suppression of the oxygen reduction reaction (ORR) at the anode in startup/shutdown events. Dodecanethiol forms a self-assembled monolayer (SAM) on the surface of Pt particles, thus decreasing the number of Pt ensemble sites. Interestingly, by controlling the dodecanethiol concentration during SAM formation, the number of ensemble sites can be precisely optimized such that it is sufficient for the HOR but insufficient for the ORR. Thus, a Pt surface with an SAM of dodecanethiol clearly effects HOR-selective electrocatalysis. Clear HOR selectivity is demonstrated in unit cell tests with the actual membrane electrode assembly, as well as in an electrochemical three-electrode setup with a thin-film rotating disk electrode configuration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    Xu, Xiao; Zhou, Yingke; Yuan, Tao; Li, Yawei

    2013-01-01

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH 4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  20. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  1. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  2. Oxidative modification of methionine80 in cytochrome c by reaction with peroxides.

    Science.gov (United States)

    Nugraheni, Ari Dwi; Ren, Chunguang; Matsumoto, Yorifumi; Nagao, Satoshi; Yamanaka, Masaru; Hirota, Shun

    2018-05-01

    The Met80-heme iron bond of cytochrome c (cyt c) is cleaved by the interaction of cyt c with cardiolipin (CL) in membranes. The Met80 dissociation enhances the peroxidase activity of cyt c and triggers cyt c release from mitochondrion to the cytosol at the early stage of apoptosis. This paper demonstrates the selective oxidation of Met80 for the reaction of ferric cyt c with a peroxide, meta-chloroperbenzoic acid (mCPBA), in the presence of CL-containing liposomes by formation of a ferryl species (Compound I). After the reaction of cyt c with mCPBA in the presence of 1,2-dioloeyl-sn-glycero-3-phosphocholine (DOPC) liposomes containing CL, the electrospray ionization mass spectrum of the peptide fragments, obtained by digestion of cyt c with lysyl endopeptidase, exhibited a peak at m/z = 795.45; whereas, this peak was not observed for the peptide fragments obtained after the reaction in the presence of DOPC liposomes not containing CL. According to the tandem mass spectrum of the m/z = 795.45 peptide fragment, Met80 was modified with a 16 Da mass increase. The purified Met80-modified cyt c exhibited a peroxidase activity more than 5-fold higher than that of the unmodified protein. Transient absorption bands around 650 nm were generated by the reactions with mCPBA for ferric wild-type cyt c in the presence of CL-containing DOPC liposomes and ferric Y67F cyt c in the absence of liposomes. The formation and decomposition rates of the 650-nm absorption species increased and decreased, respectively, by increasing the mCPBA concentration in the reaction, indicating transient formation of Compound I. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Diverse Reactions of Thiophenes, Selenophenes, and Tellurophenes with Strongly Oxidizing I(III) PhI(L)2 Reagents.

    Science.gov (United States)

    Egalahewa, Sathsara; Albayer, Mohammad; Aprile, Antonino; Dutton, Jason L

    2017-02-06

    We report the outcomes of the reactions of aromatic group 16 thiophene, selenophene, and tellurophene rings with the I(III) oxidants PhI(OAc)(OTf) and [PhI(Pyr) 2 ][OTf] 2 (Pyr = pyridine). In all reactions, oxidative processes take place, with generation of PhI as the reduction product. However, with the exception of tellurophene with PhI(OAc)(OTf), +4 oxidation state complexes are not observed, but rather a variety of other processes occur. In general, where a C-H unit is available on the 5-membered ring, an electrophilic aromatic substitution reaction of either -IPh or pyridine onto the ring occurs. When all positions are blocked, reactions with PhI(OAc)(OTf) give acetic and triflic anhydride as the identifiable oxidative byproducts, while [PhI(Pyr) 2 ][OTf] 2 gives pyridine electrophilic aromatic substitution onto the peripheral rings. Qualitative mechanistic studies indicate that the presence of the oxidizable heteroatom is required for pyridine to act as an electrophile in a substantial manner.

  4. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  5. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    International Nuclear Information System (INIS)

    Kundu, Subrata; Jayachandran, M.

    2013-01-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl 2 ·6H 2 O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.Graphical Abstract

  6. Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide

    Directory of Open Access Journals (Sweden)

    Sait Elmas

    2015-01-01

    Full Text Available The choice of the anion has a surprisingly strong effect on the incorporation of CO2 into the polymer obtained during the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide. The product span ranges from polyethercarbonates, where short polyether sequences alternate with carbonate linkages, to polycarbonates with a strictly alternating sequence of the repeating units. Herein, we report on the influence of the coordination ability of the anion on the selectivity and kinetics of the copolymerisation reaction.

  7. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  8. Mechanistic understanding and kinetic studies of highly selective oxidative dehydrogenation of ethane over novel supported molten chloride catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, C.; Veen, A.C. van; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. of Chemistry

    2012-07-01

    Ethene is one of the most important feedstocks for chemical industry, nowadays mainly produced via steam cracking. However, oxidative dehydrogenation becomes a more important process route, allowing to produce ethene selectively and at lower temperatures. Supported alkali chloride catalysts are promising materials. However, the ODH mechanism of this class of catalysts is not well investigated so far. The investigation of the reaction mechanism is thus the aim of this contribution. (orig.)

  9. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  10. Kinetics and reaction mechanism for aminolysis of benzyl 4-pyridyl carbonate in H2O: Effect of modification of nucleofuge from 2-pyridyl oxide to 4-pyridyl oxide on reactivity and reaction mechanism

    International Nuclear Information System (INIS)

    Kang, Ji Sun; Um, Ikhwan

    2012-01-01

    Pseudo-first-order rate constants k amine have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in H 2 O at 25.0.deg.C. The plots of k amine vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate T ± and its deprotonated form T - . This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The k amine values for the reactions of 6 have been dissected into the second-order rate constant Kk 2 and the third order rate constant Kk 3 . The Brφnsted-type plots are linear with β nuc = 0.94 and 1.18 for Kk 2 and Kk 3 , respectively. The Kk 2 for the reaction of 6 is smaller than the second-order rate constant k N for the corresponding reaction of 5, although 4-pyridyl oxide in 6 is less basic and a better nucleofuge than 2-pyridyl oxide in 5

  11. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  12. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  13. Molecular Components of Catalytic Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  14. Selective Oxidation of Cyclohexene, Toluene and Ethyl Benzene Catalyzed by Bis-(L-tyrosinatocopper(II, Immersed in a Magnetite-Infused Silica Matrix

    Directory of Open Access Journals (Sweden)

    Massomeh Ghorbanloo

    2016-01-01

    Full Text Available Bis-(L-tyrosinatocopper(II was reacted with 3-(chloropropyl-trimethoxysilane functionalized silica that has infused magnetite to yield a magnetically separable catalyst in which the copper carboxylate is covalently linked to the silica matrix through the silane linkage. The immobilized catalyst has been characterized by spectroscopic studies (such as FT-IR, EPR, Magnetic Measurement, SEM and chemical analyses. The immobilized catalytic system functions as an efficient heterogeneous catalyst for oxidation of cyclohexene, toluene and ethyl benzene in the presence of hydrogen peroxide (as an oxidant and sodium bicarbonate (a co-catalyst. The reaction conditions have been optimized for solvent, temperature and amount of oxidant and catalyst. Comparison of the encapsulated catalyst with the corresponding homogeneous catalyst showed that the heterogeneous catalyst had higher activity and selectivity than the homogeneous catalyst. The immobilized catalyst could be readily recovered from the reaction mixture by using a simple magnet, and  reused up to five times without any loss of activity.

  15. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  16. Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides

    NARCIS (Netherlands)

    Bosch, H.; Bruggink, A.A.; Ross, J.R.H.

    1987-01-01

    The selective oxidation of n-butane to maleic anhydride over V-P-O mixed oxides was studied under oxygen deficient conditions. The mixed oxides were prepared with P/V atomic ratios ranging from 0.7 to 1.0. Catalysts with P/V <1.0 did not show any selectivity to maleic anhydride formation, regardless

  17. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  18. Oxidation of D-glucose and D-fructose with oxygen in aqueous, alkaline solutions. Part I. An integral reaction scheme

    NARCIS (Netherlands)

    de Wilt, H.G.J.; Kuster, B.F.M.

    1971-01-01

    The homogeneous oxidn. of D-glucose and D-fructose with O in aq., alk. solns. is studied, and a reaction scheme proposed to account for the obsd. reaction products. Formation of enolate anions is followed by non-oxidative reactions (involving double-bond migration and cleavage) and by oxidative

  19. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili; Wickens, Zachary K.; Dong, Guangbin; Grubbs, Robert H.

    2012-01-01

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  20. Efficient and Highly Aldehyde Selective Wacker Oxidation

    KAUST Repository

    Teo, Peili

    2012-07-06

    A method for efficient and aldehyde-selective Wacker oxidation of aryl-substituted olefins using PdCl 2(MeCN) 2, 1,4-benzoquinone, and t-BuOH in air is described. Up to a 96% yield of aldehyde can be obtained, and up to 99% selectivity can be achieved with styrene-related substrates. © 2012 American Chemical Society.

  1. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  2. Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect

    International Nuclear Information System (INIS)

    Liu, Yi-Wei; Teng, Jiao; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua; Wu, Zheng-Long

    2014-01-01

    Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe] 3 /MgO and [Pt/Fe] 3 /SiO 2 multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO 2 interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R xy ) was greatly increased in the [Pt/Fe] 3 /MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R xy of the [Pt/Fe] 3 /SiO 2 multilayer only increased 10% after annealing.

  3. Effect of antimony oxide on magnesium vanadates for the selective oxidation of hydrogen sulfide to sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.T.; Chi, Z.H. [Department of Chemical Engineering, Tunghai University, ROC Taichung (Taiwan)

    2001-05-17

    The effect of antimony oxide addition to MgV{sub 2}O{sub 6} and Mg{sub 3}V{sub 2}O{sub 8} was studied in the selective oxidation of hydrogen sulfide to sulfur. Significant improvements in sulfur selectivity and yield were observed for the uncalcined mechanical mixtures of magnesium vanadates with {alpha}-Sb{sub 2}O{sub 4}. Calcination of the mechanical mixtures resulted in the much stronger synergy in catalytic activity and sulfur selectivity. For the uncalcined samples, XRD, TPR and XPS studies indicated that antimony reduction behaviors in the mechanical mixtures differed very much from those in {alpha}-Sb{sub 2}O{sub 4} alone, suggested that their selectivity improvements might be due to the interactions (probably oxygen transfer) between {alpha}-Sb{sub 2}O{sub 4} and magnesium vanadates. For the calcined samples, XRD results indicated that their better catalytic performances in H{sub 2}S oxidation were primarily attributed to the formation of VSbO{sub 4} compound from antimony oxide and magnesium vanadates.

  4. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Samaane, Mikhail

    1966-01-01

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al 2 O 3 , NiAl 2 O 4 and NiO + NiAl 2 O 4 ) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al 2 O 3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O 2 and CO 2 on the 2NiO+Al 2 O 3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl 2 O 4 and NiO+NiAl 2 O 4 ) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O 2 and CO 2 on NiAl 2 O 4 , and the kinetic of the oxidation reaction are herein studied

  5. Selective catalytic oxidations of alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.W. [Celanese GmbH, Oberhausen (Germany); Roehrscheid, F. [Hoechst AG, Frankfurt am Main (Germany). Zentralforschung und Technologie

    1998-12-31

    Focused to the guidelines of `Sustainable Development` `Responsible Care` and `Customer Satisfaction`, modern production processes are critically assessed on their balance between their ecological benefits and their economical parameters as well as their value to the community. Also in the area of fine chemicals, it is obvious that more and more processes are devolved which save feedstock, reduce emissions and minimize the potential for safety hazards: Less additive but more integrated protection of the environment yielding ecologically highly valuable processes. The described production of aromatic carboxylic acids is an ideal example for such a modern process. Nowadays the synthesis of derivatives of benzoic acid utilizes air as Ideal oxidant and acetic acid as environmental unquestionable solvent. The major byproduct of the oxidation reaction is water in some cases, dependend on the substrate also carbon dioxide. (orig.)

  6. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  7. FY 2000 report on the promotion projects by Research Institute of Innovative Technology for the Earth. Proceedings of the international seminar (Reports presented to the international workshop for selective oxidation catalysts); 2000 nendo chikyu kankyo sangyo gijutsu kaihatsu suishin jigyo kokusai seminar jigyo shiryo. Sentaku sanka shokubai kokusai workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of the international workshop for selective oxidation catalysts, promoted by RITE. The session of methane activation includes a comprehensive lecture on designs of selective alkane oxidation catalysts developed since the 1980s, describing the simplified catalyst design procedures and, at the same time, pointing out the vapor-phase reactions governing the overall reactions at high temperature. The session of alkane oxidation includes a lecture on oxidation of ethane into acrolein in the presence of a silica catalyst supporting isolated active sites, stressing necessity for controlling the vapor-phase reactions and importance of isolating the active sites. The session of crystalline materials includes a lecture on Ti-siting in Ti-containing molecular sieve and selective oxidation catalyst functions, concentrating discussion on oxidation with H{sub 2}O{sub 2} as the oxidant on TS-1. The session of engineering hybrid includes a lecture on catalytic partial oxidation of alkanes in millisecond reactors, describing that possibility of controlling the vapor-phase reactions in the presence of monolith, porous-plate catalysts in a reactor through which the reactant gases pass in a very short time, of the order of millisecond. (NEDO)

  8. A new kinetic model based on the remote control mechanism to fit experimental data in the selective oxidation of propene into acrolein on biphasic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Abdeldayem, H.M.; Ruiz, P.; Delmon, B. [Unite de Catalyse et Chimie des Materiaux Divises, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium); Thyrion, F.C. [Unite des Procedes Faculte des Sciences Appliquees, Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)

    1998-12-31

    A new kinetic model for a more accurate and detailed fitting of the experimental data is proposed. The model is based on the remote control mechanism (RCM). The RCM assumes that some oxides (called `donors`) are able to activate molecular oxygen transforming it to very active mobile species (spillover oxygen (O{sub OS})). O{sub OS} migrates onto the surface of the other oxide (called `acceptor`) where it creates and/or regenerates the active sites during the reaction. The model contains tow terms, one considering the creation of selective sites and the other the catalytic reaction at each site. The model has been tested in the selective oxidation of propene into acrolein (T=380, 400, 420 C; oxygen and propene partial pressures between 38 and 152 Torr). Catalysts were prepared as pure MoO{sub 3} (acceptor) and their mechanical mixtures with {alpha}-Sb{sub 2}O{sub 4} (donor) in different proportions. The presence of {alpha}-Sb{sub 2}O{sub 4} changes the reaction order, the activation energy of the reaction and the number of active sites of MoO{sub 3} produced by oxygen spillover. These changes are consistent with a modification in the degree of irrigation of the surface by oxygen spillover. The fitting of the model to experimental results shows that the number of sites created by O{sub SO} increases with the amount of {alpha}-Sb{sub 2}O{sub 4}. (orig.)

  9. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Science.gov (United States)

    Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-01-01

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602

  11. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  12. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  14. Selective Oxidation of Glycerol with 3% H2O2 Catalyzed by LDH-Hosted Cr(III Complex

    Directory of Open Access Journals (Sweden)

    Gongde Wu

    2015-11-01

    Full Text Available A series of layered double hydroxides (LDHs –hosted sulphonato-salen Cr(III complexes were prepared and characterized by various physico-chemical measurements, such as Fourier transform infrared spectroscopy (FTIR, ultraviolet-visible spectroscopy (UV-Vis, powder X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM and elemental analysis. Additionally, their catalytic performances were investigated in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that all the LDH-hosted Cr(III complexes exhibited significantly enhanced catalytic performance compared to the homogeneous Cr(III complex. Additionally, it was worth mentioning that the metal composition of LDH plates played an important role in the catalytic performances of LDH-hosted Cr(III complex catalysts. Under the optimal reaction conditions, the highest GLY conversion reached 85.5% with 59.3% of the selectivity to 1,3-dihydroxyacetone (DHA. In addition, the catalytic activity remained after being recycled five times.

  15. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    Science.gov (United States)

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of

  16. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo, E-mail: jibojiang0506@163.com; Han, Sheng, E-mail: hansheng654321@sina.com

    2015-12-01

    Highlights: • The effective surface area of the modified CPE has been expanded after self-assembly. • The GO–La composite exhibited excellent electrocatalytic activity toward DA. • The GO–La/CPE presented high selectivity, sensitivity, excellent stability and repeatability. - Abstract: A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO–La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO–La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO–La/CPE electrode for determining DA was linear in the region of 0.01–0.1 μM and 0.1–400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  17. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Khalid Khazzal Hummadi

    2009-06-01

    Full Text Available The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK, 10 atm (1013 kPa, with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a commercial catalyst; maximum selectivity (82.3% was obtained at 573oK when the conversion was 59.7%. Catalysts prepared by reacting iron (III and molybdate by kneading or precipitation followed by evaporation, omitting a filtration stage, were less active and less selective. The selectivity-activity relationships of these catalysts as a function of temperature were discussed in relation to the method of preparation, surface areas and composition. By combing this catalytic data with data from the patent literature we demonstrate a synergy between iron and molybdenum in regard to methanol oxidation to formaldehyde; the optimum composition corresponded to an iron mole fraction 0.2-0.3. The selectivity to formaldehyde was practically constant up to an iron mole fraction 0.3 and then decreased at higher iron concentrations. The iron component can be regarded as the activity promoter. The iron molybdate catalysts can thus be related to other two-component MoO3-based selective oxidation catalysts, e.g. bismuth and cobalt molybdates. The iron oxide functions as a relatively basic oxide abstracting, in the rate-controlling step, a proton from the methyl of a bound methoxy group of chemisorbed methanol. It was proposed that a crucial feature of the sought after iron(III molybdate catalyst is the presence of -O-Mo-O-Fe-O-Mo-O- groups as found in the compound Fe2(MoO43 and for Fe3+ well dispersed in MoO3 generally. At the higher iron(III concentrations the loss of

  18. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides

    Science.gov (United States)

    Taatjes, Craig A.

    2017-05-01

    The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

  19. Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts

    DEFF Research Database (Denmark)

    Li, Hu; Kotni, Ramakrishna; Zhang, Qiuyun

    2015-01-01

    to selectively oxidize glycerol and yield products with good selectivity is the use of nano-sized metal particles as heterogeneous catalysts. In this short review, recent developments in chemoselective oxidation of glycerol to specific products over nano-sized metal catalysts are described. Attention is drawn...... to various reaction parameters such as the type of the support, the size of the metal particles, and the acid/base properties of the reaction medium which were illustrated to largely influence the activity of the nanocatalyst and selectivity to the target product. - See more at: http...

  20. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  1. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  2. catalysed selective oxidation of benzyl alcohols using TEMPO

    Indian Academy of Sciences (India)

    oxygen provides excellent results in terms of yields and reaction time. SiO2-Cu(II) was very ... lytic systems using transition metal complexes and ter- minal oxidants are well ... dry toluene, TEMPO (0.5 mmol), potassium carbonate. (1.5 mmol) and ... The conditioning of the catalyst was done in water, ethanol and toluene to.

  3. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  4. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  5. A combinatorial chemistry approach to the investigation of cerium oxide and plutonium oxide reactions with small molecules

    Science.gov (United States)

    Brady, John T.; Warner, Benjamin P.; Bridgewater, Jon S.; Havrilla, George J.; Morris, David E.; Buscher, C. Thomas

    2000-07-01

    We are currently investigating the potential chemistry of the 3013 Standard waste storage containers. These containers are filled with waste that is a mixture of inorganic salts and plutonium oxide that has been calcined to remove water and other volatiles. There has been concern about possible pressure buildup due to the formation of hydrogen or other gases. We are utilizing a combinatorial chemistry approach to investigate a range of possible reactions that may occur in the containers with various concentrations of metal oxides and inorganic salts.

  6. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO 2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO 2 reduction, utilizing Cu/SnO x heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO 2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnO x dramatically alters the catalytic behavior of Cu. The Cu/SnO x -CNT catalyst containing 6.2% of SnO x converts CO 2 to CO with a high faradaic efficiency (FE) of 89% and a j CO of 11.3 mA·cm -2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO 2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnO x . The Cu/SnO x -CNT catalyst containing 30.2% of SnO x reduces CO 2 to formic acid with an FE of 77% and a j HCOOH of 4.0 mA·cm -2 at -0.99 V, outperforming the SnO x -CNT catalyst which only converts CO 2 to formic acid in an FE of 48%.

  7. Characteristics and possibilities of software tool for metal-oxide surge arresters selection

    Directory of Open Access Journals (Sweden)

    Đorđević Dragan

    2012-01-01

    Full Text Available This paper presents a procedure for the selection of metal-oxide surge arresters based on the instructions given in the Siemens and ABB catalogues, respecting their differences and the characteristics and possibilities of the software tool. The software tool was developed during the preparation of a Master's thesis titled, 'Automation of Metal-Oxide Surge Arresters Selection'. An example is presented of the selection of metal-oxide surge arresters using the developed software tool.

  8. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  9. Propan-1-ol Oxidation Reaction on Au/TiO2 Catalysts

    African Journals Online (AJOL)

    MBI

    2014-11-27

    Nov 27, 2014 ... a decomposition pathway, producing CO2 and H2O. However, the presence of gold ... complete oxidation reaction of propan-1-ol on the catalysts. Keywords: Gold Catalysis ... flowed at a rate of 30 mL min-1. Propan- o-l was.

  10. Crystalline structure and propylene oxidation in complex bismuth-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Manaila, R.; Ionescu, N.I.; Caldararu, M.

    1980-01-01

    Complex Bi-Mo oxide catalysts supported on amorphous SiO 2 were prepared by coprecipitation and tested in the reaction of selective oxidation of propylene to acrolein. They consist of a mixture of molybdate phases and excess MoO 3 . The Fe 2 (MoO 4 ) 3 phase was found to have a high concentration of lattice defects, induced by a Mo excess. These defects could be related to the catalytic conversion and to the selectivity to total oxidation by varying the calcination temperature. Calcination above 500 0 C induced also the transition of the metastable modification β-NiMoO 4 to the stable form α, accompanied by a loss of conversion. A complex Bi molybdate with scheelitic structure was found to have a high selectivity to acrolein. (author)

  11. Development of New Oxidation Reactions and Their Application to Natural Product Synthesis

    Institute of Scientific and Technical Information of China (English)

    Jun-ichi Matsuo

    2005-01-01

    @@ 1Introduction In recent years, the structures of target molecules in organic synthesis are becoming more complicated, so betterfunctional compatibility and higher selectivity are required for the efficient oxidation. In this regard,conventional oxidants do not always satisfy such requirements; therefore, exploration of new oxidizing agents is worth challenging.

  12. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  13. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  14. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-02-15

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  15. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull

    2016-01-01

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  16. A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube

    Science.gov (United States)

    Nematollahi, Parisa; Neyts, Erik C.

    2018-05-01

    In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G∗ computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O2 molecule: O2(g) + CO(g) → O2(ads) + CO(ads) → CO2(g) + O(ads) and O(ads) + CO(g) → CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT.

  17. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  18. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  19. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  20. Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Green, Robert J.; Sutarto, Ronny

    2017-01-01

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both...... polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how...... these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer...

  1. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles.

    Science.gov (United States)

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin

    2017-06-14

    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  2. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  3. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  4. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O.; Savee, John D.; Osborn, David L.; Zádor, Judit; Taatjes, Craig A.; Sheps, Leonid

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed

  5. Evaluation of the kinetic and thermodynamic parameters of oxidation reaction in biodiesel from a quaternary mixture of raw material

    Directory of Open Access Journals (Sweden)

    Karina Gomes Angilelli

    2017-05-01

    Full Text Available A mixture of vegetable oil and animal fat as raw materials was optimized by simplex-centroid mixture design to produce a type of biodiesel with good oxidative stability, flow properties and reaction yield. Further, kinetic and thermodynamic parameters of oxidation reaction were determined by the accelerated method at different temperatures. Biodiesel produced with sodium methoxide as catalyst presented 6.5°C of cloud point, 2.0°C of pour point, and oxidative stability at 110°C equal to 8.98h, with a reaction yield of 96.04%. Activation energy of the oxidation reaction was 81.03 kJ mol-1 for biodiesel produced with sodium hydroxide and 90.51 kJ mol-1 for sodium methoxide. The positive values for DH‡ and DG‡ indicate that the oxidation process is endothermic and endergonic. The less negative DS‡ for biodiesel produced with sodium methoxide (-28.87 JK-1 mol-1 showed that the process of degradation of this biofuel was slower than that produced with NaOH. The mixture of raw materials proposed, transesterified with the methoxide catalyst, resulted in a biofuel that resisted oxidation for longer periods, making unnecessary the addition of antioxidant

  6. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  7. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  8. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  9. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer.

    Science.gov (United States)

    Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long

    2018-03-28

    The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.

  10. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  11. Concentrated Aqueous Sodium Tosylate as Green Medium for Alkene Oxidation and Nucleophilic Substitution Reactions.

    Science.gov (United States)

    Sela, Tal; Lin, Xiaoxi; Vigalok, Arkadi

    2017-11-03

    A hydrotropic solution of highly concentrated sodium tosylate (NaOTs) can be used as a recyclable medium for the environmentally benign oxidation of conjugated alkenes with H 2 O 2 . Both uncatalyzed and metal-catalyzed reactions provided the corresponding oxidation products in higher yields than in pure water or many common organic solvents.

  12. Metallic oxides for desulphurization catalyst reaction; Oxidos metalicos mistos como catalisadores para reacoes de dessulfurizacao

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, R.L.B.A.; Melo, D.M.A.; Melo, M.A.F. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Souza, K.S.G.M. [Universidade Federal da Paraiba - Departamento de Engenharia Quimica, PB (Brazil); Barros, J.M.F. [Universidade Federal de Campina Grande - Campos Cuite, PB (Brazil)

    2010-07-01

    The mixed metal oxides constitute an important class of catalytic materials widely investigated in different fields of applications. Studies of rare earth nickelates have been carried by several researchers in order to investigate the structural stability afforded by oxide formed and the existence of catalytic properties at room temperature. So, this study aims synthesize the nano sized catalyst of nickelate of lanthanum doped with strontium (La(1- x)Sr{sub x}NiO4-{sigma}; x = 0,2 and 0,3), through the Pechini method and your characterization for subsequent application in the desulfurization of thiophene reaction. The precursor solutions were calcined at 300 degree C/2h for pyrolysis of polyester and later calcinations occurred at temperatures of 500 - 1000 degree C. The resulting powders were characterized by thermogravimetric analysis (TG / DTG), surface area for adsorption of N{sub 2} by BET method, Xray diffraction (XRD), scanning electron microscopy (HR{sub S}EM) and spectrometry dispersive energy (EDS). The results of XRD had show that the perovskites obtained consist of two phases (LSN and NiO) and from 700 degree C have crystalline structure. The results of SEM evidenced the obtainment of nano metric powders. The results of BET show that the powders have surface area within the range used in catalysis (5-50m{sup 2}/g). The characterization of active sites was performed by reaction of desulfurization of thiophene at room temperature and 200 degree C, the relation F/W equal to 0,7 mol h{sup -1}m{sub c}at {sup -1}. The products of the reaction were separated by gas chromatography and identified by the selective detection PFPD sulfur. All samples had presented conversion above 95%. (author)

  13. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO2 Interfaces.

    Science.gov (United States)

    Zhang, Jing; Wang, Bingwen; Nikolla, Eranda; Medlin, J Will

    2017-06-01

    Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO 2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation

    Directory of Open Access Journals (Sweden)

    J. E. N. Brainer

    2014-12-01

    Full Text Available The liquid phase oxidation of glycerol was performed producing fine organic acids. Catalysts based on Pt, Pd and Bi supported on activated carbon were employed to perform the conversion of glycerol into organic acids at 313 K, 323 K and 333 K, under atmospheric pressure (1.0 bar, in a mechanically agitated slurry reactor (MASR. The experimental results indicated glycerol conversions of 98% with production of glyceric, tartronic and glycolic acids, and dihydroxyacetone. A yield of glyceric acid of 69.8%, and a selectivity of this compound of 70.6% were reached after 4 h of operation. Surface mechanisms were proposed and rate equations were formulated to represent the kinetic behavior of the process. Selective formation of glyceric acid was observed, and the kinetic parameter values indicated the lowest activation energy (38.5 kJ/mol for its production reaction step, and the highest value of the adsorption equilibrium constant of the reactant glycerol (10-4 dm³/mol.

  15. Development of a redox-free Mitsunobu reaction exploiting phosphine oxides as precursors to dioxyphosphoranes.

    Science.gov (United States)

    Tang, Xiaoping; Chapman, Charlotte; Whiting, Matthew; Denton, Ross

    2014-07-14

    The development of the first redox-free protocol for the Mitsunobu reaction is described. This has been achieved by exploiting triphenylphosphine oxide--the unwanted by-product in the conventional Mitsunobu reaction--as the precursor to the active P(V) coupling reagent. Multinuclear NMR studies are consistent with hydroxyl activation via an alkoxyphosphonium salt.

  16. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  17. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  18. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  19. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-01-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  20. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  1. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  2. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  3. Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst : Factors affecting the Rate of Total Oxidation of Ethane and Ethylene

    NARCIS (Netherlands)

    Roos, J.A.; Korf, S.J.; Veehof, R.H.J.; van Ommen, J.G.; Ross, J.R.H.

    1989-01-01

    Experiments using gas mixtures of O2, C2H6 or C2H4 and CH4 or He have been carried out with a Li/MgO catalyst using a well-mixed reaction system which show that the total oxidation products, CO and CO2, are formed predominantly from ethylene, formed in the oxidative coupling of methane. It is

  4. Effects of γ- and x-irradiation upon activity and selectivity of a supported silver catalyst in the oxidation of ethylene and carbon monoxide

    International Nuclear Information System (INIS)

    Mora Vallejo, R.J.

    1975-01-01

    Effects of γ and x-radiation on catalytic selectivity of supported silver catalysts for production of ethylene oxide via ethylene oxidation were compared by determination of radio-induced changes in conversion-yield profiles. Influence of photon energy on the kinetics of the irradiation process was studied by determination of conversion-yield profiles, using samples of catalyst exposed to x-rays of different mean photon energy and γ-rays for different cumulative periods of time. The effect of γ-radiation on catalytic activity of the same silver catalysts for carbon monoxide oxidation was analyzed by determination of the reaction kinetics before and after catalyst irradiation

  5. A short synthesis-stuttgart of (S)-pyrrolam A via domino oxidation-witting reaction

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Shet, J.; Tilve, S.G.; Parameswaran, P.S.

    A short synthesis of (S)-pyrrolam A starting from readily available N-(benzyloxycarbonyl)-L prolinol is described that makes use of a domino primary alcohol oxidation-Witting reaction as the key step...

  6. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    Science.gov (United States)

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  8. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl 4 ) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO 2 ) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl 4 -UO 2 shows a reaction to form uranium oxychloride (UOCl 2 ) that has a good solubility in molten UCl 4 . This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl 4 , ZrCl 4 , SiCl 4 , ThCl 4 ) by reaction of oxides with chlorine (Cl 2 ) and carbon has application to the preparation of UCl 4

  9. Facilitated and selective oxidation of thiophenic sulfur compounds using MoOx/Al₂O₃-H₂O₂ system under ultrasonic irradiation.

    Science.gov (United States)

    Akbari, Azam; Omidkhah, Mohammadreza; Towfighi Darian, Jafar

    2015-03-01

    Oxidative desulfurization of thiophenic sulfur compounds of benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) with MoOx/Al₂O₃ catalyst and H₂O₂ oxidant has been facilitated and more selective under ultrasonic irradiation. The catalyst with the optimum 10% of Mo loading consisted of isolated tetrahedral molybdenum oxide species based on FTIR analysis. The increase of Mo loading to 15% and 20% caused to generation of polymolybdate and MoO₃ crystals which decreased desulfurization activity. Sonication enhanced the apparent reaction rate constants in oxidation of all three sulfur compounds. An increase in the Arrhenius factor (A0), which is the total number of collisions per second, could explain the acceleration in the rate constants by sonication. The apparent activated energy (Ea) of BT oxidation was reduced from 96.6 to 75.3 kJ/mol by using ultrasound. This indicated that ultrasound had also a chemical effect, like a catalytic influence, in the acceleration of BT removal. DBT oxidation was reduced when investigated in the presence of tetralin, naphthalene and 2-methyl naphthalene as the model aromatic compounds of actual light oils. A higher selectivity toward DBT elimination in the presence of aromatics was obtained by sonication when compared with the silent treatment. Ultrasound cleaned the catalyst surface from adsorbed aromatics. On the basis of the obtained results, a mechanistic proposal for this desulfurization was explained. Oxidation was performed by nucleophilic attack of sulfur atom to the molybdenum peroxide species of tetrahedral molybdates, which was more advanced by sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hantzsch Reaction Starting Directly from Alcohols through a Tandem Oxidation Process

    Directory of Open Access Journals (Sweden)

    Xiaobing Liu

    2017-01-01

    Full Text Available A Brønsted acidic ionic liquid, 3-(N,N-dimethyldodecylammonium propanesulfonic acid hydrogen sulphate ([DDPA][HSO4], has been successfully applied to catalyze sequential oxidation of aromatic alcohols with NaNO3 followed by their condensation with dicarbonyl compound and ammonium acetate. The corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines could be obtained as a major product with high yields by the multicomponent reaction. The present work utilizing alcohols instead of aldehyde in Hantzsch reaction is a valid and green alternative to the classical synthesis of the corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines.

  11. Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles.

    Science.gov (United States)

    Yang, Bin; Ying, Guang-Guo; Zhang, Li-Juan; Zhou, Li-Jun; Liu, Shan; Fang, Yi-Xiang

    2011-03-01

    Benzotriazoles (BTs) are high production volume chemicals with broad application in various industrial processes and in households, and have been found to be omnipresent in aquatic environments. We investigated oxidation of five benzotriazoles (BT: 1H-benzotriazole; 5MBT: 5-methyl-1H-benzotriazole; DMBT: 5,6-dimethyl-1H-benzotriazole hydrate; 5CBT: 5-chloro-1H-benzotriazole; HBT: 1-hydroxybenzotriazole) by aqueous ferrate (Fe(VI)) to determine reaction kinetics as a function of pH (6.0-10.0), and interpreted the reaction mechanism of Fe(VI) with BTs by using a linear free-energy relationship. The pK(a) values of BT and DMBT were also determined using UV-Visible spectroscopic method in order to calculate the species-specific rate constants, and they were 8.37 ± 0.0 and 8.98 ± 0.08 respectively. Each of BTs reacted moderately with Fe(VI) with the k(app) ranged from 7.2 to 103.8 M(-1)s(-1) at pH 7.0 and 24 ± 1 °C. When the molar ratio of Fe(VI) and BTs increased up to 30:1, the removal rate of BTs reached about >95% in buffered milli-Q water or secondary wastewater effluent. The electrophilic oxidation mechanism of the above reaction was illustrated by using a linear free-energy relationship between pH-dependence of species-specific rate constants and substituent effects (σ(p)). Fe(VI) reacts initially with BTs by electrophilic attack at the 1,2,3-triazole moiety of BT, 5MBT, DMBT and 5CBT, and at the N-OH bond of HBT. Moreover, for BT, 5MBT, DMBT and 5CBT, the reactions with the species HFeO(4)(-) predominantly controled the reaction rates. For HBT, the species H(2)FeO(4) with dissociated HBT played a major role in the reaction. The results showed that Fe(VI) has the ability to degrade benzotriazoles in water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  13. Hydrothermal synthesis of Fe_2O_3/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte

    International Nuclear Information System (INIS)

    Ren, Suzhen; Ma, Shaobo; Yang, Ying; Mao, Qing; Hao, Ce

    2015-01-01

    Graphical abstract: Fe_2O_3/polypyrrole/graphene oxide electrocatalysts for oxygen reduction reaction (ORR) are successfully prepared through one simple polypyrrole-assisted hydrothermal method and possess very high ORR activity and are able to selectively reduce O_2 to water through the four-electron transfer reaction mechanism in alkaline electrolyte. - Abstract: Advantages in low cost, and excellent catalytic activity of Fe-based nanomaterials dispersed on nitrogen-doped graphene supports render them to be good electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Here, Fe_2O_3/polypyrrole/graphene oxide (Fe_2O_3/Ppy/GO) composites with the Fe_2O_3 embedded in the Ppy modified GO are synthesized using hydrothermal method. With an optimal iron atom content ratio of 1.6% in graphene oxide and heat treatment at 800 °C, the Fe_2O_3/Ppy/GO exhibited enhanced catalytic performance for ORR with the onset potential of −0.1 V (vs SCE), cathodic potential of −0.24 V (vs SCE), an approximate 4e"− transfer process in O_2-saturated 0.1 M KOH, and superior stability that only reduced 5% catalytic activity after 5000 cycles. The decisive factors in improving the electrocatalytic and durable performance are the intimate and large contact interfaces between nanocrystallines of Fe_2O_3 and Ppy/GO, in addition to the high electron withdrawing/storing ability and the high conductivity of GO doped with nitrogen from Ppy during the hydrothermal reaction. The Fe_2O_3/Ppy/GO showed significantly improved ORR properties and confirmed that Fe-N-C-based electrocatalysts played a key role in fuel cells.

  14. Synthesis and characterization of cobalt-nichel oxides for the oxygen formation reaction

    International Nuclear Information System (INIS)

    Morales G, P.

    2001-01-01

    In this work the compounds of cobalt and nickel oxides and the mixtures of cobalt-nickel were prepared which were characterized and evaluated as electrocatalysts in the oxygen release reaction in alkaline media. The compounds were synthesised by the sol-gel method: heated at 400 and 500 Centigrade. The compounds characterization was realized by thermogravimetry, X-ray diffraction and Scanning electron microscopy. As the Co 3 O 4 and the Ni O as the mixtures Ni O/Co 3 O 4 were obtained as a porous material with a small particle size, characteristics which are presented by cause of the low temperature of synthesis. The electrocatalytic evaluation for the synthesised compounds for the oxygen release reaction was realized by cyclic volt amperometry in a 0.5M KOH solution. The oxides mixtures presented a well electrocatalytic activity to be used in the electrochemical release of oxygen. The current density and the electrochemically active area, in all the cases of mixtures is very higher to the Co 3 O 4 and Ni O ones. Observing with greater clearness the synergic effects, in the obtained mixture at 400 C. The oxides mixtures heated at 400 C were stables for the oxygen formation reaction. Therefore it is be able to say that the Ni O/Co 3 O 4 mixture counts on a great reactive area: electrocatalytic characteristic desirable to be a material used as anode in the electrolysis of water, which increases the oxygen release in the anode and so the hydrogen release in the cathode. (Author)

  15. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  16. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    Science.gov (United States)

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  17. Selection of refractory materials for pyrochemical processing

    International Nuclear Information System (INIS)

    Axler, K.M.; DePoorter, G.L.; Bagaasen, L.M.

    1991-01-01

    Several pyrochemical processing operations require containment materials that exhibit minimal chemical interactions with the system, good thermal shock resistance, and reusability. One example is Direct Oxide Reduction (DOR). DOR involves the conversion of PuO 2 to metal by an oxidation/reduction reaction with Ca metal. The reaction proceeds within a molten salt flux at temperatures above 800C. A combination of thermodynamics, system thermodynamic modeling, and experimental investigations are in use to select and evaluate potential containment materials

  18. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    Science.gov (United States)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  19. Evaluating candidate reactions to selection practices using organisational justice theory.

    Science.gov (United States)

    Patterson, Fiona; Zibarras, Lara; Carr, Victoria; Irish, Bill; Gregory, Simon

    2011-03-01

    This study aimed to examine candidate reactions to selection practices in postgraduate medical training using organisational justice theory. We carried out three independent cross-sectional studies using samples from three consecutive annual recruitment rounds. Data were gathered from candidates applying for entry into UK general practice (GP) training during 2007, 2008 and 2009. Participants completed an evaluation questionnaire immediately after the short-listing stage and after the selection centre (interview) stage. Participants were doctors applying for GP training in the UK. Main outcome measures were participants' evaluations of the selection methods and perceptions of the overall fairness of each selection stage (short-listing and selection centre). A total of 23,855 evaluation questionnaires were completed (6893 in 2007, 10,497 in 2008 and 6465 in 2009). Absolute levels of perceptions of fairness of all the selection methods at both the short-listing and selection centre stages were consistently high over the 3years. Similarly, all selection methods were considered to be job-related by candidates. However, in general, candidates considered the selection centre stage to be significantly fairer than the short-listing stage. Of all the selection methods, the simulated patient consultation completed at the selection centre stage was rated as the most job-relevant. This is the first study to use a model of organisational justice theory to evaluate candidate reactions during selection into postgraduate specialty training. The high-fidelity selection methods are consistently viewed as more job-relevant and fairer by candidates. This has important implications for the design of recruitment systems for all specialties and, potentially, for medical school admissions. Using this approach, recruiters can systematically compare perceptions of the fairness and job relevance of various selection methods. © Blackwell Publishing Ltd 2011.

  20. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya; Raj, Abhijeet; Chung, Suk-Ho

    2015-01-01

    and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics

  1. The oxidative conversion of toluene to benzene

    NARCIS (Netherlands)

    Jong, de J.G.; Batist, P.A.

    1971-01-01

    An oxidative reaction is described in which toluene is converted into benzene. The reaction is catalyzed by bismuth uranate. Selectivities up to 70% are obtained if toluene vapor reacts with the catalyst without O (g) being present; the catalyst becomes partially reduced, but is easily reoxidized

  2. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    Science.gov (United States)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  3. The redox reaction kinetics of Sinai ore for chemical looping combustion applications

    International Nuclear Information System (INIS)

    Ksepko, Ewelina; Babiński, Piotr; Nalbandian, Lori

    2017-01-01

    Highlights: • Redox reaction kinetics of Fe-Mn-rich Sinai ore was determined by TGA. • The most suitable model for reduction was D3, while R3 for oxidation. • Activation energies 35.3 and 16.70 kJ/mole were determined for reduction and oxidation. • Repetitive redox reactions favor the formation of spinel phases in Sinai ore. • Multiple redox cycles induce formation of extensive porosity of the particles. - Abstract: The objective of this work was to study the use of Sinai ore, a Fe–Mn-based ore from Egypt, as a low-cost oxygen carrier (OC) in Chemical Looping Combustion (CLC). The Sinai ore was selected because it possesses relatively high amounts of iron and manganese oxides. Furthermore, those oxides have low cost, very favorable environmental and thermodynamic properties for the CLC process. The performance of the Sinai ore as an OC in CLC was compared to that of ilmenite (Norway Tellnes mine), the most extensively studied naturally occurring Fe-based mineral. The kinetics of the reduction and oxidation reactions with the two minerals were studied using a thermogravimetric analyzer (TGA). Experiments were conducted under isothermal conditions, with multiple redox cycles, at temperatures between 750 and 950 °C. For the reduction and oxidation reactions, different concentrations of CH_4 (10–25 vol.%) and O_2 (5–20 vol.%) were applied, respectively. The kinetic parameters, such as the activation energy (E_a), pre-exponential factor (A_0), and reaction order (n), were determined for the redox reactions. Furthermore, models of the redox reactions were selected by means of a model-fitting method. For the Sinai ore, the D3 model (3-dimensional diffusion) was suitable for modeling reduction reaction kinetics. The calculated E_a was 35.3 kJ/mole, and the reaction order was determined to be approximately 0.76. The best fit for the oxidation reaction was obtained for the R3 model (shrinking core). The oxidation (regeneration) reaction E_a was equal to 16

  4. Selection criteria for oxidation method in total organic carbon measurement.

    Science.gov (United States)

    Yoon, GeunSeok; Park, Sang-Min; Yang, Heuiwon; Tsang, Daniel C W; Alessi, Daniel S; Baek, Kitae

    2018-05-01

    During the measurement of total organic carbon (TOC), dissolved organic carbon is converted into CO 2 by using high temperature combustion (HTC) or wet chemical oxidation (WCO). However, the criteria for selecting the oxidation methods are not clear. In this study, the chemical structures of organic material were considered as a key factor to select the oxidation method used. Most non-degradable organic compounds showed a similar oxidation efficiency in both methods, including natural organic compounds, dyes, and pharmaceuticals, and thus both methods are appropriate to measure TOC in waters containing these compounds. However, only a fraction of the carbon in the halogenated compounds (perfluorooctanoic acid and trifluoroacetic acid) were oxidized using WCO, resulting in measured TOC values that are considerably lower than those determined by HTC. This result is likely due to the electronegativity of halogen elements which inhibits the approach of electron-rich sulfate radicals in the WCO, and the higher bond strength of carbon-halogen pairs as compared to carbon-hydrogen bonds, which results in a lower degree of oxidation of the compounds. Our results indicate that WCO could be used to oxidize most organic compounds, but may not be appropriate to quantify TOC in organic carbon pools that contain certain halogenated compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Investigation of selective oxidation in bake hardenable steel

    International Nuclear Information System (INIS)

    Madeira, Laureanny; Lins, Vanessa Cunha Freitas; Faria, Guilherme Augusto de; Guimaraes, Juliana Porto; Alvarenga, Evandro de Azevedo; Vilela, Jose Mario Carneiro

    2010-01-01

    The present work aims to characterize a steel bake hardenable (BH), annealed in three different dew points (-60°C, -30°C and 0°C), as the occurrence of selective oxidation, using the techniques of X-ray photo electronic spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) and atomic force microscopy (AFM). The analysis by XPS showed that the alloying elements oxidized at different intensities for each dew point. Analysis by GDOES revealed that the surface and subsurface concentrations of these elements also varied with the dew point. The AFM images revealed that the size and shape of the oxides were different for each dew point. At the dew points of -30°C and -60°C the formation of oxides was local, while at 0°C the growth of oxides occurred uniform y on the surface of steels. (author)

  6. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.

    Science.gov (United States)

    Lahive, Ciaran W; Lancefield, Christopher S; Codina, Anna; Kamer, Paul C J; Westwood, Nicholas J

    2018-03-14

    The fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

  7. Chlorine dioxide reaction with selected amino acids in water

    International Nuclear Information System (INIS)

    Navalon, Sergio; Alvaro, Mercedes; Garcia, Hermenegildo

    2009-01-01

    Chlorine dioxide is a hypochlorite alternative disinfectant agent. In this context, we have determined the products formed in the reaction of ClO 2 with selected amino acids as model compounds that can be present in natural waters. The reaction of tryptophane, histidine and tyrosine (10 ppm each) with ClO 2 were studied at molar ratios ranging from 0.25 to 4 in the presence or absence of oxygen. It was found that in the absence of oxygen adding substoichiometric amounts of ClO 2 creates products that are structurally similar to the starting amino acids. Through a series of cascade reactions the initial product distribution gradually evolves toward simple, small carbon chain products that are far from the starting amino acid. The reaction product distribution revealed that chlorine dioxide can attack the electron-rich aromatic moieties as well as the nitrogen atom lone electron pair. Our study is relevant to gain knowledge on the reaction mechanism of ClO 2 with ubiquitous amino acids present in natural waters.

  8. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  9. Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    Science.gov (United States)

    Sayed, Mahmoud; Dishisha, Tarek; Sayed, Waiel F; Salem, Wesam M; Temerk, Hanan A; Pyo, Sang-Hyun

    2016-03-10

    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245 as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®) 900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Optimization of reaction parameters for the electrochemical oxidation of lidocaine with a Design of Experiments approach

    NARCIS (Netherlands)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic oxidative drug metabolites is a crucial step in the development of new drugs. Electrochemical methods are useful to study oxidative drug metabolism, but are not widely used to synthesize metabolites for follow-up studies. Careful optimization of reaction

  11. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  12. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    International Nuclear Information System (INIS)

    Fukuda, Jun; Tsujimura, Seiya; Kano, Kenji

    2008-01-01

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 μL was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change (ΔG o ') is negative; (2) α-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive ΔG o ' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of α-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total ΔG o ' value negative

  13. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  14. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  15. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    Goodman, D.W.; Haw, J.F.; Lunsford, J.

    1998-01-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  16. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  17. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  18. Positive patch test reactions to oxidized limonene: exposure and relevance.

    Science.gov (United States)

    Bråred Christensson, Johanna; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Gimenez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2014-11-01

    R-Limonene is a common fragrance terpene found in domestic and industrial products. R-Limonene autoxidizes on air exposure, and the oxidation products can cause contact allergy. In a recent multicentre study, 5.2% (range 2.3-12.1%) of 2900 patients showed a positive patch test reaction to oxidized R-limonene. To study the exposure to limonene among consecutive dermatitis patients reacting to oxidized R-limonene in an international setting, and to assess the relevance of the exposure for the patients' dermatitis. Oxidized R-limonene 3.0% (containing limonene hydroperoxides at 0.33%) in petrolatum was tested in 2900 consecutive dermatitis patients in Australia, Denmark, the United Kingdom, Singapore, Spain, and Sweden. A questionnaire assessing exposure to limonene-containing products was completed. Overall, exposure to products containing limonene was found and assessed as being probably relevant for the patients' dermatitis in 36% of the limonene-allergic patients. In Barcelona and Copenhagen, > 70% of the patients were judged to have had an exposure to limonene assessed as relevant. Oxidized R-limonene is a common fragrance allergen, and limonene was frequently found in the labelling on the patients' products, and assessed as relevant for the patients' dermatitis. A large number of domestic and occupational sources for contact with R-limonene were identified. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Selective reduction of nitric oxide over Cu/ZSM-5: The role of oxygen in suppressing catalyst deactivation by carbonaceous deposits

    Energy Technology Data Exchange (ETDEWEB)

    d' Itri, Julie L; Sachtler, Wolfgang M.H. [V.N. Ipatieff Laboratory, Center for Catalysis and Surface Science, Departments of Chemical Engineering and Chemistry, Northwestern University, Evanston, IL (United States)

    1993-06-15

    The role of oxygen in the selective reduction of nitrogen monoxide by either propane or propene over 'excessively' ion-exchanged Cu/ZSM-5 has been studied. In a wide temperature region and in the absence of additives such as steam, propane is a more effective reductant than propene; with propane and in the presence of oxygen reduction of nitric oxide to nitrogen approaches 100% above 600 K. The difference in effectiveness is due to the different degree of catalyst deactivation by carbonaceous deposits: more carbonaceous material is deposited from propene than from propane. Temperature-programmed oxidation shows that above 600 K the rate of oxidation of carbonaceous deposits by oxygen is significant. The amount of such carbonaceous deposits is, therefore, lower when catalytic tests above 600 K are done in the presence of oxygen. At very high temperatures, the in situ volatilization of the deposits by reaction with oxygen keeps the catalyst surface clean in the steady state of nitric oxide reduction.

  20. Asymmetric oxidation of 1,3-dithianes to 1,3-dithiane 1-oxides

    OpenAIRE

    Yoshihiko, Watanabe; Yojiro, Ono; Yoshio, Ueno; Takeshi, Toru

    1998-01-01

    Oxidation of 2-(1-hydroxy-1-methylethyl)-1,3-dithiane with the Sharpless reagent has been examined under various reaction conditions. Oxidation of 2-(1-hydroxy-1-methylethyl)-1,3-dithiane with Ti(OPri)4-diethyl L-(+)-tartrate-tert-butyl hydroperoxide (1:2:1.5) in CH2Cl2 in the presence of 4 A molecular sieves gives (1S,2S)-2-(1-hydroxy-1-methylethyl)-1,3-dithiane 1-oxide with high trans selectivity and with moderate enantioselectivity. The enantioselectivity depends upon the substituent at t...

  1. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  2. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Briere, M.A.

    1993-07-01

    Resonant nuclear reaction analysis, using the 1 H( 15 N, αγ) 12 C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 10 20 cm -3 (Al gate), and as low as 1 10 18 cm -3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO 2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H 2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  3. Selected aspects of fusion reactions

    International Nuclear Information System (INIS)

    Lacroix, D.

    2003-01-01

    In this lecture, we present selected aspects of nuclear fusion. The importance of the initial geometry of the reaction and its relation to fusion barrier are first discussed. The effect of deformation leading to the notion of barrier distribution is then illustrated. After a brief overview of the advantages of macroscopic theories, the dynamics of nuclear system under large amplitude motion is reviewed. The di-nuclear concept is presented to understand the competition between fusion and quasi-fission. This concept is then generalized to account for the dissipative dynamics in multidimensional collective space. The last part of this lecture is devoted to new aspects encountered with radioactive beams specific properties of very extended neutron rich system, influence of pygmy or soft dipole resonances and charge exchange far from stability are discussed. (author)

  4. Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance

    Science.gov (United States)

    Baumgartner, H. R.

    1978-01-01

    Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.

  5. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  6. Energetics and kinetics of ferrocyanide and nitrate/nitrite reactions

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1994-01-01

    During the 1950's, radiocesium scavenging at the Hanford site resulted in radioactive waste sludges containing ferrocyanide, nitrate, and nitrite. These waters are a concern since certain mixtures of ferrocyanide and nitrate and/or nitrite are known to explode when heated. The authors have used differential scanning calorimetry, thermogravimetric analysis, isothermal calorimetry and gravimetry, and accelerating rate calorimetry to measure the thermal behavior, the reaction enthalpies, and selected kinetic parameters for reactions between sodium nickel ferrocyanide, the suspected ferrocyanide form in Hanford wastes, and nitrate and/or nitrite. These studies indicate that the oxidation proceeds via multiple steps, the initial reaction begins near 200 degrees C, the initial step has a high activation energy (>200 kJ/mole-K), succeeding reaction steps have activation energies ranging from 90 to 160 kJ/mole-K, and that the oxidation yields about 50% of the theoretical heat of reaction for the most energetic reaction

  7. Copper-catalysed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2015-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a long-standing goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective and step-efficient synthesis of amines is still needed. Here, we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio- and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine and tolterodine.

  8. Copper-catalyzed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  9. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  10. Mechanism-Based Design of Green Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rybak-Akimova, Elena [Tufts Univ., Medford, MA (United States)

    2015-03-16

    In modern era of scarce resources, developing chemical processes that can eventually generate useful materials and fuels from readily available, simple, cheap, renewable starting materials is of paramount importance. Small molecules, such as dioxygen, dinitrogen, water, or carbon dioxide, can be viewed as ideal sources of oxygen, nitrogen, or carbon atoms in synthetic applications. Living organisms perfected the art of utilizing small molecules in biosynthesis and in generating energy; photosynthesis, which couples carbohydrate synthesis from carbon dioxide with photocatalytic water splitting, is but one impressive example of possible catalytic processes. Small molecule activation in synthetic systems remains challenging, and current efforts are focused on developing catalytic reactions that can convert small molecules into useful building blocks for generating more complicated organic molecules, including fuels. Modeling nature is attractive in many respects, including the possibility to use non-toxic, earth-abundant metals in catalysis. Specific systems investigated in our work include biomimetic catalytic oxidations with dioxygen, hydrogen peroxide, and related oxygen atom donors. More recently, a new direction was been also pursued in the group, fixation of carbon dioxide with transition metal complexes. Mechanistic understanding of biomimetic metal-catalyzed oxidations is critical for the design of functional models of metalloenzymes, and ultimately for the rational synthesis of useful, selective and efficient oxidation catalysts utilizing dioxygen and hydrogen peroxide as terminal oxidants. All iron oxidases and oxygenases (both mononuclear and dinuclear) utilize metal-centered intermediates as reactive species in selective substrate oxidation. In contrast, free radical pathways (Fenton chemistry) are common for traditional inorganic iron compounds, producing hydroxyl radicals as very active, non-selective oxidants. Recent developments, however, changed this

  11. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  12. Influence of promoters and oxidants on propane dehydrogenation over chromium-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Agafonov, Yu.A.; Shaporeva, N.Yu.; Trushin, D.V.; Gaidai, N.A.; Nekrasov, N.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry

    2010-12-30

    Possibilities for increasing the efficiency of supported on SiO{sub 2} chromium-oxide catalysts in propane oxidative dehydrogenation in CO{sub 2} presence are investigated: the introduction of Li, Na, K, Ca in catalysts and the addition of O{sub 2} in the reaction mixture. It was been found that the positive role of K - the increase of the selectivity to propene and stability of catalysts at long-duration tests - appeared at the relation of Cr:K=20. It was shown that the presence of little amount of O{sub 2} (2%) in the reaction mixtures of propane and carbon dioxide resulted in the increase of propene yield and catalyst stability. (orig.)

  13. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  14. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  15. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  16. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  17. Studies of Deactivation of Methanol to Formaldehyde Selective Oxidation Catalyst

    DEFF Research Database (Denmark)

    Raun, Kristian Viegaard; Schumann, Max; Høj, Martin

    This work presents a study of the deactivation behavior of Fe-Mo oxide catalyst during selective oxidation of methanol to formaldehyde in a period of 5 days. The structural changes in the catalyst have been investigated in situ for the initial 10 h by Raman spectroscopy, and the structure after 5...

  18. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.

    Science.gov (United States)

    Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun

    2016-11-02

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  19. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  20. The oxidative burst reaction in mammalian cells depends on gravity

    OpenAIRE

    Adrian, A; Schoppmann, K; Sromicki, J; Brungs, S; von der Wiesche, M; Hock, B; Kolanus, W; Hemmersbach, R; Ullrich, O

    2013-01-01

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to...

  1. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    Science.gov (United States)

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations

    International Nuclear Information System (INIS)

    Zignani, Sabrina C.; Baglio, Vincenzo; Linares, José J.; Monforte, Giuseppe; Gonzalez, Ernesto R.; Aricò, Antonino S.

    2012-01-01

    Carbon supported Pt–Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 °C and 90 °C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt 3 Sn 1 /C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO 2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts.

  3. Comparative study of radical oxidation of DNA and its nucleosides by hydroxyl radicals and ferryl ions generated by the Fenton reaction

    International Nuclear Information System (INIS)

    Mouret, J.F.; Berger, M.; Anselmino, C.; Polverelli, M.; Cadet, J.

    1991-01-01

    A comparative study of the reaction of hydroxyl radicals and Fenton type oxidative species with DNA and 2'-deoxyribonucleosides was investigated. This study was based on the characterization of the diamagnetic products resulting from the chemical transformation of the transient radicals. Emphasis was placed on the radical oxidative reactions of the purine nucleosides. It is interesting to note that oxidative purine radicals can be reduced by reagents such as ascorbic acid or N,N,N',N'-tetramethyl-1, 4-p-phenylenediamine. The observed differences in the nature of the decomposition products resulting from the Fenton reaction are not consistent with the nature of the oxidative species (hydroxyl radicals or ferryl ions) involved, but due to the presence of ferrous sulfate [fr

  4. Competing reactions of selected atmospheric gases on Fe3O4 nanoparticles surfaces.

    Science.gov (United States)

    Eltouny, N; Ariya, Parisa A

    2014-11-14

    Heterogeneous reactions on atmospheric aerosol surfaces are increasingly considered important in understanding aerosol-cloud nucleation and climate change. To understand potential reactions in polluted atmospheres, the co-adsorption of NO2 and toluene to magnetite (Fe3O4i.e. FeO·Fe2O3) nanoparticles at ambient conditions was investigated for the first time. The surface area, size distribution, and morphology of Fe3O4 nanoparticles were characterized by BET method and high-resolution transmission electron microscopy. Adsorption isotherms, collected by gas chromatography with flame ionization detection, showed that the presence of NO2 decreased the adsorption of toluene. The analyses of the surface chemical composition of Fe3O4 by X-ray photoelectron spectroscopy (XPS) reveal that, upon the addition of NO2, the surface is oxidized and a contribution at 532.5 ± 0.4 eV in the O1s spectrum appears, showing that NO2 likely competes with toluene by dissociating on Fe(2+) sites and forming NO3(-). Different competing effects were observed for oxidized Fe3O4; oxidation occurred when exposed solely to NO2, whereas, the mixture of toluene and NO2 resulted in a reduction of the surface i.e. increased Fe(2+)/Fe(3+). Analyses by time of flight secondary ion mass spectrometry further suggest toluene reacts with Fe(3+) sites forming oxygenated organics. Our results indicate that on reduced magnetite, NO2 is more reactive and competes with toluene; in contrast, on oxidized Fe3O4, toluene is more reactive. Because magnetite can assume a range of oxidation ratios in the environment, different competing interactions between pollutants like NO2 and toluene could influence atmospheric processes, namely, the formation of Fe(2+) and the formation of atmospheric oxidants.

  5. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol.......A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  6. Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl3. II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane

    NARCIS (Netherlands)

    Zhu, Q.; Teeffelen, van R.M.; Santen, van R.A.; Hensen, E.J.M.

    2004-01-01

    The catalytic performance (nitrous oxide decomposition, hydroxylation of benzene to phenol with nitrous oxide, and selective reduction of nitric oxide by i-butane) was evaluated for a set of HZSM-5 and sublimed Fe/ZSM-5 catalysts, which have been extensively characterized in an earlier contribution

  7. RuO4-mediated oxidation of secondary amines 2. imines as main reaction intermediates

    Directory of Open Access Journals (Sweden)

    Florea Cristina A.

    2017-01-01

    Full Text Available Oxidation by RuO4 (generated in situ from RuO2 and NaIO4 of secondary amines such as Bn–NH–CH2R (1; R=H, Me gave complex reaction mixtures, but mainly amides. In the presence of cyanide, the leading products were α-aminonitriles. Comparison of the oxidation products of 1 with those from the corresponding imines PhCH=N–CH2R and Bn–N=CH–R showed that formation of the indicated imines is the first main step in the oxidation of 1. A detailed mechanism is proposed.

  8. Investigations on an environment friendly chemical reaction process (eco-chemistry). 2; Kankyo ni yasashii kagaku hanno process (eko chemistry) ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to structure a chemical reaction process that does not discharge a large amount of waste by-products or harmful chemical substances, or so-called environment friendly process, investigations and discussions were given based on the results derived in the previous fiscal year. A proposal was made to reduce environmental load on development of oxidized and dehydrogenated catalysts that can produce selectively ethylene, propylene and isobutylene in an oxidation process. In liquid phase oxidation, redox-based oxidation and solid catalyzation of automatic oxidation reaction were enumerated. In acid base catalyst reaction, development of ultra strong solid acid was described to structure no pollution discharging process. In the fine chemical and pharmaceutical fields, the optical active substance method and the position-selective aromatics displacement reaction were evaluated to reduce environmental load. A questionnaire survey performed on major chemical corporations inside and outside the country revealed the following processes as the ones that can cause hidden environmental problems: processes discharging large amount of wastes, processes treating dangerous materials, and processes consuming large amount of energy. Development of catalysts is important that can realize high yield, high selectivity and reactions under mild conditions as a future environment harmonizing chemical process. 117 refs., 23 figs., 22 tabs.

  9. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  10. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  11. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  12. Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol.

    Science.gov (United States)

    Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong

    2012-02-07

    Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.

  13. Metallic oxide reduction in molten chlorides: electrochemical solvent regeneration

    International Nuclear Information System (INIS)

    Martin, A.

    2005-11-01

    We consider the reaction MeO 2 + 2 Ca → Me + 2 CaO in CaCl 2 at 850 C. We want to re-use the molten media, which is a CaO-CaCl 2 melt at the end of the reaction. For that we want to de-oxidize it. When we electrolyse CaO we obtain Ca and O 2 ; it presents three difficult points that we want to solve: (1) it is difficult to oxidize O 2 - without oxidizing Cl - because their oxidation potential are very closed, (2) the chemical or electrochemical anodic corrosion, (3) the anodically produced gas dissolution in the mell One way of avoiding chlorine gas evolution is to prevent chloride ions from reaching the anode, for example using a selective membrane. Furthermore, the best prevention of the anodically produced gas dissolution in the melt can be done with a compartment, physically separating the anode from the rest of the reactional media. Thus in this work we have used an yttria stabilized zirconia membrane as a selective membrane for the deoxidation of a CaO-CaCl 2 melt at 850 C. (author)

  14. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan, E-mail: swaminathan@kist.re.kr [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of); Krishna, Nanda Gopala [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kim, Dong-Ik, E-mail: dongikkim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of)

    2015-10-30

    Highlights: • Initial oxidation characteristics of Cu-bearing austenitic stainless steel at 650 °C were studied. • Strong segregation and oxidation of Mn and Nb were found in the entire oxide scale. • Surface coverage by metallic Cu-rich precipitates increases with exposure time. • Chemical heterogeneity of oxide scale revealed initial oxidation to be non-selective. • Fe-Cr and Mn-Cr mixed oxides were realized along with binary oxides of Fe, Cr and Mn. - Abstract: Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr{sub 2}O{sub 4} and MnCr{sub 2}O{sub 4} along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  15. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.

    Science.gov (United States)

    Ruwe, Lena; Moshammer, Kai; Hansen, Nils; Kohse-Höinghaus, Katharina

    2018-04-25

    In this study, we experimentally investigate the high-temperature oxidation kinetics of n-pentane, 1-pentene and 2-methyl-2-butene (2M2B) in a combustion environment using flame-sampling molecular beam mass spectrometry. The selected C5 fuels are prototypes for linear and branched, saturated and unsaturated fuel components, featuring different C-C and C-H bond structures. It is shown that the formation tendency of species, such as polycyclic aromatic hydrocarbons (PAHs), yielded through mass growth reactions increases drastically in the sequence n-pentane fuel-dependent reaction sequences of the gas-phase combustion mechanism that provide explanations for the observed difference in the PAH formation tendency. First, we investigate the fuel-structure-dependent formation of small hydrocarbon species that are yielded as intermediate species during the fuel decomposition, because these species are at the origin of the subsequent mass growth reaction pathways. Second, we review typical PAH formation reactions inspecting repetitive growth sequences in dependence of the molecular fuel structure. Third, we discuss how differences in the intermediate species pool influence the formation reactions of key aromatic ring species that are important for the PAH growth process underlying soot formation. As a main result it was found that for the fuels featuring a C[double bond, length as m-dash]C double bond, the chemistry of their allylic fuel radicals and their decomposition products strongly influences the combination reactions to the initially formed aromatic ring species and as a consequence, the PAH formation tendency.

  16. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  17. Support Effects in the Gold-Catalyzed Preferential Oxidation of CO

    KAUST Repository

    Ivanova, S.

    2010-04-08

    The study of support effects on the gold-catalyzed preferential oxidation of carbon monoxide in the presence of hydrogen (PROX reaction) is possible only with careful control of the gold particle size, which is facilitated by the application of the direct anionic exchange method. Catalytic evaluation of thermally stable gold nanoparticles, with an average size of around 3 nm on a variety of supports (alumina, titania, zirconia, or ceria), clearly shows that the influence of the support on the CO oxidation rate is of primary importance under CO+O 2 conditions and that this influence becomes secondary in the presence of hydrogen. The impact of the support surface structure on the oxidation rates, catalyst selectivity, and catalyst activation/deactivation is investigated in terms of oxygen vacancies, oxygen mobility, OH groups, and surface area on the oxidation rates, catalyst selectivity and catalyst activation/deactivation. It allows the identification of key morphological and structural features of the support to ensure high activity and selectivity in the gold-catalyzed PROX reaction. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  19. Oxidation of the Primary Alcoholic Moiety Selectively in the Presence of the Secondary Alcoholic Moieties

    International Nuclear Information System (INIS)

    Tin Myint Htwe

    2011-12-01

    Both primary and secondary alcoholic moieties are very sensitive to oxidation reactions. But sometimes it is necessary to oxidized only the primary alcoholic moiety. Such cases are usually found in Food Industries. In this situation, TEMPO (1, 1, 6, 6-Tetramethyl-1-Piperidine Oxoammonium) was used as an oxidizing agent. In this paper, Alpha starch was successfully oxidized using TEMPO as the oxidizing agent in combination with sodium hypochlorite with and without sodium bromide. The oxidation of primary alcoholic moiety only and the remaining untouched secondary alcoholic moiety were proved by infrared spectroscopy method.

  20. Effect of strain on bond-specific reaction kinetics during the oxidation of H-terminated (111) Si

    International Nuclear Information System (INIS)

    Gokce, Bilal; Aspnes, David E.; Gundogdu, Kenan

    2011-01-01

    Although strain is used in semiconductor technology for manipulating optical, electronic, and chemical properties of semiconductors, the understanding of the microscopic phenomena that are affected or influenced by strain is still incomplete. Second-harmonic generation data obtained during the air oxidation of H-terminated (111) Si reveal the effect of compressive strain on this chemical reaction. Even small amounts of strain manipulate the reaction kinetics of surface bonds significantly, with tensile strain enhancing oxidation and compressive strain retarding it. This dramatic change suggests a strain-driven charge transfer mechanism between Si-H up bonds and Si-Si back bonds in the outer layer of Si atoms.

  1. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  2. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    Science.gov (United States)

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  3. Study of the electrocatalytic oxidation of Ethanol over platinum in medium acid

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Gonzalez, Javier; Sanchez, Carlos

    2002-01-01

    Electro-catalytic oxidation of ethanol on platinum surfaces in sulfuric acid solutions at different temperatures and concentrations was studied by cyclic voltammetry. The results shown that there is ethanol adsorption at potentials below 0.4V (vs. RHE) with electrode coverage fraction for residues of 0.3 or less. There are also, two irreversible oxidation reactions. Former reaction seems be catalyzed by Pt(OH) species with electronic charge transfer control and the second reaction seems be catalyzed by Pt(OH) 4 with diffusion control while Pt(OH) 2 does not have catalytic activity. The activity and selectivity for total oxidation increases with ethanol concentration and temperature. Finally, a reaction mechanism, which explains the obtained data, is proposed

  4. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    Science.gov (United States)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  5. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  6. Selectivity and Activity of Iron Molybdate Catalysts in Oxidation of Methanol

    OpenAIRE

    Khalid Khazzal Hummadi; Karim H. Hassan; Phillip C.H. Mitchell

    2009-01-01

    The selectivity and activity of iron molybdate catalysts prepared by different methods are compared with those of a commercial catalyst in the oxidation of methanol to formaldehyde in a continuous tubular bed reactor at 200-350 oC (473-623 oK), 10 atm (1013 kPa), with a methanol-oxygen mixture fixed at 5.5% by volume methanol: air ratio. The iron(III) molybdate catalyst prepared by co-precipitation and filtration had a selectivity towards formaldehyde in methanol oxidation comparable with a c...

  7. Oxidative dehydrogenation of isobutane over a titanium pyrophosphate catalyst

    Directory of Open Access Journals (Sweden)

    IOAN-CEZAR MARCU

    2005-06-01

    Full Text Available The catalytic properties of titanium pyrophosphate in the oxidative dehydrogenation of isobutane to isobutylene were investigated in the 400 – 550 ºC temperature range. Asignificant change of the product distribution and of the apparent activation energy of the reactionwas observed at about 490 ºC. This phenomenon, already observed in the oxidative dehydrogenation of n-butane, has been interpreted by the existence of two reaction mechanisms depending upon the reaction temperature. Comparison with the n-butane reaction allowed different activation pathways for the activation of alkanes to be proposed. The catalytic properties of TiP2O7 in the oxidative dehydrogenation of isobutane was also compared to those obtained previously with several other pyrophosphates and TiP2O7 was found to be less active and selective for this reaction.

  8. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    Science.gov (United States)

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  9. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Size-Selective Oxidation of Aldehydes with Zeolite Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane; Laursen, Anders Bo; Kegnæs, Søren

    2011-01-01

    Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies that the a......Here, we report a synthesis and catalytic study of hybrid materials comprised of 1–3 nm sinter-stable Au nanoparticles in MFI-type zeolites. An optional post-treatment in aqua regia effectively remove Au from the external surfaces. The size-selective aerobic aldehyde oxidation verifies...... that the active Au is accessible only through the zeolite micropores....

  11. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  12. Process for the reduction of competitive oxidant consuming reactions in the solution mining of a mineral

    International Nuclear Information System (INIS)

    Stover, D.E.

    1980-01-01

    The present invention relates to an improved method for the solution mining of a mineral from a subterranean formation. More specifically, the invention relates to an improved method which enhances significantly the recovery of the mineral from a subterranean formation via solution mining by reducing the oxidant consuming reactions which compete with the mineral for the oxidant injected therein

  13. Effect of selective removal of organic matter and iron oxides on the ...

    African Journals Online (AJOL)

    The effect of selective removal of organic matter and amorphous and crystalline iron oxides on N2-BET specific surface areas of some soil clays was evaluated. Clay fractions from 10 kaolinitic tropical soils were successively treated to remove organic matter by oxidation with Na hypochlorite, amorphous Fe oxide with acid ...

  14. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  15. Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction.

    Science.gov (United States)

    Song, Dean; Cheng, Hanyang; Jiang, Xiaohua; Sun, Huiqing; Kong, Fanyu; Liang, Rongning; Qiang, Zhimin; Liu, Huijuan; Qu, Jiuhui

    2018-04-05

    Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 × 10-3 M-1 s-1 at 25 °C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 °C. The initial product was identified by UPLC-Q-TOF-MS to be mono-hydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments.

  16. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    –titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  17. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  18. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  19. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  20. Microwave-irradiation polyol synthesis of PVP-protected Pt–Ni electrocatalysts for methanol oxidation reaction

    CSIR Research Space (South Africa)

    Mathe, Ntombizodwa R

    2017-01-01

    Full Text Available ://doi.org/10.1007/s12678-017-0441-3 Microwave-Irradiation Polyol Synthesis of PVP-Protected Pt–Ni Electrocatalysts for Methanol Oxidation Reaction Ntombizodwa R. Mathe Manfred R. Scriba Rirhandzu S. Rikhotso Neil J. Coville ABSTRACT: Bimetallic Pt...

  1. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  2. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    Science.gov (United States)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  3. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-01-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 deg. C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed

  4. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Science.gov (United States)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Radiolytic oxidation of propane: computer modeling of the reaction scheme

    International Nuclear Information System (INIS)

    Gupta, A.K.; Hanrahan, R.J.

    1991-01-01

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25 o C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases. (author)

  6. A Rapid Selection Procedure for Simple Commercial Implementation of omega-Transaminase Reactions

    DEFF Research Database (Denmark)

    Gundersen Deslauriers, Maria; Tufvesson, Pär; Rackham, Emma J.

    2016-01-01

    A stepwise selection procedure is presented to quickly evaluate whether a given omega-transaminase reaction is suitable for a so-called "simple" scale-up for fast industrial implementation. Here "simple" is defined as a system without the need for extensive process development or specialized......, and (3) determination of product inhibition. The method is exemplified with experimental work focused on two products: 1-(4-bromophenyl)ethylamine and (S)-(+)3-amino-1-Boc-piperidine, synthesized from their corresponding pro-chiral ketones each with two alternative amine donors, propan-2-amine, and 1......-phenylethylamine. Each step of the method has a threshold value, which must be surpassed to allow "simple" implementation, helping select suitable combinations of substrates, enzymes, and donors. One reaction pair, 1-Boc-3-piperidone with propan-2-amine, met the criteria of the three-step selection procedure...

  7. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  8. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    Science.gov (United States)

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  9. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    International Nuclear Information System (INIS)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A.; García, Juan

    2013-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min −1 and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min −1 , respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T r = 0.098 g Ni min mL −1 . After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T r = 0.098 g Ni min mL −1 , attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity

  10. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  11. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.; Krier, James M.; Alayoglu, Selim; Shin, Jae-Yoon; An, Kwangjin; Komvopoulos, Kyriakos; Liu, Zhi; Somorjai, Gabor A.

    2014-01-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn

  12. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  13. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    Science.gov (United States)

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  15. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... of RuO2 and IrO2, while it is increased by similar to 0.4 eV for TiO2....

  16. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    Science.gov (United States)

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  18. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.; Bagdanoff, Jeffreyâ T.; Ferreira, Ericâ M.; McFadden, Ryanâ M.; Caspi, Danielâ D.; Trend, Raissaâ M.; Stoltz, Brianâ M.

    2009-01-01

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  19. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  20. Medium-Ring Effects on the Endo/Exo Selectivity of the Organocatalytic Intramolecular Diels-Alder Reaction.

    Science.gov (United States)

    Hooper, Joel F; James, Natalie C; Bozkurt, Esra; Aviyente, Viktorya; White, Jonathan M; Holland, Mareike C; Gilmour, Ryan; Holmes, Andrew B; Houk, K N

    2015-12-18

    The intramolecular Diels-Alder reaction has been used as a powerful method to access the tricyclic core of the eunicellin natural products from a number of 9-membered-ring precursors. The endo/exo selectivity of this reaction can be controlled through a remarkable organocatalytic approach, employing MacMillan's imidazolidinone catalysts, although the mechanistic origin of this selectivity remains unclear. We present a combined experimental and density functional theory investigation, providing insight into the effects of medium-ring constraints on the organocatalyzed intramolecular Diels-Alder reaction to form the isobenzofuran core of the eunicellins.

  1. Regeneration of sulfated metal oxides and carbonates

    Science.gov (United States)

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  2. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  3. Highly selective formation of imines catalyzed by silver nanoparticles supported on alumina

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Poreddy, Raju; Engelbrekt, Christian

    2014-01-01

    The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied. The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines. The reactions were performed under mild conditions......-2 in the gas phase. The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. (C) 2014, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B...... and afforded the imines in high yield (up to 99%) without any byproducts other than H2O. The highest activity was obtained over 5 wt% Ag/Al2O3 in toluene with air as oxidant. The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H...

  4. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.

  5. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  6. Development of selective catalytic oxidation (SCO) for NH{sub 3} and HCN removal from gasification gas; Selektiivisen katalyyttisen hapetusprosessin (SCO) kehittaeminen kaasutuskaasun NH{sub 3}:n ja HCN:n poistoon

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    In gasification, reactive nitrogen compounds (mainly NH{sub 3} and HCN) are formed from fuel nitrogen. If the gas containing NH{sub 3} is burned, a high NO{sub x} emission may be formed. The content of nitrogen compounds of the hot gasification gas could be reduced in Selective Catalytic Oxidation (SCO) process. In this process small amounts of reactive oxidisers are injected into the gas in order to convert NH{sub 3} to N{sub 2}. The utilization of SCO process together with low NO{sub x} burners in advanced gasification power stations might offer an alternative for flue gas treatment technologies like SCR (Selective Catalytic Reduction). In the earlier research, conditions were found, where oxidizers reacted selectively with ammonia in the gasification gas. Highest ammonia reduction took place in the aluminium oxide bed in the presence of NO and O{sub 2}. The aim of this study is to examine the reaction mechanism in order to be able to further evaluate the development possibilities of this kind process. The effect of composition and the amount of added oxidizer, the content of combustible gas components, space velocity, pressure and temperature will be studied. The experiments are carried out with the laboratory scale high pressure flow reactor of VTT Energy. Kinetic modelling of the experimental results is carried out in co-operation with the combustion chemistry group of Aabo Akademi. The aim of the modelling work is to bring insight to the gas-phase reactions that are important for the SCO-process. (orig.)

  7. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    Science.gov (United States)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  8. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  9. Preparation of Cu@Cu2O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol

    Directory of Open Access Journals (Sweden)

    Seongwan Jang

    2016-11-01

    Full Text Available HKUST-1, a copper-based metal organic framework (MOF, has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe3O4@HKUST-1 by layer-by layer assembly strategy and Cu@Cu2O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu2O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di-tert-butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  10. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  11. Ozonization, Amination and Photoreduction of Graphene Oxide for Triiodide Reduction Reaction: An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Jing, Hongyu; Ren, Suzhen; Shi, Yantao; Song, Xuedan; Yang, Ying; Guo, Yanan; An, Yonglin; Hao, Ce

    2017-01-01

    This work proposes a mild and environmentally-friendly approach to prepare a highly efficient functional graphene (termed as AGO-hv) using methods of ozone oxidation, solvothermal synthesis, and photoreduction. The use of ozone oxidation in the first step can effectively increase the interlaminar distance between graphite oxide sheets, and create active sites for nucleophilic attack on the epoxy carbon from ammonia. The amino groups were successfully grafted on the surface of graphene as evidenced by the amidation reaction, with a maximum nitrogen content of 10.46 wt% and a C/N molar ratio of 8.46. After further photoreduction of the aminated graphite oxide (AGO), the residual oxygen functionalities, such as C-OH, were effectively removed and the conductivity of the graphene sheet was further recovered. The dye-sensitized solar cell (DSC) exhibited a power conversion efficiency (PCE) of 7.51% based on AGO-hv counter electrode (CE), close to that of Pt counterpart (7.79%). The experimental results indicated that the amidation and photoreduction processes were significantly facilitated by the initial ozonization of graphene oxide, and this process significantly improved the electrochemical activity and the conductivity of graphene oxide. Density functional theory (DFT) calculations revealed that AGO-hv had the lowest ionization energy (a better electron-donating ability) and also suitable binding energy with I atoms as well. The combination of ozonization, amination and photoreduction is an efficient route to obtain electrocatalysts with desired compositional distributions and performance for triiodide reduction reaction in DSCs.

  12. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  13. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  14. STUDY OF EPOXIDE DECYCLISATION OF CARYOPHYLENE OXIDE WITH SYNTHETIC ZEOLITE AS CATALYSTS

    Directory of Open Access Journals (Sweden)

    Winarto Haryadi

    2010-06-01

    Full Text Available The reaction of epoxide ring opening of caryophillene oxide has been done using zeolite H-Y, H-sodalit, and H-ZSM-5 as catalysts. The reactions were done in two types, there were in dioxane solvent at temperature of 110 oC and without solvent at temperature of 175 oC. The catalyst weight was 10 % from caryophillene oxide weight, and the time of reaction was four hours. The product of reaction was analyzed using GC, FTIR, and GC-MS. The reactions of caryophillene oxide in dioxane solvent with the three kinds of zeolites did not give any targeted product. Whereas, the reactions without solvent gave three main products, there was one compound with one group of secondary hidroxyl (secondary alcohol, and two compounds of ketone from caryophillene. The reaction product of caryophillene oxide obtained without using solvent with the three type of catalysts were then compared. Conversion of three main products produced by H-ZSM-5 catalyst, H-sodalit catalyst and H-Y catalyst were 82.11 %, 54.92 % and 38.53 % respectively. For that reason, the transformation of caryophillene oxide using H-ZSM-5 catalyst was considered to be the best selective product. The alcohol product was resulted from reaction between caryophillene oxide and Bronsted acid, and  the ketone products was resulted from the reaction with Lewis acid in zeolite.   Keywords: Epoxide ring opening, HY, H-sodalit and HZSM-5

  15. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  16. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    Science.gov (United States)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  17. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  18. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  19. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  20. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation

    KAUST Repository

    Zhang, Zailei

    2017-07-27

    Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

  1. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  2. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  3. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  4. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  5. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  6. Optimal control of bond selectivity in unimolecular reactions

    International Nuclear Information System (INIS)

    Shi Shenghua; Rabitz, H.

    1991-01-01

    The optimal control theory approach to designing optimal fields for bond-selective unimolecular reactions is presented. A set of equations for determining the optimal fields, which will lead to the achievement of the objective of bond-selective dissociation is developed. The numerical procedure given for solving these equations requires the repeated calculation of the time propagator for the system with the time-dependent Hamiltonian. The splitting approximation combined with the fast Fourier transform algorithm is used for computing the short time propagator. As an illustrative example, a model linear triatomic molecule is treated. The model system consists of two Morse oscillators coupled via kinetic coupling. The magnitude of the dipoles of the two Morse oscillators are the same, the fundamental frequencies are almost the same, but the dissociation energies are different. The rather demanding objective under these conditions is to break the stronger bond while leaving the weaker one intact. It is encouraging that the present computational method efficiently gives rise to the optimal field, which leads to the excellent achievement of the objective of bond selective dissociation. (orig.)

  7. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  8. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  9. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  10. Selectivity control in pd-catalyzed c-h functionalization reactions

    OpenAIRE

    Flores Gaspar, Areli

    2013-01-01

    Benzocyclobutenones are an intriguing four-membered ring ketone. In the present thesis, we have developed a new protocol for selectively preparing benzocyclobutenones through intramolecular acylation of aryl bromides via palladium catalyzed C-H bond functionalization reactions based on rac-BINAP ligand. We also found that a subtle modification on the ligand backbone lead to a new catalytic manifold for preparing configurationally-pure styrene derivatives, when using dcpp (bis-dicyclohexylphos...

  11. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  12. Selective oxidation of alkanes and/or alkenes to valuable oxygenates

    Science.gov (United States)

    Lin, Manhua [Maple Glen, PA; Pillai, Krishnan S [North Brunwick, NJ

    2011-02-15

    A catalyst, its method of preparation and its use for producing at least one of methacrolein and methacrylic acid, for example, by subjecting isobutane or isobutylene or a mixture thereof to a vapor phase catalytic oxidation in the presence of air or oxygen. In the case where isobutane alone is subjected to a vapor phase catalytic oxidation in the presence of air or oxygen, the product is at least one of isobutylene, methacrolein and methacrylic acid. The catalyst comprises a compound having the formula A.sub.aB.sub.bX.sub.xY.sub.yZ.sub.zO.sub.o wherein A is one or more elements selected from the group of Mo, W and Zr, B is one or more elements selected from the group of Bi, Sb, Se, and Te, X is one or more elements selected from the group of Al, Bi, Ca, Ce, Co, Fe, Ga, Mg, Ni, Nb, Sn, W and Zn, Y is one or more elements selected from the group of Ag, Au, B, Cr, Cs, Cu, K, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Re, Ru, Sn, Te, Ti, V and Zr, and Z is one or more element from the X or Y groups or from the following: As, Ba, Pd, Pt, Sr, or mixtures thereof, and wherein a=1, 0.05oxidation state of the other elements.

  13. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  14. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  15. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  16. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  17. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  18. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    Science.gov (United States)

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  19. A study of selective precipitation techniques used to recover refined iron oxide pigments for the production of paint from a synthetic acid mine drainage solution

    International Nuclear Information System (INIS)

    Ryan, M.J.; Kney, A.D.; Carley, T.L.

    2017-01-01

    New resource recovery methods of acid mine drainage (AMD) treatment aim to reduce waste by extracting iron contaminants in usable forms, specifically iron oxides as industrial inorganic pigments, which can be marketed and sold to subsidize treatment costs. In this study, iron oxide pigments of varying colors and properties were recovered from a synthetic AMD solution through a stepwise selective precipitation process using oxidation, pH adjustment, and filtration. Chemical and physical design variables within the process, such as alkaline addition rate, reaction temperature, drying duration, and target pH, were altered and observed for their effects on iron oxide morphology as a means of reducing—or even eliminating—the need for refining after synthesis. Resulting iron oxide pigment powders were analyzed with X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), and visually evaluated for color and coating ability. Drying duration resulted in increased redness in paint streaks and enhanced crystallinity, as amorphous phases of iron oxide transformed into hematite. Alkaline addition rate showed no effect on the crystallinity of the powders and no consistent effect on color. Conversely, increasing reaction temperature darkened the color of pigments and increased surface area of pigment particles (thus improving coating ability) without changing the crystallinity of the samples. Iron oxides precipitated at pH 3 displayed the highest purity and possessed a distinct yellow color suggestive of jarosite, while other paint streaks darkened in color as trace metal impurities increased. The choice to use lower pH for higher quality iron oxides comes with the compromise of reduced iron recovery efficiency. Manganese and nickel did not begin to precipitate out of solution up to pH 7 and thus require increased pH neutralization in the field if natural AMD is found to contain those metals. All pigments developed in this study were found to be adequate for use as

  20. Supported nano gold as a recyclable catalyst for green, selective and efficient oxidation of alcohol using molecular oxygen

    Directory of Open Access Journals (Sweden)

    Bashir Dar

    2011-09-01

    Full Text Available The myth that gold cannot act as a catalyst has been discarded in view of recent studies, which have demonstrated the high catalytic efficiency of pure nano-gold and supported nano-gold catalysts. In recent years, numerous papers have described the use of supported nano-gold particles for catalysis in view of their action on CO and O2 to form CO2, as well as a variety of other reactions. Special emphasis is placed on the oxidation studies undertaken on model nano-Au systems. In this work a solvent free oxidation of 1-phenyl ethanol was carried out using gold supported on ceria-silica, ceria-titania, ceria- zirconia and ceria-alumina at 160 0C. Almost 88-97% conversion was obtained with >99% selectivity. Temperature screening was done from 70 to 160 0C.Catalysts were prepared by deposition co-precipitation method and deposition was determined by EDEX analysis.

  1. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react?

    DEFF Research Database (Denmark)

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C

    2013-01-01

    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time.......Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time....

  2. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Kou, Ronghui [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Sun, Cheng-Jun [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhao, Hu [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Zhang, Ming-Jian [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Li, Yan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Huq, Ashifia [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ko, J. Y. Peter [The Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853 USA; Pan, Feng [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Sun, Yang-Kook [Department of Energy Engineering, Hanyang University, Seoul 133-791 South Korea; Yang, Yong [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Bai, Jianming [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Wang, Feng [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.

  3. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  4. Combined gas-phase oxidation of methane and ethylene

    International Nuclear Information System (INIS)

    Pogosyan, N.M.; Pogosyan, M.D.

    2009-01-01

    It is established that depending on the reaction conditions combined oxidation of methane and ethylene may result in ethylene and propylene oxides with high selectivity with respect to the process, where in the initial reaction mixture methane is replaced by the same quantity of nitrogen. The formed additional methyl radicals increase the yield of all reaction products except CO. At low temperatures methyl radicals react with oxygen resulting in methyl peroxide radicals, which in turn, reacting with ethylene provide its epoxidation and formation of other oxygen-containing products. At high temperatures as a result of addition reaction between methyl radicals and ethylene, propyl radicals are formed that, in turn yield propylene. Alongside with positive influence on the yield of reaction products, methane exerts negative influence upon the conversion, that is it decreases the rate of ethylene and oxygen conversion, simultaneously decreasing significantly the yield of CO

  5. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  6. Reaction of oxygen with γ, δ-ethylenic phenylhydrazones. Model reaction of end-group behavior in phenylhydrazine-accelerated oxidation of natural rubber

    International Nuclear Information System (INIS)

    El Hamdaoui, A.; Reyx, D.; Campistron, I.

    1995-01-01

    An accurate definition of terminal groups of chains in the liquid polymers obtained by the phenylhydrazine-accelerated oxidation of natural rubber is needed. The object of the work was to use model molecules to explore the behavior of γ,δ-ethylenic methylketone phenylhydrazone end-groups in oxidation conditions. We have investigated the synthesis and characterization of models of these hypothetical end-groups, methylketones and phenones 1, their phenylhydrazones 2, the α-(phenyldiazenyl)hydroperoxides 3 resulting from reaction of 2 with oxygen, and the α-(phenyldiazenyl)alcohols 4 as characteristic derivatives of 3 or as models of possible reduced structures in oxidized liquid natural rubber. Three original syntheses of γ,δ-ethylenic ketones were carried out. In the case of γ,δ-ethylenic phenylhydrazones, the oxidation led to the expected α-(phenyldiazenyl)hydroperoxides and to epoxide derivatives of α-(phenyldiazenyl)alcohols 5 and ketones 6. An intramolecular mechanism is proposed. The results are used to predict the possibilities of identification of the corresponding end-groups in liquid rubbers produced in this way. (authors). 16 refs., 12 figs., 3 tabs

  7. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  8. Selective catalytic oxidation of NO as a process stage in NOx separation from power plant and production systems off-gases. Catalyst development and reaction kinetics. Final report. Die selektive katalytische Oxidation des NO als Prozess-Stufe bei der Stickoxidabscheidung aus Abgasen von Kraftwerken und Produktionsanlagen. Katalysatorentwicklung und Reaktionskinetik. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G.; Seifert, J.

    1989-06-01

    The research project was to investigate the heterogeneously catalyzed oxidation of NO in flue gas using 1. metal oxide catalysts (commonly on a MnO{sub 2} basis), 2. ZSM5 zeolites (pentasil), and 3. noble metal catalysts. Apart from the reaction kinetics, also the activity and resistance to typical catalyst poisons (SO{sub 2}, HCl, HF, heavy metals) were investigated. A fully automatic, computer-controlled experimental apparatus was developed which apart from the analysis of reaction products permitted also dynamic experiments with time constants in the seconds range and experiments with cyclic variation of concentration, temperature, and time of residue. (RB).

  9. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Woo

    2016-09-01

    Full Text Available Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors.

  10. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Science.gov (United States)

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  12. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  13. Unconventional exo selectivity in thermal normal-electron-demand Diels-Alder reactions

    Science.gov (United States)

    Ho, Guo-Ming; Huang, Ci-Jhang; Li, Elise Yu-Tzu; Hsu, Sheng-Kai; Wu, Ti; Zulueta, Medel Manuel L.; Wu, Kevin Binchia; Hung, Shang-Cheng

    2016-10-01

    The Diels-Alder reaction is a useful tool for generating functionalized chiral molecules through the concerted cycloaddition of dienes and dienophiles leading to six-membered rings. Traditionally, the selective predictions of the products rely heavily on consideration of the secondary orbital interactions that stabilize the endo pathway. However, there remain some basic examples defying this notion and produce the exo-isomer as major product. Here we systematically evaluated of the structural features driving exo selectivity in thermal normal-electron-demand Diels-Alder reactions. Substitution at the Cβ position and the size and electronegativity of the electron-withdrawing group of the dienophile are contributing factors. Experimental and computational studies both point toward the steric and electrostatic forces between the substituents in both the diene and the dienophile that increase the likelihood of the exo pathway. For these substrates, the dominance of the endo pathway is reduced by transition state distortions and poor structural alignments of the reacting partners. We also noted the tilt of the dienophile with respect to the diene causing steric strain on the functionalities at the more advanced bond forming carbon-carbon position of the endo transition state. Insights into such factors may benefit synthetic planning and asserting control over this important named reaction.

  14. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  15. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  16. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  17. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl alpha-D-glucopyranoside.

    Science.gov (United States)

    Bragd, P L; Besemer, A C; van Bekkum, H

    2000-09-22

    TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-mediated oxidation of potato starch and methyl alpha-D-glucopyranoside (MGP) was performed in the absence of sodium bromide (NaBr) as co-catalyst, solely using sodium hypochlorite (NaOCl) as the primary oxidant. The low reaction rate associated with a bromide-free process was increased by performing the oxidation at increased temperatures. The reaction proceeded stoichiometrically and with high selectivity and with only minor depolymerisation, provided that temperature and pH were kept or = 25 degrees C) and under more alkaline conditions (pH > or = 9.0) degradation of the starch skeleton occurred. Simultaneously, side-reactions of the nitrosonium ion lowered the yield of the oxidation. Despite the absence of the NaBr catalyst, the reaction rate-controlling step was found to be the oxidation of the primary hydroxyl groups with the nitrosonium ion. The reaction was first-order in MGP and in TEMPO.

  18. Selective coke combustion by oxygen pulsing during Mo/ZSM‐5‐catalyzed methane dehydroaromatization

    NARCIS (Netherlands)

    Kosinov, N.; Coumans, F.J.A.G.; Uslamin, E.A.; Kapteijn, F.; Hensen, E.J.M.

    2016-01-01

    Non-oxidative methane dehydroaromatization is a promising reaction to directly convert natural gas into aromatic hydrocarbons and hydrogen. Commercialization of this technology is hampered by rapid catalyst deactivation because of coking. A novel approach is presented involving selective oxidation

  19. Improvement in electrical characteristics of eco-friendly indium zinc oxide thin-film transistors by photocatalytic reaction.

    Science.gov (United States)

    Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae

    2018-05-11

    Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

  20. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    Science.gov (United States)

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.