WorldWideScience

Sample records for selective nox reduction

  1. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  2. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  3. NOx removal by low-cost char pellets: Factors influencing the activity and selectivity towards NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jose Maria Soriano-Mora; Agustin Bueno-Lopez; Avelina Garcia-Garcia; Ron E. Perry; Colin E. Snape [University of Alicante, Alicante (Spain). MCMA Group, Department of Inorganic Chemistry

    2007-05-15

    The activity of potassium-containing char pellets prepared from different low-cost carbon precursors towards NOx reduction in an oxygen-rich environment has been investigated by isothermal reactions at 325{sup o}C. From the overall data, it can be asserted that high potassium content is a key factor in allowing carbon-based pellets to achieve better NOx reduction capacities whilst exhibiting higher selectivity to NOx reduction and inhibiting carbon burn-off, but the intrinsic characteristics of the carbon precursor must also be taken into account (mineral matter content, carbon nature...). Having chosen the most appropriate formulation for pellet preparation (high potassium content and suitable carbon precursor, a metallurgical coke), the 3HT-C pellets demonstrated the most promise for consideration for NOx removal. This sample, when tested as a packed bed of pellets at 325{sup o}C, gave more moderate and very constant NOx reduction rates in combination with very high selectivity towards NOx. On the other hand, when tested at 400-450{sup o}C, very high and constant NOx reduction rates were achieved, with decreased but still acceptable selectivity. Reaction data from a lifetime test were not significantly worse than those from a 2 h reaction, which is very encouraging. Neither was sample efficiency compromised in the lifetime test, in which only 18% (maximum) of oxygen was consumed compared with 84.1% (maximum) NOx converted. 21 refs., 6 figs., 5 tabs.

  4. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...... zero emission of secondary pollutants....

  5. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    NARCIS (Netherlands)

    Maisuls, S.E.

    2000-01-01

    The combustion of fuels, to meet the society demands for energy, result in the emissi of large quantities of nitrogen oxides (NOx) to the environment. These pollutants cause severe environmental problems and present a serious hazard to the health. Nowadays, two methods for the control of NOx

  6. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art material...

  7. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    Science.gov (United States)

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-07

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.

  8. NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts

    OpenAIRE

    Sullivan, James A.; Doherty, Julie A.

    2005-01-01

    The temperature-programmed activity of a series of oxide-supported (TiO2, Al2O3 and SiO2) Cu catalysts formed from two different Cu precursors (Cu(NO3)(2) and CuSO4) for the selective catalytic reduction of NOx using solutions of urea as a reductant have been determined. These activities are compared to those found using NH3 as a reducing agent over the same catalysts in the presence of H2O and it is found that catalysts that are active for the selective reduction of NOx with NH3 are inactive...

  9. Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3

    Science.gov (United States)

    Liu, Zhiming; Feng, Xu; Zhou, Zizheng; Feng, Yongjun; Li, Junhua

    2018-01-01

    Ce-Sn binary oxide catalysts prepared by the hydrothermal method have been investigated for the selective catalytic reduction (SCR) of NOx with NH3. Compared with pure CeO2 and SnO2, Ce-Sn binary oxide catalyst showed significantly higher NH3-SCR activity. Moreover, Ce-Sn catalyst showed high resistance against H2O and SO2. The high catalytic performance of Ce-Sn binary oxide is attributed to the synergetic effect between Ce and Sn species, which not only enhances the redox property of the catalyst but also increases the Lewis acidity, thus promoting the adsorption and activation of NH3 species, which contributes to improving the NH3-SCR performance.

  10. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  11. Promotional mechanism of propane on selective catalytic reduction of NOx by methane over In/H-BEA at low temperature

    Science.gov (United States)

    Pan, Hua; Jian, Yanfei; Yu, Yanke; Chen, Ningna; He, Chi; He, Cheng

    2016-12-01

    Effects of propane/methane ratios on NOx reduction by mixtures of methane and propane over In/H-BEA catalyst were investigated at temperatures ranging from 250 to 550 °C. The higher catalytic activity of In/H-BEA was exhibited for CH4-SCR at high temperatures above 450 °C, while the higher NOx conversion was achieved in C3H8-SCR at below 425 °C. A broadened temperature window and enhanced CO2 selectivity were achieved by combining of methane and propane as the co-reductant. The mixtures with propane/methane of 1/2 showed the most superior T50 (325 °C) and T90 (500 °C) temperatures for NOx reduction over In/H-BEA catalyst. For the promotion mechanism of propane on NO reduction by methane at low temperature, the formation of carbonaceous species (e.g. R-COOH) were enhanced by the activation of C3H8 on Brønsted acid sites at low temperature, and further promoted the generation of sbnd NCO species, which was a crucial determining step for NO reduction.

  12. Sustained Low Temperature NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Yuhui

    2017-04-05

    Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oC range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to

  13. Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review

    Directory of Open Access Journals (Sweden)

    Chen Gao

    2018-01-01

    Full Text Available Selective catalytic reduction (SCR with NH3 is the most efficient and economic flue gas denitrification technology developed to date. Due to its high low-temperature catalytic activity, Mn-based catalysts present a great prospect for application in SCR de-NOx at low temperatures. However, overcoming the poor resistance of Mn-based catalysts to H2O and SO2 poison is still a challenge. This paper reviews the recent progress on the H2O and SO2 resistance of Mn-based catalysts for the low-temperature SCR of NOx. Firstly, the poison mechanisms of H2O and SO2 are introduced in detail, respectively. Secondly, Mn-based catalysts are divided into three categories—single MnOx catalysts, Mn-based multi-metal oxide catalysts, and Mn-based supported catalysts—to review the research progress of Mn-based catalysts for H2O and SO2 resistance. Thirdly, several strategies to reduce the poisonous effects of H2O and SO2, such as metal modification, proper support, the combination of metal modification and support, the rational design of structure and morphology, are summarized. Finally, perspectives and future directions of Mn-based catalysts for the low-temperature SCR of NOx are proposed.

  14. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.

    Science.gov (United States)

    McNevin, Thomas F

    2016-01-01

    The most effective control technology available for the reduction of oxides of nitrogen (NOx) from coal-fired boilers is selective catalytic reduction (SCR). Installation of SCR on coal-fired electric generating units (EGUs) has grown substantially since the onset of the U.S. Environmental Protection Agency's (EPA) first cap and trade program for oxides of nitrogen in 1999, the Ozone Transport Commission (OTC) NOx Budget Program. Installations have increased from 6 units present in 1998 in the states that encompass the current Cross-State Air Pollution Rule (CSAPR) ozone season program to 250 in 2014. In recent years, however, the degree of usage of installed SCR technology has been dropping significantly at individual plants. Average seasonal NOx emission rates increased substantially during the Clean Air Interstate Rule (CAIR) program. These increases coincided with a collapse in the cost of CAIR allowances, which declined to less than the cost of the reagent required to operate installed SCR equipment, and was accompanied by a 77% decline in delivered natural gas prices from their peak in June of 2008 to April 2012, which in turn coincided with a 390% increase in shale gas production between 2008 and 2012. These years also witnessed a decline in national electric generation which, after peaking in 2007, declined through 2013 at an annualized rate of -0.3%. Scaling back the use of installed SCR on coal-fired plants has resulted in the release of over 290,000 tons of avoidable NOx during the past five ozone seasons in the states that participated in the CAIR program. To function as designed, a cap and trade program must maintain allowance costs that function as a disincentive for the release of the air pollutants that the program seeks to control. If the principle incentive for reducing NOx emissions is the avoidance of allowance costs, emissions may be expected to increase if costs fall below a critical value, in the absence of additional state or federal

  15. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  16. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions

    Science.gov (United States)

    Seddiek, Ibrahim S.; Elgohary, Mohamed M.

    2014-09-01

    Increasing amounts of ships exhaust gases emitted worldwide forced the International Maritime Organization to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such emissions. Consequently, ships emission reduction became one of the technical and economical challenges that facing the ships, operators. The present paper addresses the different strategies that can be used to reduce those emissions, especially nitrogen oxides and sulfur oxides. The strategies included: applying reduction technologies onboard, using of alternative fuels, and follows one of fuel saving strategies. Using of selective catalytic reduction and sea water scrubbing appeared as the best reduction technologies onboard ships. Moreover, among the various proposed alternative fuels, natural gas, in its liquid state; has the priority to be used instead of conventional fuels. Applying one of those strategies is the matter of ship type and working area. As a numerical example, the proposed methods were investigated at a high-speed craft operating in the Red Sea area between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory from the point of view of environment and economic issues, and reflected the importance of applying those strategies

  17. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Seddiek

    2014-09-01

    Full Text Available Increasing amounts of ships exhaust gases emitted worldwide forced the International Maritime Organization to issue some restricted maritime legislation for reducing the adverse environmental impacts arising from such emissions. Consequently, ships emission reduction became one of the technical and economical challenges that facing the ships' operators. The present paper addresses the different strategies that can be used to reduce those emissions, especially nitrogen oxides and sulfur oxides. The strategies included: applying reduction technologies onboard, using of alternative fuels, and follows one of fuel saving strategies. Using of selective catalytic reduction and sea water scrubbing appeared as the best reduction technologies onboard ships. Moreover, among the various proposed alternative fuels, natural gas, in its liquid state; has the priority to be used instead of conventional fuels. Applying one of those strategies is the matter of ship type and working area. As a numerical example, the proposed methods were investigated at a high-speed craft operating in the Red Sea area between Egypt and the Kingdom of Saudi Arabia. The results obtained are very satisfactory from the point of view of environment and economic issues, and reflected the importance of applying those strategies.

  18. Experimental Study of Selective Catalytic Reduction System On CI Engine Fuelled with Diesel-Ethanol Blend for NOx Reduction with Injection of Urea Solutions

    OpenAIRE

    R. Praveen; Natarajan, S.

    2014-01-01

    Nowadays exhaust emission control from internal combustion engines have become one of the most important challenges. Oxides of nitrogen (NOx) are one of the major hazardous pollutants that come out from diesel engines. There are various techniques existing for NOx control but each techniques has its own advantages and disadvantages. Technologies available for NOx reductions either increase other polluting gas emission or increase fuel consumption. The objective of this paper is to determine t...

  19. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  20. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.|info:eu-repo/dai/nl/325811202; Lezcano-Gonzalez, I.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Beale, A.M.|info:eu-repo/dai/nl/325802068

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic

  1. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  2. Low-cost carbon pellets for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jose Maria Soriano-Mora; Agustin Bueno-Lopez; Avelina Garcia-Garcia; Ron Perry; Colin E. Snape [University of Alicante (Spain). Department of Inorganic Chemistry

    2005-07-01

    Carbonaceous materials have been proposed as potential inexpensive reducing agents for NOx reduction under suitable operating conditions. Potassium at sufficiently high concentration has been found to be an effective catalyst in the C-NOx reaction, providing high selectivity for NOx reduction compared to O{sub 2} combustion. In the current work, it was decided to explore other low-cost carbon precursors for their suitability and selectivity towards NOx reduction and to incorporate these into pellets. Taking into account the great number of preparation variables previously analyzed as well as reaction variables the analysis of the nature of pelletised carbon feedstocks completes the study of the feasibility of using carbon pellets for NOx reduction under different experimental conditions, providing a survey about the key factors influencing the potassium catalysed NOx carbon reaction. The carbon feedstocks selected included a tyre pyrolysis char (TPC), two petroleum coke fines (CCoke and Pcoke), a Daw Mill low-rank high volatile bituminous coal (BCoal), and Chinese anthracite fines (ACoal). Cashew but shell liquid (CNSL) was substituted for coal-tar formaldehyde resole or humic acid binders used previously. Selective NOx reduction in an O{sub 2} lean gas mixture has successfully been carried out by potassium-containing carbon pellets using several carbon feedstocks as char, different carbon cokes, and coals. The carbon precursor does not significantly affect the selectivity of pellets for NOx reduction over combustion, compared to the loading of catalyst which is the key parameter. With the most selective sample, a selectivity factor of 0.45 was reached, which indicates that 45% of the carbon consumed reacted with NOx. 3 refs., 1 fig., 1 tab.

  3. Promotional Effects of Ti on a CeO2-MoO3 Catalyst for the Selective Catalytic Reduction of NOx with NH3.

    Science.gov (United States)

    Geng, Yang; Chen, Xiaoling; Yang, Shijian; Liu, Fudong; Shan, Wenpo

    2017-05-24

    In this study, Ti was doped to CeO2-MoO3 to promote the catalytic performance for the selective catalytic reduction of NOx with NH3 (NH3-SCR). The preparation method for CeMo0.5TiaOx (a = 0, 1, 2, 5, 10) catalysts was a stepwise precipitation method. When Ti was doped, all of the Ce-Mo-Ti catalysts exhibited remarkably improved NOx conversion and N2 selectivity than the CeMo0.5Ox without Ti. The CeMo0.5Ti5Ox with excellent activity in a broad temperature range was selected as an optimal catalyst to investigate the effects of Ti addition. The formation process analysis of the CeMo0.5Ti5Ox showed that, the Mo and Ti species first precipitated together from the mixed solution with the increase of pH, and then Ce species precipitated onto the Mo-Ti precipitates. The obtained catalyst exhibited remarkably facilitated NOx and NH3 adsorption, enhanced charge imbalance, promoted redox property, and improved surface acidity, which are all important reasons for the excellent catalytic performance of an NH3-SCR catalyst.

  4. Chemically enhanced biological NOx removal from flue gases : nitric oxide and ferric EDTA reduction in BioDeNox reactors

    NARCIS (Netherlands)

    Maas, van der P.M.F.

    2005-01-01

    The emission of nitrogen oxides (NOx) to the atmosphere is a major environmental problem. To abate NOx emissions from industrial flue gases, to date, mainly chemical processes like selective catalytic reduction (SCR) are applied. All these processes require high temperatures (>300 °C) and

  5. Selective Photocatalytic Reduction of NOx with Fe-doped TiO2 : A New Approach Towards Photocatalyst Design

    NARCIS (Netherlands)

    Wu, Q.

    2012-01-01

    Conventional TiO2 based photocatalysts oxidize NOx to nitrates which do not automatically desorb and have to be washed away from the catalyst surface. To avoid this, the research described in this thesis aims to design new photocatalysts that can photo-reduce NO into N2 and O2. Previous efforts in

  6. NOx reduction methods and apparatuses

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

    2004-10-26

    A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

  7. Superior Performance of Fe1-xWxOδ for the Selective Catalytic Reduction of NOx with NH3: Interaction between Fe and W.

    Science.gov (United States)

    Wang, Hui; Qu, Zhenping; Dong, Shicheng; Xie, Hongbin; Tang, Chen

    2016-12-20

    Novel iron-tungsten catalysts were first developed for the selective catalytic reduction of NOx by NH3 in diesel exhaust, achieving an excellent performance with a wide operating temperature window above 90% NOx conversion from 225 or 250 to 450 °C (GHSVs of 30 000 or 50 000 h-1). It also exhibited a pronounced stability and relatively high NOx conversion in the presence of H2O, SO2 and CO2. The introduction of W resulted in the formation of α-Fe2O3 and FeWO4 species obtained by HRTEM directly. The synergic effect of two species contributed to the high SCR activity, because of the increased surface acidity and electronic property. The FeWO4 with octahedral [FeO6]/[WO6] structure acted as the Brønsted acid sites to form highly active NH4+ species. Combining DFT calculations with XPS and UV-vis results, it was found that the fine electron interaction between α-Fe2O3 and FeWO4 made the electron more easily transfer from W6+ sites to Fe3+ sites, which promoted the formation of NO2. Judging by the kinetics and SCR activity studies, the Fe0.75W0.25Oδ with an appropriate W amount showed the strongest interaction, and thereby the lowest activation energy of 39 kJ•mol-1 and optimal catalytic activity. These findings would be conducive to the reasonable design of NH3-SCR catalysts by adjusting the fabrication.

  8. Rationally Designed Porous MnOx-FeOx Nanoneedles for Low-Temperature Selective Catalytic Reduction of NOx by NH3.

    Science.gov (United States)

    Fan, Zhaoyang; Shi, Jian-Wen; Gao, Chen; Gao, Ge; Wang, Baorui; Niu, Chunming

    2017-05-17

    In this work, a novel porous nanoneedlelike MnOx-FeOx catalyst (MnOx-FeOx nanoneedles) was developed for the first time by rationally heat-treating metal-organic frameworks including MnFe precursor synthesized by hydrothermal method. A counterpart catalyst (MnOx-FeOx nanoparticles) without porous nanoneedle structure was also prepared by a similar procedure for comparison. The two catalysts were systematically characterized by scanning and transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, hydrogen temperature-programmed reduction, ammonia temperature-programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFT), and their catalytic activities were evaluated by selective catalytic reduction (SCR) of NOx by NH3. The results showed that the rationally designed MnOx-FeOx nanoneedles presented outstanding low-temperature NH3-SCR activity (100% NOx conversion in a wide temperature window from 120 to 240 °C), high selectivity for N2 (nearly 100% N2 selectivity from 60 to 240 °C), and excellent water resistance and stability in comparison with the counterpart MnOx-FeOx nanoparticles. The reasons can be attributed not only to the unique porous nanoneedle structure but also to the uniform distribution of MnOx and FeOx. More importantly, the desired Mn4+/Mnn+ and Oα/(Oα + Oβ) ratios, as well as rich redox sites and abundant strong acid sites on the surface of the porous MnOx-FeOx nanoneedles, also contribute to these excellent performances. In situ DRIFT suggested that the NH3-SCR of NO over MnOx-FeOx nanoneedles follows both Eley-Rideal and Langmuir-Hinshelwood mechanisms.

  9. Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3.

    Science.gov (United States)

    Huang, Bingjie; Yu, Danqing; Sheng, Zhongyi; Yang, Liu

    2017-05-01

    The CeO2@TiO2 core-shell nanostructure catalyst prepared by a two-step hydrothermal method was used for selective catalytic reduction (SCR) of NOx with NH3 in this study. The catalyst presented the obvious core-shell structure, and the shell was amorphous TiO2 which could protect the active center from the SO2 erosion. The catalyst showed high activity and stability, excellent N2 selectivity and superior SO2 resistance and H2O tolerance. Characterizations such as TEM, HR-TEM, XRD, BET, XPS, NH3-TPD, and H2-TPR were carried out. The results indicated that the catalyst had large surface area and the active sites were well dispersed on the surface. The NH3-TPD, H2-TPR and XPS results implied that its increased SCR activity might be due to the enhancement of NH3 chemisorption and the increase of active oxygen species, both of which were conductive to NH3 activation. The excellent catalytic performance suggests that it is a promising candidate for SCR catalyst. Copyright © 2016. Published by Elsevier B.V.

  10. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Wu, Ganxue; Feng, Xi; Zhang, Hailong; Zhang, Yanhua; Wang, Jianli; Chen, Yaoqiang; Dan, Yi

    2018-01-01

    The promotional effect of nickel additive on the catalytic performance of the representative FeVO4/TiO2 for NH3-SCR reaction is systematically studied for the first time in the present work. The experimental results showed that NOx conversion at low temperature and N2 selectivity could be significantly improved by Ni doping and 0.4Ni-FeV-Ti exhibited the highest NOx removal efficiency. Analysis by XRD, SEM/HR-TEM, Raman, TPD, DRIFTS, TPR and XPS showed that nickel doping effectively promoted the interaction of FeVO4 nanoparticles with TiO2, consequently resulting in an enhanced acidity property, improved redox activity and giving rise to the formation of the surface oxygen vacancies and defect sites.

  11. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration...

  12. NOx reduction by electron beam-produced nitrogen atom injection

    Science.gov (United States)

    Penetrante, Bernardino M.

    2002-01-01

    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  13. Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts

    Directory of Open Access Journals (Sweden)

    Lukasz Kubiak

    2016-03-01

    Full Text Available The influence of the noble metals (Pt vs. Rh on the NOx storage reduction performances of lean NOx trap catalysts is here investigated by transient micro-reactor flow experiments. The study indicates a different behavior during the storage in that the Rh-based catalyst showed higher storage capacity at high temperature as compared to the Pt-containing sample, while the opposite is seen at low temperatures. It is suggested that the higher storage capacity of the Rh-containing sample at high temperature is related to the higher dispersion of Rh as compared to Pt, while the lower storage capacity of Rh-Ba/Al2O3 at low temperature is related to its poor oxidizing properties. The noble metals also affect the catalyst behavior upon reduction of the stored NOx, by decreasing the threshold temperature for the reduction of the stored NOx. The Pt-based catalyst promotes the reduction of the adsorbed NOx at lower temperatures if compared to the Rh-containing sample, due to its superior reducibility. However, Rh-based material shows higher reactivity in the NH3 decomposition significantly enhancing N2 selectivity. Moreover, formation of small amounts of N2O is observed on both Pt- and Rh-based catalyst samples only during the reduction of highly reactive NOx stored at 150 °C, where NOx is likely in the form of nitrites.

  14. NOx from cement production - reduction by primary measures

    DEFF Research Database (Denmark)

    Jensen, Lars Skaarup

    1999-01-01

    This thesis comprises an investigation of the mechanisms involved in forming and reducing NOx in kiln systems for cement production. Particularly the mechanisms forming and reducing NOx in calciners are dealt with in detail, as altered calciner design and operation are most applicable to controll......This thesis comprises an investigation of the mechanisms involved in forming and reducing NOx in kiln systems for cement production. Particularly the mechanisms forming and reducing NOx in calciners are dealt with in detail, as altered calciner design and operation are most applicable...... to controlling NOx emission by primary measures. The main focus has been on elucidating NOx formation and reduction mechanisms involving reactions of char, and on determining their relative importance in calciners.The first three chapters give an introduction to cement production, combustion and NOx. In modern...... cement production processes cement is typically produced by thermally treating a mixture of limestone and clay minerals in kiln systems consisting of a rotary kiln and a calciner. Clinker burning at a temperature of about 1450 °C takes place in the internally fired rotary kiln and calcination, which...

  15. DYNAMOMETER EVALUATION OF PLASMA-CATALYST FOR DIESEL NOX REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hoard, J; Schmieg, S; Brooks, D; Peden, C; Barlow, S; Tonkyn, R

    2003-08-24

    A three-stage plasma-catalyst system was developed and tested on an engine dynamometer. Previous laboratory testing suggested high NOx efficiency could be obtained. With hexene reductant added to the exhaust, over 90% NOx reduction was observed. However, with diesel or Fischer-Tropsch reductant the catalyst efficiency rapidly dropped off. Heating the catalyst in air removed brown deposit from the surface and restored conversion efficiency. Following the engine tests, the used catalysts were evaluated. BET surface area decreased, and TPD revealed significant storage. This storage appears to be partly unburned diesel fuel that can be removed by heating to around 250-300 C, and partly hydrocarbons bonded to the surface that remain in place until 450-500 C. Laboratory testing with propene reductant demonstrated that the catalyst regains efficiency slowly even when operating temperature does not exceed 300 C. This suggests that control strategies may be able to regenerate the catalyst by occasional moderate heating.

  16. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  17. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  18. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    attributes of oscillating combustion and on the results of an earlier project at GTI and Air Liquide, to determine which applications for oscillating combustion would show the greatest probability for technical success and greatest probability for market acceptability. The market study indicated that furnaces in the steel, glass, and metal melting industries would perform well in both categories. These findings guided the selection of burners for laboratory testing and, with the results of the laboratory testing, guided the selection of field test sites.

  19. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  20. Promotional effects of Titanium additive on the surface properties, active sites and catalytic activity of W/CeZrOx monolithic catalyst for the selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Xu, Haidi; Feng, Xi; Liu, Shuang; Wang, Yun; Sun, Mengmeng; Wang, Jianli; Chen, Yaoqiang

    2017-10-01

    CeZrTixO2 mixed oxides were prepared by a co-precipitation method, and serial WO3/CeZrTixO2 catalysts were prepared to investigate the influence of doping TiO2 into CeZrO2 on the catalytic performance of selective catalytic reduction of NOx with NH3. The activity results showed that the introduction of appropriate amount of TiO2 could effectively improve the catalytic performance. WO3/CeZrTi20O2 with 20 wt.% TiO2 showed better deNOx activity and sulfur/water vapor tolerance than W/CeZrO2. Several techniques, including N2 physisorption, XRD, XPS, H2-TPR, NH3-TPD and in situ DRIFTS, were employed to characterize catalysts. The results indicated that doping TiO2 led to the formation of cerium-zirconium-titanium solid solution with larger surface area. The interactions among metal oxides could enhance the redox properties of the catalyst, which was helpful to the improvement of the low-temperature NH3-SCR activity. Moreover, the addition of TiO2 promoted the adsorption and activation of NH3 and increased the reactivity of adsorbed nitrate species with NH3 species, which significantly affected the NH3-SCR performance. Finally, the results of in situ DRIFTS demonstrated that the NH3-SCR reaction mainly followed the Langmuir-Hinshelwood mechanism over W/CeZrO2 and W/CeZrTi20O2 catalysts at 200 °C.

  1. The deactivation mechanism of Pb on the Ce/TiO2 catalyst for the selective catalytic reduction of NOx with NH3: TPD and DRIFT studies.

    Science.gov (United States)

    Wang, Shu-Xian; Guo, Rui-Tang; Pan, Wei-Guo; Li, Ming-Yuan; Sun, Peng; Liu, Shu-Ming; Liu, Shuai-Wei; Sun, Xiao; Liu, Jian

    2017-02-15

    It was well recognized that Pb had a poisoning effect on a SCR catalyst. In this study, the deactivation mechanism of Pb on the Ce/TiO2 catalyst was investigated based on the characterization results of TPD and in situ DRIFT studies. It was found that the addition of Pb on the Ce/TiO2 catalyst not only inhibited the adsorption and activation of NH3 species, but also led to the decrease of the activity of adsorbed NH3 species in the SCR reaction. The adsorption of NOx species and the oxidation of NO by O2 over the Ce/TiO2 catalyst were also suppressed by the addition of Pb, while the reactivity of adsorbed NO2 species did not decrease. Moreover, the results revealed that the NH3-SCR reaction over the Ce/TiO2 catalyst followed both the E-R and L-H mechanisms, while the NH3-SCR reaction over Ce/TiO2-Pb was mainly controlled by the L-H mechanism. The contributions of the L-H mechanism to the SCR reactions over Ce/TiO2 and Ce/TiO2-Pb decreased with increasing reaction temperature. The deactivation of Ce/TiO2-Pb was mainly attributed to the suppressed NH3 adsorption and activation, accompanied by the inhibited NO oxidation and the decrease of Brønsted acid sites.

  2. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Directory of Open Access Journals (Sweden)

    Cheolyong Choi

    2015-11-01

    Full Text Available In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea- water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  3. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Science.gov (United States)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  4. SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

    2005-01-01

    The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus

  5. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  6. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  7. Influence of potassium loading at different reaction temperatures on the NOx reduction process by potassium-containing coal pellets

    Energy Technology Data Exchange (ETDEWEB)

    Agustin Bueno-Lopez; Avelina Garcia-Garcia; Jose Antonio Caballero; A. Linares-Solano [Universidad de Alicante, Alicante (Spain). Departamento de Quimica Inorganica

    2003-02-01

    The activity of potassium-containing coal pellets and the corresponding free-metal char for NOx reduction in an oxygen-rich environment has been investigated by temperature-programmed reactions (TPRs) up to 750{sup o}C, 2 h isothermal reactions in the range of 250 475{sup o}C and lifetime tests, (until the samples were completely consumed), for selected samples and temperatures. An interesting 'reactivity window', where NOx reduction is observed, but carbon conversion is negligible, was found from TPRs experiment for a high potassium content sample, at moderate temperatures. This interval was not observed for the char. The catalytic effect of potassium is more dramatic at high temperatures, therefore, metal loading and reaction temperature are very much interrelated. Lifetime tests provide a very valuable information (average selectivity, profitable use of samples for NOx reduction, etc.), allowing us to check the whole efficiency of the samples. The progressive addition of potassium to the pellets makes samples more effective in terms of: (i) capacity to reduce higher NOx amounts; (ii) maximum NOx conversion values and (iii) higher values of average selectivity. In general, the samples studied, exhibit a maximum temperature, very much dependent on their potassium contents, that must not be exceeded with a view to practical applications. 24 refs., 6 figs., 2 tabs.

  8. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

    2005-12-28

    address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber suitable for a given engine. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passes over fresh sorbent material. This aspect of the research will continue into 2006, and the benefits and challenges of SNR will be compared with those of competing systems, such as Selective Catalytic Reduction. Chemical kinetic modeling using the CHEMKIN software package was extended in 2005 to the case of slightly rich burn with EGR. Simulations were performed at 10%, 20%, 30% and 40% of the intake air replaced with EGR. NOx decomposition efficiency was calculated at the point in time where 98% of fuel was consumed, which is believed to be a conservative approach. The modeling data show that reductions of over 70% are possible using the ''98% fuel burned'' assumption.

  9. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  10. Fundamental limits on gas-phase chemical reduction of NOx in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsiao, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    In the plasma, the electrons do not react directly with the NOx molecules. The electrons collide mainly with the background gas molecules like N{sub 2}, O{sub 2} and H{sub 2}O. Electron impact on these molecules result partly in dissociation reactions that produce reactive species like N, O and OH. The NOx in the engine exhaust gas initially consist mostly of NO. The ground state nitrogen atom, N, is the only species that could lead to the chemical reduction of NO to N{sub 2}. The O radical oxidizes NO to NO{sub 2} leaving the same amount of NOx. The OH radical converts NO{sub 2} to nitric acid. Acid products in the plasma can easily get adsorbed on surfaces in the plasma reactor and in the pipes. When undetected, the absence of these oxidation products can often be mistaken for chemical reduction of NOx. In this paper the authors will examine the gas-phase chemical reduction of NOx. They will show that under the best conditions, the plasma can chemically reduce 1.6 grams of NOx per brake-horsepower-hour [g(NOx)/bhp-hr] when 5% of the engine output energy is delivered to the plasma.

  11. Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.

    Science.gov (United States)

    Peng, Han Hsuan; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-10-01

    A new NOx storage and reduction (NSR) system is developed for NOx removal by combining perovskite-like catalyst with nonthermal plasma technology. In this hybrid system, catalyst is mainly used for oxidizing NO to NO2 and storing them, while nonthermal plasma is applied as a desorption-reduction step for converting NOx into N2. An innovative catalyst with a high NOx storage capacity and good reduction performance is developed by successive impregnation. The catalysts prepared with various metal oxides were investigated for NOx storage capacity (NSC) and NOx conversion. Characterization of the catalysts prepared reveals that addition of cobalt (Co) and potassium (K) considerably increases the performance for NSC. Results also show that SrKMn0.8Co0.2O4 supported on BaO/Al2O3 has good NSC (209 μmol/gcatalyst) for the gas stream containing 500 ppm NO and 5 % O2 with N2 as carrier gas. For plasma reduction process, NOx conversion achieved with SrKMn0.8Co0.2O4/BaO/Al2O3 reaches 81 % with the applied voltage of 12 kV and frequency of 6 kHz in the absence of reducing agents. The results indicate that performance of plasma reduction process (81 %) is better than that of thermal reduction (64 %). Additionally, mixed gases including 1 % CO, 1 % H2 and 1 % CH4, and 2 % H2O(g) are simultaneously introduced into the system to investigate the effect on NSR with plasma system and results indicate that performance of NSR with plasma can be enhanced. Overall, the hybrid system is promising to be applied for removing NOx from gas streams. Graphical abstract ᅟ.

  12. DEVELOPMENT OF HIGH ACTIVITY, CATALYTIC SYSTEMS FOR NOx REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    This project was directed at an investigation of catalytic NO{sub x} reduction on carbonaceous supports at low temperatures. The experimental work was conducted primarily in a packed bed reactor/gas flow system that was constructed for this work. The analytical techniques employed were mass spectrometry, NO{sub x} chemiluminescence, and gas chromatography. The experimental plan was focused on steady-state reactivity experiments, followed by temperature programmed desorption (TPD) of surface intermediates, and also selected temperature-programmed reaction (TPR) experiments. Both uncatalyzed and catalyzed (potassium-promoted) phenolic resin char, were investigated as well as the catalytic effect of additional CO in the gas phase.

  13. Building Selectivity for NO Sensing in a NOx Mixture with Sonochemically Prepared CuO Structures

    Directory of Open Access Journals (Sweden)

    Max R. Mullen

    2015-12-01

    Full Text Available Several technologies are available for decreasing nitrogen oxide (NOx emissions from combustion sources, including selective catalytic reduction methods. In this process, ammonia reacts with nitric oxide (NO and nitrogen dioxide (NO2. As the stoichiometry of the two reactions is different, electrochemical sensor systems that can distinguish between NO and NO2 in a mixture of these two gases are of interest. Since NO and NO2 can be brought to equilibrium, depending on the temperature and the surfaces that they are in contact with, the detection of NO and NO2 independently is a difficult problem and has not been solved to date. In this study, we explore a high surface area sonochemically prepared CuO as the resistive sensing medium. CuO is a poor catalyst for NOx equilibration, and requires temperatures of 500 C to bring about equilibration. Thus, at 300 C, NO and NO2 retain their levels after interaction with CuO surface. In addition, NO adsorbs more strongly on the CuO over NO2. Using these two concepts, we can detect NO with minimal interference from NO2, if the latter gas concentration does not exceed 20% in a NOx mixture over a range of 100–800 ppm. Since this range constitutes most of the range of total NOx concentrations in diesel and other lean burn engines, this sensor should find application in selective detection of NO in this combustion application. A limitation of this sensor is the interference with CO, but with combustion in excess air, this problem should be alleviated.

  14. Experiment and mechanism investigation on advanced reburning for NOx reduction: influence of CO and temperature

    Science.gov (United States)

    Wang, Zhi-hua; Zhou, Jun-hu; Zhang, Yan-wei; Lu, Zhi-min; Fan, Jian-ren; Cen, Ke-fa

    2005-01-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C~1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures. PMID:15682503

  15. Gaseous ligand selectivity of the H-NOX sensor protein from Shewanella oneidensis and comparison to those of other bacterial H-NOXs and soluble guanylyl cyclase.

    Science.gov (United States)

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-Lim

    2017-09-01

    To delineate the commonalities and differences in gaseous ligand discrimination among the heme-based sensors with Heme Nitric oxide/OXygen binding protein (H-NOX) scaffold, the binding kinetic parameters for gaseous ligands NO, CO, and O2, including KD, kon, and koff, of Shewanella oneidensis H-NOX (So H-NOX) were characterized in detail in this study and compared to those of previously characterized H-NOXs from Clostridium botulinum (Cb H-NOX), Nostoc sp. (Ns H-NOX), Thermoanaerobacter tengcongensis (Tt H-NOX), Vibrio cholera (Vc H-NOX), and human soluble guanylyl cyclase (sGC), an H-NOX analogue. The KD(NO) and KD(CO) of each bacterial H-NOX or sGC follow the "sliding scale rule"; the affinities of the bacterial H-NOXs for NO and CO vary in a small range but stronger than those of sGC by at least two orders of magnitude. On the other hand, each bacterial H-NOX exhibits different characters in the stability of its 6c NO complex, reactivity with secondary NO, stability of oxyferrous heme and autoxidation to ferric heme. A facile access channel for gaseous ligands is also identified, implying that ligand access has only minimal effect on gaseous ligand selectivity of H-NOXs or sGC. This comparative study of the binding parameters of the bacterial H-NOXs and sGC provides a basis to guide future new structural and functional studies of each specific heme sensor with the H-NOX protein fold. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. E. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.; Ebeling, Ana C.; Maupin, Gary D.; Balmer, M Lou; Panov, Alexander G.; Peden, Charles HF; Tonkyn, Russell G.; Epping, Kathy; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David; Nunn, Steven; Davis, Patrick

    2001-11-19

    In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Our previous work has shown that a non-thermal plasma in combination with an appropriate catalyst can provide NOx emission reduction efficiency of 60-80% using a simulated diesel exhaust. Based on these levels of NOx reduction obtained in the lab, a simple model was developed in this program last year that allows for the estimation of the fuel economy penalty that would be incurred by operating a plasma/catalyst system. Results obtained from this model suggest that a 5% fuel economy penalty is achievable with the then current state-of-the-art catalyst materials and plasma reactor designs.

  17. Optimal ozone reduction policy design using adjoint-based NOx marginal damage information.

    Science.gov (United States)

    Mesbah, S Morteza; Hakami, Amir; Schott, Stephan

    2013-01-01

    Despite substantial reductions in nitrogen oxide (NOx) emissions in the United States, the success of emission control programs in optimal ozone reduction is disputable because they do not consider the spatial and temporal differences in health and environmental damages caused by NOx emissions. This shortcoming in the current U.S. NOx control policy is explored, and various methodologies for identifying optimal NOx emission control strategies are evaluated. The proposed approach combines an optimization platform with an adjoint (or backward) sensitivity analysis model and is able to examine the environmental performance of the current cap-and-trade policy and two damage-based emissions-differentiated policies. Using the proposed methodology, a 2007 case study of 218 U.S. electricity generation units participating in the NOx trading program is examined. The results indicate that inclusion of damage information can significantly enhance public health performance of an economic instrument. The net benefit under the policy that minimizes the social cost (i.e., health costs plus abatement costs) is six times larger than that of an exchange rate cap-and-trade policy.

  18. Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide

    NARCIS (Netherlands)

    Sedlmair, C.; Seshan, Kulathuiyer; Jentys, A.; Lercher, J.A.

    2002-01-01

    The interaction of sulfur dioxide with a commercial NOx storage-reduction catalyst (NSR) has been investigated using in situ IR and X-ray absorption spectroscopy. Two pathways of catalyst deactivation by SO2 were identified. Under lean conditions (exposure to SO2 and O2) at 350 °C the storage

  19. IR and UV gas absorption measurements during NOx reduction on an industrial natural gas fired power plant

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Jørgensen, L.

    2010-01-01

    NOx reduction of flue gas by plasma-generated ozone was investigated in pilot test experiments on an industrial power plant running on natural gas. Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx slightly below two. Fourier transform infrared and ultraviolet absorption...

  20. NOx reduction on ag electrochemical cells with a K-Pt-Al 2O3 adsorption layer

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    Ag electrochemical cells with andwithout aK-Pt-Al2O3 adsorption layer were tested forNOx reduction under oxygen-rich conditions. The effect of the addition of the adsorption layer on the electrochemical reduction of NOx was investigated by a conversion measurement, an impedance analysis and a mic...

  1. Analysis of the reaction conditions in the NOx reduction process by carbon with a view to achieve high NOx conversions. Residence time considerations

    Energy Technology Data Exchange (ETDEWEB)

    Agustin Bueno-Lopez; Jose Antonio Caballero; Avelina Garcia-Garcia [Universidad de Alicante, Alicante (Spain). Departamento de Quimica Inorganica

    2002-12-01

    In this work the activity of potassium-containing coal-pellets against NOx at 450{sup o}C was studied. The sample chosen presents high potassium content, 16.8% in wt, and was prepared from a humic acid+KOH mixture and a Spanish high volatile A bituminous coal. The effect of the NOx partial pressure, combined with that of the influence of the residence time as variables for the NOx reduction process were investigated in order to look for reaction conditions where high NOx conversions be reached and maintained during a long time. 100% of NOx conversion was reached and kept during a long time, employing a sample mass of 2 grams (residence time 1.8 s), regardless of the NOx partial pressure tested. A first reaction order, with respect to NOx partial pressure, was found from the fit of all the data, in agreement with the data reported in the literature. The rate constant estimated at the temperature of study was of 1.15 s{sup -1}. 13 refs., 5 figs., 1 tab.

  2. Traffic restrictions associated with the Sino-African summit: Reductions of NOx detected from space

    Science.gov (United States)

    Wang, Yuxuan; McElroy, Michael B.; Boersma, K. Folkert; Eskes, Henk J.; Veefkind, J. Pepijn

    2007-04-01

    Aggressive measures were instituted by the Beijing municipal authorities to restrict vehicular traffic in the Chinese capital during the recent Sino-African Summit. We show that reductions in associated emissions of NOx were detected by the Dutch-Finnish Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Interpretation of these data using a 3-dimensional chemical transport model indicates that emissions of NOx were reduced by 40% over the period of November 4 to 6, 2006, for which the restrictions were in place.

  3. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    Science.gov (United States)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  4. Kinetics and Mechanisms of NO(x) - Char Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.; Lilly, W.D.; Aarna, I.

    1997-09-01

    The emission of nitrogen oxides from combustion of coal remains a problem of considerable interest, whether the concern is with acid rain, stratospheric ozone chemistry, or greenhouse gases. Whereas earlier the concern was focused mainly on NO (as a primary combustion product) and to a lesser extent N0{sub 2} (since it is mainly a secondary product of combustion, e.g. see ref. 1), in recent years the emissions of N{sub 2}0 have also captured considerable attention, particularly in the context of fluidized bed combustion, in which the problem appears to be most acute. The research community has only recently begun to take solid hold on the N{sub 2}0 problem. This is in part because earlier estimates of the importance of N{sub 2}0 in combustion processes were clouded by artifacts in sampling which have now been resolved. This project is concerned with the mechanism of reduction of both NO and N{sub 2}0 by carbons. It was recognized some years ago that NO formed during fluidized bed coal combustion can be heterogeneously reduced in-situ by the carbonaceous solid intermediates of combustion. This has been recently supplemented by the knowledge that heterogeneous reaction with carbon can also play an important role in reducing emissions of N{sub 2}0{sub 2}, but that the NO-carbon reactions might also contribute to formation of N{sub 2}0{sub 2}. The precise role of carbon in N{sub 2}0 reduction and formation has yet to be established, since in one case the authors of a recent study were compelled to comment that the basic knowledge of N{sub 2}0 formation and reduction still has to be improved. The same can be said of the NO-carbon system. Interest in the NO- and N{sub 2}0-char reactions has been significant in connection with both combustor modeling, as well as in design of post-combustion NO{sub x} control strategies.

  5. Reduction of Fe(III)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions.

    Science.gov (United States)

    Zhou, Zuoming; Jing, Guohua; Zheng, Xiangjiao

    2013-03-01

    Biological reduction of Fe(III) to Fe(II) is a key step in nitrogen oxides (NOx) removal by the integrated chemical absorption-biological reduction method, which determines the concentration of Fe(II) in the scrubbing liquid. A new Fe(III)EDTA reduction strain, named as FD-3, was isolated from mixed cultures used in the integrated NOx removal process and identified as Klebsiella sp. by 16S rDNA sequence analysis. The reduction abilities of FD-3 and the influence of nitrogen-containing compounds (Fe(II)EDTA-NO, NO3(-) and NO2(-)) and sulfur-containing compounds (SO4(2-), SO3(2-)) on the Fe(III)EDTA reduction were investigated. The results indicated that strain FD-3 could reduce Fe(III)EDTA efficiently. NO3(-), NO2(-) and Fe(II)EDTA-NO inhibit the reduction of Fe(III)EDTA and could also serve as electron acceptor for strain FD-3. SO3(2-) inhibited Fe(III)EDTA reduction while SO4(2-) had no obviously effect on Fe(III)EDTA reduction. The relationship between cell growth and Fe(III)EDTA reduction could be described by the models based on Logistic equation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  7. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    Science.gov (United States)

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NOx emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NOx emissions during the study period, while energy efficiency and technology improvement factors offset total NOx emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NOx emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NOx emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    Science.gov (United States)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  9. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  10. Reduction of NOx Emission of a Diesel Engine with a Multiple Injection Pump by SCR Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Vít Marek

    2016-01-01

    Full Text Available This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.

  11. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  12. Pilot-scale studies of NOx reduction by activated high-sodium lignite chars: A demonstration of the CARBONOX process

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Benson, S.A.; Fan, L.S.; Laumb, J.D.; Olson, E.S.; Crocker, C.R.; Sharma, R.K.; Knutson, R.Z.; Rokanuzzaman, A.S.M.; Tibbets, J.E. [Ohio State University, Columbus, OH (US). Dept. of Chemical Engineering

    2004-09-01

    Pilot-scale experiments were carried out to quantify the extent of NOx reduction attained by activated lignite chars on simulated and lignite-coal-combustion derived flue gas. Lignite chars, obtained by devolatilizing high-sodium lignite coal in pure nitrogen, were activated by their reaction with a gas mixture consisting of steam and CO{sub 2} in nitrogen at 700-750{degree}C to yield a nitrogen BET surface area of 200-400 m{sup 2}/g. The effect of gaseous components such as N{sub 2}, CO{sub 2}, SO{sub 2}, and moisture on the extent of NOx reduction was qualitatively examined. NOx reduction exceeded 99% on simulated flue gas at 525-600{degree}C. The presence of SO{sub 2}, even at a concentration of 3600 ppm, did not have any detrimental effect on the extent of NOx reduction. Sodium-enhanced char attained {gt} 98% NOx reduction on actual flue gas at a relatively lower temperature of 480-560{degree}C.

  13. Selective Catalytic Reduction Study with Alternative Reducing Agents

    OpenAIRE

    Lourenco, AAD; Martins, CA; Lacava, PT; Ferreira, MA

    2013-01-01

    Diesel engine technology has been driven by increasingly stringent environmental legislation. To comply with these laws, emissions-control systems are being rapidly improved. Within this context, development of exhaust gas after-treatment systems undertakes a significant role. Among the techniques used is selective catalytic reduction (SCR), which converts nitrogen oxides (NOx) into diatomic nitrogen (N-2) and water (H2O). A reducing agent containing ammonia (NH3) is added to the flow and abs...

  14. Experiment and mechanism investigation on advanced reburning for NO(x) reduction: influence of CO and temperature.

    Science.gov (United States)

    Wang, Zhi-Hua; Zhou, Jun-Hu; Zhang, Yan-Wei; Lu, Zhi-Min; Fan, Jian-Ren; Cen, Ke-Fa

    2005-03-01

    Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were investigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15% approximately 25% reburn heat input, temperature range from 1100 degrees C to 1400 degrees C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 degrees C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 degrees C approximately 1100 degrees C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NO(x) Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.

  15. Numerical analysis of ammonia homogenization for selective catalytic reduction application.

    Science.gov (United States)

    Baleta, Jakov; Martinjak, Matija; Vujanović, Milan; Pachler, Klaus; Wang, Jin; Duić, Neven

    2017-12-01

    Selective catalytic reduction based on urea water solution as ammonia precursor is a promising method for the NOx abatement form exhaust gasses of mobile diesel engine units. It consists of injecting the urea-water solution in the hot flue gas stream and reaction of its products with the NOx over the catalyst surface. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NOx reductant, and isocyanic acid are generated. The uniformity of the ammonia before the catalyst as well as ammonia slip to the environment are important counteracting design requirements, optimization of which is crucial for development of efficient deNOx systems. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SCR process including chemical reactions taking part in the catalyst. First, mathematical models for description of SCR process are presented and afterwards, models are used on the 3D geometry of a real SCR reactor in order to predict ammonia generation, NOx reduction and resulting ammonia slip. Influence of the injection direction and droplet sizes was also investigated on the same geometry. The performed study indicates importance of droplet sizes on the SCR process and shows that counterflow injection is beneficial, especially in terms of minimizing harmful ammonia slip to environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Study on the Noise Reduction of Vehicle Exhaust NOX Spectra Based on Adaptive EEMD Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-01-01

    Full Text Available It becomes a key technology to measure the concentration of the vehicle exhaust components with the transmission spectra. But in the conventional methods for noise reduction and baseline correction, such as wavelet transform, derivative, interpolation, polynomial fitting, and so forth, the basic functions of these algorithms, the number of decomposition layers, and the way to reconstruct the signal have to be adjusted according to the characteristics of different components in the transmission spectra. The parameter settings of the algorithms above are not transcendental, so with them, it is difficult to achieve the best noise reduction effect for the vehicle exhaust spectra which are sharp and drastic in the waveform. In this paper, an adaptive ensemble empirical mode decomposition (EEMD denoising model based on a special normalized index optimization is proposed and used in the spectral noise reduction of vehicle exhaust NOX. It is shown with the experimental results that the method can effectively improve the accuracy of the spectral noise reduction and simplify the denoising process and its operation difficulty.

  17. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  18. Influence of calcium content of biomass-based materials on simultaneous NOx and SO{sub 2} reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sarma V. Pisupati; Sumeet Bhalla [Pennsylvania State University, University Park, PA (United States). Energy and Mineral Engineering Department

    2008-04-01

    Pyrolysis products of biomass (bio-oils) have been shown to cause a reduction in NOx emissions when used as reburn fuels in combustion systems. When these bio-oils are processed with lime, calcium is ion-exchanged and the product is called BioLime. BioLime, when introduced into a combustion chamber, pyrolyzes and produces volatile products that reduce NOx emissions through reburn mechanisms. Simultaneously, calcium reacts with SO{sub 2} to form calcium sulfate and thus reduces SO{sub 2} emissions. This paper reports the characterization of composition and pyrolysis behavior of two BioLime products and the influence of feedstock on pyrolysis products. Thermogravimetric analysis (TGA) and {sup 13}C-CP/MAS NMR techniques were used to study the composition of two biomass-based materials. The composition of the pyrolysis products of BioLime was determined in a laboratory scale flow reactor. The effect of BioLime composition on NOx and SO{sub 2} reduction performance was evaluated in a 146.5 kW pilot-scale, down fired combustor (DFC). The effect of pyrolysis gas composition on NOx reduction is discussed. The TGA weight loss curves of BioLime samples in an inert atmosphere showed two distinct peaks corresponding to the decomposition of light and heavy components of the BioLime and a third distinct peak corresponding to secondary thermal decomposition of char. The study also showed that BioLime sample with lower content of residual lignin derivatives and lower calcium content produced more volatile compounds upon pyrolysis in the combustor and achieved higher NOx reduction (15%). Higher yields of pyrolysis gases increased the NO reduction potential of BioLime through homogeneous gas phase reactions. Calcium in BioLime samples effectively reduced SO{sub 2} emissions (60-85%). 36 refs., 6 figs., 3 tabs.

  19. Extraction of NOx and Determination of Nitrate by Acid Reduction in ...

    African Journals Online (AJOL)

    Different methods are available for extracting NOx from different samples. A judicious combination of lead acetate, sodium hydroxide and magnesium chloride has been devised to enable extraction of NOx from different samples ensuring removal of potential interfering agents. The method provides over 95 per cent mean ...

  20. The longview diesel emission control system : emissions performance of a combined DPF and NOx reduction catalyst system

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, B.; Streichsbier, M. [Cleaire Advanced Emissions Controls, San Leandro, CA (United States)]|[Cummins Emissions Solutions, Memphis, TN (United States)

    2006-07-01

    Diesel engines operating in underground mines must be equipped with diesel particulate filters (DPFs) to control particulate matter (PM). Although wall flow filters offer the desired levels of PM/EC control, the use of precious metals as part of the regeneration strategy has an adverse impact on nitrogen dioxide (NO{sub 2}) formation. Therefore, the reductions in PM/EC are offset by increases in NO{sub 2}. This study presented a new system that offers the benefits of a passive regeneration system without the disadvantage of high NO{sub 2} formation. The Longview{sup R} system was initially developed for above ground mine facilities concerned with PM and ozone levels. The system combines HC-SCR with catalyzed DPF to reduce nitrogen oxides, particulate matter, carbon monoxide and hydrocarbons. HC-SCR refers to active hydrocarbon dosing upstream of a NOx reduction catalyst. This paper presented details of the system design features as well as emission performance test results. The impact of fuel sulfur level on emissions was also investigated at a Cummins test laboratory. The cycle averaged emissions from the Longview system using ULSD were a 40 per cent reduction in NOx; a 50 per cent reduction in NO{sub 2}; nearly a complete removal of CO; and, a 5 per cent increase in CO{sub 2}. It was determined that the system's fuel injection and NOx reduction catalysts play an important role in NO, NO{sub 2} and NOx emissions. The catalyzed PDF plays an important role in CO, HC and PM reductions. The Longview system is currently being tested in underground mining field trials. tabs., figs.

  1. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    restriction on NOx emissions from large two-stroke diesel engines on vessels operating in certain NOx Emission Control Areas. Exhaust Gas Recirculation (EGR) is one of the three technologies on the market that are able to reduce the NOx emission adequately for Tier III operation. EGR is well known from...... the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows......, that while large two-stroke engines with EGR perform well in steady state, fast engine load transients cause smoke formation due to the decreased oxygen availability. The aim of this thesis is to design a control system that enables the large two-stroke engines with EGR to meet the emission limits...

  2. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  3. Selective Reversible Absorption of the Industrial Off-Gas Components CO2 and NOx by Ionic Liquids

    DEFF Research Database (Denmark)

    Kaas-Larsen, Peter Kjartan; Thomassen, P.; Schill, Leonhard

    2016-01-01

    Ionic liquids are promising new materials for climate and pollution control by selective absorption of CO2 and NOx in industrial off-gases. In addition practical cleaning of industrial off gases seems to be attractive by use of ionic liquids distributed on the surface of porous, high surface area...... carriers in the form of so-called Supported Ionic Liquid Phase (SILP) materials. The potential of selected ionic liquids for absorption of CO2 and NOx are demonstrated and the possible interference of other gases influencing the stability and absorption capacity of the ionic liquids are investigated...

  4. The Use of Amine Reclaimer Wastes as a NOx Reduction Agent

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2013-01-01

    of thermo-gravimetric analyses provided important information on vaporization characteristics of amine reclaimer bottom wastes. The proposed methodology can lead to simultaneous energy and material resource recovery while primarily solving two environmental pollution problems, i.e. toxic ARW wastes...... generated in CCS, and emission of NOx a class of highly active greenhouse gases....

  5. NOx reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture

    DEFF Research Database (Denmark)

    Botheju, Deshai; Glarborg, Peter; Tokheim, Lars-Andre

    2012-01-01

    Amine reclaimer wastes (ARW) generated in CO2 capture processes demand suitable disposal means. Such wastes contain remaining amine, NH3 and other degradation compounds. This study investigated the potential of using ARW as a NOx reducing agent, under laboratory conditions in a flow reactor. A si...... to combustion processes, including cement industry kilns....

  6. Monitoring of Basic Parameters for Selective Catalytic Reduction System Used in an Agricultural Tractor

    Directory of Open Access Journals (Sweden)

    Antonín Skřivánek

    2014-01-01

    Full Text Available Presented paper describes monitoring of basic parameters for selective catalytic reduction (SCR system used in an agricultural tractor. SCR systems are used to reduce emissions of nitrogen oxides (NOx produced by combustion of fuel. The usage of SCR catalytic converters entails certain disadvantages in the use of reducing agent and the necessity of suitable operating conditions to achieve optimum efficiency of the catalytic converter. This paper aims to predict consumption of AdBlue depending on the temperature of SCR catalytic converter, which reflects the engine load and monitoring the effectiveness of SCR catalytic converter when operating a tractor engine with a maximum dose of fuel. To fulfill those aims, the measurements have been performed on the Case Puma 185 CVX agricultural tractor. As the measurement results indicate, the lowest NOx emissions correspond to high consumption of AdBlue. Other studies imply that the catalytic converter operates at optimal operating temperature and with the highest efficiency of NOx emission reduction. The effectiveness of NOx emission reduction is thus affected not only by quantity of injected reagent but also by catalytic converter thermal load. Further measurement results indicate that the lowest amount of emissions of NOx (and the highest efficiency rate is achieved by catalytic converter in a range in which the engine operates with the highest engine efficiency.

  7. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States); Wan, C.Z.; Rice, G.W.; Voss, K.E. [Engelhard Corp., Iselin, NJ (United States)

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  8. Discharge Plasma Treatment for ${NO}_x$ Reduction from Diesel Engine Exhaust: A Laboratory Investigation

    OpenAIRE

    Rajanikanth, BS; Srinivasan, AD; Ravi, V

    2005-01-01

    A detailed study on the removal of oxides of nitrogen $({NO}_x)$ with and without the presence of carbonaceous soot in a stationary diesel engine exhaust was carried out using pulsed electrical discharges/catalyst/adsorbent processes. The processes were separately studied first and then the cascaded processes namely plasma-catalyst and plasma-adsorbent were examined. To investigate the effect of carbonaceous soot on the plasma treatment process, the filtered and unfiltered exhaust was treated...

  9. Reduction in NO(x) emission trends over China: regional and seasonal variations.

    Science.gov (United States)

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Liu, Zhen

    2013-11-19

    We analyzed satellite observations of nitrogen dioxide (NO2) columns by the Ozone Monitoring Instrument (OMI) over China from 2005 to 2010 in order to estimate the top-down anthropogenic nitrogen oxides (NOx) emission trends. Since NOx emissions were affected by the economic slowdown in 2009, we removed one year of abnormal data in the analysis. The estimated average emission trend is 4.01 ± 1.39% yr(-1), which is slower than the trend of 5.8-10.8% yr(-1) reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trends. The average NOx emission trend of 3.47 ± 1.07% yr(-1) in warm season (June-September) is less than the trend of 5.03 ± 1.92% yr(-1) in cool season (October-May). The regional annual emission trends decrease from 4.76 ± 1.61% yr(-1) in North China Plain to 3.11 ± 0.98% yr(-1) in Yangtze River Delta and further down to -4.39 ± 1.81% yr(-1) in Pearl River Delta. The annual emission trends of the four largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are -0.76 ± 0.29%, 0.69 ± 0.27%, -4.46 ± 1.22%, and -7.18 ± 2.88% yr(-1), considerably lower than the regional averages or surrounding rural regions. These results appear to suggest that a number of factors, including emission control measures of thermal power plants, increased hydro-power usage, vehicle emission regulations, and closure or migration of high-emission industries, have significantly reduced or even reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions, but their effects are not as significant in other major cities or less economically developed regions.

  10. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  11. A study of composition and pyrolysis behavior of biomass-based materials for NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, S.; Pisupati, S.V.

    1999-07-01

    Pyrolysis products of biomass (bio-oils) have been shown to cause NO reduction when used as reburn fuel. A better understanding of composition of biomass will help in selection of feedstock that helps to enhance NO reduction potential of biomass-based materials. In the present work thermogravimetric analysis (TGA) and {sup 13}C-CP/MAS-NMR techniques were used to study the composition of different biomass-based materials. Samples are then flash pyrolyzed in a flow reactor to correlate the composition with the yield of volatiles, which are believed to cause reduction of NO through homogeneous gas phase reactions. The TGA weight loss curves of oils in inert atmosphere showed two distinct peaks between 160--400 C and 400--600 C, corresponding to the decomposition of cellulose, hemicellulose and lignin structures. The third distinct peak between 600--900 C corresponds to secondary thermal decomposition of char. The NMR spectra of the samples indicated that aryl-alkyl ether linkages of the lignin structure were extensively cleaved and carbonyl-containing species were increased. Study also showed that lower content of lignin, and higher amounts of cellulose and hemicellulose produced more volatile compounds upon pyrolysis.

  12. Application of reburn techniques for NOx reduction to cogeneration prime movers. Volume 1. Rich-burn engine application. Final report, June 1984 to July 1988

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.A.; Lips, H.; Kuby, W.C.

    1989-03-01

    The report describes the results of a design and experimental program to develop a post-combustion NOx control technique for gas-fired I.C. engines and gas turbines as applied to cogeneration. Emissions and performance data of both rich-burn and lean-burn engines were used to develop a conceptual reburner design to be placed between an engine and a waste heat boiler. This reburner design was then modeled for testing in a 100,000 Btu/hr subscale test facility. Parametric testing achieved 50 percent NOx reduction at a fuel fraction of 30 percent for rich-burn and mid-O2 range engine exhausts. Lean-burn NOx reductions were limited to 35 percent at the same fuel fraction. With the addition of a NiO catalyst in the rich zone, NOx reductions of up to 90 percent were achieved in the subscale testing. A full-scale system was designed, fabricated, and tested on a 150 kW Caterpillar engine. NOx reductions of 40 to 50 percent were achieved without a catalyst; reductions of up to 75 percent were achieved with a NiO catalyst.

  13. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.

    Science.gov (United States)

    Javed, M Tayyeb; Irfan, Naseem; Gibbs, B M

    2007-05-01

    Controlling nitrogen oxides (NO(x)) emissions is becoming a daunting technical challenge as increasingly strict emission limits are being imposed. The stringent regulations have prompted the innovation and characterization of NO(x) control technologies suitable for various applications. This paper presents a review on NO(x) removal techniques with particular reference to selective non-catalytic reduction (SNCR) technology. This includes initially how SNCR emerged as a technology along with a comparison with other relevant technologies. A review of various features related to selective non-catalytic gas phase injection of ammonia and ammonium salts (as reducing agent) is presented. The use of urea solution as a reducing agent and its performance in laboratory and pilot scale tests as well as large-scale applications is also discussed. Use of cyanuric acid as a potential reducing agent is also presented. The underlying reaction mechanisms have been reviewed for ammonia, urea and cyanuric acid for the explanation of various observations. Computational fluid dynamics (CFD) modeling as applied to SNCR is also presented. Subsequently the use of SNCR coupled with other in-combustion and post-combustion NO(x) control techniques is elaborated. Additionally, a two-stage NO(x) removal strategy to control un-reacted ammonia slip and to improve overall efficiency is discussed. At the end a summary is given which highlights various areas needing further research.

  14. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael [Univ. of Houston, TX (United States); Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States); Balakotaiah, Vemuri [Univ. of Houston, TX (United States); Luss, Dan [Univ. of Houston, TX (United States); Choi, Jae-Soon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dearth, Mark [Ford Motor Company, Dearborn, MI (United States); McCabe, Bob [Ford Motor Company, Dearborn, MI (United States); Theis, Joe [Ford Motor Company, Dearborn, MI (United States)

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO2) commonly referred to as NOx, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NOx} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NOx in the presence of excess O2. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NOx. Two catalytic technologies that have emerged as effective for NOx abatement are NOx storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NOx. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and

  15. Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction

    Science.gov (United States)

    Villalva Gomez, Rodrigo

    Experimental research on Lean Direct Injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar. Combustor performance

  16. Reduction of amine and biological antioxidants on NOx emissions powered by mango seed biodiesel

    Directory of Open Access Journals (Sweden)

    Velmurugan Kolanjiappan

    2017-01-01

    Full Text Available Este estudio analiza la influencia de la amina y algunos antioxidantes biológicos en la reducción de las emisiones de NOx en un motor diesel alimentado con B100 (100% volumen de éster metílico de semillas de mango y B20 (20% en volumen de semillas de mango y 80% en volumen de mezcla de combustible diesel, Se probaron tres antioxidantes de amina, p-fenilendiamina (PPD, etilendiamina (EDA y N, N’-difenil-1,4-fenilendiamina (DPPD y tres antioxidantes biológicos, diclorometano (DCM, acetato de alfa-tocoferol ( α -T y ácido L-ascórbico (L-asc.acid en un motor diesel kirloskar de cuatro tiempos refrigerado por agua, 5,9 KW de potencia. Hay cinco concentraciones usadas en la mezcla antioxidante de mezclas de biodiesel. Es decir, 0,005% -m, 0,010% -m, 0,025% -m, 0,05% -m y 0,1%, valores en los cuales %-m corresponde a la concentración molar empleada en la mezcla antioxidante. Los resultados muestran que la reducción consiguiente de NOx podría ser adquirida por la adhesión de aditivo antioxidante DPPD con la concentración de 0,025% de combustible B20 en un 15,4% y combustible B100 en un 39%. El aditivo DPPD aumentó las emisiones de CO más de 7,42% para el combustible B100 y 6,44% para el combustible B20. El DCM antioxidante biológico exhibe 0,235 g/kWh para combustible B100 y 0,297 g/kWh para combustible B20. Se ha comprobado que la emisión de humo ha aumentado con la adición de antioxidantes. Un ligero incremento en la eficiencia térmica del freno (0,91% se logra con la adición de antioxidantes a plena carga. Los resultados experimentales se comparan con el análisis de varianza y el resultado es simplemente el mismo que el de la experimentación.

  17. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  18. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  19. Influence of BaO in perovskite electrodes for the electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Johnsen, M.M.; Kammer Hansen, Kent

    2007-01-01

    Using the point electrode method, the effect of BaO on electrochemical reduction of NO (x) was investigated using the perovskites La0.85Sr0.15MnO3 (LSM15) and La0.85Sr0.15CoO3 (LSCo15) as electrode materials. The experiments were carried out in the temperature range 400-600 degrees C in 1% NO and...... favored oxygen reduction compared to reduction of nitric oxide. The LSCO15 electrode containing BaO reacted to form a K2NiF4-structure and was not tested further....

  20. Reduction of NOx emissions in regenerative fossil fuel fired glass furnaces: a review of literature and experimental studies

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Limpt, J.A.C. van

    2008-01-01

    The mechanism of nitrogen oxide (NOx) formation in combustion chambers of glass furnaces is briefly described. The most important parameters governing the NOx emissions of glass furnaces are discussed. Elimination or minimisation of conditions that cause the formation of nitrogen oxides in

  1. Observations of the Temperature Dependent Response of Ozone to NOx Reductions in an Urban Plume

    Energy Technology Data Exchange (ETDEWEB)

    LaFranchi, B W; Goldstein, A H; Cohen, R C

    2011-01-25

    Observations of NO{sub x} in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O{sub 3} decrease resulting from reductions in NO{sub x} emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NO{sub x} dependence for O{sub x} (O{sub x} = O{sub 3}+NO{sub 2}) production is strongly coupled with temperature, suggesting that temperature dependent biogenic VOC emissions can drive O{sub x} production between NO{sub x}-limited and NO{sub x}-suppressed regimes. As a result, NO{sub x} reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O{sub 3} standard (90 ppb) in the region have been decreasing linearly with decreases in NO{sub x} (at a given temperature) and predict that reductions of NO{sub x} concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 hour standard in the region. If current trends continue, a 30% decrease in NO{sub x} is expected by 2012, and an end to violations of the 1 hour standard in the Sacramento region appears to be imminent.

  2. Synthesis of Pt/K2CO3/MgAlOx-reduced graphene oxide hybrids as promising NOx storage-reduction catalysts with superior catalytic performance

    Science.gov (United States)

    Mei, Xueyi; Yan, Qinghua; Lu, Peng; Wang, Junya; Cui, Yuhan; Nie, Yu; Umar, Ahmad; Wang, Qiang

    2017-02-01

    Pt/K2CO3/MgAlOx-reduced graphene oxide (Pt/K/MgAlOx-rGO) hybrids were synthesized, characterized and tested as a promising NOx storage and reduction (NSR) catalyst. Mg-Al layered double hydroxides (LDHs) were grown on rGO via in situ hydrothermal crystallization. The structure and morphology of samples were thoroughly characterized using various techniques. Isothermal NOx adsorption tests indicated that MgAlOx-rGO hybrid exhibited better NOx trapping performance than MgAlOx, from 0.44 to 0.61 mmol · g-1, which can be attributed to the enhanced particle dispersion and stabilization. In addition, a series of MgAlOx-rGO loaded with 2 wt% Pt and different loadings (5, 10, 15, and 20 wt%) of K2CO3 (denoted as Pt/K/MgAlOx-rGO) were obtained by sequential impregnation. The influence of 5% H2O on the NOx storage capacity of MgAlOx-rGO loaded with 2 wt% Pt and 10% K2CO3 (2Pt/10 K/MgAlOx-rGO) catalyst was also evaluated. In all, the 2Pt/10 K/MgAlOx-rGO catalyst not only exhibited high thermal stability and NOx storage capacity of 1.12 mmol · g-1, but also possessed excellent H2O resistance and lean-rich cycling performance, with an overall 78.4% of NOx removal. This work provided a new scheme for the preparation of highly dispersed MgAlOx-rGO hybrid based NSR catalysts.

  3. First principle study of selective catalytic nitrogen oxide reduction over copper-exchanged zeolites

    Science.gov (United States)

    Sun, Donghai

    Cu-ZXM5 is as promising catalyst candidate for mobile source (auto truck) NOX emission control. The present work studies this phenomenon from different perspectives. Firstly, a methodology is developed to validate the proposed NO decomposition mechanism with a kinetic Reactor model. The Reactor model involves a plug flow reactor that simulates forty-two elementary reactions. The simulation operates at moderate temperatures (300-1000 K) and the results are compared with micro-reactor experimental results. Secondly, gas phase reaction of NO with NH3 in the thermal deNOX process is studied to reveal origins of ammonia's selectivity for NO over O2. The gas phase study does electronic comparison of the competing reactions of NH3 radical with NO and O2 respectively. NH3 selectivity lies in strongly bound H2NNO adduct that readily rearranges and decompose to N2 and H2O. The pronounced discrimination of NH3 against reaction with O2 is explored through comparison of the electronic structures of the H2NNO and H2NOO radical adducts and provides insight into the selectivity of NH3 in the surface reactions. Thirdly, thermal chemistry of selective catalytic reduction (SCR) of NOX with ammonia over Cu-exchanged zeolites is investigated with density functional theory (DFT). The catalytic reaction pathways are mapped out and compared with those in the gas phase reactions, which reveals that the major activation barriers are lowered in the catalytic reactions.

  4. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems

    Science.gov (United States)

    Guo, Jiadong; Ge, Yunshan; Hao, Lijun; Tan, Jianwei; Li, Jiaqiang; Feng, Xiangyu

    2014-12-01

    In this study, emissions from 13 buses operated in Beijing, including two Euro-III diesel buses, four Euro-IV diesel buses, three Euro-V diesel buses and four Euro-V CNG buses, were characterized in real world conditions. All of the buses tested were fitted with selective catalytic reduction (SCR) systems except for the Euro-III diesel buses. A SEMTECH-DS was used for testing the gaseous pollutants, and an electric low pressure impactor (ELPI) was used for measuring of particle numbers and size distributions. A comparison was made based on emission performance of these buses by employing the VSP approach and fuel- based emissions factors. Diesel buses emitted less CO and THC but more NOx and PM pollutants than CNG buses. The NOx reduction efficiencies of the SCR systems for CNG buses were higher because of the high exhaust temperature and high NO2/NOx ratio, whereas the efficiencies for diesel buses were lower. This resulted in extremely low NOx emissions from CNG buses, but the high NO2/NOx ratio needs further study. Failures of urea injection in the SCR systems were detected in this research, which resulted in very high NOx emissions. The CNG buses also emitted smaller numbers of particles and less particle mass with the presence of oxidation catalysts. Diesel buses satisfying the Euro-V standard performed better than Euro-IV and Euro-III diesel buses in terms of emission performance, except for more nuclei mode particles. Most of time, the Euro-IV diesel buses show no advantages in CO and NOx emissions compared with the Euro-III diesel buses.

  5. C2238 ANP gene variant promotes increased platelet aggregation through the activation of Nox2 and the reduction of cAMP.

    Science.gov (United States)

    Carnevale, Roberto; Pignatelli, Pasquale; Frati, Giacomo; Nocella, Cristina; Stanzione, Rosita; Pastori, Daniele; Marchitti, Simona; Valenti, Valentina; Santulli, Maria; Barbato, Emanuele; Strisciuglio, Teresa; Schirone, Leonardo; Vecchione, Carmine; Violi, Francesco; Volpe, Massimo; Rubattu, Speranza; Sciarretta, Sebastiano

    2017-06-19

    Subjects carrying the C2238 variant of the atrial natriuretic peptide (ANP) gene have a higher occurrence of stroke and acute coronary syndrome, suggesting an increased predisposition to acute thrombotic events in these subjects. We evaluated for the first time the direct effects of mutant ANP (C2238/αANP) on platelet activation in vitro and in human subjects. In vitro, platelets were incubated with no peptide, with T2238/αANP (WT) or with C2238/αANP at different concentrations. C2238/αANP (10 -10 M) induced higher collagen-induced platelet aggregation with respect to both control without ANP and T2238/αANP. This effect was even stronger at a higher concentration (10 -6 M). Mechanistically, C2238/αANP significantly lowered platelet cAMP levels, increased ROS production and activated Nox2, with respect to both control and T2238/αANP. Forskolin, a cAMP activator, and sNOX2-tat, a Nox2 inhibitor, significantly reduced the pro-aggregant effects of C2238/αANP. In vivo, we found that platelet aggregation resulted to be higher in patients with atrial fibrillation carrying the C2238 ANP gene variant with respect to non-carriers. In conclusions, C2238/αANP promotes platelet aggregation through the activation of Nox2 and the reduction of cAMP.

  6. Characterization of a process for the in-furnace reduction of NOx, SO2, and HCl by carboxylic salts of calcium

    OpenAIRE

    Nimmo, W.; Patsias, A.A.; Hall, W.J.

    2005-01-01

    Calcium magnesium acetate has been assessed as an agent for the reduction of NOx, SO2, and HCl, at the pilot scale, in a down-fired combustor operating at 80 kWth. In addition to this, the chemical and physical processes that occur during heating have been investigated. Benchmarking of calcium magnesium acetate with a suite of five other carboxylic salts (calcium magnesium acetate, calcium propionate, calcium acetate, calcium benzoate, magnesium acetate, and calcium formate) has been performe...

  7. Selective catalyst reduction light-off strategy

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  8. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  9. Reducing diesel NOx and PM emissions of diesel buses and trucks.

    Science.gov (United States)

    2008-07-01

    The objective of the present investigation was development of a high efficiency : selective catalytic reduction (SCR) system for reducing diesel nitrogen oxides (NOx) and : particulate matters of diesel trucks. The investigation was divided into two ...

  10. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system...... adsorbed to fly-ash or in the effluent of the acidic scrubber was quantified from the stoichiometric reaction of NOx and ammonia assuming no other reaction products was formed. Of the ammonia slip, 37% was associated with the fly-ash and 63% was in the effluent of the acidic scrubber. Based on NOx......-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number...

  11. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  12. Selecting the best defect reduction methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hinckley, C.M. [Sandia National Labs., Albuquerque, NM (United States); Barkan, P. [Stanford Univ., CA (United States)

    1994-04-01

    Defect rates less than 10 parts per million, unimaginable a few years ago, have become the standard of world-class quality. To reduce defects, companies are aggressively implementing various quality methodologies, such as Statistical Quality Control Motorola`s Six Sigma, or Shingo`s poka-yok. Although each quality methodology reduces defects, selection has been based on an intuitive sense without understanding their relative effectiveness in each application. A missing link in developing superior defect reduction strategies has been a lack of a general defect model that clarifies the unique focus of each method. Toward the goal of efficient defect reduction, we have developed an event tree which addresses a broad spectrum of quality factors and two defect sources, namely, error and variation. The Quality Control Tree (QCT) predictions are more consistent with production experience than obtained by the other methodologies considered independently. The QCT demonstrates that world-class defect rates cannot be achieved through focusing on a single defect source or quality control factor, a common weakness of many methodologies. We have shown that the most efficient defect reduction strategy depend on the relative strengths and weaknesses of each organization. The QCT can help each organization identify the most promising defect reduction opportunities for achieving its goals.

  13. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  14. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen......The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant....

  15. Enhancement of NOx removal performance for (La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NOx storage/reduction adsorption layers

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    This study investigated the effect of adding a NOx adsorption layer to the cathode of an electrochemical cell on the removal of NOx from gaseous mixtures. The cathode was a composite of (La0.85Sr0.15)0.99MnO3 (LSM15) and Ce0.9Gd0.1O1.95 (CGO10). Two different kinds of adsorption layers, K–Pt–Al2O...... reaction path for NOx reduction. A stronger capability for oxidizing NO and/or trapping NOx under the test conditions may have contributed to the superior performance of the K–Pt–Al2O3 adsorption layer relative to the Ba–Pt–Al2O3 layer. © 2012 Elsevier Ltd. All rights reserved....

  16. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    Science.gov (United States)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  17. Consideration of the Role of Plasma in a Plasma-Coupled Selective Catalytic Reduction of Nitrogen Oxides with a Hydrocarbon Reducing Agent

    Directory of Open Access Journals (Sweden)

    Byeong Ju Lee

    2017-10-01

    Full Text Available The purpose of this study is to explain how plasma improves the performance of selective catalytic reduction (SCR of nitrogen oxides (NOx with a hydrocarbon reducing agent. In the plasma-coupled SCR process, NOx reduction was performed with n-heptane as a reducing agent over Ag/γ-Al2O3 as a catalyst. We found that the plasma decomposes n-heptane into several oxygen-containing products such as acetaldehyde, propionaldehyde and butyraldehyde, which are more reactive than the parent molecule n-heptane in the SCR process. Separate sets of experiments using acetaldehyde, propionaldehyde and butyraldehyde, one by one, as a reductant in the absence of plasma, have clearly shown that the presence of these partially oxidized compounds greatly enhanced the NOx conversion. The higher the discharge voltage, the more the amounts of such partially oxidized products. The oxidative species produced by the plasma easily converted NO into NO2, but the increase of the NO2 fraction was found to decrease the NOx conversion. Consequently, it can be concluded that the main role of plasma in the SCR process is to produce partially oxidized compounds (aldehydes, having better reducing power. The catalyst-alone NOx removal efficiency with n-heptane at 250 °C was measured to be less than 8%, but it increased to 99% in the presence of acetaldehyde at the same temperature. The NOx removal efficiency with the aldehyde reducing agent was higher as the number of carbons in the aldehyde was more; for example, the NOx removal efficiencies at 200 °C with butyraldehyde, propionaldehyde and acetaldehyde were measured to be 83.5%, 58.0% and 61.5%, respectively, which were far above the value (3% obtained with n-heptane.

  18. Oxygen Vacancies in Reduced Rh/ and Pt/Ceria for Highly Selective and Reactive Reduction of NO into N2 in excess of O2

    NARCIS (Netherlands)

    Wang, Yixiao; Oord, Ramon; Van Den Berg, Daniël; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Makkee, Michiel

    2017-01-01

    Currently commercial NOx removal (DeNOx) abatement systems for lean-burn engines exceed regulation limits on the road for NOx emissions. Commercial DeNOx catalysts exhibit poor performance in the selective conversion of NO to N2, especially at high temperature and high gas hourly space velocities

  19. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pingen [Tennessee Technological University (TTU); Lin, Qinghua [Tennessee Technological University (TTU); Prikhodko, Vitaly Y. [ORNL

    2017-10-01

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuel penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.

  20. A Simulation Study of Effect of Mn-Ce/γ-Al2O3 on NOx Storage and Reduction over Pt-Ce-Ba/γ-Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Lili Lei

    2016-01-01

    Full Text Available A series of Pt-Ce-Ba/γ-Al2O3 and Mn-Ce/γ-Al2O3 catalysts were synthesized by a sol-gel method and the samples were characterized by XRD, SEM, and EDS. The effect of Mn-Ce/γ-Al2O3 on the storage and reduction of NOx over Pt-Ce-Ba/γ-Al2O3 catalysts was studied in a fix-bed reactor with simulation gases NO, O2, and N2. The results indicated that NO oxidation to NO2 was reduced with the increase of inlet NO concentration, which was up to 83% when the concentration of NO was 500 ppm but reduced to 76% with the concentration of NO increasing to 1000 ppm. Comparing with the Pt-Ce-Ba/γ-Al2O3 catalysts, the rate of NOx storage and reduction was remarkably increased over Pt-Ce-Ba/γ-Al2O3 combined with Mn-Ce/γ-Al2O3 catalysts. However, the reductant used for NOx reduction reaction over Pt-Ce-Ba/γ-Al2O3 catalysts was consumed under the treatment of Mn-Ce/γ-Al2O3 catalyst, which caused the NOx conversion to obviously drop, but the rate of NOx absorption declined slightly.

  1. A fuzzy logic urea dosage controller design for two-cell selective catalytic reduction systems.

    Science.gov (United States)

    You, Kun; Wei, Lijiang; Jiang, Kai

    2017-12-22

    Diesel engines have dominated in the heavy-duty vehicular and marine power source. However, the induced air pollution is a big problem. As people's awareness of environmental protection increasing, the emission regulations of diesel-engine are becoming more stringent. In order to achieve the emission regulations, the after-treatment system is a necessary choice. Specifically, the selective catalytic reduction (SCR) system has been widely applied to reduce the NOX emissions of diesel engine. Different from single-cell SCR systems, the two-cell systems have various benefits from the modeling and control perspective. In this paper, the urea dosage controller design for two-cell SCR systems was investigated. Firstly, the two-cell SCR modeling was introduced. Based on the developed model, the design procedure for the fuzzy logic urea dosage controller was well addressed. Secondly, simulations and comparisons were employed via an experimental verification of the whole vehicle simulator. And the results showed that the designed controller simultaneously achieved high NOX reduction rate and low tail-pipe ammonia slip. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Modeling Deactivation of Catalysts for Selective Catalytic Reduction of NOx by KCl Aerosols

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Castellino, Francesco; Jensen, Anker Degn

    2017-01-01

    A detailed model for the deactivation of a V2O5–WO3/TiO2-based SCR monolith catalyst by potassium poisoning has been developed and validated. The model accounts for deposition of KCl aerosol particles present in the flue gas on the external catalyst surface, the reaction of the deposited particles...... deactivation rate of a 3 wt % V2O5-7 wt % WO3/TiO2 monolith catalyst, exposed to a KCl aerosol at 350 °C for about 1000 h, as well as the resulting potassium-to-vanadium molar ratios in the catalyst wall. Simulations show that the particle deposition rate, as well as the deactivation rate, decreases...

  3. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  4. N+2 Advanced Low NOx Combustor Technology Final Report

    Science.gov (United States)

    Herbon, John; Aicholtz, John; Hsieh, Shih-Yang; Viars, Philip; Birmaher, Shai; Brown, Dan; Patel, Nayan; Carper, Doug; Cooper, Clay; Fitzgerald, Russell

    2017-01-01

    In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.

  5. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  6. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  7. Selective catalytic reduction of NO{sub 2} with urea in nanocrystalline NaY zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Gonghu Li; Conrad A. Jones; Vicki H. Grassian; Sarah C. Larsen [University of Iowa, Iowa City, IA (United States). Department of Chemistry

    2005-09-10

    In this study, the selective catalytic reduction (SCR) of NO{sub 2} with urea in nanocrystalline NaY zeolite was investigated with in situ transmission Fourier transform infrared (FTIR) spectroscopy and solid-state nuclear magnetic resonance spectroscopy. At T=473 K, the reaction rate for urea-SCR of NO{sub 2} in nanocrystalline NaY zeolite was significantly greater than that in commercial NaY zeolite with a larger crystal size. In addition, a dramatic decrease in the concentration of undesirable surface species, including biuret and cyanuric acid, was observed in nanocrystalline NaY compared with commercial NaY after urea-SCR of NO{sub 2} at T=473 K. The increased reactivity for urea-SCR of NO{sub 2} was attributed to silanol groups and extra-framework aluminum species located on the external surface of nanocrystalline NaY. Specifically, NOx storage as nitrate and nitrite on the internal zeolite surface was coupled to reactive deNOx sites on the external surface. Isotopic labeling combined with IR analysis suggest that NN bond formation involved both an N-atom originating from NO{sub 2} and an N-atom originating from urea. This is the first clear example demonstrating that the increased external surface area (up to 40% of total surface area) of nanocrystalline zeolites can be used as a reactive surface with unique active sites for catalysis.

  8. AMMONIA-FREE NOx CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2006-06-01

    This report describes a novel NOx control system that has the potential to drastically reduce cost, and enhance performance, operation and safety of power plant NOx control. The new system optimizes the burner and the furnace to achieve very low NOx levels and to provide an adequate amount of CO, and uses the CO for reducing NO both in-furnace and over a downstream AFSCR (ammonia-free selective catalytic reduction) reactor. The AF-SCR combines the advantages of the highly successful SCR technology for power plants and the TWC (three-way catalytic converter) widely used on automobiles. Like the SCR, it works in oxidizing environment of combustion flue gas and uses only base metal catalysts. Like the TWC, the AF-SCR removes NO and excess CO simultaneously without using any external reagent, such as ammonia. This new process has been studied in a development program jointed funded by the US Department of Energy and Foster Wheeler. The report outlines the experimental catalyst work performed on a bench-scale reactor, including test procedure, operating conditions, and results of various catalyst formulations. Several candidate catalysts, prepared with readily available transition metal oxides and common substrate materials, have shown over 80-90% removal for both NO and CO in oxidizing gas mixtures and at elevated temperatures. A detailed combustion study of a 400 MWe coal-fired boiler, applying computational fluid dynamics techniques to model boiler and burner design, has been carried out to investigate ways to optimize the combustion process for the lowest NOx formation and optimum CO/NO ratios. Results of this boiler and burner optimization work are reported. The paper further discusses catalyst scale-up considerations and the conceptual design of a 400 MWe size AF-SCR reactor, as well as economics analysis indicating large cost savings of the ammonia-free NOx control process over the current SCR technology.

  9. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    Science.gov (United States)

    Viswanathan, Karthickeyan

    2018-03-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  10. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  11. Sulfate Promoted Zirconia as Promising Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Kustov, Arkadii; Christensen, Claus H.

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant...

  12. Interference Reduction Selected Measurement Signals of Ships

    Directory of Open Access Journals (Sweden)

    Jan Monieta

    2014-08-01

    Full Text Available The paper presents problems encountered at the signal processing of mechanical values with electric methods. Depending on the measured quantity, the location of the sensors and the analysis frequency band, they are differently interferences. The article presents the results of applying the analysis of parameters of working and accompanying process marine medium speed reciprocating engines in the time, amplitude, frequency domain and wavelet analysis to select a reasonable method. The applied signal acquisition program allows you to perform some analysis of signals in different areas and the transformation of the data to other programs. The ways of interference reducing at various stages of their occurrence and analysis are presented. [b]Keywords[/b]: electrical signals, domain analysis, measurement interference

  13. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  14. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  15. The Effect of Carbonaceous Reductant Selection on Chromite Pre-reduction

    Science.gov (United States)

    Kleynhans, E. L. J.; Beukes, J. P.; Van Zyl, P. G.; Bunt, J. R.; Nkosi, N. S. B.; Venter, M.

    2017-04-01

    Ferrochrome (FeCr) production is an energy-intensive process. Currently, the pelletized chromite pre-reduction process, also referred to as solid-state reduction of chromite, is most likely the FeCr production process with the lowest specific electricity consumption, i.e., MWh/t FeCr produced. In this study, the effects of carbonaceous reductant selection on chromite pre-reduction and cured pellet strength were investigated. Multiple linear regression analysis was employed to evaluate the effect of reductant characteristics on the aforementioned two parameters. This yielded mathematical solutions that can be used by FeCr producers to select reductants more optimally in future. Additionally, the results indicated that hydrogen (H)- (24 pct) and volatile content (45.8 pct) were the most significant contributors for predicting variance in pre-reduction and compressive strength, respectively. The role of H within this context is postulated to be linked to the ability of a reductant to release H that can induce reduction. Therefore, contrary to the current operational selection criteria, the authors believe that thermally untreated reductants ( e.g., anthracite, as opposed to coke or char), with volatile contents close to the currently applied specification (to ensure pellet strength), would be optimal, since it would maximize H content that would enhance pre-reduction.

  16. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  17. Chemically adjusting plasma temperature, energy, and reactivity (CAPTEAR) method using NOx and combustion for selective synthesis of Sc3N@C80 metallic nitride fullerenes.

    Science.gov (United States)

    Stevenson, Steven; Thompson, M Corey; Coumbe, H Louie; Mackey, Mary A; Coumbe, Curtis E; Phillips, J Paige

    2007-12-26

    Goals are (1) to selectively synthesize metallic nitride fullerenes (MNFs) in lieu of empty-cage fullerenes (e.g., C60, C70) without compromising MNF yield and (2) to test our hypothesis that MNFs possess a different set of optimal formation parameters than empty-cage fullerenes. In this work, we introduce a novel approach for the selective synthesis of metallic nitride fullerenes. This new method is "Chemically Adjusting Plasma Temperature, Energy, and Reactivity" (CAPTEAR). The CAPTEAR approach with copper nitrate hydrate uses NOx vapor from NOx generating solid reagents, air, and combustion to "tune" the temperature, energy, and reactivity of the plasma environment. The extent of temperature, energy, and reactive environment is stoichiometrically varied until optimal conditions for selective MNF synthesis are achieved. Analysis of soot extracts indicate that percentages of C60 and Sc3N@C80 are inversely related, whereas the percentages of C70 and higher empty-cage C2n fullerenes are largely unaffected. Hence, there may be a "competitive link" in the formation and mechanism of C60 and Sc3N@C80. Using this CAPTEAR method, purified MNFs (96% Sc3N@C80, 12 mg) have been obtained in soot extracts without a significant penalty in milligram yield when compared to control soot extracts (4% Sc3N@C80, 13 mg of Sc3N@C80). The CAPTEAR process with Cu(NO3)2.2.5H2O uses an exothermic nitrate moiety to suppress empty-cage fullerene formation, whereas Cu functions as a catalyst additive to offset the reactive plasma environment and boost the Sc3N@C80 MNF production.

  18. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials.

    Science.gov (United States)

    Beale, A M; Gao, F; Lezcano-Gonzalez, I; Peden, C H F; Szanyi, J

    2015-10-21

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3-SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptionally high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ∼5 years that led to the introduction of these catalysts into practical applications. This review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetic studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that still need to be addressed in automotive exhaust control catalysis.

  19. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  20. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  1. Commercial introduction of the Advanced NOxTECH system

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, B.C. [NOxTECH, Inc., Irvine, CA (United States)

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  2. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  3. NOx Solutions for Biodiesel: Final Report; Report 6 in a Series of 6

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Alvarez, J. R.; Graboski, M. S.

    2003-02-01

    A number of studies have shown substantial particulate matter (PM) reductions for biodiesel, but also a significant increase in nitrogen oxides (NOx) emissions. This study examines a number of approaches for NOx reduction from biodiesel.

  4. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    Science.gov (United States)

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO2 reduction. In order to achieve high selectivity for CO2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...

  6. Reduction of NO{sub x} from a pellet burner - a parametric study; Reduktion av NOx fraan en pelletsbraennare - en parameterstudie

    Energy Technology Data Exchange (ETDEWEB)

    Eskilsson, David; Roennbaeck, Marie; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Leckner, Bo [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    2000-05-01

    NO{sub x} emissions from small-scale combustion of pellets derive mainly from the fuel nitrogen. A conversion from combustion of oil to pellets will probably lead to increasing NO{sub x}-emissions. Today, pellets are produced mainly from sawdust and wood shavings which consist of pure wood with a low nitrogen content. The expected increase in pellet utilisation will probably lead to that other raw materials with higher nitrogen content will be used. This means that NOx-emissions from small-scale BAKE combustion of pellets can increase dramatically if not 'low-NO{sub x} burners' are developed. This report can be used as a support in the development of new design and automatic control strategies for pellet burners. NH{sub 3} and HCN dominate the nitrogen compounds in the volatiles leaving the pellet during the devolatilisation. The fuel properties, the residence time and the devolatilisation conditions affect the ratio between these two compounds. The transformation of NH{sub 3} to N{sub 2} takes place through a short and relatively uncomplicated reaction path while the reduction of HCN has a much more complex reaction path with a slower chemical kinetics which leads to longer reaction times. The optimal stoichiometry depends on the residence time, mixing and the composition of the devolatilisation gas in the primary zone. The objective with this study has been to, with a modified pellet burner, minimise NOx in practical experiments with a small literature study as background. In the experiments reported in this project, the performance of a modified pellet burner and the emissions have been studied while the ratio between primary- and secondary air and the addition of primary air have been varied. During the experiments, the air flow, the different emissions, the boiler effect and the temperature in the burner have been measured continuously. A few parameters have been identified as crucial for the NO{sub x}-emissions: Addition of primary air: The primary

  7. SELECTION AND PRELIMINARY EVALUATION OF ALTERNATIVE REDUCTANTS FOR SRAT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M.; Pickenheim, B.; Peeler, D.

    2009-06-30

    Defense Waste Processing Facility - Engineering (DWPF-E) has requested the Savannah River National Laboratory (SRNL) to perform scoping evaluations of alternative flowsheets with the primary focus on alternatives to formic acid during Chemical Process Cell (CPC) processing. The reductants shown below were selected for testing during the evaluation of alternative reductants for Sludge Receipt and Adjustment Tank (SRAT) processing. The reductants fall into two general categories: reducing acids and non-acidic reducing agents. Reducing acids were selected as direct replacements for formic acid to reduce mercury in the SRAT, to acidify the sludge, and to balance the melter REDuction/OXidation potential (REDOX). Non-acidic reductants were selected as melter reductants and would not be able to reduce mercury in the SRAT. Sugar was not tested during this scoping evaluation as previous work has already been conducted on the use of sugar with DWPF feeds. Based on the testing performed, the only viable short-term path to mitigating hydrogen generation in the CPC is replacement of formic acid with a mixture of glycolic and formic acids. An experiment using glycolic acid blended with formic on an 80:20 molar basis was able to reduce mercury, while also targeting a predicted REDuction/OXidation (REDOX) of 0.2 expressed as Fe{sup 2+}/{Sigma}Fe. Based on this result, SRNL recommends performing a complete CPC demonstration of the glycolic/formic acid flowsheet followed by a design basis development and documentation. Of the options tested recently and in the past, nitric/glycolic/formic blended acids has the potential for near term implementation in the existing CPC equipment providing rapid throughput improvement. Use of a non-acidic reductant is recommended only if the processing constraints to remove mercury and acidify the sludge acidification are eliminated. The non-acidic reductants (e.g. sugar) will not reduce mercury during CPC processing and sludge acidification would

  8. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 degrees C: the SCR mechanism.

    Science.gov (United States)

    Zeng, Zheng; Lu, Pei; Li, Caiting; Zeng, Guangming; Jiang, Xiao; Zhai, Yunbo; Fan, Xiaopeng

    2012-06-01

    Selective catalytic reduction (SCR) of NO by urea loaded on rayon-based activated carbon fibre (ACF) and CeO2/ACF (CA) was studied at ambient temperature (30 degrees C) to establish a basic scheme for its reduction. Nitric oxide was found to be reduced to N2 with urea deposited on the ACF and CA. When oxygen was present, the greater the amount of loaded urea (20-60%), the greater the NO(x) conversions, which were between 72.03% and 77.30%, whereas the NO(x) conversions were about 50% when oxygen was absent. Moreover, when the urea was loaded on CA, a catalyst containing 40% urea/ACF loaded with 10% CeO2 (UCA4) could yield a NO(x) conversion of about 80% for 24.5 h. Based on the experimental results, the catalytic mechanisms of SCR with and without oxygen are discussed. The enhancing effect of oxygen resulted from the oxidation of NO to NO2, and urea was the main reducing agent in the SCR of loaded catalysts. ACF-C was the catalytic centre in the SCR of NO of ACF, while CeO2 of urea-loaded CA was the catalytic centre.

  9. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  10. On the selection of dimension reduction techniques for scientific applications

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Y J; Kamath, C

    2012-02-17

    Many dimension reduction methods have been proposed to discover the intrinsic, lower dimensional structure of a high-dimensional dataset. However, determining critical features in datasets that consist of a large number of features is still a challenge. In this paper, through a series of carefully designed experiments on real-world datasets, we investigate the performance of different dimension reduction techniques, ranging from feature subset selection to methods that transform the features into a lower dimensional space. We also discuss methods that calculate the intrinsic dimensionality of a dataset in order to understand the reduced dimension. Using several evaluation strategies, we show how these different methods can provide useful insights into the data. These comparisons enable us to provide guidance to a user on the selection of a technique for their dataset.

  11. Selective reduction in multifetal pregnancies: technical and psychological aspects.

    Science.gov (United States)

    Vauthier-Brouzes, D; Lefebvre, G

    1992-05-01

    To evaluate efficiency and safety of a very early transvaginal selective reduction procedure in multifetal pregnancies. Prospective study. Obstetric and Gynecology Department, University of Paris VI. Twenty-two patients with multifetal pregnancies: 14 triplets, 8 quadruplets, and 1 quintuplet. Selective embryonic reduction was performed at 7 weeks of amenorrhea under general anesthesia by transvaginal embryo puncture and aspiration. Two embryos were left in place. Pregnancy outcome (immediate or delayed complication, term of delivery, newborns) and psychological impact. No complication occurred. The 22 patients now have delivered at 36.5 weeks of amenorrhea, on average giving birth to 44 neonates with no congenital malformation. If the procedure generates anxiety, it is nevertheless perceived as necessary for the successful outcome of the pregnancy. Early mechanical transvaginal embryo reduction performed at 7 weeks of amenorrhea, leaving two embryos is, in our opinion, a simple and safe procedure with no affect on remaining fetuses. It is necessary when there are four or more embryos, and it should also be proposed for triplets. In these circumstances, patients saw reduction as a necessary procedure.

  12. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Washton, Nancy M.; Walter, Eric D.; Szanyi, János; Gao, Feng; Wang, Yong; Peden, Charles H. F.

    2017-02-01

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicates that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  13. Influence of Coke Breeze Combustion Conditions on the Emission of NOx in Sintering Process

    Science.gov (United States)

    Su, Bo; Wu, Sheng-li; Zhang, Guo-liang; Que, Zhi-gang; Hou, Chao-gang

    NOx released during fuel combustion is one of the major air pollutants, such as acid rain and photochemical smog. At present, still not have an economical and effective method of inhibiting NOx emission for sintering flue gas. Therefore, controlling conditions of fuel combustions to enhance the reduction of NOx is important for decreased the emission. In this study, micro-sintering furnace has been performed to investigate the effects of NOx emission from char-N during coke breeze combustion. The results show that the emission concentration of NOx decreased with increasing temperature when it is sinter bed temperature higher than 1000°C. The lower emission concentration of NOx was obtained when the concentration of oxygen was decreased. And the maximum concentration of NOx will be reduced with the enhanced of heating rate. If heating preservation time was prolonged, it would promote to NOx reduction with reduction substances resulted in lower NOx emissions in the combustion of coke breezes.

  14. Control point selection for dimensionality reduction by radial basis function

    Directory of Open Access Journals (Sweden)

    Kotryna Paulauskienė

    2016-02-01

    Full Text Available This research deals with dimensionality reduction technique which is based on radial basis function (RBF theory. The technique uses RBF for mapping multidimensional data points into a low-dimensional space by interpolating the previously calculated position of so-called control points. This paper analyses various ways of selection of control points (regularized orthogonal least squares method, random and stratified selections. The experiments have been carried out with 8 real and artificial data sets. Positions of the control points in a low-dimensional space are found by principal component analysis. We demonstrate that random and stratified selections of control points are efficient and acceptable in terms of balance between projection error (stress and time-consumption.DOI: 10.15181/csat.v4i1.1095

  15. Controlling selectivities in CO2 reduction through mechanistic understanding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Shi, Hui; Szanyi, János

    2017-09-11

    Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. We performed operando FTIR/SSITKA experiments to understand the correlation between the kinetics of product formation and that of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. We found that the rate-determining step for CO formation is the conversion of adsorbed formate, while that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH4 and CO. We demonstrated how this knowledge can be used to design catalysts to achieve high selectivities to desired products.

  16. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  17. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  18. Visible-light-driven N-(BiO)2CO3/Graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal

    Science.gov (United States)

    Chen, Meijuan; Huang, Yu; Yao, Jie; Cao, Jun-ji; Liu, Yuan

    2018-02-01

    N-doped (BiO)2CO3 (NBOC)/graphene oxide (GO) composite obtained from three-dimensional hierarchical microspheres is successfully synthesized by one-pot hydrothermal method for the first time. In this synthesis, citrate ion plays a critical role in N doping. The obtained samples are used to degrade gaseous nitrogen oxides (NOx) at parts-per-billion (ppb) level under visible-light irradiation. NBOC-GO composite with 1.0 wt% graphene oxide (GO) displays the highest photocatalytic NO removal efficiency, which is 4.3 times higher than that of pristine (BiO)2CO3. Moreover, NBOC-GO composite significantly inhibits toxic NO2 intermediate production, indicating its high selectivity for NO conversion. Compared with regular GO, N doping considerably improves the catalytic performance of NBOC-GO composite, which increases NO removal by 74.6% and fully inhibits NO2 generation. The improved photocatalytic activity is mainly ascribed to extended optical absorption ability and enhanced separation efficiency of photogenerated charge carriers over NBOC-GO composite. Both results of electron spin resonance and theoretical analysis of band structure indicate that NO removal is dominated by oxidation with rad OH and rad O2- radicals. The photocatalytic activity improvement mechanism over the NBOC-GO composite is proposed accordingly based on systematic characterizations. This study demonstrates a feasible route to fabricating Bi-containing composites with high selectivity and stability for air pollution control and provides a new insight into the associated photocatalytic mechanisms.

  19. Robust, Model-Based Urea Dosing Control for SCR Aftertreatment Systems using a Cross-Sensitive Tailpipe NOx Sensor

    NARCIS (Netherlands)

    Hommen, G.; Kupper, F.; Seykens, X.

    2017-01-01

    This article describes a NOx sensor based urea dosing control strategy for heavy-duty diesel aftertreatment systems using Selective Catalytic Reduction. The dosing control strategy comprises of a fast-response, model-based ammonia storage control system in combination with a long-timescale

  20. Pilot‐scale investigation and CFD modeling of particle deposition in low‐dust monolithic SCR DeNOx catalysts

    DEFF Research Database (Denmark)

    Heiredal, Michael Lykke; Jensen, Anker Degn; Thøgersen, Joakim Reimer

    2013-01-01

    Deposition of particles in selective catalytic reduction DeNOx monolithic catalysts was studied by low‐dust pilot‐scale experiments. The experiments showed a total deposition efficiency of about 30%, and the deposition pattern was similar to that observed in full‐scale low‐dust applications. On e...

  1. NOx processing on Solar gas turbines; Turbines, traitement des nox sur les turbines a gaz solar

    Energy Technology Data Exchange (ETDEWEB)

    Chausse, X. [Spie Trindel, 95 - Cergy (France). Service TAG

    1997-12-31

    The Solar Company, in cooperation with Tuma Turbomach, has developed the SoLoNOx combustion system with a dry, lean, premixed compound, allowing for reduced NOx and CO emission levels (respectively 42 ppmv and 50 ppmv at 15 pc O{sub 2}). The combustor size is larger than a conventional combustor in order to maintain combustion efficiency and reduce carbon monoxide levels. Leaner combustion occurs at lower temperatures which produce less nitrogen oxides but require more volume to complete the combustion process. New developments should allow for a further reduction of NOx level at 25 ppmv

  2. Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae-Soon [ORNL; Partridge Jr, William P [ORNL; Pihl, Josh A [ORNL; Kim, Miyoung [ORNL; Koci, Petr [Institute of Chemical Technology, Prague, Czech Republic; Daw, C Stuart [ORNL

    2012-01-01

    We summarize results from an investigation of the spatiotemporal distribution of NO{sub x} storage and intermediate gas species in determining the performance of a fully formulated, Ba-based, lean NO{sub x} trap catalyst under lean/rich cycling conditions. By experimentally resolving spatiotemporal profiles of gas composition, we found that stored NO{sub x} was significantly redistributed along the monolith axis during the rich phase of the cycle by release and subsequent downstream re-adsorption. Sulfur poisoning of upstream NO{sub x} storage sites caused the active NO{sub x}-storage zone to be displaced downstream. This axial displacement in turn influenced rich-phase NO{sub x} release and re-adsorption. As sulfur poisoning increased, NH3 slip at the catalyst exit also increased due to its formation closer to the catalyst outlet and decreased exposure to downstream oxidation by surface oxygen. N{sub 2}O formation was found to be associated with nitrate reduction rather than oxidation of NH3 by stored oxygen. We propose that the observed evolution of N{sub 2}O selectivity with sulfation can be explained by changes in the spatiotemporal distribution of NO{sub x} storage resulting in either increased or decreased number of precious-metal sites surrounded by nitrates.

  3. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium-low loads

    DEFF Research Database (Denmark)

    Zhao, Sinan; Fang, Qingyan; Yin, Chungen

    2017-01-01

    . The combustion characteristics and NOx emissions from a 1000 MWe corner-fired tower boiler under different loads are investigated experimentally and numerically. A new control strategy for the annular fuel air is proposed and implemented in the boiler, in which the secondary air admitted to the furnace through...... of the selective catalytic reduction (SCR) system by about 20% at medium–low loads, compared to those based on the original control. The new control strategy has also been successfully applied to two other corner-fired boilers to achieve a significant NOx emission reduction at partial loads. In all three......Due to the rapidly growing renewable power, the fossil fuel power plants have to be increasingly operated under large and rapid load change conditions, which can induce various challenges. This work aims to reduce NOx emissions of large-scale corner-fired boilers operated at medium–low loads...

  4. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  5. Pilot test and optimization of plasma based deNOx

    DEFF Research Database (Denmark)

    Stamate, Eugen; Chen, Weifeng; Michelsen, Poul

    The NOx reduction of flue gas by plasma generated ozone was investigated in pilot test experiments at two industrial power plants running on natural gas (Ringsted) and biomass (Haslev). Reduction rates higher than 95% have been achieved for a molar ratio O3:NOx of 1.56. Fourier transform infrared....... Experiments are in good agreement with numerical simulations. An optimized oxidation scheme for NOx reduction processes with time dependent combustion, such as the biomass power plants, was developed. Ozone production by micro-hollow and capillary discharges at atmospheric pressures was investigated...

  6. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  7. Suppressed N2O formation during NH3 selective catalytic reduction using vanadium on zeolitic microporous TiO2

    Science.gov (United States)

    Lee, Seung Gwan; Lee, Hyun Jeong; Song, Inhak; Youn, Seunghee; Kim, Do Heui; Cho, Sung June

    2015-01-01

    Emission of N2O from mobile and off-road engine is now being currently regulated because of its high impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-treatment system should be suppressed. Selective catalytic reduction using vanadium supported TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO2-based substrate. PMID:26235671

  8. Repeated lung volume reduction surgery is successful in selected patients.

    Science.gov (United States)

    Kostron, Arthur; Horn-Tutic, Michaela; Franzen, Daniel; Kestenholz, Peter; Schneiter, Didier; Opitz, Isabelle; Kohler, Malcolm; Weder, Walter

    2015-11-01

    Lung volume reduction surgery (LVRS) improves dyspnoea, quality of life and may even prolong survival in carefully selected patients with end-stage emphysema. The benefit may be sustained for several years and vanishes with the natural progression of the disease. Data on repeated surgical treatment of emphysema are scarce. The aim of this study was to evaluate the safety, effects and outcomes of repeated LVRS (Re-LVRS) in patients no longer benefiting from their initial LVRS. Between June 2002 and December 2013, 22 patients (9 females) with advanced emphysema underwent Re-LVRS at a median of 60 months (25-196) after their initial LVRS. While initial LVRS was performed thoracoscopically as a bilateral procedure, Re-LVRS was performed unilaterally by a video-assisted thoracoscopic technique in 19 patients and, due to adhesions, by thoracotomy in 3 patients. Pulmonary function test (PFT) was performed at 3 and 12 months postoperatively. Lung function at Re-LVRS was similar to that prior to the first LVRS. The 90-day mortality rate was 0%. The first patient died 15 months postoperatively. The median hospitalization time after Re-LVRS was significantly longer compared with the initial LVRS [14 days, interquartile range (IQR): 11-19, vs 9 days, IQR: 8-14; P = 0.017]. The most frequent complication was prolonged air leak with a median drainage time of 11 days (IQR: 6-13); reoperations due to persistent air leak were necessary in 7 patients (32%). Five patients (23%) had no complications. Lung function and Medical Research Council (MRC) score improved significantly for up to 12 months after Re-LVRS, with results similar to those after initial bilateral LVRS. The average increase in the forced expiratory volume in 1 s (FEV1) was 25% (a 7% increase over the predicted value or 0.18 l) at 3 months, and the mean reduction in hyperinflation, assessed by relative decrease in RV/TLC (residual volume/total lung capacity), was 12% at 3 months (a decrease of 8% in absolute ratios

  9. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    OpenAIRE

    Asif Muhammad; Zhang Youtong; Lin Wei

    2015-01-01

    SCR (selective catalytic reduction) system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx) emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia) being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particul...

  10. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  11. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II.

    Science.gov (United States)

    Peterson, Jeffrey R; Burmeister, Melissa A; Tian, Xin; Zhou, Yi; Guruju, Mallikarjuna R; Stupinski, John A; Sharma, Ram V; Davisson, Robin L

    2009-11-01

    The renin-angiotensin system exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the renin-angiotensin system, acts in the central nervous system to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the central nervous system is implicated in cardiovascular diseases; however, the mechanisms remain poorly understood. Recently we established that NADPH oxidase (Nox)-derived superoxide acting in the forebrain subfornical organ is critical in the physiological responses to central Ang-II. In addition, we have found that Nox2 and Nox4 are the most abundantly expressed Nox homologues within Ang-II-sensitive sites in the forebrain. To dissect out the functional importance and unique roles of these Nox enzymes in the pressor and dipsogenic effects of central Ang-II, we developed adenoviral vectors expressing small interfering RNA to selectively silence Nox2 or Nox4 expression in the subfornical organ. Our results demonstrate that both Nox2 and Nox4 are required for the full vasopressor effects of brain Ang-II but that only Nox2 is coupled to the Ang-II-induced water intake response. These studies establish the importance of both Nox2- and Nox4-containing NADPH oxidases in the actions of Ang-II in the central nervous system and are the first to reveal differential involvement of these Nox enzymes in the various physiological effects of central Ang-II.

  12. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin-II

    Science.gov (United States)

    Peterson, Jeffrey R.; Burmeister, Melissa A.; Tian, Xin; Zhou, Yi; Guruju, Mallikarjuna R.; Stupinski, John A.; Sharma, Ram V.; Davisson, Robin L.

    2009-01-01

    The renin angiotensin system (RAS) exerts a tremendous influence over fluid balance and arterial pressure. Angiotensin II (Ang-II), the effector peptide of the RAS, acts in the CNS to regulate neurohumoral outflow and thirst. Dysregulation of Ang-II signaling in the CNS is implicated in cardiovascular diseases, however the mechanisms remain poorly understood. Recently we established that NADPH oxidase (Nox)-derived superoxide acting in the forebrain subfornical organ (SFO) is critical in the physiologic responses to central Ang-II. In addition, we have found that Nox2 and Nox4 are the most abundantly expressed Nox homologues within Ang-II-sensitive sites in the forebrain. To dissect out the functional importance and unique roles of these Nox enzymes in the pressor and dipsogenic effects of central Ang-II, we developed adenoviral vectors expressing siRNA to selectively silence Nox2 or Nox4 expression in the SFO. Our results demonstrate that both Nox2 and Nox4 are required for the full vasopressor effects of brain Ang-II, but that only Nox2 is coupled to the Ang-II-induced water intake response. These studies establish the importance of both Nox2- and Nox4-containing NADPH oxidases in the actions of Ang-II in the CNS, and are the first to reveal differential involvement of these Nox enzymes in the various physiologic effects of central Ang-II. PMID:19805637

  13. Selective reduction of the disulfide bonds of ovine placental lactogen.

    Science.gov (United States)

    Caridad, J J; Wolfenstein-Todel, C

    1988-01-01

    Reduction and carbamidomethylation of two of the three disulfide bridges of ovine placental lactogen was accomplished by the use of 20-fold molar excess of dithiothreitol over protein disulfide content. The derivative retained its binding capacity to somatogenic as well as lactogenic rat liver receptors, although the latter was somewhat diminished. The two disulfide bonds exposed to the reducing agent are those located near the carboxy- and amino-terminus, while the larger loop remained intact after reduction. This behaviour is similar to that of bovine growth hormone, where the larger loop was also more resistant to reduction.

  14. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  15. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  16. Effectiveness of selective catalytic reduction systems on reducing gaseous emissions from an engine using diesel and biodiesel blends.

    Science.gov (United States)

    Borillo, Guilherme C; Tadano, Yara S; Godoi, Ana F L; Santana, Simone S M; Weronka, Fernando M; Penteado Neto, Renato A; Rempel, Dennis; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Potgieter, Johannes H; Godoi, Ricardo H M

    2015-03-03

    The aim of this investigation was to quantify organic and inorganic gas emissions from a four-cylinder diesel engine equipped with a urea selective catalytic reduction (SCR) system. Using a bench dynamometer, the emissions from the following mixtures were evaluated using a Fourier transform infrared (FTIR) spectrometer: low-sulfur diesel (LSD), ultralow-sulfur diesel (ULSD), and a blend of 20% soybean biodiesel and 80% ULSD (B20). For all studied fuels, the use of the SCR system yielded statistically significant (p < 0.05) lower NOx emissions. In the case of the LSD and ULSD fuels, the SCR system also significantly reduced emissions of compounds with high photochemical ozone creation potential, such as formaldehyde. However, for all tested fuels, the SCR system produced significantly (p < 0.05) higher emissions of N2O. In the case of LSD, the NH3 emissions were elevated, and in the case of ULSD and B20 fuels, the non-methane hydrocarbon (NMHC) and total hydrocarbon of diesel (HCD) emissions were significantly higher.

  17. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  18. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  19. NOX, NOX who is there?, The contribution of NADPH Oxidase to beta cell dysfunction.

    Directory of Open Access Journals (Sweden)

    David eTaylor-Fishwick

    2013-04-01

    Full Text Available Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1 in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxyganase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.

  20. Combined Particle Filter and Selective Catalytic Reduction Catalyst for Diesel Engines

    DEFF Research Database (Denmark)

    Hvam, Jeanette

    them ideal for multiple applications like high power electronic devices, heating elements, abrasive materials and cutting tools. Porous silicon carbide is suitable for electrode and catalyst support material as well as hot gas filter units or a combination of these. The automotive industry demands new...... for exhaust gas purification. By combining the particulate filtration application with the application as catalyst support for NOx reduction, the low emissions standards can be met. This project was initiated as a result of the need for new and improved filters with characteristics making it suitable...... here. A new and improved filter was developed on the basis of the research results concerning copper as partner additive. In comparison to filters produced with aluminium as sole additive, these new filters exhibit enhanced mechanical stability, enhanced microstructure and controllable surface...

  1. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  2. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures.

    Science.gov (United States)

    Su, Wenkang; Chang, Huazhen; Peng, Yue; Zhang, Chaozhi; Li, Junhua

    2015-01-06

    The mechanism of the selective catalytic reduction of NO with NH3 was studied using Cu/SSZ-13. The adspecies of NO and NH3 as well as the active intermediates were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed surface reaction. The results revealed that three reactions were possible between adsorbed NH3 and NOx. NO2(-) could be generated by direct formation or NO3(-) reduction via NO. In a standard selective catalytic reduction (SCR) reaction, NO3(-) was hard to form, because NO2(-) was consumed by ammonia before it could be further oxidized to nitrates. Additionally, adsorbed NH3 on the Lewis acid site was more active than NH4(+). Thus, SCR mainly followed the reaction between Lewis acid site-adsorbed NH3 and directly formed NO2(-). Higher Cu loading could favor the formation of active Cu-NH3, Cu-NO2(-), and Cu-NO3(-), improving the SCR activity at low temperature.

  3. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  4. Noise reduction in selective computational ghost imaging using genetic algorithm

    Science.gov (United States)

    Zafari, Mohammad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2017-03-01

    Recently, we have presented a selective computational ghost imaging (SCGI) method as an advanced technique for enhancing the security level of the encrypted ghost images. In this paper, we propose a modified method to improve the ghost image quality reconstructed by SCGI technique. The method is based on background subtraction using genetic algorithm (GA) which eliminates background noise and gives background-free ghost images. Analyzing the universal image quality index by using experimental data proves the advantage of this modification method. In particular, the calculated value of the image quality index for modified SCGI over 4225 realization shows an 11 times improvement with respect to SCGI technique. This improvement is 20 times in comparison to conventional CGI technique.

  5. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    Science.gov (United States)

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  6. KINETICS AND MECHANISMS OF NOx - CHAR REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.

    1998-06-19

    This study was undertaken in order to improve understanding of several aspects of the NO-carbon reaction. This reaction is of practical importance in combustion systems, but its close examination also provides some fundamental insight into oxidizing gas-carbon reactions. As part of this study, a comprehensive literature review of earlier work on this reaction has been published (Aarna and Suuberg, Fuel, 1997, 76, 475-491). It has been thought for some time that the kinetics of the NO-carbon reaction are unusual, in that they often show a two-regime Arrhenius behavior. It has, however, turned out during this work that NO is not alone in this regard. In this laboratory, we also uncovered evidence of two kinetic regime behavior in CO{sub 2} gasification. In another laboratory, a former colleague has identified the same behavior in N{sub 2}O. The low temperature reaction regime always shows an activation energy which is lower than that in the high temperature regime, leaving little doubt that a shift in mechanism, as opposed to transport limitations, dictates the behavior. The activation energy of the low temperature regime of these reactions is typically less than 100 kJ/mol, and the activation energy of the high temperature regime is generally considerably in excess of this value. In this study, we have resolved some apparent inconsistencies in the explanation of the low temperature regime, whose rate has generally been ascribed to desorption-controlled processes. Part of the problem in characterization of the different temperature regimes is that they overlap to a high degree. It is difficult to probe the low temperature regime experimentally, because of slow relaxation of the surface oxides in that regime. Using careful experimental techniques, we were able to demonstrate that the low temperature regime is indeed characterized by zero order in NO, as it must be. A separate study is being carried out to model the behavior in this regime in NO and in other gases, and the results will be presented shortly.

  7. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  8. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ganesh Chandra Dhal

    2017-04-01

    Full Text Available In this research paper, the nanometric size effect, the effects of the intrinsic factors including structure, and the redox properties of three systems of nanometric of silver-based catalysts were summarized. In this work, these catalysts were investigated for the simultaneous removal of particulate matter (diesel soot, and NOX was compared with that of a model of Pt-Ba/Al2O3 catalyst. The Silver-Barium based catalytic materials of Ag (5 wt%-Ba(10 wt%/MO (MO=Al2O3, CeO2, ZrO2, and Ag (5 wt%-Sr (10 wt%/CeO2 catalysts have been prepared by wetness impregnation method and characterized by BET, XRD, HRTEM, XPS and TPR (temperature-programmed reduction experiments. The behavior of the catalyst in the soot combustion (under tight conditions and NOX elimination has been separately analyzed by means of temperature programmed oxidation and isothermal concentration step change experiments, respectively. The results showed that all the catalysts were active in soot combustion with an indicative decrease of oxidation onset temperature compared to uncatalyzed soot oxidation. The removal of NOX in the presence and in the absence of soot was investigated under cycling conditions, i.e. alternating lean-rich phases according to the LNT approach. It has been found that the Ag-based samples were able to simultaneously remove soot and NOX. In particular, studying the behavior of the prepared catalysts, the Ba-containing systems exhibited higher NOX storage capacity than Sr-catalyst; also, the nitrogen selectivity increased even if resulted lower than the traditional LNT Pt-based catalyst. An adverse effect of soot on the NOX storage activity has been also observed. Copyright © 2017 BCREC GROUP. All rights reserved Received: 18th August 2016; Revised: 19th October 2016; Accepted: 19th October 2016 How to Cite: Dhal, G.C., Dey, S., Prasad, R., Mohan, D. (2017. Simultaneous Elimination of Soot and NOX through Silver-Barium Based Catalytic Materials. Bulletin of

  9. Characterization of LSM/CGO Symmetric Cells Modified by NOx Adsorbents for Electrochemical NOx Removal with Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO-Pt-...... the gas diffusion to the reaction sites.......This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a Ba...... in the resistance of the low-frequency processes, which were ascribed to adsorption, diffusion, and transfer of O2 species and NOx species at or near the triple phase boundary (TPB) region and the formation of the reaction intermediate NO2. The BaO impregnation improved the adsorption of NOx on the LSM...

  10. Selective reduction of fetuses in multiple pregnancies and the law in Australia.

    Science.gov (United States)

    Davis, Colleen; Douglas, Heather

    2014-09-01

    This article considers whether it is lawful in Australia to terminate one or more fetuses in a multiple pregnancy selectively and, if so, under what circumstances. It begins by addressing the preliminary question whether selective reduction is covered by laws relating to abortion and provides a brief outline of the law of abortion in Australian jurisdictions. The article then considers selective reduction of high-order multiple pregnancies, before turning to selective reduction of twin pregnancies in a range of circumstances. The article demonstrates that the law of abortion, as applied to selective reduction of multiple pregnancies, is uncertain and that there are considerable variations from one State to another. It concludes that the law in this area is in need of reform to recognise that some reductions are not performed prima facie to prevent danger to the mother's health and to remove the need for doctors to assert symptomatology of mental illness in order to guard against criminal law consequences. Further, there is a need to clarify whether selective reduction/ termination is abortion for the purposes of the law, and to achieve greater consistency across jurisdictions.

  11. Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence

    Science.gov (United States)

    Tie, Xuexi; Emmons, Louisa; Horowitz, Larry; Brasseur, Guy; Ridley, Brian; Atlas, Elliot; Stround, Craig; Hess, Peter; Klonecki, Andrzej; Madronich, Sasha; Talbot, Robert; Dibb, Jack

    2003-02-01

    The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3 reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOx due to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere.

  12. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application

    Directory of Open Access Journals (Sweden)

    Acácio Nobre Mendes

    2015-10-01

    Full Text Available In the present work, the effect of several parameters involved in the preparation of PdCe-HMOR catalysts active for NOx selective catalytic reduction with methane (NOx CH4-SCR was studied. Results show that the catalytic performance of Pd-HMOR is better when palladium is introduced by ion-exchange, namely at room temperature. It was also shown that Pd loading does not influence the formation of cerium species, namely surface Ce4+ (CeO2 species and CeO2 species in interaction with Pd. However, when Ce is introduced before Pd, more surface CeO2 species are stabilized in the support and less CeO2 become in interaction with Pd, which results in a worse NOx CH4-SCR catalytic performance.

  13. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  14. Selected constants oxidation-reduction potentials of inorganic substances in aqueous solution

    CERN Document Server

    Charlot, G; Marchon, M J C

    2013-01-01

    Selected Constants: Oxidation-reduction Potentials of Inorganic Substances in Aqueous Solution presents tables that will aid chemists in finding the best or most probable value of the normal or formal oxidation-reduction potential of oxidation-reduction systems. The book first presents numerical calculations that show the degree of oxidation and real oxidation-reduction systems, including the value of the potential, temperature, nature and composition of the medium, and the method of determination used. The text then takes a look at the choice of data, as well as intensity/potential curves an

  15. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  16. Correlation of NOX1 and NOX2 expression in ulcerative colitis tissue with intestinal mucosal oxidative stress response and barrier function injury

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-10-01

    Full Text Available Objective: To study the correlation of NOX1 and NOX2 expression in ulcerative colitis tissue with intestinal mucosal oxidative stress response and barrier function injury. Methods: A total of 69 patients who were diagnosed with ulcerative colitis in Yan’an People’s Hospital between May 2015 and March 2017 were selected as the UC group of the research, and 78 patients who were diagnosed with colon polyps were selected as the polyps group of the research. The ulcerative colitis lesion and polyp lesion were collected to detect the expression of NOX1 and NOX2, the generation of oxygen free radicals as well as the contents of apoptosis molecules and mucosal barrier molecules. Results: The mRNA expression and protein expression of NOX1 and NOX2 in the intestinal mucosa of UC group were significantly higher than those of polyps group; LPO, MDA, AOPP, NO, PDCD5 and Bax levels in intestinal mucosa of UC group were significantly higher than those of polyps group and positively correlated with the mRNA expression and protein expression of NOX1 and NOX2 while Bcl-2, Cdx1, Cdx2, galectin-1, galectin-3, OCLN, cingulin and ZO-1 levels were significantly lower than those of polyps group and negatively correlated with the mRNA expression and protein expression of NOX1 and NOX2. Conclusion: The high expression of NOX1 and NOX2 in ulcerative colitis tissue can activate the intestinal mucosal oxidative stress response and result in the intestinal mucosal barrier function injury.

  17. Modeling and Multi-Objective Optimization of NOx Conversion Efficiency and NH3 Slip for a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2016-05-01

    Full Text Available The objective of the study is to present the modeling and multi-objective optimization of NOx conversion efficiency and NH3 slip in the Selective Catalytic Reduction (SCR catalytic converter for a diesel engine. A novel ensemble method based on a support vector machine (SVM and genetic algorithm (GA is proposed to establish the models for the prediction of upstream and downstream NOx emissions and NH3 slip. The data for modeling were collected from a steady-state diesel engine bench calibration test. After obtaining the two conflicting objective functions concerned in this study, the non-dominated sorting genetic algorithm (NSGA-II was implemented to solve the multi-objective optimization problem of maximizing NOx conversion efficiency while minimizing NH3 slip under certain operating points. The optimized SVM models showed great accuracy for the estimation of actual outputs with the Root Mean Squared Error (RMSE of upstream and downstream NOx emissions and NH3 slip being 44.01 × 10−6, 21.87 × 10−6 and 2.22 × 10−6, respectively. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  18. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    Science.gov (United States)

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  19. 40 CFR 52.2237 - NOX RACT and NOX conformity exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false NOX RACT and NOX conformity exemption... RACT and NOX conformity exemption. Approval. EPA is approving the section 182(f) oxides of nitrogen (NOX) reasonably available control technology (RACT) and NOX conformity exemption request submitted by...

  20. Rational design of template-free MnOx-CeO2 hollow nanotube as de-NOx catalyst at low temperature

    Science.gov (United States)

    Li, Chenlu; Tang, Xiaolong; Yi, Honghong; Wang, Lifeng; Cui, Xiaoxu; Chu, Chao; Li, Jingying; Zhang, Runcao; Yu, Qingjun

    2018-01-01

    MnOx-CeO2 hollow nanotube was synthesized for the low temperature selective catalytic reduction (SCR) of NOx with NH3. The nanotube was fabricated firstly through the interfacial oxidation-reduction reaction by dealing the Ce(OH)CO3 intermediate with KMnO4 aqueous solution, then followed by selective wash with HNO3. The catalysts were systematically examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption measurements and catalytic activity test. It was found that the as-prepared MnOx-CeO2-B nanotube exhibited best NOx removal efficiency among the catalysts investigated, where 96% NOx conversion at 100 °C at a space velocity of 30000 h-1 was obtained. Meanwhile, superior resistance to H2O and SO2 was achieved as well as high thermal stability. On the basis of various analysis results, the remarkable de-NOx performance of the MnOx-CeO2-B nanobube could be attributed to the uniform distribution of active species, abundant content of Mn4+ and Oα species, and especially the hollow porous architectures provided huge specific surface area and sufficient acidic sites.

  1. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan; Jennifer Sivy; Alan Sayre; John Boyle

    2003-07-01

    Under sponsorship of the Department of Energy's National Energy Technology Laboratory (NETL), McDermott Technology, Inc. (MTI), the Babcock & Wilcox Company (B&W), and Fuel Tech teamed together to investigate an integrated solution for NOx control. The system was comprised of B&W's DRB-4Z{trademark} low-NO{sub x} pulverized coal (PC) burner technology and Fuel Tech's NO{sub x}OUT{reg_sign}, a urea-based selective non-catalytic reduction (SNCR) technology. The technology's emission target is achieving 0.15 lb NO{sub x}/10{sup 6} Btu for full-scale boilers. Development of the low-NOx burner technology has been a focus in B&W's combustion program. The DRB-4Z{trademark} burner (see Figure 1.1) is B&W's newest low-NO{sub x} burner capable of achieving very low NO{sub x}. The burner is designed to reduce NO{sub x} by diverting air away from the core of the flame, which reduces local stoichiometry during coal devolatilization and, thereby, reduces initial NO{sub x} formation. Figure 1.2 shows the historical NO{sub x} emission levels from different B&W burners. Figure 1.2 shows that based on three large-scale commercial installations of the DRB-4Z{trademark} burners in combination with OFA ports, using Western subbituminous coal, the NO{sub x} emissions ranged from 0.16 to 0.18 lb/10{sup 6} Btu. It appears that with continuing research and development the Ozone Transport Rule (OTR) emission level of 0.15 lb NO{sub x}/10{sup 6} Btu is within the reach of combustion modification techniques for boilers using western U.S. subbituminous coals. Although NO{sub x} emissions from the DRB-4Z{trademark} burner are nearing OTR emission level with subbituminous coals, the utility boiler owners that use bituminous coals can still benefit from the addition of an SNCR and/or SCR system in order to comply with the stringent NO{sub x} emission levels facing them.

  2. Environmental Asthma Reduction Potential Estimates for Selected Mitigation Actions in Finland Using a Life Table Approach

    Directory of Open Access Journals (Sweden)

    Isabell Katharina Rumrich

    2015-06-01

    Full Text Available Aims: To quantify the reduction potential of asthma in Finland achievable by adjusting exposures to selected environmental factors. Methods: A life table model for the Finnish population for 1986–2040 was developed and Years Lived with Disability caused by asthma and attributable to the following selected exposures were estimated: tobacco smoke (smoking and second hand tobacco smoke, ambient fine particles, indoor dampness and mould, and pets. Results: At baseline (2011 about 25% of the total asthma burden was attributable to the selected exposures. Banning tobacco was the most efficient mitigation action, leading to 6% reduction of the asthma burden. A 50% reduction in exposure to dampness and mould as well as a doubling in exposure to pets lead each to a 2% reduction. Ban of urban small scale wood combustion, chosen as a mitigation action to reduce exposure to fine particles, leads to a reduction of less than 1% of the total asthma burden. Combination of the most efficient mitigation actions reduces the total asthma burden by 10%. A more feasible combination of mitigation actions leads to 6% reduction of the asthma burden. Conclusions: The adjustment of environmental exposures can reduce the asthma burden in Finland by up to 10%.

  3. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  4. Selective reduction of condensed N-heterocycles using water as a solvent and a hydrogen source.

    Science.gov (United States)

    Cho, Hyejin; Török, Fanni; Török, Béla

    2013-02-21

    The reduction of unprotected indoles and quinolines is described using water as a hydrogen source. The method is based on the application of a RANEY® type Ni-Al alloy in an aqueous medium. During the reaction the Al content of the alloy, used as reductants, reacts with water in situ providing hydrogen and a RANEY® Ni catalyst, thus the alloy serves as a hydrogen generator as well as a hydrogenation catalyst. The simplicity and efficacy of the method are illustrated by the selective reduction of a variety of substituted indoles and quinolines to indolines and tetrahydroquinolines, respectively.

  5. A comparison of different dimensionality reduction and feature selection methods for single trial ERP detection.

    Science.gov (United States)

    Lan, Tian; Erdogmus, Deniz; Black, Lois; Van Santen, Jan

    2010-01-01

    Dimensionality reduction and feature selection is an important aspect of electroencephalography based event related potential detection systems such as brain computer interfaces. In our study, a predefined sequence of letters was presented to subjects in a Rapid Serial Visual Presentation (RSVP) paradigm. EEG data were collected and analyzed offline. A linear discriminant analysis (LDA) classifier was designed as the ERP (Event Related Potential) detector for its simplicity. Different dimensionality reduction and feature selection methods were applied and compared in a greedy wrapper framework. Experimental results showed that PCA with the first 10 principal components for each channel performed best and could be used in both online and offline systems.

  6. Reductive roasting of iron-rich manganese oxide ore with elemental sulfur for selective manganese extraction

    Directory of Open Access Journals (Sweden)

    You Z.

    2017-01-01

    Full Text Available It is very important to selectively reduce manganese oxide over iron oxide for extraction of Mn from iron-rich manganese ore. In this study, reductive roasting of an iron-rich manganese oxide ore with elemental sulfur as reductant was investigated. The experimental results demonstrated that manganese dioxide can be selectively reduced with elemental sulfur and extracted via acid leaching, which was largely depended on the sulfur addition. Lower sulfur addition (S/Mn molar ratio2.0 and the roasting temperature exerted a significant impact on the phase composition of roasted product.

  7. Selective Reduction: "A Soft Cover for Hard Choices" or Another Name for Abortion?

    Science.gov (United States)

    Rao, Radhika

    2015-01-01

    Selective reduction and abortion both involve the termination of fetal life, but they are classified by different designations to underscore the notion that they are regarded as fundamentally different medical procedures: the two are performed using distinct techniques by different types of physicians, upon women under very different circumstances, in order to further dramatically different objectives. Hence, the two procedures appear to call for a distinct moral calculus, and they have traditionally evoked contradictory reactions from society. This essay posits that despite their different appellations, selective reduction and abortion are essentially equivalent. © 2015 American Society of Law, Medicine & Ethics, Inc.

  8. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells.

    Science.gov (United States)

    Zeng, Cheng; Wu, Qipeng; Wang, Jing; Yao, Bei; Ma, Lei; Yang, Zhicheng; Li, Juan; Liu, Bing

    2016-12-01

    Our previous studies have confirmed that NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and contributes to cancer progression. Nevertheless, the comprehensive mechanisms for NOX4-mediated malignant progression and oxidative resistance of cancer cells remain largely unknown. This study found that NOX4 directed glucose metabolism not only to the glycolysis but also to pentose phosphate pathway (PPP) pathway for production of NADPH in NSCLC cell lines. Besides, we also found that NOX4 promoted glutaminolysis into total GSH synthesis. Specifically, the data showed that ectopic NOX4 expression did not induce apoptosis of NSCLC cells; however, inhibition of GSH production resulted in obvious apoptotic death of NOX4-overexpressed NSCLC cells. Furthermore, we demonstrated that NOX4-induced glycolysis probably via ROS/PI3K/Akt signaling-dependent c-Myc upregulation. The selective NOX4 inhibitor, GKT137831, significantly inhibited glucose and glutamine metabolic phenotypes both in vitro and in vivo, and itself or combination with 2-DG, a synthetic glycolytic inhibitor, suppressed cancer cell growth both in vivo and in vitro. Elimination of NOX4-derived H 2 O 2 effectively reversed NOX4 overexpression-mediated metabolic effects in NSCLC cells. NOX4 levels were significantly correlated with increased glucose and glutamine metabolism-related genes, as well as Akt phosphorylation and c-Myc expression in primary NSCLC specimens. In conclusion, these results reveal that NOX4 promotes glycolysis, contributing to NSCLC growth, and supports glutaminolysis for oxidative resistance. Therefore, NOX4 may be a promising target to reverse malignant progression of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    OpenAIRE

    Nishad, Kaushal; Sadiki, Amsini; Janicka, Johannes

    2018-01-01

    To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR) appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides) emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS) turns inside the exhaust port immediately into gaseous ammonia ...

  10. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  11. The selective catalytic reduction of NO with NH3 over supported vanadia catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Deo, G.; Andreini, A; Vuurman, M.A.; Boer, M. de; Amiridis, M.D.

    1996-01-01

    The selective catalytic reduction (SCR) of NO with NH3was systematically investigated over a series of supported vanadia catalysts to obtain additional insight into this important industrial reaction. The influence of surface vanadia coverage, promoters (surface tungsten oxide, niobium oxide, and

  12. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza

    2013-01-01

    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  13. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NOx adsorption on the electrodes is affected by the presence of the aforementioned NOx storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron...

  14. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  15. Steric effects and quantum interference in the inelastic scattering of NO(X) plus Ar

    NARCIS (Netherlands)

    Nichols, B.; Chadwick, H.; Gordon, S.D.S.; Eyles, C.J.; Hornung, B.; Brouard, M.; Alexander, M.H.; Aoiz, F.J.; Gijsbertsen, A.; Stolte, S.

    2015-01-01

    Rotationally inelastic collisions of NO(X) with Ar are investigated in unprecedented detail using state-to-state, crossed molecular beam experiments. The NO(X) molecules are selected in the Ω = 0.5, j = 0.5, f state and then oriented such that either the 'N' or 'O' end of the molecule is directed

  16. Integral steric asymmetry in the inelastic scattering of NO(X2Π)

    NARCIS (Netherlands)

    Brouard, M.; Gordon, S.D.S.; Hackett Boyle, A.; Heid, C. G.; Nichols, B.; Walpole, V.; Aoiz, F.J.; Stolte, S.

    2017-01-01

    The integral steric asymmetry for the inelastic scattering of NO(X) by a variety of collision partners was recorded using a crossed molecular beam apparatus. The initial state of the NO(X, v = 0, j = 1/2, Ω=1/2, I=-1,f) molecule was selected using a hexapole electric field, before the NO bond axis

  17. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  18. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Fajardo, Oscar A; Deng, Jianguo; Duan, Lei

    2017-11-01

    Flue gas desulfurization (FGD) and selective catalytic reduction (SCR) technologies have been widely used to control the emissions of sulphur dioxide (SO2) and nitrogen oxides (NOX) from coal-fired power plants (CFPPs). Field measurements of emission characteristics of four conventional CFPPs indicated a significant increase in particulate ionic species, increasing PM2.5 emission with FGD and SCR installations. The mean concentrations of PM2.5 from all CFPPs tested were 3.79 ± 1.37 mg/m(3) and 5.02 ± 1.73 mg/m(3) at the FGD inlet and outlet, respectively, and the corresponding contributions of ionic species were 19.1 ± 7.7% and 38.2 ± 7.8%, respectively. The FGD was found to enhance the conversion of NH3 slip from the SCR to NH4(+) in the PM2.5, together with the conversion of SO2 to SO4(2-), and increased the primary NH4(+) and SO4(2-) aerosol emissions by approximately 18.9 and 4.2 times, respectively. This adverse effect should be considered when updating the emission inventory of CFPPs and should draw the attention of policy-makers for future air pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  20. Development of METHANE de-NOX reburning process. Quarterly report, October 1 - December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The use of biomass and wood waste solids and sludges as fuel is often hampered by their low heating values and the presence of bound nitrogen that result in inefficient combustion and high NOx emission. Cofiring supplemental fuel through auxiliary burners helps with improving the combustion effectiveness and NOx reduction, but the benefits are limited to the fractional heat input of the auxiliary fuel. Demonstration tests have shown over 60% reduction in NOx, CO and VOC emissions, and a 2% increase in boiler thermal efficiency using only 8 to 13% natural gas.

  1. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  2. Repeated, selection-driven genome reduction of accessory genes in experimental populations.

    Directory of Open Access Journals (Sweden)

    Ming-Chun Lee

    Full Text Available Genome reduction has been observed in many bacterial lineages that have adapted to specialized environments. The extreme genome degradation seen for obligate pathogens and symbionts appears to be dominated by genetic drift. In contrast, for free-living organisms with reduced genomes, the dominant force is proposed to be direct selection for smaller, streamlined genomes. Most variation in gene content for these free-living species is of "accessory" genes, which are commonly gained as large chromosomal islands that are adaptive for specialized traits such as pathogenicity. It is generally unclear, however, whether the process of accessory gene loss is largely driven by drift or selection. Here we demonstrate that selection for gene loss, and not a shortened genome, per se, drove massive, rapid reduction of accessory genes. In just 1,500 generations of experimental evolution, 80% of populations of Methylobacterium extorquens AM1 experienced nearly parallel deletions removing up to 10% of the genome from a megaplasmid present in this strain. The absence of these deletion events in a mutation accumulation experiment suggested that selection, rather than drift, has dominated the process. Reconstructing these deletions confirmed that they were beneficial in their selective regimes, but led to decreased performance in alternative environments. These results indicate that selection can be crucial in eliminating unnecessary genes during the early stages of adaptation to a specialized environment.

  3. A Soft Computing Based Approach Using Modified Selection Strategy for Feature Reduction of Medical Systems

    Directory of Open Access Journals (Sweden)

    Kursat Zuhtuogullari

    2013-01-01

    Full Text Available The systems consisting high input spaces require high processing times and memory usage. Most of the attribute selection algorithms have the problems of input dimensions limits and information storage problems. These problems are eliminated by means of developed feature reduction software using new modified selection mechanism with middle region solution candidates adding. The hybrid system software is constructed for reducing the input attributes of the systems with large number of input variables. The designed software also supports the roulette wheel selection mechanism. Linear order crossover is used as the recombination operator. In the genetic algorithm based soft computing methods, locking to the local solutions is also a problem which is eliminated by using developed software. Faster and effective results are obtained in the test procedures. Twelve input variables of the urological system have been reduced to the reducts (reduced input attributes with seven, six, and five elements. It can be seen from the obtained results that the developed software with modified selection has the advantages in the fields of memory allocation, execution time, classification accuracy, sensitivity, and specificity values when compared with the other reduction algorithms by using the urological test data.

  4. Nox: Anne Carson's Scrapbook Elegy

    OpenAIRE

    Palleau-Papin, Françoise

    2014-01-01

    In the narrative Nox, Anne Carson composes an elegy for her deceased brother, as much as an elegy to the reproduction of the work of art, from the wax tablet to the digital age, by way of the stencil reproduction, to sustain a reflection on our times. She thus invites her readers to a creative reading, that encompasses loss and death.; Dans son récit Nox, Anne Carson compose une élégie à son frère disparu autant qu'une élégie à l'histoire de la reproduction de l'œuvre d'art, depuis la tablett...

  5. Promotional effect of Al2O3 on WO3/CeO2-ZrO2 monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

    Science.gov (United States)

    Xu, Haidi; Liu, Shuang; Wang, Yun; Lin, Qingjin; Lin, Chenlu; Lan, Li; Wang, Qin; Chen, Yaoqiang

    2018-01-01

    Hydrothermal stability of catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al2O3 was introduced into CeO2-ZrO2 to improve the NH3-SCR activity of WO3/CeO2-ZrO2 after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH3-SCR activity of WO3/CeO2-ZrO2-HA was obviously improved in the whole reaction temperature range after doping Al2O3 into CeO2-ZrO2, for example, the average and maximum NOx conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al2O3 inhibited the sintering and agglomeration of CeO2-ZrO2 and WO3 and the formation of Ce2(WO4)3 after HA treatment. Accordingly, WO3/CeO2-ZrO2-Al2O3-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH3 and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

  6. Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts.

    Science.gov (United States)

    Shuai, Danmeng; Chaplin, Brian P; Shapley, John R; Menendez, Nathaniel P; McCalman, Dorrell C; Schneider, William F; Werth, Charles J

    2010-03-01

    Azo dyes are widespread pollutants and potential cocontaminants for nitrate; we evaluated their effect on catalytic reduction of a suite of oxyanions, diatrizoate, and N-nitrosodimethylamine (NDMA). The azo dye methyl orange significantly enhanced (less than or equal to a factor of 5.24) the catalytic reduction kinetics of nitrate, nitrite, bromate, perchlorate, chlorate, and diatrizoate with several different Pd-based catalysts; NDMA reduction was not enhanced. Nitrate was selected as a probe contaminant, and a variety of azo dyes (methyl orange, methyl red, fast yellow AB, metanil yellow, acid orange 7, congo red, eriochrome black T, acid red 27, acid yellow 11, and acid yellow 17) were evaluated for their ability to enhance reduction. Hydrogenation energies of azo dyes were calculated using density functional theory and a volcano relationship between hydrogenation energies and reduction rate enhancement was observed. A kinetic model based on Brønsted-Evans-Polanyi (BEP) theory matched the volcano relationship and suggests sorbed azo dyes enhance reduction kinetics through hydrogen atom shuttling between reduced azo dyes (i.e., hydrazo dyes) and oxyanions or diatrizoate. This is the first research that has identified this synergetic effect, and it has implications for designing more efficient catalysts and reducing Pd costs in water treatment systems.

  7. GPER blockers as Nox downregulators: A new drug class to target chronic non-communicable diseases.

    Science.gov (United States)

    Meyer, Matthias R; Barton, Matthias

    2018-02-01

    Oxidative stress is a hallmark of chronic non-communicable diseases such as arterial hypertension, coronary artery disease, diabetes, and chronic renal disease. Cardiovascular diseases are characterized by increased production of reactive oxygen species (ROS) by NAPDH oxidase 1 (Nox1) and additional Nox isoforms among other sources. Activation of the G protein-coupled estrogen receptor (GPER) can mediate multiple salutary effects on the cardiovascular system. However, GPER also has constitutive activity, e.g. in the absence of specific agonists, that was recently shown to promote hypertension and aging-induced tissue damage by promoting Nox1-derived production of ROS. Furthermore, the small molecule GPER blocker (GRB) G36 reduces blood pressure and vascular ROS production by selectively down-regulating Nox1 expression. These unexpected findings revealed GRBs as first in class Nox downregulators capable to selectively reduce the increased expression and activity of Nox1 in disease conditions. Here, we will discuss the paradigm shift from selective GPER activation to ligand-independent, constitutive GPER signaling as a key regulator of Nox-derived oxidative stress, and the surprising identification of GRBs as the first Nox downregulators for the treatment of chronic non-communicable diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  9. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  10. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  11. Economic Significance of Selective Export Promotion on Poverty Reduction and Inter-Industry Growth of Ethiopia.

    OpenAIRE

    Chala, Zelalem Teklu

    2010-01-01

    The purpose of this thesis was to assess the economic implications of an export promotion policy on poverty reduction and inter-industry growth of Ethiopia. The study was conducted in four steps. The first and the second steps involved simulation scenarios. Scenario 1 simulated the change in the incidence of poverty when FDI capital was selectively introduced into non-coffee export agriculture. Scenario 2 simulated a situation in which the coffee industry received the same policy treatment as...

  12. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  13. Pressure Effects on the Thermal De-NOx Process

    DEFF Research Database (Denmark)

    Kjærgaard, Karsten; Glarborg, Peter; Dam-Johansen, Kim

    1996-01-01

    The effect of pressure on the thermal de-NOx process has been investigated in flow reactor experiments. The experiments were performed at pressures from 1 to 10 bar and temperatures ranging from 925 to 1375 K. The inlet O-2 level was varied from 1000 ppm to 10%, while NH3 and NO were maintained...... effect of the pressure but also cause a slight decrease in the NO reduction potential. The results are consistent with recent atmospheric pressure experiments of thermal de-NOx covering a wide range of reactant partial pressures. Comparisons of the experimental data with the recent chemical kinetic model...... at 1000 and 500 ppm, respectively At the highest pressure, CO was added to shift the regime for NO reduction to lower temperatures. The results show that the pressure affects the location and the width of the temperature window for NO reduction. As the pressure is increased, both the lower and the higher...

  14. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats.

    Science.gov (United States)

    Cowley, Allen W; Yang, Chun; Zheleznova, Nadezhda N; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P; Skelton, Meredith M; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2016-02-01

    This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4. © 2015 American Heart Association, Inc.

  15. 40 CFR 97.42 - NOX allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX allowance allocations. 97.42... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS NOX Allowance Allocations § 97.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used for calculating NOX...

  16. 40 CFR 96.42 - NOX allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false NOX allowance allocations. 96.42... NOX Allowance Allocations § 96.42 NOX allowance allocations. (a)(1) The heat input (in mmBtu) used for calculating NOX allowance allocations for each NOX Budget unit under § 96.4 will be: (i) For a NOX allowance...

  17. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    Science.gov (United States)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  18. Design and implementation of mixing chambers to improve thermal decomposition of urea for NOX abatement

    KAUST Repository

    Lee, Junggil

    2012-10-01

    Urea-selective catalytic reduction (SCR) has been reported as the most promising technique for adherence to NOX emissions regulations. In the urea-SCR process, NH3 is generated by urea thermal decomposition and hydrolysis and is then used as a reductant of NOX in the SCR catalyst. Therefore, improving the NOX conversion efficiency of urea-SCR requires enhancement of thermal decomposition upstream of the SCR catalyst. In the present work, two types of mixing chambers were designed and fabricated to improve urea thermal decomposition, and experiments with and without a mixing chamber were carried out to analyze thermal-decomposition characteristics of urea in the exhaust pipe with respect to inlet velocity (4-12μm/s) and temperature (350°C-500°C). Urea thermal decomposition is greatly enhanced at higher gas temperatures. At an inlet velocity of 6μm/s in the A-type mixing chamber, NH3 concentrations generated along the exhaust pipe were about 171% and 157% greater than those without the mixing chamber for inlet temperatures of 400°C and 500°C, respectively. In the case of the B-type mixing chamber, NH3 concentrations generated at inlet temperatures of 400°C and 500°C were about 147% and 179% greater than those without the mixing chamber, respectively. Note that the implementation of mixing chambers significantly enhanced conversion of urea to NH3 because it increased the residence time of urea in the exhaust pipe and improved mixing between urea and exhaust gas. © 2012, Mary Ann Liebert, Inc.

  19. NOx, SO{sub 3} in the spotlight at NETL's 2006 Environmental Controls conference

    Energy Technology Data Exchange (ETDEWEB)

    Mann, A.N.; Makovsky, L.E.; Sarkus, T.A. [Technology and Management Services Inc. (United States)

    2007-02-15

    As emissions caps drop, technological solutions must become increasingly effective and efficient. Researchers, equipment vendors, and plant operators are exploring alternatives to SCR and SNCR, with a view to reducing the overall costs of NOx reduction. They have also achieved 95% to 99% removal of SO{sub 3}, with no visible plume opacity. These topics were discussed at ECC 2006. The first conference session focussed on selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control of nitrogen oxide emissions; the second session addressed the related issue of reducing stack emissions and flue gas concentrations of sulfur trioxide. The article summarises many papers presented. Summaries and/or full versions of all the papers mentioned, and others, are posted at www.netl.doe.gov/publications/proceedings/06/ecc/index.html. 2 figs.

  20. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  1. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2016-09-15

    In this paper, a series of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts were prepared by sol gel method. Cu-Fe-Ti and Co-Fe-Ti oxide catalysts showed the moderate catalytic activity for selective catalytic reduction (SCR) of NO with NH3 at low temperature. The catalysts with the molar ratio as 4:1:10 (M:Fe:Ti) were selected as the representatives for comparison of reaction properties and H2O resistance, which were denoted as Cu-Fe/TiO2 and Co-Fe/TiO2 respectively. The characterization results manifested Co-Fe/TiO2 owned more adsorption capacity of the reactants and Cu-Fe/TiO2 had better redox ability. The in situ DRIFTS experiments indicated that adsorbed NH3 species and nitrate species both exhibited reaction activity for Co-Fe/TiO2, while nitric oxide was only be reduced by adsorbed NH3 species through Eley-Rideal mechanism for Cu-Fe/TiO2 at 150°C. Co-Fe/TiO2 exhibited the better resistance to H2O and its temperature window shifted towards the higher temperature in presence of 10vol% H2O, while the SCR activity of Cu-Fe/TiO2 was inhibited significantly in the whole temperature range investigated. The suppression of adsorption and activation for NH3 and NOx might be the reasons for the reversible inactivation, which was confirmed by the inhibitation of catalytic activities for separation NH3 and NO oxidation under the wet condition. We speculated that different thermal stability of adsorbed species and redox capacity of catalysts leaded to the different SCR behavior in absence and presence of H2O. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Evaluation of Exhaust Emissions from Three Diesel-Hybrid Cars and Simulation of After-Treatment Systems for Ultralow Real-World NOx Emissions.

    Science.gov (United States)

    Franco, Vicente; Zacharopoulou, Theodora; Hammer, Jan; Schmidt, Helge; Mock, Peter; Weiss, Martin; Samaras, Zissis

    2016-12-06

    Hybridization offers great potential for decreasing pollutant and carbon dioxide emissions of diesel cars. However, an assessment of the real-world emissions performance of modern diesel hybrids is missing. Here, we test three diesel-hybrid cars on the road and benchmark our findings with two cars against tests on the chassis dynamometer and model simulations. The pollutant emissions of the two cars tested on the chassis dynamometer were in compliance with the relevant Euro standards over the New European Driving Cycle and Worldwide harmonized Light vehicles Test Procedure. On the road, all three diesel-hybrids exceeded the regulatory NOx limits (average exceedance for all trips: +150% for the Volvo, +510% for the Peugeot, and +550% for the Mercedes-Benz) and also showed elevated on-road CO2 emissions (average exceedance of certification values: +178, +77, and +52%, respectively). These findings point to a wide discrepancy between certified and on-road CO2 and suggest that hybridization alone is insufficient to achieve low-NOx emissions of diesel powertrains. Instead, our simulation suggests that properly calibrated selective catalytic reduction filter and lean-NOx trap after-treatment technologies can reduce the on-road NOx emissions to 0.023 and 0.068 g/km on average, respectively, well below the Euro 6 limit (0.080 g/km).

  3. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  4. Life cycle assessment of the selective catalytic reduction; Oekobilanzierung des selektiven katalytischen Reduktionsverfahrens

    Energy Technology Data Exchange (ETDEWEB)

    Barzaga-Castellanos, L.; Kayser, G.; Markert, B. [Lehrstuhl Umweltverfahrenstechnik, Internationales Hochschulinstitut Zittau (Germany); Neufert, R. [Siemens AG, Bereich Energieerzeugung (KWU), Keramik- und Porzellanwerk Redwitz, Bereich Katalysatoren (Germany)

    1998-07-01

    This paper describes the overall reduction of the environmental impact by the use of selective catalytic reduction (SCR) determined by a investigation of the life cycle assessment of SCR systems for power plants. The overall reduction of the environmental impact by the use of SCR was determined under consideration of the total product life cycle from manufacture of the starting materials through catalyst production and use in the power plant to processing for recycling. Following clear specification of the overall system limits and definition of the goals for the analysis to be performed, the inventory analyses were determined for the individual process steps and in summary for the overall process cycle/sequence under consideration of basic SCR application variants in the power plant. The inventory analysis was used to generate the impact assessment and improvement assessment. This work was performed using the concept given by Braunschweig, A., and Mueller-Wenk, R. [5]. Other tools of environmental management of products and processes used were the methods of process cycle/sequence analysis, process input-output analysis and cumulative energy consumption or expenditure [14]. (orig.) [Deutsch] Zur Ermittlung der Brutto-Umweltbelastung durch Einsatz des selektiven katalytischen Reduktionsverfahrens (selective catalytic reduction, SCR) unter Beruecksichtigung des gesamten Produktlebenszyklus von der Herstellung der Vorprodukte ueber die Produktion der Katalysatoren und den Einsatz im Kraftwerk bis zur Aufbereitung zur Wiederverwertung wurde das Instrumentarium Oekobilanz angewandt. Nach einer eindeutigen Festlegung der gesamten Systemgrenzen und Definition der Ziele fuer die durchzufuehrende Analyse wurden die Sachbilanzen fuer die einzelnen Prozessschritte und zusammenfassend die Sachbilanz fuer die gesamte Prozesskette unter Beruecksichtigung grundsaetzlicher Anwendungsvarianten des SCR-Verfahrens im Kraftwerk erstellt. Auf der Sachbilanz aufbauend erfolgte die

  5. In-Use NOx Emissions from Diesel and Liquefied Natural Gas Refuse Trucks Equipped with SCR and TWC, Respectively.

    Science.gov (United States)

    Misra, Chandan; Ruehl, Chris; Collins, John; Chernich, Don; Herner, Jorn

    2017-06-20

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG), and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks, two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC), and one hydraulic hybrid diesel equipped with SCR, were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  6. Selectivity Control of CO2 Reduction in an Inorganic Artificial Photosynthesis System

    Science.gov (United States)

    Hashiba, Hiroshi; Yotsuhashi, Satoshi; Deguchi, Masahiro; Yamada, Yuka; Ohkawa, Kazuhiro

    2013-09-01

    We demonstrated that the selectivity of photo electrochemical CO2 reduction can be controlled in an inorganic artificial photosynthesis system using an AlGaN/GaN photo electrode. By increasing input light intensity and the use of a gold cathode, the Faradaic efficiency of CO dramatically increases from 30% to over 80% while that of H2 decreases. We observed that the cathode potential resulting from illumination determines the ratio of CO and H2. With this system, it is possible to switch the main reaction product from CO to HCOOH, which is also effective even under intense illumination.

  7. Silver nanoparticles supported on alumina-​a highly efficient and selective nanocatalyst for imine reduction

    DEFF Research Database (Denmark)

    Poreddy, Raju; Garcia-Suarez, Eduardo J.; Riisager, Anders

    2014-01-01

    Silver nanoparticles supported on alumina were prepared and tested in the catalytic reduction of various imines to primary and secondary amines and were shown to be exceptionally active and chemoselective. Furthermore, the catalytic activity of the prepared nanocatalyst was also tested...... organic synthesis. Due to the mild reaction conditions and high conversion as well as high selectivity, we consider that the utilization of silver nanoparticles supported on alumina represents an attractive and environmentally friendly alternative to the current synthesis of N-alkyl amines....

  8. BOFA technology: 2008 LCPD NOx emission compliance with minimum cost

    Energy Technology Data Exchange (ETDEWEB)

    A. Duncan; T.A. Naja; S. Sen; P. Woodall [Mitsui Babcock Energy Limited (United Kingdom)

    2006-07-01

    The European Union (EU) Large Combustion Plant Directive (LCPD), effective from 2008, will impose a limit of 500 mg/Nm{sup 3} at 6% O{sub 2} upon NOx emissions from coal fired power plant. Following a comprehensive technoeconomic assessment of competing technologies, Drax Power Limited implemented a Boosted Overfire Air (BOFA) system on Unit 1 at Drax (a 660 MWe, pulverised coal, opposed wall fired boiler) in order to ensure NOx compliance with LCPD requirements. The basic form of air staging known as Separated Overfire Air (SOFA) suffers from significant increases in the carbon in flyash (CIA) level. Mitsui Babcock's BOFA technology deals with this issue directly by boosting overfire air momentum, with consequent improved upper furnace mixing and improved carbon burnout. The key benefits are greater achievable NOx reduction for a given level of carbon burnout, improved efficiency, reduced milling requirements and improved coal diet flexibility with little impact on ash sales. The BOFA retrofit on Drax Unit 1 has delivered NOx emission levels lower than 450 mg/Nm{sup 3} at 6% O{sub 2} (dry) with acceptable unburned loss (<6% Carbon in Ash) and carbon monoxide concentration (<100 ppm), whilst not adversely affecting any aspect of plant operation or thermal performance. All emission and performance guarantees were achieved. 4 refs., 10 figs.

  9. Surface Selective Oxide Reduction During the Intercritical Annealing of Medium Mn Steel

    Science.gov (United States)

    Jo, Kyoung Rae; Cho, Lawrence; Oh, Jong Han; Kim, Myoung Soo; Kang, Ki Cheol; De Cooman, Bruno C.

    2017-08-01

    Third generation advanced high-strength steels achieve an excellent strength-ductility balance using a cost-effective alloy composition. During the continuous annealing of medium Mn steel, the formation of an external selective oxide layer of MnO has a negative impact on the coating quality after galvanizing. A procedure to reduce the selective oxide was therefore developed. It involves annealing in the temperature range of 1073 K to 1323 K (800 °C to 1050 °C) in a HNx gas atmosphere. Annealing at higher temperatures and the use of larger H2 volume fractions are shown to make the gas atmosphere reducing with respect to MnO. The reduction of the surface MnO layer was observed by SEM, GDOES, and cross-sectional TEM analysis.

  10. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained. PMID:27014203

  11. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine.

    Science.gov (United States)

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila, and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6 and 1.4% v/v, respectively). Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.

  12. Sequential fermentation with selected immobilized non-Saccharomyces yeast for reduction of ethanol content in wine

    Directory of Open Access Journals (Sweden)

    Laura eCanonico

    2016-03-01

    Full Text Available The average ethanol content of wine has increased over the last two decades. This increase was due to consumer preference, and also to climate change that resulted in increased grape maturity at harvest. In the present study, to reduce ethanol content in wine, a microbiological approach was investigated using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola, Metschnikowia pulcherrima, Hanseniaspora osmophila and Hanseniaspora uvarum to start fermentation, followed by inoculation of free Saccharomyces cerevisiae cells. The immobilization procedures, determining high reaction rates, led a feasible sequential inoculation management avoiding possible contamination under actual winemaking. Under these conditions, the immobilized cells metabolized almost 50% of the sugar in 3 days, while S. cerevisiae inoculation completed all of fermentation. The S. bombicola and M. pulcherrima initial fermentations showed the best reductions in the final ethanol content (1.6% and 1.4% v/v, respectively. Resulting wines did not have any negative fermentation products with the exception of H. uvarum sequential fermentation that showed significant amount of ethyl acetate. On the other hand, there were increases in desirable compounds such as glycerol and succinic acid for S. bombicola, geraniol for M. pulcherrima and isoamyl acetate and isoamyl alcohol for H. osmophila sequential fermentations. The overall results indicated that a promising ethanol reduction could be obtained using sequential fermentation of immobilized selected non-Saccharomyces strains. In this way, a suitable timing of second inoculation and an enhancement of analytical profile of wine were obtained.

  13. Marginal abatement cost curves for NOx that account for ...

    Science.gov (United States)

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  14. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    Energy Technology Data Exchange (ETDEWEB)

    R.Q. Long; N. Tharappiwattananon; W.B. Li; R.T. Yang

    2000-09-01

    Removal of NO{sub x} (NO + NO{sub 2}) from exhaust gases is a challenging subject. V{sub 2}O{sub 5}-based catalysts are commercial catalysts for selective catalytic reduction (SCR) with NH{sub 3} for stationary sources. However, for diesel and lean-burn gasoline engines in vehicles, hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). The noble-metal three-way catalysts are not effective under these conditions. The first catalyst found to be active for selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen was copper exchanged ZSM-5 and other zeolites, reported in 1990 by Iwamoto in Japan and Held et al. in Germany. Although Cu-ZSM-5 is very active and the most intensively studied catalyst, it suffers from severe deactivation in engine tests, mainly due to H{sub 2}O and SO{sub 2}. In this project, we found that ion-exchanged pillared clays and MCM-41 catalysts showed superior SCR activities of NO with hydrocarbon. All Cu{sup 2+}-exchanged pillared clays showed higher SCR activities than Cu-ZSM-5 reported in the literature. In particular, H{sub 2}O and SO{sub 2} only slightly deactivated the SCR activity of Cu-TiO{sub 2}-PILC, whereas severe deactivation was observed for Cu-ZSM-5. Moreover, Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts, i.e., Pt/Al{sub 2}O{sub 3}, Pt/SiO{sub 2} and Pt/ZSM-5. The Pt/MCM-41 catalyst also showed a good stability in the presence of H{sub 2}O and SO{sub 2}.

  15. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

    Science.gov (United States)

    Huo, Shengjuan; Weng, Zhe; Wu, Zishan; Zhong, Yiren; Wu, Yueshen; Fang, Jianhui; Wang, Hailiang

    2017-08-30

    One major challenge to the electrochemical conversion of CO2 to useful fuels and chemical products is the lack of efficient catalysts that can selectively direct the reaction to one desirable product and avoid the other possible side products. Making use of strong metal/oxide interactions has recently been demonstrated to be effective in enhancing electrocatalysis in the liquid phase. Here, we report one of the first systematic studies on composition-dependent influences of metal/oxide interactions on electrocatalytic CO2 reduction, utilizing Cu/SnOx heterostructured nanoparticles supported on carbon nanotubes (CNTs) as a model catalyst system. By adjusting the Cu/Sn ratio in the catalyst material structure, we can tune the products of the CO2 electrocatalytic reduction reaction from hydrocarbon-favorable to CO-selective to formic acid-dominant. In the Cu-rich regime, SnOx dramatically alters the catalytic behavior of Cu. The Cu/SnOx-CNT catalyst containing 6.2% of SnOx converts CO2 to CO with a high faradaic efficiency (FE) of 89% and a jCO of 11.3 mA·cm-2 at -0.99 V versus reversible hydrogen electrode, in stark contrast to the Cu-CNT catalyst on which ethylene and methane are the main products for CO2 reduction. In the Sn-rich regime, Cu modifies the catalytic properties of SnOx. The Cu/SnOx-CNT catalyst containing 30.2% of SnOx reduces CO2 to formic acid with an FE of 77% and a jHCOOH of 4.0 mA·cm-2 at -0.99 V, outperforming the SnOx-CNT catalyst which only converts CO2 to formic acid in an FE of 48%.

  16. Reducción catalítica selectiva de NOx usando nanopartículas de ferritas Cu1-XCoXFe2O4 como catalizador

    Directory of Open Access Journals (Sweden)

    Sarah Briceño1*

    2009-12-01

    Full Text Available Nanostructured catalysts AB2O4 spinel type oxides (A = Co and B = Cu were prepared by the sol-gel self-combustion method using citric acid as precursor. They were characterized by X-ray diffraction (XRD, Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Catalytic activity tests, which have proven to be effective for selective catalytic reduction of NOx using hydrocarbon as a reducing agent (SCR-HC in a temperature range 250 - 450 ° C, reaching up to 40% conversion of NO and 100% selectivity towards the formation of N2

  17. A Confident Information First Principle for Parameter Reduction and Model Selection of Boltzmann Machines.

    Science.gov (United States)

    Zhao, Xiaozhao; Hou, Yuexian; Song, Dawei; Li, Wenjie

    2017-03-16

    Typical dimensionality reduction (DR) methods are data-oriented, focusing on directly reducing the number of random variables (or features) while retaining the maximal variations in the high-dimensional data. Targeting unsupervised situations, this paper aims to address the problem from a novel perspective and considers model-oriented DR in parameter spaces of binary multivariate distributions. Specifically, we propose a general parameter reduction criterion, called confident-information-first (CIF) principle, to maximally preserve confident parameters and rule out less confident ones. Formally, the confidence of each parameter can be assessed by its contribution to the expected Fisher information distance within a geometric manifold over the neighborhood of the underlying real distribution. Then, we demonstrate two implementations of CIF in different scenarios. First, when there are no observed samples, we revisit the Boltzmann machines (BMs) from a model selection perspective and theoretically show that both the fully visible BM and the BM with hidden units can be derived from the general binary multivariate distribution using the CIF principle. This finding would help us uncover and formalize the essential parts of the target density that BM aims to capture and the nonessential parts that BM should discard. Second, when there exist observed samples, we apply CIF to the model selection for BM, which is in turn made adaptive to the observed samples. The sample-specific CIF is a heuristic method to decide the priority order of parameters, which can improve the search efficiency without degrading the quality of model selection results as shown in a series of density estimation experiments.

  18. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  19. 40 CFR 97.142 - CAIR NOX allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX allowance allocations. 97.142... (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Allowance Allocations § 97.142 CAIR NOX allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with...

  20. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  1. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  2. Regional Marginal Abatement Cost Curves for NOx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data underlying the figures included in the manuscript "Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and...

  3. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: Controlling the catalytic selectivity of hydrocarbons

    NARCIS (Netherlands)

    Kas, Recep; Kortlever, R.; Milbrat, Alexander; Koper, M.T.M.; Mul, Guido; Baltrusaitis, Jonas

    2014-01-01

    The catalytic activity and hydrocarbon selectivity in electrochemical carbon dioxide (CO2) reduction on cuprous oxide (Cu2O) derived copper nanoparticles is discussed. Cuprous oxide films with [100], [110] and [111] orientation and variable thickness were electrodeposited by reduction of copper(II)

  4. Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States

    Science.gov (United States)

    Elliott, E.M.; Kendall, C.; Wankel, Scott D.; Burns, Douglas A.; Boyer, E.W.; Harlin, K.; Bain, D.J.; Butler, T.J.

    2007-01-01

    Global inputs of NOx are dominated by fossil fuel combustion from both stationary and vehicular sources and far exceed natural NOx sources. However, elucidating NOx sources to any given location remains a difficult challenge, despite the need for this information to develop sound regulatory and mitigation strategies. We present results from a regional-scale study of nitrogen isotopes (??15N) in wet nitrate deposition across 33 sites in the midwestern and northeastern U.S. We demonstrate that spatial variations in ??15N are strongly correlated with NOx emissions from surrounding stationary sources and additionally that ??15N is more strongly correlated with surrounding stationary source NOx emissions than pH, SO 42-, or NO3- concentrations. Although emission inventories indicate that vehicle emissions are the dominant NOx source in the eastern U.S., our results suggest that wet NO 3- deposition at sites in this study is strongly associated with NOx emissions from stationary sources. This suggests that large areas of the landscape potentially receive atmospheric NOy deposition inputs in excess of what one would infer from existing monitoring data alone. Moreover, we determined that spatial patterns in ??15N values are a robust indicator of stationary NOx contributions to wet NO3- deposition and hence a valuable complement to existing tools for assessing relationships between NO 3- deposition, regional emission inventories, and for evaluating progress toward NOx reduction goals. ?? 2007 American Chemical Society.

  5. A Reduction in Intracellular Reactive Oxygen Species Due to a Mutation in NCF4 Promotes Autoimmune Arthritis in Mice.

    Science.gov (United States)

    Winter, Susann; Hultqvist Hopkins, Malin; Laulund, Frida; Holmdahl, Rikard

    2016-12-20

    The mechanisms linking deficits in the phagocytic NADPH oxidase 2 (NOX2) complex to autoimmunity are so far incompletely understood. Deficiency in neutrophil cytosolic factor 1 (NCF1) inactivates the NOX2 complex, leading to a dramatic reduction of intra- and extracellular reactive oxygen species (ROS) and enhanced susceptibility to autoimmune disease. The contribution of intracellular NOX2 activity to autoimmune regulation is, however, unknown. Another component of the NOX2 complex, NCF4, directs the NOX2 complex to phagosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns3P) and has been proposed to regulate intracellular ROS levels. To address the impact of NCF4 and selective changes in intracellular ROS production on autoimmune inflammation, we studied collagen-induced arthritis (CIA) and mannan-induced psoriatic arthritis-like disease (MIP) in mice lacking NCF4 and mice with a mutation in the PtdIns3P-binding site of NCF4. Targeted deletion of Ncf4 (Ncf4(-/-)) led to severe defects in overall ROS production due to concomitant reduction of NCF2 and NCF1. These mice displayed delayed neutrophil apoptosis and enhanced innate immune responses, and they developed aggravated CIA and MIP. Disruption of the PtdIns3P-binding site by targeted mutation (Ncf4*(/)*) resulted in selective defects in intracellular NOX2 activity, which entailed milder effects on innate immunity and MIP but clearly promoted susceptibility to CIA. Innovation and Conclusion: This is, to our knowledge, the first study addressing the development of autoimmunity in an organism with selectively compromised NOX2-dependent intracellular ROS levels. Our data reveal a specific role for NCF4-mediated intracellular ROS production in regulating autoimmunity and chronic inflammation. Antioxid. Redox Signal. 25, 983-996.

  6. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust.

    Science.gov (United States)

    Zhang, Changbin; He, Hong; Shuai, Shijin; Wang, Jianxin

    2007-05-01

    The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.

  7. Pilot-scale evaluation of a novel TiO2-supported V2O5catalyst for DeNOx at low temperatures at a waste incinerator.

    Science.gov (United States)

    Jung, Hyounduk; Park, Eunseuk; Kim, Minsu; Jurng, Jongsoo

    2017-03-01

    The removal of NOx by catalytic technology at low temperatures is significant for treatment of flue gas in waste incineration plants, especially at temperatures below 200°C. A novel highly active TiO 2 -supported vanadium oxide catalyst at low temperatures (200-250°C) has been developed for the selective catalytic reduction (SCR) de-NOx process with ammonia. The catalyst was evaluated in a pilot-scale equipment, and the results were compared with those obtained in our previous work using laboratory scale (small volume test) equipment as well as bench-scale laboratory equipment. In the present work, we have performed our experiments in pilot scale equipment using a part of effluent flue gas that was obtained from flue gas cleaning equipment in a full-scale waste incineration plant in South Korea. Based on our previous work, we have prepared a TiO 2 -supported V 2 O 5 catalyst coated (with a loading of 7wt% of impregnated V 2 O 5 ) on a honeycomb cordierite monolith to remove NOx from a waste incinerator flue gas at low temperatures. The NOx (nitrogen oxides) removal efficiency of the SCR catalyst bed was measured in a catalyst fixed-bed reactor (flow rate: 100m 3 h -1 ) using real exhaust gas from the waste incinerator. The experimental results showed that the V 2 O 5 /TiO 2 SCR catalyst exhibited good DeNOx performance (over 98% conversion at an operating temperature of 300°C, 95% at 250°C, and 70% at 200°C), and was much better than the performance of commercial SCR catalysts (as low as 55% conversion at 250°C) under the same operating conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessment and Mitigation of NOx emission within a street canyon and tunnel portal micro environment

    Science.gov (United States)

    Uhrner, Ulrich; Reifeltshammer, Rafael

    2017-04-01

    Substantial breeches of the NO2 annual mean have been recorded at an air quality station located in a busy road in a German city. The daily traffic volume is about 26 000 vehicles a day and the share of heavy duty vehicles is small due to a heavy traffic driving ban. Critical is that traffic from the 540 m long city tunnel bends into the road and that there are tall buildings located at both sides of the road. 9 additional measurements with passive samplers indicate that the air quality limit value is exceeded from the tunnel portal towards the next major intersection (approximately 500 m). The objective of this study is to compute emissions from open roads versus tunnel portal emissions and to analyse their effect upon local air quality within this complex urban micro environment. The aim of this project was to evaluate the impact of tunnel ventilation and traffic reductions measures. A base case was computed using sophisticated flow and dispersion modelling, accounting for the impact of buildings and the effect of the sunken road and tunnel jet. NOx to NO2 conversion was computed using a Romberg type approach and good results were obtained for NO2 annual means compared with measurements. The effect of tunnel emissions and emissions from open roads was analysed respectively. The NOx/NO2 concentration pattern revealed that the portal area is affected by the portal emissions about 60 m in driving direction. However, kerbside concentrations are dominated only within 30 m in driving direction. At the air quality station at 150 m distance from the portal, 75 % of the NOx concentrations can be attributed to open roads and the rest is mainly attributable to urban background. A zero portal emission scenario resulted in significant improvement within the immediate vicinity of the portal. Due to the strong impact of open roads a 50 % traffic reduction scenario affecting tunnel and open roads emissions was computed. Although reductions of up to -25 µg/m3 may result

  9. Control of a selective catalytic reduction system based on NARMA-L2 model

    Science.gov (United States)

    Han, W. M.; Wang, Y. J.; Zheng, T. X.; Zhou, T. L.; Zhang, Y.; Tan, R.

    2017-03-01

    The plant of the selective catalytic reduction (SCR) system is characterized by significant nonlinearity, time delay and temperature sensitivity. In order to control the urea injection accurately, the (nonlinear auto regressive moving average) NARMA-L2 model based control is applied to the SCR system. In this paper, a data-based technique is taken and a model of the plant is identified on the basis of input-output data. Then the identified model is used to the design of a NARMA-L2 controller. Simulation of the NARMA-L2 model based control for the SCR system is presented to demonstrate the effectiveness and superiority. The comparison results show better performance over the traditional PID control.

  10. Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): Role of catalyst reduction method

    Science.gov (United States)

    Hu, Shuo; Yang, Guangxin; Jiang, Hong; Liu, Yefei; Chen, Rizhi

    2018-03-01

    Selective phenol hydrogenation is a green and sustainable technology to produce cyclohexanone. The work focused on investigating the role of catalyst reduction method in the liquid-phase phenol hydrogenation to cyclohexanone over Pd@CN (N-doped porous carbon). A series of reduction methods including flowing hydrogen reduction, in-situ reaction reduction and liquid-phase reduction were designed and performed. The results highlighted that the reduction method significantly affected the catalytic performance of Pd@CN in the liquid-phase hydrogenation of phenol to cyclohexanone, and the liquid-phase reduction with the addition of appropriate amount of phenol was highly efficient to improve the catalytic activity of Pd@CN. The influence mechanism was explored by a series of characterizations. The results of TEM, XPS and CO chemisorption confirmed that the reduction method mainly affected the size, surface composition and dispersion of Pd in the CN material. The addition of phenol during the liquid-phase reduction could inhibit the aggregation of Pd NPs and promote the reduction of Pd (2+), and then improved the catalytic activity of Pd@CN. The work would aid the development of high-performance Pd@CN catalysts for selective phenol hydrogenation.

  11. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  12. Application of OMI Observations to a Space-Based Indicator of NOx and VOC Controls on Surface Ozone Formation

    Science.gov (United States)

    Duncan, Bryan N.; Yoshida, Yasuko; Olson, Jennifer R.; Sillman, Sanford; Martin, Randall V.; Lamsal, Lok; Hu, Yongtao; Pickering, Kenneth E.; Retscher, Christian; Allen, Dale J.; hide

    2010-01-01

    We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the "Ratio") from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios less than 1 and NOx at Ratios greater than 2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria. the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2. and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g .. Chicago). the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g ., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.

  13. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  14. Development of Pd-Cu/hematite catalyst for selective nitrate reduction.

    Science.gov (United States)

    Jung, Sungyoon; Bae, Sungjun; Lee, Woojin

    2014-08-19

    A new hematite-supported Pd-Cu bimetallic catalyst (Pd-Cu/hematite) was developed in order to actively and selectively reduce nitrate (NO3(-)) to nitrogen gas (N2). Four different iron-bearing soil minerals (hematite (H), goethite (G), maghemite (M), and lepidocrocite (L)) were transformed to hematite by calcination and used for synthesis of different Pd-Cu/hematite-H, G, M, and L catalysts. Their characteristics were identified using X-ray diffraction (XRD), specific surface area (BET), temperature programed reduction (TPR), transmission electron microscopy with energy dispersive X-ray (TEM-EDX), H2 pulse chemisorption, zeta-potential, and X-ray photoelectron spectroscopy (XPS). Pd-Cu/hematite-H exhibited the highest NO3(-) removal (96.4%) after 90 min, while a lower removal (90.9, 51.1, and 30.5%) was observed in Pd-Cu/hematite-G, M, and L, respectively. The results of TEM-EDX, and TPR analysis revealed that Pd-Cu/hematite-H possessed the closest contact distance between the Cu and Pd sites on the hematite surface among the different Pd-Cu/hematite catalysts. The high removal can be also attributed to the highly active metallic sites on its positively charged surface. The XPS analysis demonstrated that the amount of hydrogen molecules can have a pivotal function on NO3(-) removal and a ratio of nitrogen to hydrogen molecule (N:H) on the Pd sites can critically determine N2 selectivity.

  15. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production

    Science.gov (United States)

    Niu, Kaiyang; Xu, You; Wang, Haicheng; Ye, Rong; Xin, Huolin L.; Lin, Feng; Tian, Chixia; Lum, Yanwei; Bustillo, Karen C.; Doeff, Marca M.; Koper, Marc T. M.; Ager, Joel; Xu, Rong; Zheng, Haimei

    2017-01-01

    Solar-driven photocatalytic conversion of CO2 into fuels has attracted a lot of interest; however, developing active catalysts that can selectively convert CO2 to fuels with desirable reaction products remains a grand challenge. For instance, complete suppression of the competing H2 evolution during photocatalytic CO2-to-CO conversion has not been achieved before. We design and synthesize a spongy nickel-organic heterogeneous photocatalyst via a photochemical route. The catalyst has a crystalline network architecture with a high concentration of defects. It is highly active in converting CO2 to CO, with a production rate of ~1.6 × 104 μmol hour−1 g−1. No measurable H2 is generated during the reaction, leading to nearly 100% selective CO production over H2 evolution. When the spongy Ni-organic catalyst is enriched with Rh or Ag nanocrystals, the controlled photocatalytic CO2 reduction reactions generate formic acid and acetic acid. Achieving such a spongy nickel-organic photocatalyst is a critical step toward practical production of high-value multicarbon fuels using solar energy. PMID:28782031

  16. Selective CT for PET/CT: dose reduction in Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital Medical Center, Section of Nuclear Medicine, Department of Radiology, Cincinnati, OH (United States); Palumbo, Joseph S. [Cincinnati Children' s Hospital Medical Center, Cancer and Blood Diseases Institute, Department of Pediatrics, Cincinnati, OH (United States)

    2014-08-23

    In Langerhans cell histiocytosis (LCH), FDG PET demonstrates active disease in bone. Other imaging modalities show the effects of bone destruction by LCH. To evaluate a selective CT method for reducing effective dose from FDG PET/CT in LCH, using whole-body modified attenuation correction CT at extremely low exposure settings, with repeat selective limited-volume CT at typical localization settings. Fifty-one PET/CT scans were performed in 23 LCH patients, median patient age 8.5 years (range: 1-25 years). Thirty-four were performed with modified attenuation correction CT settings, with bed positions (excluding head and neck) repeated at localization CT settings in regions with abnormal or difficult to interpret PET findings. Of 34 modified attenuation correction PET/CT scans, 10 required repeat localization CT of 1 to 3 bed positions (total: 17 bed positions). Lytic bone lesions were easily recognized at modified attenuation correction settings. Calculated average effective dose for the 34 whole-body CT scans at modified attenuation correction settings was 1.65 mSv. Average effective dose per patient for repeat imaging of 17 bed positions at localization settings was 1.19 mSv. Average total effective dose from CT for all 34 scans performed at the modified attenuation correction CT settings, including the 10 repeat localization CT scans, was 2.0 mSv. High-quality PET scans were consistently obtained with reduced FDG-administered activities of 3.7 MBq/kg (0.10 mCi/kg). In active LCH, abnormal FDG uptake was seen in all lytic bone lesions ≥9 mm, including cranial vault lesions. Substantial reduction in effective dose is possible using selective CT techniques for FDG PET/CT. (orig.)

  17. Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO2 Reduction Using Water as an Electron Donor.

    Science.gov (United States)

    Shoji, Shusaku; Yamaguchi, Akira; Sakai, Etsuo; Miyauchi, Masahiro

    2017-06-21

    Thin film of SrTiO3 nanorods loaded with reduction and oxidation cocatalysts drove the selective reduction of carbon dioxide (CO2) into carbon monoxide (CO), as well as caused the production of equivalent oxygen molecules through water oxidation under UV irradiation. The described film functioned as a free-standing plate without any bias potential application, similar to a natural leaf. The film was facilely fabricated by a simple hydrothermal and annealing treatment of a titanium substrate to produce the SrTiO3 nanorod film (STO film) followed by two steps of loading the reduction and oxidation cocatalysts onto the surface of the STO. As a reduction cocatalyst, a CuxO nanocluster was chosen to achieve selective reduction of CO2 into CO, whereas a cobalt- and phosphate-based cocatalyst (CoPi) facilitated oxidation on the STO surface to promote oxygen generation. For the photocatalysis test, a wireless film was simply set into an aqueous solution bubbled with CO2 in a reactor, and CO production was observed in the headspace of the reactor under UV irradiation. Compared to the bare STO film, the dual cocatalyst-loaded STO film exhibited 2.5 times higher CO generation. H2 production was very limited in our system, and the amount of molecules generated by the reduction reaction was almost twice that of the generated oxygen molecules, proving that water molecules acted as electron donors. Our artificial leaf consists of abundant and nontoxic natural elements and represents the first achievement of stoichiometric CO2 reduction using water as an electron donor by a free-standing natural leaflike plate form.

  18. Electrochemical NOx reduction on an LSM/CGO symmetric cell modified by NOx adsorbents

    DEFF Research Database (Denmark)

    Shao, Jing; Kammer Hansen, Kent

    2013-01-01

    to the impedance of the diffusion of NOx to the reaction sites by the adsorption layer. For lowering the operation temperature and minimizing the power consumption, adding an adsorption layer was shown to be the optimum approach for modifying the electrochemical cell by NOx adsorbents. The square wave (SV......This study investigated the effect of modifying a (La0.85Sr0.15)0.99MnO3 (LSM)/Ce0.9Gd0.1O1.95 (CGO) symmetric cell by NOx adsorbents on the electrochemical reduction of NOx under O2-rich conditions. The modification was based on a full ceramic cell structure without any noble metals. Three cells...... by impregnating the BaO into the electrode or by coating the Ba/Pt/Al2O3 layer on the surface of the electrode, significantly increased the activity and selectivity of the NOx reduction on the LSM/CGO symmetric cell by enhancing the adsorption and storage of the NOx species or providing reaction sites for direct...

  19. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    Directory of Open Access Journals (Sweden)

    K. B. He

    2012-10-01

    Full Text Available China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011–2015. Heavy-duty diesel vehicles (HDDVs have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS. The major finding is that neither the on-road distance-specific (g km−1 nor brake-specific (g kWh−1 NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km−1, 12.5 ± 1.3 g km−1, and 11.8 ± 2.0 g km−1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009 than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program are urged to secure the goal of total NOx

  20. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Mei, Donghai; Wang, Yilin; Szanyi, János; Peden, Charles H. F.

    2017-03-21

    Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu2+ and [CuII(OH)]+ ions. A redox reaction mechanism has also been established, where Cu-ions cycle between CuI and CuII oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (CuII CuI) is reasonably well understood, that for the oxidation half-cycle (CuI CuII) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated CuI ions, via formation of a transient [CuI(NH3)2]+-O2-[CuI(NH3)2]+ intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  1. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Yang; R.Q. Long

    1999-03-31

    In the last annual reports, we reported Cu-exchanged pillared clays as superior selective catalytic reduction (SCR) catalysts. During the past year we explored the possibilities with MCM-41, a new class of molecular sieve. In this report, Rh exchanged Al-MCM-41 is studied for the SCR of NO by C{sub 3}H{sub 6} in the presence of excess oxygen. It shows a high activity in converting NO to N{sub 2} and N{sub 2}O at low temperatures. In situ FT-IR studies indicate that Rh-NO{sup +} species (1910-1898 cm{sup {minus}1}) is formed on the Rh-Al-MCM-41 catalyst in flowing NO/He, NO+O{sub 2}/He and NO+C{sub 3}H{sub 6}+O{sub 2}/He at 100-350 C. This species is quite active in reacting with propylene and/or propylene adspecies (e.g., {pi}-C{sub 3}H{sub 5}, polyene, etc.) at 250 C in the presence/absence of oxygen, leading to the formation of the isocyanate species (Rh-NCO, at 2174 cm{sup {minus}1}), CO and CO{sub 2}. Rh-NCO is also detected under reaction conditions. A possible reaction pathway for reduction of NO by C{sub 3}H{sub 6} is proposed. In the SCR reaction, Rh-NO{sup +} and propylene adspecies react to generate the Rh-NCO species, then Rh-NCO reacts with O{sub 2}, NO and NO{sub 2} to produce N{sub 2}, N{sub 2}O and CO{sub 2}. Rh-NO{sup +} and Rh-NCO species are two main intermediates for the SCR reaction on Rh-Al-MCM-41 catalyst.

  2. Discovery of Novel NOx Catalysts for CIDI Applications by High-throughput Methods

    Energy Technology Data Exchange (ETDEWEB)

    Blint, Richard J. [General Motors Corporation, Warren, MI (United States)

    2007-12-31

    DOE project DE-PS26-00NT40758 has developed very active, lean exhaust, NOx reduction catalysts that have been tested on the discovery system, laboratory reactors and engine dynamometer systems. The goal of this project is the development of effective, affordable NOx reduction catalysts for lean combustion engines in the US light duty vehicle market which can meet Tier II emission standards with hydrocarbons based reductants for reducing NOx. General Motors (prime contractor) along with subcontractors BASF (Engelhard) (a catalytic converter developer) and ACCELRYS (an informatics supplier) carried out this project which began in August of 2002. BASF (Engelhard) has run over 16,000 tests of 6100 possible catalytic materials on a high throughput discovery system suitable for automotive catalytic materials. Accelrys developed a new database informatics system which allowed material tracking and data mining. A program catalyst was identified and evaluated at all levels of the program. Dynamometer evaluations of the program catalyst both with and without additives show 92% NOx conversions on the HWFET, 76% on the US06, 60% on the cold FTP and 65% on the Set 13 heavy duty test using diesel fuel. Conversions of over 92% on the heavy duty FTP using ethanol as a second fluid reductant have been measured. These can be competitive with both of the alternative lean NOx reduction technologies presently in the market. Conversions of about 80% were measured on the EUDC for lean gasoline applications without using active dosing to adjust the C:N ratio for optimum NOx reduction at all points in the certification cycle. A feasibility analysis has been completed and demonstrates the advantages and disadvantages of the technology using these materials compared with other potential technologies. The teaming agreements among the partners contain no obstacles to commercialization of new technologies to any potential catalyst customers.

  3. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  4. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2008-01-31

    Electric arc furnace (EAF) dust, which is produced as a result of the melting of automobile scrap in an electric arc furnace, contains considerable amounts of zinc and lead, which are of significant economic value. Typically, the other major components are iron oxide and calcium oxide with minor amounts of other metal oxides. In this research, a detailed thermodynamic study of the pyrometallurgical processing of the dust, using carbon as a reducing agent was performed. The SOLGASMIX solver of Outokumpu HSC Chemistry((R)) 5.1 was used to calculate the equilibrium composition under reducing conditions. The control input dust composition was as follows (in mass percent): 8.100% CaO, 8.250% 2CaO.SiO(2), 11.200% CaCO(3), 8.830% CaO.Fe(2)O(3), 7.840% Fe(3)O(4), 3.770% PbO, 38.150% ZnFe(2)O(4) and 13.860% ZnO. Selective reduction and separation of both the zinc and the lead as metallic vapours, from the iron, in oxide form, was examined. The separation of the zinc or the lead from the iron, was defined quantitatively in terms of the selectivity factor (logbeta) as follows. Equation [see the text] where the subscript symbols refer to the metal being present in gaseous (g), metallic solid (m), solid oxide (o) or metallic liquid (l) form, respectively. The standard calculations were performed for one hundred grams of dust at atmospheric pressure. The variables investigated were as follows; temperature in the range of 1273-1873K, reactant ratio (i.e. moles of carbon per gram of dust), dust composition, addition of inert gas and reduced total pressure. The calculated values were in reasonable agreement with those from previously published studies and also industrial results.

  5. Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  6. Nox2 and Nox4 influence neonatal c-kit(+) cardiac precursor cell status and differentiation.

    Science.gov (United States)

    Nadworny, Alyson S; Guruju, Mallik R; Poor, Daniel; Doran, Robert M; Sharma, Ram V; Kotlikoff, Michael I; Davisson, Robin L

    2013-09-15

    Redox status has emerged as critical in modulating stemness and lineage commitment in several precursor cell types. However, a role for redox genes, specifically NADPH oxidases (Nox), in cardiac precursor cells (CPCs) has not been established. We tested whether CPCs marked by type III receptor tyrosine kinase c-kit (c-kit(+)) exhibit a unique NADPH oxidase signature that confers precursor status and whether alterations in this profile are functionally linked to changes in lineage specification. Dihydroethidium (DHE) microfluorography indicated reduced basal reactive oxygen species (ROS) formation within early postnatal c-kit(+) CPCs. Real-time quantitative PCR revealed downregulation of ROS generator Nox2 and its subunit p67(phox) in c-kit(+) CPCs under basal conditions but upregulation of Nox2 and Nox4 over the course of differentiation. Adenoviral silencing of Nox2 and Nox4 increased expression of CPC markers c-kit and Flk-1 and blunted smooth and cardiac muscle differentiation, respectively, while overexpression of Nox2 and Nox4 significantly reduced c-kit expression. These changes were accompanied by altered expression of transcription factors regulating cardiac lineage commitment, Gata6 and Gata4, and cytokine transforming growth factor (TGF)-β1. Similar to other precursor cell types, RT(2)Profiler PCR Arrays revealed that c-kit(+) CPCs also exhibit enhanced antioxidant capacity at the mRNA level. In conclusion, we report that c-kit(+) CPCs demonstrate reduced Nox2 expression and ROS levels and that increases in Nox2 and Nox4 influence their differentiation into mature cells. We speculate that ROS generators Nox2 and Nox4, along with the antioxidant genes identified by PCR Arrays, may be novel targets in CPCs that could prove useful in cell-based therapy of the heart.

  7. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    Science.gov (United States)

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.

  8. Combining Co-Benefits and Stakeholders Perceptions into Green Infrastructure Selection for Flood Risk Reduction

    Directory of Open Access Journals (Sweden)

    Alida Alves

    2018-02-01

    Full Text Available An important increase in flood risk levels is expected in future decades in many areas around the globe. In addition, the traditional approaches for flood management offer options with low sustainability. As a response, the use of non-traditional drainage measures, also called green infrastructures, has been increasingly suggested in the last years. One important reason for their increasing popularity has been the co-benefits that they offer to the environment. The development of an efficient planning for sustainable urban drainage systems is a complex process that needs the involvement of multiple stakeholders. Moreover, the measures to be adopted should be evaluated considering their potential to achieve multiple benefits related to human well-being, rather than just to flood risk management. In this work, we propose a framework for the selection of green infrastructures on the basis of a co-benefits analysis. The aim is to include the achievement of co-benefits and human well-being into decision-making for flood management, considering the stakeholders’ perceptions to define the most important benefits to be enhanced. The application of the framework presented here to a case study in Ayutthaya, Thailand, shows the importance of including different stakeholder’s opinions. In addition, it shows that decision makers should consider locally defined co-benefits as well as flood risk reduction when defining which green infrastructures to apply.

  9. Selective Catalytic Reduction of Nitric Oxide in Diesel Engine Exhaust over Monolithic

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhairi Abdullah

    2009-01-01

    Full Text Available Selective catalytic reduction (SCR of nitric oxide (NO in diesel engine exhaust over Cu-Zn/ZSM-5 washcoated ceramic monolithic catalysts is reported. The washcoat component was prepared by ion-exchanging ZSM-5 (Si/Al=40 with zinc while copper was incorporated through impregnation. The dispersed washcoat component was then incorporated into 400 cpsi ceramic monolith through a dipping process with the final loadings between 19.6 wt. % and 31.4 wt. %. The SCR process was studied with a feed comprising of 900 ppm NO, 2,000 ppm iso butane and 3 % oxygen at gas hourly space velocities (GHSV between 5,000 and 13,000 h-1. NO conversion increased until a loading of 23.6 wt. % to give a conversion of 88 % at 400 °C. The activity dropped at higher loadings due to the partial blockage of cell openings and diffusion limitations while unstable washcoating adherence was also demonstrated. After an initial deactivation of about 10 % in the first 48 h, this catalyst showed stable residual activity. Between 325 and 375 °C, minimal effect on the activity was detected when the space time was reduced from 0.94 s to 0.24 s, suggesting the absence of external mass transfer limitations for up to a GHSV of 16,000 h-1.

  10. Reduction of intraspecific aggression in adult rats by neonatal treatment with a selective serotonin reuptake inhibitor

    Directory of Open Access Journals (Sweden)

    Manhães de Castro R.

    2001-01-01

    Full Text Available Most studies suggest that serotonin exerts an inhibitory control on the aggression process. According to experimental evidence, this amine also influences growth and development of the nervous tissue including serotoninergic neurons. Thus, the possibility exists that increased serotonin availability in young animals facilitates a long-lasting effect on aggressive responses. The present study aimed to investigate the aggressive behavior of adult rats (90-120 days treated from the 1st to the 19th postnatal day with citalopram (CIT, a selective serotonin reuptake inhibitor (20 mg/kg, sc, every 3 days. Aggressive behavior was induced by placing a pair of rats (matched by weight in a box (20 x 20 x 20 cm, and submitting them to a 20-min session of electric footshocks (five 1.6-mA - 2-s current pulses, separated by a 4-min intershock interval. When compared to the control group (rats treated for the same period with equivalent volumes of saline solution, the CIT group presented a 41.4% reduction in the duration of aggressive response. The results indicate that the repeated administration of CIT early in life reduces the aggressive behavior in adulthood and suggest that the increased brain serotoninergic activity could play a role in this effect.

  11. Optimization of internals for Selective Catalytic Reduction (SCR) for NO removal.

    Science.gov (United States)

    Lei, Zhigang; Wen, Cuiping; Chen, Biaohua

    2011-04-15

    This work tried to identify the relationship between the internals of selective catalytic reduction (SCR) system and mixing performance for controlling ammonia (NH(3)) slip. In the SCR flow section, arranging the flow-guided internals can improve the uniformity of velocity distribution but is unfavorable for the uniformity of NH(3) concentration distribution. The ammonia injection grids (AIG) with four kinds of nozzle diameters (i.e., 1.0 mm, 1.5 mm, 2.0 mm, and mixed diameters) were investigated, and it was found that the AIG with mixed nozzle diameters in which A3, A4, B3, and B4 nozzles' diameters are 1.0 mm and other nozzles' diameters are 1.5 mm is the most favorable for the uniformity of NH(3) concentration distribution. In the SCR reactor section, the appropriate space length between two catalyst layers, which serves as gas mixing in order to prevent maldistribution of gas concentrations into the second catalyst layer, under the investigated conditions is about 100, 1000, and 12 mm for honeycomb-like cordierite catalyst, plate-type catalysts with parallel channel arrangement, and with cross channel arrangement, respectively. Therefore, the cross channel arrangement is superior to the parallel channel arrangement in saving the SCR reactor volume.

  12. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  13. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    Science.gov (United States)

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  14. Real world NOx emissions of Euro V vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, R.; Vonk, W.A.; Verbeek, R.P.; Dekker, H. [TNO Science and Industry, Delft (Netherlands)

    2010-11-15

    In the past decade, vehicle emissions have been reduced substantially as a result of the European emission legislation. Air quality problems are still present, however, in particular in urban areas where local authorities have difficulty meeting European limits regarding air quality (mainly NO2). Therefore, the emission performance of vehicles under urban conditions is of increasing importance for air quality improvement in cities. In this context, TNO was commissioned by the Dutch Ministry of Environment (VROM) to investigate the real-world NOx emissions of Euro V trucks and buses during the past two years. The investigation has shown that, in general, there is a large variety in real-world emissions between different vehicles, in particular under urban conditions. Some vehicles demonstrate the possibility of achieving low emissions under urban conditions, but the results also clearly show that this is not the case for most of the trucks. This outcome is based on two lines of research. Firstly, the real world emissions of eleven trucks and one bus were measured on-road using a Portable Emission Measurement System (PEMS), under conditions typical of everyday use. Secondly, AdBlue consumption data for a number of Dutch vehicle fleets were analysed. AdBlue is the reagent that is used for NOx emission reduction in SCR systems (catalytic after treatment systems), and the amount of reagent used in daily practice is related to the real-world NOx emissions. Both lines of research support the general outcome.

  15. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  16. FORUM: Bioinspired Heme, Heme/non-heme Diiron, Heme/copper and Inorganic NOx Chemistry: ·NO(g) Oxidation, Peroxynitrite-Metal Chemistry and ·NO(g) Reductive Coupling

    Science.gov (United States)

    Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.

    2010-01-01

    The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386

  17. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  18. Sulfur poisoning and regeneration of the Ag/γ-Al2O3 catalyst for H2-assisted SCR of NOx by ammonia

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Khan, Tuhin Suvra; Bligaard, Thomas

    2012-01-01

    Sulfur poisoning and regeneration mechanisms for a 2% Ag/γ-Al2O3 catalyst for the H2-assisted selective catalytic reduction of NOx by NH3 are investigated. The catalyst has medium sulfur tolerance at low temperatures, however a good capability of regeneration at 670°C under lean conditions when H2...... is present. These heating conditions can easily be established during soot filter regeneration. Furthermore, two types of active sites could be identified with different regeneration capabilities, namely finely dispersed Ag and larger Ag nanoparticles. The most active sites are associated with the finely...

  19. Evaluation of NOx flue gas analyzers for accuracy and their applicability for low-concentration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steven Gluck; Chuck Glenn; Tim Logan; Bac Vu; Mike Walsh; Pat Williams [Dow Chemical Co., Freeport, TX (USA)

    2003-06-01

    The requirements of the Texas State Implementation Plan of the U.S. Clean Air Act for the Houston-Galveston Ozone Nonattainment Area stipulate large reductions in oxides of nitrogen (NOx) emissions. A large number of sources at Dow Chemical Co. sites within the nonattainment area may require the addition of continuous emission monitoring systems (CEMS) for online analysis of NOx, CO, and O{sub 2}. At the outset of this work, it was not known whether the analyzers could accurately measure NOx as low as 2 ppm. Therefore, NOx CEMS analyzers from five different companies were evaluated for their ability to reliably measure NOx in the 2-20 ppm range. Testing was performed with a laboratory apparatus that accurately simulated different mixtures of flue gas and, on a limited basis, simulated a dual-train sampling system on a gas turbine. The results indicate that this method is a reasonable approach for analyzer testing and reveal important technical performance aspects for accurate NOx measurements. Several commercial analyzers, if installed in a CEMS application with sampling conditioning components similar to those used in this study, can meet the U.S. Environmental Protection Agency s measurement data quality requirements for accuracy. 13 refs., 9 figs., 8 tabs.

  20. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  1. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2.

    Science.gov (United States)

    Ju, Wen; Bagger, Alexander; Hao, Guang-Ping; Varela, Ana Sofia; Sinev, Ilya; Bon, Volodymyr; Roldan Cuenya, Beatriz; Kaskel, Stefan; Rossmeisl, Jan; Strasser, Peter

    2017-10-16

    Direct electrochemical reduction of CO 2 to fuels and chemicals using renewable electricity has attracted significant attention partly due to the fundamental challenges related to reactivity and selectivity, and partly due to its importance for industrial CO 2 -consuming gas diffusion cathodes. Here, we present advances in the understanding of trends in the CO 2 to CO electrocatalysis of metal- and nitrogen-doped porous carbons containing catalytically active M-N x moieties (M = Mn, Fe, Co, Ni, Cu). We investigate their intrinsic catalytic reactivity, CO turnover frequencies, CO faradaic efficiencies and demonstrate that Fe-N-C and especially Ni-N-C catalysts rival Au- and Ag-based catalysts. We model the catalytically active M-N x moieties using density functional theory and correlate the theoretical binding energies with the experiments to give reactivity-selectivity descriptors. This gives an atomic-scale mechanistic understanding of potential-dependent CO and hydrocarbon selectivity from the M-N x moieties and it provides predictive guidelines for the rational design of selective carbon-based CO 2 reduction catalysts.Inexpensive and selective electrocatalysts for CO 2 reduction hold promise for sustainable fuel production. Here, the authors report N-coordinated, non-noble metal-doped porous carbons as efficient and selective electrocatalysts for CO 2 to CO conversion.

  2. Optimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis

    Directory of Open Access Journals (Sweden)

    Amir Ghanifar

    2016-06-01

    Full Text Available Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the optimal wavelength for estimating the changes in urea, creatinine, and uric acid in dialysate, using ultraviolet (UV spectroscopy. Materials and Methods In this study, nine uremic patients were investigated, using on-line spectrophotometry. The on-line absorption measurements (UV radiation were performed with a spectrophotometer module, connected to the fluid outlet of the dialysis machine. Dialysate samples were obtained and analyzed, using standard biochemical methods. Optimal wavelengths for both creatinine and uric acid were selected by using a combination of genetic algorithms (GAs, i.e., GA-partial least squares (GA-PLS and interval partial least squares (iPLS. Results The Artifitial Neural Network (ANN sensitivity analysis determined the wavelengths of the UV band most suitable for estimating the concentration of creatinine and uric acid. The two optimal wavelengths were 242 and 252 nm for creatinine and 295 and 298 nm for uric acid. Conclusion It can be concluded that the reduction ratio of creatinine and uric acid (dialysis efficiency could be continuously monitored during hemodialysis by UV spectroscopy.Compared to the conventional method, which is particularly sensitive to the sampling technique and involves post-dialysis blood sampling, iterative measurements throughout the dialysis session can yield more reliable data.

  3. Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction.

    Science.gov (United States)

    Li, Xiaogang; Bi, Wentuan; Chen, Minglong; Sun, Yuexiang; Ju, Huanxin; Yan, Wensheng; Zhu, Junfa; Wu, Xiaojun; Chu, Wangsheng; Wu, Changzheng; Xie, Yi

    2017-10-25

    Electrochemical reduction of carbon dioxide (CO2) to value-added carbon products is a promising approach to reduce CO2 levels and mitigate the energy crisis. However, poor product selectivity is still a major obstacle to the development of CO2 reduction. Here we demonstrate exclusive Ni-N4 sites through a topo-chemical transformation strategy, bringing unprecedentedly high activity and selectivity for CO2 reduction. Topo-chemical transformation by carbon layer coating successfully ensures preservation of the Ni-N4 structure to a maximum extent and avoids the agglomeration of Ni atoms to particles, providing abundant active sites for the catalytic reaction. The Ni-N4 structure exhibits excellent activity for electrochemical reduction of CO2 with particularly high selectivity, achieving high faradaic efficiency over 90% for CO in the potential range from -0.5 to -0.9 V and gives a maximum faradaic efficiency of 99% at -0.81 V with a current density of 28.6 mA cm-2. We anticipate exclusive catalytic sites will shed new light on the design of high-efficiency electrocatalysts for CO2 reduction.

  4. Correlating Engine NOx Emission with Biodiesel Composition

    Science.gov (United States)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2017-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  5. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction

    DEFF Research Database (Denmark)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia

    2017-01-01

    Currently, no catalysts are completely selective for the electrochemical CO2 Reduction Reaction (CO2RR). Based on trends in density functional theory calculations of reaction intermediates we find that the single metal site in a porphyrine-like structure has a simple advantage of limiting the com...

  6. New insights into the active surface species of silver alumina catalysts in the selective catalytic reduction of NO

    NARCIS (Netherlands)

    Korhonen, S.T.; Beale, A.M.; Newton, M.A.; Weckhuysen, B.M.

    2011-01-01

    The performance of silver alumina catalysts and silver aluminate was studied in the selective catalytic reduction (SCR) of NO by propene. The use of boehmite during the impregnation step ensured a strong interaction between the silver species and the alumina surface in the final calcined catalyst.

  7. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  8. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-01

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3

  9. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  10. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Science.gov (United States)

    2010-07-01

    ... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of...

  11. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  12. Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations

    Directory of Open Access Journals (Sweden)

    S. Szopa

    2005-01-01

    Full Text Available The objective of this work was to develop and assess an automatic procedure to generate reduced chemical schemes for the atmospheric photooxidation of volatile organic carbon (VOC compounds. The procedure is based on (i the development of a tool for writing the fully explicit schemes for VOC oxidation (see companion paper Aumont et al., 2005, (ii the application of several commonly used reduction methods to the fully explicit scheme, and (iii the assessment of resulting errors based on direct comparison between the reduced and full schemes. The reference scheme included seventy emitted VOCs chosen to be representative of both anthropogenic and biogenic emissions, and their atmospheric degradation chemistry required more than two million reactions among 350000 species. Three methods were applied to reduce the size of the reference chemical scheme: (i use of operators, based on the redundancy of the reaction sequences involved in the VOC oxidation, (ii grouping of primary species having similar reactivities into surrogate species and (iii grouping of some secondary products into surrogate species. The number of species in the final reduced scheme is 147, this being small enough for practical inclusion in current three-dimensional models. Comparisons between the fully explicit and reduced schemes, carried out with a box model for several typical tropospheric conditions, showed that the reduced chemical scheme accurately predicts ozone concentrations and some other aspects of oxidant chemistry for both polluted and clean tropospheric conditions.

  13. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Ponnusamy, Senthil [ORNL; Ferguson, Harley Douglas [ORNL; Williams, Aaron M [ORNL; Tassitano, James B [ORNL

    2007-09-01

    efficiency and emissions of natural gas reciprocating engines are being pursued. Approaches include: stoichiometric engine operation with exhaust gas recirculation and three-way catalysis, advanced combustion modes such as homogeneous charge compression ignition, and extension of the lean combustion limit with advanced ignition concepts and/or hydrogen mixing. The research presented here addresses the technical approach of combining efficient lean spark-ignited natural gas combustion with low emissions obtained from a lean NOx trap catalyst aftertreatment system. This approach can be applied to current lean engine technology or advanced lean engines that may result from related efforts in lean limit extension. Furthermore, the lean NOx trap technology has synergy with hydrogen-assisted lean limit extension since hydrogen is produced from natural gas during the lean NOx trap catalyst system process. The approach is also applicable to other lean engines such as diesel engines, natural gas turbines, and lean gasoline engines; other research activities have focused on those applications. Some commercialization of the technology has occurred for automotive applications (both diesel and lean gasoline engine vehicles) and natural gas turbines for stationary power. The research here specifically addresses barriers to commercialization of the technology for large lean natural gas reciprocating engines for stationary power. The report presented here is a comprehensive collection of research conducted by Oak Ridge National Laboratory (ORNL) on lean NOx trap catalysis for lean natural gas reciprocating engines. The research was performed in the Department of Energy's ARES program from 2003 to 2007 and covers several aspects of the technology. All studies were conducted at ORNL on a Cummins C8.3G+ natural gas engine chosen based on industry input to simulate large lean natural gas engines. Specific technical areas addressed by the research include: NOx reduction efficiency, partial

  14. A kinetic model of the hydrogen assisted selective catalytic reduction of NO with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Olsson, Louise; Fogel, Sebastian

    2013-01-01

    A global kinetic model which describes H2-assisted NH3-SCR over an Ag/Al2O3 monolith catalyst has been developed. The intention is that the model can be applied for dosing NH3 and H2 to an Ag/Al2O3 catalyst in a real automotive application as well as contribute to an increased understanding...... of the reaction mechanism for NH3-SCR. Therefore, the model needs to be simple and accurately predict the conversion of NOx. The reduction of NO is described by a global reaction, with a molar stoichiometry between NO, NH3 and H2 of 1:1:2. Further reactions included in the model are the oxidation of NH3 to N2...... and NO, oxidation of H2, and the adsorption and desorption of NH3. The model was fitted to the results of an NH3-TPD experiment, an NH3 oxidation experiment, and a series of H2-assisted NH3-SCR steady-state experiments. The model predicts the conversion of NOx well even during transient experiments....

  15. Medium effects are as important as catalyst design for selectivity in electrocatalytic oxygen reduction by iron-porphyrin complexes.

    Science.gov (United States)

    Rigsby, Matthew L; Wasylenko, Derek J; Pegis, Michael L; Mayer, James M

    2015-04-08

    Several substituted iron-porphyrin complexes were evaluated for oxygen reduction reaction (ORR) electrocatalysis in different homogeneous and heterogeneous media. The selectivity for four-electron reduction to H2O versus two-electron reduction to H2O2 varies substantially from one medium to another for a given catalyst. In many cases, the influence of the medium in which the catalyst is evaluated has a larger effect on the observed selectivity than the factors attributable to chemical modification of the catalyst. For instance, introduction of potential proton relays has variable effects depending on the catalyst medium. Thus, comparisons of selectivity results from supported and soluble molecular ORR electrocatalysts must be interpreted with caution, as selectivity is a property not only of the catalyst, but also of the larger mesoscale environment beyond the catalyst. Still, in all the direct pairwise comparisons in the same medium, the catalysts with potential proton relays have similar or better selectivity for the preferred 4e(-) path.

  16. Energy supply structures and strategies for the reduction of emissions in selected Central and Eastern European countries

    Energy Technology Data Exchange (ETDEWEB)

    Jattke, A.; Haasis, H.-D.; Oder, C.; Russ, P.; Rentz, O. (University of Karlsruhe, Karlsruhe (Germany). Institute for Industrial Production)

    1993-01-01

    This article sets out to analyse strategies for the reduction of SO[sub 2] and NO[sub x] emissions applied by a selection of Central and Eastern European countries, together with the impact of these strategies upon national energy supply structure. Hungary, Lithuania and the European sector of Russia are used as representative examples of the wide variety of energy industry structures and future developments in Eastern Europe. Current energy supply, transformation and consumer demand conditions in the various economic sectors (industry, transport, the domestic sector, etc.) have been used as a basis for the establishment of the national cost of emission reduction strategies, together with preferred national structure for emission reduction measures. Calculated cost functions are based upon a technical and economic assessment of available energy transformation and emission reduction technologies. The potential of various options for emission reduction, such as the substitution of fuels or technologies, secondary emission reduction techniques and energy conservation measures have also been quantified. This process has been used as a means of identifying and assessing the interdependence of strategies for the reduction of various atmospheric pollutants. The EFOM-ENV Energy/Emission Model has been used as a methodological tool. 15 refs., 13 figs., 1 tab.

  17. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  18. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach.

  19. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    Science.gov (United States)

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-07

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  20. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis.

    Science.gov (United States)

    Infanger, David W; Cao, Xian; Butler, Scott D; Burmeister, Melissa A; Zhou, Yi; Stupinski, John A; Sharma, Ram V; Davisson, Robin L

    2010-06-11

    Myocardial infarction (MI)-induced heart failure is characterized by central nervous system-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in heart failure. Redox signaling in the PVN and other central nervous system sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Noxs) is implicated in some neuro-cardiovascular diseases. We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homolog compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the periinfarct region of the heart. These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced heart failure.

  1. Kinetic and DFT studies on the Ag/TiO2-photocatalyzed selective reduction of nitrobenzene to aniline.

    Science.gov (United States)

    Tada, Hiroaki; Ishida, Tetsuji; Takao, Ayako; Ito, Seishiro; Mukhopadhyay, Sudip; Akita, Tomoki; Tanaka, Koji; Kobayashi, Hisayoshi

    2005-08-12

    TiO2 particles loaded with silver nanoparticles with a mean diameter of 1.5 nm exhibit a high photocatalytic activity (84 % conversion after 1 h irradiation) for the reduction of nitrobenzene to aniline with 100 % selectivity in the presence of CH3OH (concentration=100 mM). High-resolution transmission electron microscopic studies of Pt-photodeposited Ag/TiO2 demonstrate that the Ag nanoparticles act as reduction sites in the photocatalytic reaction. Both spectroscopic measurements and density functional theory (DFT) calculations reveal that nitrobenzene is selectively adsorbed onto the Ag surfaces of Ag/TiO2 via partial electron transfer from Ag to nitrobenzene, whereas the interaction between aniline and Ag/TiO2 is weak. The kinetic analysis indicates that the recombination between the electrons flowing into the Ag nanoparticle and the holes left in the TiO2 valence band is significantly suppressed, particularly in the presence of CH3OH. The high activity and selectivity in the present Ag/TiO2-photocatalyzed reduction are rationalized in terms of the charge separation efficiency, the selective adsorption of the reactants on the catalyst surfaces, and the restriction of the product readsorption.

  2. Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals.

    Science.gov (United States)

    Kuehnel, Moritz F; Orchard, Katherine L; Dalle, Kristian E; Reisner, Erwin

    2017-05-31

    Photocatalytic conversion of CO2 into carbonaceous feedstock chemicals is a promising strategy to mitigate greenhouse gas emissions and simultaneously store solar energy in chemical form. Photocatalysts for this transformation are typically based on precious metals and operate in nonaqueous solvents to suppress competing H2 generation. In this work, we demonstrate selective visible-light-driven CO2 reduction in water using a synthetic photocatalyst system that is entirely free of precious metals. We present a series of self-assembled nickel terpyridine complexes as electrocatalysts for the reduction of CO2 to CO in organic media. Immobilization on CdS quantum dots allows these catalysts to be active in purely aqueous solution and photocatalytically reduce CO2 with >90% selectivity under UV-filtered simulated solar light irradiation (AM 1.5G, 100 mW cm-2, λ > 400 nm, pH 6.7, 25 °C). Correlation between catalyst immobilization efficiency and product selectivity shows that anchoring the molecular catalyst on the semiconductor surface is key in controlling the selectivity for CO2 reduction over H2 evolution in aqueous solution.

  3. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis.

    Science.gov (United States)

    Loffredo, L; Del Ben, M; Perri, L; Carnevale, R; Nocella, C; Catasca, E; Baratta, F; Ceci, F; Polimeni, L; Gozzo, P; Violi, F; Angelico, F

    2016-08-01

    Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is considered a pathogenetic mechanism determining fibrosis and disease progression in non-alcoholic steatohepatitis (NASH). Polyphenols exert antioxidant action and inhibit NADPH oxidase in humans. To analyse the effect of cocoa polyphenols on NADPH oxidase isoform 2 (NOX2) activation, oxidative stress and hepatocyte apoptosis in a population affected by NASH. In a cross-sectional study comparing 19 NASH and 19 controls, oxidative stress, as assessed by serum NOX2 activity and F2-isoprostanes, and hepatocyte apoptosis, as assessed by serum cytokeratin-18 (CK-18) levels, were measured. Furthermore, the 19 NASH patients were randomly allocated in a crossover design to 40 g/day of dark chocolate (>85% cocoa) or 40 g/day of milk chocolate (chocolate intake. Compared to controls, NASH patients had higher sNOX2-dp, serum isoprostanes and CK-18 levels. A significant difference for treatments was found in subjects with respect to sNOX2-dp, serum isoprostanes and serum CK-18. The pairwise comparisons showed that, compared to baseline, after 14 days of dark chocolate intake, a significant reduction in sNOX2-dp serum isoprostanes and CK-18 M30 was found. No change was observed after milk chocolate ingestion. A simple linear regression analysis showed that ∆ of sNOX2-dp was associated with ∆ of serum isoprostanes. Cocoa polyphenols exert an antioxidant activity via NOX2 down-regulation in NASH patients. © 2016 John Wiley & Sons Ltd.

  4. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  5. Mathematical modeling of an in-line low-NOx calciner

    DEFF Research Database (Denmark)

    Iliuta, Ion; Dam-Johansen, Kim; Jensen, Lars Skaarup

    2002-01-01

    The reduction of the NOx content in in-line-calciner-type kiln systems can be made by optimization of the primary filing in the rotary kiln and of the secondary firing in the calciner. Because the optimization of calciner offers greater opportunities the mathematical modeling of this reactor...... is very important. A heterogeneous, dynamic mathematical model for an in-line low-NOx calciner based on non-isothermal diffusion reaction models for char combustion and limestone calcination has been developed. The importance of the rate at which preheated combustion air was mixed into the main flow...

  6. Sequential Fermentation with Selected Immobilized Non-Saccharomyces Yeast for Reduction of Ethanol Content in Wine

    National Research Council Canada - National Science Library

    Canonico, Laura; Comitini, Francesca; Oro, Lucia; Ciani, Maurizio

    2016-01-01

    .... In the present study, to reduce ethanol content in wine, a microbiological approach was investigated, using immobilized selected strains of non-Saccharomyces yeasts namely Starmerella bombicola...

  7. deNOx catalysts for biomass combustion

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus

    The present thesis revolves around the challenges involved in removal of nitrogen oxides in biomass fired power plants. Nitrogen oxides are unwanted byproducts formed to some extent during almost any combustion. In coal fired plants these byproducts are removed by selective catalytic reduction...

  8. Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

    Directory of Open Access Journals (Sweden)

    Thomas Simons

    2012-09-01

    Full Text Available In a proof-of-concept study we demonstrate in situ reaction monitoring of DeNOx-SCR on proton-conducting zeolites serving as catalyst and gas sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH3 desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNOx-SCR reaction conditions was found. The Fe-loaded catalyst shows a significantly lower onset temperature, and time-dependent measurements suggest different SCR reaction mechanisms for the two catalysts tested. These results may help in the development of catalysts for the reduction of NOx emissions and ammonia consumption, and provide insight into the elementary catalytic process promoting a full description of the NH3-SCR reaction system.

  9. Selective Reduction of CO2 to CH4 by Tandem Hydrosilylation with Mixed Al/B Catalysts

    KAUST Repository

    Chen, Jiawei

    2016-04-04

    This contribution reports the first example of highly selective reduction of CO2 into CH4 via tandem hydrosilylation with mixed main-group organo-Lewis acid (LA) catalysts [Al(C6F5)3 + B(C6F5)3] {[Al] + [B]}. As shown by this comprehensive experimental and computational study, in this unique tandem catalytic process, [Al] effectively mediates the first step of the overall reduction cycle, namely the fixation of CO2 into HCOOSiEt3 (1) via the LA-mediated C=O activation, while [B] is incapable of promoting the same transformation. On the other hand, [B] is shown to be an excellent catalyst for the subsequent reduction steps 2–4, namely the hydrosilylation of the more basic intermediates [1 to H2C(OSiEt3)2 (2) to H3COSiEt3 (3) and finally to CH4] through the frustrated-Lewis-pair (FLP)-type Si–H activation. Hence, with the required combination of [Al] and [B], a highly selective hydrosilylative reduction of CO2 system has been developed, achieving high CH4 production yield up to 94%. The remarkably different catalytic behaviors between [Al] and [B] are attributed to the higher overall Lewis acidity of [Al] derived from two conflicting factors (electronic and steric effects), which renders the higher tendency of [Al] to form stable [Al]–substrate (intermediate) adducts with CO2 as well as subsequent intermediates 1, 2 and 3. Overall, the roles of [Al] and [B] are not only complementary but also synergistic in the total reduction of CO2, which render both [Al]-mediated first reduction step and [B]-mediated subsequent steps catalytic.

  10. Selective Reduction of CO2 to CH4 by Tandem Hydrosilylation with Mixed Al/B Catalysts.

    Science.gov (United States)

    Chen, Jiawei; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-04-27

    This contribution reports the first example of highly selective reduction of CO2 into CH4 via tandem hydrosilylation with mixed main-group organo-Lewis acid (LA) catalysts [Al(C6F5)3 + B(C6F5)3] {[Al] + [B]}. As shown by this comprehensive experimental and computational study, in this unique tandem catalytic process, [Al] effectively mediates the first step of the overall reduction cycle, namely the fixation of CO2 into HCOOSiEt3 (1) via the LA-mediated C═O activation, while [B] is incapable of promoting the same transformation. On the other hand, [B] is shown to be an excellent catalyst for the subsequent reduction steps 2-4, namely the hydrosilylation of the more basic intermediates [1 to H2C(OSiEt3)2 (2) to H3COSiEt3 (3) and finally to CH4] through the frustrated Lewis pair (FLP)-type Si-H activation. Hence, with the required combination of [Al] and [B], a highly selective hydrosilylative reduction of CO2 system has been developed, achieving high CH4 production yield up to 94%. The remarkably different catalytic behaviors between [Al] and [B] are attributed to the higher overall Lewis acidity of [Al] derived from two conflicting factors (electronic and steric effects), which renders the higher tendency of [Al] to form stable [Al]-substrate (intermediate) adducts with CO2 as well as subsequent intermediates 1, 2, and 3. Overall, the roles of [Al] and [B] are not only complementary but also synergistic in the total reduction of CO2, which render both [Al]-mediated first reduction step and [B]-mediated subsequent steps catalytic.

  11. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of

  12. EMI reduction in sPWM driven SiC converter based on carrier frequency selection

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank

    2017-01-01

    High switching frequencies(>1 MHz) become available due to the development of wide bandgap semiconductors. This trend of increasing operating frequency in power electronics results in the reduction of output filter sizes and costs. As frequency increases, parasitic behavior of components become more

  13. Size-selective electrocatalytic activity of (Pt)n/MoS2for oxygen reduction reaction

    DEFF Research Database (Denmark)

    Bothra, Pallavi; Pandey, Mohnish; Pati, Swapan K.

    2016-01-01

    In the present work, we have investigated the electrocatalytic activity of the oxygen reduction reaction (ORR), O2 + 4H+ + 4e− → 2H2O, for (Pt)n clusters (n = 1, 2, 3, 5, 7, 10 and 12) adsorbed on semiconducting (2H) and metallic (1T) MoS2 monolayers using first principles density functional theo...

  14. Select barriers to harm-reduction services for IDUs in eastern Europe

    DEFF Research Database (Denmark)

    Curth, Nadja Kehler; Hansson, Liv Nanna; Storm, Frederikke

    2009-01-01

    In eastern Europe, the high prevalence rates of HIV and the hepatitis C virus (HCV) are concentrated among injecting drug users (IDUs). Harm reduction programmes such as needle and syringe programmes and opioid substitution therapy (OST) have been shown to be effective in preventing...... these infections. However, structural barriers can limit their effectiveness by hindering access....

  15. Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts

    Science.gov (United States)

    Neaţu, Ştefan; Maciá-Agulló, Juan Antonio; Garcia, Hermenegildo

    2014-01-01

    The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2. In this review we discuss some general features associated with the photocatalytic reduction of CO2 for the production of solar fuels, with considerations to be taken into account of the photocatalyst design, of the limitations arising from the lack of visible light response of titania, of the use of co-catalysts to overcome this shortcoming, together with several strategies that have been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to provide an exhaustive review of the area, but to present general aspects to be considered, and then to outline which are currently the most efficient photocatalytic systems. PMID:24670477

  16. Effects of a Twelve-Week Weight Reduction Exercise Programme on Selected Spatiotemporal Gait Parameters of Obese Individuals

    Directory of Open Access Journals (Sweden)

    Joseph A. Jegede

    2017-01-01

    Full Text Available Objectives. This study was carried out to investigate the effects of twelve-week weight reduction exercises on selected spatiotemporal gait parameters of obese individuals and compare with their normal weight counterparts. Methods. Sixty participants (30 obese and 30 of normal weight started but only 58 participants (obese = 30, normal weight = 28 completed the quasi-experimental study. Only obese group had 12 weeks of weight reduction exercise training but both groups had their walking speed (WS, cadence (CD, step length (SL, step width (SW, and stride length (SDL measured at baseline and at the end of weeks 4, 8, and 12 of the study. Data were analysed using appropriate descriptive and inferential statistics. Results. There was significantly lower WS, SL, and SDL but higher CD and SW in obese group than the normal weight group at baseline and week 12. However, the obese group had significantly higher percentage changes in all selected spatiotemporal parameters than the normal weight group. Conclusion. The 12-week weight reduction exercise programme produced significantly higher percentage changes in all selected spatiotemporal gait parameters in the obese than normal weight individuals and is recommended for improvement of these parameters among the obese individuals with gait related problems.

  17. Integrated assessment of health, crop, and climate impacts of mitigating excess diesel NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Henze, D. K.; Anenberg, S.; Miller, J.; Vicente, F.; Du, L.; Emberson, L.; Lacey, F.; Malley, C.; Minjares, R. J.

    2016-12-01

    Vehicle emissions contribute to tropospheric ozone and fine particulate matter (PM2.5), impacting human health, crop yields, and climate worldwide. Diesel cars, trucks, and buses produce 70% of global land transportation emissions of nitrogen oxides (NOx), a key PM2.5 and ozone precursor. Despite progressive tightening of regulated NOx emission limits in leading markets, current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that real-world diesel NOx emissions in 11 markets representing 80% of global diesel vehicle sales are on average 24% higher than certification limits indicate. This excess NOx contributed an estimated 33,000 additional ozone- and PM2.5-related premature deaths globally in 2015, including 6% of all EU-28 ozone- and PM2.5-related premature deaths. Next-generation diesel NOx standards and in-use compliance (more stringent than Euro 6/VI standards) could avoid 358,000 (5%) of global PM2.5- and ozone-related premature deaths in 2040 and up to 4% of ozone-related crop production loss regionally. Impacts of NOx-induced changes in aerosols, methane, and ozone on the global climate are found to present a small net positive radiative forcing (i.e., climate disbenefit), likely outweighed by the climate benefits of reductions to co-emitted black carbon aerosol. In some markets (Australia, Brazil, China, Mexico, and Russia), Euro 6/VI standards alone can achieve most (72-98%) of these health benefits. In India and the EU-28, reducing Euro 6 real-world NOx emissions through strengthened type-approval and in-use emissions testing programs (including market surveillance and expanded emissions test procedure boundaries) would achieve one-third of the health benefits from adopting next generation standards. Our results indicate that implementing stringent and technically feasible NOx emission regulations for diesel vehicles can substantially improve public health.

  18. Applications of oxygen for NOx control and CO2 capture in coal-fired power plants

    Directory of Open Access Journals (Sweden)

    Châtel-Pélage Fabienne

    2006-01-01

    Full Text Available Two promising combustion modification approaches applicable to pulverized coal fired boilers are presented: "Oxygen-Enriched Combustion" (OEC for NOx control and "Oxy-Combustion" (PC-OC for CO2 capture. Oxygen-enriched air rather than air is used as an oxidizer in the OEC technology. Unlike flue gas treatment technologies, OEC directly impacts the NOx formation process by significantly reducing the conversion of coal bound nitrogen to NOx. Pilot-scale and full-scale tests have shown 20 to 30% NOx reduction from an optimized staged-air baseline. In addition to the overall cost competitiveness and the reduced capital requirements, other significant advantages of the O2-enriched technology vs. existing low NOx technologies are presented. The PC-OC technology is shown as a cost-effective technology for CO2 capture from existing or new coal-fired power plants. Pure oxygen diluted in recycled flue gases is used as an oxidizer. The process has been successfully demonstrated and extensively characterized at pilot-scale level (1.5 MWt. The tests have shown substantial benefits of the PC-OC technology, in terms of NOx reduction (60-70% from air-baseline, overall plant efficiency, etc. The cost effectiveness of this capture technology compared to competitive amine scrubbing technology was investigated. The cost of CO2 avoided was around $36/ton for the new PC-OC cases, about $48/ton on a retrofit PC-OC case, which is about 25 to 40% cheaper than the amine scrubbing system. Those numbers were calculated for sub-critical units and include the cost of CO2 compression up to 80 bar. .

  19. The Reduction of NOx Using Pulsed Electron Beams

    Science.gov (United States)

    2015-12-30

    oxide is used as an anesthetic ( laughing gas) and propellant in whipped cream cans. Nitric oxide (NO) is a colorless gas which reacts almost...particular chemical species can exist under given conditions of temperature and pressure. However, the calculations tell nothing about the rates at which

  20. Kinetics and Mechanisms of NO(x) - Char Reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Suurerg, E.M.; Lilly, W.D.; Aarna, I.

    1997-12-31

    Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in char gasification behavior. Chars usually contain a pore size distribution, in which the larger macro- and mesopores play an important role in transport of reactants into the much smaller micropores, in which most gasification and combustion take place. Therefore, the effectiveness of micropores in gasification depends heavily on the numbers of meso- and macropores.

  1. An Efficient Method of HOG Feature Extraction Using Selective Histogram Bin and PCA Feature Reduction

    National Research Council Canada - National Science Library

    LAI, C. Q; TEOH, S. S

    2016-01-01

    .... In this paper, a time-efficient HOG-based feature extraction method is proposed. The method uses selective number of histogram bins to perform feature extraction on different regions in the image...

  2. Intercomparison of NOx emission inventories over East Asia

    Directory of Open Access Journals (Sweden)

    J. Ding

    2017-08-01

    Full Text Available We compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission inventory in ASia, MEIC (Multi-resolution Emission Inventory for China, CAPSS (Clean Air Policy Support System and EDGAR (Emissions Database for Global Atmospheric Research. Two of the satellite-derived inventories are estimated by using the DECSO (Daily Emission derived Constrained by Satellite Observations algorithm, which is based on an extended Kalman filter applied to observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which is based on an ensemble Kalman filter applied to observations of multiple species using either the chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial distribution of the inventories are compared on a national and regional scale. A distinction is also made between urban and rural areas. The intercomparison of all inventories shows good agreement in total NOx emissions over mainland China, especially for trends, with an average bias of about 20 % for yearly emissions. All the inventories show the typical emission reduction of 10 % during the Chinese New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of the differences show the importance of using observations from multiple instruments and a high spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate emission factors and activity information are required. The advantage of the satellite-derived approach is that the emissions are soon available after observation, while the strength of the bottom-up inventories is that they include

  3. Intercomparison of NOx emission inventories over East Asia

    Science.gov (United States)

    Ding, Jieying; Miyazaki, Kazuyuki; van der A, Ronald Johannes; Mijling, Bas; Kurokawa, Jun-ichi; Cho, SeogYeon; Janssens-Maenhout, Greet; Zhang, Qiang; Liu, Fei; Felicitas Levelt, Pieternel

    2017-08-01

    We compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission inventory in ASia), MEIC (Multi-resolution Emission Inventory for China), CAPSS (Clean Air Policy Support System) and EDGAR (Emissions Database for Global Atmospheric Research). Two of the satellite-derived inventories are estimated by using the DECSO (Daily Emission derived Constrained by Satellite Observations) algorithm, which is based on an extended Kalman filter applied to observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which is based on an ensemble Kalman filter applied to observations of multiple species using either the chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial distribution of the inventories are compared on a national and regional scale. A distinction is also made between urban and rural areas. The intercomparison of all inventories shows good agreement in total NOx emissions over mainland China, especially for trends, with an average bias of about 20 % for yearly emissions. All the inventories show the typical emission reduction of 10 % during the Chinese New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of the differences show the importance of using observations from multiple instruments and a high spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate emission factors and activity information are required. The advantage of the satellite-derived approach is that the emissions are soon available after observation, while the strength of the bottom-up inventories is that they include detailed information of

  4. Effect of NOx emission controls from world regions on the long-range transport of ozone air pollution and human mortality

    Science.gov (United States)

    West, J.; Naik, V.; Horowitz, L. W.

    2007-12-01

    We model the influences of 10% reductions in anthropogenic nitrogen oxide (NOx) emissions from each of nine world regions on surface ozone air quality in that region and all other regions, using the MOZART-2 model of tropospheric chemistry and transport. In doing so, we quantify the relative importance of long-range transport between different world regions for ozone. We find that the strongest inter-regional influences are for Europe to the Former Soviet Union (FSU), East Asia to Southeast Asia, and Europe to Africa. The largest influences per unit of NOx reduced, however, are seen for tropical source regions, due to greater sensitivity of ozone production to NOx emissions. Results show, for example, that NOx reductions in North America are about 20% as effective per ton at reducing ozone in Europe, as NOx reductions from Europe itself. In estimating the changes in cases of premature mortality associated with ozone, we find that NOx reductions in North America, Europe, and FSU reduce more mortalities outside of the source regions than within. Among world regions, an average ton of NOx reduced in India causes the greatest number of avoided mortalities (mainly in India itself). We also assess the long-term increases in global ozone resulting from methane increases due to the regional NOx reductions. For many of the more distant source-receptor pairs, the long-term increase in ozone roughly negates the direct short-term ozone decrease. The increase in methane and long-term ozone per unit of NOx reduced is greatest in tropical source regions and varies among different regions by a factor of ten.

  5. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. Reduction of Fecal Streptococcus and Salmonella by selected treatment methods for sludge and organic waste

    DEFF Research Database (Denmark)

    Jepsen, Svend Erik; Krause, Michael; Grüttner, Henrik

    1997-01-01

    The increasing utilization of waste water sludge and source-separated organic household waste in agriculture has brought the quality aspects into focus, among others the hygienic aspects. In this study, the reducting effect on Fecal Streptococcus (FS) and Salmonella of different methods...... for stabilization and methods for further treatment of sludge and organic waste has been investigated. The most common methods for stabilization, i.e. aerobic and anaerobic stabilization, only reduce the indicator organisms by approximately 1 logarithmic decade. Methods for further treatment of sludge and organic...... waste have shown reductions of microorganisms allowing for unrestricted utilization in agriculture, meeting the product control:FS below 100/g and no Salmonella detected. The effect of storage of sludge at summer and winter temperatures respectively has been investigated. At temperatures (around 20°C...

  7. Regional lightning NOx sources during the TROCCINOX experiment

    National Research Council Canada - National Science Library

    Mari, C; Chaboureau, J. P; Pinty, J. P; Duron, J; Mascart, P; Cammas, J. P; Gheusi, F; Fehr, T; Schlager, H; Roiger, A; Lichtenstein, M; Stock, P

    2006-01-01

    A lightning NOx (LiNOx) source has been implemented in the deep convection scheme of the Meso-NH mesoscale model following a mass-flux formalism coherent with the transport and scavenging of gases inside the convective scheme...

  8. Influence of sulphate doping on Pd/zirconia based catalysts for the selective catalytic reduction of nitrogen oxides with methane

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, P.; Faraldos, M.; Yates, M.; Bahamonde, A. [Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, Cantoblanco, 28049 Madrid (Spain)

    2007-02-15

    The effect of sulphating zirconia on the selective catalytic reduction of NO by CH{sub 4} in oxygen excess of Pd catalysts has been investigated. Since both the acidity and the Pd dispersion both contribute to the activity and selectivity of these catalysts a series of samples were prepared with different sulphate contents but maintaining the amount of Pd constant. Significant chemical and textural changes were caused by sulphating the zirconium hydroxide starting material, which lead to a clear improvement in the catalytic behaviour. A medium sulphate doping ({approx}4 wt.% expressed as SO{sub 4}{sup 2-}) was found to be the most adequate to promote activity and selectivity in these Pd-sulphate zirconia based catalysts. (author)

  9. CRADA Final Report: Mechanisms of Sulfur Poisoning of NOx Adsorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muntean, George G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peden, Charles H. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howden, Ken [Dept. of Energy (DOE), Washington DC (United States); Stafford, Randy [Cummins Inc., Columbus, IN (United States); Stang, John [Cummins Inc., Columbus, IN (United States); Yezerets, Aleksey [Cummins Inc., Columbus, IN (United States); Currier, Neal [Cummins Inc., Columbus, IN (United States); Chen, H. -Y. [Johnson Matthew Catalyst, Sevierville, TN (United States); Hess, H. [Johnson Matthew Catalyst, Sevierville, TN (United States)

    2009-03-01

    The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. The now commercial NOx adsorber (also known as lean-NOx trap (LNT) and NOx storage reduction (NSR) catalyst) technology is based upon the concept of storing NOx as nitrates over storage components, typically alkali or alkaline-earth species such as barium, during a lean-burn operation cycle and then reducing the stored nitrates to N2 during fuel-rich conditions over a precious metal catalyst. In part via this successful five-year CRADA project between PNNL and Cummins Inc. (CRADA PNNL/213), Cummins and the Johnson/Matthey Company commercialized this technology on the 2007 Dodge Ram pickup truck. In particular, this CRADA has focused on problems arising from either or both thermal and SO2 deactivation which were impeding the ability of the technology to meet durability standards. The results obtained in this CRADA have provided an essential understanding of these deactivation processes thereby leading to materials and process improvements that enabled the commercialization effort. The objective of this project has been to identify a clear pathway to robust NOx after-treatment solutions for light-duty diesel engines. The project focussed on understanding and characterizing the NOx storage, release and conversion of existing NOx adsorber materials. The impact of sulfur on these processes was studied, with special attention given to methods of regenerating the catalyst in the presence of sulfur and the effects of these regeneration treatments on long-term catalyst durability. Model catalysts and more fully formulated catalysts were both studied. The goal of this project has been to identify and understand the deactivation mechanisms of LNT materials in order to provide more robust systems for diesel after-treatment systems that will meet the key emission standards for NOx. Furthermore, the project aimed to provide information critical to

  10. Pattern of intraocular pressure reduction following laser trabeculoplasty in open-angle glaucoma patients: comparison between selective and nonselective treatment

    Directory of Open Access Journals (Sweden)

    Almeida Jr ED

    2011-07-01

    Full Text Available Eglailson Dantas Almeida Júnior1, Luciano Moreira Pinto1,2, Rodrigo Antonio Brant Fernandes1,2, Tiago Santos Prata1,31Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil; 2Cerpo Oftalmologia, São Paulo, Brazil; 3Hospital Medicina dos Olhos, São Paulo, BrazilObjective: To compare the pattern of intraocular pressure (IOP reduction following selective laser trabeculoplasty (SLT versus argon laser trabeculoplasty (ALT in open-angle glaucoma (OAG patients, and to investigate the ability of initial IOP reduction to predict mid-term success.Methods: A prospective, nonrandomized, interventional case series was carried out. Consecutive uncontrolled OAG glaucoma patients underwent SLT or ALT; the same preoperative medical regimen was maintained during follow-up. Data collected included age, type of OAG, pre- and postoperative IOP, number of glaucoma medications, and surgical complications. Post-treatment assessments were scheduled at day 1 and 7 and months 1, 3, and 6.Results: A total of 45 patients (45 eyes were enrolled [SLT group (n = 25; ALT group (n = 20]. Groups were similar for age, baseline IOP, and number of glaucoma medications (P ≥ 0.12. We found no significant differences in mean IOP reduction between SLT (5.1 ± 2.5 mmHg; 26.6% and ALT (4.4 ± 2.8 mmHg; 22.8% groups at month 6 (P = 0.38. Success rates (IOP ≤ 16 mmHg and IOP reduction ≥25% at last follow-up visit were similar for SLT (72% and ALT (65% groups (P = 0.36. Comparing the pattern of IOP reduction (% of IOP reduction at each visit between groups, we found a greater effect following SLT compared with ALT at day 7 (23.7% ± 13.7% vs 8.1% ± 9.5%; P < 0.001. No significant differences were observed at other time points (P ≥ 0.32. Additionally, the percentage of IOP reduction at day 7 and at month 6 were significantly correlated in the SLT group (R2 = 0.36; P < 0.01, but not in the ALT group (P = 0.89. Early postoperative success predicted late

  11. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  12. Gene silencing of Nox4 by CpG island methylation during hepatocarcinogenesis in rats

    Directory of Open Access Journals (Sweden)

    Guadalupe S. López-Álvarez

    2017-01-01

    Full Text Available The association between the downregulation of genes and DNA methylation in their CpG islands has been extensively studied as a mechanism that favors carcinogenesis. The objective of this study was to analyze the methylation of a set of genes selected based on their microarray expression profiles during the process of hepatocarcinogenesis. Rats were euthanized at: 24 h, 7, 11, 16 and 30 days and 5, 9, 12 and 18 months post-treatment. We evaluated the methylation status in the CpG islands of four deregulated genes (Casp3, Cldn1, Pex11a and Nox4 using methylation-sensitive high-resolution melting technology for the samples obtained from different stages of hepatocarcinogenesis. We did not observe methylation in Casp3, Cldn1 or Pex11a. However, Nox4 exhibited altered methylation patterns, reaching a maximum of 10%, even during the early stages of hepatocarcinogenesis. We observed downregulation of mRNA and protein of Nox4 (97.5% and 40%, respectively after the first carcinogenic stimulus relative to the untreated samples. Our results suggest that Nox4 downregulation is associated with DNA methylation of the CpG island in its promoter. We propose that methylation is a mechanism that can silence the expression of Nox4, which could contribute to the acquisition of neoplastic characteristics during hepatocarcinogenesis in rats.

  13. Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction

    DEFF Research Database (Denmark)

    Zhao, Jian; Sun, Libo; Canepa, Silvia

    2017-01-01

    (II) concentration and the electrodeposition current at identical applied potentials. We also found that the electrodeposition of Cu in the presence of phosphate generates Cu-oxyo/hydroxyo-phosphate species on the deposited copper surface. The modified electrodes with phosphate species exhibit higher selectivity...

  14. Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction

    DEFF Research Database (Denmark)

    Bae, Dowon; Pedersen, Thomas; Seger, Brian

    2017-01-01

    The successful realization of carrier-selective contacts for crystalline silicon (c-Si) based device for pho-tocatalytic hydrogen production has been demonstrated. The proposed TiO2protected carrier-selectivecontacts resemble a metal-oxide-semiconductor configuration, including a highly-doped nan...

  15. Experimental and Kinetic Investigation of the Influence of OH Groups on NOX Formation

    KAUST Repository

    Bohon, Myles

    2016-05-04

    This work investigates the influence of one or more OH groups present on the fuel molecule and the resultant formation of NOX emissions. Combustion of oxygenated fuels has been increasing globally and such fuels offer significant potential in the reduction of pollutant emissions. One such emission class is the oxides of nitrogen, which typically form through a combination of two regimes: the thermal and non-thermal mechanisms. While thermal NO formation can be reduced by lowering the combustion temperature, non-thermal NO formation is coupled to the fuel chemistry. An experimental and computational investigation of NOX formation in three different burner configurations and under a range of equivalence ratios and temperature regimes explored the differences in NO formation. Measurements of temperature profiles and in-flame species concentrations, utilizing both probed and non-intrusive laser based techniques, allowed for the investigation of NO formation through non-thermal pathways and the differences that exist between fuels with varying numbers of OH groups. The first burner configuration was composed of a high swirl liquid spray burner with insulted combustion chamber walls designed specifically for the combustion of low energy density fuels. In this system the combustion of alcohols and glycerol (the largest by-product of biodiesel production), along with other fuels with multiple hydroxyl groups, was studied. Measurements of the mean flame temperature and exhaust gas measurements of NOX showed significant reductions in non-thermal NO concentrations with increasing numbers of OH groups. An accompanying modeling study and detailed reaction path analysis showed that fuel decomposition pathways through formaldehyde were shown a preference due to the presence of the OH groups which resulted in reduced contributions to the hydrocarbon radical pools subsequent reductions to the Prompt NO mechanism. Two burner configurations with reduced dimensionality facilitated

  16. Cost Reduction of Acoustic Modeling for Real-Environment Applications Using Unsupervised and Selective Training

    Science.gov (United States)

    Cincarek, Tobias; Toda, Tomoki; Saruwatari, Hiroshi; Shikano, Kiyohiro

    Development of an ASR application such as a speech-oriented guidance system for a real environment is expensive. Most of the costs are due to human labeling of newly collected speech data to construct the acoustic model for speech recognition. Employment of existing models or sharing models across multiple applications is often difficult, because the characteristics of speech depend on various factors such as possible users, their speaking style and the acoustic environment. Therefore, this paper proposes a combination of unsupervised learning and selective training to reduce the development costs. The employment of unsupervised learning alone is problematic due to the task-dependency of speech recognition and because automatic transcription of speech is error-prone. A theoretically well-defined approach to automatic selection of high quality and task-specific speech data from an unlabeled data pool is presented. Only those unlabeled data which increase the model likelihood given the labeled data are employed for unsupervised training. The effectivity of the proposed method is investigated with a simulation experiment to construct adult and child acoustic models for a speech-oriented guidance system. A completely human-labeled database which contains real-environment data collected over two years is available for the development simulation. It is shown experimentally that the employment of selective training alleviates the problems of unsupervised learning, i. e. it is possible to select speech utterances of a certain speaker group but discard noise inputs and utterances with lower recognition accuracy. The simulation experiment is carried out for several selected combinations of data collection and human transcription period. It is found empirically that the proposed method is especially effective if only relatively few of the collected data can be labeled and transcribed by humans.

  17. Nox enzymes in allergic airway inflammation.

    Science.gov (United States)

    van der Vliet, Albert

    2011-11-01

    Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma. 2011 Elsevier B.V. All rights reserved.

  18. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-07-28

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.

  19. Simultaneous catalytic removal of NOx and diesel PM over La(0.9) K(0.1) CoO3 catalyst assisted by plasma.

    Science.gov (United States)

    Pei, Mei-xiang; Lin, He; Shangguan, Wen-feng; Huang, Zhen

    2005-01-01

    The simultaneous removal of NOx and particulate matter (PM) from diesel exhaust is investigated over a mixed metal oxide catalyst of La(0.9) K(0.1) CoO3 loaded on gamma-Al2O3 spherules with the assistant of plasma. It was found that NOx was reduced by PM in oxygen rich atmosphere, the CO2 and N2 were produced in the same temperature window without considering the N2 formed by plasma decomposition. As a result, the temperature for the PM combustion decreases and the reduction efficiency of NOx to N2 increases during the plasma process, which indicated that the activity of the catalyst can be improved by plasma. The NOx is decomposed by plasma at both low temperature and high temperature. Therefore, the whole efficiency of NOx conversion is enhanced.

  20. Conditional reduction of adult born doublecortin-positive neurons reversibly impairs selective behaviours

    Directory of Open Access Journals (Sweden)

    Lillian eGarrett

    2015-11-01

    Full Text Available Adult neurogenesis occurs in the adult mammalian subventricular zone (SVZ along the walls of the lateral ventricles and the subgranular zone (SGZ of the hippocampal dentate gyrus. While a burgeoning body of research implicates adult neurogenesis in olfactory bulb (OB - and hippocampal-related behaviors, the precise function continues to elude. To further assess the behavioral importance of adult neurogenesis, we herein generated a novel inducible transgenic mouse model of adult neurogenesis reduction where mice with CreERT2 under doublecortin (DCX promoter control were crossed with mice where diphtheria toxin A (DTA was driven by the Rosa26 promoter. Activation of DTA, through the administration of tamoxifen (TAM, results in a specific reduction of DCX+ immature neurons in both the hippocampal dentate gyrus and OB. We show that the decrease of DCX+ cells causes impaired social discrimination ability in both young adult (from 3 months and middle (from 10 months aged mice. Furthermore, these animals showed an age-independent altered coping behavior in the Forced Swim Test without clear changes in anxiety-related behavior. Notably, these behavior changes were reversible on repopulating the neurogenic zones with DCX+ cells on cessation of the tamoxifen treatment, demonstrating the specificity of this effect. Overall, these results support the notion that adult neurogenesis plays a role in social memory and in stress coping but not necessarily in anxiety-related behavior.

  1. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... are required in the reduction, and, nally, oxidation by NO + O2 or NO2 leads to the same state of the catalyst. These points are shown experimentally for a Cu-CHA catalyst, by combining in situ X-ray absorption spectrosocpy (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  2. Measurement of breast volume is a useful supplement to select candidates for surgical breast reduction

    DEFF Research Database (Denmark)

    Ikander, Peder; Drejøe, Jennifer Berg; Lumholt, Pavia

    2014-01-01

    INTRODUCTION: The indication for breast reduction in a public welfare or an insurance paid setting depends on the severity of the subjective symptoms and the clinical evaluation. The purpose of this study was to evaluate the use of breast volume as an objective criterion to establish the indicati...... with breast hypertrophy as a tool which facilitates their decision-making and patients' acceptance of the decisions made. FUNDING: not relevant. TRIAL REGISTRATION: not relevant....... for breast reduction surgery, thus establishing a standard decision basis that can be shared by surgeons and departments to secure patients fair and equal treatment opportunities. MATERIAL AND METHODS: A total of 427 patients who were referred to three Danish public hospitals with breast hypertrophy...... in the period from January 2007 to March 2011 were included prospectively in the study. The patients' subjective complaints, height, weight and standard breast measurements were registered as well as the decision for or against surgery. Breast volume was measured using transparent plastic cups. RESULTS: Cut...

  3. Overall evaluation of combustion and NO(x) emissions for a down-fired 600 MW(e) supercritical boiler with multiple injection and multiple staging.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi

    2013-05-07

    To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.

  4. An Investigation of the Interaction between NOx and SOx in Oxy-Combustion.

    Science.gov (United States)

    Choudhury, Nujhat N; Padak, Bihter

    2017-11-07

    This study focuses on revealing the interaction of sulfur oxides (SOx) and nitrogen oxides (NOx) and investigating the application of Fourier transform infrared (FTIR) spectroscopy to quantify SOx and NOx emissions from gas-phase oxy-combustion systems. The authors aim to contribute to the current state of knowledge by providing speciation data of NOx and SOx species and it elucidates the influence of nitric oxide (NO) on sulfur trioxide (SO3) generation. Detailed kinetic simulations revealed the influence of combustion parameters and the sensitivity analysis confirmed the dominating influence of hydrocarbon fragments on NO reduction. Accompanying experimental analysis exhibited higher reduction of NO to nitrogen (N2) comparing to the predictions by the kinetic simulations. Moreover, the presence of NO in the system was observed to influence the SO3 generation to a variable degree based on the reaction set employed for kinetic simulations. Experimentally, slight decrease in SO3 concentration was observed in the presence of NO and it can be explained by the radical consumption by NO as SOx and NOx species share the same radical pool. The oxy-combustion mechanisms available in the literature can be improved further to be able to predict this interaction.

  5. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Alshafie Galal A

    2008-08-01

    Full Text Available Abstract Background Epidemiologic and laboratory investigations suggest that aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs have chemopreventive effects against colon cancer perhaps due at least in part to their activity against cyclooxygenase-2 (COX-2, the rate-limiting enzyme of the prostaglandin cascade. Methods We conducted a case control study of colon cancer designed to compare effects of selective and non-selective COX-2 inhibitors. A total of 326 incident colon cancer patients were ascertained from the James Cancer Hospital, Columbus, Ohio, during 2003–2004 and compared with 652 controls with no history of cancer and matched to the cases at a 2:1 ratio on age, race, and county of residence. Data on the past and current use of prescription and over the counter medications and colon cancer risk factors were ascertained using a standardized risk factor questionnaire. Effects of COX-2 inhibiting agents were quantified by calculating odds ratios (OR and 95% confidence intervals. Results Results showed significant risk reductions for selective COX-2 inhibitors (OR = 0.31, 95% CI = 0.16–0.57, regular aspirin (OR = 0.33, 95% CI = 0.20–0.56, and ibuprofen or naproxen (0.28, 95% CI = 0.15–0.54. Acetaminophen, a compound with negligible COX-2 activity and low dose aspirin (81 mg produced no significant change in the risk of colon cancer. Conclusion These results suggest that both non-selective and selective COX-2 inhibitors produce significant reductions in the risk of colon cancer, underscoring their strong potential for colon cancer chemoprevention.

  6. Application of combinatorial catalysis to the selective reduction of NO by C{sub 3}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, K.; Ozturk, S.; Senkan, S. [Department of Chemical Engineering, University of California, 90095-1592 Los Angeles, CA (United States)

    2000-12-10

    Selective catalytic reduction of NO by C{sub 3}H{sub 6} was investigated using the tools of combinatorial chemistry under both stoichiometric and fuel-lean conditions. Fifty six quaternary Pt-Pd-In-Na combination catalysts were prepared by impregnating {gamma}-Al{sub 2}O{sub 3} pellets with precursor solution mixtures prepared automatically using a micro-jet liquid dispensation system. Performances of the catalysts were evaluated in array microreactors using mass spectrometry in the temperature range 200-550C. A number of multi-metallic combinations showed excellent NO reduction activities under stoichiometric conditions and over a broad temperature range. However, the performance of the entire library under fuel-lean conditions was poor.

  7. Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection

    KAUST Repository

    Chen, Lisha

    2012-12-01

    The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.

  8. Kinetics of NOx in the upper troposphere: new constraints on satellite remote sensing of lightning NOx

    Science.gov (United States)

    Nault, B.; Laughner, J.; Wooldridge, P. J.; Cohen, R. C.

    2015-12-01

    Satellite retrievals of NO2, O3, and HNO3 have been used in conjunction with chemical transport models, such as GEOS-Chem, to constrain the amount of NOx emitted annually from lightning by comparing the model to both observed NO2 column densities and to upper tropospheric (UT) concentrations of O3 and HNO3. Recent experiments have provided evidence for two changes to the kinetics of NOx in the UT. First, CH3O2NO2 has been shown to be an important temporary sink for NOx, suppressing NOx in the UT. Second, the rate coefficient for the reaction of OH with NO2 at the temperatures and pressures of the UT is slower than in current recommendations. We investigate the impact of updated kinetics that are consistent with in situ observations on model predictions of NO2, O3, and HNO3 concentrations and columns and on the inferred constraints on lightning NOx emissions. Changes to NO2, O3, and HNO3 concentrations resulting from the new kinetics are above the level of uncertainty in daily satellite observations. We hypothesize that the new kinetics will require an increase in lightning NOx emissions to match models to observations, and are working to confirm and quantify this increase.

  9. Effect of sulfur compounds on biological reduction of nitric oxide in aqueous Fe(II)EDTA2- solutions

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.

    2006-01-01

    Biological reduction of nitric oxide (NO) in aqueous solutions of EDTA chelated Fe(II) is one of the main steps in the BioDeNOx process, a novel bioprocess for the removal of nitrogen oxides (NOx) from polluted gas streams. Since NOx contaminated gases usually also contain sulfurous pollutants, the

  10. Composite TiO{sub 2}/clays materials for photocatalytic NOx oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece); Vaimakis, T. [Department of Chemistry, University of Ioannina, P.O. Box 1186, 451 10, Ioannina (Greece); Trapalis, C., E-mail: trapalis@ims.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, P.O. Box 60037, 153 10, Ag. Paraskevi, Attiki (Greece)

    2014-11-15

    Graphical abstract: - Highlights: • Clays-supported TiO{sub 2} photocatalysts are prepared by simple, scalable method. • Visible light active TiO{sub 2} is incorporated in hydrotalcite, talk and kunipia clays. • The alkali substrates facilitate the NOx adsorption to the photocatalytic surface. • Low-content TiO{sub 2} photocatalysts demonstrated high NOx oxidation activity. • Titania/hydrotalcite photocatalyst exhibited remarkable NOx removal activity. - Abstract: TiO{sub 2} photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO{sub 2} in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO{sub 2}). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al{sup 3+} and Ca{sup 2+} intercalation was applied in order to improve the dispersion of TiO{sub 2} and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania

  11. RNase L Mediates the Antiviral Effect of Interferon through a Selective Reduction in Viral RNA during Encephalomyocarditis Virus Infection

    Science.gov (United States)

    Li, Xiao-Ling; Blackford, John A.; Hassel, Bret A.

    1998-01-01

    The 2′,5′-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A. PMID:9525594

  12. Copper Substitution and Noise Reduction in Brake Pads: Graphite Type Selection

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2012-11-01

    Full Text Available Graphite is commonly used in brake pads. The use of graphite powder has the main goal of solid state lubrication and friction coefficient stabilization. In this article results on resin bonded brake pads with focus on noise performance and heat dissipation are presented. Experimental tests are based on model friction materials with a known formulation and a reduced number of components for a better identification of the role of the graphite type. Results clearly indicate that both noise performance and thermal conductivity are strongly affected by the type of graphite. Guidelines for the selection of graphite types for optimized friction materials are given.

  13. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    Science.gov (United States)

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO2) and nitrogen oxides (NOX) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km(-1) and 627 ± 54 g km(-1), respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km(-1). The OBD data suggested no improvement in NOX emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km(-1) because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO2 and NOX emissions were also constructed. The CO2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h(-1) to 10 km h(-1), the estimated CO2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NOX emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles. Copyright © 2016 Elsevier Ltd. All

  14. Testing and design of selective catalytic reduction DENOX catalysts on the basis of titanium dioxide for flue gas cleaning plants

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, R.; Zuerbig, J. (Siemens AG, Redwitz (Germany). Unternehmensbereich KWU, Keramik- und Porzellanwerk)

    1990-12-01

    Selective catalytic reduction catalysers based on titanium dioxide enjoy a commanding position in the market. Reasons for this are high catalytic activity with simultaneous high specificity, low SO{sub 2}/SO{sub 3} oxidation rates, chemical resistance against acid, flue gas constituents and mechanical stability. The principle of DENOX catalyser design is precise knowledge and analyses of the limiting conditions under which use in power station shall result. A suitable type of catalyser has to be selected in accordance with the conditions of application. Manufacture has to be supported by a complex system of quality assurance measures and tests, so that the catalyser characteristics specified in the design can be guaranteed. 4 figs.

  15. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  16. Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes.

    Science.gov (United States)

    Wu, Jingjie; Yadav, Ram Manohar; Liu, Mingjie; Sharma, Pranav P; Tiwary, Chandra Sekhar; Ma, Lulu; Zou, Xiaolong; Zhou, Xiao-Dong; Yakobson, Boris I; Lou, Jun; Ajayan, Pulickel M

    2015-05-26

    The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed COOH and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

  17. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  18. Emissions reductions from expanding state-level renewable portfolio standards.

    Science.gov (United States)

    Johnson, Jeremiah X; Novacheck, Joshua

    2015-05-05

    In the United States, state-level Renewable Portfolio Standards (RPS) have served as key drivers for the development of new renewable energy. This research presents a method to evaluate emissions reductions and costs attributable to new or expanded RPS programs by integrating a comprehensive economic dispatch model and a renewable project selection model. The latter model minimizes incremental RPS costs, accounting for renewable power purchase agreements (PPAs), displaced generation and capacity costs, and net changes to a state's imports and exports. We test this method on potential expansions to Michigan's RPS, evaluating target renewable penetrations of 10% (business as usual or BAU), 20%, 25%, and 40%, with varying times to completion. Relative to the BAU case, these expanded RPS policies reduce the CO2 intensity of generation by 13%, 18%, and 33% by 2035, respectively. SO2 emissions intensity decreased by 13%, 20%, and 34% for each of the three scenarios, while NOx reductions totaled 12%, 17%, and 31%, relative to the BAU case. For CO2 and NOx, absolute reductions in emissions intensity were not as large due to an increasing trend in emissions intensity in the BAU case driven by load growth. Over the study period (2015 to 2035), the absolute CO2 emissions intensity increased by 1% in the 20% RPS case and decreased by 6% and 22% for the 25% and 40% cases, respectively. Between 26% and 31% of the CO2, SO2, and NOx emissions reductions attributable to the expanded RPS occur in neighboring states, underscoring the challenges quantifying local emissions reductions from state-level energy policies with an interconnected grid. Without federal subsidies, the cost of CO2 mitigation using an RPS in Michigan is between $28 and $34/t CO2 when RPS targets are met. The optimal renewable build plan is sensitive to the capacity credit for solar but insensitive to the value for wind power.

  19. Redox stress in Marfan syndrome: Dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm.

    Science.gov (United States)

    Jiménez-Altayó, Francesc; Meirelles, Thayna; Crosas-Molist, Eva; Sorolla, M Alba; Del Blanco, Darya Gorbenko; López-Luque, Judit; Mas-Stachurska, Aleksandra; Siegert, Ana-Maria; Bonorino, Fabio; Barberà, Laura; García, Carolina; Condom, Enric; Sitges, Marta; Rodríguez-Pascual, Fernando; Laurindo, Francisco; Schröder, Katrin; Ros, Joaquim; Fabregat, Isabel; Egea, Gustavo

    2018-02-20

    Marfan syndrome (MFS) is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix fibrillin-containing microfibrils and dysfunction of TGF-β signaling. Here we identify the molecular targets of redox stress in aortic aneurysms from MFS patients, and investigate the role of NOX4, whose expression is strongly induced by TGF-β, in aneurysm formation and progression in a murine model of MFS. Working models included aortae and cultured vascular smooth muscle cells (VSMC) from MFS patients, and a NOX4-deficient Marfan mouse model (Fbn1 C1039G/+ -Nox4 -/- ). Increased S-nitrosylation and reactive oxygen species levels were found in the tunica media of human aortic aneurysms and in cultured VSMC. Proteomic analysis identified nitrated and carbonylated proteins, which included smooth muscle α-actin (αSMA) and annexin A2. NOX4 immunostaining increased in the tunica media of human Marfan aorta and was transcriptionally overexpressed in VSMC. Fbn1 C1039G/+ -Nox4 -/- mice aortas showed a reduction of fragmented elastic fibers, which was accompanied by an amelioration in the Marfan-associated enlargement of the aortic root. Increase in the contractile phenotype marker calponin in the tunica media of MFS mice aortas was abrogated in Fbn1 C1039G/+ -Nox4 -/- mice. Endothelial dysfunction evaluated by myography in the Marfan ascending aorta was prevented by the absence of Nox4 or catalase-induced H 2 O 2 decomposition. We conclude that redox stress occurs in MFS, whose targets are actin-based cytoskeleton members and regulators of extracellular matrix homeostasis. Likewise, NOX4 have an impact in the progression of the aortic dilation in MFS and in the structural organization of the aortic tunica media, the VSMC phenotypic modulation, and endothelial function. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Rotational Orientation Effects in NO(X) + Ar Inelastic Collisions.

    Science.gov (United States)

    Brouard, M; Chadwick, H; Gordon, S D S; Hornung, B; Nichols, B; Aoiz, F J; Stolte, S

    2015-12-17

    Rotational angular momentum orientation effects in the rotationally inelastic collisions of NO(X) with Ar have been investigated both experimentally and theoretically at a collision energy of 530 cm(-1). The collision-induced orientation has been determined experimentally using a hexapole electric field to select the ϵ = -1 Λ-doublet level of the NO(X) j = 1/2 initial state. Fully quantum state resolved polarization-dependent differential cross sections were recorded experimentally using a crossed molecular beam apparatus coupled with a (1 + 1') resonance-enhanced multiphoton ionization detection scheme and subsequent velocity-map imaging. To determine the NO sense of rotation, the probe radiation was circularly polarized. Experimental orientation polarization-dependent differential cross sections are compared with those obtained from quantum mechanical scattering calculations and are found to be in good agreement. The origin of the collision-induced orientation has been investigated by means of close-coupled quantum mechanical, quantum mechanical hard shell, quasi-classical trajectory (QCT), and classical hard shell calculations at the same collision energy. Although there is evidence for the operation of limiting classical mechanisms, the rotational orientation cannot be accounted for by QCT calculations and is found to be strongly influenced by quantum mechanical effects.

  1. Reduction of Manual Handling with Loads and Activities Causing Musculosceletal Disorders in a Selected Workplace

    Science.gov (United States)

    Beňo, Rastislav; Lenhardtová, Zuzana; Zelenay, Tomáš

    2016-06-01

    The main aim of the article is to present the results from the research project which was focused on the minimisation of ergonomic risk to the musculoskeletal system. The research was conducted in a company whose core business includes the production; converting and sales of packaging materials. The first section of the article is focused on the theoretical basis of software support in ergonomics. In the second section, the authors' deal with analysis of the current situation in the selected workplace (production of printing forms for rotogravure and flexoprinting) by anthropometric measurements and research conducted in the form of a questionnaire survey. The third part is focused on the presentation of the newly created simulation model in the virtual environment of Tecnomatix Jack software. The final section of the article describes the proposed solutions (organisational and technical).

  2. Reduction of Manual Handling with Loads and Activities Causing Musculosceletal Disorders in a Selected Workplace

    Directory of Open Access Journals (Sweden)

    Beňo Rastislav

    2016-06-01

    Full Text Available The main aim of the article is to present the results from the research project which was focused on the minimisation of ergonomic risk to the musculoskeletal system. The research was conducted in a company whose core business includes the production; converting and sales of packaging materials. The first section of the article is focused on the theoretical basis of software support in ergonomics. In the second section, the authors’ deal with analysis of the current situation in the selected workplace (production of printing forms for rotogravure and flexoprinting by anthropometric measurements and research conducted in the form of a questionnaire survey. The third part is focused on the presentation of the newly created simulation model in the virtual environment of Tecnomatix Jack software. The final section of the article describes the proposed solutions (organisational and technical.

  3. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures

    Science.gov (United States)

    Zhang, Xing; Wu, Zishan; Zhang, Xiao; Li, Liewu; Li, Yanyan; Xu, Haomin; Li, Xiaoxiao; Yu, Xiaolu; Zhang, Zisheng; Liang, Yongye; Wang, Hailiang

    2017-03-01

    Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.

  4. Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction.

    Science.gov (United States)

    Schulz-Jander, Daniel A; Casida, John E

    2002-06-07

    Many metabolites of imidacloprid (IMI) have been identified, but the enzymatic basis for their formation has not been reported. This study with individual recombinant cytochrome P450 (CYP450) isozymes from human liver shows that the principal organoextractable NADPH-dependent metabolites are the 5-hydroxy (major) and olefin (minor) derivatives from hydroxylation and desaturation of the imidazolidine moiety and the nitrosoimine (major), guanidine (minor) and urea (trace) derivatives from reduction and cleavage of the nitroimine substituent. Isozymes selective for imidazolidine oxidation in order of decreasing overall activity are CYP3A4>CYP2C19 or CYP2A6>CYP2C9, while those selective for nitroimine reduction are CYP1A2, CYP2B6, CYP2D6 and CYP2E1. Three flavin monooxygenase isozymes (FMO1, FMO3, and FMO5) with NADPH are not active as assayed. These observations establish site specificity in IMI metabolism by CYP450 isozymes and that a single enzyme (CYP3A4) both oxidizes and reduces IMI at the imidazolidine and nitroimine moieties, respectively.

  5. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  6. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    Energy Technology Data Exchange (ETDEWEB)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  7. NOx and R-NOx: effects on drug metabolism.

    Science.gov (United States)

    Miller, R Timothy

    2004-12-01

    as other NOS-derived oxidants) can be detrimental by altering enzyme activity; for example P450-mediated drug metabolism. Furthermore, because of the close structural and functional similarities between NOS reductase and CPOR, many of the same redox-cycling and reductive reactions that occur with CPOR can also occur with NOS. The final focus of this review article is the less-well-recognized reactions mediated by NOS, which have recently begun to receive the attention they deserve. We hope to highlight reasons for concern regarding both altered drug metabolism as well as extra-hepatic, and target-organ toxicities in response to both altered NO* production as well as the detrimental interaction of NOS with certain xenobiotics.

  8. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges.

    Science.gov (United States)

    D'Alessio, G; Malorni, M C; Parente, A

    1975-03-25

    The hypothesis previously advanced that interchain disulfide bridges link the two identical subunits of bovine seminal ribonuclease BS-1 has been confirmed. The sedimentation rate and the electrophoretic mobility of the protein are not affected by denaturing agents unless thiol reagents are present in the denaturation mixtures. Reduction under controlled conditions results in the immediate cleavage of only 2 disulfide bonds out of 10 percent in the dimeric protein. Under these conditions, and the results do not change when partial reduction is followed by S-alkylation, 30% of the protein dissociates, while the remaining is found to consist of a dimeric species easily dissociable by denaturing agents without addition of thiol reagents. This indicates that the dimeric structure of seminal ribonuclease is maintained not only by disulfide bridges, but also by noncovalent forces. The protein derivative prepared by selective reduction and alkylation has been identified as monomeric bis-S-carboxymethylcysteine-31,32-ribonuclease BS-1. This is on the basis of the characterization of the 14C-labeled S-carboxymethylated peptides isolated from a thermolytic hydrolysate of the derivative prepared with iodo-2-[14C]acetic acid. Monomeric, selectively alkylated ribonuclease BS-1 is stable and catalytically active. The importance of such a derivative is discussed both in the light of the recent studies on the biological actions of seminal ribonuclease and as the fourth component of an experimental system of ribonucleases consisting of two homologous dimers (bovine seminal ribonuclease BS-1 and dimerized bovine pancreatic ribonuclease A) and two homologous monomers (ribonuclease A and the monomeric derivative of ribonuclease BS-1.

  9. Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

    2003-10-01

    Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed

  10. Nox2 contributes to hyperinsulinemia-induced redox imbalance and impaired vascular function

    Directory of Open Access Journals (Sweden)

    Abeer M. Mahmoud

    2017-10-01

    Full Text Available Insulin resistance promotes vascular endothelial dysfunction and subsequent development of cardiovascular disease. Previously we found that skeletal muscle arteriolar flow-induced dilation (FID was reduced following a hyperinsulinemic clamp in healthy adults. Therefore, we hypothesized that hyperinsulinemia, a hallmark of insulin resistance, contributes to microvascular endothelial cell dysfunction via inducing oxidative stress that is mediated by NADPH oxidase (Nox system. We examined the effect of insulin, at levels that are comparable with human hyperinsulinemia on 1 FID of isolated arterioles from human skeletal muscle tissue in the presence and absence of Nox inhibitors and 2 human adipose microvascular endothelial cell (HAMECs expression of nitric oxide (NO, endothelial NO synthase (eNOS, and Nox-mediated oxidative stress. In six lean healthy participants (mean age 25.5±1.6 y, BMI 21.8±0.9, reactive oxygen species (ROS were increased while NO and arteriolar FID were reduced following 60 min of ex vivo insulin incubation. These changes were reversed after co-incubation with the Nox isoform 2 (Nox2 inhibitor, VAS2870. In HAMECs, insulin-induced time-dependent increases in Nox2 expression and P47phox phosphorylation were echoed by elevations of superoxide production. In contrast, phosphorylation of eNOS and expression of superoxide dismutase (SOD2 and SOD3 isoforms showed a biphasic response with an increased expression at earlier time points followed by a steep reduction phase. Insulin induced eNOS uncoupling that was synchronized with a drop of NO and a surge of ROS production. These effects were reversed by Tempol (SOD mimetic, Tetrahydrobiopterin (BH4; eNOS cofactor, and VAS2870. Finally, insulin induced nitrotyrosine formation which was reversed by inhibiting NO or superoxide generation. In conclusions, hyperinsulinemia may reduce FID via inducing Nox2-mediated superoxide production in microvascular endothelial cells which reduce the

  11. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO2 reduction by cobalt-terpyridine complexes.

    Science.gov (United States)

    Elgrishi, Noémie; Chambers, Matthew B; Fontecave, Marc

    2015-04-16

    Understanding the activity and selectivity of molecular catalysts for CO2 reduction to fuels is an important scientific endeavour in addressing the growing global energy demand. Cobalt-terpyridine compounds have been shown to be catalysts for CO2 reduction to CO while simultaneously producing H2 from the requisite proton source. To investigate the parameters governing the competition for H+ reduction versus CO2 reduction, the cobalt bisterpyridine class of compounds is first evaluated as H+ reduction catalysts. We report that electronic tuning of the ancillary ligand sphere can result in a wide range of second-order rate constants for H+ reduction. When this class of compounds is next submitted to CO2 reduction conditions, a trend is found in which the less active catalysts for H+ reduction are the more selective towards CO2 reduction to CO. This represents the first report of the selectivity of a molecular system for CO2 reduction being controlled through turning off one of the competing reactions. The activities of the series of catalysts are evaluated through foot-of-the-wave analysis and a catalytic Tafel plot is provided.

  12. Composite TiO2/clays materials for photocatalytic NOx oxidation

    Science.gov (United States)

    Todorova, N.; Giannakopoulou, T.; Karapati, S.; Petridis, D.; Vaimakis, T.; Trapalis, C.

    2014-11-01

    TiO2 photocatalyst received much attention for air purification applications especially for removal of air pollutants like NOx, VOCs etc. It has been established that the activity of the photocatalyst can be significantly enhanced by its immobilization onto suitable substrates like inorganic minerals, porous silica, hydroxyapatite, adsorbent materials like activated carbon, various co-catalysts such as semiconductors, graphene, reduced graphite oxide, etc. In the present work, photocatalytic composite materials consisted of mineral substrate and TiO2 in weight ratio 1:1 were manufactured and examined for oxidation and removal of nitric oxides NOx (NO and NO2). Commercial titania P25 (Evonik-Degussa) and urea-modified P25 were used as photocatalytically active components. Inorganic minerals, namely kunipia, talk and hydrotalcite were selected as supporting materials due to their layered structure and expected high NOx adsorption capability. Al3+ and Ca2+ intercalation was applied in order to improve the dispersion of TiO2 and its loading into the supporting matrix. The X-ray diffraction analysis and Scanning Electron Microscopy revealed the binary structure of the composites and homogeneous dispersion of the photocatalyst into the substrates. The photocatalytic behavior of the materials in NOx oxidation and removal was investigated under UV and visible light irradiation. The composite materials exhibited superior photocatalytic activity than the bare titania under both types of irradiation. Significant visible light activity was recorded for the composites containing urea-modified titania that was accredited to the N-doping of the semiconductor. Among the different substrates, the hydrotalcite caused highest increase in the NOx removal, while among the intercalation ions the Ca2+ was more efficient. The results were related to the improved dispersion of the TiO2 and the synergetic activity of the substrates as NOx adsorbers.

  13. An Efficient Method of HOG Feature Extraction Using Selective Histogram Bin and PCA Feature Reduction

    Directory of Open Access Journals (Sweden)

    LAI, C. Q.

    2016-11-01

    Full Text Available Histogram of Oriented Gradient (HOG is a popular image feature for human detection. It presents high detection accuracy and therefore has been widely used in vision-based surveillance and pedestrian detection systems. However, the main drawback of this feature is that it has a large feature size. The extraction algorithm is also computationally intensive and requires long processing time. In this paper, a time-efficient HOG-based feature extraction method is proposed. The method uses selective number of histogram bins to perform feature extraction on different regions in the image. Higher number of histogram bin which can capture more detailed information is performed on the regions of the image which may belong to part of a human figure, while lower number of histogram bin is used on the rest of the image. To further reduce the feature size, Principal Component Analysis (PCA is used to rank the features and remove some unimportant features. The performance of the proposed method was evaluated using INRIA human dataset on a linear Support Vector Machine (SVM classifier. The results showed the processing speed of the proposed method is 2.6 times faster than the original HOG and 7 times faster than the LBP method while providing comparable detection performance.

  14. Investigation of Sawmill Management and Technology on Waste Reduction at Selected Sawmills in Moratuwa, Sri Lanka

    Directory of Open Access Journals (Sweden)

    H.T.S. Caldera

    2015-09-01

    Full Text Available The demand for sawn timber and wood-based products is rising steadily with new developments and the growing domestic consumption in Sri Lanka. Therefore, it is important to strike a balance between the increasing demand and consumption of forest resources. Thus, the key objective of this study was to investigate the effects of sawmill management and technological parameters on loss in conversion from logs to sawn timber and to compare the sawmill efficiency in private sawmills with the state timber corporation sawmill.Sawmill management and technological parameters were studied in 21 private sawmills and State Timber Corporation sawmill in Kaldemulla to evaluate the effects on loss in conversion. The selected sawmills represent all types available in Sri Lanka, i.e., frame saw, circular saw and band saw mills. Based on the results, mean percentage loss in conversion of teak and mahogany timber for all sawmills (private and State Timber Corporation in Moratuwa found to be 53.10%. Significant differences were observed in loss in conversion values between the three categories of private sawmills as well as within sawmills of the same category. It was shown that loss in conversion values also varied with sawmill management and technological parameters such as type of machinery employed, sharpening frequency and sawyer’s experience, saw setting, availability of log alignment equipment and saw guards, oversizing and sawn timber sizes.

  15. Alternative deNOx catalysts and technologies

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    in the formation of acid rain and photochemical smog. Some basic concepts and reactions regarding the formation and removal of NOx are presented in chapter 1 and 2. Two approaches are undertaken in the present work to reduce the emission of NOx: by means of catalytic removal, and by NO absorption in ionic liquids...... a catalyst less susceptible to the poisons present in the flue gas, a number of catalysts have been synthesized and tested in the present work, all based on commercially available supports. A highly acidic support consisting of sulfated zirconia was chosen based on preliminary studies. A number of different...... permolecule ionic liquid. However, [BMIM]OTf exhibited promising behavior due to its reversible absorption/desorption properties. This in principle allows recycling of the ionic liquid as well as harvesting the NO. The accumulated NO could hereby be used in e.g. the synthesis of nitric acid allowing...

  16. Nitrogen Oxides (NOx) Primary NAAQS REVIEW: Integrated ...

    Science.gov (United States)

    The NOx Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review, and the key policy-relevant science issues that will guide the review. The integrated review plan also discusses the frameworks for the various assessment documents to be prepared by the EPA as part of the review, including an Integrated Science Assessment (ISA), and as warranted, a Risk/Exposure Assessment (REA), and a Policy Assessment (PA). The primary purpose of the NOx Integrated Review Plan is to highlight the key policy-relevant issues to be considered in the Review of the NO2 primary NAAQS. A draft of the integrated review plan will be the subject of an advisory review with the Clean Air Scientific Advisory Committee (CASAC) and made available to the public for review and comment.

  17. Effect of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL•g-1•h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity. X-ray photoelectron spectroscopy (XPS) analysis of spent catalysts following SCR reaction in the presence of SO2 verify that the loss of surface Mn species was inhibited by doping of Ti, which contributes to extend the catalyst durability.

  18. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  19. Integral steric asymmetry in the inelastic scattering of NO(X2Π).

    Science.gov (United States)

    Brouard, M; Gordon, S D S; Hackett Boyle, A; Heid, C G; Nichols, B; Walpole, V; Aoiz, F J; Stolte, S

    2017-01-07

    The integral steric asymmetry for the inelastic scattering of NO(X) by a variety of collision partners was recorded using a crossed molecular beam apparatus. The initial state of the NO(X, v = 0, j = 1/2, Ω=1/2, ϵ=-1,f) molecule was selected using a hexapole electric field, before the NO bond axis was oriented in a static electric field, allowing probing of the scattering of the collision partner at either the N- or O-end of the molecule. Scattered NO molecules were state selectively probed using (1 + 1') resonantly enhanced multiphoton ionisation, coupled with velocity-map ion imaging. Experimental integral steric asymmetries are presented for NO(X) + Ar, for both spin-orbit manifolds, and Kr, for the spin-orbit conserving manifold. The integral steric asymmetry for spin-orbit conserving and changing transitions of the NO(X) + O2 system is also presented. Close-coupled quantum mechanical scattering calculations employing well-tested ab initio potential energy surfaces were able to reproduce the steric asymmetry observed for the NO-rare gas systems. Quantum mechanical scattering and quasi-classical trajectory calculations were further used to help interpret the integral steric asymmetry for NO + O2. Whilst the main features of the integral steric asymmetry of NO with the rare gases are also observed for the O2 collision partner, some subtle differences provide insight into the form of the underlying potentials for the more complex system.

  20. Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression.

    Science.gov (United States)

    Caldwell, Elizabeth E; Miczek, Klaus A

    2008-02-01

    Selective serotonin reuptake inhibitors (SSRIs) alleviate many affective disturbances in human clinical populations and are used in animal models to study the influence of serotonin (5-HT) on aggressive behavior and impulsivity. We hypothesized that long-term SSRI treatment may reduce aggressive behavior escalated by alcohol consumption in mice. Therefore, aggression was tested in male CFW mice to determine whether repeated citalopram (CIT) administration reduces alcohol-heightened aggression. Resident male mice self-administered alcohol by performing an operant response on a panel placed in their home cage that delivered a 6% alcohol solution. Mice repeatedly confronted an intruder 15 min after self-administration of either 1 g/kg alcohol (EtOH) or water (H(2)O). Aggressive behaviors were higher in most mice when tests occurred after EtOH intake relative to H(2)O. Once baseline aggression was established, animals were injected (i.p.) twice daily with 10 mg/kg CIT or saline (SAL) for 32 days. Every 4 days throughout the CIT treatment period, aggressive encounters occurred 6 h after CIT injections, with testing conditions alternating between EtOH and H(2)O intake. Aggression was only modestly affected by CIT in the first 2 weeks of treatment. However, by day 17 of CIT treatment, alcohol-heightened aggressive behavior was abolished, while baseline aggression remained stable. These data lend support for the role of the 5-HT transporter in the control of alcohol-related aggressive behavior, and the time course of effects suggests that a change in density of 5HT(1A) autoreceptors is necessary before antidepressant drugs produce beneficial outcomes.

  1. The observed response of ozone production to the policy-driven decrease of NOx and CO emissions in the Baltimore/Washington area

    Science.gov (United States)

    Roberts, S. J.; Hosley, K.; Ren, X.; Wolfe, G.; Dickerson, R. R.; Salawitch, R. J.

    2015-12-01

    The nonlinearity of ozone production has important policy implications as cities continue to decrease NOx, CO, and other important ozone precursors. Observations in the Baltimore/Washington area from 1970 through 2014 demonstrate reductions in NOx and CO emissions due to policy implementation leading to dramatic improvement in air quality. We will analyze the response of the reactivity of ozone, NOx, and VOC to these emission reductions in the Baltimore/Washington area using the University of Washington Chemical Model (UWCMv2.2). This model allows us to evaluate this response using multiple gas-phase chemical mechanisms. With this model, we will also compare and contrast the response of modeled ozone to reduced NOx and CO concentrations across multiple chemical mechanisms.

  2. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Environmental impact of the nox and results in Mexico of the technologies for its control; Impacto ambiental de los NOx y resultados en Mexico de tecnologias de control

    Energy Technology Data Exchange (ETDEWEB)

    Ribera Flores, Marco Antonio [Nissan Mexicana S. A. de C. V. Cuernavaca (Mexico)

    1994-12-31

    This paper presents the experience gained in the project development for the installation of three burners for industrial boilers with low nitrogen oxides emission technology. The paper begins with a short reference to the effects on the environment, derived from the generation of these gases in combustion equipment and the reasons why this thermal NOx and the associated NOx are generated. A revision is made of the existing regulations to limit the emissions of these pollutants in industrial equipment in different countries, including Mexico. Mention is made of the existing control technologies and in particular indicating the emission reduction method determined for the burners in functional tests, using propane gas and diesel, before and after installing the control technology, to demonstrate the important reductions obtained. The other results such as the thermal efficiency are also plotted as well as other important pollutant emissions such as CO and CO{sub 2} for the observation of their behavior. [Espanol] El presente trabajo expone la experiencia obtenida en el desarrollo del proyecto de instalacion de tres quemadores para calderas industriales con tecnologia de baja emision de oxidos de nitrogeno. Se inicia haciendo una breve mencion de las repercusiones al medio ambiente que se derivan de la generacion de estos gases en equipos de combustion y las razones por las cuales se generan los NOx termicos y los NOx asociados a los combustibles. Se hace una revision sobre las regulaciones existentes para limitar las emisiones de estos contaminantes en equipos industriales en diferentes paises incluyendo a Mexico. Se mencionan las tecnologias de control existentes y en particular indicando el metodo de reduccion de emisiones determinadas para los quemadores en pruebas funcionales utilizando como combustibles gas propano y diesel antes y despues de instalar la tecnologia de control para demostrar las fuertes reducciones obtenidas, se grafican tambien otros resultados

  4. A Membrane-Free Neutral pH Formate Fuel Cell Enabled by a Selective Nickel Sulfide Oxygen Reduction Catalyst.

    Science.gov (United States)

    Yan, Bing; Concannon, Nolan M; Milshtein, Jarrod D; Brushett, Fikile R; Surendranath, Yogesh

    2017-06-19

    Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni 3 S 2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm -2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Regulation of Monocyte Adhesion and Migration by Nox4.

    Directory of Open Access Journals (Sweden)

    Chi Fung Lee

    Full Text Available We showed that metabolic disorders promote thiol oxidative stress in monocytes, priming monocytes for accelerated chemokine-induced recruitment, and accumulation at sites of vascular injury and the progression of atherosclerosis. The aim of this study was to identify both the source of reactive oxygen species (ROS responsible for thiol oxidation in primed and dysfunctional monocytes and the molecular mechanisms through which ROS accelerate the migration and recruitment of monocyte-derived macrophages. We found that Nox4, a recently identified NADPH oxidase in monocytes and macrophages, localized to focal adhesions and the actin cytoskeleton, and associated with phospho-FAK, paxillin, and actin, implicating Nox4 in the regulation of monocyte adhesion and migration. We also identified Nox4 as a new, metabolic stress-inducible source of ROS that controls actin S-glutathionylation and turnover in monocytes and macrophages, providing a novel mechanistic link between Nox4-derived H2O2 and monocyte adhesion and migration. Actin associated with Nox4 was S-glutathionylated, and Nox4 association with actin was enhanced in metabolically-stressed monocytes. Metabolic stress induced Nox4 and accelerated monocyte adhesion and chemotaxis in a Nox4-dependent mechanism. In conclusion, our data suggest that monocytic Nox4 is a central regulator of actin dynamics, and induction of Nox4 is the rate-limiting step in metabolic stress-induced monocyte priming and dysfunction associated with accelerated atherosclerosis and the progression of atherosclerotic plaques.

  6. Clinical study of emergency treatment and selective closed reduction for the treatment of supracondylar humerus fracture in children

    Directory of Open Access Journals (Sweden)

    Wei Zhong

    2016-11-01

    Full Text Available Objective: To study the effect of emergency treatment, selective closed reduction combined with percutaneous Kirschner wire fixation on the treatment of Gartland type-II and type-III supracondylar humerus fracture. Methods: Children who sustained the Gartland type-II and type-III supracondylar fractures of humerus treated with selective closed reduction combined with percutaneous Kirschner wire fixation in our hospital from May 2012 to August 2015 were analyzed retrospectively. They were divided into group A (emergency operation group and group B (selective operation group according to different operation timing. Perioperative situation, blood biochemical parameters, swelling degree and elbow joint function of affected limb were compared between two groups. Results: Operation time for patients of group A was significantly shorter than that of group B [(17.19 ± 2.85 vs. (21.43 ± 3.91 min], and frequency of fluoroscopy during operation of group A was obviously less than that of group B [(6.03 ± 0.95 vs. (7.61 ± 0.92 times]. Swelling index of affected limb in group A at 3 days, 5 days and 7 days after injury was all significantly lower than that in group B [(1.20 ± 0.17 vs. (1.38 ± 0.14, (1.13 ± 0.13 vs. (1.30 ± 0.18, (1.02 ± 0.15 vs. (1.22 ± 0.15]. Hospital for special surgery score at 1 week, 2 weeks, 3 and 4 weeks after removing Kirschner wire had no significant difference between group A and B (88.75 ± 10.18 vs. (89.14 ± 10.52, (94.22 ± 10.85 vs. (93.85 ± 11.08, (95.52 ± 11.27 vs. (95.92 ± 12.19, (95.43 ± 10.96 vs. (96.02 ± 11.38. Contents of serum alanine transaminase, aspertate aminotransferase, total protein, albumin and C-reactive protein in perioperative period had no obvious difference between patients in group A and B. Conclusions: Emergency closed reduction combined with percutaneous Kirschner wire fixation for Gartland type-II and type-III supracondylar humerus fracture in children has less trauma, low swelling degree

  7. Flexible NO(x) abatement from power plants in the eastern United States.

    Science.gov (United States)

    Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T

    2012-05-15

    Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.

  8. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.

    Science.gov (United States)

    Zyout, Imad; Czajkowska, Joanna; Grzegorzek, Marcin

    2015-12-01

    The high number of false positives and the resulting number of avoidable breast biopsies are the major problems faced by current mammography Computer Aided Detection (CAD) systems. False positive reduction is not only a requirement for mass but also for calcification CAD systems which are currently deployed for clinical use. This paper tackles two problems related to reducing the number of false positives in the detection of all lesions and masses, respectively. Firstly, textural patterns of breast tissue have been analyzed using several multi-scale textural descriptors based on wavelet and gray level co-occurrence matrix. The second problem addressed in this paper is the parameter selection and performance optimization. For this, we adopt a model selection procedure based on Particle Swarm Optimization (PSO) for selecting the most discriminative textural features and for strengthening the generalization capacity of the supervised learning stage based on a Support Vector Machine (SVM) classifier. For evaluating the proposed methods, two sets of suspicious mammogram regions have been used. The first one, obtained from Digital Database for Screening Mammography (DDSM), contains 1494 regions (1000 normal and 494 abnormal samples). The second set of suspicious regions was obtained from database of Mammographic Image Analysis Society (mini-MIAS) and contains 315 (207 normal and 108 abnormal) samples. Results from both datasets demonstrate the efficiency of using PSO based model selection for optimizing both classifier hyper-parameters and parameters, respectively. Furthermore, the obtained results indicate the promising performance of the proposed textural features and more specifically, those based on co-occurrence matrix of wavelet image representation technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Preparation of Mn-based selective catalytic reduction catalysts by three methods and optimization of process conditions.

    Directory of Open Access Journals (Sweden)

    Yi Xing

    Full Text Available Mn-based catalysts enable high NO x conversion in the selective catalytic reduction of NO x with NH3. Three catalyst-production methods, namely, co-precipitation, impregnation, and sol-gel, were used in this study to determine the optimum method and parameters. The maximum catalytic activity was found for the catalyst prepared by sol-gel with a 0.5 Mn/Ti ratio. The denitrification efficiency using this catalyst was >90%, which was higher than those of catalysts prepared by the two other methods. The critical temperature of catalytic activity was 353 K. The optimum manganese acetate concentration and weathering time were 0.10 mol and 24 h, respectively. The gas hourly space velocity and O2 concentration were determined to be 12000 h(-1 and 3%, respectively.

  10. Low-temperature Selective Catalytic Reduction of NO with NH3 over CuOx/CNTs Catalyst

    Science.gov (United States)

    Ren, B. N.

    2017-12-01

    The metal oxide catalyst was prepared by loading CuOx on carbon nanotubes (CNTs) with impregnation method. The catalyst was characterized by BET, TEM and XPS, and the catalytic activity of the catalyst for selective catalytic reduction (SCR) of NO was investigated. The results showed that the species of active components loaded on the catalyst was given priority to with CuO. The NO conversion was improved with temperature increase under the range of 150 to 300°C. The oxygen content had an outstanding influence on the NO conversion of catalysts at lower concentration range. Once the oxygen content was enhanced over 5%, there was no significant increase. Increasing of mole ratio of NH3/NO could increase the NO conversion. When mole ratio of NH3/NO was continued to exceed 1.1, the NO conversion decreased. With the increasing of space velocity, the NO conversion was decreased under the reaction conditions.

  11. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-01

    Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

  12. [Experimental studies on low-temperature selective catalytic reduction of NO on magnetic iron-based catalysts].

    Science.gov (United States)

    Yao, Gui-huan; Zhang, Qi; Qin, Ye; Wang, Fang; Lu, Fang; Gui, Ke-ting

    2009-10-15

    Low-temperature selective catalytic reduction (SCR) of NO is a new technique needing urgent development in flue gas cleaning. Elementary studies were done about selective catalytic reduction of NO from flue gas on magnetic iron oxides with ammonia at low and medium temperatures in a fluidized bed, such as Fe3O4 and gamma-Fe2O3. Magnetic field effects for NO removal on gamma-Fe2O3 were also researched with low assisted magnetic fileds. X-ray diffraction spectroscopy was used to identify and characterize the iron oxides catalysts. Results show that gamma-Fe2O3 is active in SCR at low temperatures, and Fe3O4 is apparently less active in SCR than gamma-Fe2O3, but Fe2O3 is also active in ammonia oxidation by O2 above 25 degrees C. Therefore, the optimal catalytic temperature zone in SCR on gamma-Fe2O3 includes 250 degrees C and adjacent temperature zone below it. Furthermore, a better NO conversion, which is 90%, is obtained at 250 degrees C on the gamma-Fe2O3 particle catalyst. In addition, chemisorption of NO on gamma-Fe2O3 is accelerated by assisted magnetic fields at 150-290 degrees C, thus the NO conversion is improved and higher NO removal efficiency of 95% is obtained at 250 degrees C. But the efficiency of NO removal decreases above 290 degrees C with the magnetic field. It is concluded that gamma-FeO3 catalyst is fit to be used in low-temperature SCR of NO with ammonia at 200-250 degrees C, which may suppress oxidation of ammonia and take advantage of positive effects by external magnetic fields.

  13. The effect of coal-fired power plant NOX, SO2 and particulate control technologies on aerosol nucleation and growth in source plumes

    Science.gov (United States)

    Lonsdale, C. L.; Stevens, R. G.; Brock, C. A.; Makar, P. A.; Pierce, J. R.

    2012-04-01

    Nucleation and growth in coal-fired power-plant plumes can greatly contribute to particle number concentrations in plumes near source regions. The changing emissions rates of SO2, NOX and primary ash particulates due to pollution-control technologies over recent decades may have a significant affect on aerosol formation and growth in the plumes, with ultimate implications for climate and human health. We use the System for Atmospheric Modelling (SAM) Large-Eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm to model the nucleation and growth in the plume of coal-fired units for a range of test cases with varying emissions to simulate the implementation of clean technologies. These cases include representations of emissions at the W.A. Parish power plant near Houston Texas in 1997, 2000, 2006 and 2010. For Parish during this time period, NOX emissions were reduced by about a factor of 10 due to the addition of Selective Catalytic Reduction (SCR) technology, leading to a predicted increase in OH concentrations by about a factor of 10, while SO2 emissions have decreased by only 20-30%. Based on and tested against the TexAQS2000 and TexAQS2006 field campaigns, this case study predicted an increase in OH leading to faster production of H2SO4 in the plume, and increased nucleation and growth even though SO2 emissions had decreased as well. Thus for this case study, controlling NOX more strongly than SO2 may lead to increased nucleation and growth in power-plant plumes. Finally, we calculated how particle formation and growth may have changed for about 200 power plants in the US and Canada between 1997 and 2010 for the meteorological and chemical background conditions of the Parish cases.

  14. [NADPH oxidase Nox4, a putative therapeutic target in osteoarthritis].

    Science.gov (United States)

    Morel, Françoise; Rousset, Francis; Vu Chuong Nguyen, Minh; Trocme, Candice; Grange, Laurent; Lardy, Bernard

    2015-01-01

    The NADPH oxidases, Nox, are transmembrane hemoproteins, whose exclusive function is to reduce molecular oxygen to produce superoxide anion O2°- and consequently highly reactive oxidant and toxic oxygen species, ROS. Among the 7 NADPH oxidases expressed in humans, Nox4 is the sole Nox isoform present in human primary chondrocytes. Nox4 was suggested as one of the main actors involved in cartilage degradation in osteoarthritis. The stimulation of chondrocytes, the only cell present in cartilage, by IL-1β results in the activation of Nox4. This leads to an increase of ROS production which in turn could regulate signaling pathways sensitive to oxidative stress such as gene-encoding matrix metalloproteases MMP1, MMP13 and Adamalysin ADAMTS4. A deep understanding of Nox4 structure/function and mechanisms of regulation could lead both to the identification of new therapeutic targets and to the development of innovative strategies for appropriate osteoarthritis treatment.

  15. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions.

    Science.gov (United States)

    Mendoza-Villafuerte, Pablo; Suarez-Bertoa, Ricardo; Giechaskiel, Barouch; Riccobono, Francesco; Bulgheroni, Claudia; Astorga, Covadonga; Perujo, Adolfo

    2017-12-31

    Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissions measured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8×10(10) to 6.5×10(10)#/kWh) and NH3 (1.0 to 2.2ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle's after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Silencing Nox4 in the Paraventricular Nucleus Improves Myocardial Infarction-Induced Cardiac Dysfunction by Attenuating Sympathoexcitation and Peri-infarct Apoptosis

    Science.gov (United States)

    Infanger, David W.; Cao, Xian; Butler, Scott D.; Burmeister, Melissa A.; Zhou, Yi; Stupinski, John A.; Sharma, Ram V.; Davisson, Robin L.

    2010-01-01

    Rationale: Myocardial infarction (MI)-induced heart failure (HF) is characterized by central nervous system (CNS)-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in HF. Redox signaling in the PVN and other CNS sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Nox) is implicated in some neuro-cardiovascular diseases. Objective: We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. Methods and Results: Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homologue compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 siRNA (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the peri-infarct region of the heart. Conclusions: These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced HF. PMID:20413786

  17. A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel

    KAUST Repository

    Chun, Kangwoo

    2011-11-01

    The flame structure, extinction, and NOx emission characteristics of syngas/air nonpremixed flames, have been investigated numerically. The extinction stretch rate increased with the increase in the hydrogen proportion in the syngas and with lower fuel dilution and higher initial temperature. It also increased with pressure, except for the case of highly diluted fuel at high pressure. The maximum temperature and the emission index of nitric oxides (EINOx) also increased in aforementioned conditions. The EINOx decreased with stretch rate in general, while the decreasing rate was found to be somewhat different between the cases of N2 and CO2 dilutions. The reaction paths of NOx formation were analyzed and represented as NO reaction path diagram. The increase in N radical resulted in larger NOx production at high initial temperature and pressure. As the pressure increases, EINOx increases slower due to the third-body recombination. The thermal NO mechanism is weakened for high dilution cases and non-thermal mechanisms prevail. The combustion conditions achieving higher extinction stretch rate can be lead to more NOx emission, therefore that the selection of optimum operation range is needed in syngas combustion. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  18. Individualized kV selection and tube current reduction in excretory phase computed tomography urography: potential for radiation dose reduction and the contribution of iterative reconstruction to image quality.

    Science.gov (United States)

    Froemming, Adam T; Kawashima, Akira; Takahashi, Naoki; Hartman, Robert P; Nathan, Mark A; Carter, Rickey E; Yu, Lifeng; Leng, Shuai; Kagoshima, Hiroki; McCollough, Cynthia H; Fletcher, Joel G

    2013-01-01

    The objective of this study was to analyze radiation dose reduction and image quality by combining automated kV selection, tube current reduction, and iterative reconstruction. This was a retrospective analysis of the excretory phase of 55 patients with 2 computed tomography urography examinations: automated kV selection with tube current reduction ("low-dose protocol": with filtered back projection vs iterative reconstruction) and routine dose examinations. Image quality was analyzed blindly and in side-by-side analyses, in addition to quantitative measurements. Low-dose protocol median dose change was -40% (-10.7 to +12.9 mGy); 100 kV was autoselected in 44 (80%) of 55 patients (body mass index range, 19-36 kg/m) with mean dose reduction of 42.5%. Whereas up to 19% of low-dose images with filtered back projection were inferior by blinded review (P < 0.001), low-dose iterative reconstruction images were not rated inferior (P = 1.0). The combination of iterative reconstruction, automated kV selection, and tube current reduction results in radiation dose reduction with preserved image quality and diagnostic confidence.

  19. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Directory of Open Access Journals (Sweden)

    H. Jiang

    2017-08-01

    Full Text Available When hydrocarbons (HCs are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs. These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t =  30 min of dithiothreitol (DTTt, a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2–5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC ∕ NOx ratio from 30 to 5. The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm was determined over an extended period of reaction time (t =  2 h to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC ∕ NOx ratio: 5–36 ppbC ppb−1 applied in

  20. Dithiothreitol activity by particulate oxidizers of SOA produced from photooxidation of hydrocarbons under varied NOx levels

    Science.gov (United States)

    Jiang, Huanhuan; Jang, Myoseon; Yu, Zechen

    2017-08-01

    When hydrocarbons (HCs) are atmospherically oxidized, they form particulate oxidizers, including quinones, organic hydroperoxides, and peroxyacyl nitrates (PANs). These particulate oxidizers can modify cellular materials (e.g., proteins and enzymes) and adversely modulate cell functions. In this study, the contribution of particulate oxidizers in secondary organic aerosols (SOAs) to the oxidative potential was investigated. SOAs were generated from the photooxidation of toluene, 1,3,5-trimethylbenzene, isoprene, and α-pinene under varied NOx levels. Oxidative potential was determined from the typical mass-normalized consumption rate (reaction time t = 30 min) of dithiothreitol (DTTt), a surrogate for biological reducing agents. Under high-NOx conditions, the DTTt of toluene SOA was 2-5 times higher than that of the other types of SOA. Isoprene DTTt significantly decreased with increasing NOx (up to 69 % reduction by changing the HC / NOx ratio from 30 to 5). The DTTt of 1,3,5-trimethylbenzene and α-pinene SOA was insensitive to NOx under the experimental conditions of this study. The significance of quinones to the oxidative potential of SOA was tested through the enhancement of DTT consumption in the presence of 2,4-dimethylimidazole, a co-catalyst for the redox cycling of quinones; however, no significant effect of 2,4-dimethylimidazole on modulation of DTT consumption was observed for all SOA, suggesting that a negligible amount of quinones was present in the SOA of this study. For toluene and isoprene, mass-normalized DTT consumption (DTTm) was determined over an extended period of reaction time (t = 2 h) to quantify their maximum capacity to consume DTT. The total quantities of PANs and organic hydroperoxides in toluene SOA and isoprene SOA were also measured using the Griess assay and the 4-nitrophenylboronic acid assay, respectively. Under the NOx conditions (HC / NOx ratio: 5-36 ppbC ppb-1) applied in this study, the amount of organic hydroperoxides was

  1. Analysis of NOx Budget Trading Program Units Brought into the CAIR NOx Ozone Season Trading Program

    Science.gov (United States)

    EPA analyzed the effect of having the large non-EGU units in the NBP and the CAIR NOX ozone season trading program and evaluated whether or not emissions from this group of units were reduced as a result of their inclusion in those trading programs.

  2. Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline and diesel vehicles under real-world driving test cycles.

    Science.gov (United States)

    Trinh, Ha T; Imanishi, Katsuma; Morikawa, Tazuko; Hagino, Hiroyuki; Takenaka, Norimichi

    2017-04-01

    Reactive nitrogen species emission from the exhausts of gasoline and diesel vehicles, including nitrogen oxides (NOx) and nitrous acid (HONO), contributes as a significant source of photochemical oxidant precursors in the ambient air. Multiple laboratory and on-road exhaust measurements have been performed to estimate the NOx emission factors from various vehicles and their contribution to atmospheric pollution. Meanwhile, HONO emission from vehicle exhaust has been under-measured despite the fact that HONO can contribute up to 60% of the total hydroxyl budget during daytime and its formation pathway is not fully understood. A profound traffic-induced HONO to NOx ratio of 0.8%, established by Kurtenbach et al. since 2001, has been widely applied in various simulation studies and possibly linked to under-estimation of HONO mixing ratios and OH radical budget in the morning. The HONO/NOx ratios from direct traffic emission have become debatable when it lacks measurements for direct HONO emission from vehicles upon the fast-changing emission reduction technology. Several recent studies have reported updated values for this ratio. This study has reported the measurement of HONO and NOx emission as well as the estimation of exhaust-induced HONO/NOx ratios from gasoline and diesel vehicles using different chassis dynamometer tests under various real-world driving cycles. For the tested gasoline vehicle, which was equipped with three-way catalyst after-treatment device, HONO/NOx ratios ranged from 0 to 0.95 % with very low average HONO concentrations. For the tested diesel vehicle equipped with diesel particulate active reduction device, HONO/NOx ratios varied from 0.16 to 1.00 %. The HONO/NOx ratios in diesel exhaust were inversely proportional to the average speeds of the tested vehicles. Photolysis of HONO is a dominant source of morning OH radicals. Conventional traffic-induced HONO/NOx ratio of 0.8% has possibly linked to underestimation of the total HONO budget and

  3. Selectivity of photoelectrochemical CO2 reduction modulated with electron transfer from size-tunable quantized energy states of CdSe nanocrystals

    Science.gov (United States)

    Cho, Hyunjin; Kim, Whi Dong; Lee, Kangha; Lee, Seokwon; Kang, Gil-Seong; Joh, Han-Ik; Lee, Doh C.

    2018-01-01

    We investigate the product selectivity of CO2 reduction using NiO photocathodes decorated with CdSe quantum dots (QDs) of varying size in a photoelectrochemical (PEC) cell. Size-tunable and quantized energy states of conduction band in CdSe QDs enable systematic control of electron transfer kinetics from CdSe QDs to NiO. It turns out that different size of CdSe QDs results in variation in product selectivity for CO2 reduction. The energy gap between conduction band edge and redox potential of each reduction product (e.g., CO and CH4) correlates with their production rate. The size dependence of the electron transfer rate estimated from the energy gap is in agreement with the selectivity of CO2 reduction products for all reduction products but CO. The deviation in the case of CO is attributed to sequential conversion of CO into CH4 with CO adsorbed on electrode surface. Based on a premise that the CdSe QDs would exhibit similar surface configuration regardless of QD size, it is concluded that the electron transfer kinetics proves to alter the selectivity of CO2 reduction.

  4. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  5. The NOX Family of Proteins Is Also Present in Bacteria

    Directory of Open Access Journals (Sweden)

    Christine Hajjar

    2017-11-01

    Full Text Available Transmembrane NADPH oxidase (NOX enzymes have been so far only characterized in eukaryotes. In most of these organisms, they reduce molecular oxygen to superoxide and, depending on the presence of additional domains, are called NOX or dual oxidases (DUOX. Reactive oxygen species (ROS, including superoxide, have been traditionally considered accidental toxic by-products of aerobic metabolism. However, during the last decade it has become evident that both O2•− and H2O2 are key players in complex signaling networks and defense. A well-studied example is the production of O2•− during the bactericidal respiratory burst of phagocytes; this production is catalyzed by NOX2. Here, we devised and applied a novel algorithm to search for additional NOX genes in genomic databases. This procedure allowed us to discover approximately 23% new sequences from bacteria (in relation to the number of NOX-related sequences identified by the authors that we have added to the existing eukaryotic NOX family and have used to build an expanded phylogenetic tree. We cloned and overexpressed the identified nox gene from Streptococcus pneumoniae and confirmed that it codes for an NADPH oxidase. The membrane of the S. pneumoniae NOX protein (SpNOX shares many properties with its eukaryotic counterparts, such as affinity for NADPH and flavin adenine dinucleotide, superoxide dismutase and diphenylene iodonium inhibition, cyanide resistance, oxygen consumption, and superoxide production. Traditionally, NOX enzymes in eukaryotes are related to functions linked to multicellularity. Thus, the discovery of a large family of NOX-related enzymes in the bacterial world brings up fascinating questions regarding their role in this new biological context.

  6. A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Howard L.; Huang, Shyan C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

    2002-10-01

    Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed. Development of the NOx adsorber technology is discussed. Spectroscopic techniques are applied to understand the underlying chemical reactions over the catalyst surface during NOx trapping and regeneration periods. In-situ surface probes are useful in providing not only thermodynamic and kinetics information required for model development but also a fundamental understanding of storage capacity and degradation mechanisms. The distribution of various nitration/sulfation species is related to surface basicity. Surface displacement reactions of carbonates also play roles in affecting the trapping capability of NOx adsorbers. When ultralow-S fuel is used as a reductant during the regeneration, sulfur induced performance degradation is still observed in an aged catalyst. Other possible sources related to catalyst deactivation include incomplete reduction of surface nitration, coke formation derived from incomplete hydrocarbon burning, and lubricant formulations. Sulfur management and the

  7. NOx SOx Secondary NAAQS: Integrated Review Plan ...

    Science.gov (United States)

    The NOx SOx Secondary NAAQS Integrated Review Plan is the first document generated as part of the National Ambient Air Quality Standards (NAAQS) review process. The Plan presents background information, the schedule for the review, the process to be used in conducting the review, and the key policy-relevant science issues that will guide the review. The integrated review plan also discusses the frameworks for the various assessment documents to be prepared by the EPA as part of the review, including an Integrated Science Assessment (ISA), and as warranted, a Risk/Exposure Assessment (REA), and a Policy Assessment (PA). The primary purpose of the NOx SOx Secondary NAAQS Integrated Review Plan is to highlight the key policy-relevant issues to be considered in the Review of the Oxides of Nitrogen and Oxides of Sulfur Secondary NAAQS. A draft of the integrated review plan will be the subject of an advisory review with the Clean Air Scientific Advisory Committee (CASAC) and made available to the public for review and comment.

  8. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2012-05-01

    Full Text Available Using OMI (Ozone Monitoring Instrument tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem, we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82 with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite

  9. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Science.gov (United States)

    Wang, S. W.; Zhang, Q.; Streets, D. G.; He, K. B.; Martin, R. V.; Lamsal, L. N.; Chen, D.; Lei, Y.; Lu, Z.

    2012-05-01

    Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005-2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005-2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005-2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79-0.82) with OMI measurements over grids dominated by power plant emissions, with only 7-14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8-17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.

  10. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation

    Directory of Open Access Journals (Sweden)

    Young Keith A

    2010-11-01

    Full Text Available Abstract Background Numerous studies have reported that increased expression of S100B, an intracellular Ca2+ receptor protein and secreted neuropeptide, exacerbates Alzheimer's disease (AD pathology. However, the ability of S100B inhibitors to prevent/reverse AD histopathology remains controversial. This study examines the effect of S100B ablation on in vivo plaque load, gliosis and dystrophic neurons. Methods Because S100B-specific inhibitors are not available, genetic ablation was used to inhibit S100B function in the PSAPP AD mouse model. The PSAPP/S100B-/- line was generated by crossing PSAPP double transgenic males with S100B-/- females and maintained as PSAPP/S100B+/- crosses. Congo red staining was used to quantify plaque load, plaque number and plaque size in 6 month old PSAPP and PSAPP/S100B-/- littermates. The microglial marker Iba1 and astrocytic marker glial fibrillary acidic protein (GFAP were used to quantify gliosis. Dystrophic neurons were detected with the phospho-tau antibody AT8. S100B immunohistochemistry was used to assess the spatial distribution of S100B in the PSAPP line. Results PSAPP/S100B-/- mice exhibited a regionally selective decrease in cortical but not hippocampal plaque load when compared to PSAPP littermates. This regionally selective reduction in plaque load was accompanied by decreases in plaque number, GFAP-positive astrocytes, Iba1-positive microglia and phospho-tau positive dystrophic neurons. These effects were not attributable to regional variability in the distribution of S100B. Hippocampal and cortical S100B immunoreactivity in PSAPP mice was associated with plaques and co-localized with astrocytes and microglia. Conclusions Collectively, these data support S100B inhibition as a novel strategy for reducing cortical plaque load, gliosis and neuronal dysfunction in AD and suggest that both extracellular as well as intracellular S100B contribute to AD histopathology.

  11. Reductive reactivity of iron(III oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    Directory of Open Access Journals (Sweden)

    Liang-Jin Chen

    Full Text Available Reactive Fe(III oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite. Also the reactivity of Fe(III oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III oxides, k' (rate constant and γ (heterogeneity of reactivity, enable a quantitative characterization of Fe(III oxide reactivity in a standardized way. Amorphous Fe(III oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III suggests that the m 0 may represent Fe(III oxide assemblages spanning amorphous and crystalline Fe(III oxides. Maximum microbially available Fe(III predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III phases.

  12. Developing "Personality" Taxonomies: Metatheoretical and Methodological Rationales Underlying Selection Approaches, Methods of Data Generation and Reduction Principles.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    Taxonomic "personality" models are widely used in research and applied fields. This article applies the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) to scrutinise the three methodological steps that are required for developing comprehensive "personality" taxonomies: 1) the approaches used to select the phenomena and events to be studied, 2) the methods used to generate data about the selected phenomena and events and 3) the reduction principles used to extract the "most important" individual-specific variations for constructing "personality" taxonomies. Analyses of some currently popular taxonomies reveal frequent mismatches between the researchers' explicit and implicit metatheories about "personality" and the abilities of previous methodologies to capture the particular kinds of phenomena toward which they are targeted. Serious deficiencies that preclude scientific quantifications are identified in standardised questionnaires, psychology's established standard method of investigation. These mismatches and deficiencies derive from the lack of an explicit formulation and critical reflection on the philosophical and metatheoretical assumptions being made by scientists and from the established practice of radically matching the methodological tools to researchers' preconceived ideas and to pre-existing statistical theories rather than to the particular phenomena and individuals under study. These findings raise serious doubts about the ability of previous taxonomies to appropriately and comprehensively reflect the phenomena towards which they are targeted and the structures of individual-specificity occurring in them. The article elaborates and illustrates with empirical examples methodological principles that allow researchers to appropriately meet the metatheoretical requirements and that are suitable for comprehensively exploring individuals' "personality".

  13. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    Science.gov (United States)

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  14. Plume Evolution and NOx Lifetime in the Denver Metropolitan Area

    Science.gov (United States)

    Ebben, C. J.; Sparks, T.; Wooldridge, P. J.; Cohen, R. C.

    2016-12-01

    NOx (NOx≡NO+NO2) is abundant in urban areas due to its emission via combustion processes. As NOx is transported away from cities, it undergoes photochemical oxidation to produce a variety of nitrogen oxide products, including peroxynitrates (PNs), alkyl nitrates (ANs), and nitric acid (HNO3). These species have different loss mechanisms and lifetimes, meaning that ongoing nitrogen oxide chemistry may differ greatly in the near- and far-field of cities. Understanding the evolution of NOx and NOy (NOy≡NOx+PNs+ANs+HNO3+…) - including the relative balance between NOx oxidation products and their overall concentrations - as air masses are transported away from cities is imperative to constraining the lifetime of NOx and understanding how air quality regulations aimed at lowering NOx emissions might impact air quality in the near- and far-field of urban areas. We have used observations from the Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ) to investigate the evolution of NOx in air masses originating from the Denver urban area, and our results are contrasted with examples from other cities.

  15. Nitrogen oxides/sulfur oxides (NOx/SOx) Secondary NAAQS ...

    Science.gov (United States)

    This document assesses the policy basis for setting the secondary NOx/SOx NAAQS. To provide the policy assessment information for the Administrator to make a more informed decision about the basis for retaining or revising the secondary NOx/SOx NAAQS.

  16. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  17. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide

    NARCIS (Netherlands)

    Ballari, M.M.; Hunger, Martin; Hüsken, Götz; Brouwers, Jos

    2010-01-01

    In the present work the degradation of nitrogen oxides (NOx) by concrete paving stones containing TiO2 to be applied in road construction is studied. A kinetic model is proposed to describe the photocatalytic reaction of NOx (combining the degradation of NO and the appearance and disappearance of

  18. 40 CFR 60.44 - Standard for nitrogen oxides (NOX).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides (NOX). 60.44 Section 60.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... nitrogen oxides (NOX). (a) Except as provided under paragraph (e) of this section, on and after the date on...

  19. Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

    1993-12-01

    This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

  20. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.

    Science.gov (United States)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-28

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 coordination with the Cu(2+) Lewis sites, and NH3 adsorbed on extra-framework Al (EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4(+) ions react very slowly in comparison to NH3 coordinated to Cu(2+) ions and are likely to contribute little to the standard NH3-SCR process, with the Brønsted groups acting primarily as NH3 storage sites. The availability/reactivity of NH4(+) ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu(2+), accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4(+) ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems.

  1. Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.; Fuchs, W. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA))

    1991-02-01

    This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.

  2. Impact of oral rehydration and selected public health interventions on reduction of mortality from childhood diarrhoeal diseases in Mexico.

    Science.gov (United States)

    Gutiérrez, G; Tapia-Conyer, R; Guiscafré, H; Reyes, H; Martínez, H; Kumate, J

    1996-01-01

    Reported are the results of an analysis of mortality trends from diarrhoeal diseases among under-5-year-olds in Mexico between 1978 and 1993 in relation to the impact of education, basic sanitation, and selected medical care practices. The study period was divided into three stages; the first pre-dated the widespread application of oral rehydration therapy (ORT); the second, covered the implementation of a nationwide programme promoting ORT; and the third included additional measures, such as immunization and improvements in basic sanitation. Mortality rates decreased progressively, at an average of 1.8% per year in the first stage, 6.4% in the second, and 17.8% in the third. The importance of literacy campaigns for women and the promotion of ORT was confirmed. Both of these measures reduced mortality; however, a greater reduction resulted from a massive immunization campaign against measles and improvements in sanitation (expansion of the drainage and piped water systems, improved water chlorination procedure, and effective prohibition of the use of sanitary sewage for vegetable irrigation).

  3. Sequential Test Selection by Quantifying of the Reduction in Diagnostic Uncertainty for the Diagnosis of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Umut Arslan

    2013-06-01

    Full Text Available Background: In order to determine the presence or absence of a certain disease, multiple diagnostic tests may be necessary. Performance of these tests can be sequentially evaluated. Aims: The aim of the study is to determine the contribution of the test in each step, in reducing diagnostic uncertainty when multiple tests are sequentially used for the diagnosis. Study Design: Diagnostic accuracy study Methods: Radiographs of seventy-three patients of the Department of Dento-Maxillofacial Radiology of Hacettepe University Faculty of Dentistry were assessed. Panoramic (PAN, full mouth intraoral (FM, and bitewing (BW radiographs were used for the diagnosis of proximal caries in the maxillary and mandibular molar regions. Diagnostic performance of radiography was sequentially evaluated by using the reduction in diagnostic uncertainty. Results: FM provided maximum diagnostic information for ruling in potential in the maxillary and mandibular molar regions in the first step. FM provided more diagnostic information than BW radiographs for ruling in the mandibular region in the second step. In the mandibular region, BW radiographs provided more diagnostic information than FM for ruling out in the first step. Conclusion: The presented method in this study provides the clinicians with a solution for the decision of the sequential selection of diagnostic tests for the correct diagnosis of the presence or absence of a certain disease.

  4. Verification of NOx emission inventories over North Korea.

    Science.gov (United States)

    Kim, Na Kyung; Kim, Yong Pyo; Morino, Yu; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-12-01

    In this study, the top-down NOx emissions estimated from satellite observations of NO2 vertical column densities over North Korea from 1996 to 2009 were analyzed. Also, a bottom-up NOx emission inventory from REAS 1.1 from 1980 to 2005 was analyzed with several statistics. REAS 1.1 was in good agreement with the top-down approach for both trend and amount. The characteristics of NOx emissions in North Korea were quite different from other developed countries including South Korea. In North Korea, emissions from industry sector was the highest followed by transportation sector in the 1980s. However, after 1990, the NOx emissions from other sector, mainly agriculture, became the 2nd highest. Also, no emission centers such as urban areas or industrial areas were distinctively observed. Finally, the monthly NOx emissions were high during the warm season. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Myocardin-related transcription factor regulates Nox4 protein expression

    DEFF Research Database (Denmark)

    Rozycki, Matthew; Bialik, Janne Folke; Speight, Pam

    2016-01-01

    translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application......TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator...... of serum response factor, drives myofibroblast transition from various precursors. We have shown that TGFβ is necessary but insufficient for epithelial-myofibroblast transition in intact epithelia; the other prerequisite is the uncoupling of intercellular contacts, which induces Rho-dependent nuclear...

  6. Selected constants oxydo-reduction potentials tables of constants and numerical data affiliated to the International Union of Pure and Applied Chemistry, v.8

    CERN Document Server

    Charlot, G

    1958-01-01

    Selected Constants: Oxydo-Reduction Potentials contains Tables of the most probable value of the normal oxidation-reduction potential, or of the formal or apparent potential, of a given oxidation-reduction system. This book is prepared under the sponsorship of the Commission on Electrochemical Data of the Section of Analytical Chemistry of the International Union of Pure and Applied Chemistry. It is included in a general program of the Section of Analytical Chemistry. Entry items are classified in alphabetical order. This book will be of value to specialized and non-specialized chemists, teach

  7. Selective heart rate reduction with ivabradine slows ischaemia-induced electrophysiological changes and reduces ischaemia–reperfusion-induced ventricular arrhythmias

    Science.gov (United States)

    Ng, Fu Siong; Shadi, Iqbal T.; Peters, Nicholas S.; Lyon, Alexander R.

    2013-01-01

    Heart rates during ischaemia and reperfusion are possible determinants of reperfusion arrhythmias. We used ivabradine, a selective If current inhibitor, to assess the effects of heart rate reduction (HRR) during ischaemia–reperfusion on reperfusion ventricular arrhythmias and assessed potential anti-arrhythmic mechanisms by optical mapping. Five groups of rat hearts were subjected to regional ischaemia by left anterior descending artery occlusion for 8 min followed by 10 min of reperfusion: (1) Control n = 10; (2) 1 μM of ivabradine perfusion n = 10; (3) 1 μM of ivabradine + 5 Hz atrial pacing throughout ischaemia–reperfusion n = 5; (4) 1 μM of ivabradine + 5 Hz pacing only at reperfusion; (5) 100 μM of ivabradine was used as a 1 ml bolus upon reperfusion. For optical mapping, 10 hearts (ivabradine n = 5; 5 Hz pacing n = 5) were subjected to global ischaemia whilst transmembrane voltage transients were recorded. Epicardial activation was mapped, and the rate of development of ischaemia-induced electrophysiological changes was assessed. HRR observed in the ivabradine group during both ischaemia (195 ± 11 bpm vs. control 272 ± 14 bpm, p hearts (27.7 ± 4.3 min vs. 14.5 ± 0.6 min, p Heart rate during ischaemia is a major determinant of reperfusion arrhythmias. Heart rate at reperfusion alone was not a determinant of reperfusion VF, as neither a bolus of ivabradine nor pacing immediately prior to reperfusion significantly altered reperfusion VF incidence. This anti-arrhythmic effect of heart rate reduction during ischaemia may reflect slower development of ischaemia-induced electrophysiological changes. PMID:23402927

  8. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    Science.gov (United States)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    emitted VOCs. The box model simulations approximating stagnant conditions and the maximal ozone production chemical regime reproduced the 2 ppbv increase in ozone per degree Celsius from the observational and regional model data over central Europe. The simulated ozone-temperature relationship was more sensitive to mixing than the choice of chemical mechanism. Our analysis suggests that reductions in NOx emissions would be required to offset the additional ozone production due to an increase in temperature in the future.

  9. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NOxwith NH3.

    Science.gov (United States)

    Jiang, Haoxi; Wang, Qianyun; Wang, Huiqin; Chen, Yifei; Zhang, Minhua

    2016-10-12

    In this work, Mn-MOF-74 with hollow spherical structure and Co-MOF-74 with petal-like shape have been prepared successfully via the hydrothermal method. The catalysts were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry-mass spectrum analysis (TG-MS), N 2 adsorption/desorption, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It is found that MOF-74(Mn, Co) exhibits the capability for selective catalytic reduction (SCR) of NO x at low temperatures. Both experimental (temperature-programmed desorption, TPD) and computational methods have shown that Co-MOF-74 and Mn-MOF-74 owned high adsorption and activation abilities for NO and NH 3 . The catalytic activities of Mn-MOF-74 and Co-MOF-74 for low-temperature denitrification (deNO x ) in the presence of NH 3 were 99% at 220 °C and 70% at 210 °C, respectively. It is found that the coordinatively unsaturated metal sites (CUSs) in M-MOF-74 (M = Mn and Co) played important roles in SCR reaction. M-MOF-74 (M = Mn and Co), especially Mn-MOF-74, showed excellent catalytic performance for low-temperature SCR. In addition, in the reaction process, NO conversion on Mn-MOF-74 decreased with the introduction of H 2 O and SO 2 and almost recovered when gas was cut off. However, for Co-MOF-74, SO 2 almost has no effect on the catalytic activity. This work showed that MOF-74 could be used prospectively as deNO x catalyst.

  10. Development of a microscale NOx- biosensor for the study of nitrogen cycling in marine sediment

    DEFF Research Database (Denmark)

    Marzocchi, Ugo

    Nitrogen is a key element for life, it is an essential component of important biomolecules (e.g. amino acids) and because of its multiple oxidative states it has been widely selected during microbial evolution as a mediator for the redox processes that allow for energy transfer and conservation...... stratification of organisms and processes in surface sediments motivates scientists interested in nitrogen dynamics to use extremely small tools for detecting the spatial distribution of the nitrogen species and minimize the physical disturbance of the steep concentration gradients. The NOx- (i.e. NO3- + NO2...... of the biosensor can be amplified by the electrophoretic sensitivity control system (ESC) which positively polarizes the inner side of the sensor against an external reference inserted into the analyzed medium, inducing the migration of NOx- anions into the bacterial chamber. However, nowadays the widespread...

  11. Association between NOx exposure and deaths caused by respiratory diseases in a medium-sized Brazilian city

    Directory of Open Access Journals (Sweden)

    A. C. G. César

    2015-12-01

    Full Text Available Exposure to nitrogen oxides (NOx emitted by burning fossil fuels has been associated with respiratory diseases. We aimed to estimate the effects of NOx exposure on mortality owing to respiratory diseases in residents of Taubaté, São Paulo, Brazil, of all ages and both sexes. This time-series ecological study from August 1, 2011 to July 31, 2012 used information on deaths caused by respiratory diseases obtained from the Health Department of Taubaté. Estimated daily levels of pollutants (NOx, particulate matter, ozone, carbon monoxide were obtained from the Centro de Previsão de Tempo e Estudos Climáticos Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System. These environmental variables were used to adjust the multipollutant model for apparent temperature. To estimate association between hospitalizations owing to asthma and air pollutants, generalized additive Poisson regression models were developed, with lags as much as 5 days. There were 385 deaths with a daily mean (±SD of 1.05±1.03 (range: 0-5. Exposure to NOx was significantly associated with mortality owing to respiratory diseases: relative risk (RR=1.035 (95% confidence interval [CI]: 1.008-1.063 for lag 2, RR=1.064 (95%CI: 1.017-1.112 lag 3, RR=1.055 (95%CI: 1.025-1.085 lag 4, and RR=1.042 (95%CI: 1.010-1.076 lag 5. A 3 µg/m3 reduction in NOx concentration resulted in a decrease of 10-18 percentage points in risk of death caused by respiratory diseases. Even at NOx concentrations below the acceptable standard, there is association with deaths caused by respiratory diseases.

  12. Anvil microphysical signatures associated with lightning-produced NOx

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2016-02-01

    Full Text Available Thunderstorm anvils were studied during the Deep Convective Clouds and Chemistry experiment (DC3, using in situ measurements and observations of ice particles and NOx together with radar and Lightning Mapping Array measurements. A characteristic ice particle and NOx signature was found in the anvils from three storms, each containing high lightning flash rates in the storm core prior to anvil sampling. This signature exhibits high concentrations of frozen droplets (as measured by a Cloud Droplet Probe coincident with lower NOx on the edges of the anvil. The central portion of these anvils exhibited a high degree of aggregation of these frozen droplets and higher levels of NOx. In contrast, a deep convective cell with low lightning flash rates had high concentrations of both frozen droplets and aggregated frozen droplets in its anvil's central region. A conceptual model for these results is presented and applied to the observations from each of these storms. High NOx concentrations are often found where aggregation of frozen droplets has occurred, which may be a reflection of aggregation by electrical forces in the regions where lightning is occurring, although the level of NOx for a given concentration of aggregates varies from storm to storm. These observations between anvil microphysics and lightning and/or NOx signatures suggest that lightning data may be an important tool to characterize or infer the microphysical, radiative, and chemical properties of thunderstorm anvils.

  13. Selective Detection of NADPH Oxidase in Polymorphonuclear Cells by Means of NAD(PH-Based Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    R. Niesner

    2008-01-01

    Full Text Available NADPH oxidase (NOX2 is a multisubunit membrane-bound enzyme complex that, upon assembly in activated cells, catalyses the reduction of free oxygen to its superoxide anion, which further leads to reactive oxygen species (ROS that are toxic to invading pathogens, for example, the fungus Aspergillus fumigatus. Polymorphonuclear cells (PMNs employ both nonoxidative and oxidative mechanisms to clear this fungus from the lung. The oxidative mechanisms mainly depend on the proper assembly and function of NOX2. We identified for the first time the NAD(PH-dependent enzymes involved in such oxidative mechanisms by means of biexponential NAD(PH-fluorescence lifetime imaging (FLIM. A specific fluorescence lifetime of 3670±140 picoseconds as compared to 1870 picoseconds for NAD(PH bound to mitochondrial enzymes could be associated with NADPH bound to oxidative enzymes in activated PMNs. Due to its predominance in PMNs and due to the use of selective activators and inhibitors, we strongly believe that this specific lifetime mainly originates from NOX2. Our experiments also revealed the high site specificity of the NOX2 assembly and, thus, of the ROS production as well as the dynamic nature of these phenomena. On the example of NADPH oxidase, we demonstrate the potential of NAD(PH-based FLIM in selectively investigating enzymes during their cellular function.

  14. A rationally designed amino-borane complex in a metal organic framework: A novel reusable hydrogen storage and size-selective reduction material

    KAUST Repository

    Wang, Xinbo

    2015-01-01

    A novel amino-borane complex inside a stable metal organic framework was synthesized for the first time. It releases hydrogen at a temperature of 78 °C with no volatile contaminants and can be well reused. Its application as a size-selective reduction material in organic synthesis was also demonstrated. © The Royal Society of Chemistry 2015.

  15. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO{sub 2} to alcohols and carbonyls on copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi [School of Chemistry, University of Birmingham, Edgbaston (United Kingdom)

    2017-10-09

    The electrochemical reduction of CO{sub 2} into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO{sub 2} to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO{sub 2} on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO{sub 2} reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  17. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents...

  18. Role of the Adsorbed Oxygen Species in the Selective Electrochemical Reduction of CO2 to Alcohols and Carbonyls on Copper Electrodes.

    Science.gov (United States)

    Le Duff, Cécile S; Lawrence, Matthew J; Rodriguez, Paramaconi

    2017-10-09

    The electrochemical reduction of CO2 into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    Science.gov (United States)

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  20. The effect of coal-fired power-plant SO2 and NOx control technologies on aerosol nucleation in the source plumes

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2012-12-01

    Full Text Available Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to

  1. New Insights into the Steen Solution Properties: Breakthrough in Antioxidant Effects via NOX2 Downregulation

    Directory of Open Access Journals (Sweden)

    Roberto Carnevale

    2014-01-01

    Full Text Available Ex vivo lung perfusion (EVLP allows perfusion and reconditioning of retrieved lungs for organ transplantation. The Steen solution is specifically designed for this procedure but the mechanism through which it elicits its activity is still to be fully clarified. We speculated that Steen solution may encompass antioxidant properties allowing a reestablishment of pulmonary tissue homeostasis. Blood samples from 10 healthy volunteers were recruited. Platelets and white cells were incubated with Steen solution or buffer solution as control and stimulated with suitable agonists. Reactive oxidant species (ROS, soluble NOX2 (sNOX2-derived peptide, a marker of NADPH oxidase activation, p47phox translocation to cell membrane and isoprostanes production, as marker of oxidative stress, and nitric oxide (NO, a powerful vasodilator and antioxidant molecule, were measured upon cell stimulation. The Steen solution significantly inhibited p47phox translocation and NOX2 activation in platelets and white cells. Consistent with this finding was the reduction of oxidative stress as documented by a significantly lowered formation of ROS and isoprostanes by both platelets and white cells. Finally, cell incubation with Steen solution resulted in enhanced generation of NO. Herewith, we provide the first evidence that Steen solution possesses antioxidant properties via downregulation of NADPH oxidase activity and enhanced production of NO.

  2. Climatic effects of NOx emissions through changes in tropospheric O{sub 3} and CH{sub 4}. A global 3-D model studt

    Energy Technology Data Exchange (ETDEWEB)

    Fuglestvedt, Jan S.; Berntsen, Terje K.; Isaksen, Ivar S.A.; Mao, Huiting; Liang, Xin Zhong; Wang, Wei Chyung

    1997-12-31

    The overall objective of the work discussed in this report is to obtain more reliable estimates of the impacts of emissions of NOx from surface sources on climate through the responses in tropospheric ozone and methane. The report considers in detail how the climate impacts as quantified in terms of radiative forcing vary with geographical location of the emission changes, and it focuses on monthly mean values of ozone. It is found that, for ozone changes, the highest sensitivities to NOx reductions are calculated for Southeast Asia and Australia, while USA and Scandinavia have the lowest sensitivities. For methane, Australia and Southeast Asia are much more sensitive to NOx changes than any other region. The climatic impacts in terms of radiative forcing shows significant regional variation. The chemistry calculations show that changes in the emissions of NOx lead to changes in methane that are of opposite sign compared to the ozone response. Emissions of NOx have potentially important impacts on climate. But these impacts are very different in nature; one global methane effect with a delay of approximately a decade, while the ozone effect is of regional character with an almost instantaneous adjustment. Both mechanisms may affect climate on a hemispheric to global scale through changes in local heating rates and dynamics. It is also found that the effects of NOx emissions on ozone in the free troposphere depend on changes in the levels of gases providing the HOx precursors for ozone production. 50 refs., 23 figs., 5 tabs.

  3. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation

    NARCIS (Netherlands)

    Steinbusch, K.J.J.; Arvaniti, E.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    Acetate reduction is an alternative digestion process to convert organic waste into ethanol. Using acetate for fuel ethanol production offers the opportunity to use organic waste materials instead of sugar-containing feedstock. Methanogenesis, however, competes with acetate reduction for acetate and

  4. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.386 Section 97.386 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program...

  5. 40 CFR 96.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 96.186 Section 96.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Opt-in Units § 96.186 Withdrawal from CAIR NOX Annual Trading...

  6. 40 CFR 97.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS Individual Unit Opt-ins. § 97.86 Withdrawal from NOX Budget Trading Program. (a) Requesting withdrawal. To...

  7. 40 CFR 96.86 - Withdrawal from NOX Budget Trading Program.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from NOX Budget Trading... PROGRAMS (CONTINUED) NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS Individual Unit Opt-ins § 96.86 Withdrawal from NOX Budget Trading Program. (a) Requesting...

  8. 40 CFR 97.186 - Withdrawal from CAIR NOX Annual Trading Program.

    Science.gov (United States)

    2010-07-01

    ... Trading Program. 97.186 Section 97.186 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Opt-In Units § 97.186 Withdrawal from CAIR NOX Annual Trading Program. Except as provided...

  9. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.

    Science.gov (United States)

    Kuroda, Junya; Ago, Tetsuro; Matsushima, Shouji; Zhai, Peiyong; Schneider, Michael D; Sadoshima, Junichi

    2010-08-31

    NAD(P)H oxidases (Noxs) produce O(2)(-) and play an important role in cardiovascular pathophysiology. The Nox4 isoform is expressed primarily in the mitochondria in cardiac myocytes. To elucidate the function of endogenous Nox4 in the heart, we generated cardiac-specific Nox4(-/-) (c-Nox4(-/-)) mice. Nox4 expression was inhibited in c-Nox4(-/-) mice in a heart-specific manner, and there was no compensatory up-regulation in other Nox enzymes. These mice exhibited reduced levels of O(2)(-) in the heart, indicating that Nox4 is a significant source of O(2)(-) in cardiac myocytes. The baseline cardiac phenotype was normal in young c-Nox4(-/-) mice. In response to pressure overload (PO), however, increases in Nox4 expression and O(2)(-) production in mitochondria were abolished in c-Nox4(-/-) mice, and c-Nox4(-/-) mice exhibited significantly attenuated cardiac hypertrophy, interstitial fibrosis and apoptosis, and better cardiac function compared with WT mice. Mitochondrial swelling, cytochrome c release, and decreases in both mitochondrial DNA and aconitase activity in response to PO were attenuated in c-Nox4(-/-) mice. On the other hand, overexpression of Nox4 in mouse hearts exacerbated cardiac dysfunction, fibrosis, and apoptosis in response to PO. These results suggest that Nox4 in cardiac myocytes is a major source of mitochondrial oxidative stress, thereby mediating mitochondrial and cardiac dysfunction during PO.

  10. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS.

    Science.gov (United States)

    Siu, Kin Lung; Lotz, Christopher; Ping, Peipei; Cai, Hua

    2015-01-01

    Despite an established role of mitochondrial dysfunction in cardiac ischemia/reperfusion (I/R) injury, the upstream activators have remained incompletely defined. We have recently identified an innovative role of exogenously applied netrin-1 in cardioprotection, which is mediated by increased nitric oxide (NO) bioavailability. Here, we tested the hypothesis that this "pharmacological" treatment of netrin-1 preserves mitochondrial function via novel mechanisms that are NO dependent. Freshly isolated C57BL6 mouse hearts were perfused using a Langendorff system, and subjected to a 20min global ischemia/60min reperfusion, in the presence or absence of netrin-1. I/R induced marked increases in infarct size, total superoxide and hydrogen peroxide production, activity and protein abundance of NADPH oxidase (NOX) isoform 4 (NOX4), as well as impaired mitochondrial integrity and function, all of which were attenuated by netrin-1. This protective effect of netrin-1 is attributed to cGMP, a downstream effector of NO. The protein levels of NOX1 and NOX2 were however unaffected, and infarct size from NOX1 and NOX2 knockouts was not different from wild type animals. Scavenging of NO with PTIO reversed inhibitory effects of netrin-1 on NOX4, while NO donor attenuated NOX4 protein abundance. In vivo NOX4 RNAi, or sepiapterin perfusion, resulted in recoupling of NOS, decreased infarct size, and blockade of dysfunctional mitochondrial swelling and mitochondrial superoxide production. These data demonstrate that netrin-1 induces cardioprotection through inhibition of NOX4 activity, which leads to recoupling of NOS, augmented NO bioavailability, reduction in oxidative stress, and ultimately preservation of mitochondrial function. The NO-dependent NOX4 inhibition connects with our previously established pathway of DCC/ERK1/2/eNOS/NO/DCC feed-forward mechanism, to maintain NOS in the coupling state to attenuate oxidative stress to preserve mitochondrial function. These findings may

  11. EVIDENCE OF THE IMPORTANCE OF NOX4 IN PRODUCTION OF HYPERTENSION IN DAHL SALT-SENSITIVE RATS

    Science.gov (United States)

    Cowley, Allen W.; Yang, Chun; Zheleznova, Nadezhda N.; Staruschenko, Alexander; Kurth, Theresa; Rein, Lisa; Kumar, Vikash; Sadovnikov, Katherine; Dayton, Alex; Hoffman, Matthew; Ryan, Robert P.; Skelton, Meredith M.; Salehpour, Fahimeh; Ranji, Mahsa; Geurts, Aron

    2015-01-01

    This study reports the consequences of knocking out NADPH oxidase 4 (Nox4) upon the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4 resulting in a loss of the ~68 kD band in Western blot analysis of renal cortical tissue of the SSNox4−/− rats. SSNox4−/− rats exhibited a significant reduction of salt-induced hypertension compared to SS rats after 21 days of 4.0% NaCl diet (134±5 vs 151±3 mmHg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3D cryoimaging revealed significantly higher redox ratios (NADH/FAD) in the kidneys of SSNox4−/− rats even when fed the 0.4% NaCl diet indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared to SS rats. Prior to the development of hypertension, RNA expression levels of NADPH oxidase subunits Nox2, p67phox, and p22phox were found to be significantly lower (p<0.05) in SSNox4−/− compared to SS rats in the renal cortex. Thus the mutation of Nox4 appears to modify transcription of a number of genes in ways that contribute to the protective effects observed in the SSNox4−/− rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SSNox4−/− rat could be the result of multiple pathways including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4. PMID:26644237

  12. In situ XANES cell used for the study of lanthanum strontium cuprate deNOx catalysts

    DEFF Research Database (Denmark)

    Hagen, Anke

    2011-01-01

    The potential NOx-reduction electro catalyst lanthanum strontium cuprate has been characterized with an in situ X-ray spectrochemical gas reaction cell. In a series of samples with increasing substitution of trivalent lanthanum by divalent strontium ions, the oxidation state of copper increased......, maintaining charge neutrality, with the concentration of oxygen vacancies likely increasing at substitution ratios larger than Sr/La>0.08. During heating in air, the valence of copper ions in the structure increased. Upon exposure to NO at 500 °C the valence of copper ions in a lanthanum strontium cuprate...... sample decreased, whereas it remained unchanged in the strontium-free lanthanum cuprate sample....

  13. Measurement of NOx fluxes from a tall tower in Beijing

    Science.gov (United States)

    Squires, Freya; Dunmore, Rachel; Lewis, Alastair; Vaughan, Adam; Mullinger, Neil; Nemitz, Eiko; Wild, Oliver; Zhang, Qiang; Hamilton, Jacqueline; Lee, James; Fu, Pingqing

    2017-04-01

    Nitrogen Oxides (NOx, the sum of nitrogen monoxide (NO) and nitrogen dioxide (NO2)) are significant anthropogenic pollutants emitted from most combustion processes. NOx is a precursor species to the formation of O3 and secondary aerosols and, in high concentrations, NO2 can have adverse effects on human health through action as a respiratory irritant. For these reasons, there has been increased focus on improving NOx emissions inventories, typically developed using 'bottom-up' estimates of emissions from their sources, which are used to predict current and future air quality and to guide abatement strategy. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. Similarly, inventories in China are associated with large uncertainties and are rapidly changing with time in response to economic development and new environmental regulation. Here, we present data collected as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) campaign from an urban site located at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) (39˚ 58'28"N, 116˚ 22'16"E) in central Beijing. NOx concentrations were measured using a state-of-the-art chemiluminescence instrument, sampling from an inlet at 100 metres on a meteorological tower. Measurements at 5 Hz coupled with wind vector data measured by a sonic anemometer located at the same height as the inlet allowed NOx emission fluxes to be calculated using the eddy covariance method. Measurements were made during the period 11/11/2016 - 10/12/2016 and compared to existing emission estimates from The Multi-resolution Emission Inventory for China (MEIC) inventory. It is anticipated that this work will be used to evaluate the accuracy of emissions inventories for Beijing, to develop improved emissions estimates and thus provide

  14. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  15. The Cooperative Effect of In2O2 and In/HZSM-5 for Reduction of Nitric Oxide with Methane

    Directory of Open Access Journals (Sweden)

    Lili Ren

    2014-01-01

    Full Text Available Compared with In/HZSM-5 catalyst, In/HZSM-5/In2O3 catalyst that contained two different kinds of In induced by the impregnation and the physical mixing method, respectively, has shown remarkable activity for methane selectively catalytic reduction (CH4-SCR of NOx. The addition of In2O3 to In/HZSM-5 could improve the NO conversion. When a little In2O3 was added to the In/HZSM-5, the active sites of InO+ which can adsorb NO2 were increased. Moreover, at the internal surface of HZSM-5, highly dispersed In2O3 species could promote oxidation of NO to NO2. The adsorption of NO2 is the key step for the whole reaction, which benefits the activation of methane and the reduction of NOx by methane. Thus the activity of In/HZSM-5/In2O3 for CH4-SCR of NOx was higher than that of In/HZSM-5.

  16. Field test of available methods to measure remotely SOx and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  17. Federal NOx Budget Trading Program and CAIR NOx and SO2 Trading Programs (40 CFR Part 97)

    Science.gov (United States)

    This part establishes general provisions and the applicability, permitting, allowance, excess emissions, monitoring, and opt-in provisions for the federal NOx Budget Trading Program as a means of mitigating interstate transport of ozone and nitrogen oxides

  18. Microwave Controlled Reductive Cyclization: A Selective Synthesis of Novel Benzimidazole-alkyloxypyrrolo[1,2-a]quinoxalinones.

    Science.gov (United States)

    Dhole, Sandip; Selvaraju, Manikandan; Maiti, Barnali; Chanda, Kaushik; Sun, Chung-Ming

    2015-05-11

    An efficient cascade synthesis of novel benzimidazole linked alkyloxypyrrolo[1,2-a]quinoxalinones was explored on soluble polymer support under microwave irradiation. Two exclusive protocols have been developed for the partial and full reductive cyclization by controlling the microwave energy. Commencing from the same substrate, ortho nitro pyrrol carboxylates, N-hydroxy pyrroloquinoxalinones were obtained by partial reductive cyclization (60 °C, 7 min), and the synthesis of pyrroloquinoxalinones was accomplished by full reductive cyclization (85 °C, 12 min). This method represents the first synthesis of N-hydroxy pyrroloquinoxalinones using Pd/C and ammonium formate as reducing agents. Further employing a variety of alkyl bromides, the obtained pyrroloquinoxalinones were transformed to their corresponding O- and N-alkylated analogues to deliver the diversified, novel molecular entities.

  19. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  20. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.

    Science.gov (United States)

    Thoi, V Sara; Kornienko, Nikolay; Margarit, Charles G; Yang, Peidong; Chang, Christopher J

    2013-09-25

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene-amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni((Pr)bimiq1)](2+) (1c, where (Pr)bimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (E(cat) = -1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s(-1), respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  1. Ozone response to precursor controls in very complex terrains: Use of photochemical indicators to assess O3-NOx-VOC sensitivity in the northeastern Iberian Peninsula

    Science.gov (United States)

    JiméNez, Pedro; Baldasano, José M.

    2004-10-01

    The kinetics of ozone (O3) chemistry and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), represents an important field of uncertainty in atmospheric chemistry and photochemical modeling. This uncertainty affects the design of control strategies to reduce tropospheric O3 production. The effect of controlling ozone precursors on sensitivity regimes was evaluated by performing simulations with MM5-EMICAT2000-CMAQ model to represent O3 formation in the northeastern Iberian Peninsula with baseline emission rates for VOC and NOx, and reducing anthropogenic VOC and NOx emissions on a 35%. Three different scenarios were considered in order to assess chemical sensitivity in urban, industrial, and background domains. Areas downwind of the city of Barcelona benefit from NOx reductions (reduction of 10 ppb in ground-level O3), while the same reduction causes an important increment of O3 in Barcelona (9 ppb) and the area downwind of Tarragona (18 ppb), with a high industrial influence. The city of Barcelona benefits from VOC reductions (10 ppb of O3) as well as the industrial zone of Alcover (20 ppb). The rest of the domain is practically insensitive to VOC reductions. Diverse photochemical species derived from the air quality model were used as indicators in order to establish the chemical sensitivity regime existing in the areas, analyzing whether O3 values reacted consistently to similar changes in emissions. Results showed that NOy (total reactive nitrogen) and O3/NOy are the indicators involving a lower uncertainty when assessing sensitivity, according to the narrow transition regime between NOx- and VOC-sensitive chemistry and the low uncertainty observed. Indicators performed better in VOC-sensitive than in NOx-sensitive domains. H2O2- and HNO3- derived indicators entailed higher uncertainties since transition regimes between NOx and VOC sensitivity covered a wide range. The extent of reaction also performed as a good indicator to

  2. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Godiksen, Anita

    2016-01-01

    The influence of varying the V2O5 content (3–6 wt.%) was studied for the selective catalytic reduction (SCR) of nitrogen oxides by ammonia on heteropoly acid (HPA)- and tungsten oxide (WO3)-promoted V2O5/TiO2 catalysts. The SCR activity and alkali deactivation resistance of HPA-promoted V2O5/TiO2...

  3. Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity

    Science.gov (United States)

    Shi, Guodong; Yang, Lin; Liu, Zhuowen; Chen, Xiao; Zhou, Jianqing; Yu, Ying

    2018-01-01

    Photocatalytic reduction of CO2 to fuel has attracted considerable attention due to the consumption of fossil fuels and serious environmental problems. Although there are many photocatalysts reported for CO2 reduction, the improvement of activity and selectivity is still in great need of. In this work, a series of Cu nanoparticle decorated g-C3N4 nanosheets with different Cu loadings were fabricated by a facile secondary calcination and subsequent microwave hydrothermal method. The designed catalysts shown good photocatalytic activity and selectivity for CO2 reduction to CO. The optimal sample exhibited a 3-fold augmentation of the CO yield in comparison with pristine g-C3N4 under visible light. It is revealed that with the loading of Cu nanoparticles, the resulting photocatalyst possessed an improved charge carrier transfer and separation efficiency as well as increased surface reactive sites, resulting in a significant enhancement of CO yield. It is anticipated that the designed Cu/C3N4 photocatalyst may provide new insights for two dimensional layer materials and non-noble particles applied to CO2 reduction.

  4. Evolution of NOx emissions in Europe with focus on road transport control measures

    Directory of Open Access Journals (Sweden)

    S. Reis

    2009-02-01

    Full Text Available European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880–1950 is determined by a slow increase in fuel consumption all over Europe. The second regime (1950–1980 is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980–1990 that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990–2000 involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000–2005, the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable

  5. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  6. Delayed detection of motor pathway dysfunction after selective reduction of thoracic spinal cord blood flow in pigs

    NARCIS (Netherlands)

    Lips, Jeroen; de Haan, Peter; Bouma, Gerrit J.; Jacobs, Michael J.; Kalkman, Cor J.

    2002-01-01

    Objective: Clinical monitoring of myogenic motor evoked potentials to transcranial stimulation provides rapid evaluation of motor-pathway function during surgical procedures in which spinal cord ischemia can occur. However, a severe reduction of spinal cord blood flow that remains confined to the

  7. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-06-30

    This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.

  8. Initial Reduction of CO2 on Pd-, Ru-, and Cu-Doped CeO2(111) Surfaces: Effects of Surface Modification on Catalytic Activity and Selectivity.

    Science.gov (United States)

    Guo, Chen; Wei, Shuxian; Zhou, Sainan; Zhang, Tian; Wang, Zhaojie; Ng, Siu-Pang; Lu, Xiaoqing; Wu, Chi-Man Lawrence; Guo, Wenyue

    2017-08-09

    Surface modification by metal doping is an effective treatment technique for improving surface properties for CO2 reduction. Herein, the effects of doped Pd, Ru, and Cu on the adsorption, activation, and reduction selectivity of CO2 on CeO2(111) were investigated by periodic density functional theory. The doped metals distorted the configuration of a perfect CeO2(111) by weakening the adjacent Ce-O bond strength, and Pd doping was beneficial for generating a highly active O vacancy. The analyses of adsorption energy, charge density difference, and density of states confirmed that the doped metals were conducive for enhancing CO2 adsorption, especially for Cu/CeO2(111). The initial reductive dissociation CO2 → CO* + O* on metal-doped CeO2(111) followed the sequence of Cu- > perfect > Pd- > Ru-doped CeO2(111); the reductive hydrogenation CO2 + H → COOH* follow