WorldWideScience

Sample records for selective nos inhibitors

  1. Effects of a selective iNOS inhibitor versus norepinephrine in the treatment of septic shock.

    Science.gov (United States)

    Su, Fuhong; Huang, Hongchuan; Akieda, Kazuki; Occhipinti, Giovanna; Donadello, Katia; Piagnerelli, Michael; De Backer, Daniel; Vincent, Jean-Louis

    2010-09-01

    Inhibition of NOS is not beneficial in septic shock; selective inhibition of the inducible form (iNOS) may represent a better option. We compared the effects of the selective iNOS inhibitor BYK191023 with those of norepinephrine (NE) in a sheep model of septic shock. Twenty-four anesthetized, mechanically ventilated ewes received 1.5 g/kg body weight of feces into the abdominal cavity to induce sepsis. Animals were randomized into three groups (each n = 8): NE-only, BYK-only, and NE + BYK. The sublingual microcirculation was evaluated with sidestream dark-field videomicroscopy. MAP was higher in the NE + BYK group than in the other groups, but there were no significant differences in cardiac index or systemic vascular resistance. Mean pulmonary arterial pressure was lower in BYK-treated animals than in the NE-only group. PaO2/FiO2 was higher and lactate concentration lower in the BYK groups than in the NE-only group. Mesenteric blood flow was higher in BYK groups than in the NE-only group. Renal blood flow was higher in the NE + BYK group than in the other groups. Functional capillary density and proportion of perfused vessels were higher in the BYK groups than in the NE-only group 18 h after induction of peritonitis. Survival times were similar in the three groups. In this model of peritonitis, selective iNOS inhibition had more beneficial effects than NE on pulmonary artery pressures, gas exchange, mesenteric blood flow, microcirculation, and lactate concentration. Combination of this selective iNOS inhibitor with NE allowed a higher arterial pressure and renal blood flow to be maintained.

  2. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added $^{18}$F-Labelling Methods

    OpenAIRE

    Drerup, Christian; Ermert, Johannes; Coenen, Heinrich Hubert

    2016-01-01

    Nitric oxide (NO), an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS) and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible) or nNOS (neuronal) are of great interest for decoding neurodestructive key factors, and 18F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((...

  3. nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ail, S F

    2000-09-11

    Methamphetamine (METH)-induced dopaminergic neurotoxicity is associated with hyperthermia. We investigated the effect of several neuronal nitric oxide synthase (nNOS) inhibitors on METH-induced hyperthermia and striatal dopaminergic neurotoxicity. Administration of METH (5 mg/kg; q. 3 h x 3) to Swiss Webster mice produced marked hyperthermia and 50-60% depletion of striatal dopaminergic markers 72 h after METH administration. Pretreatment with the nNOS inhibitors S-methylthiocitrulline (SMTC; 10 mg/kg) or 3-bromo-7-nitroindazole (3-Br-7-NI; 20 mg/kg) before each METH injection did not affect the persistent hyperthermia produced by METH, but afforded protection against the depletion of dopaminergic markers. A low dose (25 mg/kg) of the nNOS inhibitor 7-nitroindazole (7-NI) did not affect METH-induced hyperthermia, but a high dose (50 mg/kg) produced significant hypothermia. These findings indicate that low dose of selective nNOS inhibitors protect against METH-induced neurotoxicity with no effect on body temperature and support the hypothesis that nitric oxide (NO) and peroxynitrite have a major role in METH-induced dopaminergic neurotoxicity.

  4. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added 18F-Labelling Methods

    Directory of Open Access Journals (Sweden)

    Christian Drerup

    2016-09-01

    Full Text Available Nitric oxide (NO, an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible or nNOS (neuronal are of great interest for decoding neurodestructive key factors, and 18F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylaminomethylphenoxymethyl-4-methylpyridin-2-amine (10 lends itself as suitable compound to be 18F-labelled in no-carrier-added (n.c.a. form. For preparation of the 18F-labelled nNOS-Inhibitor [18F]10 a “build-up” radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [18F]fluoride in 79% radiochemical yield (RCY. After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified “late-stage” 18F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II mediated n.c.a. 18F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [18F]10 as probe for preclinical in vivo studies.

  5. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added (18)F-Labelling Methods.

    Science.gov (United States)

    Drerup, Christian; Ermert, Johannes; Coenen, Heinz H

    2016-09-01

    Nitric oxide (NO), an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS) and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible) or nNOS (neuronal) are of great interest for decoding neurodestructive key factors, and (18)F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylamino)methyl)phenoxy)methyl)-4-methylpyridin-2-amine (10) lends itself as suitable compound to be (18)F-labelled in no-carrier-added (n.c.a.) form. For preparation of the (18)F-labelled nNOS-Inhibitor [(18)F]10 a "build-up" radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [(18)F]fluoride in 79% radiochemical yield (RCY). After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified "late-stage" (18)F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II) mediated n.c.a. (18)F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [(18)F]10 as probe for preclinical in vivo studies.

  6. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors.

    Science.gov (United States)

    Cinelli, Maris A; Li, Huiying; Chreifi, Georges; Poulos, Thomas L; Silverman, Richard B

    2017-05-11

    Neuronal nitric oxide synthase (nNOS) inhibition is a promising strategy to treat neurodegenerative disorders, but the development of nNOS inhibitors is often hindered by poor pharmacokinetics. We previously developed a class of membrane-permeable 2-aminoquinoline inhibitors and later rearranged the scaffold to decrease off-target binding. However, the resulting compounds had decreased permeability, low human nNOS activity, and low selectivity versus human eNOS. In this study, 5-substituted phenyl ether-linked aminoquinolines and derivatives were synthesized and assayed against purified NOS isoforms. 5-Cyano compounds are especially potent and selective rat and human nNOS inhibitors. Activity and selectivity are mediated by the binding of the cyano group to a new auxiliary pocket in nNOS. Potency was enhanced by methylation of the quinoline and by introduction of simple chiral moieties, resulting in a combination of hydrophobic and auxiliary pocket effects that yielded high (∼500-fold) n/e selectivity. Importantly, the Caco-2 assay also revealed improved membrane permeability over previous compounds.

  8. Neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole augment the effects of antidepressants acting via serotonergic system in the forced swimming test in rats.

    Science.gov (United States)

    Ulak, Güner; Mutlu, Oguz; Akar, Füruzan Yildiz; Komsuoğlu, F Ipek; Tanyeri, Pelin; Erden, B Faruk

    2008-10-01

    Treatment-resistant depression has necessitated new therapeutic strategies in augmenting the therapeutic actions of currently existing antidepressant drugs. The aim of this study was to investigate the possibility of synergistic interaction between 1-(2-trifluoromethylphenyl)-imidazole (TRIM), a novel neuronal nitric oxide synthase (nNOS) inhibitor and conventional antidepressants of different classes in the forced swimming test (FST) in rats. TRIM decreased the immobility time at 50 mg/kg doses in the FST in rats. Treatment with a behaviourally subeffective dose of TRIM (20 mg/kg) augmented the behavioural effect of tricyclic antidepressant imipramine, selective serotonin re-uptake inhibitor (SSRI) citalopram and fluoxetine or selective serotonin reuptake enhancer tianeptine but failed to augment the antidepressant effect of reboxetine, a noradrenaline re-uptake inhibitor, in this test. Therefore inhibition of NOS augments the effects of antidepressants acting on serotonergic system in the FST. Neither TRIM (10-50 mg/kg) nor other drug treatments affected the locomotor activity of animals. These findings are in agreement with the view that antidepressant effects or augmentation of these effects in the FST may be explained with inhibition of NOS activity and this may be a new approach in offering greater therapeutic efficacy of antidepressants acting via serotonergic system.

  9. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  10. Expression of Beta-catenin, COX-2 and iNOS in Colorectal Cancer: Relevance of COX-2 and iNOS Inhibitors for Treatment in Malaysia

    Directory of Open Access Journals (Sweden)

    Seok Kwan Hong

    2004-01-01

    Conclusions: The accumulation of β-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  11. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available In this study, we applied structure-based virtual screening techniques to identify natural product or natural product-like inhibitors of iNOS. The iNOS inhibitory activity of the hit compounds was characterized using cellular assays and an in vivo zebrafish larvae model. The natural product-like compound 1 inhibited NO production in LPS-stimulated Raw264.7 macrophages, without exerting cytotoxic effects on the cells. Significantly, compound 1 was able to reverse MPTP-induced locomotion deficiency and neurotoxicity in an in vivo zebrafish larval model. Hence, compound 1 could be considered as a scaffold for the further development of iNOS inhibitors for potential anti-inflammatory or anti-neurodegenerative applications.

  12. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus

    DEFF Research Database (Denmark)

    Harvey, Brian H; Oosthuizen, Frasia; Brand, Linda

    2004-01-01

    . The NOS isoform involved, and the role of stress-mediated corticosterone release in NOS activation, was verified with the administration of selective iNOS and nNOS inhibitors, aminoguanidine (50 mg/kg/day i.p.) and 7-nitroindazole (12.5 mg/kg/day i.p.), and the steroid synthesis inhibitor, ketoconazole...... (24 mg/kg/day i.p.), administered for 21 days prior to and during the stress procedure. RESULTS: Stress evoked a sustained increase in NOS activity, but reduced NMDA receptor density and total GABA levels. Aminoguanidine or ketoconazole, but not 7-nitroindazole or saline, blocked stress-induced NOS...

  13. A Combination of 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation Studies of Benzimidazole-Quinolinone Derivatives as iNOS Inhibitors

    Directory of Open Access Journals (Sweden)

    Peixun Liu

    2012-09-01

    Full Text Available Inducible Nitric Oxide Synthase (iNOS has been involved in a variety of diseases, and thus it is interesting to discover and optimize new iNOS inhibitors. In previous studies, a series of benzimidazole-quinolinone derivatives with high inhibitory activity against human iNOS were discovered. In this work, three-dimensional quantitative structure-activity relationships (3D-QSAR, molecular docking and molecular dynamics (MD simulation approaches were applied to investigate the functionalities of active molecular interaction between these active ligands and iNOS. A QSAR model with R2 of 0.9356, Q2 of 0.8373 and Pearson-R value of 0.9406 was constructed, which presents a good predictive ability in both internal and external validation. Furthermore, a combined analysis incorporating the obtained model and the MD results indicates: (1 compounds with the proper-size hydrophobic substituents at position 3 in ring-C (R3 substituent, hydrophilic substituents near the X6 of ring-D and hydrophilic or H-bond acceptor groups at position 2 in ring-B show enhanced biological activities; (2 Met368, Trp366, Gly365, Tyr367, Phe363, Pro344, Gln257, Val346, Asn364, Met349, Thr370, Glu371 and Tyr485 are key amino acids in the active pocket, and activities of iNOS inhibitors are consistent with their capability to alter the position of these important residues, especially Glu371 and Thr370. The results provide a set of useful guidelines for the rational design of novel iNOS inhibitors.

  14. iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats.

    Directory of Open Access Journals (Sweden)

    Olof Schreiber

    Full Text Available AIM: To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. METHODS: Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h, the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h and the non-selective COX-inhibitor diclofenac (5 mg/kg were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. RESULTS: Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm. During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16±5 µm vs -14±2 µm. While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm, L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33±4 µm vs -10±3 µm. The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively. Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. CONCLUSION: Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS

  15. Expression of beta-catenin, COX-2 and iNOS in colorectal cancer: relevance of COX-2 adn iNOS inhibitors for treatment in Malaysia.

    Science.gov (United States)

    Hong, Seok Kwan; Gul, Yunus A; Ithnin, Hairuszah; Talib, Arni; Seow, Heng Fong

    2004-01-01

    Promising new pharmacological agents and gene therapy targeting cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) could modulate treatment of colorectal cancer in the future. The aim of this study was to elucidate the expression fo beta-catenin and teh presence of COX-2 and iNOS in colorectal cancer specimens in Malaysia. This is a useful prelude to future studies investigating interventions directed towards COX-2 adn iNOS. A cross-section study using retrospective data over a 2-year period (1999-2000) involved 101 archival, formalin-fixed, paraffin-embedded tissue samples of colorectal cancers that were surgically resected in a tertiary referral. COX-2 production was detected in adjacent normal tissue in 34 sample (33.7%) and in tumour tissue in 60 samples (59.4%). More tumours expressed iNOS (82/101, 81.2%) than COX-2. No iNOS expression was detected in adjacent normal tissue. Intense beta-catenin immunoreactivity at the cell-to-cell border. Poorly differentiated tumours had significantly lower total beta-catenin (p = 0.009) and COX-2 scores (p = 0.031). No significant relationships were established between pathological stage and beta-catenin, COX-2 and iNOS scores. the accumulation of beta-catenin does not seem to be sufficient to activate pathways that lead to increased COX-2 and iNOS expression. A high proportion of colorectal cancers were found to express COX-2 and a significant number produced iNOS, suggesting that their inhibitors may be potentially useful as chemotherapeutic agents in the management of colorectal cancer.

  16. The novel imidazopyridine 2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) is a highly selective inhibitor of the inducible nitric-oxide synthase.

    Science.gov (United States)

    Strub, Andreas; Ulrich, Wolf-Rüdiger; Hesslinger, Christian; Eltze, Manfrid; Fuchss, Thomas; Strassner, Jochen; Strand, Susanne; Lehner, Martin D; Boer, Rainer

    2006-01-01

    We have identified imidazopyridine derivatives as a novel class of NO synthase inhibitors with high selectivity for the inducible isoform. 2-[2-(4-Methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) showed half-maximal inhibition of crudely purified human inducible (iNOS), neuronal (nNOS), and endothelial (eNOS) NO synthases at 86 nM, 17 microM, and 162 microM, respectively. Inhibition of inducible NO synthase was competitive with l-arginine, pointing to an interaction of BYK191023 with the catalytic center of the enzyme. In radioligand and surface plasmon resonance experiments, BYK191023 exhibited an affinity for iNOS, nNOS, and eNOS of 450 nM, 30 microM, and >500 microM, respectively. Inhibition of cellular nitrate/nitrite synthesis in RAW, rat mesangium, and human embryonic kidney 293 cells after iNOS induction showed 40- to 100-fold higher IC(50) values than at the isolated enzyme, in agreement with the much higher l-arginine concentrations in cell culture media and inside intact cells. BYK191023 did not show any toxicity in various rodent and human cell lines up to high micromolar concentrations. The inhibitory potency of BYK191023 was tested in isolated organ models of iNOS (lipopolysaccharide-treated and phenylephrine-precontracted rat aorta; IC(50) = 7 microM), eNOS (arecaidine propargyl ester-induced relaxation of phenylephrine-precontracted rat aorta; IC(50) > 100 microM), and nNOS (field-stimulated relaxation of phenylephrine-precontracted rabbit corpus cavernosum; IC(50) > 100 microM). These data confirm the high selectivity of BYK191023 for iNOS over eNOS and nNOS found at isolated enzymes. In summary, we have identified a new highly selective iNOS inhibitor structurally unrelated to known compounds and l-arginine. BYK191023 is a valuable tool for the investigation of iNOS-mediated effects in vitro and in vivo.

  17. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat.

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P

    2016-02-01

    Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P exercise protocol (all P exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.

  18. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    Directory of Open Access Journals (Sweden)

    Mohamed A. Morsy

    2014-01-01

    Full Text Available Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p. for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS expression, while expression of endothelial nitric oxide synthase (eNOS was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production.

  19. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  20. Effects of nitric oxide inhibitors in mice with bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    Marcy Lancia Pereira

    Full Text Available ABSTRACT Purpose To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS, or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS, after 5 weeks of partial bladder outlet obstruction (BOO, in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. Materials and Methods C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. Results BOO animals showed increase of non-voiding contractions (NVC and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. Conclusion It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.

  1. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  2. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  3. Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression

    Energy Technology Data Exchange (ETDEWEB)

    Thanan, Raynoo [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan); Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie 513-0293 (Japan); Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Shimosegawa, Tooru [Division of Gastroenterology, Tohoku University Hospital, Sendai, Miyaki 980-8574 (Japan); Pinlaor, Somchai [Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002 (Thailand); Hiraku, Yusuke; Oikawa, Shinji; Murata, Mariko [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507 (Japan); Kawanishi, Shosuke, E-mail: kawanisi@suzuka-u.ac.jp [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670 (Japan)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Inflammation by Barrett's esophagus (BE) is a risk factor of its adenocarcinoma (BEA). Black-Right-Pointing-Pointer 8-Nitroguanine and 8-oxodG are inflammation-related DNA lesions. Black-Right-Pointing-Pointer DNA lesions and iNOS expression were higher in the order, BEA > BE > normal tissues. Black-Right-Pointing-Pointer Proton pump inhibitors suppress DNA damage by increasing Mn-SOD via Nrf2 activation. Black-Right-Pointing-Pointer DNA lesions can be useful biomarkers to predict risk of BEA in BE patients. -- Abstract: Barrett's esophagus (BE), an inflammatory disease, is a risk factor for Barrett's esophageal adenocarcinoma (BEA). Treatment of BE patients with proton pump inhibitors (PPIs) is expected to reduce the risk of BEA. We performed an immunohistochemical study to examine the formation of nitrative and oxidative DNA lesions, 8-nitroguanine and 8-oxo-7,8-dihydro-2 Prime -deoxygaunosine (8-oxodG), in normal esophageal, BE with pre- and post-treatment by PPIs and BEA tissues. We also observed the expression of an oxidant-generating enzyme (iNOS) and its transcription factor NF-{kappa}B, an antioxidant enzyme (Mn-SOD), its transcription factor (Nrf2) and an Nrf2 inhibitor (Keap1). The immunoreactivity of DNA lesions was significantly higher in the order of BEA > BE > normal tissues. iNOS expression was significantly higher in the order of BEA > BE > normal tissues, while Mn-SOD expression was significantly lower in the order of BEA < BE < normal tissues. Interestingly, Mn-SOD expression and the nuclear localization of Nrf2 were significantly increased, and the formation of DNA lesions was significantly decreased in BE tissues after PPIs treatment for 3-6 months. Keap1 and iNOS expression was not significantly changed by the PPIs treatment in BE tissues. These results indicate that 8-nitroguanine and 8-oxodG play a role in BE-derived BEA. Additionally, PPIs treatment may trigger the activation and

  4. In vivo characterization of the novel imidazopyridine BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine], a potent and highly selective inhibitor of inducible nitric-oxide synthase.

    Science.gov (United States)

    Lehner, Martin D; Marx, Degenhard; Boer, Rainer; Strub, Andreas; Hesslinger, Christian; Eltze, Manfrid; Ulrich, Wolf-Rüdiger; Schwoebel, Frank; Schermuly, Ralph Theo; Barsig, Johannes

    2006-04-01

    Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.

  5. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  6. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  7. Acalabrutinib (ACP-196: a selective second-generation BTK inhibitor

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2016-03-01

    Full Text Available Abstract More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton’s tyrosine kinase (BTK inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292 are being explored. Acalabrutinib (ACP-196 is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  8. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    Directory of Open Access Journals (Sweden)

    Fangyuan Cao

    2018-03-01

    Full Text Available Histone deacetylases (HDACs are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Several studies have shown that HDAC3, in particular, plays an important role in inflammation and degenerative neurological diseases, but the development of selective HDAC3 inhibitors has been challenging. This review provides an up-to-date overview of selective HDAC3 inhibitors, and aims to support the development of novel HDAC3 inhibitors in the future.

  9. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity.

    Directory of Open Access Journals (Sweden)

    Shubha Murthy

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure. Under baseline conditions, CaMKII activation was low in the aortic wall. Consistently, systolic and diastolic blood pressure, heart rate and plasma NO levels were unaltered by endothelial CaMKII inhibition. Moreover, endothelial CaMKII inhibition had no significant effect on NO-dependent vasodilation. These results were confirmed in studies of aortic rings transduced with adenovirus expressing a CaMKII inhibitor peptide. In cultured endothelial cells, bradykinin treatment produced the anticipated rapid influx of Ca2+ and transient CaMKII and eNOS activation, whereas CaMKII inhibition blocked eNOS phosphorylation on Ser-1179 and dephosphorylation at Thr-497. Ca2+/CaM binding to eNOS and resultant NO production in vitro were decreased under CaMKII inhibition. Our results demonstrate that CaMKII plays an important role in transient bradykinin-driven eNOS activation in vitro, but does not regulate NO production, vasorelaxation or blood pressure in vivo under baseline conditions.

  10. Use of selective-serotonin reuptake inhibitors and platelet aggregation inhibitors among individuals with co-occurring atherosclerotic cardiovascular disease and depression or anxiety

    Directory of Open Access Journals (Sweden)

    J Douglas Thornton

    2016-12-01

    Full Text Available Objective: Medications commonly used to treat heart disease, anxiety, and depression can interact resulting in an increased risk of bleeding, warranting a cautious approach in medical decision making. This retrospective, descriptive study examined the prevalence and the factors associated with the use of both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor among individuals with co-occurring atherosclerotic cardiovascular disease and anxiety or depression. Methods: Respondents aged 22 years and older, alive throughout the study period, and diagnosed with co-occurring atherosclerotic cardiovascular disease and anxiety or depression (n = 1507 in years 2007 through 2013 of the Medical Expenditures Panel Survey were included. The use of treatment was grouped as follows: selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Results: Overall, 16.5% used both selective-serotonin reuptake inhibitor and platelet aggregation inhibitor, 61.2% used selective-serotonin reuptake inhibitor or platelet aggregation inhibitor, and 22.3% used neither selective-serotonin reuptake inhibitor nor platelet aggregation inhibitor. Respondents aged over 65 years (adjusted odds ratio = 1.93 (95% confidence interval = 1.08–3.45 and having a diagnosis of diabetes (adjusted odds ratio = 1.63 (95% confidence interval = 1.15–2.31 and hypertension (adjusted odds ratio = 1.84 (95% confidence interval = 1.04–3.27 were more likely to be prescribed the combination. Conclusion: The drug interaction was prevalent in patients who are already at higher risk of health disparities and worse outcomes thus requiring vigilant evaluation.

  11. Vasoactive and radioprotective properties of isothiourea derivatives having NOS-inhibitory activity

    Energy Technology Data Exchange (ETDEWEB)

    Filimonova, Marina V.; Shevchenko, Ludmila I.; Ulyanenko, Stepan E.; Makarchuk, Victorya M.; Kuznetsova, Mary N.; Shevchuk, Aza S.; Lushnikova, Galina A.; Chesnakova, Ekaterina A. [Medical Radiological Research Center Health Ministry of Russia, 4, Korolev street, Obninsk, 249036, Kaluga region (Russian Federation)

    2014-07-01

    mechanism of radioprotective effect, to selectively protect the normal tissues during radiotherapy of tumors. Our supposition was confirmed in the studies on models of radiation therapy of radioresistant sarcoma M-1. The test compounds injected at a dose of 60 mg/kg during the single-dose (32 Gy) or fractionated doses (40 Gy) of local γ-therapy did not affect the radiosensitivity of the tumor, but significantly limited the degree and severity of acute cutaneous radiation injuries of the skin. These results indicate that the active NOS inhibitors can be effective radioprotectors and means of preventing complications of radiotherapy, however the possibility of their practical application in radiation protection and medical radiology requires detailed experimental studies. Moreover, NOS inhibitors may have practical value as a means of treatment of combined radiation injuries, when the development of hemodynamic disturbances, endotoxemia and sepsis are important pathogenic factors. In these cases, NOS inhibitors may be an important element of therapy that can limit the development of threatening complications. The possibility of such therapy was shown using S-ethyl-isothiourea, which is a non-selective inhibitor NOS, in the treatment of combined radiation and burn injury in experimental animals. (authors)

  12. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    Science.gov (United States)

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  13. The design strategy of selective PTP1B inhibitors over TCPTP.

    Science.gov (United States)

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Selective serotonin reuptake inhibitors and risk for gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Batić-Mujanović Olivera

    2014-01-01

    Full Text Available The most of the known effects of selective serotonin reuptake inhibitors, beneficial or harmful, are associated with the inhibitory action of the serotonin reuptake transporter. This mechanism is present not only in neurons, but also in other cells such as platelets. Serotoninergic mechanism seems to have an important role in hemostasis, which has long been underestimated. Abnormal activation may lead to a prothrombotic state in patients treated with selective serotonin reuptake inhibitors. On one hand there may be an increased risk of bleeding, and on the other hand reduction in thrombotic risk may be possible. Serotonin is critical to maintain a platelet haemostatic function, such as platelet aggregation. Evidences from the studies support the hypothesis that antidepressants with a relevant blockade of action of serotonin reuptake mechanism may increase the risk of bleeding, which can occur anywhere in the body. Epidemiological evidences are, however, the most robust for upper gastrointestinal bleeding. It is estimated that this bleeding can occur in 1 in 100 to 1 in 1.000 patient-years of exposure to the high-affinity selective serotonin reuptake inhibitors, with very old patients at the highest risk. The increased risk may be of particular relevance when selective serotonin reuptake inhibitors are taken simultaneously with nonsteroidal anti-inflammatory drugs, low dose of aspirin or warfarin.

  15. Cellular growth kinetics distinguish a cyclophilin inhibitor from an HSP90 inhibitor as a selective inhibitor of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Rudolf K F Beran

    Full Text Available During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA and heat-shock protein 90 (HSP90 which have each been reported to inhibit replication of hepatitis C virus (HCV. By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino-17-demethoxygeldanamycin (17-AAG to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA, exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth.

  16. Treadmill exercise alleviates diabetic cardiomyopathy by suppressing plasminogen activator inhibitor expression and enhancing eNOS in streptozotocin-induced male diabetic rats.

    Science.gov (United States)

    Chengji, Wang; Xianjin, Fan

    2018-04-01

    To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy. 87 raise specific pathogen SPF healthy 6-week-old male Sprague-Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin - randomly selected 43 rats were divided into Diabetic control group (DCG, n  = 10), Diabetic exercise group 1 (DEG1, n  = 11), Diabetic exercise group 2 (DEG2, n  = 11) and Diabetic exercise group 3 (DEG3, n  = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured. Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant ( P  diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly ( P  diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity. © 2018 The authors.

  17. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    Science.gov (United States)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  18. SAH derived potent and selective EZH2 inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Pei-Pei; Huang, Buwen; Zehnder, Luke; Tatlock, John; Bingham, Patrick; Krivacic, Cody; Gajiwala, Ketan; Diehl, Wade; Yu, Xiu; Maegley, Karen A.

    2015-04-01

    A series of novel enhancer of zeste homolog 2 (EZH2) inhibitors was designed based on the chemical structure of the histone methyltransferase (HMT) inhibitor SAH (S-adenosyl-l-homocysteine). These nucleoside-based EZH2 inhibitors blocked the methylation of nucleosomes at H3K27 in biochemical assays employing both WT PRC2 complex as well as a Y641N mutant PRC2 complex. The most potent compound, 27, displayed IC50’s against both complexes of 270 nM and 70 nM, respectively. To our knowledge, compound 27 is the most potent SAH-derived inhibitor of the EZH2 PRC2 complex yet identified. This compound also displayed improved potency, lipophilic efficiency (LipE), and selectivity profile against other lysine methyltransferases compared with SAH.

  19. Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice.

    Science.gov (United States)

    Ali, S F; Itzhak, Y

    1998-05-30

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [3H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for the

  20. Effects of 7-Nitroindazole, an NOS Inhibitor on Methamphetamine-Induced Dopaminergic and Serotonergic Neurotoxicity in Micea.

    Science.gov (United States)

    Ali, Syed F; Itzhak, Yossef

    1998-05-01

    Methamphetamine (METH) is one of the major drugs of abuse that is postulated to cause neurotoxicity by depleting dopamine (DA) and its metabolites, high-affinity DA uptake sites, and the activity of tyrosine hydroxylase. The present study was undertaken to investigate whether the relatively selective, neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against METH-induced neurotoxicity. Male Swiss Webster mice received the following injections intraperitoneally (i.p.) 3 times (every 3 hr): (i) vehicle/saline, (ii) 7-NI (25 mg/kg)/saline, (iii) vehicle/METH (5 mg/kg), and (iv) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (i) and (iii) received two vehicle injections and groups (ii) and (iv) received two 7-NI injections (25 mg/kg each). The administration of vehicle/METH resulted in 68, 44 and 55% decreases in the concentration of DA, dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), respectively, and a 48% decrease in the number of [ 3 H]mazindol binding sites in the striatum compared to control values. The treatment with 7-NI (group iv) provided a full protection against the depletion of DA and its metabolites, and the loss of dopamine transporter binding sites. Multiple injection of METH caused a significant decrease in the concentration of serotonin (5-HT) and its metabolite 5-hydroxyindole acetic acid (5-HIAA). Treatment with 7-NI partially blocked the depletion of 5-HT and completely blocked the reduction in 5-HIAA levels. The administration of 7-NI/saline (group ii) affected neither the tissue concentration of DA, 5-HT and their metabolites (DOPAC, HVA and 5-HIAA) nor the binding parameters of [ 3 H]-mazindol compared to control (vehicle/saline) values. 7-NI had no significant effect on the animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in METH-induced neurotoxicity and also suggest that blockage of NOS may be beneficial for

  1. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-01-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  2. ETORICOXIB IS A NEW SELECTIVE CYCLOOXYGENASE-2 INHIBITOR

    Directory of Open Access Journals (Sweden)

    A E Karateev

    2009-06-01

    Full Text Available The paper provides the clinical characteristics of etoricoxib (Arcoxia, a new selective cyclooxygenase-2 inhibitor having unique properties, which permits it to be distinguished among other nonsteroidal anti-inflammatory agents.

  3. Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation.

    Science.gov (United States)

    Zhang, Jun-Xia; Qu, Xin-Liang; Chu, Peng; Xie, Du-Jiang; Zhu, Lin-Lin; Chao, Yue-Lin; Li, Li; Zhang, Jun-Jie; Chen, Shao-Liang

    2018-05-01

    Uncoupled endothelial nitric oxide synthase (eNOS) produces O 2 - instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O 2 - production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O 2 - burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O 2 - releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    OpenAIRE

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang

    2010-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crysta...

  5. Identification and characterization of the novel reversible and selective cathepsin X inhibitors.

    Science.gov (United States)

    Fonović, Urša Pečar; Mitrović, Ana; Knez, Damijan; Jakoš, Tanja; Pišlar, Anja; Brus, Boris; Doljak, Bojan; Stojan, Jure; Žakelj, Simon; Trontelj, Jurij; Gobec, Stanislav; Kos, Janko

    2017-09-13

    Cathepsin X is a cysteine peptidase involved in the progression of cancer and neurodegenerative diseases. Targeting this enzyme with selective inhibitors opens a new possibility for intervention in several therapeutic areas. In this study triazole-based reversible and selective inhibitors of cathepsin X have been identified. Their selectivity and binding is enhanced when the 2,3-dihydrobenzo[b][1,4]dioxine moiety is present as the R 1 substituent. Of a series of selected triazole-benzodioxine derivatives, compound 22 is the most potent inhibitor of cathepsin X carboxypeptidase activity (K i  = 2.45 ± 0.05 μM) with at least 100-fold greater selectivity in comparison to cathepsin B or other related cysteine peptidases. Compound 22 is not cytotoxic to prostate cancer cells PC-3 or pheochromocytoma PC-12 cells at concentrations up to 10 μM. It significantly inhibits the migration of tumor cells and increases the outgrowth of neurites, both processes being under the control of cathepsin X carboxypeptidase activity. Compound 22 and other characterized triazole-based inhibitors thus possess a great potential for further development resulting in several in vivo applications.

  6. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor.

    Science.gov (United States)

    Honma, Daisuke; Kanno, Osamu; Watanabe, Jun; Kinoshita, Junzo; Hirasawa, Makoto; Nosaka, Emi; Shiroishi, Machiko; Takizawa, Takeshi; Yasumatsu, Isao; Horiuchi, Takao; Nakao, Akira; Suzuki, Keisuke; Yamasaki, Tomonori; Nakajima, Katsuyoshi; Hayakawa, Miho; Yamazaki, Takanori; Yadav, Ajay Singh; Adachi, Nobuaki

    2017-10-01

    Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 and represses gene expression to regulate cell proliferation and differentiation. Enhancer of zeste homolog 2 (EZH2) or its close homolog EZH1 functions as a catalytic subunit of PRC2, so there are two PRC2 complexes containing either EZH2 or EZH1. Tumorigenic functions of EZH2 and its synthetic lethality with some subunits of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes have been observed. However, little is known about the function of EZH1 in tumorigenesis. Herein, we developed novel, orally bioavailable EZH1/2 dual inhibitors that strongly and selectively inhibited methyltransferase activity of both EZH2 and EZH1. EZH1/2 dual inhibitors suppressed trimethylation of histone H3 lysine 27 in cells more than EZH2 selective inhibitors. They also showed greater antitumor efficacy than EZH2 selective inhibitor in vitro and in vivo against diffuse large B-cell lymphoma cells harboring gain-of-function mutation in EZH2. A hematological cancer panel assay indicated that EZH1/2 dual inhibitor has efficacy against some lymphomas, multiple myeloma, and leukemia with fusion genes such as MLL-AF9, MLL-AF4, and AML1-ETO. A solid cancer panel assay demonstrated that some cancer cell lines are sensitive to EZH1/2 dual inhibitor in vitro and in vivo. No clear correlation was detected between sensitivity to EZH1/2 dual inhibitor and SWI/SNF mutations, with a few exceptions. Severe toxicity was not seen in rats treated with EZH1/2 dual inhibitor for 14 days at drug levels higher than those used in the antitumor study. Our results indicate the possibility of EZH1/2 dual inhibitors for clinical applications. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions

    DEFF Research Database (Denmark)

    Bach, Anders

    2015-01-01

    ZL006 and IC87201 have been presented as efficient inhibitors of the nNOS/PSD-95 protein-protein interaction and shown great promise in cellular experiments and animal models of ischemic stroke and pain. Here, we investigate the proposed mechanism of action of ZL006 and IC87201 using biochemical...... by interacting with the β-finger of nNOS-PDZ. Our findings have implications for further medicinal chemistry efforts of ZL006, IC87201 and analogues, and challenge the general and widespread view on their mechanism of action....

  8. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G. (Sanofi); (Michigan)

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  9. Structure-guided evolution of potent and selective CHK1 inhibitors through scaffold morphing.

    Science.gov (United States)

    Reader, John C; Matthews, Thomas P; Klair, Suki; Cheung, Kwai-Ming J; Scanlon, Jane; Proisy, Nicolas; Addison, Glynn; Ellard, John; Piton, Nelly; Taylor, Suzanne; Cherry, Michael; Fisher, Martin; Boxall, Kathy; Burns, Samantha; Walton, Michael I; Westwood, Isaac M; Hayes, Angela; Eve, Paul; Valenti, Melanie; de Haven Brandon, Alexis; Box, Gary; van Montfort, Rob L M; Williams, David H; Aherne, G Wynne; Raynaud, Florence I; Eccles, Suzanne A; Garrett, Michelle D; Collins, Ian

    2011-12-22

    Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.

  10. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G. [Michigan; (Oxford)

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  11. iNOS inhibits hair regeneration in obese diabetic (ob/ob) mice.

    Science.gov (United States)

    Sasaki, Mari; Shinozaki, Shohei; Morinaga, Hironobu; Kaneki, Masao; Nishimura, Emi; Shimokado, Kentaro

    2018-07-02

    Previous studies have shown that androgenic alopecia is associated with metabolic syndrome and diabetes. However, the detailed mechanism whereby diabetes causes alopecia still remains unclear. We focused on the inflammatory response that is caused by diabetes or obesity, given that inflammation is a risk factor for hair loss. Inducible nitric oxide synthase (iNOS) is known to be upregulated under conditions of acute or chronic inflammation. To clarify the potential role of iNOS in diabetes-related alopecia, we generated obese diabetic iNOS-deficient (ob/ob; iNOS-KO mice). We observed that ob/ob; iNOS-KO mice were potentiated for the transition from telogen (rest phase) to anagen (growth phase) in the hair cycle compared with iNOS-proficient ob/ob mice. To determine the effect of nitric oxide (NO) on the hair cycle, we administered an iNOS inhibitor intraperitoneally (compound 1400 W, 10 mg/kg) or topically (10% aminoguanidine) in ob/ob mice. We observed that iNOS inhibitors promoted anagen transition in ob/ob mice. Next, we administered an NO donor (S-nitrosoglutathione, GSNO), to test whether NO has the telogen elongation effects. The NO donor was sufficient to induce telogen elongation in wild-type mice. Together, our data indicate that iNOS-derived NO plays a role in telogen elongation under the inflammatory conditions associated with diabetes in mice. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MacPherson, Iain S.; Kirubakaran, Sivapriya; Gorla, Suresh Kumar; Riera, Thomas V.; D’Aquino, J. Alejandro; Zhang, Minjia; Cuny, Gregory D.; Hedstrom, Lizbeth (BWH); (Brandeis)

    2010-03-29

    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5{prime}-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10{sup 3} selectivity for the parasite enzyme over human IMPDH2.

  13. Discovery of Selective Inhibitors of Imidazoleglycerol-Phosphate Dehydratase from Mycobacterium tuberculosis by Virtual Screening

    Science.gov (United States)

    Podshivalov, D.; Mandzhieva, Yu. B.; Sidorov-Biryukov, D. D.; Timofeev, V. I.; Kuranova, I. P.

    2018-01-01

    Bacterial imidazoleglycerol-phosphate dehydratase from Mycobacterium tuberculosis (HisB- Mt) is a convenient target for the discovery of selective inhibitors as potential antituberculosis drugs. The virtual screening was performed to find compounds suitable for the design of selective inhibitors of HisB- Mt. The positions of four ligands, which were selected based on the docking scoring function and docked to the activesite region of the enzyme, were refined by molecular dynamics simulation. The nearest environment of the ligands was determined. These compounds selectively bind to functionally essential active-site residues, thus blocking access of substrates to the active site of the enzyme, and can be used as lead compounds for the design of selective inhibitors of HisB- M.

  14. Small Molecule Inhibitors That Selectively Block Dengue Virus Methyltransferase*

    Science.gov (United States)

    Lim, Siew Pheng; Sonntag, Louis Sebastian; Noble, Christian; Nilar, Shahul H.; Ng, Ru Hui; Zou, Gang; Monaghan, Paul; Chung, Ka Yan; Dong, Hongping; Liu, Boping; Bodenreider, Christophe; Lee, Gladys; Ding, Mei; Chan, Wai Ling; Wang, Gang; Jian, Yap Li; Chao, Alexander Theodore; Lescar, Julien; Yin, Zheng; Vedananda, T. R.; Keller, Thomas H.; Shi, Pei-Yong

    2011-01-01

    Crystal structure analysis of Flavivirus methyltransferases uncovered a flavivirus-conserved cavity located next to the binding site for its cofactor, S-adenosyl-methionine (SAM). Chemical derivatization of S-adenosyl-homocysteine (SAH), the product inhibitor of the methylation reaction, with substituents that extend into the identified cavity, generated inhibitors that showed improved and selective activity against dengue virus methyltransferase (MTase), but not related human enzymes. Crystal structure of dengue virus MTase with a bound SAH derivative revealed that its N6-substituent bound in this cavity and induced conformation changes in residues lining the pocket. These findings demonstrate that one of the major hurdles for the development of methyltransferase-based therapeutics, namely selectivity for disease-related methyltransferases, can be overcome. PMID:21147775

  15. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease.

    Science.gov (United States)

    Guay, David R P

    2006-12-01

    This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis

  16. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum.

    Science.gov (United States)

    Di Girolamo, G; Farina, M; Riberio, M L; Ogando, D; Aisemberg, J; de los Santos, A R; Martí, M L; Franchi, A M

    2003-07-01

    1. The therapeutic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is thought to be due mainly to its inhibition of cyclooxygenase (COX) enzymes, but there is a growing body of research that now demonstrates a variety of NSAIDs effects on cellular signal transduction pathways other than those involving prostaglandins. 2. Nitric oxide (NO) as a free radical and an agent that gives rise to highly toxic oxidants (peroxynitrile, nitric dioxide, nitron ion), becomes a cause of neuronal damage and death in some brain lesions such as Parkinson and Alzheimer disease, and Huntington's chorea. 3. In the present study, the in vivo effect of three NSAIDs (lysine clonixinate (LC), indomethacine (INDO) and meloxicam (MELO)) on NO production and nitric oxide synthase expression in rat cerebellar slices was analysed. Rats were treated with (a) saline, (b) lipopolysaccharide (LPS) (5 mg kg(-1), i.p.), (c) saline in combination with different doses of NSAIDs and (d) LPS in combination with different doses of NSAIDs and then killed 6 h after treatment. 4. NO synthesis, evaluated by Bred and Snyder technique, was increased by LPS. This augmentation was inhibited by coadministration of the three NSAIDs assayed. None of the NSAIDs tested was able to modify control NO synthesis. 5. Expression of iNOS and neural NOS (nNOS) was detected by Western blotting in control and LPS-treated rats. LC and INDO, but not MELO, were able to inhibit the expression of these enzymes. 6. Therefore, reduction of iNOS and nNOS levels in cerebellum may explain, in part, the anti-inflammatory effect of these NSAIDs and may also have importance in the prevention of NO-mediated neuronal injury.

  17. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    Science.gov (United States)

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  18. Structure and function based design of Plasmodium-selective proteasome inhibitors

    Science.gov (United States)

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  19. Developing selective histone deacetylases (HDACs) inhibitors through ebselen and analogs.

    Science.gov (United States)

    Wang, Yuren; Wallach, Jason; Duane, Stephanie; Wang, Yuan; Wu, Jianghong; Wang, Jeffrey; Adejare, Adeboye; Ma, Haiching

    2017-01-01

    Histone deacetylases (HDACs) are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen), also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure-activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to cell death of multiple tumor cell lines in a dose-dependent manner. These results demonstrated that ebselen and ebsulfur analogs are inhibitors of HDACs, supporting further preclinical development of this class of compounds for potential therapeutic applications.

  20. Resting Tension Affects eNOS Activity in a Calcium-Dependent Way in Airways

    Directory of Open Access Journals (Sweden)

    Paschalis-Adam Molyvdas

    2007-03-01

    Full Text Available The alteration of resting tension (RT from 0.5 g to 2.5 g increased significantly airway smooth muscle contractions induced by acetylcholine (ACh in rabbit trachea. The decrease in extracellular calcium concentration [Ca2+]o from 2 mM to 0.2 mM reduced ACh-induced contractions only at 2.5 g RT with no effect at 0.5 g RT. The nonselective inhibitor of nitric oxide synthase (NOS, NG-nitro-L-arginine methyl ester (L-NAME increased ACh-induced contractions at 2.5 g RT. The inhibitor of inducible NOS, S-methylsothiourea or neuronal NOS, 7-nitroindazole had no effect. At 2.5 g RT, the reduction of [Ca2+]o from 2 mM to 0.2 mM abolished the effect of L-NAME on ACh-induced contractions. The NO precursor L-arginine or the tyrosine kinase inhibitors erbstatin A and genistein had no effect on ACh-induced contractions obtained at 2.5 g RT. Our results suggest that in airways, RT affects ACh-induced contractions by modulating the activity of epithelial NOS in a calcium-dependent, tyrosine-phosphorylation-independent way.

  1. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  2. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Niwa, Koichi [Laboratory of Biochemistry, Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  3. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem

    DEFF Research Database (Denmark)

    Perch-Nielsen, Ivan Ryberg; Bang, Dang Duong; Poulsen, Claus Riber

    2003-01-01

    , the removal of PCR inhibitors in sample preparation steps is essential and several methods have been published. The methods are either chemical or based on filtering. Conventional ways of filtering include mechanical filters or washing e. g. by centrifugation. Another way of filtering is the use of electric...... to manipulate cells in many microstructures. In this study, we used DEP as a selective filter for holding cells in a microsystem while the PCR inhibitors were flushed out of the system. Haemoglobin and heparin-natural components of blood-were selected as PCR inhibitors, since the inhibitory effects...

  4. Promiscuity and selectivity of small-molecule inhibitors across TAM receptor tyrosine kinases in pediatric leukemia.

    Science.gov (United States)

    Liu, Mao-Hua; Chen, Shi-Bing; Yu, Juan; Liu, Cheng-Jun; Zhang, Xiao-Jing

    2017-08-01

    The TAM receptor tyrosine kinase family member Mer has been recognized as an attractive therapeutic target for pediatric leukemia. Beside Mer the family contains other two kinases, namely, Tyro3 and Axl, which are highly homologues with Mer and thus most existing small-molecule inhibitors show moderate or high promiscuity across the three kinases. Here, the structural basis and energetic property of selective binding of small-molecule inhibitors to the three kinases were investigated at molecular level. It is found that the selectivity is primarily determined by the size, shape and configuration of kinase's ATP-binding site; the Mer and Axl possess a small, closed active pocket as compared to the bulky, open pocket of Tyro3. The location and conformation of active-site residues of Mer and Axl are highly consistent, suggesting that small-molecule inhibitors generally have a low Mer-over-Axl selectivity and a high Mer-over-Tyro3 selectivity. We demonstrated that the difference in ATP binding potency to the three kinases is also responsible for inhibitor selectivity. We also found that the long-range interactions and allosteric effect arising from rest of the kinase's active site can indirectly influence inhibitor binding and selectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Treatment of selective mutism: focus on selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Kaakeh, Yaman; Stumpf, Janice L

    2008-02-01

    Abstract Selective mutism is a pediatric psychiatric disorder that occurs when a child consistently fails to speak in specific situations in which speaking is expected, such as at school and social gatherings, but speaks appropriately in other settings. Selective mutism often is diagnosed when a child starts school and does not talk to teachers or peers, but talks to family members at home; the condition is frequently accompanied by anxiety and shyness. Although the underlying etiology of the condition remains unclear, psychotherapy is the preferred initial treatment, with the support of parents and teachers. If the child does not respond to psychotherapy, addition of pharmacologic treatment should be considered, depending on the severity of symptoms and presence of other illnesses. Although data are limited to case reports and trials with small patient populations and short follow-up periods, some patients with selective mutism respond to therapy with selective serotonin reuptake inhibitors (SSRIs). Fluoxetine is the most studied SSRI as treatment for the condition, although further investigation is required to determine the optimal dosage and duration of therapy.

  6. Developing selective histone deacetylases (HDACs inhibitors through ebselen and analogs

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-05-01

    Full Text Available Yuren Wang,1 Jason Wallach,2 Stephanie Duane,1 Yuan Wang,1 Jianghong Wu,1 Jeffrey Wang,1 Adeboye Adejare,2 Haiching Ma1 1Reaction Biology Corp., Malvern, 2Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA Abstract: Histone deacetylases (HDACs are key regulators of gene expression in cells and have been investigated as important therapeutic targets for cancer and other diseases. Different subtypes of HDACs appear to play disparate roles in the cells and are associated with specific diseases. Therefore, substantial effort has been made to develop subtype-selective HDAC inhibitors. In an effort to discover existing scaffolds with HDAC inhibitory activity, we screened a drug library approved by the US Food and Drug Administration and a National Institutes of Health Clinical Collection compound library in HDAC enzymatic assays. Ebselen, a clinical safe compound, was identified as a weak inhibitor of several HDACs, including HDAC1, HDAC3, HDAC4, HDAC5, HDAC6, HDAC7, HDAC8, and HDAC9 with half maximal inhibitory concentrations approximately single digit of µM. Two ebselen analogs, ebselen oxide and ebsulfur (a diselenide analog of ebselen, also inhibited these HDACs, however with improved potencies on HDAC8. Benzisothiazol, the core structure of ebsulfur, specifically inhibited HDAC6 at a single digit of µM but had no inhibition on other HDACs. Further efforts on structure–activity relationship based on the core structure of ebsulfur led to the discovery of a novel class of potent and selective HDAC6 inhibitors with RBC-2008 as the lead compound with single-digit nM potency. This class of histone deacetylase inhibitor features a novel pharmacophore with an ebsulfur scaffold selectively targeting HDAC6. Consistent with its inhibition on HDAC6, RBC-2008 significantly increased the acetylation levels of α-tubulin in PC-3 cells. Furthermore, treatment with these compounds led to

  7. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    Science.gov (United States)

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  8. Prenatal exposure to selective serotonin reuptake inhibitors and childhood overweight at 7 years of age

    DEFF Research Database (Denmark)

    Grzeskowiak, Luke E; Gilbert, Andrew L; Sørensen, Thorkild

    2013-01-01

    To investigate a possible association between prenatal selective serotonin reuptake inhibitor (SSRI) exposure and childhood overweight at 7 years of age.......To investigate a possible association between prenatal selective serotonin reuptake inhibitor (SSRI) exposure and childhood overweight at 7 years of age....

  9. Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans

    DEFF Research Database (Denmark)

    Christensen, Anne Munch; Faaborg-Andersen, S.; Ingerslev, Flemming

    2007-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds with an identi......Selective serotonin reuptake inhibitors (SSRIs) are used as antidepressant medications. primarily in the treatment of clinical depression. They are among the pharmaceuticals most often Prescribed in the industrialized countries. Selective serotonin reuptake inhibitors are compounds...... with an identical mechanism of action in mammals (inhibit reuptake of serotonin), and they have been found in different aqeous as well as biological samples collected in the environment. In the present study, we tested the toxicities of five SSRIs (citalopram, fluoxetine, fluoxamine, paroxetine, and sertraline.......027 to 1.6 mg/L, and in daphnids, test EC50s ranged from 0.92 to 20 mg/L, with sertraline being one of the most toxic compounds. The test design and statistical analysis of results from mixture tests were based on isobole analysis. It was demonstrated that the mixture toxicity of the SSRIs in the two...

  10. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    The market dynamics of selective serotonin re-uptake inhibitors: a private sector study in South Africa. Frasia Oosthuizen, Pariksha Jolene Kondiah, Hawa Bibi Moosa, Siddiqa Naroth, Nabeel Ismail Patel, Divashnee Reddy, Amanda Soobramoney ...

  11. ERP correlates of selective attention and working memory capacities in children with ADHD and/or PDD-NOS

    NARCIS (Netherlands)

    Gomarus, H. Karin; Wijers, Albertus A.; Minderaa, Ruud B.; Althaus, Monika

    Objective: We examined whether children (8-11 years) diagnosed with Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) or Attention-Deficit/Hyperactivity Disorder (ADHD) showing primarily hyperactive behavior, differed in selective attention and working memory (WM) abilities.

  12. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  13. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT).

    Science.gov (United States)

    Ding, Yun; O'Keefe, Heather; DeLorey, Jennifer L; Israel, David I; Messer, Jeffrey A; Chiu, Cynthia H; Skinner, Steven R; Matico, Rosalie E; Murray-Thompson, Monique F; Li, Fan; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher; Morgan, Barry A

    2015-08-13

    The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality.

  14. Discovery of potent and selective CDK8 inhibitors through FBDD approach.

    Science.gov (United States)

    Han, Xingchun; Jiang, Min; Zhou, Chengang; Zhou, Zheng; Xu, Zhiheng; Wang, Lisha; Mayweg, Alexander V; Niu, Rui; Jin, Tai-Guang; Yang, Song

    2017-09-15

    A fragment library screen was carried out to identify starting points for novel CDK8 inhibitors. Optimization of a fragment hit guided by co-crystal structures led to identification of a novel series of potent CDK8 inhibitors which are highly ligand efficient, kinase selective and cellular active. Compound 16 was progressed to a mouse pharmacokinetic study and showed good oral bioavailability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Low-dose aspirin, non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P

    2016-01-01

    BACKGROUND: Aspirin, nonsteroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. METHODS: We identified incident...... stage I-III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996-2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry. Follow-up began....... RESULTS: We identified 34,188 breast cancer patients with 233,130 person-years of follow-up. Median follow-up was 7.1 years; 5,325 patients developed recurrent disease. Use of aspirin, NSAIDs, or selective COX-2 inhibitors was not associated with the rate of recurrence (HRadjusted aspirin = 1.0, 95% CI...

  16. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor.

    Science.gov (United States)

    He, Xingyue; Riceberg, Jessica; Soucy, Teresa; Koenig, Erik; Minissale, James; Gallery, Melissa; Bernard, Hugues; Yang, Xiaofeng; Liao, Hua; Rabino, Claudia; Shah, Pooja; Xega, Kristina; Yan, Zhong-Hua; Sintchak, Mike; Bradley, John; Xu, He; Duffey, Matt; England, Dylan; Mizutani, Hirotake; Hu, Zhigen; Guo, Jianping; Chau, Ryan; Dick, Lawrence R; Brownell, James E; Newcomb, John; Langston, Steve; Lightcap, Eric S; Bence, Neil; Pulukuri, Sai M

    2017-11-01

    Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.

  18. Selective mGAT2 (BGT-1) GABA Uptake Inhibitor

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Jørgensen, Lars; Madsen, Karsten Kirkegaard

    2013-01-01

    β-Amino acids sharing a lipophilic diaromatic side chain were synthesized and characterized pharmacologically on mouse GABA transporter subtypes mGAT1−4. The parent amino acids were also characterized. Compounds 13a, 13b, and 17b displayed more than 6-fold selectivity for mGAT2 over mGAT1. Compou...... 17b displayed anticonvulsive properties inferring a role of mGAT2 in epileptic disorders. These results provide new neuropharmacological tools and a strategy for designing subtype selective GABA transport inhibitors....

  19. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.

    Science.gov (United States)

    Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R

    2017-07-13

    We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.

  20. Discovery and development of inhibitors selective for human constitutive proteasome and immunoproteasome active sites

    NARCIS (Netherlands)

    Xin, B.

    2017-01-01

    This thesis describes the design and development of subunit‐selective inhibitors of particular catalytically active subunits of human constitutive proteasomes and immunoproteasomes. Most existing proteasome inhibitors are oligopeptides composed of 2‐4 amino acid residues, N‐terminally

  1. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-01-01

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy

  2. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.; Duquenne, Celine; Feng, Yanhong; Grant, Seth W.; Heerding, Dirk; Li, William H.; Miller, William H.; Romeril, Stuart P.; Scherzer, Daryl; Shu, Arthur; Bobko, Mark A.; Chadderton, Antony R.; Dumble, Melissa; Gardiner, Christine M.; Gilbert, Seth; Liu, Qi; Rabindran, Sridhar K.; Sudakin, Valery; Xiang, Hong; Brady, Pat G.; Campobasso, Nino; Ward, Paris; Axten, Jeffrey M. (GSKPA)

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction of phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.

  3. Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation.

    Science.gov (United States)

    Zhong, Hui-ming; Ding, Qian-hai; Chen, Wei-ping; Luo, Ru-bin

    2013-10-01

    Overproduction of nitric oxide (NO) and matrix metalloproteinases (MMPs) plays an important role in the pathogenesis of osteoarthritis (OA). In present study, we investigated whether vorinostat can inhibit the catabolic effects of IL-1β in vitro, especially the inhibition of MMPs and inducible nitric oxide synthase (iNOS) through the attenuation of nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase (MAPK) pathways in human chondrocytes. Human OA chondrocytes were either left untreated or treated with various concentrations of vorinostat followed by incubation with IL-1β (5ng/mL). Effects of vorinostat on IL-1β-induced gene and protein expression of iNOS, MMP-1, MMP-13 and tissue inhibitors of metalloproteinase-1 (TIMP-1) were verified by quantitative real time-PCR and Western blot analysis. Production of NO, MMP-1, MMP-13 and TIMP-1 released in culture supernatant was estimated using commercially available kits. The roles of NF-κB and MAPK pathways in the regulation of targeted genes and the mechanism involved in vorinostat mediated modulation of these genes were determined by Western blot using specific antibodies. We found that vorinostat down-regulated iNOS, MMP-1 and MMP-13 expression and up-regulated TIMP-1 expression in human OA chondrocytes. In addition, the release of NO, MMP-1 and MMP-13 secreted from IL-1β stimulated chondrocytes was also suppressed by vorinostat. Interestingly, vorinostat selectively inhibited IL-1β-induced p38 and ERK1/2 activation without affecting JNK activation. Furthermore, we observed that vorinostat inhibited NF-κB pathway by suppressing the degradation of I-κBα and attenuating NF-κB p65 translocation to the nucleus. These results suggest that vorinostat may be a promising therapeutic agent for the prevention and treatment of OA. © 2013.

  4. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Science.gov (United States)

    Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio

    2008-01-01

    Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843

  5. Effective DNA Inhibitors of Cathepsin G by In Vitro Selection

    Directory of Open Access Journals (Sweden)

    Manlio Palumbo

    2008-06-01

    Full Text Available Cathepsin G (CatG is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions.

  6. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  7. Mechanism-based PK/PD modeling of selective serotonin reuptake inhibitors

    NARCIS (Netherlands)

    Geldof, Marian

    2007-01-01

    The main objective of the investigations was to explore the PK/PD correlations of fluvoxamine, as a prototype for the Selective Serotonin Reuptake Inhibitors (SSRIs). In the various investigations, a spectrum of different biomarkers was used, each reflecting a specific process on the causal path

  8. The effect of a selective neuronal nitric oxide synthase inhibitor 3-bromo 7-nitroindazole on spatial learning and memory in rats.

    Science.gov (United States)

    Gocmez, Semil Selcen; Yazir, Yusufhan; Sahin, Deniz; Karadenizli, Sabriye; Utkan, Tijen

    2015-04-01

    Since the discovery of nitric oxide (NO) as a neuronal messenger, its way to modulate learning and memory functions is subject of intense research. NO is an intercellular messenger in the central nervous system and is formed on demand through the conversion of L-arginine to L-citrulline via the enzyme nitric oxide synthase (NOS). Neuronal form of nitric oxide synthase may play an important role in a wide range of physiological and pathological conditions. Therefore the aim of this study was to investigate the effects of chronic 3-bromo 7-nitroindazole (3-Br 7-NI), specific neuronal nitric oxide synthase (nNOS) inhibitor, administration on spatial learning and memory performance in rats using the Morris water maze (MWM) paradigm. Male rats received either 3-Br 7-NI (20mg/kg/day) or saline via intraperitoneal injection for 5days. Daily administration of the specific neuronal nitric oxide synthase (nNOS) inhibitor, 3-Br 7-NI impaired the acquisition of the MWM task. 3-Br 7-NI also impaired the probe trial. The MWM training was associated with a significant increase in the brain-derived neurotrophic factor (BDNF) mRNA expression in the hippocampus. BDNF mRNA expression in the hippocampus did not change after 3-Br 7-NI treatment. L-arginine significantly reversed behavioural parameters, and the effect of 3-Br 7-NI was found to be NO-dependent. There were no differences in locomotor activity and blood pressure in 3-Br 7-NI treated rats. Our results may suggest that nNOS plays a key role in spatial memory formation in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  10. Dependence and withdrawal reactions to benzodiazepines and selective serotonin reuptake inhibitors. How did the health authorities react?

    DEFF Research Database (Denmark)

    Nielsen, Margrethe; Hansen, Ebba Holme; Gøtzsche, Peter C

    2013-01-01

    Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time.......Our objective was to explore communications from drug agencies about benzodiazepine dependence and selective serotonin reuptake inhibitors (SSRIs) withdrawal reactions over time....

  11. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma.

    Science.gov (United States)

    Pomel, Vincent; Klicic, Jasna; Covini, David; Church, Dennis D; Shaw, Jeffrey P; Roulin, Karen; Burgat-Charvillon, Fabienne; Valognes, Delphine; Camps, Montserrat; Chabert, Christian; Gillieron, Corinne; Françon, Bernard; Perrin, Dominique; Leroy, Didier; Gretener, Denise; Nichols, Anthony; Vitte, Pierre Alain; Carboni, Susanna; Rommel, Christian; Schwarz, Matthias K; Rückle, Thomas

    2006-06-29

    Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kgamma, have become attractive drug targets for inflammatory and autoimmune diseases. Here, we disclose a novel series of furan-2-ylmethylene thiazolidinediones as selective, ATP-competitive PI3Kgamma inhibitors. Structure-based design and X-ray crystallography of complexes formed by inhibitors bound to PI3Kgamma identified key pharmacophore features for potency and selectivity. An acidic NH group on the thiazolidinedione moiety and a hydroxy group on the furan-2-yl-phenyl part of the molecule play crucial roles in binding to PI3K and contribute to class IB PI3K selectivity. Compound 26 (AS-252424), a potent and selective small-molecule PI3Kgamma inhibitor emerging from these efforts, was further profiled in three different cellular PI3K assays and shown to be selective for class IB PI3K-mediated cellular effects. Oral administration of 26 in a mouse model of acute peritonitis led to a significant reduction of leukocyte recruitment.

  12. Use of selective serotonin reuptake inhibitors reduces fertility in men

    DEFF Research Database (Denmark)

    Nørr, L; Bennedsen, Birgit; Fedder, Jens

    2016-01-01

    Clinical review of the present data on the effects of selective serotonin reuptake inhibitors (SSRIs) on male fertility was the objective of the study. PubMed and Scopus were searched for publications in English or Danish and reviewed. Human trials, animal studies and in vitro studies were included...

  13. Selective kallikrein inhibitors alter human neutrophil elastase release during extracorporeal circulation

    NARCIS (Netherlands)

    Wachtfogel, Y.T.; Hack, C.E.; Nuijens, J.H; Kettner, C.; Reilly, T.M.; Knabb, R.M.; Bischoff, Rainer; Tschesche, H.; Wenzel, H.; Kucich, U.

    1995-01-01

    Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular "whole body inflammatory response." This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during

  14. Imidazopyridine derivatives as potent and selective Polo-like kinase (PLK) inhibitors.

    Science.gov (United States)

    Sato, Yoshiyuki; Onozaki, Yu; Sugimoto, Tetsuya; Kurihara, Hideki; Kamijo, Kaori; Kadowaki, Chie; Tsujino, Toshiaki; Watanabe, Akiko; Otsuki, Sachie; Mitsuya, Morihiro; Iida, Masato; Haze, Kyosuke; Machida, Takumitsu; Nakatsuru, Yoko; Komatani, Hideya; Kotani, Hidehito; Iwasawa, Yoshikazu

    2009-08-15

    A novel class of imidazopyridine derivatives was designed as PLK1 inhibitors. Extensive SAR studies supported by molecular modeling afforded a highly potent and selective compound 36. Compound 36 demonstrated good antitumor efficacy in xenograft nude rat model.

  15. Virtual screening of selective inhibitors of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis

    Science.gov (United States)

    Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Kuranova, I. P.

    2017-05-01

    Bacterial phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis (PPAT Mt) is a convenient target protein for the directed search for selective inhibitors as potent antituberculosis drugs. Four compounds suitable for the detailed investigation of their interactions with PPAT Mt were found by virtual screening. The active-site region of the enzyme was chosen as the ligand-binding site. The positions of the ligands found by the docking were refined by molecular dynamics simulation. The nearest environment of the ligands, the positions of which in the active site of the enzyme were found in a computational experiment, was analyzed. The compounds under consideration were shown to directly interact with functionally important active-site amino-acid residues and block access of substrates to the active site. Therefore, these compounds can be used for the design of selective inhibitors of PPAT Mt as potent antituberculosis drugs.

  16. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    Science.gov (United States)

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  17. Design and synthesis of novel chalcones as potent selective monoamine oxidase-B inhibitors.

    Science.gov (United States)

    Hammuda, Arwa; Shalaby, Raed; Rovida, Stefano; Edmondson, Dale E; Binda, Claudia; Khalil, Ashraf

    2016-05-23

    A novel series of substituted chalcones were designed and synthesized to be evaluated as selective human MAO-B inhibitors. A combination of either methylsulfonyl or trifluoromethyl substituents on the aromatic ketone moiety with a benzodioxol ring on the other end of the chalcone scaffold was investigated. The compounds were tested for their inhibitory activities on both human MAO-A and B. All compounds appeared to be selective MAO-B inhibitors with Ki values in the micromolar to submicromolar range. Molecular modeling studies have been performed to get insight into the binding mode of the synthesized compounds to human MAO-B active site. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. The Process and Strategy for Developing Selective Histone Deacetylase 3 Inhibitors

    NARCIS (Netherlands)

    Cao, Fangyuan; Zwinderman, Martijn R H; Dekker, Frank J

    2018-01-01

    Histone deacetylases (HDACs) are epigenetic drug targets that have gained major scientific attention. Inhibition of these important regulatory enzymes is used to treat cancer, and has the potential to treat a host of other diseases. However, currently marketed HDAC inhibitors lack selectivity for

  19. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  20. CYP450 genotype and aggressive behavior on selective serotonin reuptake inhibitors

    NARCIS (Netherlands)

    Ekhart, Corine; Matic, Maja; Kant, Agnes; Schaik, Ron van; van Puijenbroek, Eugène

    2017-01-01

    AIM: Genetic variants for selective serotonin reuptake inhibitor (SSRI) metabolizing enzymes have been hypothesized to be a risk factor for aggression as adverse drug effect of SSRIs. Our aim was to assess the possible involvement of these polymorphisms on aggression when using SSRIs. MATERIALS &

  1. Selectivity Profiling and Biological Activity of Novel β-Carbolines as Potent and Selective DYRK1 Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Katharina Rüben

    Full Text Available DYRK1A is a pleiotropic protein kinase with diverse functions in cellular regulation, including cell cycle control, neuronal differentiation, and synaptic transmission. Enhanced activity and overexpression of DYRK1A have been linked to altered brain development and function in Down syndrome and neurodegenerative diseases such as Alzheimer's disease. The β-carboline alkaloid harmine is a high affinity inhibitor of DYRK1A but suffers from the drawback of inhibiting monoamine oxidase A (MAO-A with even higher potency. Here we characterized a series of novel harmine analogs with minimal or absent MAO-A inhibitory activity. We identified several inhibitors with submicromolar potencies for DYRK1A and selectivity for DYRK1A and DYRK1B over the related kinases DYRK2 and HIPK2. An optimized inhibitor, AnnH75, inhibited CLK1, CLK4, and haspin/GSG2 as the only off-targets in a panel of 300 protein kinases. In cellular assays, AnnH75 dose-dependently reduced the phosphorylation of three known DYRK1A substrates (SF3B1, SEPT4, and tau without negative effects on cell viability. AnnH75 inhibited the cotranslational tyrosine autophosphorylation of DYRK1A and threonine phosphorylation of an exogenous substrate protein with similar potency. In conclusion, we have characterized an optimized β-carboline inhibitor as a highly selective chemical probe that complies with desirable properties of drug-like molecules and is suitable to interrogate the function of DYRK1A in biological studies.

  2. Effect of selective phosphodiesterase inhibitors on the rat eosinophil chemotactic response in vitro

    Directory of Open Access Journals (Sweden)

    Alves Alessandra C

    1997-01-01

    Full Text Available In the present study, we have performed a comparative analysis of the effect of selective inhibitors of phosphodiesterase (PDE type III, IV and V on eosinophil chemotaxis triggered by platelet activating factor (PAF and leukotriene B4 (LTB4 in vitro. The effect of the analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (Bt2 cyclic AMP and N2-2'-O- dibutyrylguanosine 3':5' cyclic monophosphate (Bt2 cyclic GMP has also been determined. The eosinophils were obtained from the peritoneal cavity of naive Wistar rats and purified in discontinuous Percoll gradients to 85-95% purity. We observed that pre-incubation of eosinophils with the PDE type IV inhibitor rolipram suppressed the chemotactic response triggered by PAF and LTB4, in association with an increase in the intracellular levels of cyclic AMP. In contrast, neither zaprinast (type V inhibitor nor type III inhibitors milrinone and SK&F 94836 affected the eosinophil migration. Only at the highest concentration tested did the analogue Bt2 cyclic AMP suppress the eosinophil chemotaxis, under conditions where Bt2 cyclic GMP was ineffective. We have concluded that inhibition of PDE IV, but not PDE III or V, was able to block the eosinophil chemotaxis in vitro, suggesting that the suppressive activity of selective PDE IV inhibitors on tissue eosinophil accumulation may, at least, be partially dependent on their ability to directly inhibit the eosinophil migration.

  3. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    Science.gov (United States)

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  4. Enhancing eNOS activity with simultaneous inhibition of IKKβ restores vascular function in Ins2(Akita+/-) type-1 diabetic mice.

    Science.gov (United States)

    Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy

    2015-10-01

    The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.

  5. PPARα induced NOS1 phosphorylation via PI3K/Akt in guinea pig antral mucous cells: NO-enhancement in Ca(2+)-regulated exocytosis.

    Science.gov (United States)

    Tanaka, Saori; Hosogi, Shigekuni; Sawabe, Yukinori; Shimamoto, Chikao; Matsumura, Hitoshi; Inui, Toshio; Marunaka, Yoshinori; Nakahari, Takashi

    2016-01-01

    A PPARα (peroxisome proliferation activation receptor α) agonist (GW7647) activates nitric oxide synthase 1 (NOS1) to produce NO leading to cGMP accumulation in antral mucous cells. In this study, we examined how PPARα activates NOS1. The NO production stimulated by GW7647 was suppressed by inhibitors of PI3K (wortmannin) and Akt (AKT 1/2 Kinase Inhibitor, AKT-inh), although it was also suppressed by the inhibitors of PPARα (GW6471) and NOS1 (N-PLA). GW7647 enhanced the ACh (acetylcholine)-stimulated exocytosis (Ca(2+)-regulated exocytosis) mediated via NO, which was abolished by GW6471, N-PLA, wortmannin, and AKT-inh. The Western blotting revealed that GW7647 phosphorylates NOS1 via phosphorylation of PI3K/Akt in antral mucous cells. The immunofluorescence examinations demonstrated that PPARα existing with NOS1 co-localizes with PI3K and Akt in the cytoplasm of antral mucous cells. ACh alone and AACOCF3, an analogue of arachidonic acid (AA), induced the NOS1 phosphorylation via PI3K/Akt to produce NO, which was inhibited by GW6471. Since AA is a natural ligand for PPARα, ACh stimulates PPARα probably via AA. In conclusion, PPARα activates NOS1 via PI3K/Akt phosphorylation to produce NO in antral mucous cells during ACh stimulation.

  6. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    International Nuclear Information System (INIS)

    Parhad, Swapnil S.; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-01-01

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  7. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Parhad, Swapnil S. [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Jaiswal, Deepa [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India); Ray, Krishanu, E-mail: krishanu@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Mazumdar, Shyamalava, E-mail: shyamal@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India)

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  8. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Directory of Open Access Journals (Sweden)

    Little Tom J

    2009-06-01

    Full Text Available Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed.

  9. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  10. Selective Inhibitors of Protozoan Protein N-myristoyltransferases as Starting Points for Tropical Disease Medicinal Chemistry Programs

    Science.gov (United States)

    Bell, Andrew S.; Mills, James E.; Williams, Gareth P.; Brannigan, James A.; Wilkinson, Anthony J.; Parkinson, Tanya; Leatherbarrow, Robin J.; Tate, Edward W.; Holder, Anthony A.; Smith, Deborah F.

    2012-01-01

    Inhibition of N-myristoyltransferase has been validated pre-clinically as a target for the treatment of fungal and trypanosome infections, using species-specific inhibitors. In order to identify inhibitors of protozoan NMTs, we chose to screen a diverse subset of the Pfizer corporate collection against Plasmodium falciparum and Leishmania donovani NMTs. Primary screening hits against either enzyme were tested for selectivity over both human NMT isoforms (Hs1 and Hs2) and for broad-spectrum anti-protozoan activity against the NMT from Trypanosoma brucei. Analysis of the screening results has shown that structure-activity relationships (SAR) for Leishmania NMT are divergent from all other NMTs tested, a finding not predicted by sequence similarity calculations, resulting in the identification of four novel series of Leishmania-selective NMT inhibitors. We found a strong overlap between the SARs for Plasmodium NMT and both human NMTs, suggesting that achieving an appropriate selectivity profile will be more challenging. However, we did discover two novel series with selectivity for Plasmodium NMT over the other NMT orthologues in this study, and an additional two structurally distinct series with selectivity over Leishmania NMT. We believe that release of results from this study into the public domain will accelerate the discovery of NMT inhibitors to treat malaria and leishmaniasis. Our screening initiative is another example of how a tripartite partnership involving pharmaceutical industries, academic institutions and governmental/non-governmental organisations such as Medical Research Council and Wellcome Trust can stimulate research for neglected diseases. PMID:22545171

  11. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis.

    Science.gov (United States)

    Parhad, Swapnil S; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Are Selective Serotonin Reuptake Inhibitors Safe for Drivers? What is the Evidence?

    NARCIS (Netherlands)

    Ravera, Silvia; Ramaekers, Johannes G.; de Jong-van den Berg, Lolkje T. W.; de Gier, Johan J.; de Jong-van den Berg, [No Value

    Background: Selective serotonin reuptake inhibitors (SSRIs) are widely used medications to treat several psychiatric diseases and, above all, depression. They seem to be as effective as older antidepressants but have a different adverse effect profile. Despite their favorable safety profile, little

  13. Selective serotonin reuptake inhibitor (SSRI antidepressants, prolactin and breast cancer

    Directory of Open Access Journals (Sweden)

    Janet eAshbury

    2012-12-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are a widely prescribed class of anti-depressants. Laboratory and epidemiologic evidence suggests that a prolactin-mediated mechanism secondary to increased serotonin levels at neuronal synapses could lead to a potentially carcinogenic effect of SSRIs. In this population-based case-control study, we evaluated the association between SSRI use and breast cancer risk as a function of their relative degree of inhibition of serotonin reuptake as a proxy for their impact on prolactin levels. Cases were 2,129 women with primary invasive breast cancer diagnosed from 2003-2007, and controls were 21,297 women randomly selected from the population registry. Detailed information for each SSRI prescription dispensed was compiled using the Saskatchewan prescription database. Logistic regression was used to evaluate the impact of use of high and lower inhibitors of serotonin reuptake and duration of use, as well as to assess the effect of individual high inhibitors on the risk of breast cancer. Exclusive users of high or lower inhibitors of serotonin reuptake were not at increased risk for breast cancer compared with nonusers of SSRIs (OR = 1.01, CI = 0.88-1.17 and OR = 0.91, CI = 0.67-1.25 respectively, regardless of their duration of use or menopausal status. While we cannot rule out the possibility of a clinically important risk increase (OR = 1.83, CI = 0.99-3.40 for long-term users of sertraline (≥24 prescriptions, given the small number of exposed cases (n=12, the borderline statistical significance and the wide confidence interval, these results need to be interpreted cautiously. In this large population-based case-control study, we found no conclusive evidence of breast cancer risk associated with the use of SSRIs even after assessing the degree of serotonin reuptake inhibition and duration of use. Our results do not support the serotonin-mediated pathway for the prolactin-breast cancer hypothesis.

  14. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Ananya Chatterjee

    2012-01-01

    Full Text Available The healing activity of gallic acid enriched ethanolic extract (GAE of Phyllanthus emblica fruits (amla against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX- dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO activity and inducible nitric oxide synthase (i-NOS expression. Proangiogenic parameters such as the levels of prostaglandin (PG E2, vascular endothelial growth factor (VEGF, hepatocyte growth factor (HGF, von Willebrand Factor VIII, and endothelial NOS (e-NOS were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day and omeprazole (3 mg/kg/day for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl lysine hydrochloride (L-NIL. Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE2 synthesis and augmenting e-NOS/i-NOS ratio.

  15. THE PRESENCE OF 5 CYCLIC-NUCLEOTIDE PHOSPHODIESTERASE ISOENZYME ACTIVITIES IN BOVINE TRACHEAL SMOOTH-MUSCLE AND THE FUNCTIONAL-EFFECTS OF SELECTIVE INHIBITORS

    NARCIS (Netherlands)

    VANAMSTERDAM, RGM; DEBOER, J; TENBERGE, RE; NICHOLSON, CD; ZAAGSMA, J

    1991-01-01

    1 The profile of cyclic nucleotide phosphodiesterase (PDE) isoenzymes and the relaxant effects of isoenzyme selective inhibitors were examined in bovine tracheal smooth muscle. The compounds examined were the non-selective inhibitor 3-isobutyl-1-methylxanthine (IBMX), zaprinast (PDE V selective),

  16. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H. (Amgen)

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  17. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922).

    Science.gov (United States)

    Zheng, Zhaohua; Pinson, Jo-Anne; Mountford, Simon J; Orive, Stephanie; Schoenwaelder, Simone M; Shackleford, David; Powell, Andrew; Nelson, Erin M; Hamilton, Justin R; Jackson, Shaun P; Jennings, Ian G; Thompson, Philip E

    2016-10-21

    A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons .

    Directory of Open Access Journals (Sweden)

    Dan eShlosberg

    2012-02-01

    Full Text Available Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO fluorescent indicator DAF-2DA. However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity.Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4X objective. Histochemistry for NADPH diaphorase, a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during and after illumination confirmed the selective damage to non fast-spiking interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs was significantly reduced at distances of 300-400 m from the stimulation, but not when inhibition was non-selectively weakened with the GABAA blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  19. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    Science.gov (United States)

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  20. Discovery and quantitative structure-activity relationship study of lepidopteran HMG-CoA reductase inhibitors as selective insecticides.

    Science.gov (United States)

    Zang, Yang-Yang; Li, Yuan-Mei; Yin, Yue; Chen, Shan-Shan; Kai, Zhen-Peng

    2017-09-01

    In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC 50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q 2 and r 2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors

    Directory of Open Access Journals (Sweden)

    Ubaldina Galli

    2015-09-01

    Full Text Available A novel series of 4-aryl-3-cyano-2-(3-hydroxyphenyl-6-morpholino-pyridines have been designed as potential phosphatidylinositol-3-kinase (PI3K inhibitors. The compounds have been synthesized using the Guareschi reaction to prepare the key 4-aryl-3-cyano-2,6-dihydroxypyridine intermediate. A different selectivity according to the nature of the aryl group has been observed. Compound 9b is a selective inhibitor against the PI3Kα isoform, maintaining a good inhibitory activity. Docking studies were also performed in order to rationalize its profile of selectivity.

  2. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors.

    Science.gov (United States)

    Galli, Ubaldina; Ciraolo, Elisa; Massarotti, Alberto; Margaria, Jean Piero; Sorba, Giovanni; Hirsch, Emilio; Tron, Gian Cesare

    2015-09-18

    A novel series of 4-aryl-3-cyano-2-(3-hydroxyphenyl)-6-morpholino-pyridines have been designed as potential phosphatidylinositol-3-kinase (PI3K) inhibitors. The compounds have been synthesized using the Guareschi reaction to prepare the key 4-aryl-3-cyano-2,6-dihydroxypyridine intermediate. A different selectivity according to the nature of the aryl group has been observed. Compound 9b is a selective inhibitor against the PI3Kα isoform, maintaining a good inhibitory activity. Docking studies were also performed in order to rationalize its profile of selectivity.

  3. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.

    Science.gov (United States)

    Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho

    2018-01-30

    Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify

  4. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    Energy Technology Data Exchange (ETDEWEB)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada); Gesner, Emily M.; Patel, Reena G.; Norek, Karen [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada); White, Andre; Fontano, Eric; Suto, Robert K. [Xtal BioStructures, Inc., 12 Michigan Dr., Natick, MA 01760 (United States); Young, Peter R.; McLure, Kevin G.; Hansen, Henrik C. [Zenith Epigenetics, Suite 300, 4820 Richard Road SW, Calgary, Alberta, T3E 6L1 (Canada)

    2016-08-12

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. We demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.

  5. Steric Hindrance as a Basis for Structure-Based Design of Selective Inhibitors of Protein-Tyrosine Phosphatases

    DEFF Research Database (Denmark)

    Iversen, L. F.; Andersen, H. S.; Møller, K. B.

    2001-01-01

    Utilizing structure-based design, we have previously demonstrated that it is possible to obtain selective inhibitors of protein-tyrosine phosphatase 1B (PTP1B). A basic nitrogen was introduced into a general PTP inhibitor to form a salt bridge to Asp48 in PTP1B and simultaneously cause repulsion...... in PTPs containing an asparagine in the equivalent position [Iversen, L. F., et al. (2000) J. Biol. Chem. 275, 10300−10307]. Further, we have recently demonstrated that Gly259 in PTP1B forms the bottom of a gateway that allows easy access to the active site for a broad range of substrates, while bulky...... in accessibility to the active site among various PTPs. We show that a general, low-molecular weight PTP inhibitor can be developed into a highly selective inhibitor for PTP1B and TC-PTP by introducing a substituent, which is designed to address the region around residues 258 and 259. Detailed enzyme kinetic...

  6. Discovery and characterization of a potent and selective inhibitor of Aedes aegypti inward rectifier potassium channels.

    Directory of Open Access Journals (Sweden)

    Rene Raphemot

    Full Text Available Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes aegypti Kir1 (AeKir1 channels heterologously expressed in HEK293 cells. Of 283 confirmed screening 'hits', the small-molecule inhibitor VU625 was selected for lead optimization and in vivo studies based on its potency and selectivity toward AeKir1, and tractability for medicinal chemistry. In patch clamp electrophysiology experiments of HEK293 cells, VU625 inhibits AeKir1 with an IC50 value of 96.8 nM, making VU625 the most potent inhibitor of AeKir1 described to date. Furthermore, electrophysiology experiments in Xenopus oocytes revealed that VU625 is a weak inhibitor of AeKir2B. Surprisingly, injection of VU625 failed to elicit significant effects on mosquito behavior, urine excretion, or survival. However, when co-injected with probenecid, VU625 inhibited the excretory capacity of mosquitoes and was toxic, suggesting that the compound is a substrate of organic anion and/or ATP-binding cassette (ABC transporters. The dose-toxicity relationship of VU625 (when co-injected with probenecid is biphasic, which is consistent with the molecule inhibiting both AeKir1 and AeKir2B with different potencies. This study demonstrates proof-of-concept that potent and highly selective inhibitors of mosquito

  7. Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries.

    Science.gov (United States)

    Shi, Z; Ma, X H; Qin, C; Jia, J; Jiang, Y Y; Tan, C Y; Chen, Y Z

    2012-02-01

    Selective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H(3) receptor, 5-HT(1A) receptor, 5-HT(1B) receptor, 5-HT(2C) receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority virtual hits correlate with the reported effects of their predicted targets. COMBI-SVM is potentially useful for searching selective multi-target agents without explicit knowledge of these agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effects of tryptophan depletion on selective serotonin reuptake inhibitor-remitted patients with obsessive compulsive disorder.

    Science.gov (United States)

    Hood, Sean D; Broyd, Annabel; Robinson, Hayley; Lee, Jessica; Hudaib, Abdul-Rahman; Hince, Dana A

    2017-12-01

    Serotonergic antidepressants are first-line medication therapies for obsessive-compulsive disorder, however it is not known if synaptic serotonin availability is important for selective serotonin reuptake inhibitor efficacy. The present study tested the hypothesis that temporary reduction in central serotonin transmission, through acute tryptophan depletion, would result in an increase in anxiety in selective serotonin reuptake inhibitor-remitted obsessive-compulsive disorder patients. Eight patients (four males) with obsessive-compulsive disorder who showed sustained clinical improvement with selective serotonin reuptake inhibitor treatment underwent acute tryptophan depletion in a randomized, double-blind, placebo-controlled, within-subjects design, over two days one week apart. Five hours after consumption of the depleting/sham drink the participants performed a personalized obsessive-compulsive disorder symptom exposure task. Psychological responses were measured using the Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and Visual Analogue Scales. Free plasma tryptophan to large neutral amino acid ratio decreased by 93% on the depletion day and decreased by 1% on the sham day, as anticipated. Psychological rating scores as measured by Visual Analogue Scale showed a significant decrease in perceived control and increase in interfering thoughts at the time of provocation on the depletion day but not on the sham day. A measure of convergent validity, namely Visual Analogue Scale Similar to past, was significantly higher at the time of provocation on both the depletion and sham days. Both the depletion and time of provocation scores for Visual Analogue Scale Anxiety, Spielberger State Anxiety Inventory, Yale-Brown Obsessive Compulsive Scale and blood pressure were not significant. Acute tryptophan depletion caused a significant decrease in perceived control and increase in interfering thoughts at the time of provocation. Acute tryptophan

  9. Structure-Activity Relationships of Pentacyclic Triterpenoids as Potent and Selective Inhibitors against Human Carboxylesterase 1

    Directory of Open Access Journals (Sweden)

    Li-Wei Zou

    2017-06-01

    Full Text Available Human carboxylesterase 1 (hCE1, one of the most important serine hydrolases distributed in liver and adipocytes, plays key roles in endobiotic homeostasis and xenobiotic metabolism. This study aimed to find potent and selective inhibitors against hCE1 from phytochemicals and their derivatives. To this end, a series of natural triterpenoids were collected and their inhibitory effects against human carboxylesterases (hCEs were assayed using D-Luciferin methyl ester (DME and 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB as specific optical substrate for hCE1, and hCE2, respectively. Following screening of a series of natural triterpenoids, oleanolic acid (OA, and ursolic acid (UA were found with strong inhibitory effects on hCE1 and relative high selectivity over hCE2. In order to get the highly selective and potent inhibitors of hCE1, a series of OA and UA derivatives were synthesized from OA and UA by chemical modifications including oxidation, reduction, esterification, and amidation. The inhibitory effects of these derivatives on hCEs were assayed and the structure-activity relationships of tested triterpenoids as hCE1 inhibitors were carefully investigated. The results demonstrated that the carbonyl group at the C-28 site is essential for hCE1 inhibition, the modifications of OA or UA at this site including esters, amides and alcohols are unbeneficial for hCE1 inhibition. In contrast, the structural modifications on OA and UA at other sites, such as converting the C-3 hydroxy group to 3-O-β-carboxypropionyl (compounds 20 and 22, led to a dramatically increase of the inhibitory effects against hCE1 and very high selectivity over hCE2. 3D-QSAR analysis of all tested triterpenoids including OA and UA derivatives provide new insights into the fine relationships linking between the inhibitory effects on hCE1 and the steric-electrostatic properties of triterpenoids. Furthermore, both inhibition kinetic analyses and docking

  10. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice.

    Science.gov (United States)

    Liang, Qianqian; Ju, Yawen; Chen, Yan; Wang, Wensheng; Li, Jinlong; Zhang, Li; Xu, Hao; Wood, Ronald W; Schwarz, Edward M; Boyce, Brendan F; Wang, Yongjun; Xing, Lianping

    2016-03-12

    In this study, we sought to determine the cellular source of inducible nitric oxide synthase (iNOS) induced in lymphatic endothelial cells (LECs) in response to tumor necrosis factor (TNF), the effects of iNOS on lymphatic smooth muscle cell (LSMC) function and on the development of arthritis in TNF-transgenic (TNF-Tg) mice, and whether iNOS inhibitors improve lymphatic function and reduce joint destruction in inflammatory erosive arthritis. We used quantitative polymerase chain reactions, immunohistochemistry, histology, and near-infrared imaging to examine (1) iNOS expression in podoplanin + LECs and lymphatic vessels from wild-type (WT) and TNF-Tg mice, (2) iNOS induction by TNF in WT LECs, (3) the effects of iNOS inhibitors on expression of functional muscle genes in LSMCs, and (4) the effects of iNOS inhibitors on lymphatic vessel contraction and drainage, as well as the severity of arthritis, in TNF-Tg mice. LECs from TNF-Tg mice had eight fold higher iNOS messenger RNA levels than WT cells, and iNOS expression was confirmed immunohistochemically in podoplanin + LECs in lymphatic vessels from inflamed joints. TNF (0.1 ng/ml) increased iNOS levels 40-fold in LECs. LSMCs cocultured with LECs pretreated with TNF had reduced expression of functional muscle genes. This reduction was prevented by ferulic acid, which blocked nitric oxide production. Local injection of L-N(6)-(1-iminoethyl)lysine 5-tetrazole-amide into inflamed paws of TNF-Tg mice resulted in recovery of lymphatic vessel contractions and drainage. Treatment of TNF-Tg mice with ferulic acid reduced synovial inflammation as well as cartilage and bone erosion, and it also restored lymphatic contraction and drainage. iNOS is produced primarily by LECs in lymphatic vessel efferent from inflamed joints of TNF-Tg mice in response to TNF and inhibits LSMC contraction and lymph drainage. Ferulic acid represents a potential new therapy to restore lymphatic function and thus improve inflammatory

  11. A concise total synthesis of (R)-fluoxetine, a potent and selective serotonin reuptake inhibitor

    International Nuclear Information System (INIS)

    Fatima, Angelo de; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A.

    2005-01-01

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (author)

  12. Selective elimination of neuroblastoma cells by synergistic effect of Akt kinase inhibitor and tetrathiomolybdate.

    Science.gov (United States)

    Navrátilová, Jarmila; Karasová, Martina; Kohutková Lánová, Martina; Jiráková, Ludmila; Budková, Zuzana; Pacherník, Jiří; Šmarda, Jan; Beneš, Petr

    2017-09-01

    Neuroblastoma is the most common extracranial solid tumour of infancy. Pathological activation of glucose consumption, glycolysis and glycolysis-activating Akt kinase occur frequently in neuroblastoma cells, and these changes correlate with poor prognosis of patients. Therefore, several inhibitors of glucose utilization and the Akt kinase activity are in preclinical trials as potential anti-cancer drugs. However, metabolic plasticity of cancer cells might undermine efficacy of this approach. In this work, we identified oxidative phosphorylation as compensatory mechanism preserving viability of neuroblastoma cells with inhibited glucose uptake/Akt kinase. It was oxidative phosphorylation that maintained intracellular level of ATP and proliferative capacity of these cells. The oxidative phosphorylation inhibitors (rotenone, tetrathiomolybdate) synergized with inhibitor of the Akt kinase/glucose uptake in down-regulation of both viability of neuroblastoma cells and clonogenic potential of cells forming neuroblastoma spheroids. Interestingly, tetrathiomolybdate acted as highly specific inhibitor of oxygen consumption and activator of lactate production in neuroblastoma cells, but not in normal fibroblasts and neuronal cells. Moreover, the reducing effect of tetrathiomolybdate on cell viability and the level of ATP in the cells with inhibited Akt kinase/glucose uptake was also selective for neuroblastoma cells. Therefore, efficient elimination of neuroblastoma cells requires inhibition of both glucose uptake/Akt kinase and oxidative phosphorylation activities. The use of tetrathiomolybdate as a mitochondrial inhibitor contributes to selectivity of this combined treatment, preferentially targeting neuroblastoma cells. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism.

    Directory of Open Access Journals (Sweden)

    Daniel J Ham

    Full Text Available Dietary L-citrulline is thought to modulate muscle protein turnover by increasing L-arginine availability. To date, the direct effects of increased L-citrulline concentrations in muscle have been completely neglected. Therefore, we determined the role of L-citrulline in regulating cell size during catabolic conditions by depriving mature C2C12 myotubes of growth factors (serum free; SF or growth factors and nutrients (HEPES buffered saline; HBS. Cells were treated with L-citrulline or equimolar concentrations of L-arginine (positive control or L-alanine (negative control and changes in cell size and protein turnover were assessed. In myotubes incubated in HBS or SF media, L-citrulline improved rates of protein synthesis (HBS: +63%, SF: +37% and myotube diameter (HBS: +18%, SF: +29%. L-citrulline treatment substantially increased iNOS mRNA expression (SF: 350%, HBS: 750%. The general NOS inhibitor L-NAME and the iNOS specific inhibitor aminoguanidine prevented these effects in both models. Depriving myotubes in SF media of L-arginine or L-leucine, exacerbated wasting which was not attenuated by L-citrulline. The increased iNOS mRNA expression was temporally associated with increases in mRNA of the endogenous antioxidants SOD1, SOD3 and catalase. Furthermore, L-citrulline prevented inflammation (LPS and oxidative stress (H2O2 induced muscle cell wasting. In conclusion, we demonstrate a novel direct protective effect of L-citrulline on skeletal muscle cell size independent of L-arginine that is mediated through induction of the inducible NOS (iNOS isoform. This discovery of a nutritional modulator of iNOS mRNA expression in skeletal muscle cells could have substantial implications for the treatment of muscle wasting conditions.

  14. A concise total synthesis of (R)-fluoxetine, a potent and selective serotonin reuptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Angelo de; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: pilli@iqm.unicamp.br

    2005-05-15

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (author)

  15. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors.

    Science.gov (United States)

    Goodman, Krista B; Cui, Haifeng; Dowdell, Sarah E; Gaitanopoulos, Dimitri E; Ivy, Robert L; Sehon, Clark A; Stavenger, Robert A; Wang, Gren Z; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Semus, Simon F; Evans, Christopher; Fries, Harvey E; Jolivette, Larry J; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Bentley, Ross; Doe, Christopher P; Hu, Erding; Lee, Dennis

    2007-01-11

    Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.

  16. In Vivo Evidence of Increased nNOS Activity in Acute MPTP Neurotoxicity: A Functional Pharmacological MRI Study

    Directory of Open Access Journals (Sweden)

    Tiing Yee Siow

    2013-01-01

    Full Text Available 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP is a neurotoxin commonly used to produce an animal model of Parkinson’s disease. Previous studies have suggested a critical role for neuronal nitric oxide (NO synthase- (nNOS- derived NO in the pathogenesis of MPTP. However, NO activity is difficult to assess in vivo due to its extremely short biological half-life, and so in vivo evidence of NO involvement in MPTP neurotoxicity remains scarce. In the present study, we utilized flow-sensitive alternating inversion recovery sequences, in vivo localized proton magnetic resonance spectroscopy, and diffusion-weighted imaging to, respectively, assess the hemodynamics, metabolism, and cytotoxicity induced by MPTP. The role of NO in MPTP toxicity was clarified further by administering a selective nNOS inhibitor, 7-nitroindazole (7-NI, intraperitoneally to some of the experimental animals prior to MPTP challenge. The transient increase in cerebral blood flow (CBF in the cortex and striatum induced by systemic injection of MPTP was completely prevented by pretreatment with 7-NI. We provide the first in vivo evidence of increased nNOS activity in acute MPTP-induced neurotoxicity. Although the observed CBF change may be independent of the toxicogenesis of MPTP, this transient hyperperfusion state may serve as an early indicator of neuroinflammation.

  17. The effect of selective serotonin reuptake inhibitors in healthy subjects. A systematic review

    DEFF Research Database (Denmark)

    Knorr, Ulla; Kessing, Lars Vedel; Knorr, Ulla

    2010-01-01

    BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) show antidepressant properties in many patients with a diagnosis of depression. An understanding of the underlying mechanisms of the effect of SSRIs in healthy patients may lead to an understanding of the yet unclear pathophysiology of d...

  18. Increased Bleeding Risk With Concurrent Use of Selective Serotonin Reuptake inhibitors and Coumarins

    NARCIS (Netherlands)

    Schalekamp, Tom; Klungel, Olaf H; Souverein, Patrick C; de Boer, Anthonius

    2008-01-01

    BACKGROUND: Treatment with vitamin K antagonists (coumarins) is associated with an increased risk of bleeding. Because use of selective serotonin reuptake inhibitors (SSRIs) is also associated with an increased risk of bleeding, we assessed the odds ratio (OR) of abnormal bleeding associated with

  19. Estrogen Receptor Signaling and the PI3K/Akt Pathway Are Involved in Betulinic Acid-Induced eNOS Activation

    Directory of Open Access Journals (Sweden)

    Nicolas Hohmann

    2016-07-01

    Full Text Available Betulinic acid (BA is a naturally occurring pentacyclic triterpenoid with anti-inflammatory, antiviral and anti-cancer properties. Beneficial cardiovascular effects such as increased nitric oxide (NO production through enhancement of endothelial NO synthase (eNOS activity and upregulation of eNOS expression have been demonstrated for this compound. In the present study, immortalized human EA.hy 926 endothelial cells were incubated for up to 1 h with 1–100 µM BA and with the phosphatidylinositol-3-kinase (PI3K inhibitors LY294002 and wortmannin, or the estrogen receptor (ER antagonist ICI 182,780. Phosphorylation status of eNOS and total eNOS protein were analyzed by Western blotting using a serine 1177 phosphosite-specific antibody. Bioactive NO production was assessed by determination of cGMP content in rat lung fibroblasts (RFL-6 reporter cells. Short-term incubation of EA.hy 926 cells with BA resulted in eNOS phosphorylation at the serine 1177 residue in a concentration- and time-dependent manner with a half-maximal effective concentration of 0.57 µM. This was associated with an enhanced production of NO. BA-induced eNOS phosphorylation and NO production was completely blocked by pretreatment with ICI 182,780, and was attenuated by pretreatment with the PI3K inhibitors wortmannin and LY294002. These results indicate that fast non-genomic effects of ER with downstream signaling through the PI3K/Akt pathway and consecutive eNOS phosphorylation at serine 1177 are involved in BA-induced eNOS activation.

  20. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Lewis; Dobler, Markus R.; Radetich, Branko; Zhu, Yanyi; Atadja, Peter W.; Claiborne, Tavina; Grob, Jonathan E.; McRiner, Andrew; Pancost, Margaret R.; Patnaik, Anup; Shao, Wenlin; Shultz, Michael; Tichkule, Ritesh; Tommasi, Ruben A.; Vash, Brian; Wang, Ping; Stams, Travis (Novartis)

    2013-11-20

    Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.

  1. Comparative evaluation of the efficacy of the cyclooxygenase pathway inhibitor and nitric oxide synthase inhibitor in the reduction of alveolar bone loss in ligature induced periodontitis in rats: An experimental study

    Directory of Open Access Journals (Sweden)

    Rekha Jagadish

    2014-01-01

    Full Text Available Background: Alveolar bone loss is the most striking feature of periodontal disease. The aim of this study was to investigate the effect of a cyclooxygenase (COX pathway inhibitor and nitric oxide synthase (NOS inhibitor in the reduction of alveolar bone loss in an experimental periodontal disease (EPD model. Materials and Methods: The study was conducted on 60 Wistar rats divided into three groups of 20 rats each and then subjected to a ligature placement around the left maxillary second molars. Group 1 rats were treated with COX inhibitor (diclofenac sodium 10 mg/kg/d, group 2 with NOS inhibitor (aminoguanidine hydrochloride 10 mg/kg/d and group 3 served as controls, receiving only saline, intraperitoneally 1h before EPD induction and daily until the sacrifice on the 11 th day. Leukogram was performed before ligation, at 6 h and at the first, seventh and 11 th days after EPD induction. After sacrifice, all the excised maxillae were subjected to morphometric and histometric analysis to measure the alveolar bone loss. Histopathological analysis was carried out to estimate cell influx, alveolar bone and cementum integrity. Results: Induction of experimental periodontitis in the rat model produced pronounced leucocytosis, which was significantly reduced by the administration of diclofenac sodium and aminoguanidine on the 11 th day. In morphometric and histometric examinations, both the test drugs significantly (P < 0.05 inhibited the alveolar bone loss as compared with the control group. Conclusion: Both COX inhibitor and NOS inhibitor are equally effective in inhibiting the inflammatory bone resorption in an experimental periodontitis model.

  2. GSK2586184, a JAK1 selective inhibitor, in two patients with ulcerative colitis

    NARCIS (Netherlands)

    de Vries, Leonie C. S.; Ludbrook, Valerie J.; Hicks, Kirsty J.; D'Haens, Geert R.

    2017-01-01

    Tofacitinib, a non-selective Janus kinase (JAK) inhibitor, is effective in inducing clinical and endoscopic remission in patients with active ulcerative colitis (UC). Tofacitinib inhibits cytokine signalling through blockade of JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2). Adverse events including

  3. Interleukin-1β-induced iNOS expression in human lung carcinoma A549 cells: involvement of STAT and MAPK pathways

    International Nuclear Information System (INIS)

    Ravichandran, Kameswaran; Tyagi, Alpna; Deep, Gagan; Agarwal, Chapla; Agarwal, Rajesh

    2011-01-01

    For understanding of signaling molecules important in lung cancer growth and progression, IL-1β effect was analyzed on iNOS expression and key signaling molecules in human lung carcinoma A549 cells and established the role of specific signaling molecules by using specific chemical inhibitors. IL-1β exposure (10 ng/ml) induced strong iNOS expression in serum starved A549 cells. Detailed molecular analyses showed that IL-1β increased expression of phosphorylated STAT1 (Tyr701 and Ser727) and STAT3 (Tyr705 and Ser727) both in total cell lysates and nuclear lysates. Further, IL-1β exposure strongly activated MAPKs (ERK1/2, JNK1/2 and p38) and Akt as well as increased nuclear levels of NF-κB and HIF-1α in A549 cells. Use of specific chemical inhibitors for JAK1 kinase (piceatannol), JAK2 kinase (AG-490), MEK1/2 (PD98059) and JNK1/2 (SP600125) revealed that IL-1β-induced iNOS expression involved signaling pathways in addition to JAKSTAT and ERK1/2-JNK1/2 activation. Overall, these results suggested that instead of specific pharmacological inhibitors, use of chemopreventive agents with broad spectrum efficacy to inhibit IL-1β-induced signaling cascades and iNOS expression would be a better strategy towards lung cancer prevention and/or treatment. (author)

  4. Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.

    Science.gov (United States)

    Wright, C I; Guela, C; Mesulam, M M

    1993-01-01

    Neurofibrillary tangles and amyloid plaques express acetylcholinesterase and butyrylcholinesterase activity in Alzheimer disease. We previously reported that traditional acetylcholinesterase inhibitors such as BW284C51, tacrine, and physostigmine were more potent inhibitors of the acetylcholinesterase in normal axons and cell bodies than of the acetylcholinesterase in plaques and tangles. We now report that the reverse pattern is seen with indoleamines (such as serotonin and its precursor 5-hydroxytryptophan), carboxypeptidase inhibitor, and the nonspecific protease inhibitor bacitracin. These substances are more potent inhibitors of the cholinesterases in plaques and tangles than of those in normal axons and cell bodies. These results show that the enzymatic properties of plaque and tangle-associated cholinesterases diverge from those of normal axons and cell bodies. The selective susceptibility to bacitracin and carboxypeptidase inhibitor indicates that the catalytic sites of plaque and tangle-bound cholinesterases are more closely associated with peptidase or protease-like properties than the catalytic sites of cholinesterases in normal axons and cell bodies. This shift in enzymatic affinity may lead to the abnormal protein processing that is thought to play a major role in the pathogenesis of Alzheimer disease. The availability of pharmacological and dietary means for altering brain indoleamines raises therapeutic possibilities for inhibiting the abnormal cholinesterase activity associated with Alzheimer disease. Images PMID:8421706

  5. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species

    Directory of Open Access Journals (Sweden)

    Byoung Sik Kim

    2018-01-01

    Full Text Available Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS, QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana. Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.

  6. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages

    Directory of Open Access Journals (Sweden)

    Sung Bum Park

    2016-08-01

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344, a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.

  7. Endogenous angiotensin II modulates nNOS expression in renovascular hypertension

    Directory of Open Access Journals (Sweden)

    T.M.C. Pereira

    2009-07-01

    Full Text Available Nitric oxide (NO influences renal blood flow mainly as a result of neuronal nitric oxide synthase (nNOS. Nevertheless, it is unclear how nNOS expression is modulated by endogenous angiotensin II, an inhibitor of NO function. We tested the hypothesis that the angiotensin II AT1 receptor and oxidative stress mediated by NADPH oxidase contribute to the modulation of renal nNOS expression in two-kidney, one-clip (2K1C hypertensive rats. Experiments were performed on male Wistar rats (150 to 170 g body weight divided into 2K1C (N = 19 and sham-operated (N = 19 groups. nNOS expression in kidneys of 2K1C hypertensive rats (N = 9 was compared by Western blotting to that of 2K1C rats treated with low doses of the AT1 antagonist losartan (10 mg·kg-1·day-1; N = 5 or the superoxide scavenger tempol (0.2 mmol·kg-1·day-1; N = 5, which still remain hypertensive. After 28 days, nNOS expression was significantly increased by 1.7-fold in the clipped kidneys of 2K1C rats and by 3-fold in the non-clipped kidneys of 2K1C rats compared with sham rats, but was normalized by losartan. With tempol treatment, nNOS expression increased 2-fold in the clipped kidneys and 1.4-fold in the non-clipped kidneys compared with sham rats. The changes in nNOS expression were not followed by changes in the enzyme activity, as measured indirectly by the cGMP method. In conclusion, AT1 receptors and oxidative stress seem to be primary stimuli for increased nNOS expression, but this up-regulation does not result in higher enzyme activity.

  8. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  9. In utero exposure to selective serotonin reuptake inhibitors and risk for autism spectrum disorder

    DEFF Research Database (Denmark)

    Gidaya, Nicole B; Lee, Brian K; Burstyn, Igor

    2014-01-01

    We investigated whether there is an association between increased risk for autism spectrum disorders (ASD) and selective serotonin reuptake inhibitors (SSRIs) used during pregnancy. This study used Denmark's health and population registers to obtain information regarding prescription drugs, ASD...

  10. Anhedonia Predicts Poorer Recovery among Youth with Selective Serotonin Reuptake Inhibitor Treatment-Resistant Depression

    Science.gov (United States)

    McMakin, Dana L.; Olino, Thomas M.; Porta, Giovanna; Dietz, Laura J.; Emslie, Graham; Clarke, Gregory; Wagner, Karen Dineen; Asarnow, Joan R.; Ryan, Neal D.; Birmaher, Boris; Shamseddeen, Wael; Mayes, Taryn; Kennard, Betsy; Spirito, Anthony; Keller, Martin; Lynch, Frances L.; Dickerson, John F.; Brent, David A.

    2012-01-01

    Objective: To identify symptom dimensions of depression that predict recovery among selective serotonin reuptake inhibitor (SSRI) treatment-resistant adolescents undergoing second-step treatment. Method: The Treatment of Resistant Depression in Adolescents (TORDIA) trial included 334 SSRI treatment-resistant youth randomized to a medication…

  11. Molecular design and structure--activity relationships leading to the potent, selective, and orally active thrombin active site inhibitor BMS-189664.

    Science.gov (United States)

    Das, Jagabandhu; Kimball, S David; Hall, Steven E; Han, Wen Ching; Iwanowicz, Edwin; Lin, James; Moquin, Robert V; Reid, Joyce A; Sack, John S; Malley, Mary F; Chang, Chiehying Y; Chong, Saeho; Wang-Iverson, David B; Roberts, Daniel G M; Seiler, Steven M; Schumacher, William A; Ogletree, Martin L

    2002-01-07

    A series of structurally novel small molecule inhibitors of human alpha-thrombin was prepared to elucidate their structure-activity relationships (SARs), selectivity and activity in vivo. BMS-189664 (3) is identified as a potent, selective, and orally active reversible inhibitor of human alpha-thrombin which is efficacious in vivo in a mouse lethality model, and at inhibiting both arterial and venous thrombosis in cynomolgus monkey models.

  12. Diverse modes of binding in structures of Leishmania majorN-myristoyltransferase with selective inhibitors

    Directory of Open Access Journals (Sweden)

    James A. Brannigan

    2014-07-01

    Full Text Available The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed.

  13. Selective and membrane-permeable small molecule inhibitors of nicotinamide N-methyltransferase reverse high fat diet-induced obesity in mice.

    Science.gov (United States)

    Neelakantan, Harshini; Vance, Virginia; Wetzel, Michael D; Wang, Hua-Yu Leo; McHardy, Stanton F; Finnerty, Celeste C; Hommel, Jonathan D; Watowich, Stanley J

    2018-01-01

    There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD + ) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD + salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD + and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to

  14. Synthesis of the highly selective p38 MAPK inhibitor UR-13756 for possible therapeutic use in Werner syndrome.

    Science.gov (United States)

    Bagley, Mark C; Davis, Terence; Rokicki, Michal J; Widdowson, Caroline S; Kipling, David

    2010-02-01

    UR-13756 is a potent and selective p38 mitogen-activated protein kinase (MAPK) inhibitor, reported to have good bioavailability and pharmacokinetic properties and, thus, is of potential use in the treatment of accelerated aging in Werner syndrome. Irradiation of 2-chloroacrylonitrile and methylhydrazine in ethanol at 100 °C gives 1-methyl-3-aminopyrazole, which reacts with 4-fluorobenzaldehyde and a ketone, obtained by Claisen condensation of 4-picoline, in a Hantzsch-type 3-component hereocyclocondensation, to give the pyrazolopyridine UR-13756. UR-13756 shows p38 MAPK inhibitory activity in human telomerase reverse transcriptase-immortalized HCA2 dermal fibroblasts, with an IC(50) of 80 nm, as shown by ELISA, is 100% efficacious for up to 24 h at 1.0 μm and displays excellent kinase selectivity over the related stress-activated c-Jun kinases. In addition, UR-13756 is an effective p38 inhibitor at 1.0 μm in Werner syndrome cells, as shown by immunoblot. The convergent synthesis of UR-13756 is realized using microwave dielectric heating and provides a highly selective inhibitor that shows excellent selectivity for p38 MAPK over c-Jun N-terminal kinase.

  15. Acquisition of a potent and selective TC-PTP inhibitor via a stepwise fluorophore-tagged combinatorial synthesis and screening strategy.

    Science.gov (United States)

    Zhang, Sheng; Chen, Lan; Luo, Yong; Gunawan, Andrea; Lawrence, David S; Zhang, Zhong-Yin

    2009-09-16

    Protein tyrosine phosphatases (PTPs) regulate a broad range of cellular processes including proliferation, differentiation, migration, apoptosis, and immune responses. Dysfunction of PTP activity is associated with cancers, metabolic syndromes, and autoimmune disorders. Consequently, small molecule PTP inhibitors should serve not only as powerful tools to delineate the physiological roles of these enzymes in vivo but also as lead compounds for therapeutic development. We describe a novel stepwise fluorophore-tagged combinatorial library synthesis and competitive fluorescence polarization screening approach that transforms a weak and general PTP inhibitor into an extremely potent and selective TC-PTP inhibitor with highly efficacious cellular activity. The result serves as a proof-of-concept in PTP inhibitor development, as it demonstrates the feasibility of acquiring potent, yet highly selective, cell permeable PTP inhibitory agents. Given the general nature of the approach, this strategy should be applicable to other PTP targets.

  16. Selective small-chemical inhibitors of protein arginine methyltransferase 5 with anti-lung cancer activity.

    Directory of Open Access Journals (Sweden)

    Gui-Mei Kong

    Full Text Available Protein arginine methyltransferase 5 (PRMT5 plays critical roles in a wide variety of biological processes, including tumorigenesis. By screening a library of small chemical compounds, we identified eight compounds that selectively inhibit the PRMT5 enzymatic activity, with IC50 values ranging from 0.1 to 6 μM. Molecular docking simulation and site-directed mutagenesis indicated that identified compounds target the substrate-binding site in PRMT5. Treatment of lung cancer cells with identified inhibitors led to inhibition of the symmetrical arginine methylation of SmD3 and histones and the cellular proliferation. Oral administration of the inhibitor demonstrated antitumor activity in a lung tumor xenograft model. Thus, identified PRMT5-specific small-molecule inhibitors would help elucidate the biological roles of PRMT5 and serve as lead compounds for future drug development.

  17. Design and optimization of a series of 1-sulfonylpyrazolo[4,3-b]pyridines as selective c-Met inhibitors.

    Science.gov (United States)

    Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang

    2015-03-12

    c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.

  18. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  19. Elaboration of a fragment library hit produces potent and selective aspartate semialdehyde dehydrogenase inhibitors.

    Science.gov (United States)

    Thangavelu, Bharani; Bhansali, Pravin; Viola, Ronald E

    2015-10-15

    Aspartate-β-semialdehyde dehydrogenase (ASADH) lies at the first branch point in the aspartate metabolic pathway which leads to the biosynthesis of several essential amino acids and some important metabolites. This pathway is crucial for many metabolic processes in plants and microbes like bacteria and fungi, but is absent in mammals. Therefore, the key microbial enzymes involved in this pathway are attractive potential targets for development of new antibiotics with novel modes of action. The ASADH enzyme family shares the same substrate binding and active site catalytic groups; however, the enzymes from representative bacterial and fungal species show different inhibition patterns when previously screened against low molecular weight inhibitors identified from fragment library screening. In the present study several approaches, including fragment based drug discovery (FBDD), inhibitor docking, kinetic, and structure-activity relationship (SAR) studies have been used to guide ASADH inhibitor development. Elaboration of a core structure identified by FBDD has led to the synthesis of low micromolar inhibitors of the target enzyme, with high selectivity introduced between the Gram-negative and Gram-positive orthologs of ASADH. This new set of structures open a novel direction for the development of inhibitors against this validated drug-target enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ticlopidine in Its Prodrug Form Is a Selective Inhibitor of Human NTPDase1

    Directory of Open Access Journals (Sweden)

    Joanna Lecka

    2014-01-01

    Full Text Available Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (pathophysiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki=14 μM. Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20% of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.

  1. Discovery of N-(Naphtho[1,2-b]Furan-5-Yl Benzenesulfonamides as Novel Selective Inhibitors of Triple-Negative Breast Cancer (TNBC

    Directory of Open Access Journals (Sweden)

    Ya Chen

    2018-03-01

    Full Text Available Any type of breast cancer not expressing genes of the estrogen receptor (ER, progesterone receptor (PR, or human epidermal growth factor receptor 2 (HER2 is referred to as triple-negative breast cancer (TNBC. Accordingly, TNBCs do not respond to hormonal therapies or medicines targeting the ER, PR, or HER2. Systemic chemotherapy is therefore the only treatment option available today and prognoses remain poor. We report the discovery and characterization of N-(naphtho[1,2-b]furan-5-ylbenzenesulfonamides as selective inhibitors of TNBCs. These inhibitors were identified by virtual screening and inhibited different TNBC cell lines with IC50 values of 2–3 μM. The compounds did not inhibit normal (i.e. MCF-7 and MCF-10A cells in vitro, indicating their selectivity against TNBC cells. Considering the selectivity of these inhibitors for TNBC, these compounds and analogs can serve as a promising starting point for further research on effective TNBC inhibitors.

  2. Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 Expression

    Science.gov (United States)

    Sampaio, André L. F.; Dalli, Jesmond; Brancaleone, Vincenzo; D'Acquisto, Fulvio; Perretti, Mauro; Wheatley, Carmen

    2013-01-01

    Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin's (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation. PMID:23781123

  3. In Utero Exposure to Selective Serotonin Reuptake Inhibitors and Risk for Autism Spectrum Disorder

    Science.gov (United States)

    Gidaya, Nicole B.; Lee, Brian K.; Burstyn, Igor; Yudell, Michael; Mortensen, Erik L.; Newschaffer, Craig J.

    2014-01-01

    We investigated whether there is an association between increased risk for autism spectrum disorders (ASD) and selective serotonin reuptake inhibitors (SSRIs) used during pregnancy. This study used Denmark's health and population registers to obtain information regarding prescription drugs, ASD diagnosis, and health and socioeconomic status. There…

  4. Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes

    NARCIS (Netherlands)

    Berger, Alicia B.; Witte, Martin D.; Denault, Jean-Bernard; Sadaghiani, Amir Masoud; Sexton, Kelly M.B.; Salvesen, Guy S.; Bogyo, Matthew

    2006-01-01

    Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active

  5. A dual-color fluorescence-based platform to identify selective inhibitors of Akt signaling.

    Directory of Open Access Journals (Sweden)

    Aranzazú Rosado

    Full Text Available BACKGROUND: Inhibition of Akt signaling is considered one of the most promising therapeutic strategies for many cancers. However, rational target-orientated approaches to cell based drug screens for anti-cancer agents have historically been compromised by the notorious absence of suitable control cells. METHODOLOGY/PRINCIPAL FINDINGS: In order to address this fundamental problem, we have developed BaFiso, a live-cell screening platform to identify specific inhibitors of this pathway. BaFiso relies on the co-culture of isogenic cell lines that have been engineered to sustain interleukin-3 independent survival of the parental Ba/F3 cells, and that are individually tagged with different fluorescent proteins. Whilst in the first of these two lines cell survival in the absence of IL-3 is dependent on the expression of activated Akt, the cells expressing constitutively-activated Stat5 signaling display IL-3 independent growth and survival in an Akt-independent manner. Small molecules can then be screened in these lines to identify inhibitors that rescue IL-3 dependence. CONCLUSIONS/SIGNIFICANCE: BaFiso measures differential cell survival using multiparametric live cell imaging and permits selective inhibitors of Akt signaling to be identified. BaFiso is a platform technology suitable for the identification of small molecule inhibitors of IL-3 mediated survival signaling.

  6. Are Selective Serotonin Reuptake Inhibitors Safe for Drivers? What is the Evidence?

    OpenAIRE

    Ravera, Silvia; Ramaekers, Johannes G.; de Jong-van den Berg, Lolkje T. W.; de Gier, Johan J.; de Jong-van den Berg, [No Value

    2012-01-01

    Background: Selective serotonin reuptake inhibitors (SSRIs) are widely used medications to treat several psychiatric diseases and, above all, depression. They seem to be as effective as older antidepressants but have a different adverse effect profile. Despite their favorable safety profile, little is known about their influence on traffic safety. Objective: To conduct a literature review to summarize the current evidence on the role of SSRIs in traffic safety, particularly concerning undesir...

  7. Effects of selective phosphodiesterases-4 inhibitors on learning and memory: a review of recent research.

    Science.gov (United States)

    Peng, Sheng; Sun, Haiyan; Zhang, Xiaoqing; Liu, Gongjian; Wang, Guanglei

    2014-09-01

    Phosphodiesterase-4 (PDE-4) regulates the intracellular level of cyclic adenosine monophosphate. Recent studies demonstrated that PDE-4 inhibitors can counteract deficits in long-term memory caused by aging or increased expression of mutant forms of human amyloid precursor proteins, and can influence the process of memory function and cognitive enhancement. Therapeutics, such as ketamine, a drug used in clinical anesthesia, can also cause memory deficits as adverse effects. Targeting PDE-4 with selective inhibitors may offer a novel therapeutic strategy to prevent, slow the progress, and, eventually, treat memory deficits.

  8. Atomoxetine, a selective norepinephrine reuptake inhibitor, improves short-term histological outcomes after hypoxic-ischemic brain injury in the neonatal male rat.

    Science.gov (United States)

    Toshimitsu, Masatake; Kamei, Yoshimasa; Ichinose, Mari; Seyama, Takahiro; Imada, Shinya; Iriyama, Takayuki; Fujii, Tomoyuki

    2018-03-30

    treatment group. To determine the involvement of microglia in the process of neuronal loss by HI insult, we further examined the influence of hypoxia on rat primary cultured microglia by the quantitative real-time polymerase chain reaction. Hypoxia did not cause the upregulation of interleukin-1beta (IL-1β) mRNA expression, but decreased the microglial intrinsic nitric oxide synthase (iNOS)/arginase1 mRNA expression ratio. NE treatment further decreased the microglial iNOS/arginase1 mRNA expression ratio. In contrast, no significant neuroprotective effect was observed at P14 when atomoxetine was administered at 3 h after HI insult. These findings suggested that the enhancement of intrinsic neurotransmitter NE signaling by a selective NE reuptake inhibitor, atomoxetine, reduced the perinatal HI insult brain injury. In addition, atomoxetine treatment was associated with changes of TUNEL, pCREB, and BDNF expression levels, and microglial numbers, morphology, and responses. Copyright © 2018. Published by Elsevier Ltd.

  9. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  11. Design of Highly Potent Urea-Based, Exosite-Binding Inhibitors Selective for Glutamate Carboxypeptidase II

    Czech Academy of Sciences Publication Activity Database

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-01-01

    Roč. 58, č. 10 (2015), s. 4357-4363 ISSN 0022-2623 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : GCPII selective inhibitors * GCPIII * GCPII Subject RIV: CE - Biochemistry Impact factor: 5.589, year: 2015

  12. Celecoxib versus a non-selective NSAID plus proton-pump inhibitor: what are the considerations?.

    Science.gov (United States)

    Chen, Judy T; Pucino, Frank; Resman-Targoff, Beth H

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used worldwide. However, associated adverse gastrointestinal effects (NSAID gastropathy) such as bleeding, perforation and obstruction result in considerable morbidity, mortality, and expense. Although it is essential to employ gastroprotective strategies to minimize these complications in patients at risk, controversy remains on whether celecoxib alone or a non-selective NSAID in conjunction with a proton-pump inhibitor (PPI) is a superior choice. Recent concerns regarding potential cardiovascular toxicities associated with cox-2 selective inhibitors may favor non-selective NSAID/PPI co-therapy as the preferred choice. Concomitant use of low-dose aspirin with any NSAID increases the risk of gastrointestinal complications and diminishes the improved gastrointestinal safety profile of celecoxib; whereas use of ibuprofen plus PPI regimens may negate aspirin's antiplatelet benefits. Evidence shows that concurrent use of a non-selective NSAID (such as naproxen) plus a PPI is as effective in preventing NSAID gastropathy as celecoxib, and may be more cost-effective. Patients failing or intolerant to this therapy would be candidates for celecoxib at the lowest effective dose for the shortest duration of time. Potential benefits from using low-dose celecoxib with a PPI in patients previously experiencing bleeding ulcers while taking NSAIDs remains to be proven. An evidence-based debate is presented to assist clinicians with the difficult decision-making process of preventing NSAID gastropathy while minimizing other complications.

  13. Macrophages activate iNOS signaling in adventitial fibroblasts and contribute to adventitia fibrosis.

    Science.gov (United States)

    Zhang, Guannan; Li, Xiaodong; Sheng, Chengyu; Chen, Xiaohui; Chen, Yu; Zhu, Dingliang; Gao, Pingjin

    2016-12-30

    A large amount of NO is generated through the inducible nitric oxide synthase (iNOS) pathway from the vascular adventitia in various vascular diseases. However, it is currently not fully understood how the iNOS signaling pathway is activated. In the present study, this question was addressed in the context of adventitial cellular interactions. A rat model of acute hypertension in the contralateral carotid arteries was established through transverse aortic constriction (TAC) surgery. In this model, activated macrophages were found surrounded by a large quantity of iNOS-expressing adventitial fibroblasts (AFs), suggesting a possible causal relationship between macrophages and iNOS activation of the neighboring AFs. In an in vitro model, a macrophage-like cell line RAW 264.7 was first activated by LPS treatment. The supernatant was then harvested and applied to treat primary rat AFs. iNOS in AFs was activated robustly by the supernatant treatment but not by LPS itself. Treating AFs with interleukin-1β (IL-1β) also activated iNOS signaling, suggesting that the IL-1β pathway might be a possible mediator. As a consequence of the iNOS activation, total protein nitration and S-nitrosylation significantly increased in those AFs. Additionally, increased deposition of type I and type III collagens was observed in both in vitro and in vivo models. The collagen deposition was partially restored by an iNOS inhibitor, 1400 W. These findings highlight the importance of iNOS signaling during vascular inflammation, and advance our understanding of its activation through a cellular interaction perspective. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.

    Science.gov (United States)

    Kirkby, Nicholas S; Tesfai, Abel; Ahmetaj-Shala, Blerina; Gashaw, Hime H; Sampaio, Walkyria; Etelvino, Gisele; Leão, Nádia Miricéia; Santos, Robson A; Mitchell, Jane A

    2016-12-01

    Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and N G -nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. © The Author(s).

  15. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells

    Science.gov (United States)

    2012-01-01

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33. PMID:23256033

  16. The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents: A review.

    NARCIS (Netherlands)

    Olivier, J.D.A.; Blom, T.; Arentsen, T.; Homberg, J.R.

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac(R) (fluoxetine) is widely prescribed for the treatment of depression and anxiety-related disorders. While extensive research has established that fluoxetine is safe for adults, safety is not guaranteed for (unborn) children and adolescents.

  17. Effect of proton pump inhibitors on the serum concentrations of the selective serotonin reuptake inhibitors citalopram, escitalopram, and sertraline.

    Science.gov (United States)

    Gjestad, Caroline; Westin, Andreas A; Skogvoll, Eirik; Spigset, Olav

    2015-02-01

    The selective serotonin reuptake inhibitors (SSRIs) citalopram, escitalopram, and sertraline are all metabolized by the cytochrome P-450 isoenzyme CYP2C19, which is inhibited by the proton pump inhibitors (PPIs) omeprazole, esomeprazole, lansoprazole, and pantoprazole. The aim of the present study was to evaluate the effect of these PPIs on the serum concentrations of citalopram, escitalopram, and sertraline. Serum concentrations from patients treated with citalopram, escitalopram, or sertraline were obtained from a routine therapeutic drug monitoring database, and samples from subjects concomitantly using PPIs were identified. Dose-adjusted SSRI serum concentrations were calculated to compare data from those treated and those not treated with PPIs. Citalopram concentrations were significantly higher in patients treated with omeprazole (+35.3%; P Escitalopram concentrations were significantly higher in patients treated with omeprazole (+93.9%; P escitalopram is affected to a greater extent than are citalopram and sertraline. When omeprazole or esomeprazole are used in combination with escitalopram, a 50% dose reduction of the latter should be considered.

  18. Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep.

    Science.gov (United States)

    Drury, Paul P; Davidson, Joanne O; van den Heuij, Lotte G; Tan, Sidhartha; Silverman, Richard B; Ji, Haitao; Blood, Arlin B; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair Jan

    2013-12-01

    Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function. © 2013.

  19. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage

    International Nuclear Information System (INIS)

    Hong, Chang-Won; Lee, Joon-Ho; Kim, Suwan; Noh, Jae Myoung; Kim, Young-Mee; Pyo, Hongryull; Lee, Sunyoung

    2013-01-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N ω -nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N 6 -(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. (author)

  20. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity.

    Science.gov (United States)

    Chen, W; Carvalho, L P D; Chan, M Y; Kini, R M; Kang, T S

    2015-02-01

    Bleeding remains a major limitation of standard anticoagulant drugs that target the extrinsic and common coagulation pathways. Recently, intrinsic coagulation factors are increasingly being investigated as alternative targets for developing anticoagulant drugs with lower bleeding risk. Goals were to (i) identify novel anticoagulants selectively targeting intrinsic coagulation pathway and (ii) characterize and further improve the properties of the identified anticoagulants. We have isolated and sequenced a specific factor XIa (FXIa) inhibitor, henceforth named Fasxiator, from the venom of the banded krait snake, Bungarus fasciatus. It is a Kunitz-type protease inhibitor that prolonged activated partial thromboplastin time without significant effects on prothrombin time. Fasxiator was recombinantly expressed (rFasxiator), purified, and characterized to be a slow-type inhibitor of FXIa that exerts its anticoagulant activities (doubled activated partial thromboplastin time at ~ 3 μmol L(-1) ) by selectively inhibiting human FXIa in in vitro assays. A series of mutants were subsequently generated to improve the potency and selectivity of recombinant rFasxiator. rFasxiatorN17R,L19E showed the best balance between potency (IC50 ~ 1 nmol L(-1) ) and selectivity (> 100 times). rFasxiatorN17R,L19E is a competitive slow-type inhibitor of FXIa (Ki  = 0.86 nmol L(-1) ), possesses anticoagulant activity that is ~ 10 times stronger in human plasma than in murine plasma, and prolonged the occlusion time of mice carotid artery in FeCl3 -induced thrombosis models. We have isolated an exogenous FXIa specific inhibitor, engineered it to improve its potency by ~ 1000 times and demonstrated its in vitro and in vivo efficacy. These proof-of-principle data supported the further development of Fasxiator as a novel anticoagulant candidate. © 2014 International Society on Thrombosis and Haemostasis.

  1. Discovery of the first selective inhibitor of excitatory amino acid transporter subtype 1

    DEFF Research Database (Denmark)

    Jensen, Anders Asbjørn; Erichsen, Mette Navy; Nielsen, Christina Wøhlk

    2009-01-01

    The discovery of the first class of subtype-selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rat orthologue GLAST is reported. An opening structure-activity relationship of 25 analogues is presented that addresses the influence of substitutions at the 4......- and 7-positions of the parental skeleton 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile. The most potent analogue 1o displays high nanomolar inhibitory activity at EAAT1 and a >400-fold selectivity over EAAT2 and EAAT3, making it a highly valuable pharmacological tool....

  2. Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode.

    Science.gov (United States)

    Sawatzky, Edgar; Wehle, Sarah; Kling, Beata; Wendrich, Jan; Bringmann, Gerhard; Sotriffer, Christoph A; Heilmann, Jörg; Decker, Michael

    2016-03-10

    Butyrylcholinesterase (BChE) is a promising target for the treatment of later stage cognitive decline in Alzheimer's disease. A set of pseudo-irreversible BChE inhibitors with high selectivity over hAChE was synthesized based on carbamates attached to tetrahydroquinazoline scaffolds with the 2-thiophenyl compound 2p as the most potent inhibitor of eqBChE (KC = 14.3 nM) and also of hBChE (KC = 19.7 nM). The inhibitors transfer the carbamate moiety onto the active site under release of the phenolic tetrahydroquinazoline scaffolds that themselves act as neuroprotectants. By combination of kinetic data with molecular docking studies, a plausible binding model was probed describing how the tetrahydroquinazoline scaffold guides the carbamate into a close position to the active site. The model explains the influence of the carrier scaffold onto the affinity of an inhibitor just before carbamate transfer. This strategy can be used to utilize the binding mode of other carbamate-based inhibitors.

  3. Microcystin-LR Induces Apoptosis via NF-κB /iNOS Pathway in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Kai Shen

    2011-07-01

    Full Text Available Cyanobacterial toxins, especially the microcystins, are found in eutrophied waters throughout the world, and their potential to impact on human and animal health is a cause for concern. Microcystin-LR (MC-LR is one of the common toxic microcystin congeners and occurs frequently in diverse water systems. Recent work suggested that apoptosis plays a major role in the toxic effects induced by MC-LR in hepatocytes. However, the roles of MC-LR in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of MC-LR on cell apoptosis in the rat insulinoma cell line, INS-1. Our results demonstrated that MC-LR promoted selectively activation of NF-κB (increasing nuclear p50/p65 translocation and increased the mRNA and protein levels of induced nitric oxide synthase (iNOS. The chronic treatment with MC-LR stimulated nitric oxide (NO production derived from iNOS and induced apoptosis in a dose dependent manner in INS-1 cells. Meanwhile, this effect was inhibited by the NF-κB inhibitor PDTC, which reversed the apoptosis induced by MC-LR. Our observations indicate that MC-LR induced cell apoptosis via an iNOS-dependent pathway. A well-known nuclear transcription factor, NF-κB, is activated and mediates intracellular nitric oxide synthesis. We suggest that the apoptosis induced by chronic MC-LR in vivo presents a possible cause of β-cell dysfunction, as a key environmental factor in the development of diabetes mellitus.

  4. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    Science.gov (United States)

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. MGE-derived nNOS+ interneurons promote fear acquisition in nNOS-/- mice.

    Science.gov (United States)

    Zhang, Lin; Yuan, Hong-Jin; Cao, Bo; Kong, Cheng-Cheng; Yuan, Fang; Li, Jun; Ni, Huan-Yu; Wu, Hai-Yin; Chang, Lei; Liu, Yan; Luo, Chun-Xia

    2017-12-02

    Neuronal nitric oxide synthase (nNOS) 1 , mainly responsible for NO release in central nervous system (CNS) 2 , plays a significant role in multiple physiological functions. However, the function of nNOS + interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3 -derived nNOS + interneurons in fear learning. To determine the origin of nNOS + interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4 , caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6 . The results showed that MGE contained the most abundant precursors of nNOS + interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS + interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS + interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS -/- ) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS -/- but not the wild-type mice, suggesting the importance of nNOS + neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS -/- mice or wild-type mice into DG of the nNOS -/- mice and found that only MGE cells from wild-type mice but not the nNOS -/- mice rescued the deficit in acquisition of the nNOS -/- mice, further confirming the positive role of nNOS + neurons in fear learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Helicobacter pylori and risk of upper gastrointestinal bleeding among users of selective serotonin reuptake inhibitors

    DEFF Research Database (Denmark)

    Dall, Michael; Schaffalitzky de Muckadell, Ove B; Møller Hansen, Jane

    2011-01-01

    A number of studies have reported a possible association between use of selective serotonin reuptake inhibitors (SSRIs) and serious upper gastrointestinal bleeding (UGB). We conducted this case-control study to assess if Helicobacter pylori (H. pylori) potentiates the risk of serious UGB in SSRI ...

  7. Effect of sildenafil citrate on interleukin-1β-induced nitric oxide synthesis and iNOS expression in SW982 cells

    Science.gov (United States)

    Kim, Kyung-Ok; Park, Shin-Young; Han, Chang-Woo; Chung, Hyun Kee; Ryu, Dae-Hyun

    2008-01-01

    The purpose of this study was to identify the effect of sildenafil citrate on IL-1β-induced nitric oxide (NO) synthesis and iNOS expression in human synovial sarcoma SW982 cells. IL-1β stimulated the cells to generate NO in both dose- and time-dependent manners. The IL-1β-induced NO synthesis was inhibited by guanylate cyclase (GC) inhibitor, LY83583. When the cells were treated with 8-bromo-cGMP, a hydrolyzable analog of cGMP, NO synthesis was increased upto 5-fold without IL-1β treatment suggesting that cGMP is an essential component for increasing the NO synthesis. Synoviocytes and chondrocytes contain strong cGMP phosphodiesterase (PDE) activity, which has biochemical features of PDE5. When SW982 cells were pretreated with sildenafil citrate (Viagra), a PDE5 specific inhibitor, sildenafil citrate significantly inhibited IL-1β-induced NO synthesis and iNOS expressions. From this result, we noticed that PDE5 activity is required for IL-1β-induced NO synthesis and iNOS expressions in human synovial sarcoma cells, and sildenafil citrate may be able to suppress an inflammatory reaction of synovium through inhibition of NO synthesis and iNOS expression by cytokines. PMID:18587266

  8. Design and Development of a Series of Potent and Selective Type II Inhibitors of CDK8

    Science.gov (United States)

    2016-01-01

    Using Sorafenib as a starting point, a series of potent and selective inhibitors of CDK8 was developed. When cocrystallized with CDK8 and cyclin C, these compounds exhibit a Type-II (DMG-out) binding mode. PMID:27326333

  9. Involvement of PKA-dependent upregulation of nNOS-CGRP in adrenomedullin-initiated mechanistic pathway underlying CFA-induced response in rats.

    Science.gov (United States)

    Wang, Dongmei; Ruan, Liqin; Hong, Yanguo; Chabot, Jean-Guy; Quirion, Rémi

    2013-01-01

    We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn. An intrathecal administration of AM(22-52), but not the CGRP antagonist BIBN4096BS, abolished the CFA-induced increase of nNOS. Moreover, AM-induced increase of CGRP was inhibited by the nNOS inhibitors L-NAME and 7-nitroindazole in cultured ganglion explants. Addition of AM to ganglion cultures induced an increase in nNOS protein, which was attenuated by the PKA inhibitor H-89. Treatment with AM also concentration-dependently increased cAMP content and pPKA protein level, but not its non-phosphorylated form, in cultured ganglia. In addition, nNOS was shown to be co-localized with the AM receptor components calcitonin receptor-like receptor and receptor activity-modifying protein 2- and 3 in DRG neurons. The present study suggests that the enhanced activity of nitric oxide (NO) mediates the biological action of AM at the spinal level and that AM recruits NO-CGRP via cAMP/PKA signaling in a mechanistic pathway underlying CFA-induced hyperalgesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of various nitric oxide synthase inhibitors on AlCl3-induced neuronal injury in rats

    Directory of Open Access Journals (Sweden)

    IVANA STEVANOVIĆ

    2009-05-01

    Full Text Available The present study was aimed at determining the effectiveness of nitric oxide synthase (NOS inhibitors: N-nitro-L-arginine methyl ester, 7-nitroindazole and aminoguanidine in modulating the toxicity of AlCl3 on superoxide production and the malondialdehyde concentration of Wistar rats. The animals were sacrificed 10 min and 3 days after the treatment and the forebrain cortex was removed. The results show that AlCl3 exposure promotes oxidative stress in different neural areas. The biochemical changes observed in the neuronal tissues show that aluminum acts as pro-oxidant, while NOS inhibitors exert an anti-oxidant action in AlCl3-treated animals.

  11. Discovery and optimization of potent and selective imidazopyridine and imidazopyridazine mTOR inhibitors.

    Science.gov (United States)

    Peterson, Emily A; Boezio, Alessandro A; Andrews, Paul S; Boezio, Christiane M; Bush, Tammy L; Cheng, Alan C; Choquette, Deborah; Coats, James R; Colletti, Adria E; Copeland, Katrina W; DuPont, Michelle; Graceffa, Russell; Grubinska, Barbara; Kim, Joseph L; Lewis, Richard T; Liu, Jingzhou; Mullady, Erin L; Potashman, Michele H; Romero, Karina; Shaffer, Paul L; Stanton, Mary K; Stellwagen, John C; Teffera, Yohannes; Yi, Shuyan; Cai, Ti; La, Daniel S

    2012-08-01

    mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series. Copyright © 2012. Published by Elsevier Ltd.

  12. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability.

    Science.gov (United States)

    Zwicker, Jeffery D; Diaz, Nicolas A; Guerra, Alfredo J; Kirchhoff, Paul D; Wen, Bo; Sun, Duxin; Carruthers, Vern B; Larsen, Scott D

    2018-06-01

    The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  14. Discovery of aminofurazan-azabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity.

    Science.gov (United States)

    Stavenger, Robert A; Cui, Haifeng; Dowdell, Sarah E; Franz, Robert G; Gaitanopoulos, Dimitri E; Goodman, Krista B; Hilfiker, Mark A; Ivy, Robert L; Leber, Jack D; Marino, Joseph P; Oh, Hye-Ja; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Zhang, Daohua; Zhao, Yongdong; Jolivette, Larry J; Head, Martha S; Semus, Simon F; Elkins, Patricia A; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Doe, Christopher P; Bentley, Ross; Chen, Zunxuan X; Hu, Erding; Lee, Dennis

    2007-01-11

    The discovery, proposed binding mode, and optimization of a novel class of Rho-kinase inhibitors are presented. Appropriate substitution on the 6-position of the azabenzimidazole core provided subnanomolar enzyme potency in vitro while dramatically improving selectivity over a panel of other kinases. Pharmacokinetic data was obtained for the most potent and selective examples and one (6n) has been shown to lower blood pressure in a rat model of hypertension.

  15. Boro-norleucine as a P1 residue for the design of selective and potent DPP7 inhibitors.

    Science.gov (United States)

    Shreder, Kevin R; Wong, Melissa S; Corral, Sergio; Yu, Zhizhou; Winn, David T; Wu, Min; Hu, Yi; Nomanbhoy, Tyzoon; Alemayehu, Senaiet; Fuller, Stacy R; Rosenblum, Jonathan S; Kozarich, John W

    2005-10-01

    Dipeptide-based inhibitors with C-substituted (alkyl or aminoalkyl) alpha-amino acids in the P2 position and boro-norleucine (boro-Nle) in the P1 position were synthesized. Relative to boro-proline, boro-Nle as a P1 residue was shown able to significantly dial out DPP4, FAP, DPP8, and DPP9 activity. Dab-boro-Nle (4g) proved to be the most selective and potent DPP7 inhibitor with a DPP7 IC50 value of 480 pM.

  16. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  17. Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of specific congenital anomalies

    DEFF Research Database (Denmark)

    Wemakor, Anthony; Casson, Karen; Garne, Ester

    2015-01-01

    Evidence of an association between early pregnancy exposure to selective serotonin reuptake inhibitors (SSRI) and congenital heart defects (CHD) has contributed to recommendations to weigh benefits and risks carefully. The objective of this study was to determine the specificity of association be...

  18. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review

    NARCIS (Netherlands)

    Ruhé, Henricus G.; Huyser, Jochanan; Swinkels, Jan A.; Schene, Aart H.

    2006-01-01

    OBJECTIVE: Selective serotonin reuptake inhibitors (SSRIs) are frequently used as a first antidepressant for major depressive disorder but have response rates of 50% to 60% in daily practice. For patients with insufficient response to SSRIs, switching is often applied. This article aims to

  19. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    International Nuclear Information System (INIS)

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 μg/m 3 of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ∼ 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R 2 = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: → Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. → Examine iNOS expression and activity in the blood vessels and heart. → DE exposure

  20. Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2 inhibitor, in the management of pain and osteoarthritis

    Directory of Open Access Journals (Sweden)

    Piet Geusens

    2008-04-01

    Full Text Available Piet Geusens1, Willem Lems21Department of Internal Medicine, Subdivision of Rheumatology, University Hospital, Maastricht, The Netherlands and Biomedical Research Institute, University Hasselt, Belgium; 2Vrije Universiteit Medical Centre, Department of Rheumatology, Amsterdam, the NetherlandsAbstract: Lumiracoxib is a COX2 inhibitor that is highly selective, is more effective than placebo on pain in osteoarthritis (OA, with similar analgesic and anti-inflammatory effects as non-selective NSAIDs and the selective COX2 inhibitor celecoxib, has a lower incidence of upper gastrointestinal (GI side effects in patients not taking aspirin, and a similar incidence of cardiovascular (CV side effects compared to naproxen or ibuprofen. In the context of earlier guidelines and taking into account the GI and CV safety results of the TARGET study, lumiracoxib had secured European Medicines Agency (EMEA approval with as indication symptomatic treatment of OA as well as short-term management of acute pain associated with primary dysmenorrhea and following orthopedic or dental surgery. In the complex clinical context of efficiency and safety of selective and non-selective COX inhibitors, its prescription and use should be based on the risk and safety profile of the patient. In addition, there is further need for long-term GI and CV safety studies and general post-marketing safety on its use in daily practice. Meanwhile, at the time of submission of this manuscript, the EMEA has withdrawn lumiracoxib throughout Europe because of the risk of serious side effects affecting the liver.Keywords: lumiracoxib, NSAIDs, COX2 inhibitors, gastro-intestinal and cardiovascular safety

  1. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    Science.gov (United States)

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Designing Isoform-selective Inhibitors Against Classical HDACs for Effective Anticancer Therapy: Insight and Perspectives from In Silico.

    Science.gov (United States)

    Ganai, Shabir Ahmad

    2018-01-01

    Histone deacetylase inhibitors, the small molecules modulating the biological activity of histone deacetylases are emerging as potent chemotherapeutic agents. Despite their considerable therapeutic benefits in disease models, the lack of isoform specificity culminates in debilitating off target effects, raising serious concerns regarding their applicability. This emphasizes the pressing and unmet medical need of designing isoform selective inhibitors for safe and effective anticancer therapy. Keeping these grim facts in view, the current article sheds light on structural basis of off-targeting. Furthermore, the article discusses extensively the role of in silico strategies such as Molecular Docking, Molecular Dynamics Simulation and Energetically-optimized structure based pharmacophore approach in designing on-target inhibitors against classical HDACs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. COMPARISON OF SELECTIVE AND NON SELECTIVE CYCLO-OXYGENASE 2 INHIBITORS IN EXPERIMENTAL COLITIS EXACERBATION: role of leukotriene B4 and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    José Wander BREGANÓ

    2014-09-01

    Full Text Available Context Nonsteroidal anti-inflammatory drugs are considered one of the most important causes of reactivation of inflammatory bowel disease. With regard to selective cyclo-oxygenase 2 inhibitors, the results are controversial in experimental colitis as well as in human studies. Objectives The aim this study is to compare nonsteroidal anti-inflammatory drugs effects, selective and non selective cyclo-oxygenase 2 inhibitors, in experimental colitis and contribute to the understanding of the mechanisms which nonsteroidal anti-inflammatory drugs provoke colitis exacerbation. Methods Six groups of rats: without colitis, with colitis, and colitis treated with celecoxib, ketoprofen, indometacin or diclofenac. Survival rates, hemoglobin, plasmatic albumin, colonic tissue of interleukin-1ß, interleukin-6, tumor necrosis factor alpha, prostaglandin E2, catalase, superoxide dismutase, thiobarbituric acid-reactive substances, chemiluminescence induced by tert-butil hydroperoxides, and tissue and plasmatic leukotriene B4 were determined. Results The groups treated with diclofenac or indometacin presented lower survival rates, hemoglobin and albumin, higher tissue and plasmatic leukotriene B4 and tissue superoxide dismutase than the group treated with celecoxib. Ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib, concerning to survival rate and albumin. The groups without colitis, with colitis and with colitis treated with celecoxib showed leukotriene B4 and superoxide dismutase lower levels than the groups treated with nonselective cyclo-oxygenase 2 inhibitors. Conclusions Diclofenac and indometacin presented the highest degree of induced colitis exacerbation with nonsteroidal anti-inflammatory drugs, celecoxib did not show colitis exacerbation, and ketoprofen presented an intermediary behavior between diclofenac/indometacin and celecoxib. These results suggest that leukotriene B4 and superoxide dismutase can be

  4. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    Science.gov (United States)

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Second Generation Grp94-Selective Inhibitors Provide Opportunities for the Inhibition of Metastatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, Vincent M. [Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Dr. Malott 4070 Lawrence KS 66045 USA; Huard, Dustin J. E. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Lieberman, Raquel L. [School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta GA 30332 USA; Blagg, Brian S. J. [Warren Family Research Center for Drug Discovery and Development, and Department of Chemistry & Biochemistry, University of Notre Dame, 305 McCourtney Hall Notre Dame IN 46556 USA

    2017-09-27

    Glucose regulated protein 94 (Grp94) is the endoplasmic reticulum (ER) resident isoform of the 90 kDa heat shock protein (Hsp90) family and its inhibition represents a promising therapeutic target for the treatment of many diseases. Modification of the first generation cis-amide bioisostere imidazole to alter the angle between the resorcinol ring and the benzyl side chain via cis-amide replacements produced compounds with improved Grp94 affinity and selectivity. Structure–activity relationship studies led to the discovery of compound 30, which exhibits 540 nm affinity and 73-fold selectivity towards Grp94. Grp94 is responsible for the maturation and trafficking of proteins associated with cell signaling and motility, including select integrins. The Grp94-selective inhibitor 30 was shown to exhibit potent anti-migratory effects against multiple aggressive and metastatic cancers.

  6. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    Science.gov (United States)

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited

  7. Insight into the mechanism of action and selectivity of caspase-3 reversible inhibitors through in silico studies

    Science.gov (United States)

    Minini, Lucía; Ferraro, Florencia; Cancela, Saira; Merlino, Alicia

    2017-11-01

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide for which there is currently no cure. Recently, caspase-3 has been proposed as a potential therapeutic target for treating AD. Since this enzyme is overexpressed in brains from AD patients its selective modulation by non-covalent inhibitors becomes an interesting strategy in the search of potential drugs against this neuropathology. With this in mind, we have combined molecular docking, molecular dynamics simulations and QM calculations of unliganded caspase-3 and caspase-7 and in complex with a series of known inhibitors of caspase-3 described in the literature in order to assess the structural features responsible for good inhibitory activity and selectivity against this potential target. This work has allowed us to identify hotspots for drug binding as well as the importance of shape and charge distribution for interacting into the substrate binding cleft or into the dimer interface in each enzyme. Our results showed that most selective compounds against caspsase-3 bind into the substrate binding cleft acting as competitive inhibitors whereas in caspase-7 they bind close to an allosteric site at the dimer interface but since they are weakly bound their presence would not be affecting enzyme dynamics or function. In addition, for both enzymes we have found evidence indicating that differences in shape and accessibility exist between the substrate binding site of each monomer which could be modulating the binding affinity of non-covalent molecules.

  8. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    DEFF Research Database (Denmark)

    Lasko, Loren M; Jakob, Clarissa G; Edalji, Rohinton P

    2017-01-01

    -specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft...... to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have...... also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646, lack potency or selectivity. Here, we describe A-485, a potent...

  9. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    Science.gov (United States)

    Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR

  10. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

    Science.gov (United States)

    Wang, Bin; Xu, Ming; Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230

  11. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity.

    Science.gov (United States)

    Liu, Peihong; Du, Yongli; Song, Lianhua; Shen, Jingkang; Li, Qunyi

    2016-08-08

    Protein tyrosine phosphatase 1B (PTP1B) as a key negative regulator of both insulin and leptin receptor pathways has been an attractive therapeutic target for the treatment of type 2 diabetes mellitus (T2DM) and obesity. With the goal of enhancing potency and selectivity of the PTP1B inhibitors, a series of methyl salicylate derivatives as ABC type PTP1B inhibitors (P1-P7) were discovered. More importantly, compound P6 exhibited high potent inhibitory activity (IC50 = 50 nM) for PTP1B with 15-fold selectivity over T-cell PTPase (TCPTP). Further studies on cellular activities revealed that compound P6 could enhance insulin-mediated insulin receptor β (IRβ) phosphorylation and insulin-stimulated glucose uptake. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Conformance to Generic Letter 83-28, Items 3.1.3 and 3.2.3, Beaver Valley, Unit No. 1, North Anna, Unit Nos. 1 and 2, Surry Unit Nos. 1 and 2 (Docket Nos. 50-334, 50-338, 50-339, 50-280, and 50-281)

    International Nuclear Information System (INIS)

    Haroldsen, R.

    1985-09-01

    This report provides a review of the submittals for Beaver Valley, Unit No. 1, North Anna, Unit Nos. 1 and 2, and Surry, Unit Nos. 1 and 2, for conformance to Generic Letter 83-28, Items 3.1.3 and 3.2.3. The specific plants selected were reviewed as a group because of similarity in type and applicability of review items

  13. Maternal use of selective serotonin reuptake inhibitors and risk of miscarriage

    DEFF Research Database (Denmark)

    Johansen, Rie Laurine Rosenthal; Mortensen, Laust Hvas; Andersen, Anne-Marie Nybo

    2015-01-01

    -exposed pregnancies were characterised by an unhealthier maternal lifestyle and mental health profile than unexposed pregnancies, whereas no convincing differences were observed between pregnancies exposed to SSRIs during versus before pregnancy. Substantial disagreement was found between prescriptions and self......BACKGROUND: The use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy has been associated with miscarriage, but the association may be biased by maternal mental illness, lifestyle and exposure misclassification. METHODS: A register study on all pregnancies in Denmark between 1996......-reported use of SSRIs, but it did not affect the estimated hazard ratios. CONCLUSION: Confounding by indication and lifestyle in pregnancy may explain the association between SSRI use and miscarriage....

  14. Potent and Selective Covalent Quinazoline Inhibitors of KRAS G12C

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Mei; Lu, Jia; Li, Lianbo; Feru, Frederic; Quan, Chunshan; Gero, Thomas W.; Ficarro, Scott B.; Xiong, Yuan; Ambrogio, Chiara; Paranal, Raymond M.; Catalano, Marco; Shao, Jay; Wong, Kwok-Kin; Marto, Jarrod A.; Fischer, Eric S.; Jänne, Pasi A.; Scott, David A.; Westover, Kenneth D.; Gray, Nathanael S. (DFCI); (UTSMC); (Harvard-Med); (NYUSM)

    2017-08-01

    Targeted covalent small molecules have shown promise for cancers driven by KRAS G12C. Allosteric compounds that access an inducible pocket formed by movement of a dynamic structural element in KRAS, switch II, have been reported, but these compounds require further optimization to enable their advancement into clinical development. We demonstrate that covalent quinazoline-based switch II pocket (SIIP) compounds effectively suppress GTP loading of KRAS G12C, MAPK phosphorylation, and the growth of cancer cells harboring G12C. Notably we find that adding an amide substituent to the quinazoline scaffold allows additional interactions with KRAS G12C, and remarkably increases the labeling efficiency, potency, and selectivity of KRAS G12C inhibitors. Structural studies using X-ray crystallography reveal a new conformation of SIIP and key interactions made by substituents located at the quinazoline 2-, 4-, and 7-positions. Optimized lead compounds in the quinazoline series selectively inhibit KRAS G12C-dependent signaling and cancer cell growth at sub-micromolar concentrations.

  15. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    Directory of Open Access Journals (Sweden)

    Meirson T

    2017-05-01

    Full Text Available Tomer Meirson, Abraham O Samson, Hava Gil-Henn Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel Abstract: The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2 is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. Keywords: virtual screen, efficiency metrics, MM-GBSA, molecular dynamics

  16. Treatment of Selective Serotonin Reuptake Inhibitor-Resistant Depression in Adolescents: Predictors and Moderators of Treatment Response

    Science.gov (United States)

    Asarnow, Joan Rosenbaum; Emslie, Graham; Clarke, Greg; Wagner, Karen Dineen; Spirito, Anthony; Vitiello, Benedetto; Iyengar, Satish; Shamseddeen, Wael; Ritz, Louise; Birmaher, Boris; Ryan, Neal; Kennard, Betsy; Mayes, Taryn; DeBar, Lynn; McCracken, James; Strober, Michael; Suddath, Robert; Leonard, Henrietta; Porta, Giovanna; Keller, Martin; Brent, David

    2009-01-01

    Adolescents who did not improve with Selective Serotonin Reuptake Inhibitor (SSRI) were provided an alternative SSRI plus cognitive-behavioral therapy (CBT). The superiority of the CBT/combined treatment as compared to medication alone is more evident in youths who had more comorbid disorders, no abuse history, and lower hopelessness.

  17. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors

    International Nuclear Information System (INIS)

    Wong, D.T.; Reid, L.R.; Bymaster, F.P.; Threlkeld, P.G.

    1985-01-01

    Fluoxetine administration to rats dose of 10mg/kg i.p. daily up to 12 or 24 days failed to change the concentration-dependent binding of [ 3 H]WB4101, [ 3 H]clonidine and [ 3 H]dihydroalprenolol to α 1 -, α 2 - and β-adrenergic receptors, respectively; [ 3 H]quinuclidinyl benzilate to muscarinic receptors; [ 3 H]pyrilamine to histamine H 1 receptors and [ 3 H]naloxone to opiate receptors. Persistent and significant decreases in receptor number (Bsub(max) value) without changes in the dissociation constant (Ksub(D) value) of [ 3 H]5-HT binding in cortical membranes were observed upon chronic treatment with fluoxetine administered either by intraperitoneal injection or incorporation in the diet. A detectable reduction of 5-HT 1 receptor number occured after once-daily injections of fluoxetine at 10mg/kg i.p. within 49 hours. After pretreatment for 3 days with p-chlorophenylalanine, an inhibitor of 5-HT synthesis, followed by repeated administration of fluoxetine, 5-HT 1 receptor numbers were higher than those of normal rats, suggesting a dependence on synaptic concentration of 5-HT for fluoxetine to affect a receptor down-regulation. These studies provide further evidence for the selectivity of fluoxetine as an inhibitor of 5-HT reuptake, resulting in a selective down-regulation of 5-HT 1 receptors in the cerebal cortex of rat brain. (Author)

  18. Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis.

    Science.gov (United States)

    Ishikawa, Ken; Calzavacca, Paolo; Bellomo, Rinaldo; Bailey, Michael; May, Clive N

    2012-08-01

    Nitric oxide plays an important role in the control of renal blood flow and renal function. In sepsis, increased levels of inducible nitric oxide synthase produce excessive nitric oxide, which may contribute to the development of acute kidney injury. We, therefore, examined the effects of intrarenal infusion of selective inducible nitric oxide synthase inhibitors in a large animal model of hyperdynamic sepsis in which acute kidney injury occurs in the presence of increased renal blood flow. Prospective crossover randomized controlled interventional studies. University-affiliated research institute. Twelve unilaterally nephrectomized Merino ewes. Infusion of a selective (1400W) and a partially selective inducible nitric oxide synthase inhibitor (aminoguanidine) into the renal artery for 2 hrs after the induction of sepsis, and comparison with a nonselective inhibitor (Nω-nitro-L-arginine methyl ester). In sheep with nonhypotensive hyperdynamic sepsis, creatinine clearance halved (32 to 16 mL/min, ratio [95% confidence interval] 0.51 [0.28-0.92]) despite increased renal blood flow (241 to 343 mL/min, difference [95% confidence interval] 102 [78-126]). Infusion of 1400W did not change renal blood flow, urine output, or creatinine clearance, whereas infusion of Nω-nitro-L-arginine methyl ester and a high dose of aminoguanidine normalized renal blood flow, but did not alter creatinine clearance. In hyperdynamic sepsis, intrarenal infusion of a highly selective inducible nitric oxide synthase inhibitor did not reduce the elevated renal blood flow or improve renal function. In contrast, renal blood flow was reduced by infusion of a nonselective NOS inhibitor or a high dose of a partially selective inducible nitric oxide synthase inhibitor. The renal vasodilatation in septic acute kidney injury may be due to nitric oxide derived from the endothelial and neural isoforms of nitric oxide synthase, but their blockade did not restore renal function.

  19. Discovery of Novel Tricyclic Heterocycles as Potent and Selective DPP-4 Inhibitors for the Treatment of Type 2 Diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Lian; Hao, Jinsong; Domalski, Martin; Burnett, Duane A.; Pissarnitski, Dmitri; Zhao, Zhiqiang; Stamford, Andrew; Scapin, Giovanna; Gao, Ying-Duo; Soriano, Aileen; Kelly, Terri M.; Yao, Zuliang; Powles, Mary Ann; Chen, Shiying; Mei, Hong; Hwa, Joyce (Merck)

    2016-05-12

    In our efforts to develop second generation DPP-4 inhibitors, we endeavored to identify distinct structures with long-acting (once weekly) potential. Taking advantage of X-ray cocrystal structures of sitagliptin and other DPP-4 inhibitors, such as alogliptin and linagliptin bound to DPP-4, and aided by molecular modeling, we designed several series of heterocyclic compounds as initial targets. During their synthesis, an unexpected chemical transformation provided a novel tricyclic scaffold that was beyond our original design. Capitalizing on this serendipitous discovery, we have elaborated this scaffold into a very potent and selective DPP-4 inhibitor lead series, as highlighted by compound 17c.

  20. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  1. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibito...

  2. Maternal use of selective serotonin reuptake inhibitors during pregnancy is associated with Hirschsprung's disease in newborns - a nationwide cohort study

    DEFF Research Database (Denmark)

    Nielsen, Sebastian Werngreen; Møller Ljungdalh, Pernille; Nielsen, Jan

    2017-01-01

    of the association between maternal use of selective serotonin reuptake inhibitors (SSRIs) during pregnancy and development of Hirschsprung's Disease in the newborn child. The study examined a nationwide, unselected cohort of children born in Denmark from 1 January 1996 until 12 March 2016 (n = 1,256,317). We...... of Hirschsprung's disease was 16/19.807 (0.08%) compared to 584/1.236.510 (0.05%) in the unexposed cohort. In women who redeemed a minimum of one prescription of selective serotonin reuptake inhibitors, the adjusted odds ratio for development of Hirschsprung's disease was 1.76 (95%CI: 1.07-2.92). In women who...

  3. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)

    International Nuclear Information System (INIS)

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-01-01

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2 High ) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2 High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-X L -selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2 High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2 Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-X L inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2 Low ) that could benefit from BCL-X L (navitoclax)-driven combination therapy

  4. Development of novel arginase inhibitors for therapy of endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Jochen eSteppan

    2013-09-01

    Full Text Available Endothelial dysfunction and resulting vascular pathology have been identified as an early hallmark of multiple diseases, including diabetes mellitus. One of the major contributors to endothelial dysfunction is a decrease in nitric oxide (NO bioavailability, impaired NO signaling and an increase in the amount of reactive oxygen species (ROS. In the endothelium NO is produced by eNOS (endothelial nitric oxide synthase, for which L-arginine is a substrate. Arginase, an enzyme critical in the urea cycle also metabolizes L-arginine, thereby directly competing with eNOS for their common substrate and constraining its bioavailability for eNOS, thereby compromising NO production. Arginase expression and activity is upregulated in many cardiovascular diseases including ischemia reperfusion injury, hypertension, atherosclerosis, and diabetes mellitus. More importantly, since the 1990s, specific arginase inhibitors such as N-hydroxy-guanidinium or N-hydroxy-nor-L-arginine, and boronic acid derivatives, such as, 2(S-amino-6-boronohexanoic acid, and S-(2-boronoethyl-L-cysteine (BEC, that can bridge the binuclear manganese cluster of arginase have been developed. These highly potent and specific inhibitors can now be used to probe arginase function and thereby modulate the redox milieu of the cell by changing the balance between NO and ROS. Inspired by this success, drug discovery programs have recently led to the identification of α-α-disubstituted amino acid based arginase inhibitors (such as (R-2-amino-6-borono-2-(2-(piperidin-1-ylethylhexanoic acid, that are currently under early investigation as therapeutics. Finally, some investigators concentrate on identification of plant derived compounds with arginase inhibitory capability, such as piceatannol-3'-O-β-D-glucopyranoside (PG. All of these synthesized or naturally derived small molecules may represent novel therapeutics for vascular disease particularly that associated with diabetes.

  5. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    Science.gov (United States)

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of aminoguanidine and albendazole on inducible nitric oxide synthase (iNOS activity in T. spiralis-infected mice muscles

    Directory of Open Access Journals (Sweden)

    Iwona Mozer-Lisewska

    2011-08-01

    Full Text Available The aim of this study was to provide evidence for the expression of iNOS in the cells of inflammatory infiltrates around larvae in skeletal muscles of T. spiralis infected mice. The BALB/c mice (n=8 divided into subgroups, received either aminoguanidine (AMG - a specific iNOS inhibitor or albendazole (ALB - an antiparasitic drug of choice in trichinellosis treatment. Control animals (n=2 in each subgroup were either uninfected and treated or uninfected and untreated. Frozen sections of hind leg muscles from mice sacrificed at various time intervals after infection were cut and subjected to immunohistochemistry, using monoclonal anti-iNOS antibody. The ALB-treated mice revealed stronger iNOS staining in the infiltrating cells around larvae than the infected and untreated animals. On the contrary, in the AMG-treated animals, the infiltrating cells did not show any specific iNOS reaction. These data confirm the specificity of iNOS staining in the cellular infiltrates around T. spiralis larvae and shed some light on the role of nitric oxide during ALB treatment in experimental trichinellosis.

  7. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    Science.gov (United States)

    Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-10-27

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Catecholic amides as potential selective phosphodiesterase 4D inhibitors: Design, synthesis, pharmacological evaluation and structure-activity relationships.

    Science.gov (United States)

    Zhou, Zhong-Zhen; Ge, Bing-Chen; Chen, Yu-Fang; Shi, Xiu-Dong; Yang, Xue-Mei; Xu, Jiang-Ping

    2015-11-15

    In this study, a series of catechol-based amides (8a-n) with different amide linkers linking the catecholic moiety to the terminal phenyl ring was designed and synthesized as potent phosphodiesterase (PDE) 4D inhibitors. The inhibitory activities of these compounds were evaluated against the core catalytic domains of human PDE4 (PDE4CAT), full-length PDE4B1 and PDE4D7 enzymes, and other PDE family members. The results indicated the majority of compounds 8a-n displayed moderate to good inhibitory activities against PDE4CAT. Among these compounds, compound 8 j with a short amide linker (-CONHCH2-) displayed comparable PDE4CAT inhibitory activity (IC50=410 nM) with rolipram. More interestingly, compound 8 g, a potent and selective PDE4D inhibitor (IC50=94 nM), exhibited a 10-fold selectivity over the PDE4B subtypes and an over 1000-fold selectivity against other PDE family members. Docking simulations suggested that 8 g forms three extra H-bonds with the N-H of residue Asn487 and two water molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Use of selective serotonin reuptake inhibitors and risk of re-operation due to post-surgical bleeding in breast cancer patients: a Danish population-based cohort study

    DEFF Research Database (Denmark)

    Gärtner, Rune; Cronin-Fenton, Deirdre; Hundborg, Heidi Holmager

    2010-01-01

    Selective serotonin reuptake inhibitors (SSRI) decrease platelet-function, which suggests that SSRI use may increase the risk of post-surgical bleeding. Few studies have investigated this potential association.......Selective serotonin reuptake inhibitors (SSRI) decrease platelet-function, which suggests that SSRI use may increase the risk of post-surgical bleeding. Few studies have investigated this potential association....

  10. Leveraging the Pre-DFG Residue Thr-406 To Obtain High Kinase Selectivity in an Aminopyrazole-Type PAK1 Inhibitor Series.

    Science.gov (United States)

    Rudolph, Joachim; Aliagas, Ignacio; Crawford, James J; Mathieu, Simon; Lee, Wendy; Chao, Qi; Dong, Ping; Rouge, Lionel; Wang, Weiru; Heise, Christopher; Murray, Lesley J; La, Hank; Liu, Yanzhou; Manning, Gerard; Diederich, François; Hoeflich, Klaus P

    2015-06-11

    To increase kinase selectivity in an aminopyrazole-based PAK1 inhibitor series, analogues were designed to interact with the PAK1 deep-front pocket pre-DFG residue Thr-406, a residue that is hydrophobic in most kinases. This goal was achieved by installing lactam head groups to the aminopyrazole hinge binding moiety. The corresponding analogues represent the most kinase selective ATP-competitive Group I PAK inhibitors described to date. Hydrogen bonding with the Thr-406 side chain was demonstrated by X-ray crystallography, and inhibitory activities, particularly against kinases with hydrophobic pre-DFG residues, were mitigated. Leveraging hydrogen bonding side chain interactions with polar pre-DFG residues is unprecedented, and similar strategies should be applicable to other appropriate kinases.

  11. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    Science.gov (United States)

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    Science.gov (United States)

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  13. Covalent docking of selected boron-based serine beta-lactamase inhibitors

    Science.gov (United States)

    Sgrignani, Jacopo; Novati, Beatrice; Colombo, Giorgio; Grazioso, Giovanni

    2015-05-01

    AmpC β-lactamase is a hydrolytic enzyme conferring resistance to β-lactam antibiotics in multiple Gram-negative bacteria. Therefore, identification of non-β-lactam compounds able to inhibit the enzyme is crucial for the development of novel antibacterial therapies. In general, AmpC inhibitors have to engage the highly solvent-exposed catalytic site of the enzyme. Therefore, understanding the implications of ligand-protein induced-fit and water-mediated interactions behind the inhibitor-enzyme recognition process is fundamental for undertaking structure-based drug design process. Here, we focus on boronic acids, a promising class of beta-lactamase covalent inhibitors. First, we optimized a docking protocol able to reproduce the experimentally determined binding mode of AmpC inhibitors bearing a boronic group. This goal was pursued (1) performing rigid and flexible docking calculations aiming to establish the role of the side chain conformations; and (2) investigating the role of specific water molecules in shaping the enzyme active site and mediating ligand protein interactions. Our calculations showed that some water molecules, conserved in the majority of the considered X-ray structures, are needed to correctly predict the binding pose of known covalent AmpC inhibitors. On this basis, we formalized our findings in a docking and scoring protocol that could be useful for the structure-based design of new boronic acid AmpC inhibitors.

  14. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    Science.gov (United States)

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  15. Understanding the pharmacogenetics of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Fabbri, Chiara; Minarini, Alessandro; Niitsu, Tomihisa; Serretti, Alessandro

    2014-08-01

    The genetic background of antidepressant response represents a unique opportunity to identify biological markers of treatment outcome. Encouraging results alternating with inconsistent findings made antidepressant pharmacogenetics a stimulating but often discouraging field that requires careful discussion about cumulative evidence and methodological issues. The present review discusses both known and less replicated genes that have been implicated in selective serotonin reuptake inhibitors (SSRIs) efficacy and side effects. Candidate genes studies and genome-wide association studies (GWAS) were collected through MEDLINE database search (articles published till January 2014). Further, GWAS signals localized in promising genetic regions according to candidate gene studies are reported in order to assess the general comparability of results obtained through these two types of pharmacogenetic studies. Finally, a pathway enrichment approach is applied to the top genes (those harboring SNPs with p pharmacogenetics, the present review discusses the proposal of moving from the analysis of individual polymorphisms to genes and molecular pathways, and from the separation across different methodological approaches to their combination. Efforts in this direction are justified by the recent evidence of a favorable cost-utility of gene-guided antidepressant treatment.

  16. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    Directory of Open Access Journals (Sweden)

    Debra A. Mayes

    2013-09-01

    Full Text Available Patients with neurofibromatosis type 1 (NF1 and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB developed, implicating a soluble mediator. Nitric oxide (NO can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3 were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that antioxidants may improve some behavioral deficits in Rasopathy patients.

  17. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amanda J. Watson

    2016-05-01

    Full Text Available RET (REarranged during Transfection is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent.   At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR, lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments.   In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series.  Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.

  18. The effect of selective phosphodiesterase inhibitors, alone and in combination, on a murine model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Galbraith Deirdre

    2004-05-01

    Full Text Available Abstract Background The anti-inflammatory effects of the selective phosphodiesterase (PDE inhibitors cilostazol (PDE 3, RO 20-1724 (PDE 4 and sildenafil (PDE 5 were examined in a murine model of allergic asthma. These compounds were used alone and in combination to determine any potential synergism, with dexamethasone included as a positive control. Methods Control and ovalbumin sensitised Balb/C mice were administered orally with each of the possible combinations of drugs at a dose of 3 mg/Kg for 10 days. Results When used alone, RO 20-1724 significantly reduced eosinophil influx into lungs and lowered tumour necrosis factor-α, interleukin-4 and interleukin-5 levels in the bronchoalveolar lavage fluid when compared to untreated mice. Treatment with cilostazol or sildenafil did not significantly inhibit any markers of inflammation measured. Combining any of these PDE inhibitors produced no additive or synergistic effects. Indeed, the anti-inflammatory effects of RO 20-1724 were attenuated by co-administration of either cilostazol or sildenafil. Conclusions These results suggest that concurrent treatment with a PDE 3 and/or PDE 5 inhibitor will reduce the anti-inflammatory effectiveness of a PDE 4 inhibitor.

  19. Novel selective PDE type 1 inhibitors cause vasodilatation and lower blood pressure in rats

    DEFF Research Database (Denmark)

    Laursen, Morten; Beck, Lilliana; Kehler, Jan

    2017-01-01

    BACKGROUND AND PURPOSE: The PDE enzymes (PDE1-11) hydrolyse and thus inactivate cyclic nucleotides and are important in the regulation of the cardiovascular system. Here,we have investigated the effects on the cardiovascular system, of two novel selective PDE1 inhibitors, Lu AF41228 and Lu AF58027...... and Lu AF58027 inhibited PDE1A, PDE1B and PDE1C enzyme activity, while micromolar concentrations were required to observe inhibitory effects at other PDEs. RT-PCR revealed expression of PDE1A, PDE1B and PDE1C in rat brain, heart and aorta, but only PDE1A and PDE1B in mesenteric arteries. In rat isolated...... and Lu AF58027 dose-dependently lowered mean BP and increased heart rate. In conscious rats with telemetric pressure transducers, repeated dosing with Lu AF41228 lowered mean arterial BP 10-15 mmHg and increased heart rate. CONCLUSIONS AND IMPLICATIONS: These novel PDE1 inhibitors induce vasodilation...

  20. An Association Between Selective Serotonin Reuptake Inhibitor Use and Serious Upper Gastrointestinal Bleeding

    DEFF Research Database (Denmark)

    Dall, Michael; Schaffalitzky de Muckadell, Ove B; Lassen, Annmarie Touborg

    2009-01-01

    BACKGROUND & AIMS: In vitro studies have shown that selective serotonin reuptake inhibitors (SSRIs) inhibit platelet aggregation. It is controversial whether use of SSRIs is a cause of clinically important bleeding; results from observational studies have been equivocal. METHODS: A population......-based case-control study was conducted in the county of Funen, Denmark. The 3652 cases all had a first discharge diagnosis of serious upper gastrointestinal bleeding (UGB) from 1995 to 2006. All cases were manually validated. Controls (n = 36,502), matched for age and sex, were selected by risk-set sampling....... Data on drug exposure and medical history were retrieved from a prescription database and the county's patient register. Confounders were controlled for by conditional logistic regression and the case-crossover design. RESULTS: The adjusted odds ratio (OR) of UGB among current, recent, and past users...

  1. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    Science.gov (United States)

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  2. Structure-Based Search for New Inhibitors of Cholinesterases

    Directory of Open Access Journals (Sweden)

    Barbara Malawska

    2013-03-01

    Full Text Available Cholinesterases are important biological targets responsible for regulation of cholinergic transmission, and their inhibitors are used for the treatment of Alzheimer’s disease. To design new cholinesterase inhibitors, of different structure-based design strategies was followed, including the modification of compounds from a previously developed library and a fragment-based design approach. This led to the selection of heterodimeric structures as potential inhibitors. Synthesis and biological evaluation of selected candidates confirmed that the designed compounds were acetylcholinesterase inhibitors with IC50 values in the mid-nanomolar to low micromolar range, and some of them were also butyrylcholinesterase inhibitors.

  3. Intestinal nitric oxide synthase activity changes during experimental colon obstruction.

    Science.gov (United States)

    Palásthy, Zsolt; Kaszaki, József; Lázár, György; Nagy, Sándor; Boros, Mihály

    2006-08-01

    The experiments in this study were designed to follow the time course of nitric oxide (NO) synthesis in the large bowel during acute mechanical ileus. Occlusion of the mid-transverse colon was maintained for 420 min in anesthetized dogs. Strain-gauge transducers were used to analyze motility changes on the hepatic and lienal flexures, respectively. Constitutive NO synthase (cNOS) and inducible NOS (iNOS) activities were determined in tissue biopsies, and plasma nitrite/nitrate (NOx) level was measured in the portal blood. Following completion of the baseline studies, the animals were treated with either 7-nitroindazole (7-NI, selective neuronal NOS inhibitor), or N-nitro-L-arginine (NNA, non-selective NOS inhibitor). In the sham-operated group the cNOS activities differed significantly in the oral and aboral tissue samples (oral: 102.9; versus aboral: 62.1 fmol/mg protein/min). The obstruction elicited a significant increase in portal NOx and elevated tissue inducible NO synthase (iNOS) activity. NNA treatment decreased the motility index in both intestinal segments for 60 min, but 120 min later the motility index was significantly elevated (2.5-fold increase in the oral part, and 1.8-fold enhancement in the aboral segment, respectively). Treatment with 7-NI decreased the cNOS activity in the oral and aboral parts by approximately 40% and 70%, respectively, and suppressed the motility increase in the aboral colon segment. The motility of the colon was either significantly increased or decreased, depending on the type and selectivity of the NOS inhibitor compounds applied. NO of neuronal origin is a transmitter that stimulates peristaltic activity; but an increased iNOS/nNOS ratio significantly moderates the obstruction-induced motility increase.

  4. Rational Design of a Highly Potent and Selective Peptide Inhibitor of PACE4 by Salt Bridge Interaction with D160 at Position P3.

    Science.gov (United States)

    Dianati, Vahid; Shamloo, Azar; Kwiatkowska, Anna; Desjardins, Roxane; Soldera, Armand; Day, Robert; Dory, Yves L

    2017-08-08

    PACE4, a member of the proprotein convertases (PCs) family of serine proteases, is a validated target for prostate cancer. Our group has developed a potent and selective PACE4 inhibitor: Ac-LLLLRVKR-NH 2 . In seeking for modifications to increase the selectivity of this ligand toward PACE4, we replaced one of its P3 Val methyl groups with a basic group capable of forming a salt bridge with D160 of PACE4. The resulting inhibitor is eight times more potent than the P3 Val parent inhibitor and two times more selective over furin, because the equivalent salt bridge with furin E257 is not optimal. Moreover, the β-branched nature of the new P3 residue favors the extended β-sheet conformation usually associated with substrates of proteases. This work provides new insight for better understanding of β-sheet backbone-backbone interactions between serine proteases and their peptidic ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity.

    Science.gov (United States)

    Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S

    1996-08-01

    An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.

  6. Deltamethrin-induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor.

    Science.gov (United States)

    El-Gohary, M; Awara, W M; Nassar, S; Hawas, S

    1999-01-01

    This study is the first to examine and characterize the testicular apoptosis which might be induced due to exposure of male rats to deltamethrin. Furthermore, the role which might be played by nitric oxide (NO), as well as the other reactive oxygen species (ROS) in controlling this testicular apoptosis was assessed. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis and cellular morphology on testicular tissue sections. It was found that administration of deltamethrin (1 mg/kg daily for 21 days) to animals resulted in characteristic DNA migration patterns (laddering), thereby providing evidence that apoptosis is the major mechanism of cell death in the testicular tissues. In addition, histopathological examination of testicular tissue sections showed that apoptosis was confined to the basal germ cells, primary and secondary spermatocytes. These changes, in addition to the appearance of Sertoli cell vacuoles in deltamethrin-intoxicated animals, indicates the suppression of spermatogenesis. At the same time, the plasma levels of both NO and lipid peroxides measured as malondialdehyde (MDA) were found to be significantly increased in deltamethrin-treated animals. Administration of NO synthase (NOS) inhibitors such as N(G)-nitro monomethyl L-arginine hydrochloride (L-NMMA, 1 mg/kg) to rats 2 h before exposure to deltamethrin was effective in the reduction of the typically testicular apoptotic DNA fragmentation pattern and the associated histopathological changes. These findings may suggest that deltamethrin-induced testicular apoptosis is mediated by NO. Therefore, the pharmacological manipulation of apoptosis by selective NOS inhibitors such as L-NMMA may offer new possibilities for the control of deltamethrin-induced testicular dysfunction and infertility in the future.

  7. Flurbiprofen : A non-selective cyclooxygenase (COX) inhibitor for treatment of non-infectious, non-necrotising anterior scleritis

    Science.gov (United States)

    Agrawal, Rupesh; Lee, Cecilia; Gonzalez-Lopez, Julio J.; Khan, Sharmina; Rodrigues, Valeria; Pavesio, Carlos

    2016-01-01

    Objective To analyse the safety and efficacy of a non-selective cyclo-oxygenase (COX) inhibitor in the management of non-infectious, non-necrotising anterior scleritis. Methods Retrospective chart review of 126 patients with non-necrotising anterior scleritis treated with oral flurbiprofen (Froben®(Abbott Healthcare)) with ( group B, n=61) or without topical steroids (group A, n=65) was performed and time to remission was plotted. Results The observed incidence rate was 1.07 (95% CI: 0.57–1.99) per 1000 person-years with failure rate of 0.68 (95% CI: 0.22–2.12) per 1000 person-years in group A and 1.41 (95% CI: 0.67–2.96) per 1000 person-years in group B. The failure rate was 3.97(1.89–9.34) per 1000 person-years with hazard ratio of 10.01 ( 95% CI: 2.52–39.65; p<0.001) for patients with associated systemic disease. Conclusion To our best knowledge, this is the first and largest case series on the safety and efficacy of a non-selective COX inhibitor in the management of anterior scleritis. PMID:26308394

  8. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    Cyclooxygenase-2 (COX-2) inhibitors (coxibs) are non-steroidal anti-inflammatory drugs (NSAIDs) designed to selectively inhibit COX-2. However, drugs of this therapeutic class are associated with drug induced liver injury (DILI) and mitochondrial injury is likely to play a role. The effects...... of selective COX-2 inhibitors on inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria were investigated. The order of potency of inhibition of ATP synthesis was: lumiracoxib (IC50: 6.48 ± 2.74 μM)>celecoxib (IC50: 14.92 ± 6.40 μM)>valdecoxib (IC50: 161.4 ± 28.6 μM)>rofecoxib (IC50...... correlation (with r(2)=0.921) was observed between the potency of inhibition of ATP synthesis and the log P values. The in vitro metabolism of coxibs in rat liver mitochondria yielded for each drug substance a major single metabolite and identified a hydroxy metabolite with each of the coxibs...

  9. Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors.

    Science.gov (United States)

    Sellmer, Andreas; Stangl, Hubert; Beyer, Mandy; Grünstein, Elisabeth; Leonhardt, Michel; Pongratz, Herwig; Eichhorn, Emerich; Elz, Sigurd; Striegl, Birgit; Jenei-Lanzl, Zsuzsa; Dove, Stefan; Straub, Rainer H; Krämer, Oliver H; Mahboobi, Siavosh

    2018-04-26

    Epigenetic modifiers of the histone deacetylase (HDAC) family contribute to autoimmunity, cancer, HIV infection, inflammation, and neurodegeneration. Hence, histone deacetylase inhibitors (HDACi), which alter protein acetylation, gene expression patterns, and cell fate decisions, represent promising new drugs for the therapy of these diseases. Whereas pan-HDACi inhibit all 11 Zn 2+ -dependent histone deacetylases (HDACs) and cause a broad spectrum of side effects, specific inhibitors of histone deacetylase 6 (HDAC6i) are supposed to have less side effects. We present the synthesis and biological evaluation of Marbostats, novel HDAC6i that contain the hydroxamic acid moiety linked to tetrahydro-β-carboline derivatives. Our lead compound Marbostat-100 is a more potent and more selective HDAC6i than previously established well-characterized compounds in vitro as well as in cells. Moreover, Marbostat-100 is well tolerated by mice and effective against collagen type II induced arthritis. Thus, Marbostat-100 represents a most selective known HDAC6i and the possibility for clinical evaluation of a HDAC isoform-specific drug.

  10. A Concise Total Synthesis of (R)-Fluoxetine, a Potent and Selective Serotonin Reuptake Inhibitor

    OpenAIRE

    de Fátima, Ângelo; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A.

    2005-01-01

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (R)-Fluoxetina, um inibidor potente e seletivo da recaptação da serotonina, foi sintetizada em seis etapas, 50% de rendimento total e 99% de excesso enantiomérico a partir do benzaldeído via alilação catalítica assimétrica empregando-se o sistema catalítico desenvolvido por Maruoka e...

  11. The effect of antenatal depression and selective serotonin reuptake inhibitor treatment on nerve growth factor signaling in human placenta

    NARCIS (Netherlands)

    Kaihola, Helena; Olivier, Jocelien; Poromaa, Inger Sundström; Åkerud, Helena

    2015-01-01

    Depressive symptoms during pregnancy are common and may have impact on the developing child. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment, but unfortunately, these treatments can also negatively affect the behavioral development and health of a

  12. Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test.

    Science.gov (United States)

    Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L

    2017-02-01

    Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.

  13. Selectivity criterion for pyrazolo[3,4-b]pyrid[az]ine derivatives as GSK-3 inhibitors: CoMFA and molecular docking studies.

    Science.gov (United States)

    Patel, Dhilon S; Bharatam, Prasad V

    2008-05-01

    In the development of drugs targeted for GSK-3, its selective inhibition is an important requirement owing to the possibility of side effects arising from other kinases for the treatment of diabetes mellitus. A three-dimensional quantitative structure-activity relationship study (3D-QSAR) has been carried out on a set of pyrazolo[3,4-b]pyrid[az]ine derivatives, which includes non-selective and selective GSK-3 inhibitors. The CoMFA models were derived from a training set of 59 molecules. A test set containing 14 molecules (not used in model generation) was used to validate the CoMFA models. The best CoMFA model generated by applying leave-one-out (LOO) cross-validation study gave cross-validation r(cv)(2) and conventional r(conv)(2) values of 0.60 and 0.97, respectively, and r(pred)(2) value of 0.55, which provide the predictive ability of model. The developed models well explain (i) the observed variance in the activity and (ii) structural difference between the selective and non-selective GSK-3 inhibitors. Validation based on the molecular docking has also been carried out to explain the structural differences between the selective and non-selective molecules in the given series of molecules.

  14. Feasibility and dosimetry studies for 18F-NOS as a potential PET radiopharmaceutical for inducible nitric oxide synthase in humans.

    Science.gov (United States)

    Herrero, Pilar; Laforest, Richard; Shoghi, Kooresh; Zhou, Dong; Ewald, Gregory; Pfeifer, John; Duncavage, Eric; Krupp, Kitty; Mach, Robert; Gropler, Robert

    2012-06-01

    Nitric oxide (NO), the end product of the inducible form of NO synthase (iNOS), is an important mediator of a variety of inflammatory diseases. Therefore, a radiolabeled iNOS radiopharmaceutical for assessing iNOS protein concentration as a marker for its activity would be of value to the study and treatment of NO-related diseases. We recently synthesized an (18)F-radiolabeled analog of the reversible NOS inhibitor, 2-amino-4-methylpyridine ((18)F-NOS), and confirmed its utility in a murine model of lung inflammation. To determine its potential for use in humans, we measured (18)F-NOS myocardial activity in patients after orthotopic heart transplantation (OHT) and correlated it with pathologic allograft rejection, tissue iNOS levels, and calculated human radiation dosimetry. Two groups were studied-a kinetic analysis group and a dosimetry group. In the kinetic analysis group, 10 OHT patients underwent dynamic myocardial (18)F-NOS PET/CT, followed by endomyocardial biopsy. Myocardial (18)F-NOS PET was assessed using volume of distribution; standardized uptake values at 10 min; area under the myocardial moment curve (AUMC); and mean resident time at 5, 10, and 30 min after tracer injection. Tissue iNOS levels were measured by immunohistochemistry. In the dosimetry group, the biodistribution and radiation dosimetry were calculated using whole-body PET/CT in 4 healthy volunteers and 12 OHT patients. The combined time-activity curves were used for residence time calculation, and organ doses were calculated with OLINDA. Both AUMC at 10 min (P measurements with acceptable radiation exposure. Although further modifications to improve the performance of (18)F-NOS are needed, these data show the feasibility of PET of iNOS in the heart and other tissues.

  15. Fragment-based drug discovery of potent and selective MKK3/6 inhibitors.

    Science.gov (United States)

    Adams, Mark; Kobayashi, Toshitake; Lawson, J David; Saitoh, Morihisa; Shimokawa, Kenichiro; Bigi, Simone V; Hixon, Mark S; Smith, Christopher R; Tatamiya, Takayuki; Goto, Masayuki; Russo, Joseph; Grimshaw, Charles E; Swann, Steven

    2016-02-01

    The MAPK signaling cascade, comprised of several linear and intersecting pathways, propagates signaling into the nucleus resulting in cytokine and chemokine release. The Map Kinase Kinase isoforms 3 and 6 (MKK3 and MKK6) are responsible for the phosphorylation and activation of p38, and are hypothesized to play a key role in regulating this pathway without the redundancy seen in downstream effectors. Using FBDD, we have discovered efficient and selective inhibitors of MKK3 and MKK6 that can serve as tool molecules to help further understand the role of these kinases in MAPK signaling, and the potential impact of inhibiting kinases upstream of p38. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  17. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Science.gov (United States)

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  18. Orthodontic force stimulates eNOS and iNOS in rat osteocytes

    NARCIS (Netherlands)

    Tan, S.D.; Xie, R.; Klein Nulend, J.; van Rheden, R.E.; Bronckers, A.L.J.J.; Kuijpers-Jagtman, A.M.; Von den Hoff, J.W.; Maltha, J.C.

    2009-01-01

    Mechanosensitive osteocytes are essential for bone remodeling. Nitric oxide, an important regulator of bone remodeling, is produced by osteocytes through the activity of constitutive endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS). We hypothesized that these

  19. Orthodontic force stimulates eNOS and iNOS in rat osteocytes.

    NARCIS (Netherlands)

    Tan, S.D.; Xie, R.; Klein-Nulend, J.; Rheden, R.E.M. van; Bronckers, A.L.; Kuijpers-Jagtman, A.M.; Hoff, J.W. Von den; Maltha, J.C.

    2009-01-01

    Mechanosensitive osteocytes are essential for bone remodeling. Nitric oxide, an important regulator of bone remodeling, is produced by osteocytes through the activity of constitutive endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS). We hypothesized that these

  20. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    Science.gov (United States)

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  1. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.

    Science.gov (United States)

    Jain, Swati; Sharma, Bhupesh

    2015-12-01

    Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of nitric oxide synthesis inhibitor or fluoxetine treatment on depression-like state and cardiovascular changes induced by chronic variable stress in rats.

    Science.gov (United States)

    Almeida, Jeferson; Duarte, Josiane O; Oliveira, Leandro A; Crestani, Carlos C

    2015-01-01

    Comorbidity between mood disorders and cardiovascular disease has been described extensively. However, available antidepressants can have cardiovascular side effects. Treatment with selective inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant effects, but whether the antidepressant-like effects of these drugs are followed by cardiovascular changes has not been previously investigated. Here, we tested in male rats exposed to chronic variable stress (CVS) the hypothesis that nNOS blockers are advantageous compared with conventional antidepressants in terms of cardiovascular side effects. We compared the effects of chronic treatment with the preferential nNOS inhibitor 7-nitroindazole (7-NI) with those evoked by the conventional antidepressant fluoxetine on alterations that are considered as markers of depression (immobility in the forced swimming test, FST, decreased body weight gain and increased plasma corticosterone concentration) and cardiovascular changes caused by CVS. Rats were exposed to a 14-day CVS protocol, while being concurrently treated daily with either 7-NI (30 mg/kg) or fluoxetine (10 mg/kg). Fluoxetine and 7-NI prevented the increase in immobility in the FST induced by CVS and reduced plasma corticosterone concentration in stressed rats. Both these treatments also prevented the CVS-evoked reduction of the depressor response to vasodilator agents and baroreflex changes. Fluoxetine and 7-NI-induced cardiovascular changes independent of stress exposure, including cardiac autonomic imbalance, increased intrinsic heart rate and vascular sympathetic modulation, a reduction of the pressor response to vasoconstrictor agents, and impairment of baroreflex activity. Altogether, these findings provide evidence that fluoxetine and 7-NI have similar effects on the depression-like state induced by CVS and on cardiovascular function.

  3. Population structure from NOS genes correlates with geographical differences in coronary incidence across Europe.

    Science.gov (United States)

    Carreras-Torres, Robert; Ferran, Albert; Zanetti, Daniela; Esteban, Esther; Varesi, Laurent; Pojskic, Naris; Coia, Valentina; Chaabani, Hassen; Via, Marc; Moral, Pedro

    2016-12-01

    The population analysis of cardiovascular risk and non-risk genetic variation can help to identify adaptive or random demographic processes that shaped coronary incidence variation across geography. In this study, 114 single nucleotide polymorphisms and 17 tandem repeat polymorphisms from Nitric Oxide Synthases (NOS) regions were analyzed in 1686 individuals from 35 populations from Europe, North Africa, and the Middle East. NOS genes encode for key enzymes on nitric oxide availability, which is involved in several cardiovascular processes. These genetic variations were used to test for selection and to infer the population structure of NOS regions. Moreover, we tested whether the variation in the incidence of coronary events and in the levels of classical risk factors in 11 of these European populations could be explained by the population structure estimates. Our results supported, first, the absence of clear signs of selection for NOS genetic variants associated with cardiovascular diseases, and second, the presence of a continuous genetic pattern of variation across European and North African populations without a Mediterranean barrier for gene flow. Finally, population structure estimates from NOS regions are closely correlated with coronary event rates and classical risk parameters (explaining 39-98%) among European populations. Our results reinforce the hypothesis that genetic bases of cardiovascular diseases and associated complex phenotypes could be geographically shaped by random demographic processes. © 2016 Wiley Periodicals, Inc.

  4. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase.

    Science.gov (United States)

    Wu, Mingyi; Wen, Dandan; Gao, Na; Xiao, Chuang; Yang, Lian; Xu, Li; Lian, Wu; Peng, Wenlie; Jiang, Jianmin; Zhao, Jinhua

    2015-03-06

    Fucosylated chondroitin sulfate (FCS), a structurally unusual glycosaminoglycan, has distinct anticoagulant properties, and is an especially strong inhibitor of the intrinsic factor Xase (anti-Xase). To obtain a highly selective inhibitor of human Xase, we purified six native FCSs with various sulfation patterns, prepared a series of FCS derivatives, and then elucidated the relationship between the structures and the anticoagulant activities of FCSs. FCSs 1-3 containing higher Fuc2S4S exhibit stronger AT-dependent anti-IIa activities, whereas 4-6 containing more Fuc3S4S produce potent HCII-dependent anti-IIa activities. Saccharides containing a minimum of 6-8 trisaccharide units, free carboxyl groups, and full fucosylation of GlcA may be required for potent anti-Xase activity, and approximately six trisaccharide units and partial fucosylation of GlcA may contribute to potent HCII-dependent activity. Decreasing of the molecular weights markedly reduces their AT-dependent anti-IIa activities, and even eliminates human platelet and factor XII activation. Furthermore, in vitro and in vivo studies suggested that fractions of 6-12 kDa may be very promising compounds as putative selective intrinsic Xase inhibitors with antithrombotic action, but without the consequences of major bleeding and factor XII activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    Science.gov (United States)

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  6. [Cyclooxygenase inhibitors and antiplatelet effect of acetylsalicylic acid. selective approach to nonsteroidal anti-inflammatory drugs in cardiological practice].

    Science.gov (United States)

    Lomakin, N V; Gruzdev, A K

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) represent class of medicines which is wide concerning chemical structure and mechanism of action. In the light of contradictory data on efficacy and safety of NSAID in cardiovascular patients selection of most appropriate NSAID (basing on profile of efficacy and safety) in patients receiving continuous therapy with low dose aspirin appears to be a problem. In this paper we discuss peculiarities of drug interaction between cyclooxygenase inhibitors and acetylsalicylic acid, and principles of selection of adequate NSAI.

  7. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    Directory of Open Access Journals (Sweden)

    Mahmoud Alhosin

    Full Text Available The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO. The aim of the present study was to determine whether Concord grape juice (CGJ, which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase, SB 203580 (an inhibitor of p38 MAPK, and SP 600125 (an inhibitor of JNK. Moreover, CGJ induced the formation of reactive oxygen species (ROS in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  8. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia.

    Science.gov (United States)

    Feng, Aiwen; Zhou, Guangrong; Yuan, Xiaoming; Huang, Xinli; Zhang, Zhengyuan; Zhang, Ti

    2013-01-01

    The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS). The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites). LPS not only increased toll-like receptor 4 (TLR4) and peroxisome proliferator-activated receptor gamma (PPARγ) content, but also activated p38 and activating transcription factor 2 (ATF2) and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA) ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I) attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II) ameliorated LPS-elicited TLR4 and PPARγ production, and (III) inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV) prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I) partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II) partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways.

  9. The selectivity and promiscuity of brain-neuroregenerative inhibitors between ROCK1 and ROCK2 isoforms: An integration of SB-QSSR modelling, QM/MM analysis and in vitro kinase assay.

    Science.gov (United States)

    Zhu, L; Yang, Y; Lu, X

    2016-01-01

    The Rho-associated kinases (ROCKs) have long been recognized as an attractive therapeutic target for various neurological diseases; selective inhibition of ROCK1 and ROCK2 isoforms would result in distinct biological effects on neurogenesis, neuroplasticity and neuroregeneration after brain surgery and traumatic brain injury. However, the discovery and design of isoform-selective inhibitors remain a great challenge due to the high conservation and similarity between the kinase domains of ROCK1 and ROCK2. Here, a structure-based quantitative structure-selectivity relationship (SB-QSSR) approach was used to correlate experimentally measured selectivity with the difference in inhibitor binding to the two kinase isoforms. The resulting regression models were examined rigorously through both internal cross-validation and external blind validation; a nonlinear predictor was found to have high fitting stability and strong generalization ability, which was then employed to perform virtual screening against a structurally diverse, drug-like compound library. Consequently, five and seven hits were identified as promising candidates of 1-o-2 and 2-o-1 selective inhibitors, respectively, from which seven purchasable compounds were tested in vitro using a standard kinase assay protocol to determine their inhibitory activity against and selectivity between ROCK1 and ROCK2. The structural basis, energetic property and biological implication underlying inhibitor selectivity and promiscuity were also investigated systematically using a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme.

  10. The enhancement of radiosensitivity by celecoxib, selective cyclooxygenase-2 inhibitor, on human cancer cells expressing differential levels of cyclooxygenase-2

    International Nuclear Information System (INIS)

    Pyo, Hong Ryull; Shin, You Keun; Kim, Hyun Seok; Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    2003-01-01

    To investigate the modulation of radiosensitivity by celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, on cancer cells over- and under-expressing COX-2. A clonogenic radiation survival analysis was performed on A549 human lung and MCF-7 human breast cancer cell lines incubated in both 1 and 10% fetal bovine serum (FBS) containing media. The apoptosis in both cell lines was measured after treatment with radiation and/or celecoxib. Celecoxib enhanced the radiation sensitivity of the A549 cells in the medium containing the 10% FBS, with radiation enhancement ratios of 1.58 and 1.81 respectively, at surviving fractions of 0.1, with 30 μ M and 50 μ M celecoxib. This enhanced radiosensitivity disappeared in the medium containing the 1% FBS. Celecoxib did not change the radiation sensitivity of the MCF-7 cells in either media. The induction of apoptosis by celecoxib and radiation was not synergistic in either cell line. Celecoxib, a selective COX-2 inhibitor, preferentially enhanced the effect of radiation on COX-2 over-expressing cancer cells compared to the cells with a low expression, and this effect disappeared on incubation of the cells during drug treatment in the medium with suboptimal serum concentration. Apoptosis did not appear to be the underlying mechanism of this radiation enhancement effect due to celecoxib on the A549 cells. These findings suggest radiosensitization by a selective COX-2 inhibitor is COX-2 dependent

  11. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    Science.gov (United States)

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Great boast, small roast on effects of selective serotonin reuptake inhibitors

    DEFF Research Database (Denmark)

    Katakam, Kiran Kumar; Sethi, Naqash Javaid; Jakobsen, Janus Christian

    2018-01-01

    Our systematic review in BMC Psychiatry concluded that selective serotonin reuptake inhibitors (SSRIs) compared with placebo significantly increase the risk of serious adverse events (SAEs) in patients with major depression and the potential beneficial effects of SSRIs seem to be outweighed...... by the harms. Hieronymus et al. accused us of methodological inaccuracies and blatant errors. In their post-hoc analysis of our data, they reported that SSRIs only increase the risk of SAEs in elderly and seems safe for non-elderly patients. They also found our review misleading because our efficacy analyses...... were based on the 17-item Hamilton Depression Rating Scale; we included suboptimal SSRI doses; and we missed some 'pivotal trials'. We do not agree with Hieronymus et al. regarding several of the 'errors' they claim that we have made. However, we acknowledge that they have identified minor errors...

  13. Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1' substituents.

    Science.gov (United States)

    Lu, Zhonghui; Ott, Gregory R; Anand, Rajan; Liu, Rui-Qin; Covington, Maryanne B; Vaddi, Krishna; Qian, Mingxin; Newton, Robert C; Christ, David D; Trzaskos, James; Duan, James J-W

    2008-03-15

    Potent and selective inhibitors of tumor necrosis factor-alpha converting enzyme (TACE) were discovered with several new heterocyclic P1' groups in conjunction with cyclic beta-amino hydroxamic acid scaffolds. Among them, the pyrazolopyridine provided the best overall profile when combined with tetrahydropyran beta-amino hydroxamic acid scaffold. Specifically, inhibitor 49 showed IC(50) value of 1 nM against porcine TACE and 170 nM in the suppression of LPS-induced TNF-alpha of human whole blood. Compound 49 also displayed excellent selectivity over a wide panel of MMPs as well as excellent oral bioavailability (F%>90%) in rat n-in-1 PK studies.

  14. The NADPH oxidase inhibitor apocynin induces nitric oxide synthesis via oxidative stress

    International Nuclear Information System (INIS)

    Riganti, Chiara; Costamagna, Costanzo; Doublier, Sophie; Miraglia, Erica; Polimeni, Manuela; Bosia, Amalia; Ghigo, Dario

    2008-01-01

    We have recently shown that apocynin elicits an oxidative stress in N11 mouse glial cells and other cell types. Here we report that apocynin increased the accumulation of nitrite, the stable derivative of nitric oxide (NO), in the extracellular medium of N11 cell cultures, and the NO synthase (NOS) activity in cell lysates. The increased synthesis of NO was associated with increased expression of inducible NOS (iNOS) mRNA, increased nuclear translocation of the redox-sensitive transcription factor NF-κB and decreased intracellular level of its inhibitor IkBα. These effects, accompanied by increased production of H 2 O 2 , were very similar to those observed after incubation with bacterial lipopolysaccharide (LPS) and were inhibited by catalase. These results suggest that apocynin, similarly to LPS, induces increased NO synthesis by eliciting a generation of reactive oxygen species (ROS), which in turn causes NF-κB activation and increased expression of iNOS. Therefore, the increased bioavailability of NO reported in the literature after in vivo or in vitro treatments with apocynin might depend, at least partly, on the drug-elicited induction of iNOS, and not only on the inhibition of NADPH oxidase and the subsequent decreased scavenging of NO by oxidase-derived ROS, as it is often supposed

  15. Systematic Analysis of Time-Series Gene Expression Data on Tumor Cell-Selective Apoptotic Responses to HDAC Inhibitors

    Directory of Open Access Journals (Sweden)

    Yun-feng Qi

    2014-01-01

    Full Text Available SAHA (suberoylanilide hydroxamic acid or vorinostat is the first nonselective histone deacetylase (HDAC inhibitor approved by the US Food and Drug Administration (FDA. SAHA affects histone acetylation in chromatin and a variety of nonhistone substrates, thus influencing many cellular processes. In particularly, SAHA induces selective apoptosis of tumor cells, although the mechanism is not well understood. A series of microarray experiments was recently conducted to investigate tumor cell-selective proapoptotic transcriptional responses induced by SAHA. Based on that gene expression time series, we propose a novel framework for detailed analysis of the mechanism of tumor cell apoptosis selectively induced by SAHA. Our analyses indicated that SAHA selectively disrupted the DNA damage response, cell cycle, p53 expression, and mitochondrial integrity of tumor samples to induce selective tumor cell apoptosis. Our results suggest a possible regulation network. Our research extends the existing research.

  16. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    Science.gov (United States)

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  17. Synthesis and enzymatic evaluation of 2- and 4-aminothiazole-based inhibitors of neuronal nitric oxide synthase

    Directory of Open Access Journals (Sweden)

    Graham R. Lawton

    2009-06-01

    Full Text Available Highly potent and selective inhibitors of neuronal nitric oxide synthase (nNOS possessing a 2-aminopyridine group were recently designed and synthesized in our laboratory and were shown to have significant in vivo efficacy. In this work, analogs of our lead compound possessing 2- and 4-aminothiazole rings in place of the aminopyridine were synthesized. The less basic aminothiazole rings will be less protonated at physiological pH than the aminopyridine ring, and so the molecule will carry a lower net charge. This could lead to an increased ability to cross the blood-brain barrier thereby increasing the in vivo potency of these compounds. The 2-aminothiazole-based compound was less potent than the 2-aminopyridine-based analogue. 4-Aminothiazoles were unstable in water, undergoing tautomerization and hydrolysis to give inactive thiazolones.

  18. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting

    2008-11-01

    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  19. Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors

    International Nuclear Information System (INIS)

    Rossi, Sabrina; Toschi, Luca; Castello, Angelo; Grizzi, Fabio; Mansi, Luigi; Lopci, Egesta

    2017-01-01

    The rapidly evolving knowledge on tumor immunology and the continuous implementation of immunotherapy in cancer have recently led to the FDA and EMA approval of several checkpoint inhibitors as immunotherapic agents in clinical practice. Anti-CTLA-4, anti-PD-1, and anti-PDL-1 antibodies are becoming standard of care in advanced melanoma, as well as in relapsed or metastatic lung and kidney cancer, demonstrating higher and longer response compared to standard chemotherapy. These encouraging results have fostered the evaluation of these antibodies either alone or in combination with other therapies in several dozen clinical trials for the treatment of multiple tumor types. However, not all patients respond to immune checkpoint inhibitors, hence, specific biomarkers are necessary to guide and monitor therapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials, but, to date, no consensus has been reached on whether PD-L1 expression is an ideal marker for response and patient selection; approximately 20-25% of patients will respond to immunotherapy with checkpoint inhibitors despite a negative PD-L1 staining. On the other hand, major issues concern the evaluation of objective response in patients treated with immunotherapy. Pure morphological criteria as commonly used in solid tumors (i.e. RECIST) are not sufficient because change in size is not an early and reliable marker of tumor response to biological therapies. Thus, the scientific community has required a continuous adaptation of immune-related response criteria (irRC) to overcome the problem. In this context, metabolic information and antibody-based imaging with positron emission tomography (PET) have been investigated, providing a powerful approach for an optimal stratification of patients at staging and during the evaluation of the response to therapy. In the present review we provide an overview on the clinical characteristics of patient selection when using imaging

  20. Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Sabrina; Toschi, Luca [Humanitas Clinical and Research Hospital, Medical Oncology, Rozzano (Italy); Castello, Angelo [Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano (Italy); Grizzi, Fabio [Humanitas Clinical and Research Hospital, Immunology and Inflammation, Rozzano (Italy); Mansi, Luigi [Seconda Universita di Napoli, Nuclear Medicine, Naples (Italy); Lopci, Egesta [Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano (Italy); Humanitas Cancer Center, Humanitas Clinical and Research Hospital, Nuclear Medicine, Rozzano, MI (Italy)

    2017-12-15

    The rapidly evolving knowledge on tumor immunology and the continuous implementation of immunotherapy in cancer have recently led to the FDA and EMA approval of several checkpoint inhibitors as immunotherapic agents in clinical practice. Anti-CTLA-4, anti-PD-1, and anti-PDL-1 antibodies are becoming standard of care in advanced melanoma, as well as in relapsed or metastatic lung and kidney cancer, demonstrating higher and longer response compared to standard chemotherapy. These encouraging results have fostered the evaluation of these antibodies either alone or in combination with other therapies in several dozen clinical trials for the treatment of multiple tumor types. However, not all patients respond to immune checkpoint inhibitors, hence, specific biomarkers are necessary to guide and monitor therapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials, but, to date, no consensus has been reached on whether PD-L1 expression is an ideal marker for response and patient selection; approximately 20-25% of patients will respond to immunotherapy with checkpoint inhibitors despite a negative PD-L1 staining. On the other hand, major issues concern the evaluation of objective response in patients treated with immunotherapy. Pure morphological criteria as commonly used in solid tumors (i.e. RECIST) are not sufficient because change in size is not an early and reliable marker of tumor response to biological therapies. Thus, the scientific community has required a continuous adaptation of immune-related response criteria (irRC) to overcome the problem. In this context, metabolic information and antibody-based imaging with positron emission tomography (PET) have been investigated, providing a powerful approach for an optimal stratification of patients at staging and during the evaluation of the response to therapy. In the present review we provide an overview on the clinical characteristics of patient selection when using imaging

  1. Arginase up-regulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.

    Science.gov (United States)

    Grandvuillemin, Isabelle; Buffat, Christophe; Boubred, Farid; Lamy, Edouard; Fromonot, Julien; Charpiot, Philippe; Simoncini, Stephanie; Sabatier, Florence; Dignat-George, Françoise; Peyter, Anne-Christine; Simeoni, Umberto; Yzydorczyk, Catherine

    2018-05-09

    Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the L-Arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LP, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-week-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, eNOS protein content, arginase activity, and superoxide anion production. SBP was not different at 5 weeks, but significantly increased in 8-week-old LP vs. CRTL offspring. In 5-week-old LP vs. CRTL males, endothelium-dependent vasorelaxation was significantly impaired, but restored by pre-incubation with L-Arginine or the arginase inhibitor BEC; NO production was significantly reduced, but restored by L-Arginine pretreatment; total eNOS protein, dimer/monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced, but normalized by pretreatment with the NOS inhibitor L-NNA. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase up-regulation and eNOS uncoupling, which precedes the development of HTN.

  2. A fragment-based approach leading to the discovery of a novel binding site and the selective CK2 inhibitor CAM4066.

    Science.gov (United States)

    De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R

    2017-07-01

    Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  3. Early Neurological Outcome of Young Infants Exposed to Selective Serotonin Reuptake Inhibitors during Pregnancy : Results from the Observational SMOK Study

    NARCIS (Netherlands)

    de Vries, N.K.S.; van der Veere, C.N.; Reijneveld, S.A.; Bos, A.F.

    2013-01-01

    Background: Use of selective serotonin reuptake inhibitors (SSRI) during pregnancy is common while the effect on the infant's neurological outcome is unknown. Our objective was to determine the effects of prenatal SSRI-exposure on the infants' neurological functioning, adjusted for maternal mental

  4. Structural characterization of nonactive site, TrkA-selective kinase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Rickert, Keith; Burlein, Christine; Narayan, Kartik; Bukhtiyarova, Marina; Hurzy, Danielle M.; Stump, Craig A.; Zhang, Xufang; Reid, John; Krasowska-Zoladek, Alicja; Tummala, Srivanya; Shipman, Jennifer M.; Kornienko, Maria; Lemaire, Peter A.; Krosky, Daniel; Heller, Amanda; Achab, Abdelghani; Chamberlin, Chad; Saradjian, Peter; Sauvagnat, Berengere; Yang, Xianshu; Ziebell, Michael R.; Nickbarg, Elliott; Sanders, John M.; Bilodeau, Mark T.; Carroll, Steven S.; Lumb, Kevin J.; Soisson, Stephen M.; Henze, Darrell A.; Cooke, Andrew J. (Merck)

    2016-12-30

    Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of—but adjacent to—the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.

  5. Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia.

    Directory of Open Access Journals (Sweden)

    Aiwen Feng

    Full Text Available The mechanism by which baicalin modulated the expression of inducible nitric oxide synthase (iNOS and nitric oxide (NO in the mucosa of distal ileum was investigated in a rat model of acute endo-toxemia induced by intraperitoneal injection of bacterial lipopolysaccharide (LPS. The experiment demonstrated that LPS upregulated iNOS mRNA and protein expression as well as NO produc-tion (measured as the stable degradation production, nitrites. LPS not only increased toll-like receptor 4 (TLR4 and peroxisome proliferator-activated receptor gamma (PPARγ content, but also activated p38 and activating transcription factor 2 (ATF2 and inactivated PPARγ via phosphorylation. Inhibition of p38 signalling pathway by chemical inhibitor SB202190 and small interfering RNA (siRNA ameliorated LPS-induced iNOS generation, while suppression of PPARγ pathway by SR-202 boosted LPS-elicited iNOS expression. Baicalin treatment (I attenuated LPS-induced iNOS mRNA and protein as well as nitrites generation, and (II ameliorated LPS-elicited TLR4 and PPARγ production, and (III inhibited p38/ATF2 phosphorylation leading to suppression of p38 signalling, and (IV prevented PPARγ from phosphorylation contributing to maintainence of PPARγ bioactivity. However, SR-202 co-treatment (I partially abrogated the inhibitory effect of baicalin on iNOS mRNA expression, and (II partially reversed baicalin-inhibited p38 phosphorylation. In summary, baicalin could ameliorate LPS-induced iNOS and NO overproduction in mucosa of rat terminal ileum via inhibition of p38 signalling cascade and activation of PPARγ pathway. There existed a interplay between the two signalling pathways.

  6. Selective cyclooxygenase-2 inhibitor use and progression of renal function in patients with chronic kidney disease: a single-center retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Kaewput W

    2016-11-01

    Full Text Available Wisit Kaewput,1,2 Preedee Disorn,2 Bancha Satirapoj2 1Department of Military and Community Medicine, Phramongkutklao College of Medicine, 2Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand Background: The use of selective COX-2 (sCOX-2 inhibitors with acute kidney injury, salt water retention, and cardiovascular events have been correlated in subjects with normal kidney function, but sCOX-2 inhibitor use concerning the progression of chronic kidney disease (CKD remains uncertain. Objectives: To determine the progression of renal function and electrolyte abnormalities among CKD patients after using sCOX-2 inhibitors during short- and long-term periods. Methods: The study employed a retrospective cohort design comprising all types of CKD patients with and without sCOX-2 inhibitors (celecoxib and etoricoxib. Data collected included medical data, estimated glomerular filtration rate (eGFR, and serum electrolytes at 3 and 6 months between January 2009 and January 2014. Subjects attended the outpatient clinic and were then followed up until discontinuation of the drugs at years 1 and 2 until May 2016. Results: Ninety-two CKD patients on sCOX-2 inhibitors and 92 CKD patients without sCOX-2 inhibitors were included. The sCOX-2 inhibitor group showed more decline in eGFR than the control group at 3 and 6 months of follow-up (–8.27±9.75 vs –1.64±6.05 mL/min/1.73 m2, P<0.001 and –12.36±6.48 vs –4.31±5.11 mL/min/1.73 m2, P=0.001, respectively and at 1 and 2 years of follow-up after subjects discontinued sCOX-2 (–6.84±10.34 vs –1.61±8.93 mL/min/1.73 m2, P=0.004 and –10.26±10.19 vs –5.12±8.61 mL/min/1.73 m2, P=0.005, respectively. In addition, the sCOX-2 inhibitor group had significantly more increased serum potassium during the study follow-up than the control group. Conclusion: The sCOX-2 inhibitors are associated with an increased risk for rapid eGFR decline and hyperkalemia in both the

  7. Death and dependence: current controversies over the selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Nutt, David J

    2003-12-01

    Recent years have seen a considerable media interest in the adverse effects of the selective serotonin reuptake inhibitors (SSRIs). This has led to claims that these antidepressants may lead to suicide and homicide and that they cause dependence or even addiction. Such claims have caused great concerns to many patients and have confused doctors in both primary care and psychiatric practice. In this article I review the basis of these claims and show that many seem to emerge from the misinterpretation of evidence and the use of imprecise definitions. Although the SSRIs are not free of problems they compare very favourably with other antidepressants and other classes of psychotropic drugs. There is no evidence they are addictive in the formal sense of leading to a drug dependence syndrome. Some suggestions on the way these issues can be more precisely defined and studied in future are given.

  8. A selective phosphodiesterase 10A inhibitor reduces l-dopa-induced dyskinesias in parkinsonian monkeys.

    Science.gov (United States)

    Beck, Goichi; Maehara, Shunsuke; Chang, Phat Ly; Papa, Stella M

    2018-03-06

    Phosphodiesterase 10A is a member of the phosphodiesterase family whose brain expression is restricted to the striatum. Phosphodiesterase 10A regulates cyclic adenosine monophosphate and cyclic guanosine monophosphate, which mediate responses to dopamine receptor activation, and the levels of these cyclic nucleotides are decreased in experimental models of l-dopa-induced dyskinesia. The elevation of cyclic adenosine monophosphate/cyclic guanosine monophosphate levels by phosphodiesterase 10A inhibition may thus be targeted to reduce l-dopa-induced dyskinesia. The present study was aimed at determining the potential antidyskinetic effects of phosphodiesterase 10A inhibitors in a primate model of Parkinson's disease (PD). The experiments performed in this model were also intended to provide translational data for the design of future clinical trials. Five MPTP-treated macaques with advanced parkinsonism and reproducible l-dopa-induced dyskinesia were used. MR1916, a selective phosphodiesterase 10A inhibitor, at doses 0.0015 to 0.05 mg/kg, subcutaneously, or its vehicle (control test) was coadministered with l-dopa methyl ester acutely (predetermined optimal and suboptimal subcutaneous doses) and oral l-dopa chronically as daily treatment for 5 weeks. Standardized scales were used to assess motor disability and l-dopa-induced dyskinesia by blinded examiners. Pharmacokinetics was also examined. MR1916 consistently reduced l-dopa-induced dyskinesia in acute tests of l-dopa optimal and suboptimal doses. Significant effects were present with every MR1916 dose tested, but the most effective was 0.015 mg/kg. None of the MR1916 doses tested affected the antiparkinsonian action of l-dopa at the optimal dose. The anti-l-dopa-induced dyskinesia effect of MR1916 (0.015 mg/kg, subcutaneously) was sustained with chronic administration, indicating that tolerance did not develop over the 5-week treatment. No adverse effects were observed after MR1916 administration acutely or

  9. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    Science.gov (United States)

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  10. Discovery of PF-04620110, a Potent, Selective, and Orally Bioavailable Inhibitor of DGAT-1.

    Science.gov (United States)

    Dow, Robert L; Li, Jian-Cheng; Pence, Michael P; Gibbs, E Michael; LaPerle, Jennifer L; Litchfield, John; Piotrowski, David W; Munchhof, Michael J; Manion, Tara B; Zavadoski, William J; Walker, Gregory S; McPherson, R Kirk; Tapley, Susan; Sugarman, Eliot; Guzman-Perez, Angel; DaSilva-Jardine, Paul

    2011-05-12

    Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies.

  11. Representations of Nature of Science in Selected Histories of Science in

    Science.gov (United States)

    Wei, Bing; Li, Yue; Chen, Bo

    2013-01-01

    This study aimed to examine the representations of nature of science (NOS) in the eight histories of science selected from three series of integrated science textbooks used in junior high school in China. Ten aspects of NOS were adopted in the analytical framework. It was found that NOS had not been well treated in the selected histories of…

  12. The adverse effect of selective cyclooxygenase-2 inhibitor on random skin flap survival in rats.

    Directory of Open Access Journals (Sweden)

    Haiyong Ren

    Full Text Available BACKGROUND: Cyclooxygenase-2(COX-2 inhibitors provide desired analgesic effects after injury or surgery, but evidences suggested they also attenuate wound healing. The study is to investigate the effect of COX-2 inhibitor on random skin flap survival. METHODS: The McFarlane flap model was established in 40 rats and evaluated within two groups, each group gave the same volume of Parecoxib and saline injection for 7 days. The necrotic area of the flap was measured, the specimens of the flap were stained with haematoxylin-eosin(HE for histologic analysis. Immunohistochemical staining was performed to analyse the level of VEGF and COX-2 . RESULTS: 7 days after operation, the flap necrotic area ratio in study group (66.65 ± 2.81% was significantly enlarged than that of the control group(48.81 ± 2.33%(P <0.01. Histological analysis demonstrated angiogenesis with mean vessel density per mm(2 being lower in study group (15.4 ± 4.4 than in control group (27.2 ± 4.1 (P <0.05. To evaluate the expression of COX-2 and VEGF protein in the intermediate area II in the two groups by immunohistochemistry test .The expression of COX-2 in study group was (1022.45 ± 153.1, and in control group was (2638.05 ± 132.2 (P <0.01. The expression of VEGF in the study and control groups were (2779.45 ± 472.0 vs (4938.05 ± 123.6(P <0.01.In the COX-2 inhibitor group, the expressions of COX-2 and VEGF protein were remarkably down-regulated as compared with the control group. CONCLUSION: Selective COX-2 inhibitor had adverse effect on random skin flap survival. Suppression of neovascularization induced by low level of VEGF was supposed to be the biological mechanism.

  13. The phosphodiesterase 3 inhibitor ORG 9935 inhibits oocyte maturation in the naturally selected dominant follicle in rhesus macaques.

    Science.gov (United States)

    Jensen, Jeffrey T; Zelinski, Mary B; Stanley, Jessica E; Fanton, John W; Stouffer, Richard L

    2008-04-01

    The study was conducted to determine whether the phosphodiesterase (PDE) 3 inhibitor ORG 9935 prevents the resumption of meiosis in primate oocytes during natural menstrual cycles. Regularly cycling adult female macaques (n=8) were followed during the follicular phase and then started on a 2-day treatment regimen of human recombinant gonadotropins to control the timing of ovulation. Monkeys received no further treatment (controls) or ORG 9935. Oocytes were recovered by laparoscopic follicle aspiration 27 h after an ovulatory stimulus, cultured in vitro in the absence of inhibitor and inseminated. The primary outcome was the meiotic stage of the oocyte. In six ORG 9935 cycles, five of the recovered oocytes were germinal vesicle (GV)-intact, and one exhibited GV breakdown (GVBD). In contrast, all three oocytes that recovered during control cycles were GVBD (pORG 9935-treated oocytes underwent fertilization compared with 2/3 (67%) from controls. These results demonstrate that ORG 9935 blocks resumption of meiosis in the naturally selected dominant follicle in primates and suggest that PDE3 inhibitors have potential clinical use as contraceptives in women.

  14. The Wonders of Phosphodiesterase‑5 Inhibitors: A Majestic History

    African Journals Online (AJOL)

    A milestone in drug discovery was the selective inhibitors of. PDE‑5 that ... the pharmacotherapeutics of PDE‑5 inhibitors and the majestic history that led to their discovery. ..... including HIV protease inhibitors, ketoconazole, itraconazole,.

  15. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors.

    Science.gov (United States)

    Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig

    2017-02-23

    Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.

  16. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity.

    Science.gov (United States)

    Yu, Yi; Rajapakse, Angana G; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2014-07-18

    Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II(-/-)) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II(-/-) obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which

  17. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fortanet, Jorge Garcia; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.; Chen, Zhouliang; Deng, Zhan; Firestone, Brant; Fekkes, Peter; Fodor, Michelle; Fortin, Pascal D.; Fridrich, Cary; Grunenfelder, Denise; Ho, Samuel; Kang, Zhao B.; Karki, Rajesh; Kato, Mitsunori; Keen, Nick; LaBonte, Laura R.; Larrow, Jay; Lenoir, Francois; Liu, Gang; Liu, Shumei; Lombardo, Franco; Majumdar, Dyuti; Meyer, Matthew J.; Palermo, Mark; Perez, Lawrence; Pu, Minying; Ramsey, Timothy; Sellers, William R.; Shultz, Michael D.; Stams, Travis; Towler, Christopher; Wang, Ping; Williams, Sarah L.; Zhang, Ji-Hu; LaMarche, Matthew J. (Novartis)

    2016-09-08

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.

  18. β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway.

    Science.gov (United States)

    Pereira, Laëtitia; Bare, Dan J; Galice, Samuel; Shannon, Thomas R; Bers, Donald M

    2017-07-01

    Cardiac β-adrenergic receptors (β-AR) and Ca 2+ -Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca 2+ signaling. Elevated diastolic Ca 2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. β-AR activation is known to increase SR Ca 2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this β-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase β-AR induced and CaMKII-dependent SR Ca 2+ leak. Leak was measured as both Ca 2+ spark frequency and tetracaine-induced shifts in SR Ca 2+ , in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked β-AR-induced SR Ca 2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (β-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca 2+ leak. Thus, for β-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca 2+ current and SR Ca 2+ -ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca 2+ leak. This pathway distinction may allow novel SR Ca 2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch. Copyright © 2017 Elsevier Ltd. All

  19. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach.

    Science.gov (United States)

    Nara, Hiroshi; Sato, Kenjiro; Naito, Takako; Mototani, Hideyuki; Oki, Hideyuki; Yamamoto, Yoshio; Kuno, Haruhiko; Santou, Takashi; Kanzaki, Naoyuki; Terauchi, Jun; Uchikawa, Osamu; Kori, Masakuni

    2014-11-13

    Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.

  20. Mechanisms of Acquired Drug Resistance to the HDAC6 Selective Inhibitor Ricolinostat Reveals Rational Drug-Drug Combination with Ibrutinib.

    Science.gov (United States)

    Amengual, Jennifer E; Prabhu, Sathyen A; Lombardo, Maximilian; Zullo, Kelly; Johannet, Paul M; Gonzalez, Yulissa; Scotto, Luigi; Serrano, Xavier Jirau; Wei, Ying; Duong, Jimmy; Nandakumar, Renu; Cremers, Serge; Verma, Akanksha; Elemento, Olivier; O'Connor, Owen A

    2017-06-15

    Purpose: Pan-class I/II histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. ACY-1215 (ricolinostat) is a first-in-class selective HDAC6 inhibitor. To better understand the discrete function of HDAC6 and its role in lymphoma, we developed a lymphoma cell line resistant to ACY-1215. Experimental Design: The diffuse large B-cell lymphoma cell line OCI-Ly10 was exposed to increasing concentrations of ACY-1215 over an extended period of time, leading to the development of a resistant cell line. Gene expression profiling (GEP) was performed to investigate differentially expressed genes. Combination studies of ACY-1215 and ibrutinib were performed in cell lines, primary human lymphoma tissue, and a xenograft mouse model. Results: Systematic incremental increases in drug exposure led to the development of distinct resistant cell lines with IC 50 values 10- to 20-fold greater than that for parental lines. GEP revealed upregulation of MAPK10, HELIOS, HDAC9, and FYN, as well as downregulation of SH3BP5 and LCK. Gene-set enrichment analysis (GSEA) revealed modulation of the BTK pathway. Ibrutinib was found to be synergistic with ACY-1215 in cell lines as well as in 3 primary patient samples of lymphoma. In vivo confirmation of antitumor synergy was demonstrated with a xenograft of DLBCL. Conclusions: The development of this ACY-1215-resistant cell line has provided valuable insights into the mechanistic role of HDAC6 in lymphoma and offered a novel method to identify rational synergistic drug combinations. Translation of these findings to the clinic is underway. Clin Cancer Res; 23(12); 3084-96. ©2016 AACR . ©2016 American Association for Cancer Research.

  1. Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs)

    International Nuclear Information System (INIS)

    Schiff, Rachel; Chamness, Gary C; Brown, Powel H

    2003-01-01

    Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed

  2. Selective serotonin reuptake inhibitors and intraoperative blood pressure.

    Science.gov (United States)

    van Haelst, Ingrid M M; van Klei, Wilton A; Doodeman, Hieronymus J; Kalkman, Cor J; Egberts, Toine C G

    2012-02-01

    The influence of selective serotonin reuptake inhibitors (SSRIs) on blood pressure is poorly understood. We hypothesized that if SSRIs have an influence on blood pressure, this might become manifest in changes in intraoperative blood pressure. We aimed to study the association between perioperative use of SSRIs and changes in intraoperative blood pressure by measuring the occurrence of intraoperative hyper- and hypotension. We conducted a retrospective observational follow-up study among patients who underwent elective primary total hip arthroplasty. The index group included users of SSRIs. The reference group included a random sample (ratio 1:3) of nonusers of an antidepressant agent. The outcome was the occurrence of intraoperative hypo- and hypertensive episodes (number, mean and total duration, and area under the curve (AUC)). The outcome was adjusted for confounding factors using regression techniques. The index group included 20 users of an SSRI. The reference group included 60 nonusers. Users of SSRIs showed fewer intraoperative hypotensive episodes, a shorter mean and total duration, and a smaller AUC when compared to the reference group. After adjustment for confounders, SSRI use was associated with a significantly shorter total duration of hypotension: mean difference of -29.4 min (95% confidence interval (CI) -50.4 to -8.3). Two users of an SSRI and two patients in the reference group had a hypertensive episode. Continuation of treatment with SSRIs before surgery was associated with a briefer duration of intraoperative hypotension.

  3. Structure-Based Drug Design of Novel Potent and Selective Tetrahydropyrazolo[1,5- a ]pyrazines as ATR Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Barsanti, Paul A; Aversa, Robert J.; Jin, Xianming; Pan, Yue; Lu, Yipin; Elling, Robert; Jain, Rama; Knapp, Mark; Lan, Jiong; Lin, Xiaodong; Rudewicz, Patrick; Sim, Janet; Taricani, Lorena; Thomas, George; Xiao, Linda; Yue, Qin (Novartis)

    2015-01-08

    A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit 1 led to a novel series of highly potent and selective tetrahydropyrazolo[1,5-a]pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs. Detailed DMPK studies involving cyanide and GSH as trapping agents during microsomal incubations, in addition to deuterium-labeled compounds as mechanistic probes uncovered the molecular basis for the observed CYP3A4 TDI in the series.

  4. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  5. New Approaches of PARP-1 Inhibitors in Human Lung Cancer Cells and Cancer Stem-Like Cells by Some Selected Anthraquinone-Derived Small Molecules

    Science.gov (United States)

    Yu, Dah-Shyong; Huang, Kuo-Feng; Chou, Shih-Jie; Chen, Tsung-Chih; Lee, Chia-Chung; Chen, Chun-Liang; Chiou, Shih-Hwa; Huang, Hsu-Shan

    2013-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC) and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60) in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy. PMID:23451039

  6. Reduced Airway Hyperresponsiveness by Phosphodiesterase 3 and 4 Inhibitors in Guinea-Pigs

    Directory of Open Access Journals (Sweden)

    Nöella Germain

    1999-01-01

    Full Text Available The aim of the present study was to compare the effects of selective phosphodiesterase (PDE 3, 4 and 5 inhibitors on antigen-induced airway hyperresponsiveness in sensitized guinea-pigs. When the sensitized guinea-pigs were orally pre-treated with the selective PDE4 inhibitor, Ro 20-1724 (30 mg/kg, and studied 48 h after OA, a significant reduction (p<0.01 of the leftward shift of the dose-response curve to ACh was noted, whereas it was ineffective at the lower dose (10 mg/kg. Administration of the selective PDE3 inhibitor, milrinone (30 mg/kg also elicited a significant reduction (p<0.01 of the airway hyperresponsiveness, whereas the PDE5 inhibitor zaprinast (30 mg/kg was ineffective. These results show that both PDE3 and PDE4 inhibitors are able to inhibit the antigen-induced airway hyperresponsiveness in sensitized guinea-pigs and support the potential utility of selective PDE inhibitors in the treatment of asthma.

  7. Exposure to selective serotonin reuptake inhibitors and the risk of congenital malformations

    DEFF Research Database (Denmark)

    Solem, Espen Victor Jimenez; Andersen, Jon Thor Trærup; Petersen, Morten

    2012-01-01

    Objectives:To analyse the relation between selective serotonin reuptake inhibitor (SSRI) use and major congenital malformations, with focus on malformations of the heart. DESIGN: Register-based retrospective nationwide cohort study, using the Danish Medical Birth Registry. SETTING: Denmark...... exposure during pregnancy. RESULTS: The authors identified 848¿786 pregnancies; 4183 were exposed to an SSRI throughout the first trimester and 806 pregnancies paused exposure during pregnancy. Risks of congenital malformations of the heart were similar for pregnancies exposed to an SSRI throughout...... the first trimester, adjusted OR 2.01 (95% CI 1.60 to 2.53), and for pregnancies with paused SSRI treatment during pregnancy, adjusted OR 1.85 (95% CI 1.07 to 3.20), p value for difference: 0.94. The authors found similar increased risks of specific congenital malformations of the heart for the individual...

  8. Design and Synthesis of Novel and Selective Glycine Transporter-1 (GlyT1) Inhibitors with Memory Enhancing Properties.

    Science.gov (United States)

    Santora, Vincent J; Almos, Theresa A; Barido, Richard; Basinger, Jillian; Bellows, Chris L; Bookser, Brett Carder; Breitenbucher, J Guy; Broadbent, Nicola J; Cabebe, Clifford; Chai, Chih-Kun; Chen, Mi; Chow, Stephine; Chung, De Michael; Crickard, Lindsay; Danks, Anne M; Freestone, Graeme; Gitnick, Dany; Gupta, Varsha; Hoffmaster, Christine; Hudson, Andrew R; Kaplan, Alan P; Kennedy, Michael R; Lee, Dong; Limberis, James; Ly, Kiev; Mak, Chi Ching; Masatsugu, Brittany; Morse, Andrew C; Na, Jim; Neul, David; Nikpur, John; Peters, Marco; Petroski, Robert E; Renick, Joel; Sebring, Kristen; Sevidal, Samantha; Tabatabaei, Ali; Wen, Jenny; Yan, Yingzhuo; Yoder, Zachary W; Zook, Douglas

    2018-06-11

    We report here the identification and optimization of a novel series of potent GlyT1 inhibitors. A ligand design campaign that utilized known GlyT1 inhibitors as starting points led to the identification of a novel series of pyrrolo[3,4-c]pyrazoles amides (21-50) with good in vitro potency. Subsequent optimization of physicochemical and in vitro ADME properties produced several compounds with promising pharmacokinetic profiles. In vivo inhibition of GlyT1 was demonstrated for select compounds within this series by measuring the elevation of glycine in the cerebrospinal fluid (CSF) of rats after a single oral dosing of 10 mg/kg. Ultimately, an optimized lead, compound 46, demonstrated in vivo efficacy in a rat Novel Object Recognition (NOR) assay after oral dosing at 0.1, 1, and 3 mg/kg.

  9. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening.

    Science.gov (United States)

    Yang, Ming; Chen, Jialei; Shi, Xiufeng; Xu, Liwen; Xi, Zhijun; You, Lisha; An, Rui; Wang, Xinhong

    2015-10-05

    P-glycoprotein (P-gp) is regarded as an important factor in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) characteristics of drugs and drug candidates. Successful prediction of P-gp inhibitors can thus lead to an improved understanding of the underlying mechanisms of both changes in the pharmacokinetics of drugs and drug-drug interactions. Therefore, there has been considerable interest in the development of in silico modeling of P-gp inhibitors in recent years. Considering that a large number of molecular descriptors are used to characterize diverse structural moleculars, efficient feature selection methods are required to extract the most informative predictors. In this work, we constructed an extensive available data set of 2428 molecules that includes 1518 P-gp inhibitors and 910 P-gp noninhibitors from multiple resources. Importantly, a two-step feature selection approach based on a genetic algorithm and a greedy forward-searching algorithm was employed to select the minimum set of the most informative descriptors that contribute to the prediction of P-gp inhibitors. To determine the best machine learning algorithm, 18 classifiers coupled with the feature selection method were compared. The top three best-performing models (flexible discriminant analysis, support vector machine, and random forest) and their ensemble model using respectively only 3, 9, 7, and 14 descriptors achieve an overall accuracy of 83.2%-86.7% for the training set containing 1040 compounds, an overall accuracy of 82.3%-85.5% for the test set containing 1039 compounds, and a prediction accuracy of 77.4%-79.9% for the external validation set containing 349 compounds. The models were further extensively validated by DrugBank database (1890 compounds). The proposed models are competitive with and in some cases better than other published models in terms of prediction accuracy and minimum number of descriptors. Applicability domain then was addressed

  10. PDE 7 inhibitors: new potential drugs for the therapy of spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Irene Paterniti

    Full Text Available BACKGROUND: Primary traumatic mechanical injury to the spinal cord (SCI causes the death of a number of neurons that to date can neither be recovered nor regenerated. During the last years our group has been involved in the design, synthesis and evaluation of PDE7 inhibitors as new innovative drugs for several neurological disorders. Our working hypothesis is based on two different facts. Firstly, neuroinflammation is modulated by cAMP levels, thus the key role for phosphodiesterases (PDEs, which hydrolyze cAMP, is undoubtedly demonstrated. On the other hand, PDE7 is expressed simultaneously on leukocytes and on the brain, highlighting the potential crucial role of PDE7 as drug target for neuroinflammation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present two chemically diverse families of PDE7 inhibitors, designed using computational techniques such as virtual screening and neuronal networks. We report their biological profile and their efficacy in an experimental SCI model induced by the application of vascular clips (force of 24 g to the dura via a four-level T5-T8 laminectomy. We have selected two candidates, namely S14 and VP1.15, as PDE7 inhibitors. These compounds increase cAMP production both in macrophage and neuronal cell lines. Regarding drug-like properties, compounds were able to cross the blood brain barrier using parallel artificial membranes (PAMPA methodology. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of a range of inflammatory mediators, tissue damage, and apoptosis. Treatment of the mice with S14 and VP1.15, two PDE7 inhibitors, significantly reduced the degree of spinal cord inflammation, tissue injury (histological score, and TNF-α, IL-6, COX-2 and iNOS expression. CONCLUSIONS/SIGNIFICANCE: All these data together led us to propose PDE7 inhibitors, and specifically S14 and VP1.15, as potential drug candidates to be further studied for the treatment of SCI.

  11. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Lampson, Benjamin L; Brown, Jennifer R

    2017-11-01

    The efficacy of the prototypical phosphatidylinositol-3-kinase (PI3K) inhibitor idelalisib for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphoma (iNHL) has led to development of multiple compounds targeting this pathway. Areas Covered: We review the hypothesized therapeutic mechanisms of PI3K inhibitors, including abrogation of B cell receptor signaling, blockade of microenvironmental pro-survival signals, and enhancement of anti-tumor immunity. We examine toxicities of idelalisib, including bacterial infections (possibly secondary to drug-induced neutropenia), opportunistic infections (possibly attributable to on-target inhibition of T cell function), and organ toxicities such as transaminitis and enterocolitis (possibly autoimmune, secondary to on-target inhibition of p110δ in regulatory T cells). We evaluate PI3K inhibitors that have entered trials for the treatment of lymphoma, focusing on agents with selectivity for PI3Kα and PI3Kδ. Expert Opinion: PI3K inhibitors, particularly those that target p110δ, have robust efficacy in the treatment of CLL and iNHL. However, idelalisib has infectious and autoimmune toxicities that limit its use. Outside of trials, idelalisib should be restricted to CLL patients with progression on ibrutinib or iNHL patients with progression on two prior therapies. Whether newer PI3K inhibitors will demonstrate differentiated toxicity profiles in comparable patient populations while retaining efficacy remains to be seen.

  12. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  13. Identification of Atuveciclib (BAY 1143572), the First Highly Selective, Clinical PTEFb/CDK9 Inhibitor for the Treatment of Cancer.

    Science.gov (United States)

    Lücking, Ulrich; Scholz, Arne; Lienau, Philip; Siemeister, Gerhard; Kosemund, Dirk; Bohlmann, Rolf; Briem, Hans; Terebesi, Ildiko; Meyer, Kirstin; Prelle, Katja; Denner, Karsten; Bömer, Ulf; Schäfer, Martina; Eis, Knut; Valencia, Ray; Ince, Stuart; von Nussbaum, Franz; Mumberg, Dominik; Ziegelbauer, Karl; Klebl, Bert; Choidas, Axel; Nussbaumer, Peter; Baumann, Matthias; Schultz-Fademrecht, Carsten; Rühter, Gerd; Eickhoff, Jan; Brands, Michael

    2017-11-08

    Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. An α-Helix-Mimicking 12,13-Helix: Designed α/β/γ-Foldamers as Selective Inhibitors of Protein-Protein Interactions.

    Science.gov (United States)

    Grison, Claire M; Miles, Jennifer A; Robin, Sylvie; Wilson, Andrew J; Aitken, David J

    2016-09-05

    A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein-protein interactions (PPIs). In this work, trans-2-aminocyclobutanecarboxylic acid (tACBC) was used as the key β-amino acid component in the design of α/β/γ-peptides to structurally mimic a native α-helix. Suitably functionalized α/β/γ-peptides assume an α-helix-mimicking 12,13-helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild-type α-peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    Science.gov (United States)

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Tu nos aposte protege

    DEFF Research Database (Denmark)

    Frederiksen, Britta Olrik

    2007-01-01

    Aspirationen af p, t og k i dansk er stedmoderligt behandlet af den gren af den historiske sprogforskning der bygger på skriftligt kildemateriale. Skrivemåden tu nos aposte protege for tu nos ab hoste protege 'bekyt du os mod fjenden' i en tilskrift fra anden halvdel af 1300-tallet i...

  17. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.

    Science.gov (United States)

    Heinzlmeir, Stephanie; Lohse, Jonas; Treiber, Tobias; Kudlinzki, Denis; Linhard, Verena; Gande, Santosh Lakshmi; Sreeramulu, Sridhar; Saxena, Krishna; Liu, Xiaofeng; Wilhelm, Mathias; Schwalbe, Harald; Kuster, Bernhard; Médard, Guillaume

    2017-06-21

    The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neuronal NOS localises to human airway cilia.

    Science.gov (United States)

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Possible role of selective serotonin reuptake inhibitor sertraline on oxidative stress responses.

    Science.gov (United States)

    Battal, D; Yalin, S; Eker, E D; Aktas, A; Sahin, N O; Cebo, M; Berköz, M

    2014-01-01

    The naphthylamine derivative sertraline is a potent and selective inhibitor of serotonin reuptake into presynaptic terminals and the most widely used that has been shown to have both antidepressant and antianxiety effects. In the present study the possible role of sertraline (acute and chronically doses) was evaluated on lipid peroxidation levels and antioxidant enzyme activities in plasma and brain tissues of (10, 40, 80 mg/kg) sertraline treated Wistar albino rats (n=48). Lipid peroxidation levels (MDA) of plasma and brain tissue increased in all acute and chronic sertraline treated rats (p Catalase (CAT) levels of plasma and brain tissue and paraoxonase (PON) levels of plasma decreased (p < 0.05) as compared with vehicle group. Based on the data, it can be concluded that high dose sertraline administration enhances oxidative stress. Therefore, dose adjustment in depression patients seems significant as it may help prevention of further prognosis of the diseases.

  20. The β3 Adrenergic Receptor Agonist BRL37344 Exacerbates Atrial Structural Remodeling Through iNOS Uncoupling in Canine Models of Atrial Fibrillation.

    Science.gov (United States)

    Wang, Xiaobing; Wang, Ruifeng; Liu, Guangzhong; Dong, Jingmei; Zhao, Guanqi; Tian, Jingpu; Sun, Jiayu; Jia, Xiuyue; Wei, Lin; Wang, Yuping; Li, Weimin

    2016-01-01

    The role of the β3-adrenergic receptor (β3-AR) agonist BRL37344 in atrial fibrillation (AF) structural remodeling and the underlying mechanisms as a therapeutic target were investigated. Four groups of dogs were evaluated: sham, pacing, β3-AR agonist BRL37344 (β3-AGO), and β3-AR antagonist L748337 (β3-ANT) groups. Dogs in the pacing, β3-AGO and β3-ANT groups were subjected to rapid atrial pacing for four weeks. Atrial structure and function, AF inducibility and duration, atrial myocyte apoptosis and interstitial fibrosis were assessed. Atrial superoxide anions were evaluated by fluorescence microscopy and colorimetric assays. Cardiac nitrate+nitrite levels were used to assess nitric oxide (NO) production. Protein and mRNA expression of β3-AR, neuronal NO synthase (nNOS), inducible NO synthase (iNOS), endothelial NO synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GCH-1) as well as tetrahydrobiopterin (BH4) levels were measured. β3-AR was up-regulated in AF. Stimulation of β3-AR significantly increased atrial myocyte apoptosis, fibrosis and atrial dilatation, resulting in increased AF induction and prolonged duration. These effects were attenuated by β3-ANT. Moreover, β3-AGO reduced BH4 and NO production and increased superoxide production, which was inhibited by the specific iNOS inhibitor, 1400w β3-AGO also increased iNOS but decreased eNOS and had no effect on nNOS expression in AF. β3-AR stimulation resulted in atrial structural remodeling by increasing iNOS uncoupling and related oxidative stress. β3-AR up-regulation and iNOS uncoupling might be underlying AF therapeutic targets. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Radioprotection of intestinal crypt cells by cox-inhibitors

    International Nuclear Information System (INIS)

    Bisnar, Paul O.; Dones, Rosa Angela S.A.; Serna, Paulene-Ver A.; Deocaris, Chester C.; Guttierez, Kalangitan V.; Deocaris, Custer C.

    2006-01-01

    The regulation of tissue homeostasis in the gastrointestinal epithelium after epithelial injury focuses on the prostaglandins(PGs) as its major mediators. The two cyclooxygenase isoforms, cox-1 and cox-2, catalyze synthesis of PGs. Cox-1 is the predominant cyclooxygenase isoform found in the normal intestine. In contrast, cox-2 is present at low levels in normal intestine but is elevated at sites of inflammation, and in adenomas and carcinomas. To study the effects of various commercially-available cox-inhibitors (Ketorolac: cox-1 selective; Celecoxib: cox-2 selective; and Indocid: cox-1/2 non-selective), we determine mouse crypt epithelial cell fate after genotoxic injury with whole-body gamma-ray exposure at 15 Gy. Intestinal tissues of mice treated with cox-2 inhibitors that showed invariable apoptotic event, however, have increased occurrence of regenerating cells. Our results suggest a potential application of cox-2 selective inhibitors as radioprotective agent for normal cells after radiotherapy. (Author)

  2. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  3. Employing in vitro directed molecular evolution for the selection of α-amylase variant inhibitors with activity toward cotton boll weevil enzyme.

    Science.gov (United States)

    da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima

    2013-09-20

    Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A novel class of small molecule inhibitors of HDAC6.

    Science.gov (United States)

    Inks, Elizabeth S; Josey, Benjamin J; Jesinkey, Sean R; Chou, C James

    2012-02-17

    Histone deacetylases (HDACs) are a family of enzymes that play significant roles in numerous biological processes and diseases. HDACs are best known for their repressive influence on gene transcription through histone deacetylation. Mapping of nonhistone acetylated proteins and acetylation-modifying enzymes involved in various cellular pathways has shown protein acetylation/deacetylation also plays key roles in a variety of cellular processes including RNA splicing, nuclear transport, and cytoskeletal remodeling. Studies of HDACs have accelerated due to the availability of small molecule HDAC inhibitors, most of which contain a canonical hydroxamic acid or benzamide that chelates the metal catalytic site. To increase the pool of unique and novel HDAC inhibitor pharmacophores, a pharmacological active compound screen was performed. Several unique HDAC inhibitor pharmacophores were identified in vitro. One class of novel HDAC inhibitors, with a central naphthoquinone structure, displayed a selective inhibition profile against HDAC6. Here we present the results of a unique class of HDAC6 inhibitors identified using this compound library screen. In addition, we demonstrated that treatment of human acute myeloid leukemia cell line MV4-11 with the selective HDAC6 inhibitors decreases levels of mutant FLT-3 and constitutively active STAT5 and attenuates Erk phosphorylation, all of which are associated with the inhibitor's selective toxicity against leukemia.

  5. Interferon and ribavarin associated depression in hcv patients and role of selective serotonin reuptake inhibitors

    International Nuclear Information System (INIS)

    Bashir, K.; Hussain, C.A.; Amer, K.

    2013-01-01

    Objective: To determine the frequency and severity of depression associated with antiviral therapy of Hepatitis C Virus (HCV) infection and effect of selective serotonin reuptake Inhibitors (SSRIs) to treat these depressive symptoms. Type of Study: Observational Analytical study. Place of Study and Duration: The study was conducted at Psychiatry, Medicine and Pathology department of Combined Military Hospital Sialkot Pakistan from February 2009 to July 2010. Subjects and Methods: All the patients in this study were suffering from HCV infection and were managed with Interferon (3 m.i.u. s/c thrice weekly) and Cap Ribavirin (400 mg bid) for six months. Patients were assessed by Hospital Anxiety and Depression Scale (HADS) - Urdu Version and Beck's Depressive Inventory (BDI) Scores after twelve weeks of antiviral therapy. Depressed patients were managed with selective serotonin reuptake inhibitors (SSRIs) for six weeks and again evaluated on HADS and BDI Scores. Response to SSRIs was defined as complete response, partial response and no response. Results: A total of 105 patients were studied out of which 75 were male and 30 were female with mean age 29.4 years. Out of these 54 (51.43%) patients developed depression and this tendency to develop depression was not related with the age and sex of the patients. The mean HADS and BDI scores before and after treatments with SSRIs were compared for significance and it was quite significant. There was not a single patient who did not show response to SSRIs. Conclusion: Depression is frequently associated with antiviral therapy of HCV RNA viraemia with interferon and SSRIs have proved an effective and safe remedy in these patients. (author)

  6. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish.

    Science.gov (United States)

    McDonald, M Danielle

    2017-07-01

    Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Discovery of (pyridin-4-yl)-2H-tetrazole as a novel scaffold to identify highly selective matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis.

    Science.gov (United States)

    Schnute, Mark E; O'Brien, Patrick M; Nahra, Joe; Morris, Mark; Howard Roark, W; Hanau, Cathleen E; Ruminski, Peter G; Scholten, Jeffrey A; Fletcher, Theresa R; Hamper, Bruce C; Carroll, Jeffery N; Patt, William C; Shieh, Huey S; Collins, Brandon; Pavlovsky, Alexander G; Palmquist, Katherine E; Aston, Karl W; Hitchcock, Jeffrey; Rogers, Michael D; McDonald, Joseph; Johnson, Adam R; Munie, Grace E; Wittwer, Arthur J; Man, Chiu-Fai; Settle, Steven L; Nemirovskiy, Olga; Vickery, Lillian E; Agawal, Arun; Dyer, Richard D; Sunyer, Teresa

    2010-01-15

    Potent, highly selective and orally-bioavailable MMP-13 inhibitors have been identified based upon a (pyridin-4-yl)-2H-tetrazole scaffold. Co-crystal structure analysis revealed that the inhibitors bind at the S(1)(') active site pocket and are not ligands for the catalytic zinc atom. Compound 29b demonstrated reduction of cartilage degradation biomarker (TIINE) levels associated with cartilage protection in a preclinical rat osteoarthritis model. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. The influence of authentic scientific research experiences on teachers' conceptions of the nature of science (NOS) and their NOS teaching practices

    Science.gov (United States)

    Moriarty, Meghan A.

    This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.

  9. Potent selective nonpeptidic inhibitors of human lung tryptase

    OpenAIRE

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting ...

  10. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy

    Directory of Open Access Journals (Sweden)

    Suborov Evgeny V

    2012-06-01

    Full Text Available Abstract Background Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI and enhanced generation of nitric oxide (NO. We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS, which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Methods Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8 keeping VT and FiO2 unchanged, respiratory rate (RR 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8 and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8. We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI and the pulmonary vascular permeability index (PVPI. We measured plasma nitrite/nitrate (NOx levels and examined lung biopsies for lung injury score (LIS. Results Both the injuriously ventilated groups demonstrated a 2–3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Conclusion Inhibition of nNOS improved gas exchange

  11. Inhibitor of neuronal nitric oxide synthase improves gas exchange in ventilator-induced lung injury after pneumonectomy.

    Science.gov (United States)

    Suborov, Evgeny V; Smetkin, Alexey A; Kondratiev, Timofey V; Valkov, Andrey Y; Kuzkov, Vsevolod V; Kirov, Mikhail Y; Bjertnaes, Lars J

    2012-06-21

    Mechanical ventilation with high tidal volumes may cause ventilator-induced lung injury (VILI) and enhanced generation of nitric oxide (NO). We demonstrated in sheep that pneumonectomy followed by injurious ventilation promotes pulmonary edema. We wished both to test the hypothesis that neuronal NOS (nNOS), which is distributed in airway epithelial and neuronal tissues, could be involved in the pathogenesis of VILI and we also aimed at investigating the influence of an inhibitor of nNOS on the course of VILI after pneumonectomy. Anesthetized sheep underwent right pneumonectomy, mechanical ventilation with tidal volumes (VT) of 6 mL/kg and FiO2 0.5, and were subsequently randomized to a protectively ventilated group (PROTV; n = 8) keeping VT and FiO2 unchanged, respiratory rate (RR) 25 inflations/min and PEEP 4 cm H2O for the following 8 hrs; an injuriously ventilated group with VT of 12 mL/kg, zero end-expiratory pressure, and FiO2 and RR unchanged (INJV; n = 8) and a group, which additionally received the inhibitor of nNOS, 7-nitroindazole (NI) 1.0 mg/kg/h intravenously from 2 hours after the commencement of injurious ventilation (INJV + NI; n = 8). We assessed respiratory, hemodynamic and volumetric variables, including both the extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI). We measured plasma nitrite/nitrate (NOx) levels and examined lung biopsies for lung injury score (LIS). Both the injuriously ventilated groups demonstrated a 2-3-fold rise in EVLWI and PVPI, with no significant effects of NI. In the INJV group, gas exchange deteriorated in parallel with emerging respiratory acidosis, but administration of NI antagonized the derangement of oxygenation and the respiratory acidosis significantly. NOx displayed no significant changes and NI exerted no significant effect on LIS in the INJV group. Inhibition of nNOS improved gas exchange, but did not reduce lung water extravasation following

  12. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    Science.gov (United States)

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparative efficacy and safety of selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors in older adults: a network meta-analysis.

    Science.gov (United States)

    Thorlund, Kristian; Druyts, Eric; Wu, Ping; Balijepalli, Chakrapani; Keohane, Denis; Mills, Edward

    2015-05-01

    To establish the comparative efficacy and safety of selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors in older adults using the network meta-analysis approach. Systematic review and network meta-analysis. Individuals aged 60 and older. Data on partial response (defined as at least 50% reduction in depression score from baseline) and safety (dizziness, vertigo, syncope, falls, loss of consciousness) were extracted. A Bayesian network meta-analysis was performed on the efficacy and safety outcomes, and relative risks (RRs) with 95% credible intervals (CrIs) were produced. Fifteen randomized controlled trials were eligible for inclusion in the analysis. Citalopram, escitalopram, paroxetine, duloxetine, venlafaxine, fluoxetine, and sertraline were represented. Reporting on partial response and dizziness was sufficient to conduct a network meta-analysis. Reporting on other outcomes was sparse. For partial response, sertraline (RR=1.28), paroxetine (RR=1.48), and duloxetine (RR=1.62) were significantly better than placebo. The remaining interventions yielded RRs lower than 1.20. For dizziness, duloxetine (RR=3.18) and venlafaxine (RR=2.94) were statistically significantly worse than placebo. Compared with placebo, sertraline had the lowest RR for dizziness (1.14) and fluoxetine the second lowest (1.31). Citalopram, escitalopram, and paroxetine all had RRs between 1.4 and 1.7. There was clear evidence of the effectiveness of sertraline, paroxetine, and duloxetine. There also appears to be a hierarchy of safety associated with the different antidepressants, although there appears to be a dearth of reporting of safety outcomes. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  14. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Modulation of liver mitochondrial NOS is implicated in thyroid-dependent regulation of O(2) uptake.

    Science.gov (United States)

    Carreras, M C; Peralta, J G; Converso, D P; Finocchietto, P V; Rebagliati, I; Zaninovich, A A; Poderoso, J J

    2001-12-01

    Changes in O(2) uptake at different thyroid status have been explained on the basis of the modulation of mitochondrial enzymes and membrane biophysical properties. Regarding the nitric oxide (NO) effects, we tested whether liver mitochondrial nitric oxide synthase (mtNOS) participates in the modulation of O(2) uptake in thyroid disorders. Wistar rats were inoculated with 400 microCi (131)I (hypothyroid group), 20 microg thyroxine (T(4))/100 g body wt administered daily for 2 wk (hyperthyroid group) or vehicle (control). Basal metabolic rate, mitochondrial function, and mtNOS activity were analyzed. Systemic and liver mitochondrial O(2) uptake and cytochrome oxidase activity were lower in hypothyroid rats with respect to controls; mitochondrial parameters were further decreased by L-arginine (-42 and -34%, P activity (260%) were selectively increased in hypothyroidism and reverted by hormone replacement without changes in other nitric oxide isoforms. Moreover, mtNOS activity correlated with serum 3,5,3'-triiodothyronine (T(3)) and O(2) uptake. Increased mtNOS activity was also observed in skeletal muscle mitochondria from hypothyroid rats. Therefore, we suggest that modulation of mtNOS is a substantial part of thyroid effects on mitochondrial O(2) uptake.

  16. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    Science.gov (United States)

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats.

    Science.gov (United States)

    Hong, Yet Hoi; Betik, Andrew C; Premilovac, Dino; Dwyer, Renee M; Keske, Michelle A; Rattigan, Stephen; McConell, Glenn K

    2015-05-15

    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction. Copyright © 2015 the American Physiological Society.

  18. Selective Serotonin Reuptake Inhibitors for Treatment of Selective Mutism

    Directory of Open Access Journals (Sweden)

    Mazlum Çöpür

    2012-03-01

    Full Text Available Some authors suggest that selective mutism should be considered as a variant of social phobia or a disorder in the obsessive-compulsive spectrum. Recent studies indicate that pharmacological treatments may be effective in the treatment of selective mutism. In this article, four cases who were treated with citalopram and escitalopram are presented. The results indicate that the drugs were well tolerated, and the level of social and verbal interactions improved significantly. These findings have shown that citalopram and escitalopram can be considered in medication of selective mutism; nevertheless, it is essential that research be done with more cases than previous ones, in order to prove their accuracy

  19. Pharmacophore Selection and Redesign of Non-nucleotide Inhibitors of Anthrax Edema Factor

    Directory of Open Access Journals (Sweden)

    Maria Estrella Jimenez

    2012-11-01

    Full Text Available Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF, an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin’s basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  20. Pharmacophore selection and redesign of non-nucleotide inhibitors of anthrax edema factor.

    Science.gov (United States)

    Schein, Catherine H; Chen, Deliang; Ma, Lili; Kanalas, John J; Gao, Jian; Jimenez, Maria Estrella; Sower, Laurie E; Walter, Mary A; Gilbertson, Scott R; Peterson, Johnny W

    2012-11-08

    Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin's basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC) in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  1. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release

    Science.gov (United States)

    Estacion, Mark; Turner, Jamie; Mis, Malgorzata A.; Wilbrey, Anna; Payne, Elizabeth C.; Gutteridge, Alex; Cox, Peter J.; Doyle, Rachel; Printzenhoff, David; Lin, Zhixin; Marron, Brian E.; West, Christopher; Swain, Nigel A.; Storer, R. Ian; Stupple, Paul A.; Castle, Neil A.; Hounshell, James A.; Rivara, Mirko; Randall, Andrew; Dib-Hajj, Sulayman D.; Krafte, Douglas; Waxman, Stephen G.; Patel, Manoj K.; Butt, Richard P.; Stevens, Edward B.

    2016-01-01

    Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7’s role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission. PMID:27050761

  2. Subtype-Selective Small Molecule Inhibitors Reveal a Fundamental Role for Nav1.7 in Nociceptor Electrogenesis, Axonal Conduction and Presynaptic Release.

    Directory of Open Access Journals (Sweden)

    Aristos J Alexandrou

    Full Text Available Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7 is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.

  3. Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure

    International Nuclear Information System (INIS)

    Park, June-Woo; Heah, Tze Ping; Gouffon, Julia S.; Henry, Theodore B.; Sayler, Gary S.

    2012-01-01

    Larval zebrafish (Danio rerio) were exposed (96 h) to selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and changes in transcriptomes analyzed by Affymetrix GeneChip ® Zebrafish Array were evaluated to enhance understanding of biochemical pathways and differences between these SSRIs. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 μg/L and 131 at 250 μg/L; and after sertraline exposure was 33 at 25 μg/L and 52 at 250 μg/L. Same five genes were differentially regulated in both SSRIs indicating shared molecular pathways. Among these, the gene coding for FK506 binding protein 5, annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated at the gene expression level that regulation of stress response and cholinesterase activities were influenced by these SSRIs, and suggested that changes in transcription of these genes could be used as biomarkers of SSRI exposure. - Highlights: ► Exposure of zebrafish to selective serotonin reuptake inhibitors (SSRIs). ► Fluoxetine and sertraline generate different global gene expression profiles. ► Genes linked to stress response and acetylcholine esterase affected by both SSRIs. - Global gene expression profiles in zebrafish exposed to selective serotonin reuptake inhibitors.

  4. Ribociclib (LEE011): Mechanism of Action and Clinical Impact of This Selective Cyclin-Dependent Kinase 4/6 Inhibitor in Various Solid Tumors.

    Science.gov (United States)

    Tripathy, Debu; Bardia, Aditya; Sellers, William R

    2017-07-01

    The cyclin D-cyclin-dependent kinase (CDK) 4/6-p16-retinoblastoma (Rb) pathway is commonly disrupted in cancer, leading to abnormal cell proliferation. Therapeutics targeting this pathway have demonstrated antitumor effects in preclinical and clinical studies. Ribociclib is a selective, orally bioavailable inhibitor of CDK4 and CDK6, which received FDA approval in March 2017 and is set to enter the treatment landscape alongside other CDK4/6 inhibitors, including palbociclib and abemaciclib. Here, we describe the mechanism of action of ribociclib and review preclinical and clinical data from phase I, II, and III trials of ribociclib across different tumor types, within the context of other selective CDK4/6 inhibitors. The pharmacokinetics, pharmacodynamics, safety, tolerability, and clinical responses with ribociclib as a single agent or in combination with other therapies are discussed, and an overview of the broad portfolio of ongoing clinical trials with ribociclib across a wide range of indications is presented. On the basis of the available data, ribociclib has a manageable tolerability profile and therapeutic potential for a variety of cancer types. Its high selectivity makes it an important partner drug for other targeted therapies, and it has been shown to enhance the clinical activity of existing anticancer therapies and delay the development of treatment resistance, without markedly increasing toxicity. Ongoing trials of doublet and triplet targeted therapies containing ribociclib seek to identify optimal CDK4/6-based targeted combination regimens for various tumor types and advance the field of precision therapeutics in oncology. Clin Cancer Res; 23(13); 3251-62. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Selective effects of purine and pyrimidine analogues and of respiratory inhibitors on perithecial development and branching in sordaria.

    Science.gov (United States)

    Lindenmayer, A; Schoen, H F

    1967-08-01

    The initiation of perithecia in the homothallic ascomycete Sordaria fimicola was completely suppressed, without seriously inhibiting vegetative growth, by growing the fungus on an agar medium containing one of the following additions: 1) 1 mum 5-fluorouracil, 2) 10 to 100 mum 6-azauracil, 8-azaguanine or 8-azaadenine, 3) 50 to 500 mum cyanide or azide, 4) 5% (w/v) casein hydrolysate. In contrast to the selective activity of the analogues of 3 RNA bases, whose inhibition could be reversed by the appropriate normal bases only, none of the analogues of thymine were active, neither were the thio-derivatives of RNA bases. Other inhibitors of RNA and protein synthesis, like actinomycin D, puromycin and cycloheximide, were also without selective activity, although the last of these inhibited perithecial maturation at 0.1 mum concentration but not initiation. Amino acid analogues were inactive, as were the metabolic inhibitors thiourea, 2,4-dinitrophenol and fluoride. The compounds which inhibited the formation of perithecia also lowered the branching frequency of leading hyphae, but not their linear growth rates. Consequently, the branch densities were diminished in their presence. Hypotheses to account for these findings are discussed in terms of inhibition of growth in general, of the synthesis of some specific messenger RNAs, and of RNA-mediated transport across membranes, the last of which seeming the most fruitful for further work.

  6. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors.

    Science.gov (United States)

    Machado, Suzy Wider; de Oliveira, Caio Fernando Ramalho; Zério, Neide Graciano; Parra, José Roberto Postali; Macedo, Maria Lígia Rodrigues

    2017-08-01

    Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs. © 2017 Wiley Periodicals, Inc.

  7. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    Science.gov (United States)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  8. Potent selective nonpeptidic inhibitors of human lung tryptase

    Science.gov (United States)

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting the concept of active-site bridging is also presented. PMID:10411878

  9. The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma.

    Science.gov (United States)

    Evans, Robert P; Naber, Claudia; Steffler, Tara; Checkland, Tamara; Maxwell, Christopher A; Keats, Jonathan J; Belch, Andrew R; Pilarski, Linda M; Lai, Raymond; Reiman, Tony

    2008-02-01

    Aurora kinases are potential targets for cancer therapy. Previous studies have validated Aurora kinase A as a therapeutic target in multiple myeloma (MM), and have demonstrated in vitro anti-myeloma effects of small molecule Aurora kinase inhibitors that inhibit both Aurora A and B. This study demonstrated that Aurora B kinase was strongly expressed in myeloma cell lines and primary plasma cells. The selective Aurora B inhibitor AZD1152-induced apoptotic death in myeloma cell lines at nanomolar concentrations, with a cell cycle phenotype consistent with that reported previously for Aurora B inhibition. In some cases, AZD1152 in combination with dexamethasone showed increased anti-myeloma activity compared with the use of either agent alone. AZD1152 was active against sorted CD138(+) BM plasma cells from myeloma patients but also, as expected, was toxic to CD138(-) marrow cells from the same patients. In a murine myeloma xenograft model, AZD1152-inhibited tumour growth at well-tolerated doses and induced cell death in established tumours, with associated mild, transient leucopenia. AZD1152 shows promise in these preclinical studies as a novel treatment for MM.

  10. Design, Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Selective PI3Kβ Inhibitors

    Directory of Open Access Journals (Sweden)

    Shuang Cao

    2016-07-01

    Full Text Available A novel series of PI3Kβ (Phosphatidylinositol-3-kinases beta subunit inhibitors with the structure of benzothiazole scaffold have been designed and synthesized. All the compounds have been evaluated for inhibitory activities against PI3Kα, β, γ, δ and mTOR (Mammalian target of rapamycin. Two superior compounds have been further evaluated for the IC50 values against PI3Ks/mTOR. The most promising compound 11 displays excellent anti-proliferative activity and selectivity in multiple cancer cell lines, especially in the prostate cancer cell line. Docking studies indicate the morpholine group in 2-position of benzothiazole is necessary for the potent antitumor activity, which confirms our design is reasonable.

  11. Imidazopyranotacrines as Non-Hepatotoxic, Selective Acetylcholinesterase Inhibitors, and Antioxidant Agents for Alzheimer′s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Houssem Boulebd

    2016-03-01

    Full Text Available Herein we describe the synthesis and in vitro biological evaluation of thirteen new, racemic, diversely functionalized imidazo pyranotacrines as non-hepatotoxic, multipotent tacrine analogues. Among these compounds, 1-(5-amino-2-methyl-4-(1-methyl-1H-imidazol-2-yl-6,7,8,9-tetrahydro-4H-pyrano[2,3-b]quinolin-3-ylethan-1-one (4 is non-hepatotoxic (cell viability assay on HepG2 cells, a selective but moderately potent EeAChE inhibitor (IC50 = 38.7 ± 1.7 μM, and a very potent antioxidant agent on the basis of the ORAC test (2.31 ± 0.29 μmol·Trolox/μmol compound.

  12. Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-κB pathway in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Dejuan Li

    2018-05-01

    Full Text Available Caffeic acid phenethyl ester (CAPE could ameliorate myocardial ischemia/reperfusion injury (MIRI by various mechanisms, but there hadn’t been any reports on that CAPE could regulate silent information regulator 1 (SIRT1 and endothelial nitric oxide synthase (eNOS to exert cardioprotective effect. The present study aimed to investigate the cardioprotective potential of caffeic acid o-nitro phenethyl ester (CAPE-oNO2 on MIRI and the possible mechanism based on the positive control of CAPE. The SD rats were subjected to left coronary artery ischemia /reperfusion (IR and the H9c2 cell cultured in hypoxia/reoxygenation (HR to induce the MIRI model. Prior to the procedure, vehicle, CAPE or CAPE-oNO2 were treated in the absence or presence of a SIRT1 inhibitor nicotinamide (NAM and an eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME. In vivo, CAPE and CAPE-oNO2 conferred a cardioprotective effect as shown by reduced myocardial infarct size, cardiac marker enzymes and structural abnormalities. From immunohistochemical and sirius red staining, above two compounds ameliorated the TNF-α release and collagen deposition of IR rat hearts. They could agitate SIRT1 and eNOS expression, and consequently enhance NO release and suppress NF-κB signaling, to reduce the malondialdehyde content and cell necrosis. In vitro, they could inhibit HR-induced H9c2 cell apoptosis and ROS generation by activating SIRT1/eNOS pathway and inhabiting NF-κB expression. Emphatically, CAPE-oNO2 presented the stronger cardioprotection than CAPE both in vivo and in vitro. However, NAM and L-NAME eliminated the CAPE-oNO2-mediated cardioprotection by restraining SIRT1 and eNOS expression, respectively. It suggested that CAPE-oNO2 ameliorated MIRI by suppressing the oxidative stress, inflammatory response, fibrosis and necrocytosis via the SIRT1/eNOS/NF-κB pathway.

  13. Cyclooxygenase-2 inhibitors and free flap complications after autologous breast reconstruction

    DEFF Research Database (Denmark)

    Bonde, Christian; Khorasani, Hoda; Hoejvig, Jens

    2017-01-01

    BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAID...... or gastrointestinal bleeding. CONCLUSIONS: Multimodal analgesia using a COX-2 inhibitor is safe in ABR with free flaps and does not increase flap failure. COX-2 inhibitors seem superior to NSAID with reduced risk of post-operative haematomas.......BACKGROUND: A key component of modern analgesics is the use of multimodal opioid-sparing analgesia (MOSA). In the past, our analgesic regime after autologous breast reconstruction (ABR) included either NSAID or a selective cyclooxygenase-2 (COX-2) inhibitor. COX-2 inhibitors are superior to NSAIDs...... because of the well-known side effects of NSAID treatment (bleeding/gastrointestinal ulcers). However, COX-2 inhibitors have been suggested to increase flap failure rates. We report our experience in using COX-2 inhibitors as part of our post-operative MOSA after ABR using free flaps. MATERIALS...

  14. A novel selective prostaglandin E2 synthesis inhibitor relieves pyrexia and arthritis in Guinea pigs inflammatory models

    Directory of Open Access Journals (Sweden)

    Ryusuke Sugita

    2016-02-01

    Full Text Available Prostaglandin E2 (PGE2, one of the terminal products in the cyclooxygenase pathway, plays an important role in various inflammatory responses. To determine whether selective inhibition of PGE2 may relieve these inflammatory symptoms, we synthesized a selective PGE2 synthesis inhibitor, compound A [1-(6-fluoro-5,7-dimethyl-1,3-benzothiazol-2-yl-N-[(1S,2R-2-(hydroxymethylcyclohexyl]piperidine-4-carboxamide], then investigated the effects on pyrexia, arthritis and inflammatory pain in guinea pigs. In LPS-stimulated guinea pig macrophages, compound A selectively inhibited inducible PGE2 biosynthesis in a dose-dependent manner whereas enhanced the formation of thromboxane B2 (TXB2. Compound A suppressed yeast-evoked PGE2 production selectively and enhanced the production of TXB2 and 6-keto PGF1α in vivo. In addition, compound A relieved yeast-induced pyrexia and also suppressed paw swelling in an adjuvant-induced arthritis model. The effect on gastrointestinal (GI ulcer formation was also evaluated and compound A showed a lower GI adverse effect than indomethacin. However, compound A failed to relieve yeast-induced thermal hyperalgesia. These results suggest that selective inhibition of PGE2 synthesis may have anti-pyretic and anti-inflammatory properties without GI side effect, but lack the analgesic efficacy.

  15. Discovery of novel high potent and cellular active ADC type PTP1B inhibitors with selectivity over TC-PTP via modification interacting with C site.

    Science.gov (United States)

    Du, Yongli; Zhang, Yanhui; Ling, Hao; Li, Qunyi; Shen, Jingkang

    2018-01-20

    PTP1B serving as a key negative regulator of insulin signaling is a novel target for type 2 diabetes and obesity. Modification at ring B of N-{4-[(3-Phenyl-ureido)-methyl]-phenyl}-methane-sulfonamide template to interact with residues Arg47 and Lys41 in the C site of PTP1B by molecular docking aided design resulted in the discovery of a series of novel high potent and selective inhibitors of PTP1B. The structure activity relationship interacting with the C site of PTP1B was well illustrated. Compounds 8 and 18 were shown to be the high potent and most promising PTP1B inhibitors with cellular activity and great selectivity over the highly homologous TCPTP and other PTPs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Phospho-eNOS Ser-1176 is associated with the nucleoli and the Golgi complex in C6 rat glioma cells.

    Science.gov (United States)

    Klinz, Franz-Josef; Herberg, Natalie; Arnhold, Stefan; Addicks, Klaus; Bloch, Wilhelm

    2007-06-29

    Enzymatic activity of endothelial nitric oxide synthase (eNOS) is controlled by posttranslational modifications, protein-protein interactions, and subcellular localization. For example, N-terminal fatty acid modifications target eNOS to the Golgi complex where it becomes phosphorylated. We show here by immunofluorescence analysis that phospho-eNOS Ser-1176 is enriched in the perinuclear region of interphase C6 rat glioma cells. Confocal double immunofluorescence microscopy with the Golgi marker protein 58K revealed that phospho-eNOS Ser-1176 is associated with the Golgi complex. Surprisingly, we observed several spots in the nucleus of C6 cells that were positive for phospho-eNOS Ser-1176. Confocal double immunofluorescence analysis with the nucleolus marker protein fibrillarin revealed that within the nucleus phospho-eNOS Ser-1176 is exclusively associated with the nucleoli. It is known that in mitotic cells nucleoli are lost during prophase and rebuild during telophase. In agreement with this, we find no nucleoli-like distribution of phospho-eNOS Ser-1176 in metaphase and anaphase C6 glioma cells. Our finding that phospho-eNOS Ser-1176 is selectively associated with the nucleoli points to a so far unknown role for eNOS in interphase glioma cells.

  17. Simultaneous initiation (coinitiation) of pharmacotherapy with triiodothyronine and a selective serotonin reuptake inhibitor for major depressive disorder: a quantitative synthesis of double-blind studies

    NARCIS (Netherlands)

    Papakostas, George I.; Cooper-Kazaz, Rena; Appelhof, Bente C.; Posternak, Michael A.; Johnson, Daniel P.; Klibanski, Anne; Lerer, Bernard; Fava, Maurizio

    2009-01-01

    To examine the efficacy and overall tolerability of the simultaneous initiation of treatment (coinitiation) with triiodothyronine (T3) and a selective serotonin reuptake inhibitor (SSRI) for major depressive disorder (MDD). Sources of date were Medline/Pubmed, EMBASE, the Cochrane database, and

  18. The neuronal nitric oxide synthase inhibitor NANT blocks acetaminophen toxicity and protein nitration in freshly isolated hepatocytes.

    Science.gov (United States)

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; Letzig, Lynda G; James, Laura P; Hinson, Jack A

    2015-12-01

    3-Nitrotyrosine (3NT) in liver proteins of mice treated with hepatotoxic doses of acetaminophen (APAP) has been postulated to be causative in toxicity. Nitration is by a reactive nitrogen species formed from nitric oxide (NO). The source of the NO is unclear. iNOS knockout mice were previously found to be equally susceptible to APAP toxicity as wildtype mice and iNOS inhibitors did not decrease toxicity in mice or in hepatocytes. In this work we examined the potential role of nNOS in APAP toxicity in hepatocytes using the specific nNOS inhibitor NANT (10 µM)(N-[(4S)-4-amino-5-[(2-aminoethyl)amino]pentyl]-N'-nitroguanidinetris (trifluoroacetate)). Primary hepatocytes (1 million/ml) from male B6C3F1 mice were incubated with APAP (1mM). Cells were removed and assayed spectrofluorometrically for reactive nitrogen and oxygen species using diaminofluorescein (DAF) and Mitosox red, respectively. Cytotoxicity was determined by LDH release into media. Glutathione (GSH, GSSG), 3NT, GSNO, acetaminophen-cysteine adducts, NAD, and NADH were measured by HPLC. APAP significantly increased cytotoxicity at 1.5-3.0 h. The increase was blocked by NANT. NANT did not alter APAP mediated GSH depletion or acetaminophen-cysteine adducts in proteins which indicated that NANT did not inhibit metabolism. APAP significantly increased spectroflurometric evidence of reactive nitrogen and oxygen formation at 0.5 and 1.0 h, respectively, and increased 3NT and GSNO at 1.5-3.0 h. These increases were blocked by NANT. APAP dramatically increased NADH from 0.5-3.0 h and this increase was blocked by NANT. Also, APAP decreased the Oxygen Consumption Rate (OCR), decreased ATP production, and caused a loss of mitochondrial membrane potential, which were all blocked by NANT. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    Science.gov (United States)

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  20. A new structural class of subtype-selective inhibitor of cloned excitatory amino acid transporter, EAAT2

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Hermit, M B; Nielsen, B

    2000-01-01

    We have studied the pharmacological effects of (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and the enantiomers of (RS)-2-amino-3-(3-hydroxy-1,2, 5-thiadiazol-4-yl)propionic acid (TDPA) on cloned human excitatory amino acid transporter subtypes 1, 2 and 3 (EAAT1......-3) expressed in Cos-7 cells. Whereas AMPA and (R)-TDPA were both inactive as inhibitors of [3H]-(R)-aspartic acid uptake on all three EAAT subtypes, (S)-TDPA was shown to selectively inhibit uptake by EAAT2 with a potency equal to that of the endogenous ligand (S)-glutamic acid. (S)-TDPA thus represents a new...

  1. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    Science.gov (United States)

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-07-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells.

  2. DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Václav; Schimer, Jiří; Tykvart, Jan; Knedlík, Tomáš; Vik, V.; Majer, Pavel; Konvalinka, Jan; Šácha, Pavel

    2017-01-01

    Roč. 45, č. 2 (2017), č. článku e10. ISSN 0305-1048 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : quantitative PCR * enzyme detection * inhibitor screening Subject RIV: CE - Biochemistry OBOR OECD: Biochemical research methods Impact factor: 10.162, year: 2016 https:// academic .oup.com/nar/article-lookup/doi/10.1093/nar/gkw853

  3. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo.

    Science.gov (United States)

    Itzhak, Y; Ali, S F

    1996-10-01

    The present study was undertaken to investigate whether the relatively selective neuronal nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI), protects against methamphetamine (METH)-induced neurotoxicity. Male Swiss Webster mice received the following treatments (i.p.; q 3 h x 3): (a) vehicle/saline, (b) 7-NI (25 mg/kg)/saline, (c) vehicle/METH (5 mg/kg), and (d) 7-NI (25 mg/kg)/METH (5 mg/kg). On the second day, groups (a) and (b) received two vehicle injections, and groups (c) and (d) received two 7-NI injections (25 mg/kg, each). Administration of vehicle/METH resulted in 68, 44, and 55% decreases in the concentration of dopamine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, respectively, and a 48% decrease in the number of [3H]mazindol binding sites in the striatum compared with control values. Treatment with 7-NI (group d) provided full protection against the depletion of dopamine and its metabolites and the loss of dopamine transporter binding sites. Administration of 7-NI/saline (group b) affected neither the tissue concentration of dopamine and its metabolites nor the binding parameters of [3H] mazindol compared with control values. 7-NI had no significant effect on animals' body temperature, and it did not affect METH-induced hyperthermia. These findings indicate a role for nitric oxide in methamphetamine-induced neurotoxicity and also suggest that blockade of NOS may be beneficial for the management of Parkinson's disease.

  4. Opening the Black Box of NOS: Or Knowing How to Go on with Science Education, Wittgenstein, and STS in a Precarious World

    Science.gov (United States)

    Alsop, Steve; Gardner, Sam

    2017-01-01

    In this response essay we offer some critical comments on the nature of science (NOS) and thereby hopefully extend Hodson and Wong's (2017, this issue) argument concerning "understanding scientific practice." Drawing on selected theorising in science and technology studies (STS), we argue that NOS needs to take much more seriously…

  5. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives

    Directory of Open Access Journals (Sweden)

    Gurgle HE

    2016-06-01

    Full Text Available Holly E Gurgle, Karen White, Carrie McAdam-Marx Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, UT, USA Abstract: Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium–glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium–glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient. Keywords: type 2 diabetes mellitus, GLP-1 receptor agonist, SGLT2 inhibitor, A1c, weight loss, adverse effect

  6. Class 1-Selective Histone Deacetylase (HDAC) Inhibitors Enhance HIV Latency Reversal while Preserving the Activity of HDAC Isoforms Necessary for Maximal HIV Gene Expression.

    Science.gov (United States)

    Zaikos, Thomas D; Painter, Mark M; Sebastian Kettinger, Nadia T; Terry, Valeri H; Collins, Kathleen L

    2018-03-15

    Combinations of drugs that affect distinct mechanisms of HIV latency aim to induce robust latency reversal leading to cytopathicity and elimination of the persistent HIV reservoir. Thus far, attempts have focused on combinations of protein kinase C (PKC) agonists and pan-histone deacetylase inhibitors (HDIs) despite the knowledge that HIV gene expression is regulated by class 1 histone deacetylases. We hypothesized that class 1-selective HDIs would promote more robust HIV latency reversal in combination with a PKC agonist than pan-HDIs because they preserve the activity of proviral factors regulated by non-class 1 histone deacetylases. Here, we show that class 1-selective agents used alone or with the PKC agonist bryostatin-1 induced more HIV protein expression per infected cell. In addition, the combination of entinostat and bryostatin-1 induced viral outgrowth, whereas bryostatin-1 combinations with pan-HDIs did not. When class 1-selective HDIs were used in combination with pan-HDIs, the amount of viral protein expression and virus outgrowth resembled that of pan-HDIs alone, suggesting that pan-HDIs inhibit robust gene expression induced by class 1-selective HDIs. Consistent with this, pan-HDI-containing combinations reduced the activity of NF-κB and Hsp90, two cellular factors necessary for potent HIV protein expression, but did not significantly reduce overall cell viability. An assessment of viral clearance from in vitro cultures indicated that maximal protein expression induced by class 1-selective HDI treatment was crucial for reservoir clearance. These findings elucidate the limitations of current approaches and provide a path toward more effective strategies to eliminate the HIV reservoir. IMPORTANCE Despite effective antiretroviral therapy, HIV evades eradication in a latent form that is not affected by currently available drug regimens. Pharmacologic latency reversal that leads to death of cellular reservoirs has been proposed as a strategy for

  7. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  8. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor

    Directory of Open Access Journals (Sweden)

    Kala Mrinalini

    2005-12-01

    Full Text Available Abstract Background The isozymes of alkaline phosphatase, the tissue non-specific, intestinal and placental, have similar properties and a high degree of identity. The placental isozyme (PLAP is an oncofetal antigen expressed in several malignancies including choriocarcinoma, seminoma and ovarian carcinoma. We had earlier attempted to isolate PLAP-specific scFv from a synthetic human immunoglobulin library but were unable to do so, presumably because of the similarity between the isozymes. In this work, we have employed a PLAP-specific uncompetitive inhibitor, L-Phe-Gly-Gly, to select isozyme specific scFvs. An uncompetitive inhibitor binds to the enzyme in the presence of substrate and stabilizes the enzyme-substrate complex. Several uncompetitive inhibitors have varying degrees of isozyme specificity for human alkaline phosphatase isozymes. A specific uncompetitive inhibitor would be able to unmask conformational differences between the otherwise very similar molecules. Also, such inhibitors would be directed to regions at/close to the active site of the enzyme. In this work, the library was first incubated with PLAP and the bound clones then eluted by incubation with L-Phe-Gly-Gly along with the substrate, para-nitro phenyl phosphate (pNPP. The scFvs were then studied with regard to the biochemical modulation of their binding, isozyme specificity and effect on enzyme activity. Results Of 13 clones studied initially, the binding of 9 was inhibited by L-Phe-Gly-Gly (with pNPP and 2 clones were inhibited by pNPP alone. Two clones had absolute and 2 clones had partial specificity to PLAP. Two clones were cross-reactive with only one other isozyme. Three scFv clones, having an accessible His6-tag, were purified and studied for their modulation of enzyme activity. All the three scFvs inhibited PLAP activity with the kinetics of competitive inhibition. Cell ELISA could demonstrate binding of the specific scFvs to the cell surface expressed PLAP

  9. An α‐Helix‐Mimicking 12,13‐Helix: Designed α/β/γ‐Foldamers as Selective Inhibitors of Protein–Protein Interactions

    Science.gov (United States)

    Grison, Claire M.; Miles, Jennifer A.; Robin, Sylvie

    2016-01-01

    Abstract A major current challenge in bioorganic chemistry is the identification of effective mimics of protein secondary structures that act as inhibitors of protein–protein interactions (PPIs). In this work, trans‐2‐aminocyclobutanecarboxylic acid (tACBC) was used as the key β‐amino acid component in the design of α/β/γ‐peptides to structurally mimic a native α‐helix. Suitably functionalized α/β/γ‐peptides assume an α‐helix‐mimicking 12,13‐helix conformation in solution, exhibit enhanced proteolytic stability in comparison to the wild‐type α‐peptide parent sequence from which they are derived, and act as selective inhibitors of the p53/hDM2 interaction. PMID:27467859

  10. The ERK1/2 Inhibitor U0126 Attenuates Diabetes-Induced Upregulation of MMP-9 and Biomarkers of Inflammation in the Retina

    Directory of Open Access Journals (Sweden)

    Ghulam Mohammad

    2013-01-01

    Full Text Available This study was conducted to determine the expression of matrix metalloproteinase-9 (MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1 in a time-dependent manner and the effect of extracellular-signal-regulated kinases-1/2 (ERK1/2 inhibition on the expressions of MMP-9, TIMP-1, and inflammatory biomarkers in the retinas of diabetic rats. The expression of MMP-9 was quantified by zymography, and the mRNA level of MMP-9 and TIMP-1 was quantified by RT-PCR. The expression of inducible nitric oxide synthase (iNOS, interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α was examined by Western blot analysis. MMP-9 expression was significantly higher in diabetic rat retinas compared to controls at all time points.TIMP-1 expression was nonsignificantly upregulated at 1week of diabetes and was significantly downregulated at 4 and 12 weeks of diabetes. Intravitreal administration of the ERK1/2 inhibitor U0126 prior to induction of diabetes decreased ERK1/2 activation, attenuated diabetes-induced upregulation of MMP-9, iNOS, IL-6, and TNF-α and upregulated TIMP-1 expression. In MMP-9 knockout mice, diabetes had no effect on retinal iNOS expression and its level remained unchanged. These data provide evidence that ERK1/2 signaling pathway is involved in MMP-9, iNOS, IL-6, and TNF-α induction in diabetic retinas and suggest that ERK1/2 can be a novel therapeutic target in diabetic retinopathy.

  11. Substance P Activates Ca2+-Permeable Nonselective Cation Channels through a Phosphatidylcholine-Specific Phospholipase C Signaling Pathway in nNOS-Expressing GABAergic Neurons in Visual Cortex.

    Science.gov (United States)

    Endo, Toshiaki; Yanagawa, Yuchio; Komatsu, Yukio

    2016-02-01

    To understand the functions of the neocortex, it is essential to characterize the properties of neurons constituting cortical circuits. Here, we focused on a distinct group of GABAergic neurons that are defined by a specific colocalization of intense labeling for both neuronal nitric oxide synthase (nNOS) and substance P (SP) receptor [neurokinin 1 (NK1) receptors]. We investigated the mechanisms of the SP actions on these neurons in visual cortical slices obtained from young glutamate decarboxylase 67-green fluorescent protein knock-in mice. Bath application of SP induced a nonselective cation current leading to depolarization that was inhibited by the NK1 antagonists in nNOS-immunopositive neurons. Ruthenium red and La(3+), transient receptor potential (TRP) channel blockers, suppressed the SP-induced current. The SP-induced current was mediated by G proteins and suppressed by D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), but not by inhibitors of phosphatidylinositol-specific PLC, adenylate cyclase or Src tyrosine kinases. Ca(2+) imaging experiments under voltage clamp showed that SP induced a rise in intracellular Ca(2+) that was abolished by removal of extracellular Ca(2+) but not by depletion of intracellular Ca(2+) stores. These results suggest that SP regulates nNOS neurons by activating TRP-like Ca(2+)-permeable nonselective cation channels through a PC-PLC-dependent signaling pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Bioimpedance in monitoring of effects of selective serotonin reuptake inhibitor treatment

    Directory of Open Access Journals (Sweden)

    Kuznecova LV

    2011-06-01

    Full Text Available Vasiliy Grigorievich Alexeev, Ludmila Vasilievna KuznecovaDepartment of Physiology, SP Botkin Moscow City Clinical Hospital, Moscow, RussiaBackground: Bioimpedance has been shown to be a safe technique when used in a number of biomedical applications. In this study, we used the Electro Interstitial Scan (EIS to perform bioimpedance measurements to follow up the efficacy of selective serotonin reuptake inhibitor (SSRI treatment in subjects diagnosed to have major depressive disorder.Methods: We recruited 59 subjects (38 women, 21 men aged 17–76 (mean 47 years diagnosed with major depressive disorder by psychiatric assessment at the Botkin Hospital according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV. Baseline Clinical Global Impression scores and EIS (electrical conductivity and dispersion α parameter measurements were done before starting SSRI therapy. Treatment follow-up was undertaken using EIS bioimpedance measurements and by treatment response based on the Hamilton Depression Scale and Clinical Global Impression, every 15 days for 60 days. At day 45, we classified the patients into two groups, ie, Group 1, including treatment responders, and Group 2, including nonresponders. At day 60, patients were classified into two further groups, ie, Group 3, comprising treatment responders, and Group 4, comprising nonresponders.Results: Comparing Group 1 and Group 2, electrical conductivity measurement of the pathway between the two forehead electrodes had a specificity of 72% and a sensitivity of 85.3% (P < 0.0001, with a cutoff >4.32. Comparing Group 3 and Group 4, electrical conductivity measurements in the same pathway had a specificity of 47.6% and a sensitivity of 76.3% (P < 0.16, with a cutoff >5.92. Comparing Group 1 and Group 2, the electrical dispersion α parameter of the pathway between the two disposable forehead electrodes had a specificity of 80% and a sensitivity of 85.2% (P < 0.0001 with a

  13. Identification of a New Class of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitors Followed by a Structure-Activity-Relationship Study

    DEFF Research Database (Denmark)

    Hansen, Stinne Wessel; Erichsen, Mette Norman; Fu, Bingru

    2016-01-01

    in analogues with substantially improved inhibitory potencies at EAAT1 compared to that displayed by the hit, it provided a detailed insight into structural requirements for EAAT1 activity of this scaffold. The discovery of this new class of EAAT1-selective inhibitors not only supplements the currently...

  14. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives.

    Science.gov (United States)

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.

  15. The tragedy of TRIUMPH for nitric oxide synthesis inhibition in cardiogenic shock: where do we go from here?

    Science.gov (United States)

    Bailey, Alison; Pope, Theodore W; Moore, Scott A; Campbell, Charles L

    2007-01-01

    evaluated compounds with little selectivity for iNOS and their failure may have been due, in part, to the inhibition of the other NOS isoforms. In this review, we describe the biochemistry of NO synthesis, the regulation of NO production, and the clinical trials evaluating the efficacy of NOS inhibition with an eye to future trials with more selective inhibitors of iNOS.

  16. Exposure to Selective Serotonin Reuptake Inhibitors in Early Pregnancy and the Risk of Miscarriage

    DEFF Research Database (Denmark)

    Andersen, Jon Thor Trærup; Andersen, Nadia Lyhne; Horwitz, Henrik

    2014-01-01

    OBJECTIVE: To investigate whether exposure to selective serotonin reuptake inhibitors (SSRIs) in early pregnancy is associated with miscarriage. METHODS: This was a nationwide cohort study identifying all registered pregnancies in Denmark from 1997 to 2010. All births were identified using...... the Medical Birth Registry, and all records of induced abortion or miscarriage were gathered from the National Hospital Register. Data on SSRI use were gathered from the National Prescription Register. Cox proportional hazard regression models were used to calculate the hazard of miscarriage in women exposed...... to an SSRI in early pregnancy and the hazard of miscarriage in women discontinuing treatment before pregnancy. RESULTS: We identified 1,279,840 pregnancies (911,569 births, 142,093 miscarriages, 226,178 induced abortions). Of the 22,884 exposed to an SSRI during the first 35 days of pregnancy, 12.6% (2...

  17. Is Transforming Growth Factor-β Signaling Activated in Human Hypertrophied Prostate Treated by 5-Alpha Reductase Inhibitor?

    Directory of Open Access Journals (Sweden)

    Hye Kyung Kim

    2013-01-01

    Full Text Available Background and Aim. It is well known that androgen deprivation relates to penile fibrosis, so we hypothesize that long-term treatment with 5-alphareductase inhibitors (5ARIs may increase the risk of fibrosis of prostate. Patients and Methods. Thirty-two BPH patients who underwent transurethral resection of the prostate were enrolled. The patients were divided into two groups: group one, 16 patients underwent TURP who had been treated with tamsulosin for 2 years; group two, 16 patients underwent TURP who had been treated with combination of tamsulosin and dutasteride for at least 1 year. We evaluated the expressions of nNOS, iNOS, eNOS, TGF-β1, TGF-β2, phosphorylated-Smad2/3 (p-Smad2/3, E-cadherin, N-cadherin, and α-smooth muscle actin in the resected prostate tissues by western blotting, and the TGF-β concentration was determined by ELISA kit. Results. The expressions of 3 isoforms of NOS were significantly increased in group 2 except of eNOS in lateral prostate, and the expressions of TGF-β1, TGF-β2, and p-Smad2/3 increased about 2-fold compared with group 1. In group 2, the E-cadherin expression decreased while N-cadherin expression increased significantly. Conclusions. The overexpression of nNOS may contribute to prostate smooth muscle relaxation; however, long-time treatment with 5 ARI increases the risk of fibrosis of prostate.

  18. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    re-uptake inhibitors: a private sector study in South Africa. Afri Health ... the public and private sectors to reduce medicine costs, and increase ... Fig 1: Comparison between the market volume of generics vs. originators for the period June 2009 ...

  19. Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds.

    Directory of Open Access Journals (Sweden)

    Diana Ortiz

    Full Text Available Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of glucose, has thus been recognized as a promising drug target. This transporter is highly divergent from mammalian hexose transporters, and it appears to be a permease that is essential for parasite viability in intra-erythrocytic, mosquito, and liver stages of the parasite life cycle. An assay was developed that is appropriate for high throughput screening against PfHT based upon heterologous expression of PfHT in Leishmania mexicana parasites that are null mutants for their endogenous hexose transporters. Screening of two focused libraries of antimalarial compounds identified two such compounds that are high potency selective inhibitors of PfHT compared to human GLUT1. Additionally, 7 other compounds were identified that are lower potency and lower specificity PfHT inhibitors but might nonetheless serve as starting points for identification of analogs with more selective properties. These results further support the potential of PfHT as a novel drug target.

  20. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.

    Science.gov (United States)

    Blake, James F; Xu, Rui; Bencsik, Josef R; Xiao, Dengming; Kallan, Nicholas C; Schlachter, Stephen; Mitchell, Ian S; Spencer, Keith L; Banka, Anna L; Wallace, Eli M; Gloor, Susan L; Martinson, Matthew; Woessner, Richard D; Vigers, Guy P A; Brandhuber, Barbara J; Liang, Jun; Safina, Brian S; Li, Jun; Zhang, Birong; Chabot, Christine; Do, Steven; Lee, Leslie; Oeh, Jason; Sampath, Deepak; Lee, Brian B; Lin, Kui; Liederer, Bianca M; Skelton, Nicholas J

    2012-09-27

    The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.

  1. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    Science.gov (United States)

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...

  3. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M; Wong, Christina Y B; Ononye, Sophia; Lopez, Dioxelis D; Engene, Niclas; McPhail, Kerry L; Gerwick, William H; Balunas, Marcy J

    2013-11-22

    A dark brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity.

  4. Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors

    Science.gov (United States)

    Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.

    2003-06-03

    The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.

  5. Aortic superoxide production at the early hyperglycemic stage in a rat type 2 diabetes model and the effects of pravastatin.

    Science.gov (United States)

    Kikuchi, Chigusa; Kajikuri, Junko; Hori, Eisei; Nagami, Chie; Matsunaga, Tamihide; Kimura, Kazunori; Itoh, Takeo

    2014-01-01

    Endothelium-derived superoxide induces vascular dysfunctions. The aim of this study was to examine the activity of protein kinase C (PKC) isoforms and endothelial nitric oxide synthase (eNOS), which leads to vascular superoxide production in type 2 diabetes, in addition to the effects of pravastatin. We studied these mechanisms in Otsuka Long-Evans Tokushima Fatty (OLETF) rats (type 2 diabetes model) at the early hyperglycemic stage (vs. non-diabetic Long-Evans Tokushima Otsuka [LETO] rats). Superoxide production and catalase activity were measured in aortas, as were the protein expressions of PKCδ and phospho-Ser(1177) eNOS. Superoxide production was increased in OLETF rats, and this increase was inhibited by the selective conventional PKC (cPKC) inhibitor Gö6976 and by the non-selective cPKC and novel PKC inhibitor GF109203X. Phospho-Ser(1177) eNOS was significantly increased in OLETF rats, whereas the protein expressions of PKCδ and phosopho-Thr(505) PKCδ and catalase activity were all greatly reduced. Pravastatin administration to OLETF rats in vivo had normalizing effects on all of these variables. The increment in superoxide production seen in OLETF rats (but not the production in pravastatin-treated OLETF rats) was abolished by high concentration of N(ω)-nitro-L-arginine methyl ester (electron transport inhibitor of eNOS), by sepiapterin (precursor of tetrahydrobiopterin), and by LY294002 (phosphatidylinositol 3-kinase [PI3-kinase] inhibitor). In OLETF rats at the early hyperglycemic stage, aortic superoxide production is increased owing to activation of uncoupled eNOS through phosphorylation by PI3-kinase/Akt. This may be related to the observed reduction in PKCδ/catalase activities. Pravastatin inhibited endothelial superoxide production via normalization of PKCδ/catalase activities.

  6. The selective and non-selective cyclooxygenase inhibitors valdecoxib and piroxicam induce the same postoperative analgesia and control of trismus and swelling after lower third molar removal

    Directory of Open Access Journals (Sweden)

    V. Benetello

    2007-08-01

    Full Text Available We compared the clinical efficacy of orally administered valdecoxib and piroxicam for the prevention of pain, trismus and swelling after removal of horizontally and totally intrabony impacted lower third molars. Twenty-five patients were scheduled to undergo removal of symmetrically positioned lower third molars in two separate appointments. Valdecoxib (40 mg or piroxicam (20 mg was administered in a double-blind, randomized and crossed manner for 4 days after the surgical procedures. Objective and subjective parameters were recorded for comparison of postoperative courses. Both agents were effective for postoperative pain relief (N = 19. There was a similar mouth opening at suture removal compared with the preoperative values (86.14 ± 4.36 and 93.12 ± 3.70% of the initial measure for valdecoxib and piroxicam, respectively; ANOVA. There was no significant difference regarding the total amount of rescue medication taken by the patients treated with valdecoxib or piroxicam (173.08 ± 91.21 and 461.54 ± 199.85 mg, respectively; Wilcoxon test. There were no significant differences concerning the swelling observed on the second postoperative day compared to baseline measures (6.15 ± 1.84 and 8.46 ± 2.04 mm for valdecoxib and piroxicam, respectively; ANOVA or on the seventh postoperative day (1.69 ± 1.61 and 2.23 ± 2.09 mm for valdecoxib and piroxicam, respectively; ANOVA. The cyclooxygenase-2 selective inhibitor valdecoxib is as effective as the non-selective cyclooxygenase inhibitor piroxicam for pain, trismus and swelling control after removal of horizontally and totally intrabony impacted lower third molars.

  7. Diminished Neural Processing of Aversive and Rewarding Stimuli During Selective Serotonin Reuptake Inhibitor Treatment

    Science.gov (United States)

    McCabe, Ciara; Mishor, Zevic; Cowen, Philip J.; Harmer, Catherine J.

    2010-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are popular medications for anxiety and depression, but their effectiveness, particularly in patients with prominent symptoms of loss of motivation and pleasure, has been questioned. There are few studies of the effect of SSRIs on neural reward mechanisms in humans. Methods We studied 45 healthy participants who were randomly allocated to receive the SSRI citalopram, the noradrenaline reuptake inhibitor reboxetine, or placebo for 7 days in a double-blind, parallel group design. We used functional magnetic resonance imaging to measure the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (sight of moldy strawberries and/or an unpleasant strawberry taste) on the final day of drug treatment. Results Citalopram reduced activation to the chocolate stimuli in the ventral striatum and the ventral medial/orbitofrontal cortex. In contrast, reboxetine did not suppress ventral striatal activity and in fact increased neural responses within medial orbitofrontal cortex to reward. Citalopram also decreased neural responses to the aversive stimuli conditions in key “punishment” areas such as the lateral orbitofrontal cortex. Reboxetine produced a similar, although weaker effect. Conclusions Our findings are the first to show that treatment with SSRIs can diminish the neural processing of both rewarding and aversive stimuli. The ability of SSRIs to decrease neural responses to reward might underlie the questioned efficacy of SSRIs in depressive conditions characterized by decreased motivation and anhedonia and could also account for the experience of emotional blunting described by some patients during SSRI treatment. PMID:20034615

  8. Are selective serotonin reuptake inhibitors safe for drivers? What is the evidence?

    Science.gov (United States)

    Ravera, Silvia; Ramaekers, Johannes G; de Jong-van den Berg, Lolkje T W; de Gier, Johan J

    2012-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used medications to treat several psychiatric diseases and, above all, depression. They seem to be as effective as older antidepressants but have a different adverse effect profile. Despite their favorable safety profile, little is known about their influence on traffic safety. To conduct a literature review to summarize the current evidence on the role of SSRIs in traffic safety, particularly concerning undesirable effects that could potentially impair fitness to drive, experimental and pharmacoepidemiologic studies on driving impairment, 2 existing categorization systems for driving-impairing medications, and the European legislative procedures for assessing fitness to drive before issuing a driver's license and driving under the influence of medicines. The article search was performed in the following electronic databases: MEDLINE, PsycINFO, ScienceDirect, and SafetyLit. The English-language scientific literature was searched using key words such as SSRIs and psychomotor performance, car crash or traffic accident, and adverse effects. For inclusion in this review, papers had to be full-text articles, refer to possible driving-related adverse effects, and be experimental or pharmacoepidemiologic studies on SSRIs and traffic accident risks. No restrictions concerning publication year were applied. Ten articles were selected as background information on driving-related adverse effects, and 15 articles were selected regarding experimental and pharmacoepidemiologic work. Regarding SSRI adverse effects, the most reported undesirable effects referring to driving impairment were anxiety, agitation, sleep disturbances, headache, increased risk of suicidal behavior, and deliberate self-harm. Regarding the remaining issues addressed in this article, inconsistencies were found between the outcomes of the selected experimental and epidemiologic studies and between the 2 existing categorization systems under

  9. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  10. Selective serotonin reuptake inhibitors for fibromyalgia syndrome

    Directory of Open Access Journals (Sweden)

    Brian Walitt

    Full Text Available ABSTRACT BACKGROUND: Fibromyalgia is a clinically well-defined chronic condition with a biopsychosocial aetiology. Fibromyalgia is characterized by chronic widespread musculoskeletal pain, sleep problems, cognitive dysfunction, and fatigue. Patients often report high disability levels and poor quality of life. Since there is no specific treatment that alters the pathogenesis of fibromyalgia, drug therapy focuses on pain reduction and improvement of other aversive symptoms. OBJECTIVES: To assess the benefits and harms of selective serotonin reuptake inhibitors (SSRIs in the treatment of fibromyalgia. METHODS: Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 5, MEDLINE (1966 to June 2014, EMBASE (1946 to June 2014, and the reference lists of reviewed articles. Selection criteria: We selected all randomized, double-blind trials of SSRIs used for the treatment of fibromyalgia symptoms in adult participants. We considered the following SSRIs in this review: citalopram, fluoxetine, escitalopram, fluvoxamine, paroxetine, and sertraline. Data collection and analysis: Three authors extracted the data of all included studies and assessed the risks of bias of the studies. We resolved discrepancies by discussion. MAIN RESULTS: The quality of evidence was very low for each outcome. We downgraded the quality of evidence to very low due to concerns about risk of bias and studies with few participants. We included seven placebo-controlled studies, two with citalopram, three with fluoxetine and two with paroxetine, with a median study duration of eight weeks (4 to 16 weeks and 383 participants, who were pooled together. All studies had one or more sources of potential major bias. There was a small (10% difference in patients who reported a 30% pain reduction between SSRIs (56/172 (32.6% and placebo (39/171 (22.8% risk difference (RD 0.10, 95% confidence interval (CI 0.01 to 0.20; number needed to treat for an

  11. Selective serotonin reuptake inhibitors for fibromyalgia syndrome

    Science.gov (United States)

    Walitt, Brian; Urrútia, Gerard; Nishishinya, María Betina; Cantrell, Sarah E; Häuser, Winfried

    2016-01-01

    Background Fibromyalgia is a clinically well-defined chronic condition with a biopsychosocial aetiology. Fibromyalgia is characterized by chronic widespread musculoskeletal pain, sleep problems, cognitive dysfunction, and fatigue. Patients often report high disability levels and poor quality of life. Since there is no specific treatment that alters the pathogenesis of fibromyalgia, drug therapy focuses on pain reduction and improvement of other aversive symptoms. Objectives The objective was to assess the benefits and harms of selective serotonin reuptake inhibitors (SSRIs) in the treatment of fibromyalgia. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 5), MEDLINE (1966 to June 2014), EMBASE (1946 to June 2014), and the reference lists of reviewed articles. Selection criteria We selected all randomized, double-blind trials of SSRIs used for the treatment of fibromyalgia symptoms in adult participants. We considered the following SSRIs in this review: citalopram, fluoxetine, escitalopram, fluvoxamine, paroxetine, and sertraline. Data collection and analysis Three authors extracted the data of all included studies and assessed the risks of bias of the studies. We resolved discrepancies by discussion. Main results The quality of evidence was very low for each outcome. We downgraded the quality of evidence to very low due to concerns about risk of bias and studies with few participants. We included seven placebo-controlled studies, two with citalopram, three with fluoxetine and two with paroxetine, with a median study duration of eight weeks (4 to 16 weeks) and 383 participants, who were pooled together. All studies had one or more sources of potential major bias. There was a small (10%) difference in patients who reported a 30% pain reduction between SSRIs (56/172 (32.6%)) and placebo (39/171 (22.8%)) risk difference (RD) 0.10, 95% confidence interval (CI) 0.01 to 0.20; number needed to treat for an additional

  12. Endothelial and Neuronal Nitric Oxide Activate Distinct Pathways on Sympathetic Neurotransmission in Rat Tail and Mesenteric Arteries.

    Directory of Open Access Journals (Sweden)

    Joana Beatriz Sousa

    Full Text Available Nitric oxide (NO seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells and Confocal Microscopy. Results indicated that: 1 in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2 in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3 confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.

  13. Phase I expansion and pharmacodynamic study of the oral MEK inhibitor RO4987655 (CH4987655) in selected patients with advanced cancer with RAS-RAF mutations

    NARCIS (Netherlands)

    Zimmer, Lisa; Barlesi, Fabrice; Martinez-Garcia, Maria; Dieras, Veronique; Schellens, Jan H M; Spano, Jean-Philippe; Middleton, Mark R; Calvo, Emiliano; Paz-Ares, Luiz; Larkin, James; Pacey, Simon; Venturi, Miro; Kraeber-Bodéré, Françoise; Tessier, Jean J L; Eberhardt, Wilfried Ernst Erich; Paques, Michel; Guarin, Ernesto; Meresse, Valerie; Soria, Jean-Charles

    2014-01-01

    PURPOSE: This phase I expansion study assessed safety, pharmacodynamic effects, and antitumor activity of RO4987655, a pure MEK inhibitor, in selected patients with advanced solid tumor. EXPERIMENTAL DESIGN: We undertook a multicenter phase I two-part study (dose escalation and cohort expansion).

  14. Rate of improvement during and across three treatments for panic disorder with or without agoraphobia : Cognitive behavioral therapy, selective serotonin reuptake inhibitor or both combined

    NARCIS (Netherlands)

    Van Apeldoorn, Franske J.; Van Hout, Wiljo J. P. J.; Timmerman, Marieke E.; Mersch, Peter Paul A.; den Boer, Johan A.

    2013-01-01

    Background: Existing literature on panic disorder (PD) yields no data regarding the differential rates of improvement during Cognitive Behavioral Therapy (CBT), Selective Serotonin Reuptake Inhibitor (SSRI) or both combined (CBT+SSRI). Method: Patients were randomized to CBT, SSRI or CBT+SSRI which

  15. The 'retro-design' concept for novel kinase inhibitors.

    Science.gov (United States)

    Müller, Gerhard; Sennhenn, Peter C; Woodcock, Timothy; Neumann, Lars

    2010-07-01

    Protein kinases are among the most attractive therapeutic targets for a broad range of diseases. This feature review highlights and classifies the main design principles employed to generate active and selective kinase inhibitors. In particular, emphasis is focused on a fragment-based lead-generation approach, which constitutes a novel design method for developing type II kinase inhibitors with distinct binding kinetic attributes. This 'retro-design' strategy relies on a customized fragment library, and contrasts the traditional approach used in the design of type II inhibitors.

  16. Development of Radiosensitizer using farnesyltransferase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Seok; Choe, Yong Kyung; Han, Mi Young; Kim, Kwang Dong [Korea Research Institute of Bioscience and Biotechnology, Taejon (Korea)

    1999-03-01

    We selected some compounds that were reported to have an activity of farneyltransferase inhibitor and tested the hypothesis that they might be used to radiosensitize cells transformed by ras oncogenes. The inhibition of ras processing using some, but not all, inhibitors resulted in higher levels of cell death after {gamma}-irradiation and increased radiosensitivity in H-ras-transformed NIH3T3 cells and MCF-10A human tumor cells. They did not induce additional cell death in control cells that doe not have ras mutation. Furthermore, the treatment of inhibitors alone induced a weak G0/G1 block, whereas inhibitors in combination with {gamma}-irradiation induced an additional enrichment in the G2/M phase of the cell cycle that typically represents irradiation-induced growth arrest. At present, the underling mechanism by which the farnesylltransferase inhibitors exert radiosensitizing effect is not known. In summary, our results suggest and lead to the possibility that some of farnesylation inhibitors may prove clinically useful not only as antitumor agents, but also radiosensitizers of tumors whose growth is dependent on ras function. (author). 15 refs., 10 figs., 4 tabs.

  17. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  18. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    Science.gov (United States)

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  19. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite

    KAUST Repository

    Zhang, Y.

    2012-08-01

    The barnacle Balanus amphitrite is among the most dominant fouling species on intertidal rocky shores in tropical and subtropical areas and is thus a target organism in antifouling research. After being released from adults, the swimming nauplius undertakes six molting cycles and then transforms into a cyprid. Using paired antennules, a competent cyprid actively explores and selects a suitable substratum for attachment and metamorphosis (collectively known as settlement). This selection process involves the reception of exogenous signals and subsequent endogenous signal transduction. To investigate the involvement of nitric oxide (NO) and cyclic GMP (cGMP) during larval settlement of B. amphitrite, we examined the effects of an NO donor and an NO scavenger, two nitric oxide synthase (NOS) inhibitors and a soluble guanylyl cyclase (sGC) inhibitor on settling cyprids. We found that the NO donor sodium nitroprusside (SNP) inhibited larval settlement in a dose-dependent manner. In contrast, both the NO scavenger carboxy-PTIO and the NOS inhibitors aminoguanidine hemisulfate (AGH) and S-methylisothiourea sulfate (SMIS) significantly accelerated larval settlement. Suppression of the downstream guanylyl cyclase (GC) activity using a GC-selective inhibitor ODQ could also significantly accelerate larval settlement. Interestingly, the settlement inhibition effects of SNP could be attenuated by ODQ at all concentrations tested. In the developmental expression profiling of NOS and sGC, the lowest expression of both genes was detected in the cyprid stage, a crucial stage for the larval decision to attach and metamorphose. In summary, we concluded that NO regulates larval settlement via mediating downstream cGMP signaling.

  20. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite

    KAUST Repository

    Zhang, Y.; He, L.-S.; Zhang, G.; Xu, Y.; Lee, O.-O.; Matsumura, K.; Qian, P.-Y.

    2012-01-01

    The barnacle Balanus amphitrite is among the most dominant fouling species on intertidal rocky shores in tropical and subtropical areas and is thus a target organism in antifouling research. After being released from adults, the swimming nauplius undertakes six molting cycles and then transforms into a cyprid. Using paired antennules, a competent cyprid actively explores and selects a suitable substratum for attachment and metamorphosis (collectively known as settlement). This selection process involves the reception of exogenous signals and subsequent endogenous signal transduction. To investigate the involvement of nitric oxide (NO) and cyclic GMP (cGMP) during larval settlement of B. amphitrite, we examined the effects of an NO donor and an NO scavenger, two nitric oxide synthase (NOS) inhibitors and a soluble guanylyl cyclase (sGC) inhibitor on settling cyprids. We found that the NO donor sodium nitroprusside (SNP) inhibited larval settlement in a dose-dependent manner. In contrast, both the NO scavenger carboxy-PTIO and the NOS inhibitors aminoguanidine hemisulfate (AGH) and S-methylisothiourea sulfate (SMIS) significantly accelerated larval settlement. Suppression of the downstream guanylyl cyclase (GC) activity using a GC-selective inhibitor ODQ could also significantly accelerate larval settlement. Interestingly, the settlement inhibition effects of SNP could be attenuated by ODQ at all concentrations tested. In the developmental expression profiling of NOS and sGC, the lowest expression of both genes was detected in the cyprid stage, a crucial stage for the larval decision to attach and metamorphose. In summary, we concluded that NO regulates larval settlement via mediating downstream cGMP signaling.

  1. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors.

    Science.gov (United States)

    Cichero, Elena; D'Ursi, Pasqualina; Moscatelli, Marco; Bruno, Olga; Orro, Alessandro; Rotolo, Chiara; Milanesi, Luciano; Fossa, Paola

    2013-12-01

    Phosphodiesterase 11 (PDE11) is the latest isoform of the PDEs family to be identified, acting on both cyclic adenosine monophosphate and cyclic guanosine monophosphate. The initial reports of PDE11 found evidence for PDE11 expression in skeletal muscle, prostate, testis, and salivary glands; however, the tissue distribution of PDE11 still remains a topic of active study and some controversy. Given the sequence similarity between PDE11 and PDE5, several PDE5 inhibitors have been shown to cross-react with PDE11. Accordingly, many non-selective inhibitors, such as IBMX, zaprinast, sildenafil, and dipyridamole, have been documented to inhibit PDE11. Only recently, a series of dihydrothieno[3,2-d]pyrimidin-4(3H)-one derivatives proved to be selective toward the PDE11 isoform. In the absence of experimental data about PDE11 X-ray structures, we found interesting to gain a better understanding of the enzyme-inhibitor interactions using in silico simulations. In this work, we describe a computational approach based on homology modeling, docking, and molecular dynamics simulation to derive a predictive 3D model of PDE11. Using a Graphical Processing Unit architecture, it is possible to perform long simulations, find stable interactions involved in the complex, and finally to suggest guideline for the identification and synthesis of potent and selective inhibitors. © 2013 John Wiley & Sons A/S.

  2. New pyrrole inhibitors of monoamine oxidase: synthesis, biological evaluation, and structural determinants of MAO-A and MAO-B selectivity.

    Science.gov (United States)

    La Regina, Giuseppe; Silvestri, Romano; Artico, Marino; Lavecchia, Antonio; Novellino, Ettore; Befani, Olivia; Turini, Paola; Agostinelli, Enzo

    2007-03-08

    A series of new pyrrole derivatives have been synthesized and evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. N-Methyl,N-(benzyl),N-(pyrrol-2-ylmethyl)amine (7) and N-(2-benzyl),N-(1-methylpyrrol-2-ylmethyl)amine (18) were the most selective MAO-B (7, SI = 0.0057) and MAO-A (18, SI = 12500) inhibitors, respectively. Docking and molecular dynamics simulations gave structural insights into the MAO-A and MAO-B selectivity. Compound 18 forms an H-bond with Gln215 through its protonated amino group into the MAO-A binding site. This H-bond is absent in the 7/MAO-A complex. In contrast, compound 7 places its phenyl ring into an aromatic cage of the MAO-B binding pocket, where it forms charge-transfer interactions. The slightly different binding pose of 18 into the MAO-B active site seems to be forced by a bulkier Tyr residue, which replaces a smaller Ile residue present in MAO-A.

  3. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Directory of Open Access Journals (Sweden)

    S.C.F. Olinto

    2012-11-01

    Full Text Available The amino acid arginine (Arg is a recognized secretagogue of growth hormone (GH, and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO, which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g were removed, divided into two halves, pooled (three hemi-pituitaries and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM, the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM and a cyclic guanosine monophosphate (cGMP analogue (8-Br-cGMP, 1 mM increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS inhibitor, 55 mM abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  4. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    Energy Technology Data Exchange (ETDEWEB)

    Olinto, S.C.F. [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG (Brazil); Adrião, M.G. [Departamento de Morfologia e Fisiologia, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

  5. Arginine induces GH gene expression by activating NOS/NO signaling in rat isolated hemi-pituitaries

    International Nuclear Information System (INIS)

    Olinto, S.C.F.; Adrião, M.G.; Castro-Barbosa, T.; Goulart-Silva, F.; Nunes, M.T.

    2012-01-01

    The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (∼250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (an NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression

  6. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha ) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts.

    Science.gov (United States)

    Rutault, K; Hazzalin, C A; Mahadevan, L C

    2001-03-02

    Tumor necrosis factor-alpha (TNF-alpha) is a potent proinflammatory cytokine whose synthesis and secretion are implicated in diverse pathologies. Hence, inhibition of TNF-alpha transcription or translation and neutralization of its protein product represent major pharmaceutical strategies to control inflammation. We have studied the role of ERK and p38 mitogen-activated protein (MAP) kinase in controlling TNF-alpha mRNA levels in differentiated THP-1 cells and in freshly purified human monocytes. We show here that it is possible to produce virtually complete inhibition of lipopolysaccharide-stimulated TNF-alpha mRNA accumulation by using a combination of ERK and p38 MAP kinase inhibitors. Furthermore, substantial inhibition is achievable using combinations of 1 microm of each inhibitor, whereas inhibitors used individually are incapable of producing complete inhibition even at high concentrations. Finally, addressing mechanisms involved, we show that inhibition of p38 MAP kinase selectively destabilizes TNF-alpha transcripts but does not affect degradation of c-jun transcripts. These results impinge on the controversy in the literature surrounding the mode of action of MAP kinase inhibitors on TNF-alpha mRNA and suggest the use of combinations of MAP kinase inhibitors as an effective anti-inflammatory strategy.

  7. Potent and Selective Peptidyl Boronic Acid Inhibitors of the Serine Protease Prostate-Specific Antigen

    Science.gov (United States)

    LeBeau, Aaron M.; Singh, Pratap; Isaacs, John T.; Denmeade, Samuel R.

    2012-01-01

    SUMMARY Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA’s catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme. PMID:18635003

  8. The selective serotonin reuptake inhibitor fluoxetine does not change rectal sensitivity and symptoms in patients with irritable bowel syndrome: a double blind, randomized, placebo-controlled study

    NARCIS (Netherlands)

    Kuiken, Sjoerd D.; Tytgat, Guido N. J.; Boeckxstaens, Guy E. E.

    2003-01-01

    BACKGROUND & AIMS: Although widely prescribed, the evidence for the use of antidepressants for the treatment of irritable bowel syndrome (IBS) is limited. In this study, we hypothesized that fluoxetine (Prozac), a selective serotonin reuptake inhibitor, has visceral analgesic properties, leading to

  9. Use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs in high doses increases mortality and risk of reinfarction in patients with prior myocardial infarction

    DEFF Research Database (Denmark)

    Sørensen, Rikke; Abildstrøm, Steen Zabell; Torp-Pedersen, C.

    2008-01-01

    The selective cyclooxygenase-2 (COX-2) inhibitors and other nonselective nonsteroidal antiinflammatory drugs (NSAIDs) have been associated with increased cardiovascular risk, but the risk in patients with established cardiovascular disease is unknown. In the present study, we analyzed the risk of...

  10. Selective Effects of Purine and Pyrimidine Analogues and of Respiratory Inhibitors on Perithecial Development and Branching in Sordaria 12

    Science.gov (United States)

    Lindenmayer, Aristid; Schoen, Howard F.

    1967-01-01

    The initiation of perithecia in the homothallic ascomycete Sordaria fimicola was completely suppressed, without seriously inhibiting vegetative growth, by growing the fungus on an agar medium containing one of the following additions: 1) 1 μm 5-fluorouracil, 2) 10 to 100 μm 6-azauracil, 8-azaguanine or 8-azaadenine, 3) 50 to 500 μm cyanide or azide, 4) 5% (w/v) casein hydrolysate. In contrast to the selective activity of the analogues of 3 RNA bases, whose inhibition could be reversed by the appropriate normal bases only, none of the analogues of thymine were active, neither were the thio-derivatives of RNA bases. Other inhibitors of RNA and protein synthesis, like actinomycin D, puromycin and cycloheximide, were also without selective activity, although the last of these inhibited perithecial maturation at 0.1 μm concentration but not initiation. Amino acid analogues were inactive, as were the metabolic inhibitors thiourea, 2,4-dinitrophenol and fluoride. The compounds which inhibited the formation of perithecia also lowered the branching frequency of leading hyphae, but not their linear growth rates. Consequently, the branch densities were diminished in their presence. Hypotheses to account for these findings are discussed in terms of inhibition of growth in general, of the synthesis of some specific messenger RNAs, and of RNA-mediated transport across membranes, the last of which seeming the most fruitful for further work. PMID:16656614

  11. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...... in the low µM range (1, a catechol), a subset of structurally related compounds was selected and tested against a panel of HDMs. In this subset, two inhibitors (2 and 10) had comparable affinities towards KDM4C and KDM6A but no effect on PHF8. One inhibitor restored H3K9me3 levels in KDM4C transfected U2-OS...

  12. [NF-κB signaling pathways and the future perspectives of bone disease therapy using selective inhibitors of NF-κB].

    Science.gov (United States)

    Jimi, Eijiro; Fukushima, Hidefumi

    2016-02-01

    The transcriptional factor nuclear factor κB(NF-κB)regulates the expression of a wide variety of genes that are involved in immune and inflammatory responses, proliferation, and tumorigenesis. NF-κB consists of five members, such as p65(RelA), RelB, c-Rel, p50/p105(NF-κB1), and p52/p100(NF-κB2). There are two distinct NF-κB activation pathways, termed the classical and alternative NF-κB signaling pathways. Since mice lacking both p50 and p52 subunits developed typical osteopetrosis, due to total lack of osteoclasts, NF-κB is also important osteoclast differentiation. A selective NF-κB inhibitor blocked receptor activator of NF-κB ligand(RANKL)-induced osteoclastogenesis both in vitro and in vivo. Recent findings have shown that inactivation of NF-κB enhances osteoblast differentiation in vitro and bone formation in vivo. NF-κB is constitutively activated in many cancers including oral squamous cell carcinoma(OSCC), and is involved in the invasive characteristics of OSCC. A selective NF-κB inhibitor also prevented jaw bone destruction by OSCC by reduced osteoclast numbers in animal model. Thus the inhibition of NF-κB might useful for the treatment of bone diseases, such as arthritis, osteoporosis, periodontitis, and bone invasion by OSCC by inhibiting bone resorption and by stimulating bone formation.

  13. Phosphodiesterase inhibitors in clinical urology.

    Science.gov (United States)

    Ückert, Stefan; Kuczyk, Markus A; Oelke, Matthias

    2013-05-01

    To date, benign diseases of the male and female lower urinary and genital tract, such as erectile dysfunction, bladder overactivity, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and symptoms of female sexual dysfunction (including arousal and orgasmic disorders), can be therapeutically approached by influencing the function of the smooth musculature of the respective tissues. The use of isoenzyme-selective phosphodiesterase (PDE) inhibitors is considered a great opportunity to treat various diseases of the human urogenital tract. PDE inhibitors, in particular the PDE5 (cyclic GMP PDE) inhibitors avanafil, lodenafil, sildenafil, tadalafil, udenafil and vardenafil, are regarded as efficacious, having a fast onset of drug action and an improved effect-to-adverse event ratio, combining a high response rate with the advantage of an on-demand intake. The purpose of this review is to summarize recent as well as potential future indications, namely, erectile dysfunction, Peyronie's disease, overactive bladder, urinary stone disease, lower urinary tract symptomatology secondary to benign prostatic hyperplasia and premature ejaculation, for the use of PDE inhibitors in clinical urology.

  14. The evolution of the matrix metalloproteinase inhibitor drug discovery program at abbott laboratories.

    Science.gov (United States)

    Wada, Carol K

    2004-01-01

    Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.

  15. Contribution of Helicobacter pylori infection to the risk of peptic ulcer bleeding in patients on nonsteroidal anti-inflammatory drugs, antiplatelet agents, anticoagulants, corticosteroids and selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Venerito, M; Schneider, C; Costanzo, R; Breja, R; Röhl, F-W; Malfertheiner, P

    2018-06-01

    Nonsteroidal anti-inflammatory drugs, low-dose aspirin, non-aspirin antiplatelet agents, anticoagulants, selective serotonin reuptake inhibitors and corticosteroids increase the risk of gastroduodenal bleeding. To determine in a retrospective cohort study the contribution of Helicobacter pylori infection to the risk of peptic ulcer bleeding in patients taking these drugs. Among patients with peptic ulcer disease diagnosed by endoscopy from 01/2004 to 12/2014 (N = 1719, 60% males, age 65.8 ± 14.5), 56.9% had peptic ulcer bleeding (cases) and 43.1% uncomplicated peptic ulcer disease (controls). Demographics, intake of nonsteroidal anti-inflammatory drugs, aspirin, non-aspirin antiplatelet agents, anticoagulants, selective serotonin reuptake inhibitors, proton pump inhibitors and corticosteroids were documented. H. pylori status was determined by histology, rapid urease test or serology. Adjusted odds ratios (OR) were estimated by logistic regression analysis. Helicobacter pylori infection increased the risk of peptic ulcer bleeding in nonsteroidal anti-inflammatory drug and aspirin users (OR = 2.91, 95% CI = 1.71-4.98 and OR = 2.23, 95% CI = 1.52-3.28, respectively), but not in patients on anticoagulants, selective serotonin reuptake inhibitor or corticosteroid therapy. H. pylori-positive status substantially increased the risk of peptic ulcer bleeding in patients on non-aspirin antiplatelet agents (OR = 4.37, 95% CI = 1.28-14.99), concomitant aspirin/nonsteroidal anti-inflammatory drug intake (OR = 5.85, 95% CI = 1.68-20.36) and combined antiplatelet therapy (OR = 8.43, 95% CI = 1.09-65.17). After further adjustment for proton pump inhibitor intake, H. pylori infection was still a risk factor for peptic ulcer bleeding in nonsteroidal anti-inflammatory drug and aspirin users. Helicobacter pylori infection increases the risk of peptic ulcer bleeding in peptic ulcer disease patients on nonsteroidal anti-inflammatory drugs, aspirin and non

  16. Anticonvulsant effect of minocycline on pentylenetetrazole-induced seizure in mice: involvement of nitric oxide and N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Amini-Khoei, Hossein; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Haj-Mirzaian, Arvin; Shirzadian, Armin; Hasanvand, Amin; Balali-Dehkordi, Shima; Hassanipoor, Mahsa; Dehpour, Ahmad Reza

    2018-03-20

    Anticonvulsant effects of minocycline have been explored recently. This study was designed to examine the anticonvulsant effect of acute administration of minocycline on pentylenetetrazole (PTZ)-induced seizures in mouse considering the possible role of nitric oxide (NO)/NMDA pathway. We induced seizure using intravenous administration of PTZ. Our results showed that acute administration of minocycline increased the seizure threshold. Furthermore, co-administration of sub-effective doses of the non-selective nitric oxide synthase (NOS) inhibitor, L-NAME (10 mg/kg) and the neuronal NOS inhibitor, 7-nitroindazole (40 mg/kg) enhanced the anticonvulsant effect of sub-effective dose of minocycline (40 mg/kg). We found that inducible NOS inhibitor, aminoguanidine (100 mg/kg), had no effect on the anti-seizure effect of minocycline. Moreover, L-arginine (60 mg/kg), as a NOS substrate, reduced the anticonvulsant effect of minocycline. We also demonstrated that pretreatment with NMDA receptor antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg) increased the anticonvulsant effect of sub-effective dose of minocycline. Results showed that minocycline significantly decreased the hippocampal nitrite level. Furthermore, co-administration of nNOS inhibitor like NMDA receptor antagonists augmented the effect of minocycline on the hippocampal nitrite level. In conclusion, we revealed that anticonvulsant effect of minocycline might be, at least in part, due to decline in constitutive hippocampal nitric oxide activity as well as inhibition of NMDA receptors.

  17. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  18. Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway.

    Science.gov (United States)

    Kim, Hye Yoom; Oh, Hyuncheol; Li, Xiang; Cho, Kyung Woo; Kang, Dae Gill; Lee, Ho Sub

    2011-01-27

    The vasorelaxant effect of ethanol extract of seeds of Oenothera odorata (Onagraceae) (one species of evening primroses) (ESOO) and its mechanisms involved were defined. Changes in vascular tension, guanosine 3',5'-cyclic monophosphate (cGMP) levels, and Akt expression were measured in carotid arterial rings from rats. Seeds of Oenothera odorata were extracted with ethanol (94%) and the extract was filtered, concentrated and stored at -70°C. ESOO relaxed endothelium-intact, but not endothelium-denuded, carotid arterial rings in a concentration-dependent manner. Similarly, ESOO increased cGMP levels of the carotid arterial rings. Pretreatment of endothelium-intact arterial rings with L-NAME, an inhibitor of nitric oxide synthase (NOS), or ODQ, an inhibitor of soluble guanylyl cyclase (sGC), blocked the ESOO-induced vasorelaxation and increase in cGMP levels. Nominally Ca(2+)-free but not L-typed Ca(2+) channel inhibition attenuated the ESOO-induced vasorelaxation. Thapsigargin, Gd(3+), and 2-aminoethyl diphenylborinate, modulators of store-operated Ca(2+) entry (SOCE), significantly attenuated the ESOO-induced vasorelaxation and increase in cGMP levels. Further, wortmannin, an inhibitor of Akt, attenuated the ESOO-induced vasorelaxation and increases in cGMP levels and phosphorylated Akt2 expression. K(+) channel blockade with TEA, 4-aminopyridine, and glibenclamide attenuated the ESOO-induced vascular relaxation. Taken together, the present study demonstrates that ESOO relaxes vascular smooth muscle via endothelium-dependent NO-cGMP signaling through activation of the Akt-eNOS-sGC pathway. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. The effect of the steroid sulfatase inhibitor (p-O-sulfamoyl)-tetradecanoyl tyramine (DU-14) on learning and memory in rats with selective lesion of septal-hippocampal cholinergic tract.

    Science.gov (United States)

    Babalola, P A; Fitz, N F; Gibbs, R B; Flaherty, P T; Li, P-K; Johnson, D A

    2012-10-01

    Dehydroepiandrosterone sulfate (DHEAS), is an excitatory neurosteroid synthesized within the CNS that modulates brain function. Effects associated with augmented DHEAS include learning and memory enhancement. Inhibitors of the steroid sulfatase enzyme increase brain DHEAS levels and can also facilitate learning and memory. This study investigated the effect of steroid sulfatase inhibition on learning and memory in rats with selective cholinergic lesion of the septo-hippocampal tract using passive avoidance and delayed matching to position T-maze (DMP) paradigms. The selective cholinergic immunotoxin 192 IgG-saporin (SAP) was infused into the medial septum of animals and then tested using a step-through passive avoidance paradigm or DMP paradigm. Peripheral administration of the steroid sulfatase inhibitor, DU-14, increased step-through latency following footshock in rats with SAP lesion compared to both vehicle treated control and lesioned animals (pmemory associated with contextual fear, but impairs acquisition of spatial memory tasks in rats with selective lesion of the septo-hippocampal tract. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Structure-based drug design of selective 5´-nucleotidases inhibitors

    Czech Academy of Sciences Publication Activity Database

    Pachl, Petr; Brynda, Jiří; Rosenberg, Ivan; Fábry, Milan; Řezáčová, Pavlína

    2011-01-01

    Roč. 18, č. 1 (2011), s. 33-34 ISSN 1211-5894. [Discussions in Structural Molecular Biology /9./. 24.03.2011-26.03.2011, Nové Hrady] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520701 Keywords : inhibitor design * nucleotidase * Xray crystalography Subject RIV: EB - Genetics ; Molecular Biology

  1. Do Different Cyclooxygenase Inhibitors Impair Rotator Cuff Healing in a Rabbit Model?

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2015-01-01

    Conclusions: Nonsteroidal anti-inflammatory drugs can delay tendon healing in the early stage after rotator cuff repair. Compared with nonselective COX inhibitors, selective COX-2 inhibitors significantly impact tendon healing.

  2. Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression.

    Science.gov (United States)

    Stanquini, Laura Alves; Biojone, Caroline; Guimarães, Francisco Silveira; Joca, Sâmia Regiane

    2017-11-20

    Nitric oxide synthase (NOS) inhibitors induce antidepressant-like effects in animal models sensitive to acute drug treatment such as the forced swimming test. However, it is not yet clear if repeated treatment with these drugs is required to induce antidepressant-like effects in preclinical models. The aim of this study was to test the effect induced by acute or repeated (7 days) treatment with 7-nitroindazole (7-NI), a preferential inhibitor of neuronal NOS, in rats submitted to the learned helplessness (LH) model. In addition, we aimed at investigating if 7-NI treatment would increase brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus, similarly to the effect of prototype antidepressants. Animals were submitted to a pre-test (PT) session with inescapable footshocks or habituation (no shocks) to the experimental shuttle box. Six days later they were exposed to a test with escapable footshocks. Independent groups received acute (a single injection after PT or before test) or repeated (once a day for 7 days) treatment with vehicle or 7-NI (30 mg/kg). Repeated, but not acute, treatment with 7-NI attenuated LH development. The effect was similar to repeated imipramine treatment. Moreover, in an independent experimental group, only repeated treatment with 7-NI and imipramine increased BDNF protein levels in the hippocampus. The results suggest the nitrergic system could be a target for the treatment of depressive-like conditions. They also indicate that, similar to the positive control imipramine, the antidepressant-like effects of NOS inhibition could involve an increase in hippocampal BDNF levels.

  3. Changes of nitric oxide system and lipid peroxidation parameters in the digestive system of rats under conditions of acute stress, and use of nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Fomenko Iryna

    2015-03-01

    Full Text Available The use of nonsteroidal anti-inflammatory drugs (NSAIDs in combination with being physiologically stressed often occurs in in the course of different pathologies. This situation may result in the alteration of digestive system functioning. The effect of stress brings about changes in the activity of nitric oxide synthase (NOS, arginase, cyclooxygenase (COX and lipid peroxidation, whereas the use of NSAIDs interrupts the multiple functions of the cell via the inhibition of prostaglandins (PGs synthesis. Taking into account that NOS and COX-systems are connected in their regulation, the aim of the study was to determine the role played by NOS and lipid peroxidation under conditions of the combined action of NSAIDs and stress. In our study, male rats were used. The NSAIDs (naproxen - a non-selective COX inhibitor, celecoxib - a selective COX-2 blocker, and the compound 2A5DHT (which is the active substance of dual COX, and the lipoxygenase (LOX inhibitor, darbufelone were all administered at a dose 10 mg/kg, prior to water restraint stress (WRS. WRS brought about an increase of inducible NOS (iNOS activity in the intestinal mucosal and muscular membranes, as well as in the pancreas. Because of this, constitutive NOS izoform (cNOS and arginase activities decreased. Moreover, the MDA concentration increased, indicating the development of oxidative stress. In our work, pretreatment with naproxen, as in the WRS model, engendered a decrease in iNOS activity. What is more, administration of Celecoxib did not change iNOS activity, as compared to WRS alone, and it showed a tendency to reduce lipid peroxidation. In addition, 2A5DHT prior WRS brought about a decrease of iNOS activity, with the subsequent rise of cNOS activity. Of note, MDA concentration decreased in all studied organs, indicating the reduction of lipid peroxidation under the action of the darbufelone active substance.

  4. Serum Prolactin Levels in Patients with Major Depressive Disorder Receiving Selective Serotonin-Reuptake Inhibitor Monotherapy for 3 Months: A Prospective Study

    OpenAIRE

    Park, Young-Min

    2017-01-01

    Objective It is unclear whether selective serotonin-reuptake inhibitors (SSRIs) can significantly increase the prolactin level. The purpose of this study was to identify the relationship between the prolactin level and the administration of SSRIs such as escitalopram and sertraline. An additional purpose was to determine whether the elevation of prolactin differs between escitalopram and sertraline treatment. Methods Serum prolactin levels were measured at baseline and after 3 months in 23 pa...

  5. Selective Serotonin Reuptake Inhibitors in Human Pregnancy: To Treat or Not to Treat?

    Directory of Open Access Journals (Sweden)

    Orna Diav-Citrin

    2012-01-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are increasingly prescribed during pregnancy. The purpose of the present paper is to summarize and evaluate the current evidence for the risk/benefit analysis of SSRI use in human pregnancy. The literature has been inconsistent. Although most studies have not shown an increase in the overall risk of major malformations, several studies have suggested that SSRIs may be associated with a small increased risk for cardiovascular malformations. Others have noted associations between SSRIs and specific types of rare major malformations. In some studies, there appears to be a small increased risk for miscarriages, which may be associated with the underlying maternal condition. Neonatal effects have been described in up to 30% of neonates exposed to SSRIs late in pregnancy. Persistent pulmonary hypertension of the newborn has also been described with an absolute risk of <1%. The risk associated with treatment discontinuation, for example, higher frequency of relapse and increased risk of preterm delivery, should also be considered. The overall benefit of treatment seems to outweigh the potential risks.

  6. Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of congenital anomalies

    DEFF Research Database (Denmark)

    Wemakor, A.; Casson, K.; Garne, E.

    2015-01-01

    Objective / Background The Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants are widely prescribed in pregnancy, but there is evidence that they may cause congenital anomalies, particularly congenital heart defects (CHD). Objective: To determine the specificity of association between...... first trimester pregnancy exposure to individual SSRI and specific congenital anomalies (CAs). Methods Population-based case-malformed control study covering 3.3 million births from 12 EUROCAT registries 1995-2009. CAs included non-syndromic live births, fetal deaths and terminations of pregnancy......% confidence intervals (CI) were calculated adjusted for registry. Results SSRI use in first trimester pregnancy was associated with CHD overall (OR 1.38, 95 % CI 1.05-1.82, n=109); and with severe CHDs (OR 1.56, 95 % CI 1.03-2.38, n=29). Specific associations between SSRI and Tetralogy of Fallot (OR 3.36, 95...

  7. QT interval prolongation in users of selective serotonin reuptake inhibitors in an elderly surgical population

    DEFF Research Database (Denmark)

    van Haelst, Ingrid M M; van Klei, Wilton A; Doodeman, Hieronymus J

    2014-01-01

    OBJECTIVE: To investigate the association between the use of a selective serotonin reuptake inhibitor (SSRI) and the occurrence of QT interval prolongation in an elderly surgical population. METHOD: A cross-sectional study was conducted among patients (> 60 years) scheduled for outpatient...... preanesthesia evaluation in the period 2007 until 2012. The index group included elderly users of an SSRI. The reference group of nonusers of antidepressants was matched to the index group on sex and year of scheduled surgery (ratio, 1:1). The primary outcome was the occurrence of QT interval prolongation shown...... on electrocardiogram. The QT interval was corrected for heart rate (QTc interval). The secondary outcome was the duration of the QTc interval. The outcomes were adjusted for confounding by using regression techniques. RESULTS: The index and reference groups included 397 users of an SSRI and 397 nonusers, respectively...

  8. An Open-Label Pilot Study of Combined Augmentation With Creatine Monohydrate and 5-Hydroxytryptophan for Selective Serotonin Reuptake Inhibitor- or Serotonin-Norepinephrine Reuptake Inhibitor-Resistant Depression in Adult Women.

    Science.gov (United States)

    Kious, Brent M; Sabic, Hana; Sung, Young-Hoon; Kondo, Douglas G; Renshaw, Perry

    2017-10-01

    Many women with major depressive disorder (MDD) respond inadequately to standard treatments. Augmentation of conventional antidepressants with creatine monohydrate and 5-hydroxytryptophan (5-HTP) could correct deficits in serotonin production and brain bioenergetics associated with depression in women, yielding synergistic benefit. We describe an open-label study of 5-HTP and creatine augmentation in women with MDD who had failed selective serotonin reuptake inhibitor (SSRI) or serotonin-norepinephrine reuptake inhibitor (SNRI) monotherapy. Fifteen women who were adequately adherent to an SSRI or SNRI and currently experiencing MDD, with a 17-item Hamilton Depression Rating Scale (HAM-D) score of 16 or higher, were treated with 5 g of creatine monohydrate daily and 100 mg of 5-HTP twice daily for 8 weeks, with 4 weeks of posttreatment follow-up. The primary outcome was change in mean HAM-D scores. Mean HAM-D scores declined from 18.9 (SD, 2.5) at pretreatment visits to 7.5 (SD, 4.4) (P creatine and 5-HTP may represent an effective augmentation strategy for women with SSRI- or SNRI-resistant depression. Given the limitations of this small, open-label trial, future study in randomized, placebo-controlled trials is warranted.

  9. Multifaceted NOS Instruction: Contextualizing Nature of Science with Documentary Films

    Science.gov (United States)

    Bloom, Mark; Binns, Ian C.; Koehler, Catherine

    2015-01-01

    This research focuses on inservice science teachers' conceptions of nature of science (NOS) before and after a two-week intensive summer professional development (PD). The PD combined traditional explicit NOS instruction, numerous interactive interventions that highlighted NOS aspects, along with documentary films that portrayed NOS in context of…

  10. Synthesis of 14C- and 3H-labeled fluoxetine, a selective serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Wong, D.T.; Kau, D.

    1987-01-01

    Fluoxetine (N-methyl-γ-(4-(trifluoromethyl)phenoxy) benzenepropanamine) is a potent, highly selective serotonin uptake inhibitor that is useful in treating a variety of major psychiatric derangements. We have synthesized this compound in 14 C- and 3 H-labeled forms. The tritium label was introduced in the final step by catalytic dehalogenation of the brominated fluoxetine precursor. Reaction conditions could be controlled such that catalytic hydrogenolysis of the labile C-O benzylic bond was minimized. Following HPLC purification, [ 3 H]-fluoxetine was obtained in a state of high radiochemical purity (98%) and specific activity (20.4 Ci/mmol). The 14 C-label was introduced in the final step via a nucleophilic aromatic substitution reaction between the sodium salt of α-(2-(methylamino)ethyl)benzenemethanol and uniformly ring-labeled p-chlorobenzotrifluoride. Following purification by flash chromatography, [ 14 C]-fluoxetine was obtained in 98.3% radiochemical purity with a specific activity of 5.52 mCi/mmol. (author)

  11. Santacruzamate A, a Potent and Selective Histone Deacetylase (HDAC) Inhibitor from the Panamanian Marine Cyanobacterium cf. Symploca sp.

    Science.gov (United States)

    Pavlik, Christopher M.; Wong, Christina Y.B.; Ononye, Sophia; Lopez, Dioxelis D.; Engene, Niclas; McPhail, Kerry L.; Gerwick, William H.; Balunas, Marcy J.

    2013-01-01

    A dark-brown tuft-forming cyanobacterium, morphologically resembling the genus Symploca, was collected during an expedition to the Coiba National Park, a UNESCO World Heritage Site on the Pacific coast of Panama. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is 4.5% divergent from the type strain for Symploca, and thus is likely a new genus. Fractionation of the crude extract led to the isolation of a new cytotoxin, designated santacruzamate A (1), which has several structural features in common with suberoylanilide hydroxamic acid [(2), SAHA, trade name Vorinostat®], a clinically approved histone deacetylase (HDAC) inhibitor used to treat refractory cutaneous T-cell lymphoma. Recognition of the structural similarly of 1 and SAHA led to the characterization of santacruzamate A as a picomolar level selective inhibitor of HDAC2, a Class I HDAC, with relatively little inhibition of HDAC4 or HDAC6, both Class II HDACs. As a result, chemical syntheses of santacruzamate A as well as a structurally intriguing hybrid molecule, which blends aspects of both agents (1 and 2), were achieved and evaluated for their HDAC activity and specificity. PMID:24164245

  12. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliou, Stamatia; Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Mulligan, Rory; Joachimiak, Andrzej; Mucha, Artur

    2014-10-09

    Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor-enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain. The constitution of P1'-extended structures was rationally designed and the lead, phosphinic dipeptide hPhePψ[CH2]Phe, was modified in a single position. Introducing a heteroatom/heteroatom-based fragment to either the P1 or P1' residue required new synthetic pathways. The compounds in the refined structure were low nanomolar and subnanomolar inhibitors of N. meningitides, porcine and human APNs, and the reference leucine aminopeptidase (LAP). The unnatural phosphinic dipeptide analogs exhibited a high affinity for monozinc APNs associated with a reasonable selectivity versus dizinc LAP. Another set of crystal structures containing the NmAPN dipeptide ligand were used to verify and to confirm the predicted binding modes; furthermore, novel contacts, which were promising for inhibitor development, were identified, including a π-π stacking interaction between a pyridine ring and Tyr372.

  13. Aromatase inhibitors in pediatrics.

    Science.gov (United States)

    Wit, Jan M; Hero, Matti; Nunez, Susan B

    2011-10-25

    Aromatase, an enzyme located in the endoplasmic reticulum of estrogen-producing cells, catalyzes the rate-limiting step in the conversion of androgens to estrogens in many tissues. The clinical features of patients with defects in CYP19A1, the gene encoding aromatase, have revealed a major role for this enzyme in epiphyseal plate closure, which has promoted interest in the use of inhibitors of aromatase to improve adult height. The availability of the selective aromatase inhibitors letrozole and anastrozole--currently approved as adjuvant therapy for breast cancer--have stimulated off-label use of aromatase inhibitors in pediatrics for the following conditions: hyperestrogenism, such as aromatase excess syndrome, Peutz-Jeghers syndrome, McCune-Albright syndrome and functional follicular ovarian cysts; hyperandrogenism, for example, testotoxicosis (also known as familial male-limited precocious puberty) and congenital adrenal hyperplasia; pubertal gynecomastia; and short stature and/or pubertal delay in boys. Current data suggest that aromatase inhibitors are probably effective in the treatment of patients with aromatase excess syndrome or testotoxicosis, partially effective in Peutz-Jeghers and McCune-Albright syndrome, but probably ineffective in gynecomastia. Insufficient data are available in patients with congenital adrenal hyperplasia or functional ovarian cysts. Although aromatase inhibitors appear effective in increasing adult height of boys with short stature and/or pubertal delay, safety concerns, including vertebral deformities, a decrease in serum HDL cholesterol levels and increase of erythrocytosis, are reasons for caution.

  14. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    Science.gov (United States)

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-04

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.

  15. Structure-based virtual screening of molecular libraries as cdk2 inhibitors

    International Nuclear Information System (INIS)

    Riaz, U.; Khaleeq, M.

    2011-01-01

    CDK2 inhibitor is an important target in multiple processes associated with tumor growth and development, including proliferation, neovascularization, and metastasis. In this study, hit identification was performed by virtual screening of commercial and in-house compound libraries. Docking studies for the hits were performed, and scoring functions were used to evaluate the docking results and to rank ligand-binding affinities. Subsequently, hit optimization for potent and selective candidate CDK2 inhibitors was performed through focused library design and docking analyses. Consequently, we report that a novel compound with an IC50 value of 89 nM, representing 2-Amino-4,6-di-(4',6'-dibromophenyl)pyrimidine 1, is highly selective for CDK2 inhibitors. The docking structure of compound 1 with CDK2 inhibitor disclosed that the NH moiety and pyrimidine ring appeared to fit tightly into the hydrophobic pocket of CDK2 inhibitor. Additionally, the pyrimidine NH forms a hydrogen bond with the carboxyl group of Asp348. These results confirm the successful application of virtual screening studies in the lead discovery process, and suggest that our novel compound can be an effective CDK2 inhibitor candidate for further lead optimization. (author)

  16. Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression

    Science.gov (United States)

    Saldarriaga, Omar A.; Travi, Bruno L.; Choudhury, Goutam Ghosh; Melby, Peter C.

    2012-01-01

    IFN-γ/LPS-activated hamster (Mesocricetus auratus) macrophages express significantly less iNOS (NOS2) than activated mouse macrophages, which contributes to the hamster's susceptibility to intracellular pathogens. We determined a mechanism responsible for differences in iNOS promoter activity in hamsters and mice. The HtPP (1.2 kb) showed low basal and inducible promoter activity when compared with the mouse, and sequences within a 100-bp region (−233 to −133) of the mouse and hamster promoters influenced this activity. Moreover, within this 100 bp, we identified a smaller region (44 bp) in the mouse promoter, which recovered basal promoter activity when swapped into the hamster promoter. The mouse homolog (100-bp region) contained a cis-element for NF-IL-6 (−153/−142), which was absent in the hamster counterpart. EMSA and supershift assays revealed that the hamster sequence did not support the binding of NF-IL-6. Introduction of a functional NF-IL-6 binding sequence into the hamster promoter or its alteration in the mouse promoter revealed the critical importance of this transcription factor for full iNOS promoter activity. Furthermore, the binding of NF-IL-6 to the iNOS promoter (−153/−142) in vivo was increased in mouse cells but was reduced in hamster cells after IFN-γ/LPS stimulation. Differences in the activity of the iNOS promoters were evident in mouse and hamster cells, so they were not merely a result of species-specific differences in transcription factors. Thus, we have identified unique DNA sequences and a critical transcription factor, NF-IL-6, which contribute to the overall basal and inducible expression of hamster iNOS. PMID:22517919

  17. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Pantouris, Georgios; Mowat, Christopher G., E-mail: C.G.Mowat@ed.ac.uk

    2014-01-03

    Highlights: •∼2800 National Cancer Institute USA compounds have been screened as potential inhibitors of TDO and/or IDO. •Seven compounds with anti-tumour properties have been identified as potent inhibitors. •NSC 36398 (taxifolin, dihydroquercetin) is selective for TDO with a K{sub i} of 16 M. •This may help further our understanding of the role of TDO in cancer. -- Abstract: The involvement of tryptophan 2,3-dioxygenase (TDO) in cancer biology has recently been described, with the enzyme playing an immunomodulatory role, suppressing antitumour immune responses and promoting tumour cell survival and proliferation. This finding reinforces the need for specific inhibitors of TDO that may potentially be developed for therapeutic use. In this work we have screened ∼2800 compounds from the library of the National Cancer Institute USA and identified seven potent inhibitors of TDO with inhibition constants in the nanomolar or low micromolar range. All seven have antitumour properties, killing various cancer cell lines. For comparison, the inhibition potencies of these compounds were tested against IDO and their inhibition constants are reported. Interestingly, this work reveals that NSC 36398 (dihydroquercetin, taxifolin), with an in vitro inhibition constant of ∼16 μM, is the first TDO-selective inhibitor reported.

  18. Inhibitor selection for internal corrosion control of pipelines. 1: Laboratory methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S.; Revie, R.W.; Attard, M. [CANMET, Ottawa, Ontario (Canada). Materials Technology Lab.; Demoz, A.; Sun, H.; Donini, J.C.; Michaelian, K. [CANMET, Devon, Alberta (Canada). Western Research Centre

    1999-11-01

    Various laboratory methodologies to evaluate corrosion inhibitors are reviewed. Two new methodologies, high-temperature, high-pressure jet impingement (HTHPJI) and high-temperature, high-pressure rotating electrode (HTHPRE), are presented. Flow patterns and hydrodynamic parameters of rotating cage are presented.

  19. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas Eiland; Clausen, Mads Hartvig

    2016-01-01

    Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function, and ther......Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function...

  20. Novel ROCK inhibitors for the treatment of pulmonary arterial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Duncan; Hollingworth, Greg; Soldermann, Nicolas; Sprague, Elizabeth; Schuler, Walter; Vangrevelinghe, Eric; Duggan, Nicholas; Thomas, Matthew; Kosaka, Takatoshi; Waters, Nigel; van Eis, Maurice J. (Novartis)

    2014-10-01

    A novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.

  1. Effects of selective serotonin reuptake inhibitors on thought-action fusion, metacognitions, and thought suppression in obsessive-compulsive disorder.

    Science.gov (United States)

    Besiroglu, Lutfullah; Çetinkaya, Nuralay; Selvi, Yavuz; Atli, Abdullah

    2011-01-01

    We aimed to assess whether cognitive processes change over time in patients with obsessive-compulsive disorder (OCD) receiving selective serotonin reuptake inhibitors without cognitive behavioral therapy and to investigate the factors associated with probable cognitive changes. During the 16 weeks of the study, 55 patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria for OCD received open-label treatment with sertraline (100-200 mg/d) or fluoxetine (40-80 mg/d) and were assessed using the Yale-Brown Obsessive-Compulsive Scale, Beck Depression Inventory (BDI), Thought-Action Fusion Scale (TAFS), Metacognitions Questionnaire (MCQ-30), and White Bear Suppression Inventory (WBSI). The Yale-Brown Obsessive-Compulsive Scale (P < .001), BDI (P < .001), TAFS morality (P < .005), MCQ-30 (P < .01), and WBSI (P < .005) scores at follow-up were significantly lower than baseline scores. When we excluded OCD patients with depressive disorder (n = 12), statistical significance in paired comparisons for MCQ and WBSI disappeared. Similarly, when OCD patients with religious obsessions (n = 16) were excluded, paired comparisons for MCQ and TAF morality were not statistically significant. Changes in BDI, TAFS morality, MCQ-30, and WBSI (P < .005) were significantly correlated with changes in severity of obsessions, but not that of compulsions. After controlling for the change in depression severity, significant correlations between changes in obsessive and cognitive scales did not continue to have statistical significance. The BDI changes (P < .05) significantly explained the changes in symptom severity in a linear regression model. Our findings suggest that selective serotonin reuptake inhibitors can change appraisals of obsessive intrusions via their effects on negative emotions. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram

    NARCIS (Netherlands)

    Dijkhuizen, B; deMonchy, JGR; Dubois, AEJ; Gerritsen, J; Kauffman, HF

    We quantitatively determined whether the selective phosphodiesterase (PDE) inhibitor, rolipram, inhibits changes in the adhesion molecules CD11b and L-selectin on platelet-activating factor (PAF)-stimulated human neutrophils and eosinophils in vitro. Incubations were performed in human whole blood

  3. Structural Implications for Selective Targeting of PARPs.

    Science.gov (United States)

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  4. Design, synthesis, molecular modeling and biological evaluation of novel diaryl heterocyclic analogs as potential selective cyclooxygenase-2 (COX-2 inhibitors

    Directory of Open Access Journals (Sweden)

    Deema A. Al-Turki

    2017-01-01

    Full Text Available New series of 3,4-diaryl-2-thioxoimidazolidin-4-ones and 3-alkylthio-4,5-diaryl-4H-1,2,4-triazoles were designed, synthesized and evaluated for their activity as anti-inflammatory agents. Compounds 20, 21, 23 and 34 are highly selective inhibitors of COX-2 enzyme at a concentration of 100 mM relative to celecoxib, the standard reference. (±-3-(4-Phenoxy-phenyl-5-phenyl-2-thioxoimidazolidin-4-ones 23 exhibited the most active anti-inflammatory agent.

  5. Enzastaurin (LY317615), a Protein Kinase C Beta Selective Inhibitor, Enhances Antiangiogenic Effect of Radiation

    International Nuclear Information System (INIS)

    Willey, Christopher D.; Xiao Dakai; Tu Tianxiang; Kim, Kwang Woon; Moretti, Luigi; Niermann, Kenneth J.; Tawtawy, Mohammed N.; Quarles, Chad C. Ph.D.; Lu Bo

    2010-01-01

    Purpose: Angiogenesis has generated interest in oncology because of its important role in cancer growth and progression, particularly when combined with cytotoxic therapies, such as radiotherapy. Among the numerous pathways influencing vascular growth and stability, inhibition of protein kinase B(Akt) or protein kinase C(PKC) can influence tumor blood vessels within tumor microvasculature. Therefore, we wanted to determine whether PKC inhibition could sensitize lung tumors to radiation. Methods and Materials: The combination of the selective PKCβ inhibitor Enzastaurin (ENZ, LY317615) and ionizing radiation were used in cell culture and a mouse model of lung cancer. Lung cancer cell lines and human umbilical vascular endothelial cells (HUVEC) were examined using immunoblotting, cytotoxic assays including cell proliferation and clonogenic assays, and Matrigel endothelial tubule formation. In vivo, H460 lung cancer xenografts were examined for tumor vasculature and proliferation using immunohistochemistry. Results: ENZ effectively radiosensitizes HUVEC within in vitro models. Furthermore, concurrent ENZ treatment of lung cancer xenografts enhanced radiation-induced destruction of tumor vasculature and proliferation by IHC. However, tumor growth delay was not enhanced with combination treatment compared with either treatment alone. Analysis of downstream effectors revealed that HUVEC and the lung cancer cell lines differed in their response to ENZ and radiation such that only HUVEC demonstrate phosphorylated S6 suppression, which is downstream of mTOR. When ENZ was combined with the mTOR inhibitor, rapamycin, in H460 lung cancer cells, radiosensitization was observed. Conclusion: PKC appears to be crucial for angiogenesis, and its inhibition by ENZ has potential to enhance radiotherapy in vivo.

  6. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    Science.gov (United States)

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  7. Aromatase inhibitors and breast cancer prevention.

    Science.gov (United States)

    Litton, Jennifer Keating; Arun, Banu K; Brown, Powel H; Hortobagyi, Gabriel N

    2012-02-01

    Endocrine therapy with selective estrogen receptor modulators (SERMs) has been the mainstay of breast cancer prevention trials to date. The aromatase inhibitors, which inhibit the final chemical conversion of androgens to estrogens, have shown increased disease-free survival benefit over tamoxifen in patients with primary hormone receptor-positive breast cancer, as well as reducing the risk of developing contralateral breast cancers. The aromatase inhibitors are being actively evaluated as prevention agents for women with a history of ductal carcinoma in situ as well as for women who are considered to be at high risk for developing primary invasive breast cancer. This review evaluates the available prevention data, as evidenced by the decrease in contralateral breast cancers, when aromatase inhibitors are used in the adjuvant setting, as well as the emerging data of the aromatase inhibitors specifically tested in the prevention setting for women at high risk. Exemestane is a viable option for breast cancer prevention. We continue to await further follow-up on exemestane as well as other aromatase inhibitors in the prevention setting for women at high risk of developing breast cancer or with a history of ductal carcinoma in situ.

  8. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

    Directory of Open Access Journals (Sweden)

    Nadine Ruderisch

    2017-10-01

    Full Text Available Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ antibodies and secretase inhibitors. However, the blood-brain barrier (BBB limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.

  9. Modulation of Matrix Metalloproteinase 14, Tissue Inhibitor of Metalloproteinase 3, Tissue Inhibitor of Metalloproteinase 4, and Inducible Nitric Oxide Synthase in the Development of Periapical Lesions.

    Science.gov (United States)

    Cassanta, Lorena Teodoro de Castro; Rodrigues, Virmondes; Violatti-Filho, Jose Roberto; Teixeira Neto, Benedito Alves; Tavares, Vinícius Marques; Bernal, Eduarda Castelo Branco Araujo; Souza, Danila Malheiros; Araujo, Marcelo Sivieri; de Lima Pereira, Sanivia Aparecida; Rodrigues, Denise Bertulucci Rocha

    2017-07-01

    Periapical cysts and granulomas are chronic lesions caused by an inflammatory immune response against microbial challenge in the root canal. Different cell types, cytokines, and molecules have been associated with periapical lesion formation and expansion. Therefore, because of the chronic inflammatory state of these lesions, the aim of this study was to evaluate the in situ expression of matrix metalloproteinase (MMP)-14 and -19, tissue inhibitor of metalloproteinase (TIMP)-3 and -4, CD68, and inducible nitric oxide synthase (iNOS) in periapical cysts and granulomas. Sixteen cases of periapical cysts and 15 cases of periapical granulomas were analyzed. Ten normal dental pulps were used as the negative control. Immunohistochemistry was performed with anti-MMP-19, anti-MMP-14, anti-TIMP-3, anti-TIMP-4, anti-iNOS, and anti-CD68 antibodies. The expression of TIMP-3, TIMP-4, iNOS, and CD68 was significantly higher in both the cyst and granuloma groups than in the control group. TIMP-4 was also significantly higher in cases of chronic apical abscess. There was also a significant difference in the expression of MMP-14 between the cyst and control groups. However, there were no differences in the expression of MMP-19 between the 3 groups. Our data suggest that the expression of MMP-14, TIMP-3, and TIMP-4 is associated with the development of periapical lesions. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms.

    Science.gov (United States)

    Lazuko, Svetlana S; Kuzhel, Olga P; Belyaeva, Lyudmila E; Manukhina, Eugenia B; Fred Downey, H; Tseilikman, Olga B; Komelkova, Maria V; Tseilikman, Vadim E

    2018-01-01

    Posttraumatic stress disorder (PTSD) is associated with myocardial injury, but changes in coronary regulatory mechanisms in PTSD have not been investigated. This study evaluated the effect of PTSD-inducing stress on coronary tone and its regulation by nitric oxide (NO) and voltage-gated K + channels. PTSD was induced by exposing rats to predator stress, 15 min daily for 10 days, followed by 14 stress-free days. Presence of PTSD was confirmed by the elevated plus-maze test. Coronary tone was evaluated from changes in coronary perfusion pressure of Langendorff isolated hearts. Predator stress induced significant decreases in coronary tone of isolated hearts and in blood pressure of intact rats. L-NAME, a non-selective NO synthase (NOS) inhibitor, but not S-MT, a selective iNOS inhibitor, and increased coronary tone of control rats. In PTSD rats, both L-NAME and S-MT increased coronary tone. Therefore, the stress-induced coronary vasodilation resulted from NO overproduction by both iNOS and eNOS. NOS induction was apparently due to systemic inflammation as evidenced by increased serum interleukin-1β and C-reactive protein in PTSD rats. Decreased corticosterone in PTSD rats may have contributed to inflammation and its effect on coronary tone. PTSD was also associated with voltage-gated K + channel dysfunction, which would have also reduced coronary tone.

  11. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH: Discovery, Synthesis and Development

    Directory of Open Access Journals (Sweden)

    Rhys B. Murphy

    2016-05-01

    Full Text Available Dimethylarginine dimethylaminohydrolase (DDAH is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA and monomethyl arginine (l-NMMA, with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO production, mediated via its biochemical interaction with the nitric oxide synthase (NOS family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.

  13. SGLT2 inhibitors: molecular design and potential differences in effect.

    Science.gov (United States)

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  14. Fluoxetine Is a Potent Inhibitor of Coxsackievirus Replication

    OpenAIRE

    Zuo, Jun; Quinn, Kevin K.; Kye, Steve; Cooper, Paige; Damoiseaux, Robert; Krogstad, Paul

    2012-01-01

    No antiviral drugs currently exist for the treatment of enterovirus infections, which are often severe and potentially life threatening. Molecular screening of small molecule libraries identified fluoxetine, a selective serotonin reuptake inhibitor, as a potent inhibitor of coxsackievirus replication. Fluoxetine did not interfere with either viral entry or translation of the viral genome. Instead, fluoxetine and its metabolite norfluoxetine markedly reduced the synthesis of viral RNA and prot...

  15. Selective serotonin reuptake inhibitors and venlafaxine in pregnancy: Changes in drug disposition.

    Directory of Open Access Journals (Sweden)

    Andreas Austgulen Westin

    Full Text Available Pregnancy may cause changes in drug disposition. The clinical consequences may be profound and even counterintuitive; in some cases pregnant women may need more than twice their usual drug dose in order to maintain therapeutic drug levels. For antidepressants, evidence on drug disposition in pregnancy is scarce. The aim of this study was to determine the effects of pregnancy on serum levels of selective serotonin reuptake inhibitors (SSRIs and venlafaxine in a large and naturalistic patient material, in order to provide tentative dose recommendations for pregnant women.Using patient data from two routine therapeutic drug monitoring (TDM services in Norway with linkage to the national birth registry, dose-adjusted serum drug concentrations of SSRIs and venlafaxine during pregnancy were compared to the women's own baseline (non-pregnant values, using a linear mixed model.Overall, the TDM databases contained 196,726 serum concentration measurements from 54,393 women. After data linkage and drug selection (SSRIs or venlafaxine only, we identified 367 analyses obtained from a total of 290 pregnancies in 281 women, and 420 baseline observations from the same women. Serum concentrations in the third trimester were significantly lower than baseline for paroxetine (-51%; 95% confidence interval [CI], -66%, -30%; p<0.001, fluvoxamine (-56%; CI, -75%, -23%; p = 0.004 and citalopram (-24%; CI, -38%, -7%; p = 0,007, and higher than baseline for sertraline (+68%; CI, +37%, +106%; p<0.001. For escitalopram, fluoxetine and venlafaxine concentrations did not change significantly.For paroxetine and fluvoxamine the pronounced decline in maternal drug serum concentrations in pregnancy may necessitate a dose increase of about 100% during the third trimester in order to maintain stable concentrations. For fluoxetine, venlafaxine, citalopram, escitalopram and sertraline, the present study indicates that dose adjustments are generally not necessary during pregnancy.

  16. The modulation of radiosensitivity by combined treatment of selective COX-2 inhibitor, NS 398 and EGF receptor blocker AG 1478 in HeLa cell line

    International Nuclear Information System (INIS)

    Youn, Seon Min; Oh, Young Kee; Kim, Joo Heon; Park, Mi Ja; Seong, In Ock; Kang, Ki Mun; Chai, Gyu Yong

    2005-01-01

    Selective inhibition of multiple molecular targets may improve the antitumor activity of radiation. Two specific inhibitors of selective cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) were combined with radiation on the HeLa cell line. To investigate cooperative mechanism with selective COX-2 inhibitor and EGFR blocker, in vitro experiments were done. Antitumor effect was obtained by growth inhibition and apoptosis analysis by annexin V-Flous method. Radiation modulation effects were determined by the clonogenic cell survival assay. Surviving fractions at 2 Gy (SF 2 ) and dose enhancement radio at a surviving fraction of 0.25 were evaluated. To investigate the mechanism of the modulation of radiosensitivity, the cell cycle analyses were done by flow cytometry. The bcl-2 and bax expressions were analyzed by western blot. A cooperative effect were observed on the apoptosis of the HeLa cell line when combination of the two drugs, AG 1478 and NS 398 with radiation at the lowest doses, apoptosis of 22.70% compare with combination of the one drug with radiation, apoptosis of 8.49%. In cell cycle analysis, accumulation of cell on G 0 /G 1 phase and decrement of S phase fraction was observed from 24 hours to 72 hours after treatment with radiation, AG 1478 and NS 398. The combination of NS 398 and AG 1478 enhanced radiosensitivity in a concentration-dependent manner in HeLa cells with dose enhancement ratios of 3.00 and SF 2 of 0.12 but the combination of one drug with radiation was not enhanced radiosensitivity with dose enhancement ratios of 1.12 and SF2 of 0.68 (ρ = 0.005). The expression levels of bcl-2 and bax were reduced when combined with AG 1478 and NS 398. Our results indicate that the selective COX-2 inhibitor and EGFR blocker combined with radiation have potential additive or cooperative effects on radiation treatment and may act through various mechanisms including direct inhibition of tumor cell proliferation, suppression of tumor cell

  17. Morphological changes of intestinal mucosa in patients with different clinical variants of irritable bowel syndrome using tetracyclic antidepressants and selective serotonin reuptake inhibitor

    OpenAIRE

    Nagieva S.; Svintsitskyy A.; Kuryk O.; Korendovych I.

    2015-01-01

    Objective. To assess histological changes of colonic mucosa in patients with clinically different types of irritable bowel syndrome (IBS) before and after the treatment with tetracyclic antidepressant and selective serotonin reuptake inhibitor. Methods. Adult patients (over 18 years) with confirmed diagnosis of IBS were examined. Biopsy specimens were taken from colon during colonoscopy for the next histological examination. One expert gastrointestinal pathologist assessed all tissue samples....

  18. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184

    OpenAIRE

    Seillier, Alexandre; Aguilar, David Dominguez; Giuffrida, Andrea

    2014-01-01

    The biological actions of the endocannabinoids anandamide and 2-arachidonoyl glycerol (2-AG) are terminated by enzymatic hydrolysis of these lipids via fatty acid amide hydrolase (FAAH ) and monoacylglycerol lipase (MAGL), respectively. While several selective FAAH inhibitors have been developed and characterized in vitro and in vivo, none of the initial MAGL blockers have shown adequate potency and specificity for in vivo applications. More recently, a selective MAGL inhibitor, JZL184, has b...

  19. Cycling Towards Progress: Ribociclib, CDK 4/6 inhibitor for Breast Cancer.

    Science.gov (United States)

    Spring, Laura; Bardia, Aditya

    2018-04-23

    Ribociclib is an orally active, highly selective inhibitor of cyclin-dependent kinase (CDK) 4 and 6. It is the second CDK 4/6 inhibitor approved for hormone receptor-positive breast cancer. The addition of ribociclib to an aromatase inhibitor has resulted in marked improvements in progression-free survival for patients with metastatic breast cancer. Copyright ©2018, American Association for Cancer Research.

  20. Nitrous oxide discretely up-regulates nNOS and p53 in neonatal rat brain.

    Science.gov (United States)

    Cattano, D; Valleggi, S; Abramo, A; Forfori, F; Maze, M; Giunta, F

    2010-06-01

    room-air samples. Our preliminary data show that N2O induced a selective increase in nNOS and p53 transcription. These new findings provide evidence of pro-apoptotic action by N2O and may shed new insight on its toxic effects; however, further investigations are necessary.

  1. Obesity, inflammation, and exercise training: relative contribution of iNOS and eNOS in the modulation of vascular function in the mouse aorta

    Directory of Open Access Journals (Sweden)

    Josiane Fernandes da Silva

    2016-09-01

    Full Text Available Background - The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process.Methods - High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS knockdown.Results - Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD than in the sedentary control animals (SS. Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS-/- animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet

  2. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms.

    Science.gov (United States)

    Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif

    2015-01-01

    Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor-ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.

  3. Icotinib, a selective EGF receptor tyrosine kinase inhibitor, for the treatment of non-small-cell lung cancer.

    Science.gov (United States)

    Tan, Fenlai; Shi, Yuankai; Wang, Yinxiang; Ding, Lieming; Yuan, Xiaobin; Sun, Yan

    2015-01-01

    Advanced non-small-cell lung cancer (NSCLC) is the main cause for cancer-related mortality. Treatments for advanced NSCLC are largely palliative and a benefit plateau appears to have reached with the platinum-based chemotherapy regimens. EGF receptor (EGFR) tyrosine kinase inhibitors gefitinib, erlotinib and afatinib came up with prolonged progression-free survival and improved quality of life, especially in EGFR-mutated patients. Icotinib is an oral selective EGFR tyrosine kinase, which was approved by China Food and Drug administration in June 2011 for treating advanced NSCLC. Its approval was based on the registered Phase III trial (ICOGEN), which showed icotinib is noninferior to gefitinib. This review will discuss the role of icotinib in NSCLC, and its potential application and ongoing investigations.

  4. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  5. Discovery of DNA repair inhibitors by combinatorial library profiling

    Science.gov (United States)

    Moeller, Benjamin J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Small molecule inhibitors of DNA repair are emerging as potent and selective anti-cancer therapies, but the sheer magnitude of the protein networks involved in DNA repair processes poses obstacles to discovery of effective candidate drugs. To address this challenge, we used a subtractive combinatorial selection approach to identify a panel of peptide ligands that bind DNA repair complexes. Supporting the concept that these ligands have therapeutic potential, we show that one selected peptide specifically binds and non-competitively inactivates DNA-PKcs, a protein kinase critical in double-strand DNA break repair. In doing so, this ligand sensitizes BRCA-deficient tumor cells to genotoxic therapy. Our findings establish a platform for large-scale parallel screening for ligand-directed DNA repair inhibitors, with immediate applicability to cancer therapy. PMID:21343400

  6. Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis?

    International Nuclear Information System (INIS)

    Gonzalez-Rey, Maria; Bebianno, Maria João

    2013-01-01

    Fluoxetine (FLX) the active pharmaceutical ingredient (API) in Prozac ® is a widely prescribed psychoactive drug which ubiquitous occurrence in the aquatic environment is associated to a poor removal rate in waste-water treatment plant (WWTP) systems. This API acts as a selective serotonin reuptake inhibitor (SSRI) frequently reported to cause disrupting effects in non-target species. The objective of this study includes a multibiomarker response evaluation on mussel Mytilus galloprovincialis during two weeks exposure to 75 ng L −1 FLX assessing antioxidant enzymes activities – superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST); lipid peroxidation (LPO), acetylcholinesterase (AChE) neurotoxic response and endocrine disruption through alkali-labile phosphates (ALP) indirect measurement of vitellogenin-like proteins. Results show transient tissue-specific enzymatic responses and damage affecting mostly mussel gills. However, the clear ALP levels inhibition throughout time in both sex-differentiated gonads gives evidence to FLX reinforced action as an endocrine disruptor rather than an oxidative or neurotoxic inducer. - Highlights: ► Short-time exposure of Mytilus galloprovincialis to antidepressant fluoxetine. ► Tissue-specific transient antioxidant enzymes activities alteration. ► Lipid peroxidation (LPO) induction in exposed-tissues. ► Acetylcholinesterase (AChE) activity upregulation in exposed gills. ► ALP levels downregulation in exposed sex-differentiated mussels. - Exposure to 75 ng L −1 antidepressant fluoxetine (FLX) induces tissue-specific multibiomarker responses alteration in mussel Mytilus galloprovincialis.

  7. Can a Selective Serotonin Reuptake Inhibitor Act as a Glutamatergic Modulator?

    Directory of Open Access Journals (Sweden)

    Marcos Emilio Frizzo, PhD

    2017-01-01

    Full Text Available Sertraline (Zoloft and fluoxetine (Prozac are selective serotonin reuptake inhibitors whose antidepressant mechanism of action is classically attributed to an elevation of the extracellular levels of serotonin in the synaptic cleft. However, the biological effects of these drugs seem to be more complex than their traditionally described mechanism of action. Among their actions is the inhibition of different types of Na+ and K+ channels, as well as of glutamate uptake activity. The clearance of extracellular glutamate is essential to maintain the central nervous system within physiological conditions, and this excitatory neurotransmitter is removed from the synaptic cleft by astrocyte transporters. This transport depends upon a hyperpolarized membrane potential in astrocytes that is mainly maintained by Kir4.1 K+ channels. The impairment of the Kir4.1 channel activity reduces driving force for the glutamate transporter, resulting in an accumulation of extracellular glutamate. It has been shown that sertraline and fluoxetine inhibit Kir4.1 K+ channels. Recently, we demonstrated that sertraline reduces glutamate uptake in human platelets, which contain a high-affinity Na+-dependent glutamate uptake system, with kinetic and pharmacological properties similar to astrocytes in the central nervous system. Considering these similarities between human platelets and astrocytes, one might ask if sertraline could potentially reduce glutamate clearance in the synaptic cleft and consequently modulate glutamatergic transmission. This possibility merits investigation, since it may provide additional information regarding the mechanism of action and perhaps the side effects of these antidepressants.

  8. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide.

    Science.gov (United States)

    Birenbaum, Aurélie; Tesse, Angela; Loyer, Xavier; Michelet, Pierre; Andriantsitohaina, Ramaroson; Heymes, Christophe; Riou, Bruno; Amour, Julien

    2008-12-01

    In senescent heart, beta-adrenergic response is altered in parallel with beta1- and beta2-adrenoceptor down-regulation. A negative inotropic effect of beta3-adrenoceptor could be involved. In this study, the authors tested the hypothesis that beta3-adrenoceptor plays a role in beta-adrenergic dysfunction in senescent heart. beta-Adrenergic responses were investigated in vivo (echocardiography-dobutamine, electron paramagnetic resonance) and in vitro (isolated left ventricular papillary muscle, electron paramagnetic resonance) in young adult (3-month-old) and senescent (24-month-old) rats. Nitric oxide synthase (NOS) immunolabeling (confocal microscopy), nitric oxide production (electron paramagnetic resonance) and beta-adrenoceptor Western blots were performed in vitro. Data are mean percentages of baseline +/- SD. An impaired positive inotropic effect (isoproterenol) was confirmed in senescent hearts in vivo (117 +/- 23 vs. 162 +/- 16%; P < 0.05) and in vitro (127 +/- 10 vs. 179 +/- 15%; P < 0.05). In the young adult group, the positive inotropic effect was not significantly modified by the nonselective NOS inhibitor N-nitro-L-arginine methylester (L-NAME; 183 +/- 19%), the selective NOS1 inhibitor vinyl-L-N-5(1-imino-3-butenyl)-L-ornithine (L-VNIO; 172 +/- 13%), or the selective NOS2 inhibitor 1400W (183 +/- 19%). In the senescent group, in parallel with beta3-adrenoceptor up-regulation and increased nitric oxide production, the positive inotropic effect was partially restored by L-NAME (151 +/- 8%; P < 0.05) and L-VNIO (149 +/- 7%; P < 0.05) but not by 1400W (132 +/- 11%; not significant). The positive inotropic effect induced by dibutyryl-cyclic adenosine monophosphate was decreased in the senescent group with the specific beta3-adrenoceptor agonist BRL 37344 (167 +/- 10 vs. 142 +/- 10%; P < 0.05). NOS1 and NOS2 were significantly up-regulated in the senescent rat. In senescent cardiomyopathy, beta3-adrenoceptor overexpression plays an important role in the

  9. Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication.

    Science.gov (United States)

    Benton, Tami; Lynch, Kevin; Dubé, Benoit; Gettes, David R; Tustin, Nancy B; Ping Lai, Jian; Metzger, David S; Blume, Joshua; Douglas, Steven D; Evans, Dwight L

    2010-11-01

    To test the hypothesis that the selective serotonin reuptake inhibitor (SSRI) citalopram would down-regulate human immunodeficiency virus (HIV) infectivity and that the greatest effects would be seen in people with depression. Depression is a risk factor for morbidity and mortality in HIV/acquired immune deficiency syndrome. Serotonin (5-HT) neurotransmission has been implicated in the pathobiology of depression, and pharmacologic therapies for depression target this system. The 5-HT transporter and 5-HT receptors are widely distributed throughout the central nervous and immune systems. Depression has been associated with suppression of natural killer cells and CD8(+) lymphocytes, key regulators of HIV infection. Ex vivo models for acute and chronic HIV infection were used to study the effects of citalopram on HIV viral infection and replication in 48 depressed and nondepressed women. For both the acute and chronic infection models, HIV reverse transcriptase activity was measured in the citalopram treatment condition and the control condition. The SSRI significantly down-regulated the reverse transcriptase response in both the acute and chronic infection models. Specifically, citalopram significantly decreased the acute HIV infectivity of macrophages. Citalopram also significantly decreased HIV viral replication in the latently infected T-cell line and in the latently infected macrophage cell line. There was no difference in down-regulation by depression status. These studies suggest that an SSRI enhances natural killer/CD8 noncytolytic HIV suppression in HIV/acquired immune deficiency syndrome and decreases HIV viral infectivity of macrophages, ex vivo, suggesting the need for in vivo studies to determine a potential role for agents targeting serotonin in the host defense against HIV.

  10. Computational methods for analysis and inference of kinase/inhibitor relationships

    Directory of Open Access Journals (Sweden)

    Fabrizio eFerrè

    2014-06-01

    Full Text Available The central role of kinases in virtually all signal transduction networks is the driving motivation for the development of compounds modulating their activity. ATP-mimetic inhibitors are essential tools for elucidating signaling pathways and are emerging as promising therapeutic agents. However, off-target ligand binding and complex and sometimes unexpected kinase/inhibitor relationships can occur for seemingly unrelated kinases, stressing that computational approaches are needed for learning the interaction determinants and for the inference of the effect of small compounds on a given kinase. Recently published high-throughput profiling studies assessed the effects of thousands of small compound inhibitors, covering a substantial portion of the kinome. This wealth of data paved the road for computational resources and methods that can offer a major contribution in understanding the reasons of the inhibition, helping in the rational design of more specific molecules, in the in silico prediction of inhibition for those neglected kinases for which no systematic analysis has been carried yet, in the selection of novel inhibitors with desired selectivity, and offering novel avenues of personalized therapies.

  11. Novel inhibitors of IMPDH: a highly potent and selective quinolone-based series.

    Science.gov (United States)

    Watterson, Scott H; Carlsen, Marianne; Dhar, T G Murali; Shen, Zhongqi; Pitts, William J; Guo, Junqing; Gu, Henry H; Norris, Derek; Chorba, John; Chen, Ping; Cheney, Daniel; Witmer, Mark; Fleener, Catherine A; Rouleau, Katherine; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2003-02-10

    A series of novel quinolone-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  12. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  13. Iminopyrimidinones: A novel pharmacophore for the development of orally active renin inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Brian A.; Caldwell, John P.; Bara, Thomas; Boykow, George; Chintala, Madhu; Clader, John; Czarniecki, Michael; Courneya, Brandy; Duffy, Ruth; Fleming, Linda; Giessert, Rachel; Greenlee, William J.; Heap, Charles; Hong, Liwu; Huang, Ying; Iserloh, Ulrich; Josien, Hubert; Khan, Tanweer; Korfmacher, Walter; Liang, Xian; Mazzola, Robert; Mitra, Soumya; Moore, Kristina; Orth, Peter; Rajagopalan, Murali; Roy, Sudipta; Sakwa, Samuel; Strickland, Corey; Vaccaro, Henry; Voigt, Johannes; Wang, Hongwu; Wong, Jesse; Zhang, Rumin; Zych, Andrew (Merck); (Albany MR)

    2015-04-01

    The development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.

  14. Clinical trials for BET inhibitors run ahead of the science.

    Science.gov (United States)

    Andrieu, Guillaume; Belkina, Anna C; Denis, Gerald V

    2016-03-01

    Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmanić Šamija, R. [Department of Pediatrics, University Hospital Split, Split (Croatia); Primorac, D. [School of Medicine Split, University of Split, Split (Croatia); Department of Pediatrics, School of Medicine, University of Osijek, Osijek (Croatia); Eberly College of Science, Penn State University, University Park, PA (United States); St. Catherine Speciality Hospital, Zabok (Croatia); Rešić, B. [School of Medicine Split, University of Split, Split (Croatia); Pavlov, V. [Department of Neonatology, University Hospital Split, Split (Croatia); Čapkun, V. [Department of Nuclear Medicine, University Hospital Split, Split (Croatia); Punda, H. [School of Medicine Split, University of Split, Split (Croatia); Lozić, B. [Department of Pediatrics, University Hospital Split, Split (Croatia); Zemunik, T. [Department of Medical Biology, School of Medicine Split, University of Split, Split (Croatia)

    2014-08-15

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  16. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Kuzmanić Šamija, R.; Primorac, D.; Rešić, B.; Pavlov, V.; Čapkun, V.; Punda, H.; Lozić, B.; Zemunik, T.

    2014-01-01

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children

  17. Upper gastrointestinal bleeding in a patient with depression receiving selective serotonin reuptake inhibitor therapy.

    Science.gov (United States)

    Kumar, Deepak; Saaraswat, Tanuj; Sengupta, S N; Mehrotra, Saurabh

    2009-02-01

    Serotonin plays an important role in the normal clotting phenomenon and is released by platelets. Platelets are dependent on a serotonin transporter for the uptake of serotonin, as they cannot synthesize it themselves. Selective serotonin reuptake inhibitors (SSRIs) block the uptake of serotonin into platelets and can cause problems with clotting leading to bleeding. This case report highlights the occurrence of upper gastrointestinal bleeding in the index case on initiating SSRI therapy for depression and the prompt resolution of the same on its discontinuation on two separate occasions. SSRIs may cause upper gastrointestinal (GI) bleeding. Physicians should be aware of the same and should try to rule out previous episodes of upper GI bleed or the presence of other risk factors which might predispose to it before prescribing SSRIs; they should also warn the patients about this potential side effect. Also, the presence of thalassemia trait in the index patient deserves special attention and needs to be explored to see if it might in any way contribute in potentiating this side effect of SSRIs.

  18. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ

    2015-07-01

    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  19. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  20. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  1. DUPA conjugation of a cytotoxic indenoisoquinoline topoisomerase I inhibitor for selective prostate cancer cell targeting.

    Science.gov (United States)

    Roy, Jyoti; Nguyen, Trung Xuan; Kanduluru, Ananda Kumar; Venkatesh, Chelvam; Lv, Wei; Reddy, P V Narasimha; Low, Philip S; Cushman, Mark

    2015-04-09

    Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate cancer cells while being present at low or undetectable levels in normal cells. This difference provides an opportunity to selectively deliver cytotoxic drugs to prostate cancer cells while sparing normal cells that lack PSMA, thus improving potencies and reducing toxicities. PSMA has high affinity for 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA) (Ki = 8 nM). After binding to a DUPA-drug conjugate, PSMA internalizes, unloads the conjugate, and returns to the surface. In the present studies, an indenoisoquinoline topoisomerase I inhibitor was conjugated to DUPA via a peptide linker and a drug-release segment that facilitates intracellular cleavage to liberate the drug cargo. The DUPA-indenoisoquinoline conjugate exhibited an IC50 in the low nanomolar range in 22RV1 cell cultures and induced a complete cessation of tumor growth with no toxicity, as determined by loss of body weight and death of treated mice.

  2. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling.

    Science.gov (United States)

    Das, Anindita; Xi, Lei; Kukreja, Rakesh C

    2005-04-01

    We investigated the effect of sildenafil in protection against necrosis or apoptosis in cardiomyocytes. Adult mouse ventricular myocytes were treated with sildenafil (1 or 10 microM) for 1 h before 40 min of simulated ischemia (SI). Necrosis was determined by trypan blue exclusion and lactate dehydrogenase release following SI alone or plus 1 or 18 h of reoxygenation (RO). Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated nick end labeling assay and mitochondrial membrane potential measured using a fluorescent probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1). Sildenafil reduced necrosis as indicated by decrease in trypan blue-positive myocytes and leakage of lactate dehydrogenase compared with untreated cells after either SI or SI-RO. The number of terminal deoxynucleotidyl transferase-mediated nick end labeling-positive myocytes or loss of JC-1 fluorescence following SI and 18 h of RO was attenuated in the sildenafil-treated group with concomitant inhibition of caspase 3 activity. An early increase in Bcl-2 to Bax ratio with sildenafil treatment was also observed in myocytes after SI-RO. The increase of Bcl-2 expression by sildenafil was inhibited by nitric-oxide synthase (NOS) inhibitor, L-nitro-amino-methyl-ester. The drug also enhanced mRNA and protein content of inducible NOS (iNOS) and endothelial NOS (eNOS) in the myocytes. Sildenafil-induced protection against necrosis and apoptosis was absent in the myocytes derived from iNOS knock-out mice and was attenuated in eNOS knock-out myocytes. The up-regulation of Bcl-2 expression by sildenafil was also absent in iNOS-deficient myocytes. Reverse transcription-PCR, Western blots, and immunohistochemical assay confirmed the expression of phosphodiesterase-5 in mouse cardiomyocytes. These data provide strong evidence for a direct protective effect of sildenafil against necrosis and apoptosis through NO signaling pathway. The results may have possible

  3. Melanoma NOS1 expression promotes dysfunctional IFN signaling.

    Science.gov (United States)

    Liu, Qiuzhen; Tomei, Sara; Ascierto, Maria Libera; De Giorgi, Valeria; Bedognetti, Davide; Dai, Cuilian; Uccellini, Lorenzo; Spivey, Tara; Pos, Zoltan; Thomas, Jaime; Reinboth, Jennifer; Murtas, Daniela; Zhang, Qianbing; Chouchane, Lotfi; Weiss, Geoffrey R; Slingluff, Craig L; Lee, Peter P; Rosenberg, Steven A; Alter, Harvey; Yao, Kaitai; Wang, Ena; Marincola, Francesco M

    2014-05-01

    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells.

  4. Discovery of Monoamine Oxidase A Inhibitors Derived from in silico Docking

    International Nuclear Information System (INIS)

    Jo, Geunhyeong; Sung, Suhyun; Lee, Younggiu; Kim, Bonggyu; Yoon, Junwie; Lee, Hyeok; Ahn, Joonghoon; Lim, Yoongho; Ji, Sangyun; Koh, Dongsoo

    2012-01-01

    MAOA inhibitors (MAOAIs) have been used as antidepressants for over forty years. Iproniazid was introduced in 1957, but it was withdrawn because of hepatotoxicity. Tranylcypromine was developed in the mid-1960s, withdrawn from the market because of problems related to hypertension, then reintroduced for limited usage. Many MAOAIs have been developed and used for treating atypical depression after the failure of other classes of antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressants. While iproniazid and tranylcypromine were nonselective MAOAIs, a selective MAOAI, clorgyline, was introduced in the latter half of the 1960s. Recently, more selective and safe MAOAIs, namely moclobemide, toloxatone, and tetrindol, were launched. However, their side effects and activities need further improvement. Therefore, we have made efforts to discover new MAOAIs. In conclusion, even though the number of compounds tested here is not enough for evaluation, the current result demonstrates that phenylpyrazole moiety is not necessary for showing good inhibitory effects. Because benzoflavanones have not previously been reported to act on MAOA as inhibitors, and the inhibitory effect of one of benzo-flavones, 3-(4-methoxyphenyl)-2,3-dihydro-1H-benzo[ f ] chromen-1-one used in this study is comparable to that of clorgyline which is known as MAOA inhibitor,31 our findings are meaningful

  5. Discovery of Monoamine Oxidase A Inhibitors Derived from in silico Docking

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Geunhyeong; Sung, Suhyun; Lee, Younggiu; Kim, Bonggyu; Yoon, Junwie; Lee, Hyeok; Ahn, Joonghoon; Lim, Yoongho [Konkuk Univ., Seoul (Korea, Republic of); Ji, Sangyun [Rural Development Administration, Suwon (Korea, Republic of); Koh, Dongsoo [Dongduk Women' s Univ., Seoul (Korea, Republic of)

    2012-11-15

    MAOA inhibitors (MAOAIs) have been used as antidepressants for over forty years. Iproniazid was introduced in 1957, but it was withdrawn because of hepatotoxicity. Tranylcypromine was developed in the mid-1960s, withdrawn from the market because of problems related to hypertension, then reintroduced for limited usage. Many MAOAIs have been developed and used for treating atypical depression after the failure of other classes of antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressants. While iproniazid and tranylcypromine were nonselective MAOAIs, a selective MAOAI, clorgyline, was introduced in the latter half of the 1960s. Recently, more selective and safe MAOAIs, namely moclobemide, toloxatone, and tetrindol, were launched. However, their side effects and activities need further improvement. Therefore, we have made efforts to discover new MAOAIs. In conclusion, even though the number of compounds tested here is not enough for evaluation, the current result demonstrates that phenylpyrazole moiety is not necessary for showing good inhibitory effects. Because benzoflavanones have not previously been reported to act on MAOA as inhibitors, and the inhibitory effect of one of benzo-flavones, 3-(4-methoxyphenyl)-2,3-dihydro-1H-benzo[ f ] chromen-1-one used in this study is comparable to that of clorgyline which is known as MAOA inhibitor,31 our findings are meaningful.

  6. Taheebo Polyphenols Attenuate Free Fatty Acid-Induced Inflammation in Murine and Human Macrophage Cell Lines As Inhibitor of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2017-12-01

    Full Text Available Aim of studyTaheebo polyphenols (TP are water extracts of Tabebuia spp. (Bignoniaceae, taken from the inner bark of the Tabebuia avellanedae tree, used extensively as folk medicine in Central and South America. Some anti-inflammatory drugs act by inhibiting both cyclooxygenase-2 (COX-2 and COX-1 enzymes. COX-2 syntheses prostaglandin (PG E2, which is a species of endogenous pain-producing substance, whereas COX-1 acts as a house-keeping enzyme. Inhibiting both COX-1 and -2 simultaneously can have side effects such as gastrointestinal bleeding and renal dysfunction. Some polyphenols have been reported for its selective inhibiting activity toward COX-2 expression. Our study aimed to demonstrate the potential and mechanisms of TP as an anti-inflammation action without the side effects of COX-1 inhibition.Materials and methodsFree fatty acid-stimulated macrophage cell lines were employed to mimic macrophage behaviors during lifestyle-related diseases such as atherosclerosis and non-alcoholic steatohepatitis. Real-time polymerase chain reaction was used to detect expression of inflammatory cytokine mRNA. Griess assay was used to measure the production of nitric oxide (NO. ELISA was used to measure PG E2 production. Molecular docking was adopted to analyze the interactions between compounds from T. avellanedae and COX-2.ResultsTP significantly suppressed the production of NO production, blocked the mRNA expression of iNOS, and COX-2 in both cell lines, blocked the mRNA expression of TNF-α, IL-1β, IL-6, and PGE2 in the murine cell line. However, there was no inhibitory effect on COX-1. Molecular docking result indicated that the inhibitory effects of TP on COX-2 and PGE2 could be attributed to acteoside, which is the main compound of TP that could bind to the catalytic zone of COX-2. After the interaction, catalytic ability of COX-2 is possibly inhibited, followed by which PGE2 production is attenuated. COX inhibitor screening assay showed TP as a

  7. Selective nitrergic neurodegeneration in diabetes mellitus–a nitric oxide-dependent phenomenon

    Science.gov (United States)

    Cellek, Selim; Rodrigo, José; Lobos, Edgar; Fernández, Patricia; Serrano, Julia; Moncada, Salvador

    1999-01-01

    In vitro and in vivo studies have demonstrated a dysfunctional nitrergic system in diabetes mellitus, thus explaining the origin of diabetic impotence. However, the mechanism of this nitrergic defect is not understood.In the penises of streptozotocin (STZ)-induced diabetic rats, here, we show by immunohistochemistry that nitrergic nerves undergo selective degeneration since the noradrenergic nerves which have an anti-erectile function in the penis remained intact.Nitrergic relaxation responses in vitro and erectile responses to cavernous nerve stimulation in vivo were attenuated in these animals, whereas noradrenergic responses were enhanced.Activity and protein amount of neuronal nitric oxide synthase (nNOS) were also reduced in the penile tissue of diabetic rats.We, thus, hypothesized that NO in the nitrergic nerves may be involved in the nitrergic nerve damage, since only the nerves which contain neuronal NO synthase underwent degeneration.We administered an inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (L-NAME), in the drinking water of rats for up to 12 weeks following the establishment of diabetes with STZ.Here we demonstrate that this compound protected the nitrergic nerves from morphological and functional impairment. Our results show that selective nitrergic degeneration in diabetes is NO-dependent and suggest that inhibition of NO synthase is neuroprotective in this condition. PMID:10588937

  8. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity

    Directory of Open Access Journals (Sweden)

    Gozzi GJ

    2015-07-01

    Full Text Available Gustavo Jabor Gozzi,1,2 Zouhair Bouaziz,3 Evelyn Winter,1,4 Nathalia Daflon-Yunes,1 Mylène Honorat,1 Nathalie Guragossian,3 Christelle Marminon,3 Glaucio Valdameri,1,2 Andre Bollacke,5 Jean Guillon,6 Noël Pinaud,7 Mathieu Marchivie,8 Silvia M Cadena,2 Joachim Jose,5 Marc Le Borgne,3 Attilio Di Pietro11Equipe Labellisée Ligue 2014, BMSSI UMR5086 CNRS/Lyon I University, IBCP, Lyon, France; 2Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; 3Faculty of Pharmacy – ISPB, EA 4446 Biomolecules, Cancer and Chemoresistance, Health SFR of East Lyon CNRS UMS3453 - INSERM US7, University of Lyon, Lyon I University, Lyon Cedex 8, France; 4Department of Pharmaceutical Sciences, PGFAR, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil; 5Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany; 6ARNA Laboratory, Pharmaceutical Sciences UFR, INSERM U869, University of Bordeaux, Bordeaux Cedex, France; 7ISM – CNRS UMR 5255, University of Bordeaux Cedex, France; 8ICMCB CNRS-UPR 9048, University of Bordeaux, Pessac Cedex, FranceAbstract: Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2 inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N5-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity. They were selective for ABCG2 over both P-glycoprotein and MRP1 (multidrug resistance protein 1, whereas the ketonic derivatives also interacted with MRP1, and they additionally displayed a lower

  9. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  10. Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage.

    Science.gov (United States)

    Imam, S Z; Islam, F; Itzhak, Y; Slikker, W; Ali, S F

    2000-09-01

    Methamphetamine (METH) is a neurotoxic psychostimulant that produces catecholaminergic brain damage by producing oxidative stress and free radical generation. The role of oxygen and nitrogen radicals is well documented as a cause of METH-induced neurotoxic damage. In this study, we have obtained evidence that METH-induced neurotoxicity is the resultant of interaction between oxygen and nitrogen radicals, and it is mediated by the production of peroxynitrite. We have also assessed the effects of inhibitors of neuronal nitric oxide synthase (nNOS) as well as scavenger of nitric oxide and a peroxynitrite decomposition catalyst. Significant protective effects were observed with the inhibitor of nNOS, 7-nitroindazole (7-NI), as well as by the selective peroxynitrite scavenger or decomposition catalyst, 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5-sulfonatophenyl)porphyrinato iron III (FeTPPS). However, the use of a nitric oxide scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), did not provide any significant protection against METH-induced hyperthermia or peroxynitrite generation and the resulting dopaminergic neurotoxicity. In particular, treatment with FeTPPS completely prevented METH-induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic depletion. Together, these data demonstrate that METH-induced dopaminergic neurotoxicity is mediated by the generation of peroxynitrite, which can be selectively protected by nNOS inhibitors or peroxynitrite scavenger or decomposition catalysts.

  11. Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors

    NARCIS (Netherlands)

    Gray, Nathanael S.; Wodicka, Lisa; Thunnissen, Andy-Mark W.H.; Norman, Thea C.; Kwon, Soojin; Espinoza, F. Hernan; Morgan, David O.; Barnes, Georjana; LeClerc, Sophie; Meijer, Laurent; Kim, Sung-Hou; Lockhart, David J.; Schultz, Peter G.

    1998-01-01

    Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors

  12. Non-tricyclic and Non-selective Serotonin Reuptake Inhibitor Antidepressants and Recurrent Falls in Frail Older Women.

    Science.gov (United States)

    Naples, Jennifer G; Kotlarczyk, Mary P; Perera, Subashan; Greenspan, Susan L; Hanlon, Joseph T

    2016-12-01

    To determine the risk of recurrent falls associated with antidepressants other than tricyclics (TCAs) and selective serotonin reuptake inhibitors (SSRIs) among frail older women. This is a secondary analysis of the Zoledronic acid in frail Elders to STrengthen bone, or ZEST, trial data treated as a longitudinal cohort in 181 frail, osteoporotic women aged ≥65 years in long-term care. The primary exposure was individual non-TCA/non-SSRI antidepressants (i.e., serotonin norepinephrine reuptake inhibitors, mirtazapine, trazodone, and bupropion) at baseline and 6 months. The main outcome was recurrent (at least two) falls within 6 months after antidepressant exposure. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were derived using a generalized estimating equations model. At least 15% of women experienced recurrent falls between 0-6 and 6-12 months. At baseline and 6 months, 18.2% and 6.9% had a non-TCA/non-SSRI antidepressant, respectively. Adjusting for demographics, health status, and other drugs that increase risk of falls, non-TCA/non-SSRI antidepressant exposure significantly increased the risk of recurrent falls (AOR: 2.14; 95% CI: 1.01-4.54). Fall risk further increased after removing bupropion from the non-TCA/non-SSRI antidepressant group in sensitivity analyses (AOR: 2.73; 95% CI: 1.24-6.01). Other antidepressant classes may not be safer than TCAs/SSRIs with respect to recurrent falls in frail older women. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Carprofen analogues as sirtuin inhibitors: enzyme and cellular studies.

    Science.gov (United States)

    Mellini, Paolo; Carafa, Vincenzo; Di Rienzo, Barbara; Rotili, Dante; De Vita, Daniela; Cirilli, Roberto; Gallinella, Bruno; Provvisiero, Donatella Paola; Di Maro, Salvatore; Novellino, Ettore; Altucci, Lucia; Mai, Antonello

    2012-11-01

    The best of both: SIRT1/2 inhibitors were developed by combining chemical features of selisistat (SIRT1-selective inhibitor; blue) and carprofen (anti-inflammatory drug; red). The most potent compound (shown) increased acetyl-p53 and acetyl-α-tubulin levels, and induced slight apoptosis at 50 μM in U937 cells, differently from selisistat and carprofen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Frederick Daidone

    Full Text Available Dopa decarboxylase (DDC, a pyridoxal 5'-phosphate (PLP enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD. PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a to use virtual screening to identify potential human DDC inhibitors and (b to evaluate the reliability of our virtual-screening (VS protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.

  15. JANEX-1, a JAK3 inhibitor, protects pancreatic islets from cytokine toxicity through downregulation of NF-{kappa}B activation and the JAK/STAT pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Na; Kim, Eun-Kyung; Song, Mi-Young [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Choi, Ha-Na; Moon, Woo Sung [Department of Pathology, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sung-Joo [Department of Herbology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Jin-Woo [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kwon, Kang-Beom, E-mail: desson@wonkwang.ac.kr [Department of Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Byung-Hyun, E-mail: bhpark@chonbuk.ac.kr [Department of Biochemistry, Medical School and Diabetes Research Center, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2009-07-15

    JANEX-1/WHI-P131, a selective Janus kinase 3 (JAK3) inhibitor, has been shown to delay the onset of diabetes in the NOD mouse model. However, the molecular mechanism by which JANEX-1 protects pancreatic {beta}-cells is unknown. In the current study, we investigated the role of JANEX-1 on interleukin (IL)-1{beta} and interferon (IFN)-{gamma}-induced {beta}-cell damage using isolated islets. JANEX-1-pretreated islets showed resistance to cytokine toxicity, namely suppressed nitric oxide (NO) production, reduced inducible form of NO synthase (iNOS) expression, and decreased islet destruction. The molecular mechanism by which JANEX-1 inhibits iNOS expression was mediated through suppression of the nuclear factor {kappa}B (NF-{kappa}B) and JAK/signal transducer and activator of transcription (STAT) pathways. Islets treated with the cytokines downregulated the protein levels of suppressor of cytokine signaling (SOCS)-1 and SOCS-3, but pretreatment with JANEX-1 attenuated these decreases. Additionally, islets from JAK3{sup -/-} mice were more resistant to cytokine toxicity than islets from control mice. These results demonstrate that JANEX-1 protects {beta}-cells from cytokine toxicity through suppression of the NF-{kappa}B and JAK/STAT pathways and upregulation of SOCS proteins, suggesting that JANEX-1 may be used to preserve functional {beta}-cell mass.

  16. Resorufin: a lead for a new protein kinase CK2 inhibitor

    DEFF Research Database (Denmark)

    Sandholt, Iben Skjøth; Olsen, Birgitte Brinkmann; Guerra, Barbara

    2009-01-01

    Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited te...

  17. High Potency of Indolyl Aryl Sulfone Nonnucleoside Inhibitors towards Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Mutants Is Due to Selective Targeting of Different Mechanistic Forms of the Enzyme

    Science.gov (United States)

    Cancio, Reynel; Silvestri, Romano; Ragno, Rino; Artico, Marino; De Martino, Gabriella; La Regina, Giuseppe; Crespan, Emmanuele; Zanoli, Samantha; Hübscher, Ulrich; Spadari, Silvio; Maga, Giovanni

    2005-01-01

    Indolyl aryl sulfone (IAS) nonnucleoside inhibitors have been shown to potently inhibit the growth of wild-type and drug-resistant human immunodeficiency virus type 1 (HIV-1), but their exact mechanism of action has not been elucidated yet. Here, we describe the mechanism of inhibition of HIV-1 reverse transcriptase (RT) by selected IAS derivatives. Our results showed that, depending on the substitutions introduced in the IAS common pharmacophore, these compounds can be made selective for different enzyme-substrate complexes. Moreover, we showed that the molecular basis for this selectivity was a different association rate of the drug to a particular enzymatic form along the reaction pathway. By comparing the activities of the different compounds against wild-type RT and the nonnucleoside reverse transcriptase inhibitor-resistant mutant Lys103Asn, it was possible to hypothesize, on the basis of their mechanism of action, a rationale for the design of drugs which could overcome the steric barrier imposed by the Lys103Asn mutation. PMID:16251294

  18. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    International Nuclear Information System (INIS)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-01-01

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser 1179 phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser 1179 phosphorylation. •FIR increases intracellular Ca 2+ levels. •Thermo-sensitive TRPV Ca 2+ channels are unlikely to be involved in the FIR-mediated eNOS-Ser 1179 phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser 1179 ) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca 2+ levels. Treatment with KN-93, a selective inhibitor of Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. This study suggests that FIR radiation increases NO

  19. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  20. Selection of Protease Inhibitors to Prevent or Attenuate Inflammatory Processes

    Science.gov (United States)

    2007-08-01

    because of this, the generic name of the bee-eater was chosen as the name of the database. In Greek mythology . Merops was a Trojan seer who was father...20031. Given the protective B,-receptor mediated actions in the cardiovascular and renal systems and because a large body of animal data suggests...More inhibitors for plasma kallikrein are discussed in Paragraph 5.5. The use of mice or rats as animal models for studying the kallikrein-kinin