WorldWideScience

Sample records for selective isotope labeling

  1. The synthesis of tritium, carbon-14 and stable isotope labelled selective estrogen receptor degraders.

    Science.gov (United States)

    Bragg, Ryan A; Bushby, Nick; Ericsson, Cecilia; Kingston, Lee P; Ji, Hailong; Elmore, Charles S

    2016-09-01

    As part of a Medicinal Chemistry program aimed at developing an orally bioavailable selective estrogen receptor degrader, a number of tritium, carbon-14, and stable isotope labelled (E)-3-[4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl]prop-2-enoic acids were required. This paper discusses 5 synthetic approaches to this compound class. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  3. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  4. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  5. Isotopically labelled benzodiazepines

    International Nuclear Information System (INIS)

    Liebman, A.A.

    1987-01-01

    This paper reports on the benzodiazepines which are a class of therapeutic agents. Improvements in the analytical methodology in the areas of biochemistry and pharmacology were significant, particularly in the application of chromatographic and spectroscopic techniques. In addition, the discovery and subsequent development of tritium and carbon-14 as an analytical tool in the biological sciences were essentially post-world war II phenomena. Thus, as these new chemical entities were found to be biologically active, they could be prepared in labeled form for metabolic study, biological half-life determination (pharmacokinetics), tissue distribution study, etc. This use of tracer methodology has been liberally applied to the benzodiazepines and also more recently to the study of receptor-ligand interactions, in which tritium, carbon-11 or fluorine-18 isotopes have been used. The history of benzodiazepines as medicinal agents is indeed an interesting one; an integral part of that history is their use in just about every conceivable labeled form

  6. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain

    International Nuclear Information System (INIS)

    Miyanoiri, Yohei; Ishida, Yojiro; Takeda, Mitsuhiro; Terauchi, Tsutomu; Inouye, Masayori; Kainosho, Masatsune

    2016-01-01

    We recently developed a practical protocol for preparing proteins bearing stereo-selectively 13 C-methyl labeled leucines and valines, instead of the commonly used 13 C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and β-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,β-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,β-dihydroxy-α-methylvalerate to α-keto-β-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.

  7. Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Ishida, Yojiro [Rutgers University-Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine (United States); Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Terauchi, Tsutomu [Tokyo Metropolitan University, Graduate School of Science and Engineering (Japan); Inouye, Masayori [Rutgers University-Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine (United States); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2016-06-15

    We recently developed a practical protocol for preparing proteins bearing stereo-selectively {sup 13}C-methyl labeled leucines and valines, instead of the commonly used {sup 13}C-methyl labeled precursors for these amino acids, by E. coli cellular expression. Using this protocol, proteins with any combinations of isotope-labeled or unlabeled Leu and Val residues were prepared, including some that could not be prepared by the precursor methods. However, there is still room for improvement in the labeling efficiencies for Val residues, using the methods with labeled precursors or Val itself. This is due to the fact that the biosynthesis of Val could not be sufficiently suppressed, even by the addition of large amounts of Val or its precursors. In this study, we completely solved this problem by using a mutant strain derived from E. coli BL21(DE3), in which the metabolic pathways depending on two enzymes, dihydroxy acid dehydratase and β-isopropylmalate dehydrogenase, are completely aborted by deleting the ilvD and leuB genes, which respectively encode these enzymes. The ΔilvD E. coli mutant terminates the conversion from α,β-dihydroxyisovalerate to α-ketoisovalerate, and the conversion from α,β-dihydroxy-α-methylvalerate to α-keto-β-methylvalerate, which produce the preceding precursors for Val and Ile, respectively. By the further deletion of the leuB gene, the conversion from Val to Leu was also fully terminated. Taking advantage of the double-deletion mutant, ΔilvDΔleuB E. coli BL21(DE3), an efficient and residue-selective labeling method with various isotope-labeled Ile, Leu, and Val residues was established.

  8. Melatonin labeled with hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1989-01-01

    A study has been made of isotope exchange between melatonin and deuterium (D 2 O) or tritium (HTO) oxide under different conditions. The ease of isotope exchange for the indole ring hydrogens of melatonin in an acidic medium decreases over the series H 4 > H 2 H 6 >> H 7 , enabling the authors to process a route for production of melatonin labeled with hydrogen isotopes at positions 4,6, and 2 of the indole ring. A method has been suggested for producing melatonin labeled with hydrogen isotopes at position 2 by desulfurization of 2-(2,4-dinitro-phenylsulfenyl)melatonin at Ni(Re) (D)

  9. Melatonin labelled by hydrogen isotopes

    International Nuclear Information System (INIS)

    Dmitrevskaya, L.I.; Smushkevich, Yu.I.; Kurkovskaya, L.N.; Ponomarenko, N.K.; Suvorov, N.N.

    1988-01-01

    Isotope exchange of melatonin with deuterium (D 2 O) and tritium (HTO) oxides under different conditions is studied. Simplicity of isotope exchange of hydrogens of the indole ring of melatonin in the acidic medium decreases in series H 4 >H 2 >H 6 >>H 7 , that permits to suggest the way of melatonin preparation labelled by hydrogen isotopes in positions 4,6 and 2 of the indole ring. The way of melatonin preparation labelled by hydrogen isotopes in position 2 according to the reaction of desulfation 2-(2,4-dinitrophenylsulphenyl) melatonin at catalyst Ni(Re)(D) is suggested

  10. Isotopically labelled pyrimidines and purines

    International Nuclear Information System (INIS)

    Balaban, A.T.; Bally, I.

    1987-01-01

    Among the three diazines, pyrimidine is by far the most important one because its derivatives uracil, thymine and cytosine are constituents of the ubiquitous deoxynucleic acids (DNA) and ribonucleic acids (RNA). Other derivatives of pyrimidine without condensed rings include barbiturates, alloxan, orotic acid and thiamine or vitamin B 1 . From the polycyclic derivatives of pyrimidine such as pteridine, alloxazine, and purine, the latter, through its derivatives adenine and guanine complete the list of bases which occur in DNA and RNA: in addition, other purine derivatives such as hypoxanthine, xanthine, theobromine, theophylline, caffeine and uric acid are important natural products with biological activity. The paper presents methods for preparing isotopically labeled pyrimidines as well as purine derivatives. For convenience, the authors describe separately carbon-labeled with radioisotopes 11 C (T 1/2 = 20.3 min) and 14 C (T 1/2 = 5736 years) or the stable isotope 13 C (natural abundance 1.1%) and then hydrogen-labeled systems with the radioisotope 3 H ≡ T (T 1/2 = 12.346 years) or with the stable isotope 2 H ≡ D (natural abundance 0.015%). We do not separate stable from radioactive isotopes because the synthetic methods are identical for the same element; however, the introduction of hydrogen isotopes into organic molecules is often performed by reactions such as isotope exchange which cannot take place in the case of carbon isotopes

  11. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  12. Isotope exchange reactions of the hydrogen H-5 of selected pyrimidine derivatives and the preparation of tritium-labeled pyrimidines

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Jansa, Petr; Elbert, Tomáš

    2011-01-01

    Roč. 76, č. 12 (2011), s. 1567-1577 ISSN 0010-0765 R&D Projects: GA AV ČR KJB400550903; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : isotopic labeling * NMR spectroscopy * nucleobases * pyrimidines Subject RIV: CC - Organic Chemistry Impact factor: 1.283, year: 2011

  13. A Cost-effective Amino-acid-type Selective Isotope Labeling of Proteins Expressed in Leishmania tarentolae

    Czech Academy of Sciences Publication Activity Database

    Foldynová-Trantírková, Silvie; Matulová, J.; Dötsch, V.; Löhr, F.; Cirstea, I.; Alexandov, K.; Breitling, R.; Lukeš, Julius; Trantírek, Lukáš

    2009-01-01

    Roč. 26, č. 6 (2009), s. 755-761 ISSN 0739-1102 R&D Projects: GA ČR GP204/08/P585; GA AV ČR 1QS600220554; GA AV ČR KAN200100801; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : NMR * isotope labeling * protein expression * Leishmania * low-level enrichment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.124, year: 2009

  14. Stable isotope labeling strategy based on coding theory

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)

    2015-10-15

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.

  15. Stable isotope labeling strategy based on coding theory

    International Nuclear Information System (INIS)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-01-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells

  16. SAIL--stereo-array isotope labeling.

    Science.gov (United States)

    Kainosho, Masatsune; Güntert, Peter

    2009-11-01

    Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

  17. Isotopic labelling with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Evans, E.A.

    1980-01-01

    In this paper general methods of isotopic labelling with 14 C and with 3 H are briefly reviewed with special attention to examples of compounds likely to be of wide interest in biological research. (author)

  18. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  19. Advances in stable isotope assisted labeling strategies with information science.

    Science.gov (United States)

    Kigawa, Takanori

    2017-08-15

    Stable-isotope (SI) labeling of proteins is an essential technique to investigate their structures, interactions or dynamics by nuclear magnetic resonance (NMR) spectroscopy. The assignment of the main-chain signals, which is the fundamental first step in these analyses, is usually achieved by a sequential assignment method based on triple resonance experiments. Independently of the triple resonance experiment-based sequential assignment, amino acid-selective SI labeling is beneficial for discriminating the amino acid type of each signal; therefore, it is especially useful for the signal assignment of difficult targets. Various combinatorial selective labeling schemes have been developed as more sophisticated labeling strategies. In these strategies, amino acids are represented by combinations of SI labeled samples, rather than simply assigning one amino acid to one SI labeled sample as in the case of conventional amino acid-selective labeling. These strategies have proven to be useful for NMR analyses of difficult proteins, such as those in large complex systems, in living cells, attached or integrated into membranes, or with poor solubility. In this review, recent advances in stable isotope assisted labeling strategies will be discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Synthesis of isotopically labelled salicylates

    International Nuclear Information System (INIS)

    Hawkins, D.R.; Pryor, R.W.

    1981-01-01

    [ 13 C-carboxyl]Salicylic acid has been prepared by carbonation of 2-benzyloxybromobenzene followed by reductive debenzylation. Deuterium and tritium labelled salicylic acid and 2 H 2 / 13 C-salicylic acid were prepared by reduction of the 3,5-dibromo derivatives using Raney Ni-Al. Deuterium labelled salicylic acid containing up to four deuterium atoms was prepared by catalytic exchange with Raney Ni-Al in 5% NaOD/D 2 O. (author)

  1. Gluconeogenesis from labeled carbon: estimating isotope dilution

    International Nuclear Information System (INIS)

    Kelleher, J.K.

    1986-01-01

    To estimate the rate of gluconeogenesis from steady-state incorporation of labeled 3-carbon precursors into glucose, isotope dilution must be considered so that the rate of labeling of glucose can be quantitatively converted to the rate of gluconeogenesis. An expression for the value of this isotope dilution can be derived using mathematical techniques and a model of the tricarboxylic acid (TCA) cycle. The present investigation employs a more complex model than that used in previous studies. This model includes the following pathways that may affect the correction for isotope dilution: 1) flux of 3-carbon precursor to the oxaloacetate pool via acetyl-CoA and the TCA cycle; 2) flux of 4- or 5-carbon compounds into the TCA cycle; 3) reversible flux between oxaloacetate (OAA) and pyruvate and between OAA and fumarate; 4) incomplete equilibrium between OAA pools; and 5) isotope dilution of 3-carbon tracers between the experimentally measured pool and the precursor for the TCA-cycle OAA pool. Experimental tests are outlined which investigators can use to determine whether these pathways are significant in a specific steady-state system. The study indicated that flux through these five pathways can significantly affect the correction for isotope dilution. To correct for the effects of these pathways an alternative method for calculating isotope dilution is proposed using citrate to relate the specific activities of acetyl-CoA and OAA

  2. Synthesis of isotopically labeled ketamine

    OpenAIRE

    Stuchlíková, Lucie

    2011-01-01

    In this work were synthesized ketamine isotopomers. Ketamine is used in human medicine and veterinary sectors. It has very broad spectrum of pharmacological effects: anesthetic, analgesic, hallucinogenic, bronchodilator, cardiovascular and antidepressive, which is currently in the research. At first was synthesized precursor of ketamine, N- desmethylketamine which was subsequently labeled the deuterium, tritium and carbon- 14. For the determination of purity and identity mass spectrometry and...

  3. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  5. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  6. Synthesis of 15N isotope labeled alanine

    International Nuclear Information System (INIS)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant'Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira

    2005-01-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of 15 N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of 15 N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of α-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ( 15 NH 3 aq) was carried out. In order to avoid eventually losses of 15 NH 3 , special cares were adopted, since the production cost is high. Although the acquisition cost of the 13 N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH 3 (aq) being employed. With the establishment of the system for 15 NH 3 recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  7. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.

    Science.gov (United States)

    Antoniewicz, Maciek R

    2013-12-01

    Measuring fluxes by 13C metabolic flux analysis (13C-MFA) has become a key activity in chemical and pharmaceutical biotechnology. Optimal design of isotopic labeling experiments is of central importance to 13C-MFA as it determines the precision with which fluxes can be estimated. Traditional methods for selecting isotopic tracers and labeling measurements did not fully utilize the power of 13C-MFA. Recently, new approaches were developed for optimal design of isotopic labeling experiments based on parallel labeling experiments and algorithms for rational selection of tracers. In addition, advanced isotopic labeling measurements were developed based on tandem mass spectrometry. Combined, these approaches can dramatically improve the quality of 13C-MFA results with important applications in metabolic engineering and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Isotopically labelled vitamin D derivatives and processes for preparing same

    International Nuclear Information System (INIS)

    Deluca, H.R.; Schnoes, H.K.; Napoli, J.L.; Fivizzani, M.A.

    1981-01-01

    This invention relates to 26,27-isotopically labelled vitamin D 3 compounds, including radiolabelled vitamin D 3 compounds of high specific activity, methods for their preparation, and intermediates obtained in their synthesis. The method involves reacting an ester of a 26,27-dinor-vitamin D-25-carboxylic acid with an isotopically labelled methyl Grignard reagent or methyl lithium reagent to obtain a 26,27-isotopically labelled compound in which at least some of the H atoms and/or C atoms are heavy isotopes. (author)

  9. Noninvasive imaging of protein metabolic labeling in single human cells using stable isotopes and Raman microscopy

    NARCIS (Netherlands)

    van Manen, H.J.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2008-01-01

    We have combined nonresonant Raman microspectroscopy and spectral imaging with stable isotope labeling by amino acids in cell culture (SILAC) to selectively detect the incorporation of deuterium-labeled phenylalanine, tyrosine, and methionine into proteins in intact, single HeLa cells. The C−D

  10. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  11. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  12. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  13. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  14. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  15. Determination of the distribution and reaction of polysaccharides in wood cell walls by the isotope tracer technique, 6: Selective radio-labeling of mannan in ginkgo (Ginkgo biloba)

    International Nuclear Information System (INIS)

    Imai, T.; Terashima, N.; Yasuda, S.

    1997-01-01

    D-Mannose-[2-H-3] and GDP (guanosine diphosphate)-D-mannose-[mannose-1-H-3] were administered to the shoots of ginkgo (Ginkgo biloba L.) tolabel mannan selectively in the cell walls. To suppress the incorporation of radioactivity into the lignin and cellulose, the precursors were administered in the presence of the inhibitor of phenylalanine ammonia-lyase (PAL): namely, L-alpha-aminooxy-beta-phenylpropionic acid (AOPP) and the inhibitor of glucan synthesis: namely, 2-deoxy-D-glucose (2-DG) and 2.6-dichlorobenzonitrile (2.6-DCB). When D-mannose-[2-H-3] was administered in the absence of the inhibitors, great radioactivities were found in the mannose and glucose obtained by sulfuric acid hydrolysis of the newly-formed xylem, and also in the vanillin obtained by nitrobenzene oxidation. These results indicate that the radioactivity was incorporated not only into mannan but also into cellulose and lignin. When D-mannose-[2-H-3] was administered in the presence of both AOPP and 2-DG, the radioactivities of vanillin and glucose were decreased but that of mannose was not decreased. These results indicate that the incorporations of radioactivities into lignin and cellulose were suppressed by the inhibitors, but the incorporation into mannan was not interfered with. The treatment with 2,6-DCB lessened the incorporations of radioactivity into vanillin, xylose, mannose, and glucose of the newly formed xylem considerably which indicated that 2,6-DCB disturbed the metabolic activities of the plant fatally. Consequently, the selective radiolabeling of mannan in ginkgo was achieved by the administration of D-mannose-[2-H-3], in the presence of both AOPP and 2-DG, toa growing stem. In the case of GDP-D-mannose-[mannose-1-H-3], the radioactivity incorporated into the newly-formed xylem was very little, and the selectivity in labeling and the effects of the inhibitors were not clear

  16. Custom synthesis of isotope-labelled Apis mellifera Pheromone

    International Nuclear Information System (INIS)

    Conanan, Aida P.; Cortes, Nicole Marie A.; Daguno, Cristel Lyn R.; Templonuevo, Jose Angelo A.; Sucgang, Raymond J.

    2012-01-01

    The object of this study is to determine the optimum conditions for the synthesis of the isotope-labelled isopentyl acetate. Isopentyl acetate is widely used as a raw material in industries, in syntheses, and is utilized as a sex attractant (pheromone) by the bee species, Apis mellifera. The isotope labelling of isopentyl acetate will allow tracking of the fate and movement of the isopentyl acetate in the environment, in chemical transformations, and in biological systems. Esterification by alcoholysis of acetic acid was optimized for the preparation of Carbon-14( 14 C)-labelled isopentyl acetate from 14 C-labelled acetic acid and isoamyl alcohol. The different conditions studied were: (1) The effects of acid catalysis and/or reflux on the incorporation and retention of the isotope label on the product. The efficiency of label incorporation and retention was determined through the beta radioactivity of Carbon 14 in each of the synthetic constructs. Determination of the beta radioactivity concentration of 14 C in the isopentyl acetate product was done using low level liquid scintillation spectrometry. Each of the synthetic products was mixed with Ultima Gold scintillation cocktail in a low potassium glass scintillation vial, and analysed in a low-level Wallac 1414 scintillation counter. The application of catalysis without reflux resulted in the highest yield (35%). The same condition also resulted in the highest abundance of carbon isotope label with 2.40 Bequerels per cubic centimetre, Bq/cc (measurement unit for radioactivity). (author)

  17. Site-selective 13C labeling of proteins using erythrose

    International Nuclear Information System (INIS)

    Weininger, Ulrich

    2017-01-01

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with 13 C and/or 1 H, which is achieved in the most general way by using site-selectively 13 C-enriched glucose (1- and 2- 13 C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively 13 C-enriched erythrose (1-, 2-, 3- and 4- 13 C) as a suitable precursor for 13 C labeled aromatic side chains. We quantify 13 C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the 13 C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated 13 C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective 13 C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  18. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  19. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    Science.gov (United States)

    Hooker, Jacob Matthew [Port Jefferson, NY; Schonberger, Matthias [Mains, DE; Schieferstein, Hanno [Aabergen, DE; Fowler, Joanna S [Bellport, NY

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  20. Preparation of radioactive labelled compounds. Pt. 2. 82Br labelled organic bromine compounds by isotopic exchange

    International Nuclear Information System (INIS)

    Otto, R.

    1988-05-01

    Studies on isotopic exchange between organic bromine compounds and 82 Br labelled dioxane dibromide in the presence of AlCl 3 are described. The results obtained enable to develop a simple and quick preparation method for the labelling with 82 Br [fr

  1. Reductive methods for isotopic labeling of antibiotics

    International Nuclear Information System (INIS)

    Champney, W.S.

    1989-01-01

    Methods for the reductive methylation of the amino groups of eight different antibiotics using 3 HCOH or H 14 COH are presented. The reductive labeling of an additional seven antibiotics by NaB 3 H 4 is also described. The specific activity of the methyl-labeled drugs was determined by a phosphocellulose paper binding assay. Two quantitative assays for these compounds based on the reactivity of the antibiotic amino groups with fluorescamine and of the aldehyde and ketone groups with 2,4-dinitrophenylhydrazine are also presented. Data on the cellular uptake and ribosome binding of these labeled compounds are also presented

  2. Selective backbone labelling of ILV methyl labelled proteins

    International Nuclear Information System (INIS)

    Sibille, Nathalie; Hanoulle, Xavier; Bonachera, Fanny; Verdegem, Dries; Landrieu, Isabelle; Wieruszeski, Jean-Michel; Lippens, Guy

    2009-01-01

    Adding the 13 C labelled 2-keto-isovalerate and 2-oxobutanoate precursors to a minimal medium composed of 12 C labelled glucose instead of the commonly used ( 2 D, 13 C) glucose leads not only to the 13 C labelling of (I, L, V) methyls but also to the selective 13 C labelling of the backbone C α and CO carbons of the Ile and Val residues. As a result, the backbone ( 1 H, 15 N) correlations of the Ile and Val residues and their next neighbours in the (i + 1) position can be selectively identified in HN(CA) and HN(CO) planes. The availability of a selective HSQC spectrum corresponding to the sole amide resonances of the Ile and Val residues allows connecting them to their corresponding methyls by the intra-residue NOE effect, and should therefore be applicable to larger systems

  3. Heating Isotopically Labeled Bernal Stacked Graphene: A Raman Spectroscopy Study

    Czech Academy of Sciences Publication Activity Database

    Ek Weis, Johan; da Costa, Sara; Frank, Otakar; Kalbáč, Martin

    2014-01-01

    Roč. 5, č. 3 (2014), s. 549-554 ISSN 1948-7185 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : Bernal * graphene * isotopic labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.458, year: 2014

  4. Performance of isobaric and isotopic labeling in quantitative plant proteomics

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2012-01-01

    , and quantitation. In the present work, we have used LC-MS to compare an isotopic (ICPL) and isobaric (iTRAQ) chemical labeling technique to quantify proteins in the endosperm of Ricinus communis seeds at three developmental stages (IV, VI, and X). Endosperm proteins of each stage were trypsin-digested in...

  5. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Science.gov (United States)

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  6. Custom isotope-labelling of apis mellifera pheromone

    International Nuclear Information System (INIS)

    Conanan, Aida P.; Cortes, Nicole Marie A.; Daguno, Cristel Lyn R.; Templonuevo, Jose Angelo A.; Sucgang, Raymond J.

    2012-01-01

    The object of this study is to determine the optimum conditions for the synthesis of isotope-labelled isoamyl acetate. Esterification by alcoholysis of acetic acid was optimized for the preparation of Carbon - 14 ( 14 C)-labelled isopentyl acetate from 14 C-labelled acetic acid and isopentyl alcohol. The optimization procedure defined the effects of catalysis, reflux time, and temperature. The application of catalysis without reflux resulted to the highest yield (40%); the same condition also resulted to the highest abundance of carbon isotope label with 2.40 disintegrations per minute per cubic centimetre, DPM/cc (measurement unit for radioactivity). Determination of the beta radioactivity concentration of 14 C in the isopentyl acetate product was done using low level liquid scintillation spectrometry. Each of the synthetic constructs was mixed with Ultima Gold scintillation cocktail in a glass scintillation vial, and analysed in a low-level Wallac 1414 scintillation counter. Samples were counted for 2 hours in a chamber temperature maintained at 14 degree centegrade. The catalysed reaction without reflux was established to be the most efficient scheme for the radiolabelling. The radiolabelled isoamyl acetate can give way to the synthesis of more complex substances which can be then tracked when they are introduced to a system through the carbon isotope label. (author)

  7. Availability of phosphorus in cow slurry using isotopic labelling technique

    International Nuclear Information System (INIS)

    Pongsakul, P.; Bertelsen, F.; Gissel-Nielsen, G.

    1988-01-01

    A pot experiment was conducted to evaluate the influence of cow slurry on P uptake by corn and to estimate the readily available P in the slurry by using an isotopic labelling techique. Water-soluble P in soil was increased and isotopic equilibrium of available P was attained after labelled slurry was mixed thoroughly throughout the soil. Labelled slurry applied at planting increased the P uptake by corn, whereas the same amount applied one week before harvest did not affect the P uptake. It was estimated that 46-54% of the total P uptake in plants is derived from the slurry. The readily available P (the L-value) in the slurry was at least 26 mg/kg which equals 3.7% of the total P. (author)

  8. Isotope-labelled folic acid derivatives

    International Nuclear Information System (INIS)

    Lewin, N.; Wong, E.T.

    1976-01-01

    The suggestion deals with the production of folic acid derivatives suitable as indicators or tracers for analyses of serum folates. These folic acid derivatives contain folic acid which is bound by one or both carboxyl groups to the amino nitrogen of compounds such as, e.g., tyramine, glycyl tyrosine, tyrosine, or the methyl ester of tyrosine. The derivative obtained can be substituted by a gamma emitter, e.g. the iodine isotope I 125. The radioactive derivative is used in the method for the competitive protein bonding to determine endogenic folates in the serum. (UWI) [de

  9. Efficient Multi-Label Feature Selection Using Entropy-Based Label Selection

    Directory of Open Access Journals (Sweden)

    Jaesung Lee

    2016-11-01

    Full Text Available Multi-label feature selection is designed to select a subset of features according to their importance to multiple labels. This task can be achieved by ranking the dependencies of features and selecting the features with the highest rankings. In a multi-label feature selection problem, the algorithm may be faced with a dataset containing a large number of labels. Because the computational cost of multi-label feature selection increases according to the number of labels, the algorithm may suffer from a degradation in performance when processing very large datasets. In this study, we propose an efficient multi-label feature selection method based on an information-theoretic label selection strategy. By identifying a subset of labels that significantly influence the importance of features, the proposed method efficiently outputs a feature subset. Experimental results demonstrate that the proposed method can identify a feature subset much faster than conventional multi-label feature selection methods for large multi-label datasets.

  10. NMR studies of two spliced leader RNAs using isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lapham, J.; Crothers, D.M. [Yale Univ., New Haven, CT (United States)

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  11. Isotope separation by selective photodissociation of glyoxal

    International Nuclear Information System (INIS)

    Marling, J.B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation in a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope

  12. Syntheses with isotopically labelled carbon. Methyl iodide, formaldehyde and cyanide

    International Nuclear Information System (INIS)

    Finn, R.D.; Boothe, T.E.; Vora, M.M.; Hildner, J.C.; Emran, A.M.; Kothari, P.J.

    1984-01-01

    Many of the uniquely labelled synthetic precursors currently employed in the design of sophisticated radiolabelled compounds have their origins in the field of hot atom chemistry. Particularly, the development during the past few years of automated, on-line synthetic procedures which combine the nuclear reaction, hot atom and classical chemistry, and rapid purification methods has allowed the incorporation of useful radionuclides into suitable compounds of chemical and biochemical interest. The application of isotopically labelled methyl iodide, formaldehyde, and cyanide anion as synthetic intermediates in research involving human physiology and nuclear medicine, as well as their contributions to other scientific methodology, is reviewed. (author)

  13. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  14. Synthetic routes to some isotopically labelled intermediates for diterpenoid biosynthesis

    International Nuclear Information System (INIS)

    Dawson, R.M.; Godfrey, I.M.; Hogg, R.W.; Knox, J.R.

    1989-01-01

    The exo-15-hydrogen of ent-kaurene can be exchanged through a reversible ene reaction in a convenient and efficient procedure which has the potential for giving high specific activity 3 H-labelling. Copalol, the (Z)-double bond stereoisomer, and the allylic alcohol isomers ent-manool and ent-epimanool have been obtained through divergent synthetic pathways involving a 15,16-bisnor ketone intermediate. These pathways have also allowed the four compounds to be obtained with 14 C-labelling. A method, involving a Wittig reaction to form a vinyl bromide intermediate, has been developed for obtaining copalol, as the trityl ether derivative, with stereospecific isotopic labelling of one or the other of the hydrogens of the exocyclic methylene group. 27 refs., figs

  15. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  16. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  17. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  18. Characterization and relative quantification of phospholipids based on methylation and stable isotopic labeling[S

    Science.gov (United States)

    Cai, Tanxi; Shu, Qingbo; Liu, Peibin; Niu, Lili; Guo, Xiaojing; Ding, Xiang; Xue, Peng; Xie, Zhensheng; Wang, Jifeng; Zhu, Nali; Wu, Peng; Niu, Lili; Yang, Fuquan

    2016-01-01

    Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling. PMID:26733148

  19. Raman spectroscopy of isotopically labeled two-layer graphene

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kong, J.; Kavan, Ladislav; Dresselhaus, M. S.

    2012-01-01

    Roč. 249, č. 12 (2012), s. 2500-2502 ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA MŠk ME09060; GA ČR GAP204/10/1677; GA ČR GBP208/12/G016; GA ČR(CZ) GAP208/12/1062 Institutional support: RVO:61388955 Keywords : electrochemical doping * isotope labeling * graphene Subject RIV: CG - Electrochemistry Impact factor: 1.489, year: 2012

  20. Synthesis of 14C-labeled and stable isotope-labeled CGS 16617

    International Nuclear Information System (INIS)

    Chaudhuri, N.K.; Markus, B.; Sung Mingsang

    1988-01-01

    The synthesis of a 14 C-labeled and two stable isotope-labeled analogs of CGS 16617 is described. The synthetic method involved the preparation of tetrahydro-3-bromo-1-benzazepin-2-one, labeled with a 14 C or four deuterium atoms, followed by introduction of two side chains at 1- and 3-positions. The labeled bromobenzazepinones were prepared by Beckmann rearrangement of bromo-oximes of α-tetralones, obtained by cyclization of labeled benzenebutanoic acids. The 14 C-labeled acid was prepared by hydrolysis of the nitrile, prepared by reaction of 3-bromopropylbenzene and K 14 CN. The tetradeutero acid was prepared from ethyl phenylpropynoate by catalytic reduction of the triple bond with deuterium gas, followed by reduction of the deuterated ester with lithium aluminium hydride and conversion of the resulting alcohol into the carboxylic acid. The acetic acid side chain was introduced by N-alkylation with ethyl bromoacetate or ethyl bromoacetate-1, 2- 13 C 2 followed by hydrolysis, and the L-lysine side chain, by reaction with L-(-)-3-amino-ε-caprolactam followed by hydrolysis of the caprolactam ring. (author)

  1. Isotope selection for patients undergoing prostate brachytherapy

    International Nuclear Information System (INIS)

    Cha, Christine M.; Potters, Louis; Ashley, Richard; Freeman, Katherine; Wang Xiaohong; Waldbaum, Robert; Leibel, Steven

    1999-01-01

    Purpose: Ultrasound-guided trans perineal interstitial permanent prostate brachytherapy (TIPPB) is generally performed with either 103 Pd or 125 I. The use of 125 I for low Gleason score tumors and 103 Pd for higher Gleason scores has been suggested based on isotope dose rate and cell doubling time observed in in vitro studies. While many centers follow these isotope selection criteria, other centers have elected to use only a single isotope, regardless of Gleason score. No clinical data have been published comparing these isotopes. This study was undertaken to compare outcomes between 125 I and 103 Pd in a matched pair analysis for patients undergoing prostate brachytherapy. Methods and Materials: Six hundred forty-eight consecutively treated patients with clinically confined prostate cancer underwent TIPPB between June 1992 and February 1997. Five hundred thirty-two patients underwent TIPPB alone, whereas 116 received pelvic external beam irradiation and TIPPB. Ninety-three patients received androgen deprivation therapy prior to TIPPB. The prescribed doses for TIPPB were 160 Gy for 125 I (pre-TG43) and 120 Gy for 103 Pd. Patients treated with combination therapy received 41.4 or 45 Gy (1.8 Gy/fraction) external beam irradiation followed by a 3- to 5-week break and then received either a 120-Gy 125 I or a 90-Gy 103 Pd implant. Until November 1994, all patients underwent an 125 I implant after which the isotope selection was based on either Gleason score (Gleason score 2-5: 125 I; Gleason 5-8: 103 Pd) or isotope availability. A matched pair analysis was performed to assess any difference between isotopes. Two hundred twenty-two patients were matched according to Gleason score, prostate-specific antigen (PSA), and stage. PSA relapse-free survival (PSA-RFS) was calculated based on the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus Group definition of failure. Kaplan-Meier actuarial survival curves were compared to assess differences in

  2. Efficient segmental isotope labeling of multi-domain proteins using Sortase A

    Energy Technology Data Exchange (ETDEWEB)

    Freiburger, Lee, E-mail: lee.freiburger@tum.de; Sonntag, Miriam, E-mail: miriam.sonntag@mytum.de; Hennig, Janosch, E-mail: janosch.hennig@helmholtz-muenchen.de [Helmholtz Zentrum München, Institute of Structural Biology (Germany); Li, Jian, E-mail: lijianzhongbei@163.com [Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology (China); Zou, Peijian, E-mail: peijian.zou@helmholtz-muenchen.de; Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Helmholtz Zentrum München, Institute of Structural Biology (Germany)

    2015-09-15

    NMR studies of multi-domain protein complexes provide unique insight into their molecular interactions and dynamics in solution. For large proteins domain-selective isotope labeling is desired to reduce signal overlap, but available methods require extensive optimization and often give poor ligation yields. We present an optimized strategy for segmental labeling of multi-domain proteins using the S. aureus transpeptidase Sortase A. Critical improvements compared to existing protocols are (1) the efficient removal of cleaved peptide fragments by centrifugal filtration and (2) a strategic design of cleavable and non-cleavable affinity tags for purification. Our approach enables routine production of milligram amounts of purified segmentally labeled protein for NMR and other biophysical studies.

  3. Table of specific activities of selected isotopes

    International Nuclear Information System (INIS)

    Shipley, G.

    The bulk of this publication consists of a table of the half-lives, decay modes, and specific activities of isotopes selected for their particular interest to the Environmental Health and Safety Department, LBL. The specific activities were calculated with a PDP 9/15 computer. Also included in the report is a table of stable isotopes, the Th and U decay chains, a chart of the nuclides for elements 101 through 106, the heavy element region of the periodic table, and a specific activity monograph. 5 figures, 2 tables

  4. Reconstitution of Nucleosomes with Differentially Isotope-labeled Sister Histones.

    Science.gov (United States)

    Liokatis, Stamatios

    2017-03-26

    Asymmetrically modified nucleosomes contain the two copies of a histone (sister histones) decorated with distinct sets of Post-translational Modifications (PTMs). They are newly identified species with unknown means of establishment and functional implications. Current analytical methods are inadequate to detect the copy-specific occurrence of PTMs on the nucleosomal sister histones. This protocol presents a biochemical method for the in vitro reconstitution of nucleosomes containing differentially isotope-labeled sister histones. The generated complex can be also asymmetrically modified, after including a premodified histone pool during refolding of histone subcomplexes. These asymmetric nucleosome preparations can be readily reacted with histone-modifying enzymes to study modification cross-talk mechanisms imposed by the asymmetrically pre-incorporated PTM using nuclear magnetic resonance (NMR) spectroscopy. Particularly, the modification reactions in real-time can be mapped independently on the two sister histones by performing different types of NMR correlation experiments, tailored for the respective isotope type. This methodology provides the means to study crosstalk mechanisms that contribute to the formation and propagation of asymmetric PTM patterns on nucleosomal complexes.

  5. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    Science.gov (United States)

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  6. Measurement parameter selection for quantitative isotope dilution gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Colby, B.N.; Rosecrance, A.E.; Colby, M.E.

    1981-01-01

    By use of the two-isotope model of isotope dilution, selection criteria were developed for identifying optimum m/z's for quantitation of compounds by gas chromatography/mass spectrometry. In addition, it was possible to predict the optimum ratio of naturally abundant to labeled compound and to identify appropriate data reduction methods. The validity of these predictions was confirmed by using experimental GC/MS data for several organic compounds

  7. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-01-01

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 [1,25(OH)2[26,27(n)-3H]D3] or on carbons 23 and 24 [1,25(OH)2[23,24(n)-3H]D3] reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of [3H]1,25(OH)2D3 to [3H]1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced

  8. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  9. Site-selective {sup 13}C labeling of proteins using erythrose

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich, E-mail: ulrich.weininger@physik.uni-halle.de [Lund University, Department of Biophysical Chemistry, Center for Molecular Protein Science (Sweden)

    2017-03-15

    NMR-spectroscopy enables unique experimental studies on protein dynamics at atomic resolution. In order to obtain a full atom view on protein dynamics, and to study specific local processes like ring-flips, proton-transfer, or tautomerization, one has to perform studies on amino-acid side chains. A key requirement for these studies is site-selective labeling with {sup 13}C and/or {sup 1}H, which is achieved in the most general way by using site-selectively {sup 13}C-enriched glucose (1- and 2-{sup 13}C) as the carbon source in bacterial expression systems. Using this strategy, multiple sites in side chains, including aromatics, become site-selectively labeled and suitable for relaxation studies. Here we systematically investigate the use of site-selectively {sup 13}C-enriched erythrose (1-, 2-, 3- and 4-{sup 13}C) as a suitable precursor for {sup 13}C labeled aromatic side chains. We quantify {sup 13}C incorporation in nearly all sites in all 20 amino acids and compare the results to glucose based labeling. In general the erythrose approach results in more selective labeling. While there is only a minor gain for phenylalanine and tyrosine side-chains, the {sup 13}C incorporation level for tryptophan is at least doubled. Additionally, the Phe ζ and Trp η2 positions become labeled. In the aliphatic side chains, labeling using erythrose yields isolated {sup 13}C labels for certain positions, like Ile β and His β, making these sites suitable for dynamics studies. Using erythrose instead of glucose as a source for site-selective {sup 13}C labeling enables unique or superior labeling for certain positions and is thereby expanding the toolbox for customized isotope labeling of amino-acid side-chains.

  10. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  11. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    Science.gov (United States)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  12. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  13. Isotope Coded Protein Labeling Coupled Immunoprecipitation (ICPL-IP): A Novel Approach for Quantitative Protein Complex Analysis From Native Tissue*

    Science.gov (United States)

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-01-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms—including humans—are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)1 with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method. PMID:23268931

  14. Insight into the labeling mechanism of acceleration selective arterial spin labeling

    DEFF Research Database (Denmark)

    Schmid, Sophie; Petersen, Esben T; Van Osch, Matthias J P

    2017-01-01

    OBJECTIVES: Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature......-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other. RESULTS: The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries. CONCLUSION: AccASL is able to label...

  15. Isotopic labelling studies for a gold-catalysed skeletal rearrangement of alkynyl aziridines

    Directory of Open Access Journals (Sweden)

    Neil Spencer

    2011-06-01

    Full Text Available Isotopic labelling studies were performed to probe a proposed 1,2-aryl shift in the gold-catalysed cycloisomerisation of alkynyl aziridines into 2,4-disubstituted pyrroles. Two isotopomers of the expected skeletal rearrangement product were identified using 13C-labelling and led to a revised mechanism featuring two distinct skeletal rearrangements. The mechanistic proposal has been rationalised against the reaction of a range of 13C- and deuterium-labelled substrates.

  16. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Science.gov (United States)

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isotope-selective ionization using four-pulse alignment

    International Nuclear Information System (INIS)

    Akagi, Hiroshi; Kasajima, Tatsuya; Kumada, Takayuki; Itakura, Ryuji; Yokoyama, Atsushi; Hasegawa, Hirokazu; Ohshima, Yasuhiro

    2013-01-01

    We have proposed a laser isotope separation method utilizing molecular alignment and non-resonant multiphoton ionization, and demonstrated isotope-selective ionization of 14 N 2 and 15 N 2 isotopomers, using one-pulse alignment. In the present work, we used a train of four identical pulses, instead of one pulse, to obtain the higher selectivity. (author)

  18. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  19. Auto-inducing media for uniform isotope labeling of proteins with 15N, 13C and 2H

    International Nuclear Information System (INIS)

    Guthertz, Nicolas; Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D.

    2015-01-01

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with 15 N, 13 C and/or 2 H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of 13 C, 15 N of 96.6 % and 2 H, 15 N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer

  20. Fatty acids labelled in the. omega. -position with iodine isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, J.P.; Busquet, G.; Comet, M. (Universite Scientifique et Medicale de Grenoble, 38 - La Tronche (France)); Riche, F.; Vidal, M. (Laboratoire d' Etudes Dynamiques et Structurales de la Selectivite, 38 - Grenoble (France)); Coornaert, S.; Bardy, A. (CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France)); Godart, J. (Institut des Sciences Nucleaires, 38 - Grenoble (France))

    1982-01-01

    The synthesis of saturated acetylenic and olefinic (Z or E) ..omega..-iodinated fatty acids has been carried out and their labelling with iodine-131 or 123 by exchange I/sup -/, *I/sup -/ has been studied. The influence of several parameters -water and fatty acid concentrations, specific activity, labelling solution acidity, iodine carrier presence- on this exchange reaction has been noted, enabling experimental conditions to be defined that produce labelling yields of greater than 95%. These results should lead to widespread clinical use of iodine labelled fatty acids.

  1. Copper absorption from foods labelled intrinsically and extrinsically with Cu-65 stable isotope.

    Science.gov (United States)

    Harvey, L J; Dainty, J R; Beattie, J H; Majsak-Newman, G; Wharf, S G; Reid, M D; Fairweather-Tait, S J

    2005-03-01

    To determine copper absorption from copper containing foods labelled either intrinsically or extrinsically with a highly enriched Cu-65 stable isotope label. A longitudinal cross-over study. The study was conducted at the Institute of Food Research, Human Nutrition Unit, Norwich, UK. Subjects were recruited locally via advertisements placed around the Norwich Research Park. A total of 10 volunteers (nine female, one male) took part in the study, but not all volunteers completed each of the test meals. A highly enriched Cu-65 stable isotope label was administered to volunteers in the form of a reference dose or in breakfast test meals consisting of red wine, soya beans, mushrooms or sunflower seeds. Faecal monitoring and mass spectrometry techniques were used to estimate the relative quantities of copper absorbed from the different test meals. True copper absorption from the reference dose (54%) was similar to extrinsically labelled red wine (49%) and intrinsically labelled sunflower seeds (52%), but significantly higher than extrinsically labelled mushrooms (35%), intrinsically (29%) and extrinsically (15%) labelled soya beans and extrinsically labelled sunflower seed (32%) test meals. The use of Cu-65 extrinsic labels in copper absorption studies requires validation according to the food being examined; intrinsic and extrinsic labelling produced significantly different results for sunflower seeds.

  2. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    Science.gov (United States)

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Investigation into reaction of heterogenous isotopic exchange with gaseoUs tritium in solution for preparation labelled lipid compounds

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1983-01-01

    The applicability of the method of heterogeneous catalytic isotopic exchange with gaseous tritium in the solution for the production of labelled lipide preparations is studied. Labelled saturated and unsaturated aliphatic acids, prostaglandins, phospholipides and sphingolipides are prepared

  4. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    Science.gov (United States)

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  5. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    International Nuclear Information System (INIS)

    Tsai, Hsing-Fen; Hsiao, He-Hsuan

    2017-01-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic "1"6O/"1"8O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two "1"8O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  6. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsing-Fen; Hsiao, He-Hsuan, E-mail: hhhsiao@dragon.nchu.edu.tw

    2017-03-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic {sup 16}O/{sup 18}O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two {sup 18}O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  7. Isotopic labeling as a tool to establish intramolecular vibrational coupling: The reaction of 2-propanol on Mo(110)

    International Nuclear Information System (INIS)

    Uvdal, P.; Wiegand, B.C.; Serafin, J.G.; Friend, C.M.

    1992-01-01

    The reactions of 2-propanol on Mo(110) were investigated using temperature programmed reaction, high resolution electron energy loss, and x-ray photoelectron spectroscopies. 2-Propanol forms 2-propoxide upon adsorption at 120 K on Mo(110). The 2-propoxide intermediate deoxygenates via selective γ C--H bond scission to eliminate propene as well as C--O bond hydrogenolysis to form trace amounts of propane. The C--O bond of 2-propoxide is estimated to be nearly perpendicular to the surface. Selective isotopic labeling was used to establish the coupling between the C--O stretch and modes associated with the hydrocarbon framework. The degree of coupling was strongly affected by bonding to the surface, primarily due to weakening of the C--O bond when 2-propoxide is bound to Mo(110). Selective isotopic labeling was, therefore, essential in making vibrational assignments and in identifying key reaction steps. Only a small kinetic isotope effect was observed during reaction of (CD 3 )(CH 3 )CHOH, consistent with a substantial component of C--O bond breaking in the transition state for propene elimination. Coupling of the C--O stretch to motion of the methyl group is also suggested to be important in the transition state for propene elimination

  8. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  9. Accurate and sensitive determination of molar fractions of "1"3C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    International Nuclear Information System (INIS)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M.; García Alonso, J. Ignacio

    2017-01-01

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on "1"3C/"1"2C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of "1"3C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of "1"3C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of "1"3C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of "1"3C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS. • Validation of the method by

  10. Accurate and sensitive determination of molar fractions of {sup 13}C-Labeled intracellular metabolites in cell cultures grown in the presence of isotopically-labeled glucose

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, Mario [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Rodríguez-González, Pablo, E-mail: rodriguezpablo@uniovi.es [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain); Hevia Sánchez, David; González-Menéndez, Pedro; Sainz Menéndez, Rosa M. [University Institute of Oncology (IUOPA), University of Oviedo, Julián Clavería 6, 33006 Oviedo (Spain); García Alonso, J. Ignacio [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo (Spain)

    2017-05-29

    This work describes a methodology based on multiple linear regression and GC-MS for the determination of molar fractions of isotopically-labeled intracellular metabolites in cell cultures. Novel aspects of this work are: i) the calculation of theoretical isotopic distributions of the different isotopologues from an experimentally measured value of % 13C enrichment of the labeled precursor ii) the calculation of the contribution of lack of mass resolution of the mass spectrometer and different fragmentation mechanism such as the loss or gain of hydrogen atoms in the EI source to measure the purity of the selected cluster for each metabolite and iii) the validation of the methodology not only by the analysis of gravimetrically prepared mixtures of isotopologues but also by the comparison of the obtained molar fractions with experimental values obtained by GC-Combustion-IRMS based on {sup 13}C/{sup 12}C isotope ratio measurements. The method is able to measure molar fractions for twenty-eight intracellular metabolites derived from glucose metabolism in cell cultures grown in the presence of {sup 13}C-labeled Glucose. The validation strategies demonstrate a satisfactory accuracy and precision of the proposed procedure. Also, our results show that the minimum value of {sup 13}C incorporation that can be accurately quantified is significantly influenced by the calculation of the spectral purity of the measured cluster and the number of {sup 13}C atoms of the labeled precursor. The proposed procedure was able to accurately quantify gravimetrically prepared mixtures of natural and labeled glucose molar fractions of 0.07% and mixtures of natural and labeled glycine at molar fractions down to 0.7%. The method was applied to initial studies of glucose metabolism of different prostate cancer cell lines. - Highlights: • Determination of molar fractions of {sup 13}C-labeled metabolites in cell cultures. • The method is based on multiple linear regression and GC-MS.

  11. System for illuminating a region for isotopically selective photoexcitation

    International Nuclear Information System (INIS)

    Debaryshe, P.G.; Janes, G.S.; Levy, R.H.; Lindenmeier, C.W.

    1979-01-01

    A method is described to improve laser beam utilization in isotope separation techniques (using laser induced isotopically selective photoexcitation) by increasing the probability of photon absorption without extreme beam propagation lengths. For this purpose an optical reflection system has been designed for illuminating substantially all of three-dimensional space of a transversely flowing vapor with multiple traversals of a beam of radiation. (UK)

  12. Hydrogeological and isotopic studies for selected springs in Sinai Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M S; Awad, M A; El-gamal, S A [Atomic Energy Authority, Cairo Egypt and Middle Eastern Regional Radioisotope Center for The Arab Countries, Dokki, 12311, Cairo (Egypt); Hammad, F A [Desert Research Centre, Materia, Cairo, (Egypt)

    1995-10-01

    This paper deals with the hydrogeology and isotopic composition of water samples collected from selected spring in sinai (e.g. Algudierate, Alqusiema, qidis and Isram) in order to identify their genesis, their interaction with the host rocks and mixing trend. Results of isotopic composition have indicated the similarity in the hydrogeologic situation of Ain qidis and Ain-al-gudierate, while Ain Isram has shown a marked difference in its stable isotope and this could be due to evaporation effect. The isotopic and hydrochemical constituents of the studied springs reflect eater of a meteoric origin with a possible contamination from surficial materials (evaporates) and deeper aquifers. 6 figs., 2 tabs.

  13. A new method for the labelling of proteins with radioactive arsenic isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, M. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Hermanne, A. [VUB Cyclotron, University of Brussels, Laarbeeklaan 103, 1090 Brussels (Belgium); Mason, R.P. [Department of Radiology, Advanced Radiological Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (United States); Thorpe, P.E. [Department of Pharmacology and Simmons and Hamon Cancer Centers, University of Texas Southwestern Medical Center at Dallas, Dallas, TX (United States); Roesch, F. [Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany)]. E-mail: frank.roesch@uni-mainz.de

    2006-12-20

    Radioarsenic labelled radiopharmaceuticals could be a valuable asset to positron emission tomography. In particular, the long half-lives of {sup 72}As (T{sub 1/2}=26h) and {sup 74}As (T{sub 1/2}=17.8d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of monoclonal antibodies (mab) in tumour tissue. In this work, a new method for the labelling of proteins with various radioactive arsenic isotopes was developed. For this purpose, two proteins, namely a chimeric IgG{sub 3} monoclonal antibody, ch3G4, directed against anionic phospholipids, and Rituxan (Rituximab), were labelled as a proof of principle with no-carrier-added radioarsenic isotopes ({sup 74}As and {sup 77}As). The developed labelling chemistry gives high yields (>99.9%), is reliable and could easily be transferred to automated labelling systems in a clinical environment. At least for the mab used in this work, this route of radioarsenic labelling does not affect the immunoreactivity of the product. The arsenic label stays stable for up to 72h at the molecular mass of the monoclonal antibody, which is in particular relevant to follow the pharmacology and pharmacokinetics of the labelled mab for several days.

  14. Direct isotope determination of isotopically labelled lipids by field desorption mass spectrometry

    International Nuclear Information System (INIS)

    Lehmann, W.D.; Kessler, M.

    1982-01-01

    Lipids labelled with deuterium or carbon-14 have been investigated by field desorption mass spectrometry for determination of their degree of labelling. This application is demonstrated for free fatty acids, cholesterol, cholesteryl esters, triglycerides, and L-α-phosphatidylcholines. Comparison of the molecular ion groups of the non-labelled and of the labelled compounds enables a fast and reliable determination of the degree of labelling. For multiply labelled compounds the label distribution is also obtained from the molecular ion group. In addition, for cholesteryl esters and for phosphatidylcholines structurally significant fragment ions provide information about the position of the label. Several hundred nanograms of the compound are typically required for a single analysis with a relative standard error of 0.5-2% in the value calculated for atom% hydrogen-2 or for the specific carbon-14 activity. (orig.) [de

  15. Ultratrace Uranium Fingerprinting with Isotope Selective Laser Ionization Spectrometry

    International Nuclear Information System (INIS)

    Ziegler, Summer L.; Bushaw, Bruce A.

    2008-01-01

    Uranium isotope ratios can provide source information for tracking uranium contamination in a variety of fields, ranging from occupational bioassay to monitoring aftereffects of nuclear accidents. We describe the development of Isotope Selective Laser Ionization Spectrometry (ISLIS) for ultratrace measurement of the minor isotopes 234U, 235U, and 236U with respect to 238U. Optical isotopic selectivity in three-step excitation with single-mode continuous wave lasers is capable of measuring the minor isotopes at relative abundances below 1 ppm, and is not limited by isobaric interferences such as 235UH+ during measurement of 236U. This relative abundance limit approaches the threshold for measurement of uranium minor isotopes with conventional mass spectrometry, typically 10-7, but without mass spectrometric analysis of the laser-created ions. Uranyl nitrate standards from an international blind comparison were used to test analytical performance for different isotopic compositions and with quantities ranging from 11 ng to 10 (micro)g total uranium. Isotopic ratio determination was demonstrated over a linear dynamic range of 7 orders of magnitude with a few percent relative precision and detection limits below 500 fg for the minor isotopes

  16. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  17. Doubly labeled water method: in vivo oxygen and hydrogen isotope fractionation

    International Nuclear Information System (INIS)

    Schoeller, D.A.; Leitch, C.A.; Brown, C.

    1986-01-01

    The accuracy and precision of the doubly labeled water method for measuring energy expenditure are influenced by isotope fractionation during evaporative water loss and CO 2 excretion. To characterize in vivo isotope fractionation, we collected and isotopically analyzed physiological fluids and gases. Breath and transcutaneous water vapor were isotopically fractionated. The degree of fractionation indicated that the former was fractionated under equilibrium control at 37 0 C, and the latter was kinetically fractionated. Sweat and urine were unfractionated. By use of isotopic balance models, the fraction of water lost via fractionating routes was estimated from the isotopic abundances of body water, local drinking water, and dietary solids. Fractionated water loss averaged 23% (SD = 10%) of water turnover, which agreed with our previous estimates based on metabolic rate, but there was a systematic difference between the results based on O 2 and hydrogen. Corrections for isotopic fractionation of water lost in breath and (nonsweat) transcutaneous loss should be made when using labeled water to measure water turnover or CO 2 production

  18. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  19. Selective photoionization of gadolinium isotopes with a polarized laser

    International Nuclear Information System (INIS)

    Le Guyadec, E.

    1990-06-01

    The aim of this study is the use of gadolinium 157 as burnable poison in nuclear reactors. Spectroscopic isotopic displacements between Gd 156 and Gd 157 are low and the separation method studied is based on differentiated behavior, concerning polarized light, of even and odd gadolinium isotopes coming from their difference of nuclear spin. On this principle is based the simplest photoionization scheme. Selective ionization of odd isotopes is realized from the fundamental state with three resonating photons colinearly polarized. The experimental study confirms the possibility of efficient photoionization. The measured selectivity between Gd 157 and even isotope is over 48 in defined conditions because it can be destroyed by a magnetic field or if photons are not well polarized. Calculations and observations are in good agreement. Odd gadolinium isotope separation is feasible and effects preventing separation are evidenced [fr

  20. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  1. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    Science.gov (United States)

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene

    Czech Academy of Sciences Publication Activity Database

    da Costa, Sara; Ek Weis, Johan; Frank, Otakar; Fridrichová, Michaela; Kalbáč, Martin

    2016-01-01

    Roč. 3, č. 2 (2016), 025022 ISSN 2053-1583 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene bilayer * Raman spectroscopy * isotope labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.937, year: 2016

  3. Mass spectrometric studies of stable isotope-labelled carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Andersson, B.Aa.; Dinger, F.; Dinh-Nguyen, N.

    1975-01-01

    Low resolution mass spectra of deuterium and carbon-13 labelled fatty acid pyrrolidides are discussed. The simple fragmentation pattern of pyrrolidides makes them superior to other derivatives, regarding location of isotopes. Deuteriation of ethylenic fatty acid pyrrolidides therefore seems to be an improved method to locate carbon-carbon double bonds by mass spectrometry. (author)

  4. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    DEFF Research Database (Denmark)

    Vinther, Jeppe; Hedegaard, Mads Marquardt; Gardner, Paul Phillip

    2006-01-01

    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection...

  5. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene

    Czech Academy of Sciences Publication Activity Database

    Verhagen, Timotheus; Drogowska, Karolina; Kalbáč, Martin; Vejpravová, Jana

    2015-01-01

    Roč. 92, č. 12 (2015), "125437-1"-"125437-9" ISSN 1098-0121 R&D Projects: GA ČR GA15-02196S; GA MŠk LL1301 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : isotopically labeled graphene * temperature dependence * Raman spectroscopy * phonons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  6. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  7. Selection of well labelled insulin fractions for radioimmunoassay use

    Energy Technology Data Exchange (ETDEWEB)

    Awh, O D; Kim, J R [Korea Atomic Energy Research Inst., Seoul (Republic of Korea)

    1980-06-01

    Selection methods of well labelled insulin fractions based on two different criteria were compared to establish an efficient low level RIA of insulin and to elucidate the correlation between the immunoreactivity and the charcoal-adsorptivity of the radioiodine labelled insulin. The result indicated that the selection of well labelled insulin fractions by means of a charcoal-adsorption test is inappropriate. Generally, the distribution of radioactivity, antibody-bindability, and charcoal-adsorptivity of the labelled insulin was not consistent with each other. Thus, the selection should be carried out for every labelling batch to get the utmost assay reliability by antibody-bindability but not by charcoal-adsorptivity. By using the well selected labelled insulin fractions based on antibody-binding, a correct assay for a reference serum was possible, and by extending the incubation time up to 96 hrs, a sharp dose response curve could be obtained even in the range of below 5 ..mu..U/ml standard insulin doses.

  8. Differential Isotope Labeling of Glycopeptides for Accurate Determination of Differences in Site-Specific Glycosylation.

    Science.gov (United States)

    Pabst, Martin; Benešová, Iva; Fagerer, Stephan R; Jacobsen, Mathias; Eyer, Klaus; Schmidt, Gregor; Steinhoff, Robert; Krismer, Jasmin; Wahl, Fabian; Preisler, Jan; Zenobi, Renato

    2016-01-04

    We introduce a stable isotope labeling approach for glycopeptides that allows a specific glycosylation site in a protein to be quantitatively evaluated using mass spectrometry. Succinic anhydride is used to specifically label primary amino groups of the peptide portion of the glycopeptides. The heavy form (D4(13)C4) provides an 8 Da mass increment over the light natural form (H4(12)C4), allowing simultaneous analysis and direct comparison of two glycopeptide profiles in a single MS scan. We have optimized a protocol for an in-solution trypsin digestion, a one-pot labeling procedure, and a post-labeling solid-phase extraction to obtain purified and labeled glycopeptides. We provide the first demonstration of this approach by comparing IgG1 Fc glycopeptides from polyclonal IgG samples with respect to their galactosylation and sialylation patterns using MALDI MS and LC-ESI-MS.

  9. Pyrolysis of Cigarette Ingredients Labelled with Stable Isotopes

    Directory of Open Access Journals (Sweden)

    Stotesbury S

    2014-12-01

    Full Text Available It is important to know how tobacco additives behave when cigarettes are smoked, whether they transfer intact to the smoke or whether there is any decomposition during smoking. Pyrolysis-GC-MS is a technique that can be focussed upon the effects of combustion from a single material free from interference from the complex mixture of different components present in the smoke. However, because pyrolysis is a model technique, the results need to be validated by comparison with cigarette smoke chemistry. In a previous paper we presented such a method for modelling the smoke chemistry from a burning cigarette using pyrolysis-GC-MS. The transfer and the extent of degradation of anisole, p-anisaldehyde, benzaldehyde, isoamylisovalerate, methyl trans-cinnamate and vanillin within a burning cigarette were estimated using this pyrolysis method. When these data were compared with results from smoke studies from 14C-analogues of the materials, the high levels of transfer predicted by pyrolysis were found to be generally consistent with the smoke chemistry data. However, there were still two outstanding issues. Firstly, there was some ambiguity in the labelled study about whether vanillin actually transferred without degradation or not. Furthermore, the results from the 14C-labelled study showed a greater extent of degradation for p-anisaldehyde than that indicated from the pyrolysis experiments. The purpose of the current study was to present some new information obtained to address these questions by better understanding the effect upon the smoke chemistry from adding vanillin and p-anisaldehyde, and the relationship between the smoke chemistry and the pyrolysis results. Components were identified in the smoke from cigarettes loaded with p-anisaldehyde and vanillin labelled with 18O and 13C. The extent of degradation from each additive was estimated by identifying labelled degradation products in the smoke. Because there was a clear distinction between the

  10. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    International Nuclear Information System (INIS)

    Serianni, A.S.

    1994-01-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds

  11. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, A.S. [Univ. of Notre Dame, IN (United States)

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  12. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  13. Application of isotope-labelled compounds in the study of the chemical stability of pesticides

    International Nuclear Information System (INIS)

    Roesseler, M.; Luther, D.; Abendroth, H.C.; Koch, H.

    1980-01-01

    The user of pesticides requires specific biological modes of action from the corresponding commercial products. Impurities and degradation products may cause uncontrollable toxicological reactions. Profound knowledge of the chemical stability of the effective substance in question and its formulations under storage conditions as well as under those of analytical sample preparation and detection is required. Radioisotope labelled effective substances dimethoate and 1-butyl-amino-cyclohexane-phosphonic acid dibutyl ester are used to study storage stability of the pure effective substance and its formulations; effects of selected impurities, such as technical by-products, moisture or water content, binding or carrier materials, organic solvents, chemical stabilizers and other formulation components on storage properties; temperature dependence of storage stability; selection of suitable analytical techniques for quantitative determination of the effective substance without interference effects from any by-product; reduction of the necessary analytical expense; disclosure of sources of error in the application of usual analytical techniques; improvement of possibilities of an immediate and clearer discrimination between types and amounts of compounds in a chemical system consisting of one pesticide and its degradation or reaction products at the beginning and at the end of an experimental or reaction period. Radiochemical analytical techniques, such as radio thin-layer chromatography (also combined with liquid scintillation counting), radio gas chromatography, autoradiography and isotope dilution analysis were used. Results are discussed, especially of experiments on dimethoate and its technical by-products

  14. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2004-01-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13 C and 15 N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13 C 15 N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39 K, 23 Na and 40 Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors

  15. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash

    2004-06-15

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes {sup 13}C and {sup 15}N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK{sub 1} kidney cells at mass 28 ({sup 13}C{sup 15}N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of {sup 39}K, {sup 23}Na and {sup 40}Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  16. Evaluating Varied Label Designs for Use with Medical Devices: Optimized Labels Outperform Existing Labels in the Correct Selection of Devices and Time to Select.

    Directory of Open Access Journals (Sweden)

    Laura Bix

    Full Text Available Effective standardization of medical device labels requires objective study of varied designs. Insufficient empirical evidence exists regarding how practitioners utilize and view labeling.Measure the effect of graphic elements (boxing information, grouping information, symbol use and color-coding to optimize a label for comparison with those typical of commercial medical devices.Participants viewed 54 trials on a computer screen. Trials were comprised of two labels that were identical with regard to graphics, but differed in one aspect of information (e.g., one had latex, the other did not. Participants were instructed to select the label along a given criteria (e.g., latex containing as quickly as possible. Dependent variables were binary (correct selection and continuous (time to correct selection.Eighty-nine healthcare professionals were recruited at Association of Surgical Technologists (AST conferences, and using a targeted e-mail of AST members.Symbol presence, color coding and grouping critical pieces of information all significantly improved selection rates and sped time to correct selection (α = 0.05. Conversely, when critical information was graphically boxed, probability of correct selection and time to selection were impaired (α = 0.05. Subsequently, responses from trials containing optimal treatments (color coded, critical information grouped with symbols were compared to two labels created based on a review of those commercially available. Optimal labels yielded a significant positive benefit regarding the probability of correct choice ((P<0.0001 LSM; UCL, LCL: 97.3%; 98.4%, 95.5%, as compared to the two labels we created based on commercial designs (92.0%; 94.7%, 87.9% and 89.8%; 93.0%, 85.3% and time to selection.Our study provides data regarding design factors, namely: color coding, symbol use and grouping of critical information that can be used to significantly enhance the performance of medical device labels.

  17. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  18. Mechanistic Insights into Catalytic Ethanol Steam Reforming Using Isotope-Labeled Reactants.

    Science.gov (United States)

    Crowley, Stephen; Castaldi, Marco J

    2016-08-26

    The low-temperature ethanol steam reforming (ESR) reaction mechanism over a supported Rh/Pt catalyst has been investigated using isotope-labeled EtOH and H2 O. Through strategic isotope labeling, all nonhydrogen atoms were distinct from one another, and allowed an unprecedented level of understanding of the dominant reaction pathways. All combinations of isotope- and non-isotope-labeled atoms were detected in the products, thus there are multiple pathways involved in H2 , CO, CO2 , CH4 , C2 H4 , and C2 H6 product formation. Both the recombination of C species on the surface of the catalyst and preservation of the C-C bond within ethanol are responsible for C2 product formation. Ethylene is not detected until conversion drops below 100 % at t=1.25 h. Also, quantitatively, 57 % of the observed ethylene is formed directly through ethanol dehydration. Finally there is clear evidence to show that oxygen in the SiO2 -ZrO2 support constitutes 10 % of the CO formed during the reaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: kkato@phar.nagoya-cu.ac.jp [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)

    2015-06-15

    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  20. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  1. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  2. A general procedure for isotopic (deuterium) labelling of non-steroidal antiinflammatory 2-arylpropionic acids

    International Nuclear Information System (INIS)

    Castell, J.V.; Martinez, L.A.; Universidad Politecnica de Valencia; Miranda, M.A.; Tarrega, Pilar

    1994-01-01

    Alkaline treatment of nonsteroidal antiinflammatory 2-arylpropionic acids in deuterium oxide led in all cases to isotopic exchange of the proton located at the α-position of the side chain. Monodeuteration was observed in the case of carprofen, ibuprofen, ketoprofen, fenoprofen, flurbiprofen and naproxen. Additional exchange of one or two protons of the heterocyclic ring occurred in indoprofen, suprofen and tiaprofenic acid. The isotopic labelling survived under the conditions required to perform in vitro photoallergic studies (photolysis in non-deuterated aqueous media). (Author)

  3. A general procedure for isotopic (deuterium) labelling of non-steroidal antiinflammatory 2-arylpropionic acids

    Energy Technology Data Exchange (ETDEWEB)

    Castell, J.V. (Valencia Univ. Hospital (Spain). Centro de Investigacion); Martinez, L.A. (Valencia Univ. Hospital (Spain). Centro de Investigacion Universidad Politecnica de Valencia (Spain). Dept. de Quimica); Miranda, M.A.; Tarrega, Pilar (Universidad Politecnica de Valencia (Spain). Dept. de Quimica)

    1994-01-01

    Alkaline treatment of nonsteroidal antiinflammatory 2-arylpropionic acids in deuterium oxide led in all cases to isotopic exchange of the proton located at the [alpha]-position of the side chain. Monodeuteration was observed in the case of carprofen, ibuprofen, ketoprofen, fenoprofen, flurbiprofen and naproxen. Additional exchange of one or two protons of the heterocyclic ring occurred in indoprofen, suprofen and tiaprofenic acid. The isotopic labelling survived under the conditions required to perform in vitro photoallergic studies (photolysis in non-deuterated aqueous media). (Author).

  4. LC/MS Method for the Determination of Stable Isotope Labeled Promethazine in Human Plasma

    Science.gov (United States)

    Zuwei, Wang; Boyd, Jason; Berens, Kurt L.; Putcha, Lakshmi

    2004-01-01

    Promethazine (PMZ) is taken by astronauts orally (PO), intramuscularly (IM) or rectally (PR) for space motion sickness. LC/MS method was developed with off-line solid phase extraction to measure plasma concentrations of PMZ given as stable isotope-labeled (SIL) formulations by the three different routes of administration simultaneously. Samples (0.5ml) were loaded on to Waters Oasis HLB co-polymer cartridges and eluted with 1.0 mL methanol. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 6 min. Acetonitrile/ ammonium acetate (30 mM) in water (3:2, v/v), pH 5.6 plus or minus 0.1, was used as the mobile phase for separation. Concentrations of PMZ, PMZ-d4 and PMZ-d7 and chlorpromazine (internal standard) were determined using a Micromass ZMD single quadrupole mass spectrometer with Electrospray Ionization (ESI). ESI mass spectra were acquired in positive ion mode with selected ion monitoring of [M+ H]dot plus. The method is rapid, reproducible and the assay specific parameters are listed in a table. A novel, sensitive and specific method for the measurement of PMZ and SIL PMZ in human plasma is reported.

  5. Tritium labelling of testosteron by selective hydrogenation of dihydrotestosteron

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia; Simion, Elena; Barna, Catalina; Condac, Eduard

    2002-01-01

    Elemental tritium is obtained during the decontamination process of the moderator from Cernavoda Nuclear Power Plant. It might be stocked for use in controlled fusion, in a relatively far future, or, it might be immediately used as raw material in the synthesis of labelled compounds with important economic value. Labelling of testosteron with tritium was necessary for the carrying out of radiometric and molecular biology studies concerning androgen dependent diseases. Testosteron was labelled by selective hydrogenation of 1,2 dihydrotestosteron acetate. The forerunner was synthesized in two steps: 1) esterification of testosteron using acetic anhydride, and 2) selective dehydrogenation with 2,6-dichloro-3,5-dicyan-1,4 quinone (DDQ) of the ester formed in the first step. Testosteron acetate was synthesized and purified with yields of 73%, and 80%, respectively. The dehydrogenation process was characterized by yields of 82% for synthesis and 33% for purification. The tritium labelled hormone was obtained in two steps: 1) selective hydrogenation of Δ 1 - testosteron acetate in the presence of T 2 gas, at low pressure, and 2) hydrolysis of the ester at basic pH. The raw product obtained was purified by preparative thin layer chromatography. The physical and chemical characterization of labelled testosteron reveals a radiochemical purity higher than 98% and a specific activity of 53.4 Ci/mmol. (authors)

  6. Generation and relaxation of high rank coherences in AX3 systems in a selectively methionine labelled SH2 domain

    International Nuclear Information System (INIS)

    Kloiber, Karin; Fischer, Michael; Ledolter, Karin; Nagl, Michael; Schmid, Walther; Konrat, Robert

    2007-01-01

    The usefulness of selective isotope labelling patterns is demonstrated using the C-terminal SH2 domain of PLC-γ1 selectively 13 C labelled at methionine methyl groups. We demonstrate the generation and relaxation of coherences that are second rank in protons and first rank in carbons that derive from quadrupolar order in protons. The decay rates of second rank double quantum proton coherences are measured. These terms exhibit fewer channels for cross-correlated relaxation compared to single quantum coherences. Our results indicate the potential application of the measurement of high order proton coherences to the analysis of dynamics in methyl-bearing side chains

  7. Selective heating and separation of isotopes in a metallic plasma

    International Nuclear Information System (INIS)

    Moffa, P.; Cheshire, D.; Flanders, B.; Myer, R.; Robinette, W.; Thompson, J.; Young, S.

    1983-01-01

    Several types of metallic plasmas have been produced at the Plasma Separation Process facility of TRW. Selective heating and separation of specific isotopes in these plasmas have been achieved. In this presentation the authors concentrate on the modeling of the selective heating and separation of the isotope Ni 58 . Two models are currently used to describe the excitation process. In both, the electromagnetic fields in the plasma produced by the ICRH antenna are calculated self-consistently using a kinetic description of the warm plasma dielectric. In the Process Model Code, both the production of the plasma and the heating are calculated using a Monte Carlo approach. Only the excitation process is treated in the second simplified model. Test particles that sample an initial parallel velocity distribution are launched into the heating region and the equations of motion including collisional damping are calculated. For both models, the perpendicular energy for a number of particles with different initial conditions and representing the different isotopes is calculated. This information is then input into a code that models the performance of our isotope separation collector. The motion of the ions of each isotope through the electrically biased collector is followed. An accounting of where each particle is deposited is kept and hence the isotope separation performance of the collector is predicted

  8. Quantification of isotope-labelled and unlabelled folates in plasma, ileostomy and food samples.

    Science.gov (United States)

    Büttner, Barbara E; Öhrvik, Veronica E; Witthöft, Cornelia M; Rychlik, Michael

    2011-01-01

    New stable isotope dilution assays were developed for the simultaneous quantitation of [(13)C(5)]-labelled and unlabelled 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid, folic acid along with unlabelled tetrahydrofolic acid and 10-formylfolic acid in clinical samples deriving from human bioavailability studies, i.e. plasma, ileostomy samples, and food. The methods were based on clean-up by strong anion exchange followed by LC-MS/MS detection. Deuterated analogues of the folates were applied as the internal standards in the stable isotope dilution assays. Assay sensitivity was sufficient to detect all relevant folates in the respective samples as their limits of detection were below 0.62 nmol/L in plasma and below 0.73 μg/100 g in food or ileostomy samples. Quantification of the [(13)C(5)]-label in clinical samples offers the possibility to differentiate between folate from endogenous body pools and the administered dose when executing bioavailability trials.

  9. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase.

    Science.gov (United States)

    Luk, Louis Y P; Ruiz-Pernía, J Javier; Adesina, Aduragbemi S; Loveridge, E Joel; Tuñón, Iñaki; Moliner, Vincent; Allemann, Rudolf K

    2015-07-27

    Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  10. Studies of phosphorus-containing fertilizer uptake in soils by 32P isotope labelling

    International Nuclear Information System (INIS)

    Fueleky, Gyoergy; Osztoics, Andrasne; Papne Kranitz, Erzsebet

    1983-01-01

    Breeding experiments were carried out with rye-grass (Lolium perenne L.) on two soil types to determine the plant uptake of phosphorus from naturally occuring element and from that added to the soil by superphosphate fertilizers. 32 P isotope labelling and radiometric measuring method were applied. In addition to the determination of phosphorus uptake, the phosphorus contents of the soil from its natural stock and from the fertilizer for both soil types can be determined by this method. (A.L.)

  11. UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xin; Tolmachev, Aleksey V.; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Anderson, Gordon A.; Smith, Richard D.; Chan, Wing C.; Hinrichs, Steven; Fu, Kai; Ding, Shi-Jian

    2011-03-04

    We present UNiquant, a new software program for analyzing stable isotope labeling (SIL) based quantitative proteomics data. UNiquant surpassed the performance of two other platforms, MaxQuant and Mascot Distiller, using complex proteome mixtures having either known or unknown heavy/light ratios. UNiquant is compatible with a broad spectrum of search engines and SIL methods, providing outstanding peptide pair identification and accurate measurement of the relative peptide/protein abundance.

  12. Separation of uranium isotopes by selective photoionization

    International Nuclear Information System (INIS)

    Snavely, B.B.; Solarz, R.W.; Tuccio, S.A.

    1975-01-01

    Recent results of experiments on the laser photoseparation of U isotopes are reported. In the first series of experiments a two-step ionization process using a Xe laser to excite the atoms below the ionization level and then a Kr laser to ionize the atoms was described. Under the geometric conditions of the experiment and power of the Kr laser, enrichments between 2.5 and 3 percent were obtained in runs lasting 2 hrs. Calculations to describe the ion trajectories in the collector system reflected the two-band pattern observed on the Be collector plate. A system to study the photoionization process was assembled in which the U beam is excited to a desired energy level with a CW dye laser and an ultraviolet beam intercepts the excited U beam. An analysis of a photoionization spectrum obtained at a resolution of 8 A indicates that the peak cross section for transitions to autoionization states from the 7 M 7 level is large enough to be used in large-scale U separation systems. An ionization value of 6.15 +- 0.2 eV was deduced for the ionization potential of the U atom. (U.S.)

  13. Label-free and selective nonlinear fiber-optical biosensing

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Heuck, Mikkel; Agger, Christian

    2008-01-01

    We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain...... for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor....

  14. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    Isotope exchange reactions between S-35-labeled sulfur compounds were studied in anoxic estuarine sediment slurries at 21-degrees-C and pH 7.4-7.7. Two experiments labeled with radioactive elemental sulfur (S-35-degrees) and one labeled with radioactive sulfate ((SO42-)-S-35) were performed as time......% of the total S-35 was recovered in the SIGMA-HS- pool in less than 1.5 h. With no detectable SIGMA-HS- (less than 1-mu-M) in the slurry, 58% of the total S-35 was observed in the pyrite pool within 1.5 h. The FeS pool received up to 31% of all S-35 added. The rapid S-35 incorporation from S-35-degrees...... into SIGMA-HS- and FeS pools was explained by isotope exchange reactions. In contrast, there was evidence that the radioactivity observed in the 'pyrite pool' was caused by adhesion of the added S-35-degrees to the FeS2 grains. In all S-35-degrees-labeled experiments we also observed oxidation...

  15. Cooperation of CMEA member states in the field of the manufacture and use of stable isotopes and compounds thus labelled

    International Nuclear Information System (INIS)

    Ertel, G.; Ewald, G.

    1977-01-01

    The contribution presents a survey of scientific-technical cooperation of CMEA member states in the field of stable isotopes, it deals with the specialization of stable isotope production and compounds thus labelled, and gives the prospects for further development of this cooperation. (HK) [de

  16. Stable isotope labeled n-alkanes to assess digesta passage kinetics through the digestive tract of ruminants

    NARCIS (Netherlands)

    Warner, D.; Ferreira, L.M.M.; Breuer, M.J.H.; Dijkstra, J.; Pellikaan, W.F.

    2013-01-01

    We describe the use of carbon stable isotope (13C) labeled n-alkanes as a potential internal tracer to assess passage kinetics of ingested nutrients in ruminants. Plant cuticular n-alkanes originating from intrinsically 13C labeled ryegrass plants were pulse dosed intraruminally in four

  17. Recycling of an amino acid label with prolonged isotope infusion: Implications for kinetic studies

    International Nuclear Information System (INIS)

    Schwenk, W.F.; Tsalikian, E.; Beaufrere, B.; Haymond, M.W.

    1985-01-01

    To investigate whether recycling of a labeled amino acid would occur after 24 h of infusion, two groups of normal volunteers were infused with [ 3 H]leucine and alpha-[ 14 C]-ketoisocaproate for 4 h and [ 2 H 3 ]leucine for either 4 or 24 h (groups I and II, respectively). Entry of [ 2 H 3 ]leucine at steady state into the plasma space was indistinguishable from its infusion rate for group I but 30% higher (P less than 0.001) than this rate for group II, demonstrating significant recycling of label. After discontinuation of the infusions, isotope disappearance from the plasma space was followed for 2 h. The 3 H and 14 C decay data for both groups suggest that plasma leucine and alpha- ketoisocaproate are derived from a single intracellular pool in the postabsorptive state. In group I, the 3 H and 2 H labels decayed identically; whereas, in group II, the decay of [ 2 H 3 ]-leucine and alpha- [ 2 H 3 ]ketoisocaproate was slower (P less than 0.01) than the decay of [ 3 H]leucine and alpha-[ 3 H]ketoisocaproate, confirming re-entry of label after a 24-h infusion. Therefore kinetic values calculated from models assuming no recycling of labeled amino acids are most likely not quantitative and must be interpreted with care when flux does not change or decreases

  18. Automatic isotope gas analysis of tritium labelled organic materials Pt. 1

    International Nuclear Information System (INIS)

    Gacs, I.; Mlinko, S.

    1978-01-01

    A new automatic procedure developed to convert tritium in HTO hydrogen for subsequent on-line gas counting is described. The water containing tritium is introduced into a column prepared from molecular sieve-5A and heated to 550 deg C. The tritium is transferred by isotopic exchange into hydrogen flowing through the column. The radioactive gas is led into an internal detector for radioactivity measurement. The procedure is free of memory effects, provides quantitative recovery with analytical reproducibility better than 0.5% rel. at a preset number of counts. The experimental and analytical results indicate that isotopic exchange between HTO and hydrogen over a column prepared from alumina or molecular sieve-5A can be successfully applied for the quantitative transfer of tritium from HTO into hydrogen for on-line gas countinq. This provides an analytical procedure for the automatic determination of tritium in water with an analytical reproducibility better than 0.5% rel. The exchange process will also be suitable for rapid tritium transfer from water formed during the decomposition of tritium-labelled organic compounds or biological materials. The application of the procedure in automatic isotope gas analysis of organic materials labelled with tritium will be described in subsequent papers (Parts II and III). (T.G.)

  19. Liquid–liquid extraction combined with differential isotope dimethylaminophenacyl labeling for improved metabolomic profiling of organic acids

    International Nuclear Information System (INIS)

    Peng, Jun; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •An improved method for profiling the carboxylic acid sub-metabolome is reported. •Liquid–liquid extraction was used for separating the organic acids from the amines. • 12 C/ 13 C-p-dimethylaminophenacyl (DmPA) labeling of the organic acids was carried out on the extract. •Detection interference by amines and labeling efficiency reduction by water were reduced. •About 2500 12 C/ 13 C-peak pairs or putative metabolites could be detected from 20 μL of human urine. -- Abstract: A large fraction of the known human metabolome belong to organic acids. However, comprehensive profiling of the organic acid sub-metabolome is a major analytical challenge. In this work, we report an improved method for detecting organic acid metabolites. This method is based on the use of liquid–liquid extraction (LLE) to selectively extract the organic acids, followed by using differential isotope p-dimethylaminophenacyl (DmPA) labeling of the acid metabolites. The 12 C-/ 13 C-labeled samples are analyzed by liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC–FTICR–MS). It is shown that this LLE DmPA labeling method offers superior performance over the method of direct DmPA labeling of biofluids such as human urine. LLE of organic acids reduces the interference of amine-containing metabolites that may also react with DmPA. It can also remove water in a biofluid that can reduce the labeling efficiency. Using human urine as an example, it is demonstrated that about 2500 peak pairs or putative metabolites could be detected in a 30-min gradient LC–MS run, which is about 3 times more than that detected in a sample prepared using direct DmPA labeling. About 95% of the 1000 or so matched metabolites to the Human Metabolome Database (HMDB) are organic acids. It is further shown that this method can be used to handle as small as 10 μL of urine. We believe that this method opens the possibility of generating a

  20. Liquid–liquid extraction combined with differential isotope dimethylaminophenacyl labeling for improved metabolomic profiling of organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jun; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-11-25

    Graphical abstract: -- Highlights: •An improved method for profiling the carboxylic acid sub-metabolome is reported. •Liquid–liquid extraction was used for separating the organic acids from the amines. •{sup 12}C/{sup 13}C-p-dimethylaminophenacyl (DmPA) labeling of the organic acids was carried out on the extract. •Detection interference by amines and labeling efficiency reduction by water were reduced. •About 2500 {sup 12}C/{sup 13}C-peak pairs or putative metabolites could be detected from 20 μL of human urine. -- Abstract: A large fraction of the known human metabolome belong to organic acids. However, comprehensive profiling of the organic acid sub-metabolome is a major analytical challenge. In this work, we report an improved method for detecting organic acid metabolites. This method is based on the use of liquid–liquid extraction (LLE) to selectively extract the organic acids, followed by using differential isotope p-dimethylaminophenacyl (DmPA) labeling of the acid metabolites. The {sup 12}C-/{sup 13}C-labeled samples are analyzed by liquid chromatography Fourier-transform ion cyclotron resonance mass spectrometry (LC–FTICR–MS). It is shown that this LLE DmPA labeling method offers superior performance over the method of direct DmPA labeling of biofluids such as human urine. LLE of organic acids reduces the interference of amine-containing metabolites that may also react with DmPA. It can also remove water in a biofluid that can reduce the labeling efficiency. Using human urine as an example, it is demonstrated that about 2500 peak pairs or putative metabolites could be detected in a 30-min gradient LC–MS run, which is about 3 times more than that detected in a sample prepared using direct DmPA labeling. About 95% of the 1000 or so matched metabolites to the Human Metabolome Database (HMDB) are organic acids. It is further shown that this method can be used to handle as small as 10 μL of urine. We believe that this method opens the

  1. Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Zhou, Ruokun; Huan, Tao; Li, Liang

    2015-01-01

    Highlights: • Two new reagents were developed for chemical isotope labeling mass spectrometry (MS). • They could be used to label amine-containing metabolites in a metabolomic sample. • The labeled metabolites could be detected with much improved sensitivity in MS. • One of the reagents could also help generate useful MS/MS spectra for structural analysis. • These reagents should be useful for quantitative metabolomics. - Abstract: Metabolomic profiling involves relative quantification of metabolites in comparative samples and identification of the significant metabolites that differentiate different groups (e.g., diseased vs. controls). Chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technique that can provide improved metabolome coverage and metabolite quantification. However, chemical identification of labeled metabolites can still be a challenge. In this work, a new set of isotopic labeling reagents offering versatile properties to enhance both detection and identification are described. They were prepared by a glycine molecule (or its isotopic counterpart) and an aromatic acid with varying structures through a simple three-step synthesis route. In addition to relatively low costs of synthesizing the reagents, this reaction route allows adjusting reagent property in accordance with the desired application objective. To date, two isotopic reagents, 4-dimethylaminobenzoylamido acetic acid N-hydroxylsuccinimide ester (DBAA-NHS) and 4-methoxybenzoylamido acetic acid N-hydroxylsuccinimide ester (MBAA-NHS), for labeling the amine-containing metabolites (i.e., amine submetabolome) have been synthesized. The labeling conditions and the related LC–MS method have been optimized. We demonstrate that DBAA labeling can increase the metabolite detectability because of the presence of an electrospray ionization (ESI)-active dimethylaminobenzoyl group. On the other hand, MBAA labeled metabolites can be fragmented

  2. Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ruokun; Huan, Tao; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2015-06-30

    Highlights: • Two new reagents were developed for chemical isotope labeling mass spectrometry (MS). • They could be used to label amine-containing metabolites in a metabolomic sample. • The labeled metabolites could be detected with much improved sensitivity in MS. • One of the reagents could also help generate useful MS/MS spectra for structural analysis. • These reagents should be useful for quantitative metabolomics. - Abstract: Metabolomic profiling involves relative quantification of metabolites in comparative samples and identification of the significant metabolites that differentiate different groups (e.g., diseased vs. controls). Chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technique that can provide improved metabolome coverage and metabolite quantification. However, chemical identification of labeled metabolites can still be a challenge. In this work, a new set of isotopic labeling reagents offering versatile properties to enhance both detection and identification are described. They were prepared by a glycine molecule (or its isotopic counterpart) and an aromatic acid with varying structures through a simple three-step synthesis route. In addition to relatively low costs of synthesizing the reagents, this reaction route allows adjusting reagent property in accordance with the desired application objective. To date, two isotopic reagents, 4-dimethylaminobenzoylamido acetic acid N-hydroxylsuccinimide ester (DBAA-NHS) and 4-methoxybenzoylamido acetic acid N-hydroxylsuccinimide ester (MBAA-NHS), for labeling the amine-containing metabolites (i.e., amine submetabolome) have been synthesized. The labeling conditions and the related LC–MS method have been optimized. We demonstrate that DBAA labeling can increase the metabolite detectability because of the presence of an electrospray ionization (ESI)-active dimethylaminobenzoyl group. On the other hand, MBAA labeled metabolites can be fragmented

  3. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  4. A systematic analysis of backbone amide assignments achieved via combinatorial selective labelling of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Jeremy Craven, C. [University of Sheffield, Department of Biotechnology and Molecular Biology (United Kingdom); Al-Owais, Moza; Parker, Martin J. [University of Leeds, Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology (United Kingdom)], E-mail: m.j.parker@leeds.ac.uk

    2007-06-15

    With the advent of high-yield cell-free expressions systems, many researchers are exploiting selective isotope labelling of amino acids to increase the efficiency and accuracy of the NMR assignment process. We developed recently a combinatorial selective labelling (CSL) method capable of yielding large numbers of residue-type and sequence-specific backbone amide assignments, which involves comparing cross-peak intensities in {sup 1}H-{sup 15}N HSQC and 2D {sup 1}H-{sup 15}N HNCO spectra collected for five samples containing different combinations of {sup 13}C- and {sup 15}N-labelled amino acids [Parker MJ, Aulton-Jones M, Hounslow A, Craven C J (2004) J Am Chem Soc 126:5020-5021]. In this paper we develop a robust method for establishing the reliability of these assignments. We have performed a detailed statistical analysis of the CSL data collected for a model system (the B1 domain of protein G from Streptococcus), developing a scoring method which allows the confidence in assignments to be assessed, and which enables the effects of overlap on assignment fidelity to be predicted. To further test the scoring method and also to assess the performance of CSL in relation to sample quality, we have applied the method to the CSL data collected for GFP in our previous study.

  5. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  6. Synthesis of analogues of purine nucleotides selectively labeled by tritium on the C-8 of the purine ring and evaluation of the stability of tritium label

    Czech Academy of Sciences Publication Activity Database

    Elbert, Tomáš

    2010-01-01

    Roč. 53, č. 3 (2010), s. 156-157 ISSN 0362-4803. [Workshop of the International Isotope Society - Central European Division. The Synthesis and applications of Isotopes and Isotopically Labelled Compounds /16./. 01.10.2009-02.10.2009, Bad Soden] Institutional research plan: CEZ:AV0Z40550506 Keywords : acyclic nucleotide analogues * tritium Subject RIV: CC - Organic Chemistry

  7. Stable isotope labelling with amino acids in cell culture for human embryonic stem cell proteomic analysis

    DEFF Research Database (Denmark)

    Harkness, Linda; Prokhorova, Tatyana A; Kassem, Moustapha

    2012-01-01

    The identification and quantitative measurements of proteins in human embryonic stem cells (hESC) is a fast growing interdisciplinary area with an enormous impact on understanding the biology of hESC and the mechanism controlling self-renewal and differentiation. Using a quantitative mass...... spectroscopic method of stable isotope labelling with amino acids during cell culture (SILAC), we are able to analyse differential expression of proteins from different cellular compartments and to identify intracellular signalling pathways involved in self-renewal and differentiation. In this chapter, we...

  8. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiaoling [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Wang, Nan [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Chen, Deying [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Li, Yunong [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Lu, Yingfeng [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Huan, Tao [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Xu, Wei [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Li, Liang, E-mail: Liang.Li@ualberta.ca [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Li, Lanjuan, E-mail: ljli@zju.edu.cn [State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China)

    2016-01-15

    Human urine and feces can be non-invasively collected for metabolomics-based disease biomarker discovery research. Because urinary and fecal metabolomes are thought to be different, analysis of both biospecimens may generate a more comprehensive metabolomic profile that can be better related to the health state of an individual. Herein we describe a method of using differential chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) for parallel metabolomic profiling of urine and feces. Dansylation labeling was used to quantify the amine/phenol submetabolome changes among different samples based on {sup 12}C-labeling of individual samples and {sup 13}C-labeling of a pooled urine or pooled feces and subsequent analysis of the {sup 13}C-/{sup 12}C-labeled mixture by LC-MS. The pooled urine and pooled feces are further differentially labeled, mixed and then analyzed by LC-MS in order to relate the metabolite concentrations of the common metabolites found in both biospecimens. This method offers a means of direct comparison of urinary and fecal submetabolomes. We evaluated the analytical performance and demonstrated the utility of this method in the analysis of urine and feces collected daily from three healthy individuals for 7 days. On average, 2534 ± 113 (n = 126) peak pairs or metabolites could be detected from a urine sample, while 2507 ± 77 (n = 63) peak pairs were detected from a fecal sample. In total, 5372 unique peak pairs were detected from all the samples combined; 3089 and 3012 pairs were found in urine and feces, respectively. These results reveal that the urine and fecal metabolomes are very different, thereby justifying the consideration of using both biospecimens to increase the probability of finding specific biomarkers of diseases. Furthermore, the CIL LC-MS method described can be used to perform parallel quantitative analysis of urine and feces, resulting in more complete coverage of the human metabolome

  9. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes

    International Nuclear Information System (INIS)

    Su, Xiaoling; Wang, Nan; Chen, Deying; Li, Yunong; Lu, Yingfeng; Huan, Tao; Xu, Wei; Li, Liang; Li, Lanjuan

    2016-01-01

    Human urine and feces can be non-invasively collected for metabolomics-based disease biomarker discovery research. Because urinary and fecal metabolomes are thought to be different, analysis of both biospecimens may generate a more comprehensive metabolomic profile that can be better related to the health state of an individual. Herein we describe a method of using differential chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) for parallel metabolomic profiling of urine and feces. Dansylation labeling was used to quantify the amine/phenol submetabolome changes among different samples based on "1"2C-labeling of individual samples and "1"3C-labeling of a pooled urine or pooled feces and subsequent analysis of the "1"3C-/"1"2C-labeled mixture by LC-MS. The pooled urine and pooled feces are further differentially labeled, mixed and then analyzed by LC-MS in order to relate the metabolite concentrations of the common metabolites found in both biospecimens. This method offers a means of direct comparison of urinary and fecal submetabolomes. We evaluated the analytical performance and demonstrated the utility of this method in the analysis of urine and feces collected daily from three healthy individuals for 7 days. On average, 2534 ± 113 (n = 126) peak pairs or metabolites could be detected from a urine sample, while 2507 ± 77 (n = 63) peak pairs were detected from a fecal sample. In total, 5372 unique peak pairs were detected from all the samples combined; 3089 and 3012 pairs were found in urine and feces, respectively. These results reveal that the urine and fecal metabolomes are very different, thereby justifying the consideration of using both biospecimens to increase the probability of finding specific biomarkers of diseases. Furthermore, the CIL LC-MS method described can be used to perform parallel quantitative analysis of urine and feces, resulting in more complete coverage of the human metabolome. - Highlights: • A

  10. Auto-inducing media for uniform isotope labeling of proteins with {sup 15}N, {sup 13}C and {sup 2}H

    Energy Technology Data Exchange (ETDEWEB)

    Guthertz, Nicolas [Institute of Cancer Research, Division of Structural Biology (United Kingdom); Klopp, Julia; Winterhalter, Aurélie; Fernández, César; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with {sup 15}N, {sup 13}C and/or {sup 2}H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of {sup 13}C, {sup 15}N of 96.6 % and {sup 2}H, {sup 15}N of 98.8 %. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer.

  11. Synthesis of {sup 15}N isotope labeled alanine; Sintese da alanina enriquecida com {sup 15}N

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Claudineia R. de; Bendassolli, Jose Albertino; Sant' Ana, Carlos Roberto; Tagliassachi, Romulo Barbieri; Maximo, Everaldo; Prestes, Clelber Vieira [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Dept. de Isotopos Estaveis]. E-mail: crolivei@cena.usp.br

    2005-07-01

    The application of light chemical elements and their stable isotopes in biological studies have been increased over the last years. The use of {sup 15}N labeled amino acids is an important tool for elucidation of peptides structures. This paper describe a method for the synthesis of {sup 15}N isotope labeled alanine at lower costs than international ones, as well as the details of the recovery system of the nitrogen residues. In the present work an amination of {alpha}-haloacids, with the bromopropionic carboxylic acid and labeled aqua ammonia ({sup 15}NH{sub 3} aq) was carried out. In order to avoid eventually losses of {sup 15}NH{sub 3}, special cares were adopted, since the production cost is high. Although the acquisition cost of the {sup 13}N (radioactive) labeled compounds is lower, the obtained stable tracer will allow the accomplishment of important studies of the nitrogen cycling in living things, less occupational and environment hazards, and the time limitation problems in field studies. The tests took place in triplicates with NH{sub 3} (aq) being employed. With the establishment of the system for {sup 15}NH{sub 3} recovery, an average of 94 % of the ammonia employed in the synthesis process was recovered. The purity of the amino acid was state determined by TLC (Thin Layer Chromatography) and HPLC (High-Performance Liquid Chromatography) with a fluorescence detector. The Rf and the retention time of the synthesized sample were similar the sigma standard. Finally, regarding the established conditions, it was possible to obtain the alanine with a production cost about 40 % lower than the international price. (author)

  12. Synthesis and applications of selectively {sup 13}C-labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  13. Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system

    International Nuclear Information System (INIS)

    Miyazawa-Onami, Mayumi; Takeuchi, Koh; Takano, Toshiaki; Sugiki, Toshihiko; Shimada, Ichio; Takahashi, Hideo

    2013-01-01

    The production of stable isotope-labeled proteins is critical in structural analyses of large molecular weight proteins using NMR. Although prokaryotic expression systems using Escherichia coli have been widely used for this purpose, yeast strains have also been useful for the expression of functional eukaryotic proteins. Recently, we reported a cost-effective stable isotope-labeled protein expression using the hemiascomycete yeast Kluyveromyces lactis (K. lactis), which allow us to express exogenous proteins at costs comparable to prokaryotic expression systems. Here, we report the successful production of highly deuterated (>90 %) protein in the K. lactis system. We also examined the methyl-selective 1 H, 13 C-labeling of Ile, Leu, and Val residues using commonly used amino acid precursors. The efficiency of 1 H- 13 C-incorporation varied significantly based on the amino acid. Although a high level of 1 H- 13 C-incorporation was observed for the Ile δ1 position, 1 H, 13 C-labeling rates of Val and Leu methyl groups were limited due to the mitochondrial localization of enzymes involved in amino acid biosynthesis and the lack of transporters for α-ketoisovalerate in the mitochondrial membrane. In line with this notion, the co-expression with branched-chain-amino-acid aminotransferase in the cytosol significantly improved the incorporation rates of amino acid precursors. Although it would be less cost-effective, addition of 13 C-labeled valine can circumvent problems associated with precursors and achieve high level 1 H, 13 C-labeling of Val and Leu. Taken together, the K. lactis system would be a good alternative for expressing large eukaryotic proteins that need deuteration and/or the methyl-selective 1 H, 13 C-labeling for the sensitive detection of NMR resonances

  14. Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique

    Science.gov (United States)

    Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.

    2010-12-01

    Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated

  15. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard

    1971-01-01

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C 18 O 2 and H 2 16 O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO 2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C 18 O 2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO 2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13 C 18 O 2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18 O have been established at different temperatures. (author) [fr

  16. A guide through the computational analysis of isotope-labeled mass spectrometry-based quantitative proteomics data: an application study

    Directory of Open Access Journals (Sweden)

    Haußmann Ute

    2011-06-01

    Full Text Available Abstract Background Mass spectrometry-based proteomics has reached a stage where it is possible to comprehensively analyze the whole proteome of a cell in one experiment. Here, the employment of stable isotopes has become a standard technique to yield relative abundance values of proteins. In recent times, more and more experiments are conducted that depict not only a static image of the up- or down-regulated proteins at a distinct time point but instead compare developmental stages of an organism or varying experimental conditions. Results Although the scientific questions behind these experiments are of course manifold, there are, nevertheless, two questions that commonly arise: 1 which proteins are differentially regulated regarding the selected experimental conditions, and 2 are there groups of proteins that show similar abundance ratios, indicating that they have a similar turnover? We give advice on how these two questions can be answered and comprehensively compare a variety of commonly applied computational methods and their outcomes. Conclusions This work provides guidance through the jungle of computational methods to analyze mass spectrometry-based isotope-labeled datasets and recommends an effective and easy-to-use evaluation strategy. We demonstrate our approach with three recently published datasets on Bacillus subtilis 12 and Corynebacterium glutamicum 3. Special focus is placed on the application and validation of cluster analysis methods. All applied methods were implemented within the rich internet application QuPE 4. Results can be found at http://qupe.cebitec.uni-bielefeld.de.

  17. Formation of Hydroxymethyl DNA Adducts in Rats Orally Exposed to Stable Isotope Labeled Methanol

    Science.gov (United States)

    Lu, Kun; Gul, Husamettin; Upton, Patricia B.; Moeller, Benjamin C.; Swenberg, James A.

    2012-01-01

    Methanol is a large volume industrial chemical and widely used solvent and fuel additive. Methanol’s well known toxicity and use in a wide spectrum of applications has raised long-standing environmental issues over its safety, including its carcinogenicity. Methanol has not been listed as a carcinogen by any regulatory agency; however, there are debates about its carcinogenic potential. Formaldehyde, a metabolite of methanol, has been proposed to be responsible for the carcinogenesis of methanol. Formaldehyde is a known carcinogen and actively targets DNA and protein, causing diverse DNA and protein damage. However, formaldehyde-induced DNA adducts arising from the metabolism of methanol have not been reported previously, largely due to the absence of suitable DNA biomarkers and the inability to differentiate what was due to methanol compared with the substantial background of endogenous formaldehyde. Recently, we developed a unique approach combining highly sensitive liquid chromatography-mass spectrometry methods and exposure to stable isotope labeled chemicals to simultaneously quantify formaldehyde-specific endogenous and exogenous DNA adducts. In this study, rats were exposed daily to 500 or 2000 mg/kg [13CD4]-methanol by gavage for 5 days. Our data demonstrate that labeled formaldehyde arising from [13CD4]-methanol induced hydroxymethyl DNA adducts in multiple tissues in a dose-dependent manner. The results also demonstrated that the number of exogenous DNA adducts was lower than the number of endogenous hydroxymethyl DNA adducts in all tissues of rats administered 500 mg/kg per day for 5 days, a lethal dose to humans, even after incorporating an average factor of 4 for reduced metabolism due to isotope effects of deuterium-labeled methanol into account. PMID:22157354

  18. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  19. The evaluation of new and isotopically labeled isoindoline nitroxides and an azaphenalene nitroxide for EPR oximetry

    Science.gov (United States)

    Khan, Nadeem; Blinco, James P.; Bottle, Steven E.; Hosokawa, Kazuyuki; Swartz, Harold M.; Micallef, Aaron S.

    2011-01-01

    Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogues (2H12- and/or 2H12-15N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O2 concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O2 sensitivity. Labeling the nitroxides with 15N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation. PMID:21665499

  20. Labeling pharmaceuticals with radioactive isotopes. Technical progress report, December 1, 1975--November 30, 1976

    International Nuclear Information System (INIS)

    Blau, M.; Bender, M.A.

    1976-01-01

    The purpose of this research is to prepare iodo- and bromo-aliphatic amino acid analogs labeled with γ-emitting isotopes ( 131 I, 123 I and 77 Br) for possible use as pancreas localizing agents. Studies on the halogen exchange reaction (I- for Cl-) for the synthesis of β-iodo-α-aminobutyric acid (a valine analog) have suggested that the iodo compound was formed initially. However, the desired compound cannot be isolated because of its chemical instability. Distribution studies in rats with the crude halogen exchange reaction mixture confirmed this finding. Studies on the addition of hydrogen iodine to allylglycine under various conditions for the synthesis of γ-iodo-α-aminopentanoic acid (a leucine analog) suffered the same obstacle; the chemical instability of the desired iodo compound precludes isolation and characterization. Convinced that the iodo analogs were too unstable for use as practical localizing agents, we turned to the possible use of Br for CH 3 substituted amino acids. The 14 C labeled β-bromo-α-aminobutyric acid methyl ester was synthesized. This methyl ester will be hydrolyzed and the distribution of free amino acid will be studied. Labeled with 77 Br this compound might be useful for pancreas localization

  1. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  2. The method for production of high purity carrier free ortophosphoric acid labeled with isotopes Phosphorus-32 and Phosphorus-33

    International Nuclear Information System (INIS)

    Abdukayumov, M.N.; Abdusalyamov, A.N.; Chistyakov, P.G.; Yuldashev, B.S.

    2001-01-01

    Extensive application for various radioactive isotopes was found in an extremity of the 20-Th century in a science and production. Labeled compounds are used with growing effectiveness in a molecular biology, gene engineering, medicine and other areas. Phosphorus-32 and Phosphorus-33 isotopes as a different labeled compounds that are used mainly in molecular biology are produced at the Radiopreparat enterprise of the Institute of Nuclear Physics of Academy of Sciences of Uzbekistan Republic. The quality of labeled preparations is very high. The specifications for above mentioned preparations corresponds to demands most of customers in different countries. P-32 or P-33 labeled orthophosphoric acid has high radiochemical purity (more than 99 %) and specific radioactivity close to theoretical. Orthophosphoric acid prepared by the described above method has radiochemical purity about 95 % and output of the target product 99%

  3. On separation of heavy isotopes by means of selective ICRH

    International Nuclear Information System (INIS)

    Kotelnikov, I.A.; Kuzmin, S.G.; Volosov, V.I.

    1998-01-01

    The authors present a theoretical study of the isotope separation by means of isotopically selective ion cyclotron resonance plasma heating (ICRH). The special attention is devoted to the separation of gadolinium isotopes. The ions are supposed to pass through the device shown on Fig. 1 where they are heated by the full-turn-loop antenna that excites RF field with azimuthal number m = 0. They calculate the distribution function of ions in a plasma stream at the orifice of the device. A satisfactory separation is achieved for the following values of parameters. The length of heating zone ell = 200 cm, initial temperature of plasma stream T parallel = 5 eV, T perpendicular = 60 eV, the plasma radius a = 10 cm, plasma density n = 10 12 cm -3 , external magnetic field B = 30 kGs. The energy of resonance ions W = 100 divided-by 200 eV. The latter value is achieved if a current in the antenna loops is equal to 60A with full number of loops N = 150. With the specified parameters, the current in the plasma stream is equal to 15 divided-by 20A. Then the production rate equals to 100 kg of Gd 157 per year. Energy of Gd's ions after pass through the heating zone vs. their axial velocity

  4. Selected bibliography on deuterium isotope effects and heavy water

    International Nuclear Information System (INIS)

    Dave, S.M.; Donde, M.M.

    1983-01-01

    In recent years, there has been a great deal of interest in using deuterium and heavy water not only in nuclear industry but also in various fields of basic as well as applied research in physics, chemistry and biology. As a result, the literature is being enriched with a large number of research papers and technical reports published each year. Thus, to enable the scientists to have an easy reference to these works, an endeavour has been made in this selected bibliography, to enlist the publications related to these fields. Since the interest is concerned mainly with heavy water production processes, deuterium isotope effects etc., several aspects (e.g. nuclear) of deuterium have not been covered here. The material in this bibliography which cites 2388 references has been classified under six broad headings, viz. (1) Production of heavy water, (2) Study of deuterium isotope effects, (3) Analysis and Properties of heavy water, (4) Laser Separation of deuterium, (5) Isotopic exchange reactions, and (6) Miscellaneous. The sources of information used for this compilation are chemical abstracts, nuclear science abstracts, INIS Atomindex and also some scattered search through journals and reports available in the B.A.R.C. library. However, in spite of sincere attempts for a wide coverage, no claim is being made towards the exhaustiveness of this bibliography. (author)

  5. Sequencing of Isotope-Labeled Small RNA Using Femtosecond Laser Ablation Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Kurata-Nishimura, Mizuki; Ando, Yoshinari; Kobayashi, Tohru; Matsuo, Yukari; Suzuki, Harukazu; Hayashizaki, Yoshihide; Kawai, Jun

    2010-04-01

    A novel method for the analysis of sequences of small RNAs using nucleotide triphosphates labeled with stable isotopes has been developed using time-of-flight mass spectroscopy combined with femtosecond laser ablation (fsLA-TOF-MS). Small RNAs synthesized with nucleotides enriched in 13C and 15N were efficiently atomized and ionized by single-shot fsLA and the isotope ratios 13C/12C and 15N/14N were evaluated using the TOF-MS method. By comparing the isotope ratios among four different configurations, the number of nucleotide contents of the control RNA sample were successfully reproduced.

  6. Affordable uniform isotope labeling with {sup 2}H, {sup 13}C and {sup 15}N in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D., E-mail: alvar.gossert@novartis.com [Novartis Institutes for BioMedical Research (Switzerland)

    2015-06-15

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for {sup 15}N and {sup 13}C with yields comparable to expression in full media. For {sup 2}H,{sup 15}N and {sup 2}H,{sup 13}C,{sup 15}N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins.

  7. Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture

    DEFF Research Database (Denmark)

    Liberski, A. R.; Al-Noubi, M. N.; Rahman, Z. H.

    2013-01-01

    Metabolic labeling with stable isotopes is a prominent technique for comparative quantitative proteomics, and stable isotope labeling with amino acids in cell culture (SILAC) is the most commonly used approach. SILAC is, however, traditionally limited to simple tissue culture regimens and only ra...

  8. Expression and isotopic labelling of the potassium channel blocker ShK toxin as a thioredoxin fusion protein in bacteria.

    Science.gov (United States)

    Chang, Shih Chieh; Galea, Charles A; Leung, Eleanor W W; Tajhya, Rajeev B; Beeton, Christine; Pennington, Michael W; Norton, Raymond S

    2012-10-01

    The polypeptide toxin ShK is a potent blocker of Kv1.3 potassium channels, which play a crucial role in the activation of human effector memory T-cells (T(EM)). Selective blockers constitute valuable therapeutic leads for the treatment of autoimmune diseases mediated by T(EM) cells, such as multiple sclerosis, rheumatoid arthritis, and type-1 diabetes. We have established a recombinant peptide expression system in order to generate isotopically-labelled ShK and various ShK analogues for in-depth biophysical and pharmacological studies. ShK was expressed as a thioredoxin fusion protein in Escherichia coli BL21 (DE3) cells and purified initially by Ni²⁺ iminodiacetic acid affinity chromatography. The fusion protein was cleaved with enterokinase and purified to homogeneity by reverse-phase HPLC. NMR spectra of ¹⁵N-labelled ShK were similar to those reported previously for the unlabelled synthetic peptide, confirming that recombinant ShK was correctly folded. Recombinant ShK blocked Kv1.3 channels with a K(d) of 25 pM and inhibited the proliferation of human and rat T lymphocytes with a preference for T(EM) cells, with similar potency to synthetic ShK in all assays. This expression system also enables the efficient production of ¹⁵N-labelled ShK for NMR studies of peptide dynamics and of the interaction of ShK with Kv1.3 channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 6. Label-free selective plane illumination microscopy of tissue samples

    Directory of Open Access Journals (Sweden)

    Muteb Alharbi

    2017-10-01

    Conclusion: Overall this method meets the demands of the current needs for 3D imaging tissue samples in a label-free manner. Label-free Selective Plane Microscopy directly provides excellent information about the structure of the tissue samples. This work has highlighted the superiority of Label-free Selective Plane Microscopy to current approaches to label-free 3D imaging of tissue.

  10. Isotopic separation of 13C by selective photodissociation of formaldehyde

    International Nuclear Information System (INIS)

    Mussillon, T.

    1998-01-01

    The aim of this work is to study the feasibility of the 13 C isotopic separation by UV laser spectroscopy. The spectra of H 2 12 CO and H 2 13 CO have been recorded by a Fourier transform spectrometer between 28000 and 34000 cm -1 . From these data has been carried out a systematic study of some lines by laser spectroscopy. The selectivity measurements have been compared with the obtained enrichment factors. Thus has been revealed in a quantitative way, the importance of the isotopic re-mixture phenomena and of the selectivity loss. The best enrichment factor has been measured at 29935,56 cm -1 (band: (2,14,1)). A final percentage of 42,1 % has been obtained in a reproducible way for 13 C. The evolution of the enrichment factor has been characterized for a pressure range between 4,4 and 43 mbar. Above the radical dissociation threshold, it has not be possible to show a positive effect of NO on the enrichment factor. This negative result has been explained by a detailed kinetic study of the radical reactions (available literature). This experimental study has been completed by a bibliographic synthesis for understanding the formaldehyde photochemistry. All the processes able to influence the performance of this isotopic separation process have been gathered in this work in an exhaustive way. The radical dissociation threshold of H 2 13 CO have been calculated from molecular constants of the literature and from known thermodynamic data for H 2 12 CO. (O.M.)

  11. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    Science.gov (United States)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  12. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism...... give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP......, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748...

  13. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian

    1994-01-01

    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  14. Extrinsic labelling of staple food crops with isotopic iron does not consistently result in full equilibration: Revisiting the methodology

    Science.gov (United States)

    Extrinsic isotopic labeling of food Fe has been used for over 50 years to measure Fe absorption. This method is based on the assumption that complete equilibration occurs between the extrinsic and the intrinsic Fe prior to intestinal absorption. The present study tested this assumption via use of in...

  15. Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans

    NARCIS (Netherlands)

    Westera, Liset; Drylewicz, Julia; den Braber, Ineke; Mugwagwa, Tendai; van der Maas, Iris; Kwast, Lydia; Volman, Thomas; van de Weg-Schrijver, Elise H. R.; Bartha, István; Spierenburg, Gerrit; Gaiser, Koos; Ackermans, Mariëtte T.; Asquith, Becca; de Boer, Rob J.; Tesselaar, Kiki; Borghans, José A. M.

    2013-01-01

    Quantitative knowledge of the turnover of different leukocyte populations is a key to our understanding of immune function in health and disease. Much progress has been made thanks to the introduction of stable isotope labeling, the state-of-the-art technique for in vivo quantification of cellular

  16. Isotope labelling study of CO oxidation-assisted epoxidation of propene. Implications for oxygen activation on Au catalysts.

    Science.gov (United States)

    Jiang, Jian; Oxford, Sean M; Fu, Baosong; Kung, Mayfair C; Kung, Harold H; Ma, Jiantai

    2010-06-07

    (18)O isotope labelling studies of the CO oxidation-assisted epoxidation of propene, catalyzed by a mixture of Au/TiO(2) and TS-1, using a methanol-H(2)O solvent showed the O in the epoxide was exclusively from O(2) and not H(2)O or methanol.

  17. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Isotopic Labeling with Sodium Borodeuteride in the Introductory Organic Chemistry Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Fitch, Richard W.; Noll, Robert J.

    2017-01-01

    A microscale isotopic labeling experiment is described for the introductory organic chemistry laboratory course wherein half of the students use sodium borohydride (NaBH[subscript 4]) and the other half use sodium borodeuteride (NaBD[subscript 4]) to reduce acetophenone to 1-phenylethanol and then compare spectral data. The cost is reasonable, and…

  18. Cell-free expression and stable isotope labelling strategies for membrane proteins

    International Nuclear Information System (INIS)

    Sobhanifar, Solmaz; Reckel, Sina; Junge, Friederike; Schwarz, Daniel; Kai, Lei; Karbyshev, Mikhail; Loehr, Frank; Bernhard, Frank; Doetsch, Volker

    2010-01-01

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  19. The labelling of Nanocoll[reg] with [111In] for dual-isotope scanning

    International Nuclear Information System (INIS)

    Mitterhauser, Markus; Wadsak, Wolfgang; Key Mien, Leonhard-; Eidherr, Harald; Roka, Sebastian; Zettinig, Georg; Angelberger, Peter; Viernstein, Helmut; Kletter, Kurt; Dudczak, Robert

    2003-01-01

    Visualization and biopsy of sentinel lymph nodes play an important role in planning and controlling the therapy of breast cancer. Hitherto two methods--scintigraphy or gamma probe detection after injection of [ 99m Tc]-nanocolloids and visual detection after injection of patent blue dye--are used routinely. There are no conclusive publications elucidating such important parameters as injection site, injection method and colloidal parameters. The present work aims to label Nanocoll[reg] with [ 111 In] to provide an alternative method, a simultaneous one-compound dual-isotope application. Methods: [ 111 In]-Indiumchloride was buffered with acetate and transferred to the nanocolloid. The colloid labelling reaction was complete after 30 min and filtrated through 100 nm Nuclepore[reg] filters. Results: Incorporation yield of [ 111 In]-Indium into the nanocolloid was nearly quantitative, the step associated with the major loss of activity was the particle sizing with a mean yield of 55%. Conclusion: The presented method allows for the routine supply of [ 111 In]-nanocolloids. Size-filtered [ 111 In]-Nanocoll[reg] shows the same particle size range as [ 99m Tc]-Nanocoll[reg

  20. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling.

    Science.gov (United States)

    Wang, Shizong; Miltner, Anja; Nowak, Karolina M

    2017-01-01

    Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13 C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13 C 6 -metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13 CO 2 finally constituted 60% of the initial 13 C 6 -metamitron equivalents. In abiotic control experiments CO 2 rose to only 7.4% of the initial 13 C 6 -metamitron equivalents. The 13 C label from 13 C 6 -metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13 C label from 13 C 6 -metamitron was distributed between the 13 CO 2 and the 13 C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13 C-alanine, 13 C-glutamate and 13 CO 2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13 CO 2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Isotope separation by selective dissociation of trifluoromethane with an infrared laser

    International Nuclear Information System (INIS)

    Hartford, A.J.

    1982-01-01

    A process for obtaining compounds enriched in a desired isotope of an element selected from hydrogen and carbon comprises exposing subatmospheric pressure gaseous trifluoromethane containing said desired isotope and one or more other isotopes of the same element to infrared laser radiation of a predetermined frequency, which selectively dissociates trifluoromethane molecules containing said desired isotope and separating the resulting dissociation product enriched in said desired isotope from the remainder of the gas. The term 'trifluoromethane' (TFM) refers to a mixture of CF 3 H and CF 3 D, the latter constituting about 0.015 percent of the total. TFM is irradiated with a CO 2 laser at an appropriate infrared wavelength

  2. Isotopic labeling for the understanding of the alteration of limestone used in built cultural heritage

    Science.gov (United States)

    Saheb, Mandana; Chabas, Anne; Mertz, Jean-Didier; Rozenbaum, Olivier; Verney-Carron, Aurélie

    2015-04-01

    This project belongs to a specific work aiming at developing isotopic tools to better understand the alteration of materials used in the built cultural heritage. It is focused on the study of the alteration of limestone used in the facades of historic buildings subject to atmospheric polluted environment. Actually in the elevated parts of the buildings, water as rainfall (runoff or wet deposition) or in vapor form (condensation or dry deposition) is the main agent of alteration. Thus, the rock/water interactions need to be well understood to propose adapted solution to better preserve the buildings. To identify the water transfer within the porous limestone and locate the reaction preferential sites, two isotopic tracers (D and 18O) are used to monitor the alteration solution (D) and locate the zones containing the secondary phases (18O). The Saint-Maximin limestone used in many monuments in the suburbs of Paris (France) as a building and restoration stone has been specifically studied. Pristine materials, stones from monuments (monuments in the Paris area) and samples altered in laboratory constitute the analytical corpus to compare different stages of alteration. In a first step the stones are characterized at different scales to identify the alteration pattern (SEM-EDS, Raman microspectrometry, XRD, rugosimetry) and study the water transfers (X-ray tomography, mercury porosimetry, imbibition kinetics). The samples are then altered in the laboratory by realistic and controlled wet or dry deposition using isotopically labeled solutions to locate the reaction zones by SIMS. The multiscale characterization of the alteration pattern has allowed proposing alteration mechanisms linked to the properties of the stones and their location inside the building. Moreover, the location of the reactive zones inside the materials determined by the isotopic experiments helps examining the role of the evolution of porosity and formation of alteration products within the material

  3. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  4. Oxygen isotope separation by isotopically selective infrared multiphoton dissociation of 2,3-dihydropyran

    International Nuclear Information System (INIS)

    Yokoyama, Atsushi; Ohba, Hironori; Akagi, Hiroshi; Yokoyama, Keiichi; Saeki, Morihisa; Katsumata, Keiichi

    2008-01-01

    Oxygen isotopic selectivity on infrared multiphoton dissociation of 2,3-dihydropyran has been studied by the examination of the effects of excitation frequency, laser fluence, and gas pressure on the dissociation probability of 2,3-dihydropyran and isotopic composition of products. Oxygen-18 was enriched in a dissociation product: 2-propenal. The enrichment factor of 18 O and the dissociation probability were measured at laser frequency between 1033.5 and 1057.3 cm -1 ; the laser fluence of 2.2 - 2.3 J/cm 2 ; and the 2,3-dihydropyran pressure of 0.27 kPa. The dissociation probability decreases as the laser frequency being detuned from the absorption peak of 2,3-dihydropyran around 1081 cm -1 . On the other hand, the enrichment factor increases with detuning the frequency. The enrichment factor of 18 O increases with increasing the 2,3-dihydropyran pressure at the laser fluence below 3 J/cm 2 and the laser frequency of 1033.5 cm -1 , whereas the yield of 2-propenal decreases with increasing the pressure. Very high enrichment factor of 751 was obtained by the irradiation of 0.53 kPa of 2,3-dihydropyran at 2.1 J/cm 2 . (author)

  5. Voltammetry coupled to mass spectrometry in the presence of isotope {sup 18}O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: Acebutolol

    Energy Technology Data Exchange (ETDEWEB)

    Bussy, Ugo; Tea, Illa [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Ferchaud-Roucher, Véronique; Krempf, Michel [Université de Nantes, Plateforme Spectrométrie de Masse, CRNH, SFR Santé F. Bonamy, Institut du Thorax, UMR S1087, IRT-UN, BP 70721, 8 Quai Moncousu, 44007 Nantes cedex 1 (France); Silvestre, Virginie; Galland, Nicolas [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Jacquemin, Denis [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Institut Universitaire de France, 103, Boulevard Saint-Michel, 75005 Cedex 5 France (France); Andresen-Bergström, Moa; Jurva, Ulrik [CVGI iMed DMPK, AstraZeneca R and D Mölndal, Mölndal (Sweden); and others

    2013-01-31

    Highlights: ► Voltammetry coupled to mass spectrometry method as a useful tool for on-line predictions of electrochemical transformations. ► Evidence of the O-dealkoxylation reaction pathway of acebutolol in the presence of labeled water. ► New approach for on line EC-MS applications. -- Abstract: The coupling between an electrochemical cell (EC) and a mass spectrometer (MS) is a useful screening tool (EC-MS) to study the oxidative transformation pathways of various electroactive species. For that purpose, we showed that the EC-MS method, carried out in the presence and absence of isotope {sup 18}O labeled water leads not only to a fast identification of oxidation products but also leads to a fast elucidation of the mechanism pathway reaction. We examined herein the case of the electrochemical hydrolysis of activated aromatic ether. Acebutolol (β-blockers) was selected herein as model of activated aromatic ether, and its electrochemical oxidation was examined in both the presence and absence of isotope {sup 18}O labeled water. To elucidate electrochemical hydrolysis pathway reaction: O-dealkylation or O-dealkoxylation, our approach was used to prove its applicability. The electrochemical oxidation mechanism was then elucidated showing an O-dealkoxylation reaction. In addition, density functional theory (DFT) calculations fully support the experimental conclusions.

  6. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics

    International Nuclear Information System (INIS)

    Shen, Weifeng; Han, Wei; Li, Yunong; Meng, Zhiqi; Cai, Leiming; Li, Liang

    2016-01-01

    Silkworm (Bombyx mori) is a very useful target insect for evaluation of endocrine disruptor chemicals (EDCs) due to mature breeding techniques, complete endocrine system and broad basic knowledge on developmental biology. Comparative metabolomics of silkworms with and without EDC exposure offers another dimension of studying EDCs. In this work, we report a workflow on metabolomic profiling of silkworm hemolymph based on high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) and demonstrate its application in studying the metabolic changes associated with the pesticide dichlorodiphenyltrichloroethane (DDT) exposure in silkworm. Hemolymph samples were taken from mature silkworms after growing on diet that contained DDT at four different concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They were subjected to differential "1"2C-/"1"3C-dansyl labeling of the amine/phenol submetabolome, LC-UV quantification of the total amount of labeled metabolites for sample normalization, and LC-MS detection and relative quantification of individual metabolites in comparative samples. The total concentration of labeled metabolites did not show any significant change between four DDT-treatment groups and one control group. Multivariate statistical analysis of the metabolome data set showed that there was a distinct metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 and 1471 metabolites have been putatively identified against the HMDB database and the EML library, respectively. 65 metabolites were identified by the dansyl library searching based on the accurate mass and retention time. Among the 65 identified metabolites, 33 positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, methionine, tryptophan, asymmetric dimethylarginine, N

  7. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Weifeng [Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture (China); Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Han, Wei; Li, Yunong [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Meng, Zhiqi [Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Cai, Leiming, E-mail: cailm@mail.zaas.ac.cn [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Li, Liang, E-mail: Liang.Li@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)

    2016-10-26

    Silkworm (Bombyx mori) is a very useful target insect for evaluation of endocrine disruptor chemicals (EDCs) due to mature breeding techniques, complete endocrine system and broad basic knowledge on developmental biology. Comparative metabolomics of silkworms with and without EDC exposure offers another dimension of studying EDCs. In this work, we report a workflow on metabolomic profiling of silkworm hemolymph based on high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) and demonstrate its application in studying the metabolic changes associated with the pesticide dichlorodiphenyltrichloroethane (DDT) exposure in silkworm. Hemolymph samples were taken from mature silkworms after growing on diet that contained DDT at four different concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They were subjected to differential {sup 12}C-/{sup 13}C-dansyl labeling of the amine/phenol submetabolome, LC-UV quantification of the total amount of labeled metabolites for sample normalization, and LC-MS detection and relative quantification of individual metabolites in comparative samples. The total concentration of labeled metabolites did not show any significant change between four DDT-treatment groups and one control group. Multivariate statistical analysis of the metabolome data set showed that there was a distinct metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 and 1471 metabolites have been putatively identified against the HMDB database and the EML library, respectively. 65 metabolites were identified by the dansyl library searching based on the accurate mass and retention time. Among the 65 identified metabolites, 33 positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, methionine, tryptophan, asymmetric dimethylarginine, N

  8. Testing isotopic labeling with [¹³C₆]glucose as a method of advanced glycation sites identification.

    Science.gov (United States)

    Kielmas, Martyna; Kijewska, Monika; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2012-12-01

    The Maillard reaction occurring between reducing sugars and reactive amino groups of biomolecules leads to the formation of a heterogeneous mixture of compounds: early, intermediate, and advanced glycation end products (AGEs). These compounds could be markers of certain diseases and of the premature aging process. Detection of Amadori products can be performed by various methods, including MS/MS techniques and affinity chromatography on immobilized boronic acid. However, the diversity of the structures of AGEs makes detection of these compounds more difficult. The aim of this study was to test a new method of AGE identification based on isotope (13)C labeling. The model protein (hen egg lysozyme) was modified with an equimolar mixture of [(12)C(6)]glucose and [(13)C(6)]glucose and then subjected to reduction of the disulfide bridges followed by tryptic hydrolysis. The digest obtained was analyzed by LC-MS. The glycation products were identified on the basis of characteristic isotopic patterns resulting from the use of isotopically labeled glucose. This method allowed identification of 38 early Maillard reaction products and five different structures of the end glycation products. This isotopic labeling technique combined with LC-MS is a sensitive method for identification of advanced glycation end products even if their chemical structure is unknown. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Validation of 13CO2 breath analysis as a measurement of demethylation of stable isotope labeled aminopyrine in man

    International Nuclear Information System (INIS)

    Schneider, J.F.; Schoeller, D.A.; Nemchausky, B.; Bayer, J.L.; Klein, P.

    1978-01-01

    Interval sampling of expired breath as a simple, non-invasive assessment of the effect of liver disease upon hepatic microsomal drug metabolism, has been demonstrated with [ 14 C] dimethylaminoantipyrine (aminopyrine). In order to eliminate radiation risk the authors have validated the use of aminopyrine labeled with the stable, non-radioactive isotope 13 C. Simultaneous oral administration of both [ 14 C]- and [ 13 C] aminopyrine to five adult subjects without liver disease as well as five patients with known liver disease, resulted in the excretion of label at nearly identical rates in both individual time collections (r=0.94) as well as cumulative excretion for three hours (r=0.97). An oral dose of 2-mg/kg of [ 13 C) aminopyrine resulted in rates of production of 13 CO 2 significantly greater than baseline variations in 13 CO 2 production in the fasting, resting subject. Measurements of a single peak value at one half hour correlated closely with the determination of cumulative appearance over three hours (r=0.96). A consistent reproducible increase in the peak production of 13 CO 2 was observed when five patients received phenobarbital. Stable isotope labeled aminopyrine may be used to detect the effects of disease and treatment upon hepatic N-demethylation activity in human subjects without incurring any risk from radiation. Furthermore, the availability of another isotopic carbon label should make possible the study of direct drug-drug interaction utilizing CO 2 analysis. (Auth.)

  10. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Ono, Akira M.; Terauchi, Tsutomu [SAIL Technologies Co., Inc. (Japan); Kainosho, Masatsune, E-mail: kainosho@nmr.chem.metro-u.ac.j [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2010-01-15

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines ({epsilon}- and {zeta}-SAIL Phe) and tyrosine ({epsilon}-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized {delta}-SAIL Phe and {delta}-SAIL Tyr, which allow us to observe and assign {delta}-{sup 13}C/{sup 1}H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the {delta}-, {epsilon}- or {zeta}-{sup 13}C/{sup 1}H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the {delta}-, {epsilon}-, and {zeta}-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly {sup 13}C, {sup 15}N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of {zeta}-SAIL Phe and {epsilon}-SAIL Tyr would be practically the best choice for protein structural determinations.

  11. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination.

    Science.gov (United States)

    Takeda, Mitsuhiro; Ono, Akira M; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (epsilon- and zeta-SAIL Phe) and tyrosine (epsilon-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized delta-SAIL Phe and delta-SAIL Tyr, which allow us to observe and assign delta-(13)C/(1)H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the delta-, epsilon- or zeta-(13)C/(1)H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the delta-, epsilon-, and zeta-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly (13)C, (15)N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of zeta-SAIL Phe and epsilon-SAIL Tyr would be practically the best choice for protein structural determinations.

  12. Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Ono, Akira M.; Terauchi, Tsutomu; Kainosho, Masatsune

    2010-01-01

    The extensive collection of NOE constraint data involving the aromatic ring signals is essential for accurate protein structure determination, although it is often hampered in practice by the pervasive signal overlapping and tight spin couplings for aromatic rings. We have prepared various types of stereo-array isotope labeled phenylalanines (ε- and ζ-SAIL Phe) and tyrosine (ε-SAIL Tyr) to overcome these problems (Torizawa et al. 2005), and proven that these SAIL amino acids provide dramatic spectral simplification and sensitivity enhancement for the aromatic ring NMR signals. In addition to these SAIL aromatic amino acids, we recently synthesized δ-SAIL Phe and δ-SAIL Tyr, which allow us to observe and assign δ- 13 C/ 1 H signals very efficiently. Each of the various types of SAIL Phe and SAIL Tyr yields well-resolved resonances for the δ-, ε- or ζ- 13 C/ 1 H signals, respectively, which can readily be assigned by simple and robust pulse sequences. Since the δ-, ε-, and ζ-proton signals of Phe/Tyr residues give rise to complementary NOE constraints, the concomitant use of various types of SAIL-Phe and SAIL-Tyr would generate more accurate protein structures, as compared to those obtained by using conventional uniformly 13 C, 15 N-double labeled proteins. We illustrated this with the case of an 18.2 kDa protein, Escherichia coli peptidyl-prolyl cis-trans isomerase b (EPPIb), and concluded that the combined use of ζ-SAIL Phe and ε-SAIL Tyr would be practically the best choice for protein structural determinations.

  13. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  14. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  15. IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform.

    Science.gov (United States)

    Zhou, Ruokun; Tseng, Chiao-Li; Huan, Tao; Li, Liang

    2014-05-20

    A chemical isotope labeling or isotope coded derivatization (ICD) metabolomics platform uses a chemical derivatization method to introduce a mass tag to all of the metabolites having a common functional group (e.g., amine), followed by LC-MS analysis of the labeled metabolites. To apply this platform to metabolomics studies involving quantitative analysis of different groups of samples, automated data processing is required. Herein, we report a data processing method based on the use of a mass spectral feature unique to the chemical labeling approach, i.e., any differential-isotope-labeled metabolites are detected as peak pairs with a fixed mass difference in a mass spectrum. A software tool, IsoMS, has been developed to process the raw data generated from one or multiple LC-MS runs by peak picking, peak pairing, peak-pair filtering, and peak-pair intensity ratio calculation. The same peak pairs detected from multiple samples are then aligned to produce a CSV file that contains the metabolite information and peak ratios relative to a control (e.g., a pooled sample). This file can be readily exported for further data and statistical analysis, which is illustrated in an example of comparing the metabolomes of human urine samples collected before and after drinking coffee. To demonstrate that this method is reliable for data processing, five (13)C2-/(12)C2-dansyl labeled metabolite standards were analyzed by LC-MS. IsoMS was able to detect these metabolites correctly. In addition, in the analysis of a (13)C2-/(12)C2-dansyl labeled human urine, IsoMS detected 2044 peak pairs, and manual inspection of these peak pairs found 90 false peak pairs, representing a false positive rate of 4.4%. IsoMS for Windows running R is freely available for noncommercial use from www.mycompoundid.org/IsoMS.

  16. Isotope label-aided mass spectrometry reveals the influence of environmental factors on metabolism in single eggs of fruit fly.

    Directory of Open Access Journals (Sweden)

    Te-Wei Tseng

    Full Text Available In order to investigate the influence of light/dark cycle on the biosynthesis of metabolites during oogenesis, here we demonstrate a simple experimental protocol which combines in-vivo isotopic labeling of primary metabolites with mass spectrometric analysis of single eggs of fruit fly (Drosophila melanogaster. First, fruit flies were adapted to light/dark cycle using artificial white light. Second, female flies were incubated with an isotopically labeled sugar ((13C(6-glucose for 12 h--either during the circadian day or the circadian night, at light or at dark. Third, eggs were obtained from the incubated female flies, and analyzed individually by matrix-assisted laser desorption/ionization (MALDI mass spectrometry (MS: this yielded information about the extent of labeling with carbon-13. Since the incorporation of carbon-13 to uridine diphosphate glucose (UDP-glucose in fruit fly eggs is very fast, the labeling of this metabolite was used as an indicator of the biosynthesis of metabolites flies/eggs during 12-h periods, which correspond to circadian day or circadian night. The results reveal that once the flies adapted to the 12-h-light/12-h-dark cycle, the incorporation of carbon-13 to UDP-glucose present in fruit fly eggs was not markedly altered by an acute perturbation to this cycle. This effect may be due to a relationship between biosynthesis of primary metabolites in developing eggs and an alteration to the intake of the labeled substrate - possibly related to the change of the feeding habit. Overall, the study shows the possibility of using MALDI-MS in conjunction with isotopic labeling of small metazoans to unravel the influence of environmental cues on primary metabolism.

  17. Stable isotope labeling, in vivo, of D- and L-tryptophan pools in lemna gibba and the low incorporation of label into indole-3-acetic acid

    International Nuclear Information System (INIS)

    Baldi, B.G.; Maher, B.R.; Slovin, J.P.; Cohen, J.D.

    1991-01-01

    The authors present evidence that the role of tryptophan and other potential intermediates in the pathways that could lead to indole derivatives needs to be reexamined. Two lines of Lemna gibba were tested for uptake of [ 15 N-indole]-labeled tryptophan isomers and incorporation of that label into free indole-3-acetic acid (IAA). Both lines required levels of L-[ 15 N]tryptophan 2 to 3 orders of magnitude over endogenous levels in order to obtain measurable incorporation of label into IAA. Labeled L-tryptophan was extractable from plant tissue after feeding and showed no measurable isomerization into D-tryptophan. D-[ 15 N]trytophan supplied to Lemna at rates of approximately 400 times excess of endogenous D-tryptophan levels (to yield an isotopic enrichment equal to that which allowed detection of the incorporation of L-tryptophan into IAA), did not result in measurable incorporation of label into free IAA. These results demonstrate that L-tryptophan is a more direct precursor to IAA than the D isomer and suggest (a) that the availability of tryptophan in vivo is not a limiting factor in the biosynthesis of IAA, thus implying that other regulatory mechanisms are in operation and (b) that L-tryptophan also may not be a primary precursor to IAA in plants

  18. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  19. Carbon-11-labelling of a novel, trishomocubane-derived, high affinity and selectivity DAT ligand

    International Nuclear Information System (INIS)

    Dolle, F.; Le Helleix, St.; Peyronneau, M.A.; Saba, W.; Tournier, N.; Valette, H.; Banister, S.; Kassiou, M.

    2011-01-01

    Complete text of publication follows: Objectives: Parkinson's disease, schizophrenia, attention deficit disorder and drug abuse are related to abnormalities within the brain's dopaminergic system. The neuronal dopamine transporter (DAT) plays a key role in regulating the synaptic concentration of dopamine and thus dopamine neurotransmission in the brain. Since the DAT can be considered as a marker of the integrity and number of the presynaptic striatal dopamine-producing neurons, considerable efforts have been spent in recent years on the design and development of DAT-selective radioligands for use in Positron Emission Tomography (PET) studies. Notably, the tropane PE2I and its fluorinated analogue LBT-999 were identified as having high affinity and selectivity for the DAT over the norepinephrine transporter (NET) and the serotonin transporter (SERT). Besides tropanes, only a few bicyclic frameworks, e.g. bicyclo[2.2.2]octanes, have delivered compounds with high affinity for the DAT. Recently, novel poly-carbocyclic DAT ligands with selectivity over the NET and the SERT were reported. The lead compound of this series (1, N-methyl-N-(3-fluoro) benzyl-pentacyclo[5.4.0.0 2, 6 .0 3, 10 .0 5, 9 ] undec-8-ylamine, Ki = 1.2 nM, ≥ 8300-fold selectivity over NET and SERT) was selected as a potential candidate for imaging the DAT with PET and isotopically labelled with carbon-11 using [ 11 C]methyl triflate. Methods: The trishomocubane derivatives 1 (reference) and 2 (precursor for labelling with carbon-11) were prepared from commercially available Cookson's diketone in 6 and 7 steps, respectively. Carbon-11 labelling of 1 was performed using a TRACERLab FX-C Pro synthesizer (GEMS) and comprises (1) trapping at -10 C of [ 11 C]MeOTf in acetone (0.4 mL) containing the nor-derivative 2 (0.6-0.9 mg, free base) and aq. 3N NaOH (8 μL); (2) heating at 110 C for 2 min; (3) concentration to dryness and taking up the residue in 1.0 mL of the HPLC mobile phase; (4) purification

  20. Metabolic Flux Analysis in Isotope Labeling Experiments Using the Adjoint Approach.

    Science.gov (United States)

    Mottelet, Stephane; Gaullier, Gil; Sadaka, Georges

    2017-01-01

    Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.

  1. Stable isotope N-phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Zhang, Shanshan; Shi, Jinwen; Shan, Changkai; Huang, Chengting; Wu, Yile; Ding, Rong; Xue, Yuhua; Liu, Wen; Zhou, Qiang; Zhao, Yufen; Xu, Pengxiang; Gao, Xiang

    2017-07-25

    Stable isotope chemical labeling liquid chromatography-mass spectrometry (LC-MS) is a powerful strategy for comprehensive metabolomics profiling, which can improve metabolites coverage and quantitative information for exploration of metabolic regulation in complex biological systems. In the current work, a novel stable isotope N-phosphoryl amino acids labeling strategy (SIPAL) has been successful developed for quantitative profiling of amine-containing metabolites in urine based on organic phosphorus chemistry. Two isotopic reagents, 16 O 2 - and 18 O 2 -N-diisopropyl phosphoryl l-alanine N-hydroxysuccinimide esters ( 16 O/ 18 O-DIPP-L-Ala-NHS), were firstly synthesized in high yields for labeling the amine-containing metabolites. The performance of SIPAL strategy was tested by analyzing standard samples including 20 l-amino acids, 10 d-amino acids and small peptides by using LC-MS. We observed highly efficient and selective labeling for SIPAL strategy within 15 min in a one-pot derivatization reaction under aqueous reaction conditions. The introduction of a neutral phosphate group at N-terminus can increase the proton affinity and overall hydrophobicity of targeted metabolites, leading to the better ionization efficiency in electrospray ionization processes and chromatographic separations of hydrophilic metabolites on reversed-phase column. Furthermore, the chiral metabolites, such as d-amino acids, could be converted to diastereomers after SIPAL and successfully separated on regular reversed-phase column. The chirality of labeled enantiomers can be determined by using different detection methods such as 31 P NMR, UV, and MS, demonstrating the potential application of SIPAL strategy. In addition, absolute quantification of chiral metabolites in biological samples can be easily achieved by using SIPAL strategy. For this purpose, urine samples collected from a healthy volunteer were analyzed by using LC-ESI-Orbitrap MS. Over 300 pairs of different amine

  2. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    International Nuclear Information System (INIS)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-01-01

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d_5-Girard reagent P (d_5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related

  3. Stable isotope labeling – Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ning; Liu, Ping; Ding, Jun; Zheng, Shu-Jian; Yuan, Bi-Feng; Feng, Yu-Qi, E-mail: yqfeng@whu.edu.cn

    2016-01-28

    Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d{sub 5}-Girard reagent P (d{sub 5}-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones

  4. An economic approach to efficient isotope labeling in insect cells using homemade {sup 15}N-, {sup 13}C- and {sup 2}H-labeled yeast extracts

    Energy Technology Data Exchange (ETDEWEB)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan, E-mail: Stephan.Grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2015-07-15

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein {sup 15}N and {sup 13}C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor.

  5. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts

    International Nuclear Information System (INIS)

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-01-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein 15 N and 13 C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor

  6. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  7. Overcoming interference with the detection of a stable isotopically labeled microtracer in the evaluation of beclabuvir absolute bioavailability using a concomitant microtracer approach.

    Science.gov (United States)

    Jiang, Hao; Titsch, Craig; Zeng, Jianing; Jones, Barry; Joyce, Philip; Gandhi, Yash; Turley, Wesley; Burrell, Richard; Aubry, Anne F; Arnold, Mark E

    2017-09-05

    The oral absolute bioavailability of beclabuvir in healthy subjects was determined using a microdose (100μg) of the stable isotopically labeled tracer via intravenous (IV) infusion started after oral dosing of beclabuvir (150mg). To simultaneously analyze the concentrations of the IV microtracer ([ 13 C 6 ]beclabuvir) and beclabuvir in plasma samples, a liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) method was initially developed. Surprisingly beclabuvir significantly interfered with the IV microtracer detection when using the selected reaction monitoring (SRM) in the assay. An interfering component from the drug substance was observed using a high resolution mass spectrometer (HRMS). The mass-to-charge (m/z) of the interfering component was -32ppm different from the nominal value for the IV microtracer and thus could not be differentiated in the SRM assay by the unit mass resolution. To overcome this interference, we evaluated two approaches by either monitoring an alternative product ion using the SRM assay or isolating the interfering component using the parallel reaction monitoring (PRM) assay on the HRMS. This case study has demonstrated two practical approaches for overcoming interferences with the detection of stable isotopically labeled IV microtracers in the evaluation of absolute bioavailability, which provides users the flexibility in using either LC-MS/MS or HRMS to mitigate unpredicted interferences in the assay to support microtracer absolute bioavailability studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  9. Quality Assurance of technitium-labelled radiopharmaceuticals in the Radiation and Isotopes Centre of Khartoum (RICK)

    International Nuclear Information System (INIS)

    Adlan, A.A.

    2005-09-01

    This descriptive, exploratory study was conducted in the nuclear medicine department at the Radiation and Isotopes Center of Khartoum (RICK) during 2003-2005 the aim of the study was explore and define the dimensions of a problem which was regarded as urgent by the people working in the field of nuclear medicine in Sudan. The problem concerned the quality of technitium-labelled radiopharmaceuticals which are used in more than 90% of the nuclear medicine imaging studies performed in nuclear medicine. Impure 9 ''9''m Tc-labelled radiopharmaceuticals may create problems, and could lead to false diagnosis. These agents must be tested for determination of the levels of radionuclides, radiochemical and chemicals, before administration to patients. They should also be sterile and pyrogen-free. A number of data collection methods, were used by the researcher for adequate exploration of the dimensions of the problem including interviews, questionnaires and close observations to all activities related to the preparation of radiopharmaceuticals in the hot laboratory. Information concerning all the aspects of quality assurance were collected. These aspects were management and organisation of the work, equipment and tools, knowledge and practical experience of the staff members and methods of preparation and administration of the radioactive agents. Data from different sources were then compared with observation results for more validation and finally lead to the following results: All the quality control tests were not normally performed in the department, therefore the levels of impurities in these agents were not exactly determined, moreover these preparations were subject to contamination with microorganisms, due to low level of cleanliness at the work area. The study detected a number of defaults which were likely to be the causes behind these problems. These were, bad management and organisation, in availability of equipment, tools and materials necessary for testing

  10. Energy and traffic light labelling have no impact on parent and child fast food selection.

    Science.gov (United States)

    Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John

    2013-10-25

    Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique- either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required. Copyright © 2013. Published by Elsevier Ltd.

  11. The application of high-resolution IR spectroscopy and isotope labeling for detailed investigation of TiO2/gas interface reactions

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Zukalová, Markéta; Kavan, Ladislav; Zelinger, Zdeněk

    2013-01-01

    Roč. 36, č. 1 (2013), s. 159-162 ISSN 0925-3467 R&D Projects: GA ČR GAP208/10/2302; GA ČR GA13-07724S Institutional support: RVO:61388955 Keywords : isotope exchange * titania * isotope labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.075, year: 2013

  12. Selective detection of carbon-13, nitrogen-15, and deuterium labeled metabolites by capillary gas chromatography-chemical reaction interface/mass spectrometry

    International Nuclear Information System (INIS)

    Chace, D.H.; Abramson, F.P.

    1989-01-01

    We have applied a new chemical reaction interface/mass spectrometer technique (CRIMS) to the selective detection of 13C-, 15N-, and 2H-labeled phenytoin and its metabolites in urine following separation by capillary gas chromatography. The microwave-powered chemical reaction interface converts materials from their original forms into small molecules whose mass spectra serve to identify and quantify the nuclides that make up each analyte. The presence of each element is followed by monitoring the isotopic variants of CO2, NO, or H2 that are produced by the chemical reaction interface. Chromatograms showing only enriched 13C and 15N were produced by subtracting the abundance of naturally occurring isotopes from the observed M + 1 signal. A selective chromatogram of 2H (D) was obtained by measuring HD at m/z 3.0219 with a resolution of 2000. Metabolites representing less than 1.5% of the total labeled compounds could be identified in the chromatogram. Detection limits from urine of 380 pg/mL of a 15N-labeled metabolite, 7 ng/mL of a 13C-labeled metabolite, and 16 ng/mL of a deuterium labeled metabolite were determined at a signal to noise ratio of 2. Depending on the isotope examined, a linear dynamic range of 250-1000 was observed using CRIMS. To identify many of these labeled peaks (metabolites), the chromatographic analysis was repeated with the chemical reaction interface turned off and mass spectra obtained at the retention times found in the CRIMS experiment. CRIMS is a new analytical method that appears to be particularly useful for metabolism studies

  13. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    LeMaster, D.M. [Northwestern Univ., Evanston, IL (United States)

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  14. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi-Yong, E-mail: zhyhuang@jmu.edu.cn [College of Bioengineering, Jimei University, Xiamen 361021 (China); Xie, Hong [College of Bioengineering, Jimei University, Xiamen 361021 (China); Shandong Vocational Animal Science and Veterinary College, Weifang 261061 (China); Cao, Ying-Lan [College of Bioengineering, Jimei University, Xiamen 361021 (China); Cai, Chao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhang, Zhi [College of Bioengineering, Jimei University, Xiamen 361021 (China)

    2014-02-15

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of {sup 206}Pb, the contamination of exogenous Pb{sup 2+} ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation.

  15. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach

    International Nuclear Information System (INIS)

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-01-01

    Highlights: • Large amounts of exogenous Pb were found to distribute in reducible fractions. • Very few of exogenous Pb were found to distribute in acid-extractable fractions. • More than 60% of exogenous Pb in rhizosphere soils lost after planting. • Isotopic labeling method and SEP enable to explore Pb bioavailability in soil. -- Abstract: The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of 206 Pb, the contamination of exogenous Pb 2+ ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60–85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60–66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation

  16. Site-specific Orientation of an α-helical Peptide Ovispirin-1 from Isotope Labeled SFG Spectroscopy

    Science.gov (United States)

    Ding, Bei; Laaser, Jennifer E.; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T.; Chen, Zhan

    2013-01-01

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single isotope labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138 degrees from the surface normal, and the transition dipole of the isotope labeled C=O group is tilted at 23 degrees from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrated that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution. PMID:24228619

  17. Site-specific orientation of an α-helical peptide ovispirin-1 from isotope-labeled SFG spectroscopy.

    Science.gov (United States)

    Ding, Bei; Laaser, Jennifer E; Liu, Yuwei; Wang, Pengrui; Zanni, Martin T; Chen, Zhan

    2013-11-27

    Sum-frequency generation (SFG) vibrational spectroscopy is often used to probe the backbone structures and orientations of polypeptides at surfaces. Using the ovispirin-1 polypeptide at the solid/liquid interface of polystyrene, we demonstrate for the first time that SFG can probe the polarization response of a single-isotope-labeled residue. To interpret the spectral intensities, we simulated the spectra using an excitonic Hamiltonian approach. We show that the polarization dependence of either the label or the unlabeled amide I band alone does not provide sufficient structural constraints to obtain both the tilt and the twist of the ovispirin helix at a solid/liquid interface, but that both can be determined from the polarization dependence of the complete spectrum. For ovispirin, the detailed analysis of the polarized SFG experimental data shows that the helix axis is tilted at roughly 138° from the surface normal, and the transition dipole of the isotope-labeled C═O group is tilted at 23° from the surface normal, with the hydrophobic region facing the polystyrene surface. We further demonstrate that the Hamiltonian approach is able to address the coupling effect and the structural disorder. For comparison, we also collected the FTIR spectrum of ovispirin under similar conditions, which reveals the enhanced sensitivity of SFG for structural studies of single monolayer peptide surfaces. Our study provides insight into how structural and environmental effects appear in SFG spectra of the amide I band and establishes that SFG of isotope-labeled peptides will be a powerful technique for elucidating secondary structures with residue-by-residue resolution.

  18. Preparation of H3-labelled methyl ethers of saturated fatty acids by heterogeneous catalytic isotope exchange in solution with gaseous tritium

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Myasoedov, N.F.

    1980-01-01

    A simple method of preparing 3 H-labelled methyl ethers of saturated fatty acids in the dioxane solution using the method of isotopic heterogenous catalytic exchange with gaseous tritium, is suggested. 3 H-labelled natural fatty acids (C 12 -C 18 ) are prepared by alkaline hydrolysis [ru

  19. Assessing of distribution, mobility and bioavailability of exogenous Pb in agricultural soils using isotopic labeling method coupled with BCR approach.

    Science.gov (United States)

    Huang, Zhi-Yong; Xie, Hong; Cao, Ying-Lan; Cai, Chao; Zhang, Zhi

    2014-02-15

    The contamination of Pb in agricultural soils is one of the most important ecological problems, which potentially results in serious health risk on human health through food chain. Hence, the fate of exogenous Pb contaminated in agricultural soils is needed to be deeply explored. By spiking soils with the stable enriched isotopes of (206)Pb, the contamination of exogenous Pb(2+) ions in three agricultural soils sampled from the estuary areas of Jiulong River, China was simulated in the present study, and the distribution, mobility and bioavailability of exogenous Pb in the soils were investigated using the isotopic labeling method coupled with a four-stage BCR (European Community Bureau of Reference) sequential extraction procedure. Results showed that about 60-85% of exogenous Pb was found to distribute in reducible fractions, while the exogenous Pb in acid-extractable fractions was less than 1.0%. After planting, the amounts of exogenous Pb presenting in acid-extractable, reducible and oxidizable fractions in rhizospheric soils decreased by 60-66%, in which partial exogenous Pb was assimilated by plants while most of the metal might transfer downward due to daily watering and applying fertilizer. The results show that the isotopic labeling technique coupled with sequential extraction procedures enables us to explore the distribution, mobility and bioavailability of exogenous Pb contaminated in soils, which may be useful for the further soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Label fusion based brain MR image segmentation via a latent selective model

    Science.gov (United States)

    Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu

    2018-04-01

    Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.

  1. Selective detection of labeled DNA using an air-clad photonic crystal fiber

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Pedersen, L.H.

    2004-01-01

    Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core.......Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core....

  2. Synthesis of isotopically labelled angiotensin II receptor antagonist GR138950X

    International Nuclear Information System (INIS)

    Carr, R.M.; Cable, K.M.; Newman, J.J.; Sutherland, D.R.

    1996-01-01

    Syntheses of [ 13 C] and [ 14 C]-labelled versions of angiotensin II receptor antagonist GR138950X, labelled in the imidazole carboxamide residue, are described. These involved preparation of an iodoimidazole substrate by a novel iododecarboxylation procedure, followed by cyanation with a mixture of carbon-labelled potassium cyanide and copper (l) iodide in DMF at high temperature. The preparation of a mass-labelled (M+5) version of GR138950X is also described. This involved the synthesis of an [ 13 C 3 , 15 N 2 ]-labelled imidazole from a 1,2,3-tricarbonyl compound, [ 13 C 3 ]propionaldehyde and [ 15 N]ammonia. The labelled imidazole was further elaborated into multiply-labelled GR138950X. (Author)

  3. Enantio-specific C(sp3)-H activation catalyzed by ruthenium nanoparticles: application to isotopic labeling of molecules of biological interest

    International Nuclear Information System (INIS)

    Taglang, Celine

    2015-01-01

    Isotopic labeling with deuterium and tritium is extensively used in chemistry, biology and pharmaceutical research. Numerous methods of labeling by isotopic exchange allow high isotopic enrichments but generally require harsh conditions (high temperatures, acidity). As a consequence, a general, regioselective and smooth labeling method that might be applicable to a wide diversity of substrates remains to develop. In the first part of this thesis, we demonstrated that the use of ruthenium nanoparticles, synthesized by Pr. Bruno Chaudret's team (INSA Toulouse), allowed the mild (2 bar of deuterium gas at 55 C), effective and selective H/D exchange reaction of a large variety of nitrogen-containing compounds, such as pyridines, indoles and primary, secondary and tertiary alkyl amines. The usefulness and the efficiency of this novel methodology was demonstrated by the deuteration of eight nitrogen-containing molecules of biological interest without altering their chemical and stereochemical properties. However, the conservation of the original stereochemistry of an activated chiral C-H center remains a major issue. We studied the reactivity of RuNP(at)PVP on different categories of nitrogen-containing substrates (amines, aminoacids and peptides) in water or in organic solvents. Our results showed that C-H activation of chiral carbons C(sp3) took place efficiently, selectively and, in all cases, with total retention of configuration. The wide range of applications of this procedure was demonstrated by the labeling of three chiral amines, fourteen aminoacids, three aromatic amino esters and four peptides. Moreover, our collaboration with Pr. Romuald Poteau's team (INSA Toulouse) led to the identification of two mechanisms by ab initio simulation in agreement with our experimental results: the σ-bond metathesis mechanism and the oxidative addition mechanism. These two mechanisms imply two vicinal ruthenium atoms leading to the formation an original

  4. On structural identifiability analysis of the cascaded linear dynamic systems in isotopically non-stationary 13C labelling experiments.

    Science.gov (United States)

    Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang

    2018-06-01

    The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Laser isotope separation using selective inhibition and encouragement of dimer formation

    International Nuclear Information System (INIS)

    Kivel, B.

    1979-01-01

    Method and apparatus for inhibiting dimer formation of molecules of a selected isotope type in a cooled flow of gas to enhance the effectiveness of mass difference isotope separation techniques are described. Molecules in the flow containing atoms of the selected isotope type are selectively excited by infrared radiation in order to inhibit the formation of dimers and larger clusters of such molecules, while the molecules not containing atoms of the selected, excited type are encouraged to form dimers and higher order aggregates by the cooling of the gaseous flow. The molecules with the excited isotope will predominate in monomers and will constitute the enriched product stream, while the aggregated group comprising molecules having the unexcited isotope will predominate in dimers and larger clusters of molecules, forming the tails stream. The difference in diffusion coefficientts between particles of the excited and unexcited isotopes is enhanced by the greater mass differences resulting from aggregation of unexcited particles into dimers and larger clusters. Prior art separation techniques which exploit differences in isotopic diffusion rates will consequently exhibit enhanced enrichment per stage by the utilization of the present invention

  6. Advisory group meeting on stable isotope labelled compounds in biomedical studies

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Parr, R.M.

    1985-11-01

    The programme of the meeting was restricted to topics involving applications of stable isotopes of the lighter elements (H, C, N, O). The current status of stable isotope techniques and applications in nutritional and biomedical studies, the applicability of these techniques in developing countries and the IAEA's future programmes on this topic were discussed

  7. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...

  8. Determination of symbiotic nitrogen fixation by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.

    1982-01-01

    A direct method to determine the total symbiotic nitrogen fixation during the leguminous plants cycles has been, developed, by labelling the soil atmosphere with sup(15)N sub(2) at low isotope enrichment, of about 1 atom % excess. The soil explored by the root system of leguminous plants was confined by means of a chamber in the field and by sealed pots in greenhouse experiments in order to maintain the soil air labelled with sup(15)N sub(2). The average sup(15)N concentration in the soil atmosphere, necessary to calculate dinitrogen fixation, was obtained by integration of the exponential functions of isotope dilution. Those functions were obtained by periodic sampling and analysis of the N sub(2) in the soil atmosphere. The field experiment with labelled atmosphere was carried out from the 22 sup(nd) to the 31 sup(st) day of the bean crop cycle and 5.5 mg N/plant (24% of total plant N) was derived from fixation. In pot experiments, under greenhouse conditions, integrated determination of fixation was made in Phaseolus beans (from the 19 sup(th) to the 67 sup(th) day from planting) and in soybeans (from the 24 sup(th) to the 70 sup(th) day from planting). The soil atmosphere was labelled with sup(15)N sub(2) in both cases. Average fixation obtained for Phaseolus beans was 80 mg N/plant (65% of total plant N) and for soybeans 265 mg N/plant (71% of total plant N). Evaluation of the basic concept of the isotope dilution method to determine nitrogen fixation in pots experiments, as proposed by Fried and Middelboe (1977) has also been made in the present paper. Simultaneous determinations of fixation in soybeans, using the isotope dilution method of Fried and Middelboe, natural variation of the sup(15)N/ sup(14)N ratios, and total-N differences, indicated the same results for pot experiments, harvested at the end of the plant cycle. (author)

  9. Evaluation of a new component used for isotopic lymphography: colloidal rhenium sulfide sup(99m)Tc labelled

    International Nuclear Information System (INIS)

    Pecking, A.; Le Mercier, N.; Gobin, R.; Bardy, A.; Najean, Y.

    1978-01-01

    We have studied for lymphatic scintigraphy a new radiopharmaceutical, sup(99m)Tc-labelled rhenium sulfocolloid. This preliminary study includes 20 adults patients with lymphomas and lymphoedemas. The principal advantage of this drug is its absence of toxicity and local pain, so that a rapid sub-cutaneous injection without local anesthesia is made possible. Good results have been obtained, as well in morphological studies of para-aortic and mammary lymph nodes as for kinetic studies of lymphatic flow in lymphoedemas. No liver and spleen uptake of radio-isotope was observed after foot injection [fr

  10. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  11. Simultaneous determination of the intravenous and oral pharmacokinetic parameters of D,L-verapamil using stable isotope-labelled verapamil.

    Science.gov (United States)

    Eichelbaum, M; Somogyi, A; von Unruh, G E; Dengler, H J

    1981-01-01

    Following i.v. administration, the plasma concentration-time curve of verapamil could best be described by either a mono- or biexponential equation. Total plasma clearance (1.26 1/min) approached liver blood flow (1.51/min), so it can be concluded that its clearance is liver blood flow-dependent. Although absorption was almost complete after oral administration, absolute bioavailability (20%) was low, due to extensive hepatic first-pass metabolism. The approach using stable isotope-labelled and unlabelled drug permits simultaneous administration by the intravascular and extravascular routes, thus allowing determination of absolute bioavailability in a single experiment.

  12. Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome.

    Science.gov (United States)

    Xu, Wei; Chen, Deying; Wang, Nan; Zhang, Ting; Zhou, Ruokun; Huan, Tao; Lu, Yingfeng; Su, Xiaoling; Xie, Qing; Li, Liang; Li, Lanjuan

    2015-01-20

    Human fecal samples contain endogenous human metabolites, gut microbiota metabolites, and other compounds. Profiling the fecal metabolome can produce metabolic information that may be used not only for disease biomarker discovery, but also for providing an insight about the relationship of the gut microbiome and human health. In this work, we report a chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method for comprehensive and quantitative analysis of the amine- and phenol-containing metabolites in fecal samples. Differential (13)C2/(12)C2-dansyl labeling of the amines and phenols was used to improve LC separation efficiency and MS detection sensitivity. Water, methanol, and acetonitrile were examined as an extraction solvent, and a sequential water-acetonitrile extraction method was found to be optimal. A step-gradient LC-UV setup and a fast LC-MS method were evaluated for measuring the total concentration of dansyl labeled metabolites that could be used for normalizing the sample amounts of individual samples for quantitative metabolomics. Knowing the total concentration was also useful for optimizing the sample injection amount into LC-MS to maximize the number of metabolites detectable while avoiding sample overloading. For the first time, dansylation isotope labeling LC-MS was performed in a simple time-of-flight mass spectrometer, instead of high-end equipment, demonstrating the feasibility of using a low-cost instrument for chemical isotope labeling metabolomics. The developed method was applied for profiling the amine/phenol submetabolome of fecal samples collected from three families. An average of 1785 peak pairs or putative metabolites were found from a 30 min LC-MS run. From 243 LC-MS runs of all the fecal samples, a total of 6200 peak pairs were detected. Among them, 67 could be positively identified based on the mass and retention time match to a dansyl standard library, while 581 and 3197 peak pairs could be putatively

  13. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development.

    Science.gov (United States)

    Krauser, Joel A

    2013-01-01

    Tritium ((3) H) and carbon-14 ((14) C) labels applied in pharmaceutical research and development each offer their own distinctive advantages and disadvantages coupled with benefits and risks. The advantages of (3) H have a higher specific activity, shorter half-life that allows more manageable waste remediation, lower material costs, and often more direct synthetic routes. The advantages of (14) C offer certain analytical benefits and less potential for label loss. Although (3) H labels offer several advantages, they might be overlooked as a viable option because of the concerns about its drawbacks. A main drawback often challenged is metabolic liability. These drawbacks, in some cases, might be overstated leading to underutilization of a perfectly viable option. As a consequence, label selection may automatically default to (14) C, which is a more conservative approach. To challenge this '(14) C-by-default' approach, pharmaceutical agents with strategically selected (3) H-labeling positions based on non-labeled metabolism data have been successfully implemented and evaluated for (3) H loss. From in-house results, the long term success of projects clearly would benefit from a thorough, objective, and balanced assessment regarding label selection ((3) H or (14) C). This assessment should be based on available project information and scientific knowledge. Important considerations are project applicability (preclinical and clinical phases), synthetic feasibility, costs, and timelines. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Trace isotope analysis using resonance ionization mass spectrometry based on isotope selection with doppler shift of laser ablated atoms

    International Nuclear Information System (INIS)

    Higuchi, Yuki; Watanabe, Kenichi; Kawarabayashi, Jun; Iguchi, Tetsuo

    2005-01-01

    We have proposed a novel isotope selective Resonance Ionization Mass Spectroscopy (RIMS) concept, which can avoid the Doppler broadening on solid sample direct measurement based on laser ablation technique. We have succeeded in experimentally demonstrating the principle of our RIMS concept. Through comparison between the simulated and experimental results, we have validated the simulation model. It would be concluded from these results that we could achieve the isotope selectivity defined as the ratio of 41 Ca to 40 Ca sensitivity to be 4.5x10 10 by adopting the multi-step excitation scheme in the present method. As future works, we will try to experimentally perform the multi-step excitation scheme and improve the detection efficiency by modifying the ion extraction configuration. (author)

  15. A novel dual-isotope labelling method for distinguishing between soil sources of N2O

    NARCIS (Netherlands)

    Wrage, N.; Groenigen, van J.W.; Oenema, O.; Baggs, E.M.

    2005-01-01

    We present a novel O-18-N-15-enrichment method for the distinction between nitrous oxide (N2O) from nitrification, nitrifier denitrification and denitrification based on a method with single- and double-N-15-labelled ammonium nitrate. We added a new treatment with O-18-labelled water to quantify N2O

  16. Pharmacokinetics of lidocaine and bupivacaine and stable isotope labelled analogues : a study in healthy volunteers

    NARCIS (Netherlands)

    Burm, A.G.D.; de Boer, A G; van Kleef, J.W.; Vermeulen, N P; de Leede, L G; Spierdijk, J; Breimer, D D

    1988-01-01

    The pharmacokinetics of lidocaine and bupivacaine and tri-deuteromethyl-labelled lidocaine and bupivacaine were investigated in healthy volunteers. The deuterium-labelled and the unlabelled form of the drug to be investigated were simultaneously infused in 10 min. Plasma concentrations were

  17. Radiation Oxidation Mechanisms in Polyolefins Studied by C-13 Isotopic Labeling

    International Nuclear Information System (INIS)

    Clough, R.L.

    2006-01-01

    Control of oxidative degradation is a critical consideration in most applications involving polymers and radiation. In radiation crosslinking or sterilization, or in the use of polymers in radiation environments (such as nuclear plants), the objective is to minimize degradation as much as possible. In other applications, a controlled, partial degradation is desired to alter processing properties, or to enhance adhesion or solubility. To gain more understanding of the complex processes of radiation oxidation, samples of one important commercial polyolefin, polypropylene, were synthesized in which the three different carbon atoms along the chain were selectively labeled with carbon-13. These samples were subjected to radiation under inert and air atmospheres, and to post-irradiation thermal exposure in air at various temperatures. Analysis of macromolecular radiation-oxidation products was carried out using 13 C NMR and FTIR. Time-dependent plots of oxidation products have been obtained from the NMR measurements, including the post-irradiation oxidation of a sample held at room temperature in air that has been monitored for 2 years. Analysis of volatile oxidation products (CO, CO 2 , and small organic molecules) was accomplished with gas chromatography / mass spectroscopy. The position of the 13 C labels in the degradation products, have been traced back to their positions of origin on the macromolecule, providing insights into the chemical reaction mechanisms through which the products were formed. The major solid-phase products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of macromolecular products arising from reactions at the methyl side chain. Significant temperature-dependent differences are

  18. Characteristics of isotope-selective chemical reactor with gas-separating device

    International Nuclear Information System (INIS)

    Gorshunov, N.M.; Kalitin, S.A.; Laguntsov, N.I.; Neshchimenko, Yu.P.; Sulaberidze, G.A.

    1988-01-01

    A study was made on characteristics of separating stage, composed of isotope-selective chemical (or photochemical) reactor and membrane separating cascade (MSC), designated for separation of isotope-enriched products from lean reagents. MSC represents the counterflow cascade for separation of two-component mixtures. Calculations show that for the process of carton isotope separation the electric power expences for MSC operation are equal to 20 kWxh/g of CO 2 final product at 13 C isotope content in it equal to 75%. Application of the membrane gas-separating cascade at rather small electric power expenses enables to perform cascading of isotope separation in the course of nonequilibrium chemical reactions

  19. Uranium, RADON and radon isotopes in selected brines of Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Zipper, W.; Dorda, J.; Przylibski, T.A.

    2010-01-01

    Natural radioactive isotopes were studied in nine different types of brines from four locations in Poland. Investigated brines are exploited from various geological structures composed of the rocks of different chemical and mineral composition as well as different age and depth. All investigated brines are used in balneotherapy (i.e. baths, inhalations, showers). The main goal of this study was to obtain some basic knowledge on the activity range of natural elements such as uranium, RADON and radon in different brine types in Poland and their variability depending on their location in certain geological structures. Activities of 234,238 U, 226,228 Ra and 222 Rn isotopes were measured with the use of two nuclear spectrometry techniques: liquid scintillation and alpha spectrometry. The activity concentrations of 222 Rn vary from below 1 to 76.1±3.7 Bq/l, for the 226 Ra isotope from 0.19±0.01 to 85.5±0.4 Bq/l and for 228 Ra from below 0.03 to 2.17±0.09 Bq/l. For uranium isotopes, the concentrations are in the range from below 0.5 to 5.1±0.4 mBq/l for 238 U and from 1.6±0.4 to 45.6±2.0 mBq/l for 2 34U . The obtained results indicate high RADON activity concentrations corresponding to high mineralization of waters. (authors)

  20. Accurate determination of selected pesticides in soya beans by liquid chromatography coupled to isotope dilution mass spectrometry.

    Science.gov (United States)

    Huertas Pérez, J F; Sejerøe-Olsen, B; Fernández Alba, A R; Schimmel, H; Dabrio, M

    2015-05-01

    A sensitive, accurate and simple liquid chromatography coupled with mass spectrometry method for the determination of 10 selected pesticides in soya beans has been developed and validated. The method is intended for use during the characterization of selected pesticides in a reference material. In this process, high accuracy and appropriate uncertainty levels associated to the analytical measurements are of utmost importance. The analytical procedure is based on sample extraction by the use of a modified QuEChERS (quick, easy, cheap, effective, rugged, safe) extraction and subsequent clean-up of the extract with C18, PSA and Florisil. Analytes were separated on a C18 column using gradient elution with water-methanol/2.5 mM ammonium acetate mobile phase, and finally identified and quantified by triple quadrupole mass spectrometry in the multiple reaction monitoring mode (MRM). Reliable and accurate quantification of the analytes was achieved by means of stable isotope-labelled analogues employed as internal standards (IS) and calibration with pure substance solutions containing both, the isotopically labelled and native compounds. Exceptions were made for thiodicarb and malaoxon where the isotopically labelled congeners were not commercially available at the time of analysis. For the quantification of those compounds methomyl-(13)C2(15)N and malathion-D10 were used respectively. The method was validated according to the general principles covered by DG SANCO guidelines. However, validation criteria were set more stringently. Mean recoveries were in the range of 86-103% with RSDs lower than 8.1%. Repeatability and intermediate precision were in the range of 3.9-7.6% and 1.9-8.7% respectively. LODs were theoretically estimated and experimentally confirmed to be in the range 0.001-0.005 mg kg(-1) in the matrix, while LOQs established as the lowest spiking mass fractionation level were in the range 0.01-0.05 mg kg(-1). The method reliably identifies and quantifies the

  1. Classification-based quantitative analysis of stable isotope labeling by amino acids in cell culture (SILAC) data.

    Science.gov (United States)

    Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul

    2016-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards.

    Science.gov (United States)

    Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia

    2016-06-01

    Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. SORIOS – A method for evaluating and selecting environmental certificates and labels

    DEFF Research Database (Denmark)

    Kikkenborg Pedersen, Dennis; Dukovska-Popovska, Iskra; Ola Strandhagen, Jan

    2012-01-01

    This paper presents a general method for evaluating and selecting environmental certificates and labels for companies to use on products and services. The method is developed based on a case study using a Grounded Theory approach. The result is a generalized six-step method that features an initial...... searching strategy and an evaluation model that weighs the prerequisites, rewards and the organization of certificate or label against the strategic needs of a company....

  4. Iodine-labelling of albumin and fibrinogen and application in selecting implantable material-titanium oxide

    International Nuclear Information System (INIS)

    Liu Fangyan; Zhou Meiying; Zhang Feng

    1998-01-01

    Human serum albumin and fibrinogen were successfully labelled with 125 I. The labelled proteins were further applied to carry out a background study on the selection of the blood-compatible materials. The protein adsorption of four kinds of titanium oxide film was determined and compared. It was found that Sample B can adsorb more albumin and less fibrinogen than other three samples and hold the adsorbed albumin most stably

  5. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    Science.gov (United States)

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  6. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    Science.gov (United States)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations

  7. Selected bibliography on heavy water, tritiated water and hydrogen isotopes (1981-1992)

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.T.; Sutawane, U.B.; Rathi, B.N.

    1994-01-01

    A selected bibliography on heavy water, tritiated water and hydrogen isotopes is presented. This bibliography covers the period 1981-1992 and is in continuation to Division's earlier report BARC-1192 (1983). The sources of information for this compilation are Chemical Abstracts, INIS Atom Index and also some scattered search through journals and reports available in our library. No claim is made towards exhaustiveness of this bibliography even though sincere attempts have been made for a wide coverage. The bibliography is arranged under the headings: (1) production, purification, recovery, reprocessing and storage, (2) isotope exchange, 3) isotope analysis, (4) properties and (5) miscellaneous. Total number of references in the bibliography are 1762. (author)

  8. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  9. Architecture and dynamics of isotopically labelled macromolecules by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1979-01-01

    The use of 13 C is considered using NMR spectra of cell suspensions. Biochemical reaction kinetics are still unclear in the study of environmental and structural perturbations of amino acids and peptides; thus needs still exist for this labelling technique

  10. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    Science.gov (United States)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  11. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2006-01-01

    The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling was emplo......The lifetimes of organic photovoltaic cells based on conjugated polymer materials were studied. The device geometry was glass:ITO:PEDOT:PSS:C-12-PSV:C-60:aluminium. To characterise and elucidate the parts of the degradation mechanisms induced by molecular oxygen, 1802 isotopic labelling...

  12. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino...... acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...

  13. Direct methods and residue type specific isotope labeling in NMR structure determination and model-driven sequential assignment

    International Nuclear Information System (INIS)

    Schedlbauer, Andreas; Auer, Renate; Ledolter, Karin; Tollinger, Martin; Kloiber, Karin; Lichtenecker, Roman; Ruedisser, Simon; Hommel, Ulrich; Schmid, Walther; Konrat, Robert; Kontaxis, Georg

    2008-01-01

    Direct methods in NMR based structure determination start from an unassigned ensemble of unconnected gaseous hydrogen atoms. Under favorable conditions they can produce low resolution structures of proteins. Usually a prohibitively large number of NOEs is required, to solve a protein structure ab-initio, but even with a much smaller set of distance restraints low resolution models can be obtained which resemble a protein fold. One problem is that at such low resolution and in the absence of a force field it is impossible to distinguish the correct protein fold from its mirror image. In a hybrid approach these ambiguous models have the potential to aid in the process of sequential backbone chemical shift assignment when 13 C β and 13 C' shifts are not available for sensitivity reasons. Regardless of the overall fold they enhance the information content of the NOE spectra. These, combined with residue specific labeling and minimal triple-resonance data using 13 C α connectivity can provide almost complete sequential assignment. Strategies for residue type specific labeling with customized isotope labeling patterns are of great advantage in this context. Furthermore, this approach is to some extent error-tolerant with respect to data incompleteness, limited precision of the peak picking, and structural errors caused by misassignment of NOEs

  14. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  15. A Breast Cell Atlas: Organelle analysis of the MDA-MB-231 cell line by density-gradient fractionation using isotopic marking and label-free analysis

    Directory of Open Access Journals (Sweden)

    Marianne Sandin

    2015-09-01

    Full Text Available Protein translocation between organelles in the cell is an important process that regulates many cellular functions. However, organelles can rarely be isolated to purity so several methods have been developed to analyse the fractions obtained by density gradient centrifugation. We present an analysis of the distribution of proteins amongst organelles in the human breast cell line, MDA-MB-231 using two approaches: an isotopic labelling and a label-free approach.

  16. Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.

    Science.gov (United States)

    Pham, Grace H; Ou, Weijia; Bursulaya, Badry; DiDonato, Michael; Herath, Ananda; Jin, Yunho; Hao, Xueshi; Loren, Jon; Spraggon, Glen; Brock, Ansgar; Uno, Tetsuo; Geierstanger, Bernhard H; Cellitti, Susan E

    2018-04-16

    Activated esters are widely used to label proteins at lysine side chains and N termini. These reagents are useful for labeling virtually any protein, but robust reactivity toward primary amines generally precludes site-selective modification. In a unique case, fluorophenyl esters are shown to preferentially label human kappa antibodies at a single lysine (Lys188) within the light-chain constant domain. Neighboring residues His189 and Asp151 contribute to the accelerated rate of labeling at Lys188 relative to the ≈40 other lysine sites. Enriched Lys188 labeling can be enhanced from 50-70 % to >95 % by any of these approaches: lowering reaction temperature, applying flow chemistry, or mutagenesis of specific residues in the surrounding protein environment. Our results demonstrated that activated esters with fluoro-substituted aromatic leaving groups, including a fluoronaphthyl ester, can be generally useful reagents for site-selective lysine labeling of antibodies and other immunoglobulin-type proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isotope and ion selectivity in reverse osmosis desalination: geochemical tracers for man-made freshwater.

    Science.gov (United States)

    Kloppmann, Wolfram; Vengosh, Avner; Guerrot, Catherine; Millot, Romain; Pankratov, Irena

    2008-07-01

    A systematic measurement of ions and 2H/1H, 7Li/6Li, 11B/10B, 18O/ 16O, and 87Sr/86Sr isotopes in feed-waters, permeates, and brines from commercial reverse osmosis (RO) desalination plants in Israel (Ashkelon, Eilat, and Nitzana) and Cyprus (Larnaca) reveals distinctive geochemical and isotopic fingerprints of fresh water generated from desalination of seawater (SWRO) and brackish water (BWRO). The degree of isotope fractionation during the passage of water and solutes through the RO membranes depends on the medium (solvent-water vs. solutes), chemical speciation of the solutes, their charge, and their mass difference. O, H, and Sr isotopes are not fractionated during the RO process. 7Li is preferentially rejected in low pH RO, and B isotope fractionation depends on the pH conditions. Under low pH conditions, B isotopes are not significantly fractionated, whereas at high pH, RO permeates are enriched by 20 per thousand in 11B due to selective rejection of borate ion and preferential permeation of 11B-enriched boric acid through the membrane. The specific geochemical and isotopic fingerprints of SWRO provide a unique tool for tracing "man-made" fresh water as an emerging recharge component of natural water resources.

  18. Label-free aptamer biosensor for selective detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  19. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    International Nuclear Information System (INIS)

    Tang, Yanan; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. • 12 C 2 -Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released 12 C 2 -dansyl labeled N-terminal amino acid was quantified using 13 C 2 -dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards

  20. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    Directory of Open Access Journals (Sweden)

    Nelson L. Brock

    2013-05-01

    Full Text Available Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP via competing pathways releasing either methanethiol (MeSH or dimethyl sulfide (DMS. Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [2H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [2H3]methionine and 34SO42−, synthesized from elemental 34S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

  1. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanan; Li, Liang, E-mail: Liang.Li@ualberta.ca

    2013-08-20

    Graphical abstract: -- Highlights: •LC–MS was developed for quantifying protein mixtures containing both intact and N-terminal truncated proteins. •{sup 12}C{sub 2}-Dansylation of the N-terminal amino acid of proteins was done first, followed by microwave-assisted acid hydrolysis. •The released {sup 12}C{sub 2}-dansyl labeled N-terminal amino acid was quantified using {sup 13}C{sub 2}-dansyl labeled amino acid standards. •The method provided accurate and precise results for quantifying intact and N-terminal truncated proteins within 8 h. -- Abstract: The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC–MS) with the use of isotope analog standards.

  2. Analysis of a benthic community food web using isotopically labelled potential food

    International Nuclear Information System (INIS)

    Beviss-Challinor, M.H.; Field, J.G.

    1982-01-01

    A series of experiments was designed to reveal the trophic structure of a benthic community using kelp holdfasts as microcosms within the kelp-bed community. The experimental food comprised zooplankton represented by 3 H 2 O-labelled Artemia sp. eggs and nauplii (200 to 300 μm), detritus derived from 14 C-labelled kelp (60 to 90 μm), and phytoplankton represented by 14 C-labelled Dunaliella primolecta (5 to 10 μm) cultures. Separate experiments of short duration (1 to 2 h) were used to indicate the primary consumers on each type of food, while longer experiments (4, 8 and 16 h) suggested the secondary consumers (coprophagous and carnivorous species). Several species were found to be omnivorous. (orig.)

  3. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyes. Review

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypek, G. [West Australian Biogeochemistry Centre, John de Laeter Centre of Mass Spectrometry, School of Plant Biology, University of Western Australia, Crawley (Australia); Sadler, R. [School of Agricultural and Resource Economics, University of Western Australia, Crawley (Australia); Paul, D. [Department of Civil Engineering (Geosciences), Indian Institute of Technology Kanpur, Kanpur (India); Forizs, I. [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-07-15

    Stable isotope ratio mass spectrometers are highly precise, but not accurate instruments. Therefore, results have to be normalized to one of the isotope scales (e.g., VSMOW, VPDB) based on well calibrated reference materials. The selection of reference materials, numbers of replicates, {delta}-values of these reference materials and normalization technique have been identified as crucial in determining the uncertainty associated with the final results. The most common normalization techniques and reference materials have been tested using both Monte Carlo simulations and laboratory experiments to investigate aspects of error propagation during the normalization of isotope data. The range of observed differences justifies the need to employ the same sets of standards worldwide for each element and each stable isotope analytical technique. (author)

  4. Preparation of inorganic ion exchangers with high selectivity for lithium isotopes

    International Nuclear Information System (INIS)

    Oi, Takao

    2004-01-01

    Development of ion exchangers that show large lithium isotope effects is hoped for to establish highly efficient chromatographic processes of lithium isotope separation. In this paper, preparation, characterization, ion exchange properties, and lithium isotope selectivity of inorganic materials that have been and still are being studied by my research group at Sophia University are reviewed. They include manganese oxides-based ion exchangers, antimonic acids and titanium/zirconium phosphates-based ion exchangers. As a result, the lithium isotope separation effects that were one order of magnitude larger than those of organic ion exchangers were obtained. Some inorganic ion exchangers were found to show ion exchange rates more than comparable to those of organic ones. (author)

  5. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    Science.gov (United States)

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  6. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Scharf, Johann [Heidelberg Univ., Mannheim (Germany). Dept. of Neuroradiology

    2011-07-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm{sup 3} are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm{sup 3} is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  7. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses

    International Nuclear Information System (INIS)

    Konstandin, Simon; Heiler, Patrick M.; Schad, Lothar R.; Scharf, Johann

    2011-01-01

    Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm 3 are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm 3 is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography. (orig.)

  8. Synthesis of stereoarray isotope labeled (SAIL) lysine via the "head-to-tail" conversion of SAIL glutamic acid.

    Science.gov (United States)

    Terauchi, Tsutomu; Kamikawai, Tomoe; Vinogradov, Maxim G; Starodubtseva, Eugenia V; Takeda, Mitsuhiro; Kainosho, Masatsune

    2011-01-07

    A stereoarray isotope labeled (SAIL) lysine, (2S,3R,4R,5S,6R)-[3,4,5,6-(2)H(4);1,2,3,4,5,6-(13)C(6);2,6-(15)N(2)]lysine, was synthesized by the "head-to-tail" conversion of SAIL-Glu, (2S,3S,4R)-[3,4-(2)H(2);1,2,3,4,5-(13)C(5);2-(15)N]glutamic acid, with high stereospecificities for all five chiral centers. With the SAIL-Lys in hand, the unambiguous simultaneous stereospecific assignments were able to be established for each of the prochiral protons within the four methylene groups of the Lys side chains in proteins.

  9. A facile method for steroid labeling by heavy isotopes of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Klepetářová, Blanka; Elbert, Tomáš

    2015-01-01

    Roč. 71, č. 29 (2015), s. 4874-4882 ISSN 0040-4020 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : brassinosteroids * alpha-hydroxy ketones * reductive dehalogenation * tritium * labeled compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.645, year: 2015

  10. Determination of the isotope distribution in 14C-labelled hydrocarbons by thermal fragmentation

    International Nuclear Information System (INIS)

    Kopinke, F.D.; Dermietzel, J.; Jockisch, W.; Raeuber, G.

    1986-01-01

    The gas chromatographic analysis of pyrolysis products of properly labelled hydrocarbons allows a definite and quantitative determination of the 14 C-distribution in those compounds. For this purpose a simple, fast, and versatilely applicable method has been developed and described

  11. Automatic isotope gas analysis of tritium labelled organic materials Pt. 3

    International Nuclear Information System (INIS)

    Gacs, I.; Mlinko, S.; Payer, K.; Otvos, L.; Banfi, D.; Palagyi, T.

    1978-01-01

    An isotope analytical procedure and an automatic instrument developed for the determination of tritium in organic compounds and biological materials by internal gas counting are described. The sample is burnt in a stream of oxygen and the combustion products including water vapour carrying the tritium are led onto a column of molecular sieve-5A heated to 550 deg C. Tritium is retained temporarily on the column, then transferred into a stream of hydrogen by isotope exchange. After addition of butane, the tritiated hydrogen is led into an internal detector and enclosed there for radioactivity measurement. The procedure, providing quantitative recovery, is completed in five minutes. It is free of memory effect and suitable for the determination of tritium in a wide range of organic compounds and samples of biological origin. (author)

  12. Deciphering systemic wound responses of the pumpkin extrafascicular phloem by metabolomics and stable isotope-coded protein labeling.

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-12-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling.

  13. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    Energy Technology Data Exchange (ETDEWEB)

    Ocana, Mireia Fernandez [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)], E-mail: Mireia.FernandezOcana@pfizer.com; Fraser, Paul D. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Patel, Raj K.P.; Halket, John M. [Specialist Bioanalytical Services Ltd., Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Bramley, Peter M. [Centre for Chemical and Bioanalytical Sciences, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)

    2009-02-16

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study.

  14. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein {alpha}-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Abdulaev, Najmoutin G. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Zhang Cheng; Dinh, Andy [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States); Ngo, Tony; Bryan, Philip N. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Brabazon, Danielle M. [Loyola College in Maryland, Department of Chemistry (United States); Marino, John P. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States)], E-mail: marino@carb.nist.gov; Ridge, Kevin D. [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States)

    2005-05-15

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein {alpha}-subunit (G{sub {alpha}}) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G{sub {alpha}} chimera ({approx}40 kDa polypeptide) has been tested. The results show that a prodomain fused G{sub {alpha}} chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G{sub {alpha}} isolated from natural sources. To assay for the functional integrity of the purified G{sub {alpha}} chimera at NMR concentrations and probe for changes in the structure and dynamics of G{sub {alpha}} that result from activation, {sup 15}N-HSQC spectra of the GDP/Mg{sup 2+} bound form of G{sub {alpha}} obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the {sup 15}N-HSQC spectra reveals a number of changes in chemical shifts of the {sup 1}HN, {sup 15}N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G{sub {alpha}} activation.

  15. Evaluation of stable isotope labelling strategies for the quantitation of CP4 EPSPS in genetically modified soya

    International Nuclear Information System (INIS)

    Ocana, Mireia Fernandez; Fraser, Paul D.; Patel, Raj K.P.; Halket, John M.; Bramley, Peter M.

    2009-01-01

    The introduction of genetically modified (GM) crops into the market has raised a general alertness relating to the control and safety of foods. The applicability of protein separation hyphenated to mass spectrometry to identify the bacterial enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) protein expressed in GM crops has been previously reported [M.F. Ocana, P.D. Fraser, R.K.P. Patel, J.M. Halket, P.M. Bramley, Rapid Commun. Mass Spectrom. 21 (2007) 319.]. Herein, we investigate the suitability of two strategies that employ heavy stable isotopes, i.e. AQUA and iTRAQ, to quantify different levels of CP4 EPSPS in up to four GM preparations. Both quantification strategies showed potential to determine whether the presence of GM material is above the limits established by the European Union. The AQUA quantification procedure involved protein solubilisation/fractionation and subsequent separation using SDS-PAGE. A segment of the gel in which the protein of interest was located was excised, the stable isotope labeled peptide added at a known concentration and proteolytic digestion initiated. Following recovery of the peptides, on-line separation and detection using LC-MS was carried out. A similar approach was used for the iTRAQ workflow with the exception that proteins were digested in solution and generated tryptic peptides were chemically tagged. Both procedures demonstrated the potential for quantitative detection at 0.5% (w/w) GM soya which is a level below the current European Union's threshold for food-labelling. In this context, a comparison between the two procedures is provided within the present study

  16. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein α-subunit

    International Nuclear Information System (INIS)

    Abdulaev, Najmoutin G.; Zhang Cheng; Dinh, Andy; Ngo, Tony; Bryan, Philip N.; Brabazon, Danielle M.; Marino, John P.; Ridge, Kevin D.

    2005-01-01

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein α-subunit (G α ) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G α chimera (∼40 kDa polypeptide) has been tested. The results show that a prodomain fused G α chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G α isolated from natural sources. To assay for the functional integrity of the purified G α chimera at NMR concentrations and probe for changes in the structure and dynamics of G α that result from activation, 15 N-HSQC spectra of the GDP/Mg 2+ bound form of G α obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the 15 N-HSQC spectra reveals a number of changes in chemical shifts of the 1 HN, 15 N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G α activation

  17. Demonstration of de novo synthesis of enzymes by density labelling with stable isotopes

    International Nuclear Information System (INIS)

    Huebner, G.; Hirschberg, K.

    1977-01-01

    The technique of in vivo density labelling of proteins with H 2 18 O and 2 H 2 O has been used to investigate hormonal regulation and developmental expression of enzymes in plant cells. Buoyant density data obtained from isopycnic equilibrium centrifugation demonstrated that the cytokinine-induced nitrate reductase activity and the gibberellic acid-induced phosphatase activity in isolated embryos of Agrostemma githago are activities of enzymes synthesized de novo. The increase in alanine-specific aminopeptidase in germinating A. githago seeds is not due to de novo synthesis but to the release of preformed enzyme. On the basis of this result it is possible to apply the enzyme aminopeptidase as an internal density standard in equilibrium centrifugation. Density labelling experiments on proteins in pea cotyledons have been used to study the change in the activity of acid phosphatase, alanine-specific aminopeptidase, and peroxidase during germination. The activities of these enzymes increase in cotyledons of Pisum sativum. Density labelling by 18 O and 2 H demonstrates de novo synthesis of these three enzymes. The differential time course of enzyme induction shows the advantage of using H 2 18 O as labelling substance in cases when the enzyme was synthesized immediately at the beginning of germination. At this stage of development the amino-acid pool available for synthesis is formed principally by means of hydrolysis of storage proteins. The incorporation of 2 H into the new proteins takes place in a measurable amount at a stage of growth in which the amino acids are also synthesized de novo. The enzyme acid phosphatase of pea cotyledons was chosen to demonstrate the possibility of using the density labelling technique to detect protein turnover. (author)

  18. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    Science.gov (United States)

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dynamics of N2O production pathways analyzed by 15N18O isotope labeling

    DEFF Research Database (Denmark)

    Jensen, Marlene Mark; Ma, Chun; Lavik, Gaute

    Nitrous oxide production associated with biological nitrogen transformations can contribute substantially to the CO2 footprint of both man-made and natural systems, but the pathways and regulation of N2O production are poorly understood. We developed a 15N/18O dual isotope labelling technique...

  20. Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Fumio; Morino, Keiko; Miyashita, Masahiro; Miyagawa, Hisashi [Kyoto Univ. (Japan). Department of Agriculture

    2003-05-01

    The metabolic flux of two phenylpropanoid metabolites, N-p-coumaroyloctopamine (p-CO) and chlorogenic acid (CGA), in the wound-healing potato tuber tissue was quantitatively analyzed by a newly developed method based upon the tracer experiment using stable isotope-labeled compounds and LC-MS. Tuber disks were treated with aqueous solution of L-phenyl-d{sub 5}-alanine, and the change in the ratio of stable isotope-labeled compound to non-labeled (isotope abundance) was monitored for p-CO and CGA in the tissue extract by LC-MS. The time-dependent change in the isotope abundance of each metabolite was fitted to an equation that was derived from the formation and conversion kinetics of each compound. Good correlations were obtained between the observed and calculated isotope abundances for both p-CO and CGA. The rates of p-CO formation and conversion (i.e. fluxes) were 1.15 and 0.96 nmol (g FW){sup -1}h{sup -1}, respectively, and for CGA, the rates 4.63 and 0.42 nmol (g FW){sup -1}h{sup -1}, respectively. This analysis enabled a direct comparison of the biosynthetic activity between these two compounds. (author)

  1. Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry.

    Science.gov (United States)

    Melanson, Edward L; Swibas, Tracy; Kohrt, Wendy M; Catenacci, Vicki A; Creasy, Seth A; Plasqui, Guy; Wouters, Loek; Speakman, John R; Berman, Elena S F

    2018-02-01

    When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co 2 ) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co 2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H 2 18 O (98% APE) and 0.14 g 2 H 2 O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co 2 using OA-ICOS and IRMS. V̇co 2 was calculated using both the plateau and intercept methods. There were no differences in V̇co 2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co 2 using OA-ICOS did not differ from IC, but V̇co 2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co 2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co 2 with comparable accuracy and precision compared with IC.

  2. Isotopic evaluations of dynamic and plant uptake of N in soil amended with 15N-labelled sewage sludge

    International Nuclear Information System (INIS)

    Kchaou, R.; Khelil, M. N.; Rejeb, S.; Gharbi, F.; Henchi, B.; Hernandez, T.; Destain, J. P.

    2010-01-01

    Field experiments were conducted to evaluate the use of a novel 15N isotope technique for comparing the dynamics of N derived from sewage sludge applied to sorghum to the dynamics of N derived from the commercial fertilizer, urea. The treatments included a control, sludge applied at three rates (3, 6 and 9 t/ha, or 113, 226 and 338 kg N/ha) and N-urea applied at three rates (150, 250 and 350 kg N/ha). Recovery of 15N -labelled sludge was similar for the different nitrogen rates applied , with a mean value of 27%. However, the recovery of 15N -urea decreased as the rate of N application increased (from 38% to 27%). Approximately 22% and 19% of the 15N from sludge and urea, respectively, remained in the 0-60 cm layer of soil, most of which was present in the 0-20 cm layer. Furthermore, losses of 15N -labelled fertilizer were not affected by the N fertilization source, and the greatest losses, which were measured in response to the highest N application rate, were 59%. (authors)

  3. Solid state NMR of isotope labelled murine fur: a powerful tool to study atomic level keratin structure and treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wai Ching Veronica; Narkevicius, Aurimas; Chow, Wing Ying; Reid, David G.; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2016-10-15

    We have prepared mouse fur extensively {sup 13}C,{sup 15}N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. {sup 13}C double quantum–single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α-helical, and β-sheet/random coil components, enables resolution of otherwise overlapped α-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.

  4. Future Applications in Quantitative Isotopic Tracing using Homogeneously Carbon-13 Labelled Plant Material

    International Nuclear Information System (INIS)

    Slaets, Johanna I.F.; Chen, Janet; Resch, Christian; Mayr, Leopold; Weltin, Georg; Heiling, Maria; Gruber, Roman; Dercon, Gerd

    2017-01-01

    Carbon-13 ("1"3C) and nitrogen-15 ("1"5N) labelled plant material is increasingly being used to trace the fate of plant-derived C and N into the atmosphere, soil, water and organisms in many studies, including those investigating the potential of soils to store greenhouse gases belowground. Storage of C in soils can offset and even reduce atmospheric levels of the greenhouse gas, CO_2, and interest in such studies is growing due to problems associated with anthropogenic greenhouse gas emissions impacting climate change. Reduction of N loss in soils is also of great interest, as it reduces release of the greenhouse gas, N_2O, into the atmosphere. However, accurate quantitative tracing of plant-derived C and N in such research is only possible if plant material is labelled both homogeneously and in sufficient quantities.

  5. Measurement of apolipoprotein E and amyloid β clearance rates in the mouse brain using bolus stable isotope labeling

    Science.gov (United States)

    2012-01-01

    Background Abnormal proteostasis due to alterations in protein turnover has been postulated to play a central role in several neurodegenerative diseases. Therefore, the development of techniques to quantify protein turnover in the brain is critical for understanding the pathogenic mechanisms of these diseases. We have developed a bolus stable isotope-labeling kinetics (SILK) technique coupled with multiple reaction monitoring mass spectrometry to measure the clearance of proteins in the mouse brain. Results Cohorts of mice were pulse labeled with 13 C6-leucine and the brains were isolated after pre-determined time points. The extent of label incorporation was measured over time using mass spectrometry to measure the ratio of labeled to unlabeled apolipoprotein E (apoE) and amyloid β (Aβ). The fractional clearance rate (FCR) was then calculated by analyzing the time course of disappearance for the labeled protein species. To validate the technique, apoE clearance was measured in mice that overexpress the low-density lipoprotein receptor (LDLR). The FCR in these mice was 2.7-fold faster than wild-type mice. To demonstrate the potential of this technique for understanding the pathogenesis of neurodegenerative disease, we applied our SILK technique to determine the effect of ATP binding cassette A1 (ABCA1) on both apoE and Aβ clearance. ABCA1 had previously been shown to regulate both the amount of apoE in the brain, along with the extent of Aβ deposition, and represents a potential molecular target for lowering brain amyloid levels in Alzheimer's disease patients. The FCR of apoE was increased by 1.9- and 1.5-fold in mice that either lacked or overexpressed ABCA1, respectively. However, ABCA1 had no effect on the FCR of Aβ, suggesting that ABCA1 does not regulate Aβ metabolism in the brain. Conclusions Our SILK strategy represents a straightforward, cost-effective, and efficient method to measure the clearance of proteins in the mouse brain. We expect that

  6. Labelling of long chain fatty acids by non isotopic nucleophilic halogen exchange

    International Nuclear Information System (INIS)

    Hallaba, E.; Al-Suhybani, A.A.; Zaki, F.S.

    1985-01-01

    The parameters of two exchange methods for preparing pure 97% labelled 17-Br-HDA in acetone and in benzene with dry NaI in a closed system are described. In aprotic solvents the need for a phase transfer catalyst up to 50 μg is necessary to dissolve the dry NaI. The use of aqueous medium in the exchange is totally prohibited. Energies of activation are calculated for both reactions. (author)

  7. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  8. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice

    Energy Technology Data Exchange (ETDEWEB)

    Carney, P.L.; Rogers, P.E.; Johnson, D.K. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-01

    Monoclonal antibody B72.3 was coupled to a benzylisothiocyanate derivative of diethylenetriaminepentaacetic acid (DTPA). The maximum substitution achievable without loss of immunoreactivity was three DTPA groups per immunoglobulin molecule. The resulting conjugate was labeled with {sup 111}In by brief incubation with {sup 111}InCl{sub 3}, giving a mean radiochemical yield of {sup 111}In-labeled antibody of 96%. The ({sup 111}In)B72.3 preparation was mixed with an ({sup 125}I) B72.3 preparation, obtained by the chloramine-T method, and the mixture administered to athymic mice bearing subcutaneous LS174T colon carcinoma xenografts. There were no significant differences (p greater than 0.1) in the biodistributions of the two labels at 1, 2, 5, and 7 days postinjection. These results are contrasted with prior studies showing elevated levels of {sup 111}In in liver, spleen, and kidneys using B72.3-DTPA conjugates prepared via the bicyclic anhydride. It is concluded that protein cross-linking and/or the formation of unstable chelate sites in anhydride coupled conjugates underlie these disparities.

  9. Dual isotope study of iodine-125 and indium-111-labeled antibody in athymic mice

    International Nuclear Information System (INIS)

    Carney, P.L.; Rogers, P.E.; Johnson, D.K.

    1989-01-01

    Monoclonal antibody B72.3 was coupled to a benzylisothiocyanate derivative of diethylenetriaminepentaacetic acid (DTPA). The maximum substitution achievable without loss of immunoreactivity was three DTPA groups per immunoglobulin molecule. The resulting conjugate was labeled with 111 In by brief incubation with 111 InCl 3 , giving a mean radiochemical yield of 111 In-labeled antibody of 96%. The [ 111 In]B72.3 preparation was mixed with an [ 125 I] B72.3 preparation, obtained by the chloramine-T method, and the mixture administered to athymic mice bearing subcutaneous LS174T colon carcinoma xenografts. There were no significant differences (p greater than 0.1) in the biodistributions of the two labels at 1, 2, 5, and 7 days postinjection. These results are contrasted with prior studies showing elevated levels of 111 In in liver, spleen, and kidneys using B72.3-DTPA conjugates prepared via the bicyclic anhydride. It is concluded that protein cross-linking and/or the formation of unstable chelate sites in anhydride coupled conjugates underlie these disparities

  10. Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils.

    Science.gov (United States)

    Ewert, Alice; Granvogl, Michael; Schieberle, Peter

    2014-08-20

    Acrolein (2-propenal) is classified as a foodborne toxicant and was shown to be present in significant amounts in heated edible oils. Up to now, its formation was mainly suggested to be from the glycerol part of triacylglycerides, although a clear influence of the unsaturation of the fatty acid moiety was also obvious in previous studies. To unequivocally clarify the role of the glycerol and the fatty acid parts in acrolein formation, two series of labeled triacylglycerides were synthesized: [(13)C(3)]-triacylglycerides of stearic, oleic, linoleic, and linolenic acid and [(13)C(54)]-triacylglycerides with labeled stearic, oleic, and linoleic acid, but with unlabeled glycerol. Heating of each of the seven intermediates singly in silicon oil and measurement of the formed amounts of labeled and unlabeled acrolein clearly proved the fatty acid backbone as the key precursor structure. Enzymatically synthesized pure linoleic acid and linolenic acid hydroperoxides were shown to be the key intermediates in acrolein formation, thus allowing the discussion of a radical-induced reaction pathway leading to the formation of the aldehyde. Surprisingly, although several oils contained high amounts of acrolein after heating, deep-fried foods themselves, such as donuts or French fries, were low in the aldehyde.

  11. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments

    International Nuclear Information System (INIS)

    Kirley, Terence L.; Greis, Kenneth D.; Norman, Andrew B.

    2016-01-01

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab’) 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab’) 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. - Highlights: • TCEP agarose is effective for selective reduction of a single Fab disulfide bond. • This disulfide is solvent accessible and distant from the antigen binding site. • A variety of buffers of varying pHs can be used, simplifying

  12. Secretory overexpression and isotopic labeling of the chimeric relaxin family peptide R3/I5 in Pichia pastoris.

    Science.gov (United States)

    Guo, Yu-Qi; Wu, Qing-Ping; Shao, Xiao-Xia; Shen, Ting; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-06-01

    Relaxin family peptides are a group of peptide hormones with divergent biological functions. Mature relaxin family peptides are typically composed of two polypeptide chains with three disulfide linkages, rendering their preparation a challenging task. In the present study, we established an efficient approach for preparation of the chimeric relaxin family peptide R3/I5 through secretory overexpression in Pichia pastoris and in vitro enzymatic maturation. A designed single-chain R3/I5 precursor containing the B-chain of human relaxin-3 and the A-chain of human INSL5 was overexpressed in PichiaPink strain 1 by high-density fermentation in a two-liter fermenter, and approximately 200 mg of purified precursor was obtained from one liter of the fermentation supernatant. We also developed an economical approach for preparation of the uniformly (15)N-labeled R3/I5 precursor by culturing in shaking flasks, and approximately 15 mg of purified (15)N-labeled precursor was obtained from one liter of the culture supernatant. After purification by cation ion-exchange chromatography and reverse-phase high performance liquid chromatography, the R3/I5 precursor was converted to the mature two-chain form by sequential treatment with endoproteinase Lys-C and carboxypeptidase B. The mature R3/I5 peptide had an α-helix-dominated conformation and retained full receptor-binding and receptor activation activities. Thus, Pichia overexpression was an efficient approach for sample preparation and isotopic labeling of the chimeric R3/I5 peptide. This approach could also be extended to the preparation of other relaxin family peptides in future studies.

  13. Plasma Protein Turnover Rates in Rats Using Stable Isotope Labeling, Global Proteomics, and Activity-Based Protein Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Tyrrell, Kimberly J.; Hansen, Joshua R.; Thomas, Dennis G.; Murphree, Taylor A.; Shukla, Anil K.; Luders, Teresa; Madden, James M.; Li, Yunying; Wright, Aaron T.; Piehowski, Paul D.

    2017-12-06

    Protein turnover is important for general health on cellular and organism scales providing a strategy to replace old, damaged, or dysfunctional proteins. Protein turnover also informs of biomarker kinetics, as a better understanding of synthesis and degradation of proteins increases the clinical utility of biomarkers. Here, turnover rates of plasma proteins in rats were measured in vivo using a pulse-chase stable isotope labeling experiment. During the pulse, rats (n=5) were fed 13C6-labeled lysine (“heavy”) feed for 23 days to label proteins. During the chase, feed was changed to an unlabeled equivalent feed (“light”), and blood was repeatedly sampled from rats over 10 time points for 28 days. Plasma samples were digested with trypsin, and analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant was used to identify peptides and proteins, and quantify heavy:light lysine ratios. A system of ordinary differential equations was used to calculate protein turnover rates. Using this approach, 273 proteins were identified, and turnover rates were quantified for 157 plasma proteins with half-lives ranging 0.3-103 days. For the ~70 most abundant proteins, variability in turnover rates among rats was low (median coefficient of variation: 0.09). Activity-based protein profiling was applied to pooled plasma samples to enrich serine hydrolases using a fluorophosphonate (FP2) activity-based probe. This enrichment resulted in turnover rates for an additional 17 proteins. This study is the first to measure global plasma protein turnover rates in rats in vivo, measure variability of protein turnover rates in any animal model, and utilize activity-based protein profiling for enhancing measurements of targeted, low-abundant proteins, such as those commonly used as biomarkers. Measured protein turnover rates will be important for understanding of the role of protein turnover in cellular and organism health as well as increasing the utility of protein

  14. Applications of isotopic labeling to the study of Friedel-Crafts reactions

    International Nuclear Information System (INIS)

    Roberts, R.M.; Gibson, T.L.

    1980-01-01

    A number of Friedel-Crafts processes that have been examined by the use of isotopic methods are considered: (1) the interaction of a Lewis acid with an acyl or alkyl halide; (2) the rearrangements of an alkylating species resulting from such an interaction, as observed in the arene products or in recovered starting materials; and (3) isomerizations of alkylation products which can occur in the presence of Lewis acids including (a) the alkylbenzene rearrangement (internal, of side chains), (b) disproportionation (intermolecular alkyl transfers), and (c) reorientations, which may be the results of either intra- or intermolecular processes. (Auth.)

  15. Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes

    Directory of Open Access Journals (Sweden)

    Shingo Sotoma

    2016-03-01

    Full Text Available The impeccable photostability of fluorescent nanodiamonds (FNDs is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.

  16. Development of new and improved labelling procedures for introducing isotopic hydrogen and carbon-11 into organic compounds

    International Nuclear Information System (INIS)

    Al-Qahtani, M.H.S.

    1999-10-01

    New and improved methods for introducing radioisotopic hydrogen (tritium) and carbon (positron-emitting short-lived carbon-11, t 1/ 2 = 20.4 min) into organic molecules for application in biological research have been explored. In Chapter 1 the applications of radioactive isotopes in biological and clinical research is surveyed, with particular emphasis on the value of β-emitting tritium and positron-emitting carbon-11. In Chapter 2 we report the use of the non-radioactive hydrogen isotope, deuterium, as a surrogate for tritium in the development of microwave-enhanced labelling procedures, based on catalytic hydrogen transfer to olefins (e.g. styrene, styrene derivatives, cinnamic acid and its derivatives). Hydrogen or deuterium donors (e.g. formate salts) were used alone or in combination with other sources (e.g. D 2 O). The method was found to give fully hydrogenated products using very short microwave irradiation times (∼ 2 min) and was highly reproducible. Importantly, the method is environmentally clean, as when extended to tritiated formates little or no radioactive waste is produced. In Chapter 3 we explored the labelling of CGP 62349 {3-[1-(R)-[3-(4-methoxybenzyl)phosphinyl-2-(S)-hydroxy-propyl- amino]ethyl]benzoic acid}, a γ-aminobutyric acid type B (GABA B ) receptor antagonist, with carbon-11 in order to provide a prospective radioligand for medical imaging with positron emission tomography (PET). Labelling agents, [ 11 C]iodomethane and [ 11 C]methyl triflate, prepared by improved methods, were used in the rapid methylation of desmethyl-CGP 62349. Substantially higher radiochemical yields (78%) of [ 11 C]CGP 62349 were achieved by the new methods compared to that produced in a previously published procedure (9%). In addition, the use of [ 11 C]methyl triflate rather than [ 11 C]iodomethane has the advantage of giving a high radiochemical yield and a lower amount of carrier. In Chapter 4 we report on the use of [ 11 C]carbon monoxide as a labelling

  17. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  18. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  19. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample

    International Nuclear Information System (INIS)

    Kawaguchi, Migaku; Hayatsu, Yoshio; Nakata, Hisao; Ishii, Yumiko; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2005-01-01

    We have developed a molecularly imprinted polymer (MIP) using a stable isotope labeled compound as the template molecule and called it the ''isotope molecularly imprinted polymer'' (IMIP). In this study, bisphenol A (BPA) was used as the model compound. None imprinted polymer (NIP), MIP, dummy molecularly imprinted polymer (DMIP) and IMIP were prepared by the suspension polymerization method using without template, BPA, 4-tert-butylphenol (BP) and bisphenol A-d 16 (BPA-d 16 ), respectively. The polymers were subjected to molecularly imprinted solid phase extraction (MI-SPE), and the extracted samples were subjected to liquid chromatography-mass spectrometry (LC-MS). Although the leakage of BPA-d 16 from the IMIP was observed and that of BPA was not observed. The selectivity factors of MIP and IMIP for BPA were 4.45 and 4.43, respectively. Therefore, IMIP had the same molecular recognition ability as MIP. When MI-SPE with IMIP was used and followed by LC-MS in the analysis of river water sample, the detection limit of BPA was 1 ppt with high sensitivity. Moreover, the average recovery was higher than 99.8% (R.S.D.: 3.7%) by using bisphenol A- 13 C 12 (BPA- 13 C 12 ) as the surrogate standard. In addition, the IMIP were employed in MI-SPE of BPA in river water sample by LC-MS. The concentration of BPA in the river water sample was determined to be 32 pg ml -1 . We confirmed that it was possible to measure trace amounts of a target analyte by MI-SPE using IMIP

  20. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  1. Application of environmental isotope techniques to selected hydrological systems in Pampean, Argentina

    International Nuclear Information System (INIS)

    Dapena, C.; Panarello, H.O.

    2007-01-01

    such as oceanography, hydrometeorology and climatology. The meteorological analysis of the GNIP data suggests that the large scale synoptic history of the air masses (rainout history, moisture) is the major factor controlling the variability of the isotope content from one rain event to other and also the seasonality, and in tropical zones the amount of precipitation. The strong linear correlation between 18 O and 2 H concentrations was shown by several authors and it reflects the mass-dependent partitioning of the water isotopes in the hydrological cycle. This coupling is represented by the global meteoric water line (GMWL), i.e.: δ 2 H = 8 x δ 18 O + 10% per mille. The isotope composition of groundwater in temperate climates reflects with a good approximation that of the average precipitation at the locality. On the other hand, some processes could modify the isotope composition during recharge mechanisms, like evaporation prior to infiltration or precipitation seasonally variations marked by a selective infiltration. In addition, individual rains exhibits an isotope composition with an extended dispersion, but they join into the annual average precipitation within the normal climate variations from one year to other. A homogeneous isotope distribution indicates the water origin, while changes along groundwater paths reflect the history of the water. (author)

  2. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  3. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments.

    Science.gov (United States)

    Kirley, Terence L; Greis, Kenneth D; Norman, Andrew B

    2016-11-25

    Many methods have been developed for chemical labeling and enhancement of the properties of antibodies and their common fragments, including the Fab and F(ab') 2 fragments. Somewhat selective reduction of some antibody disulfide bonds has been previously achieved, yielding antibodies and antibody fragments that can be labeled at defined sites, enhancing their utility and properties. Selective reduction of the two hinge disulfide bonds present in F(ab') 2 fragments using mild reduction has been useful. However, such reduction is often not quantitative and results in the reduction of multiple disulfide bonds, and therefore subsequent multiple labeling or conjugation sites are neither homogenous nor stoichiometric. Here, a simple and efficient selective reduction of the single disulfide bond linking the partial heavy chain and the intact light chain which compose the Fab fragment is accomplished utilizing tris(2-carboxyethyl)phosphine (TCEP) immobilized on agarose beads. The resultant reduced cysteine residues were labeled with several cysteine-selective fluorescent reagents, as well as by cysteine-directed PEGylation. These two cysteine residues can also be re-ligated by means of a bifunctional cysteine cross-linking agent, dibromobimane, thereby both restoring a covalent linkage between the heavy and light chains at this site, far removed from the antigen binding site, and also introducing a fluorescent probe. There are many other research and clinical uses for these selectively partially reduced Fab fragments, including biotinylation, toxin and drug conjugation, and incorporation of radioisotopes, and this technique enables simple generation of very useful Fab fragment derivatives with many potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani).

    Science.gov (United States)

    Alonso-Pernas, Pol; Bartram, Stefan; Arias-Cordero, Erika M; Novoselov, Alexey L; Halty-deLeon, Lorena; Shao, Yongqi; Boland, Wilhelm

    2017-01-01

    The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer ( Melolontha hippocastani ), a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP) with 13 C cellulose and 15 N urea as trophic links, with Illumina MiSeq (Illumina-SIP), we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13 C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15 N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13 C cellulose- and 15 N urea labeled bacteria. The incorporation of 15 N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS). Besides highlighting key bacterial symbionts of the gut of M. hippocastani , this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  5. In Vivo Isotopic Labeling of Symbiotic Bacteria Involved in Cellulose Degradation and Nitrogen Recycling within the Gut of the Forest Cockchafer (Melolontha hippocastani

    Directory of Open Access Journals (Sweden)

    Pol Alonso-Pernas

    2017-10-01

    Full Text Available The guts of insects harbor symbiotic bacterial communities. However, due to their complexity, it is challenging to relate a specific symbiotic phylotype to its corresponding function. In the present study, we focused on the forest cockchafer (Melolontha hippocastani, a phytophagous insect with a dual life cycle, consisting of a root-feeding larval stage and a leaf-feeding adult stage. By combining in vivo stable isotope probing (SIP with 13C cellulose and 15N urea as trophic links, with Illumina MiSeq (Illumina-SIP, we unraveled bacterial networks processing recalcitrant dietary components and recycling nitrogenous waste. The bacterial communities behind these processes change between larval and adult stages. In 13C cellulose-fed insects, the bacterial families Lachnospiraceae and Enterobacteriaceae were isotopically labeled in larvae and adults, respectively. In 15N urea-fed insects, the genera Burkholderia and Parabacteroides were isotopically labeled in larvae and adults, respectively. Additionally, the PICRUSt-predicted metagenome suggested a possible ability to degrade hemicellulose and to produce amino acids of, respectively, 13C cellulose- and 15N urea labeled bacteria. The incorporation of 15N from ingested urea back into the insect body was confirmed, in larvae and adults, by isotope ratio mass spectrometry (IRMS. Besides highlighting key bacterial symbionts of the gut of M. hippocastani, this study provides example on how Illumina-SIP with multiple trophic links can be used to target microorganisms embracing different roles within an environment.

  6. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  7. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination

    Science.gov (United States)

    de Almeida, Rodrigo Estevam Munhoz; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications. PMID:29462178

  8. Understanding N timing in corn yield and fertilizer N recovery: An insight from an isotopic labeled-N determination.

    Science.gov (United States)

    Maciel de Oliveira, Silas; Almeida, Rodrigo Estevam Munhoz de; Ciampitti, Ignacio A; Pierozan Junior, Clovis; Lago, Bruno Cocco; Trivelin, Paulo Cesar Ocheuze; Favarin, José Laércio

    2018-01-01

    Early fertilizer nitrogen (N) application on cover crops or their residues during the off-season is a practice adopted in Brazil subtropical conditions under no-tillage corn (Zea mays L.) systems. However, the effect of early N application on yield, plant N content, and N recovery efficiency (NRE) for corn is not yet well documented. Five fertilizer N timings in an oat-corn system were evaluated in two studies utilizing an isotopic-labeled N determination, 15N isotope. The N fertilization timings were: (i) oat tillering, (ii) 15 days before corn planting time, over the oat residues, (iii) at corn planting time, (iv) in-season at the three-leaf growth stage (V3), and (v) in-season split application at V3 and six-leaf (V6) growth stages. Based on the statistical analysis, the N fertilization timings were separated into three groups: 1) N-OATS, designated to N applied at oat; 2) N-PLANT, referred to pre-plant and planting N applications; and 3) N-CORN, designated to in-season corn N applications. Corn yield was not affected by the N fertilization timing. However, the N-CORN N fertilization timings enhanced NRE by 17% and 35% and final N recovery system (plant plus soil) by 16% and 24% all relative to N-OATS and N-PLANT groups, respectively. Overall, N-OATS resulted in the largest N derived from fertilizer (NDFF) amount in the deeper soil layer, in overall a delta of 10 kg N ha-1 relative to the rest of the groups. Notwithstanding corn yield was not affected, early N fertilization under subtropical conditions is not a viable option since NRE was diminished and the non-recovery N increased relative to the in-season N applications.

  9. Quantifying the effect of plant growth on litter decomposition using a novel, triple-isotope label approach

    Science.gov (United States)

    Ernakovich, J. G.; Baldock, J.; Carter, T.; Davis, R. A.; Kalbitz, K.; Sanderman, J.; Farrell, M.

    2017-12-01

    Microbial degradation of plant detritus is now accepted as a major stabilizing process of organic matter in soils. Most of our understanding of the dynamics of decomposition come from laboratory litter decay studies in the absence of plants, despite the fact that litter decays in the presence of plants in many native and managed systems. There is growing evidence that living plants significantly impact the degradation and stabilization of litter carbon (C) due to changes in the chemical and physical nature of soils in the rhizosphere. For example, mechanistic studies have observed stimulatory effects of root exudates on litter decomposition, and greenhouse studies have shown that living plants accelerate detrital decay. Despite this, we lack a quantitative understanding of the contribution of living plants to litter decomposition and how interactions of these two sources of C build soil organic matter (SOM). We used a novel triple-isotope approach to determine the effect of living plants on litter decomposition and C cycling. In the first stage of the experiment, we grew a temperate grass commonly used for forage, Poa labillardieri, in a continuously-labelled atmosphere of 14CO2 fertilized with K15NO3, such that the grass biomass was uniformly labelled with 14C and 15N. In the second stage, we constructed litter decomposition mescososms with and without a living plant to test for the effect of a growing plant on litter decomposition. The 14C/15N litter was decomposed in a sandy clay loam while a temperate forage grass, Lolium perenne, grew in an atmosphere of enriched 13CO2. The fate of the litter-14C/15N and plant-13C was traced into soil mineral fractions and dissolved organic matter (DOM) over the course of nine weeks using four destructive harvests of the mesocosms. Our preliminary results suggest that living plants play a major role in the degradation of plant litter, as litter decomposition was greater, both in rate and absolute amount, for soil mesocosms

  10. Radioiodinated methylene blue for melanoma targeting: Chemical characterisation and tumour selectivity of labelled components

    International Nuclear Information System (INIS)

    Blower, Philip J.; Clark, Katherine; Link, Eva M.

    1997-01-01

    Radioiodinated methylene blue contains a mixture of components showing selective uptake in human pigmented melanoma, and it has potential for imaging and therapy. Nuclear magnetic resonance and mass spectroscopic studies show that the majority of the radioactivity (85%) is in the form of monoiodinated methylene blue, 4-iodo-3-methylamino-7-dimethylaminophenaza thionium chloride. The amino group ortho-to iodine has become demethylated to a mono-methylamino group. The remainder (15%) of the mixture is the doubly labelled 4,5-diiodo-3,7-bis(methylamino) phenazathionium chloride. The separated components show similar tumour selectivity in athymic mice bearing human pigmented melanomas

  11. Synthesis of 14C- and 3H-labeled fluoxetine, a selective serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Robertson, D.W.; Krushinski, J.H.; Wong, D.T.; Kau, D.

    1987-01-01

    Fluoxetine (N-methyl-γ-(4-(trifluoromethyl)phenoxy) benzenepropanamine) is a potent, highly selective serotonin uptake inhibitor that is useful in treating a variety of major psychiatric derangements. We have synthesized this compound in 14 C- and 3 H-labeled forms. The tritium label was introduced in the final step by catalytic dehalogenation of the brominated fluoxetine precursor. Reaction conditions could be controlled such that catalytic hydrogenolysis of the labile C-O benzylic bond was minimized. Following HPLC purification, [ 3 H]-fluoxetine was obtained in a state of high radiochemical purity (98%) and specific activity (20.4 Ci/mmol). The 14 C-label was introduced in the final step via a nucleophilic aromatic substitution reaction between the sodium salt of α-(2-(methylamino)ethyl)benzenemethanol and uniformly ring-labeled p-chlorobenzotrifluoride. Following purification by flash chromatography, [ 14 C]-fluoxetine was obtained in 98.3% radiochemical purity with a specific activity of 5.52 mCi/mmol. (author)

  12. The effect of energy and traffic light labelling on parent and child fast food selection: a randomised controlled trial.

    Science.gov (United States)

    Dodds, Pennie; Wolfenden, Luke; Chapman, Kathy; Wellard, Lyndal; Hughes, Clare; Wiggers, John

    2014-02-01

    Labelling of food from fast food restaurants at point-of-purchase has been suggested as one strategy to reduce population energy consumption and contribute to reductions in obesity prevalence. The aim of this study was to examine the effects of energy and single traffic light labelling systems on the energy content of child and adult intended food purchases. The study employed a randomised controlled trial design. English speaking parents of children aged between three and 12 years were recruited from an existing research cohort. Participants were mailed one of three hypothetical fast food menus. Menus differed in their labelling technique – either energy labels, single traffic light labels, or a no-label control. Participants then completed a telephone survey which assessed intended food purchases for both adult and child. The primary trial outcome was total energy of intended food purchase. A total of 329 participants completed the follow-up telephone interview. Eighty-two percent of the energy labelling group and 96% of the single traffic light labelling group reported noticing labelling information on their menu. There were no significant differences in total energy of intended purchases of parents, or intended purchases made by parents for children, between the menu labelling groups, or between menu labelling groups by socio-demographic subgroups. This study provided no evidence to suggest that energy labelling or single traffic light labelling alone were effective in reducing the energy of fast food items selected from hypothetical fast food menus for purchase. Additional complementary public health initiatives promoting the consumption of healthier foods identified by labelling, and which target other key drivers of menu item selection in this setting may be required.

  13. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    Science.gov (United States)

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  14. Microspheres labelled with short-lived isotopes: Development and application for tumors treatment (Experimental study)

    International Nuclear Information System (INIS)

    Drozdovsky, B.Y.; Rosiev, R.A.; Goncharova, A.Y.; Skvortsov, V.G.; Petriev, V.M.; Grigoriev, A.N.; Schischkanov, N.G.

    1997-01-01

    Analysis of the conducted studies strongly suggests the possibility of usage of the domestic protein microspheres as a vehicle for radionuclide. The neutron-activating method of RPP production enables to utilize a broad spectrum of short-living isotopes that can be delivered into the target organ and anchored there for a long time. Good treatment results were obtained in case of the experimentally induced rheumatoid arthritis in rats after intraarticular loading of 165 Dy-hMSA. Mathematical calculations show that homogeneous distribution of RPP in human articulation cavity with the square of 100 cm 2 can be achieved when the quantity of administered particles exceeds 3000. On the example of 165 Dy-hMSA energy characteristic distribution we demonstrated that the absorbed dose for damaged cells at 2mm distance from the radioactive source is 7 times less than the one for a sphere of 2mm diameter. Analysis of dosimetric data in case of intratumoral loading of 165 Dy-hMSA also point out the necessity of the absorbed dose calculation methods taking into account the distance from the source and possible heterogeneity of RPP distribution inside the tumor to be employed. The prolonged RPP detention in the target causing no essential morphological and functional changes was achieved by embolization on the level of septal and interlobular arteries and of efferent arterioles in the animal's renal. The uniformity of microsphere distribution in the organ and their accumulation in tumors depends on the number of particles being administered. Investigations carried out suggest the efficacy of radionuclide therapy application for treatment of oncological and heavy somatic diseases. They also indicate the necessity of further investigations aimed to optimize the usage of microspheres as a radionuclide carrier usage and to work out the criteria of dosimetric planning

  15. Microspheres labelled with short-lived isotopes: Development and application for tumors treatment (Experimental study)

    Energy Technology Data Exchange (ETDEWEB)

    Drozdovsky, B.Y.; Rosiev, R.A.; Goncharova, A.Y.; Skvortsov, V.G.; Petriev, V.M.; Grigoriev, A.N.; Schischkanov, N.G. [Medical Radiological Research Centre RAMS, Kaluga Region, (Russian Federation)

    1997-10-01

    Analysis of the conducted studies strongly suggests the possibility of usage of the domestic protein microspheres as a vehicle for radionuclide. The neutron-activating method of RPP production enables to utilize a broad spectrum of short-living isotopes that can be delivered into the target organ and anchored there for a long time. Good treatment results were obtained in case of the experimentally induced rheumatoid arthritis in rats after intraarticular loading of {sup 165}Dy-hMSA. Mathematical calculations show that homogeneous distribution of RPP in human articulation cavity with the square of 100 cm{sup 2} can be achieved when the quantity of administered particles exceeds 3000. On the example of {sup 165}Dy-hMSA energy characteristic distribution we demonstrated that the absorbed dose for damaged cells at 2mm distance from the radioactive source is 7 times less than the one for a sphere of 2mm diameter. Analysis of dosimetric data in case of intratumoral loading of {sup 165}Dy-hMSA also point out the necessity of the absorbed dose calculation methods taking into account the distance from the source and possible heterogeneity of RPP distribution inside the tumor to be employed. The prolonged RPP detention in the target causing no essential morphological and functional changes was achieved by embolization on the level of septal and interlobular arteries and of efferent arterioles in the animal`s renal. The uniformity of microsphere distribution in the organ and their accumulation in tumors depends on the number of particles being administered. Investigations carried out suggest the efficacy of radionuclide therapy application for treatment of oncological and heavy somatic diseases. They also indicate the necessity of further investigations aimed to optimize the usage of microspheres as a radionuclide carrier usage and to work out the criteria of dosimetric planning 25 refs.

  16. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2012-07-01

    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  17. Production, purification and detergent exchange of isotopically labeled Bacillussubtilis cytochrome b₅₅₈ (SdhC).

    Science.gov (United States)

    Baureder, Michael; Hederstedt, Lars

    2011-11-01

    Cytochrome b₅₅₈ of the gram-positive bacterium Bacillussubtilis is the membrane anchor subunit of the succinate:quinone oxidoreductase of the citric acid cycle. The cytochrome consists of the SdhC polypeptide (202 residues) and two protoheme IX groups that function in transmembrane electron transfer to menaquinone. The general structure of the cytochrome is known from extensive experimental studies and by comparison to Wolinellasuccinogenes fumarate reductase for which the X-ray crystal structure has been determined. Solution state NMR can potentially be used to identify the quinone binding site(s) and study, e.g. redox-linked, dynamics of cytochrome b₅₅₈. In this work we present an efficient procedure for the isolation of preparative amounts of isotopically labeled B. subtilis cytochrome b₅₅₈ produced in Escherichia coli. We have also evaluated several detergents suitable for NMR for their effectiveness in maintaining the cytochrome solubilized and intact for days at room temperature. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Preparation of radiopharmaceuticals labelled with bromine positron emitting isotopes for the study of dopaminergic receptors of the central nervous system using positron emission tomography

    International Nuclear Information System (INIS)

    Loc'h, C.

    1988-04-01

    The in vivo study of dopaminergic receptors of the central nervous system using positron emission tomography requires the preparation of radiopharmaceuticals labelled with β + emitting isotopes. The chemical and pharmacological properties of these ligands are evaluated. Cyclotron produced 75 and 76 bromine β + emitting isotopes are incorporated into dopaminergic ligands by electrophilic substitution using peracetic acid in a no-carrier added form. Purity, lipophilicity and specific activity are analyzed. Pharmacological criteria (specificity, saturability, displacement, localization) required for ligand-receptor binding studies are evaluated in vitro on striatal membranes and in vivo in the rat. Positron emission tomographic studies show that the study of dopaminergic D2 receptors is possible using 75 and 76 bromine labelled bromospiperone and bromolisuride. These ligands are used in physiological and pharmacological studies of the central nervous system [fr

  19. Development of uniformly stable isotope labeling system in higher plants for hetero-nuclear NMR experiments in vitro and in vivo

    International Nuclear Information System (INIS)

    Kikuchi, J.

    2005-01-01

    Full text: Novel methods for measurement of living systems are making new breakthroughs in life science. In the era of the metabolome (analysis of all measurable metabolites), a MS-based approach is considered to be the major technology, whereas a NMR-based method is recognized as minor technology due to its low sensitivity. Therefore, my laboratory is currently focusing to develop novel methodologies for an NMR-based metabolomics. This will be achieved by uniform stable isotope labeling of higher plants allowing application of multi-dimensional NMR experiments used in protein structure determination. Using these novel methods, I will analyze the dynamic molecular networks inside tissues. Especially, use of stable isotope labeling methods has enormous advantage for discrimination of incorporated or de novo synthesized compounds. Furthermore, potentiality of in vivo-NMR metabolomics will be discussed in the conference. (author)

  20. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Directory of Open Access Journals (Sweden)

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  1. Laser isotope separation by selective excited state photochemistry. Annual progress report, March 31, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    Zare, R.N.

    1977-03-01

    Experimental results are presented providing insight into the mechanisms of photochemical separation of Cd isotopes by selective excitation of ICl in the presence of halogenated olefins. The types of scrambling reactions that can be expected in isotope separation by scavenging are discussed along with strategies for minimizing such reactions. The experimental results are summarized and the reaction mechanisms are represented by graphic equations

  2. Simultaneous determination of glucose turnover, alanine turnover, and gluconeogenesis in human using a double stable-isotope-labeled tracer infusion and gas chromatography-mass spectrometry analysis

    International Nuclear Information System (INIS)

    Martineau, A.; Lecavalier, L.; Falardeau, P.; Chiasson, J.L.

    1985-01-01

    We have developed and validated a new method to measure simultaneously glucose turnover, alanine turnover, and gluconeogenesis in human, in steady and non-steady states, using a double stable-isotope-labeled tracer infusion and GC-MS analysis. The method is based on the concomitant infusion and dilution of D-[2,3,4,6,6-2H5]glucose and L-[1,2,3-13C3]alanine. The choice of the tracers was done on the basis of a minimal overlap between the ions of interest and those arising from natural isotopic abundances. Alanine was chosen as the gluconeogenic substrate because it is the major gluconeogenic amino acid extracted by the liver and, with lactate, constitutes the bulk of the gluconeogenic precursors. The method was validated by comparing the results obtained during simultaneous infusion of trace amounts of both stable isotope labeled compounds with the radioactive tracers (D-[3-3H]glucose and L-[1,2,3-14C3]alanine) in a normal and a diabetic subject; the radiolabeled tracers were used as the accepted reference procedure. A slight overestimation of glucose turnover (7.3 versus 6.8 in normal and 10.8 versus 9.2 mumol/kg min in diabetic subject) was noticed when the stable isotope-labeled tracers were used. For the basal turnover rate of alanine, similar values were obtained with both methods (6.2 mumol/kg min). For gluconeogenesis, higher values were observed in the basal state with the stable isotopes (0.42 versus 0.21 mumol/kg min); however, these differences disappeared in the postprandial period after the ingestion of a mixed meal. Despite those minor differences, the overall correlation with the reference method was excellent for glucose turnover (r = 0.87) and gluconeogenesis (r = 0.86)

  3. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes

    International Nuclear Information System (INIS)

    Lo, Andy; Weiner, Joel H.; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •Investigating a strategy of reciprocal isotope labeling of comparative samples. •Filtering out incorrect peptide identification or quantification values. •Analyzing the proteome changes of E. coli cells grown aerobically or anaerobically. •Presenting guidelines for reciprocal labeling experimental design. -- Abstract: Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed

  4. Does point-of-purchase nutrition labeling influence meal selections? A test in an Army cafeteria.

    Science.gov (United States)

    Sproul, Allen D; Canter, Deborah D; Schmidt, Jeffrey B

    2003-07-01

    This study assessed the effectiveness of nutrition labeling on sales of targeted entrees and measured the perceived influence that factors such as taste, quality, appearance, fat content, calorie content, and price had on meal selection behavior within an Army cafeteria. A quasi-experimental design was used to compare targeted entrée sales between a 1-year baseline period and two 30-day postintervention periods, after the placement of entrée nutrition labels. A brief questionnaire, distributed to 149 patrons, measured the perceived influence of the aforementioned factors on selections. Analysis of variance detected no significant differences in sales between baseline and the two intervention periods; the factors of taste and quality were rated most influential to meal selection (p < 0.000). A marketing campaign focusing on the health attributes of targeted entrée items was not successful in boosting sales. Sensory attributes (i.e., taste, quality, and appearance) appear to be more influential to meal selection.

  5. An isotope approach based on C-13 pulse-chase labelling vs. the root trenching method to separate heterotrophic and autotrophic respiration in cultivated peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, C.; Pitkamaki, A. S.; Tavi, N. M.; Koponen, H. T.; Martikainen, P. J. [Univ.of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], e-mail: christina.biasi@uef.fi

    2012-11-01

    We tested an isotope method based on C-13 pulse-chase labelling for determining the fractional contribution of soil microbial respiration to overall soil respiration in an organic soil (cutaway peatland, eastern Finland), cultivated with the bioenergy crop, reed canary grass. The plants were exposed to CO{sub 2}-13 for five hours and the label was thereafter determined in CO{sub 2} derived from the soil-root system. A two-pool isotope mixing model was used to separate sources of respiration. The isotopic approach showed that a minimum of 50% of the total CO{sub 2} originated from soil-microbial respiration. Even though the method uses undisturbed soil-plant systems, it has limitations concerning the experimental determination of the true isotopic signal of all components contributing to autotrophic respiration. A trenching experiment which was comparatively conducted resulted in a 71% fractional contribution of soil-microbial respiration. This value was likely overestimated. Further studies are needed to evaluate critically the output from these two partitioning approaches. (orig.)

  6. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  7. Selective Gaseous Extraction: Research, Development and Training for Isotope Production, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C, [General Atomics

    2014-03-31

    General Atomics and the University of Missouri Research Reactor (MURR) completed research and development of selective gaseous extraction of fission products from irradiated fuel, which included training and education of MURR students. The process used porous fuel and after irradiation flowed product gases through the fuel to selectively removed desired fission products with the primary goal of demonstrating the removal of rhodium 105. High removal rates for the ruthenium/rhodium (Ru/Rh), tellurium/iodine (Te/I) and molybdenum/technetium (Mo/Tc) series were demonstrated. The success of this research provides for the reuse of the target for further production, significantly reducing the production of actinide wastes relative to processes that dissolve the target. This effort was conducted under DOE funding (DE-SC0007772). General Atomics objective of the project was to conduct R&D on alternative methods to produce a number of radioactive isotopes currently needed for medical and industry applications to include rhodium-105 and other useful isotopes. Selective gaseous extraction was shown to be effective at removing radioisotopes of the ruthenium/rhodium, tellurium/iodine and molybdenum/technetium decay chains while having trace to no quantities of other fission products or actinides. This adds a new, credible method to the area of certain commercial isotope production beyond current techniques, while providing significant potential reduction of process wastes. Waste reduction, along with reduced processing time/cost provides for superior economic feasibility which may allow domestic production under full cost recovery practices. This provides the potential for improved access to domestically produced isotopes for medical diagnostics and treatment at reduced cost, providing for the public good.

  8. Phosphorus availability to ryegrass from urban sewage sludges assessed by isotopic labeling and dilution technique, effect of irradiation

    International Nuclear Information System (INIS)

    El-Motaium, R.A.; Morel, C.

    2007-01-01

    Urban sewage sludge are widely used as alternative P input because of their high P content. Irradiation of sewage sludge is developed in Egypt to make safe spreading of sludge on agricultural fields. Five sludges were sampled from representative urban wastewater treatment plants located in Cairo, Egypt. Sub samples were irradiated using gamma radiation at 6 KGy dose. A pot experiment was conducted under plastic greenhouse using sandy P-deficient soil. The soil was homogeneously labelled with a radioactive solution of carrier-free 32 PO 4 (about 3 MBq kg / soil) to determine the contribution of the different sources of P in plant nutrition. Sludges were applied at 50 mg P/ kg soil. In addition, a control treatment was also carried out to analyze sludge P availability in comparison to a water soluble mineral fertilizer, i.e. 50 mg P/kg soil was applied as commercial monocalcium phosphate (SSP). A reference treatment was included without any P application but the radioactive solution was added. One gram of ryegrass seeds (Lolium multiflorium) was sown in each pot. The aerial parts of the ryegrass were harvested four times, every 3 weeks. Analysis of all harvests included 32 P and total P content was used to determine the respective contribution of soil and sludge to plant P nutrition and the plant available P (L value) using the isotopic dilution principle. The ratio of radioactive P to non-radioactive P, i.e. isotopic composition, was calculated. The total P content in the different urban sewage sludge was ranged from 6.2 to 13.8 g P/ kg and affected by irradiation. Because the soil was extremely P deficient (L value=0.3 mg P/ kg soil), P derived from seeds represented 99% of the P taken up when no P was applied and 87% when applying 50 mg P-SSP/ kg. After correcting the contribution of ryegrass seeds, sludge P contributed by 98% to plant nutrition and 7.2% of the applied P was recovered. The sludge type and irradiation factors did not significantly affect sludge P

  9. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Martin, F.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13 C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13 C were then identified by 16 S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences

  10. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    Science.gov (United States)

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  11. Evaluation of a Method for Nitrotyrosine Site Identification and Relative Quantitation Using a Stable Isotope-Labeled Nitrated Spike-In Standard and High Resolution Fourier Transform MS and MS/MS Analysis

    Directory of Open Access Journals (Sweden)

    Kent W. Seeley

    2014-04-01

    Full Text Available The overproduction of reactive oxygen and nitrogen species (ROS and RNS can have deleterious effects in the cell, including structural and possible activity-altering modifications to proteins. Peroxynitrite is one such RNS that can result in a specific protein modification, nitration of tyrosine residues to form nitrotyrosine, and to date, the identification of nitrotyrosine sites in proteins continues to be a major analytical challenge. We have developed a method by which 15N-labeled nitrotyrosine groups are generated on peptide or protein standards using stable isotope-labeled peroxynitrite (O15NOO−, and the resulting standard is mixed with representative samples in which nitrotyrosine formation is to be measured by mass spectrometry (MS. Nitropeptide MS/MS spectra are filtered using high mass accuracy Fourier transform MS (FTMS detection of the nitrotyrosine immonium ion. Given that the nitropeptide pair is co-isolated for MS/MS fragmentation, the nitrotyrosine immonium ions (at m/z = 181 or 182 can be used for relative quantitation with negligible isotopic interference at a mass resolution of greater than 50,000 (FWHM, full width at half-maximum. Furthermore, the standard potentially allows for the increased signal of nitrotyrosine-containing peptides, thus facilitating selection for MS/MS in a data-dependent mode of acquisition. We have evaluated the methodology in terms of nitrotyrosine site identification and relative quantitation using nitrated peptide and protein standards.

  12. Selective labeling of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Arimura, Shin-ichi; Tsutsumi, Nobuhiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2008-02-01

    We present space-selective labeling of organelles by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. Two-photon excitation of photoconvertible fluorescent-protein, Kaede, enables space-selective labeling of organelles. We alter the fluorescence of target mitochondria in a tobacco BY-2 cell from green to red by focusing femtosecond laser pulses with a wavelength of 750 nm.

  13. Investigating CH4 production in an oxic plant-soil system -a new approach combining isotopic labelling (13C) and inhibitors

    Science.gov (United States)

    Lenhart, Katharina; Keppler, Frank

    2017-04-01

    Typically, aerated soil are net sinks of atmospheric methane (CH4), being highest in native ecosystems (pristine forests > managed forests > grasslands > crop fields). However, this does not exclude a simultaneous endogenic CH4 production in the plant-soil system, which cannot be detected simply via CH4 flux measurements. Methanogenic archaea producing CH4 under anoxic conditions were thought to be the only biotic source of CH4 in the soil. However, until recently a non-archaeal pathway of CH4 formation is known where CH4 is produced under oxic conditions in plants (Keppler et al. 2006) and fungi (Lenhart et al. 2012). Additionally, abiotic formation of CH4 from soil organic matter was reported (Jugold et al. 2012) and may be ubiquitous in terrestrial ecosystems. The major goal of this project was to determine soil endogenic CH4 sources and to estimate their contribution to the endogenic CH4 production. Especially the effect of plants and fungi on soil CH4 production was investigated. Therefore, a series of experiments was carried out on field fresh soil collected in a grassland and a forest ecosystem under controlled laboratory conditions. By combining selective inhibitors and 13C labelling, CH4 production rates of several CH4 sources were quantified. The major difficulty was to detect the comparatively small flux of CH4 production against the background of the high CH4 consumption rates due to methanotrophic bacteria. Therefore, we supplemented bare soil and soil with vegetation with selective inhibitors and 13C labelled substrates in a closed chamber system. In a first step, CH4 production was determined by the inhibition of CH4 oxidizing bacteria with Difluoromethane (DFM, 2ml l-1). In the following, a 13C labelled substrate (either CO2, Acetate, or Methionine -S-CH3 labelled) was added in combination with a specific inhibitor -either for archaeal methanogenesis (Bromoethanesulfonate), bacteria (Streptomycin), or fungi (Captan, Cycloheximide). Gas samples were

  14. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.P.; Shaw, R.W.

    1995-01-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 10 3 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation--ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4 D 5/2 state of lanthanum at 30 354 cm --1 . The general utility of this spectral approach is discussed

  15. Quasi continuum vibrational of molecules and isotopic selectivity properties induced by collisions

    International Nuclear Information System (INIS)

    Angelie, Christian

    1990-01-01

    This research thesis proposes an overview of knowledge on vibrationally highly excited states of molecules. The author shows that the statistic quasi-continuum formed by these states is preceded by a quasi continuum of weak transitions with a lower energy, and that these transitions remain structured and very narrow up to the dissociation energy and beyond. Collisions between molecules excited in their quasi continuum are then studied. The author particularly analyses a new phenomenon of isotopic selectivity which is important for the dissociation of a molecule colliding another molecule. It appears that this selectivity regarding selectivity is due to a selectivity of transferred energy which paradoxically increases with the molecule vibrational content because of a resonance phenomenon of energies transferred by dipole-dipole interaction [fr

  16. The effect of menu labeling with calories and exercise equivalents on food selection and consumption.

    Science.gov (United States)

    Platkin, Charles; Yeh, Ming-Chin; Hirsch, Kimberly; Wiewel, Ellen Weiss; Lin, Chang-Yun; Tung, Ho-Jui; Castellanos, Victoria H

    2014-01-01

    Better techniques are needed to help consumers make lower calorie food choices. This pilot study examined the effect of menu labeling with caloric information and exercise equivalents (EE) on food selection. Participants, 62 females, ages 18-34, recruited for this study, ordered a fast food meal with menus that contained the names of the food (Lunch 1 (L1), control meal). One week later (Lunch 2 (L2), experiment meal), participants ordered a meal from one of three menus with the same items as the previous week: no calorie information, calorie information only, or calorie information and EE. There were no absolute differences between groups in calories ordered from L1 to L2. However, it is noteworthy that calorie only and calorie plus exercise equivalents ordered about 16% (206 kcal) and 14% (162 kcal) fewer calories from Lunch 1 to Lunch 2, respectively; whereas, the no information group ordered only 2% (25 kcal) fewer. Menu labeling alone may be insufficient to reduce calories; however, further research is needed in finding the most effective ways of presenting the menu labels for general public.

  17. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    Science.gov (United States)

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  18. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-02-19

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.

  19. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  20. Exploring enhanced menu labels' influence on fast food selections and exercise-related attitudes, perceptions, and intentions.

    Science.gov (United States)

    Lee, Morgan S; Thompson, Joel Kevin

    2016-10-01

    Labeling restaurant menus with calorie counts is a popular public health intervention, but research shows these labels have small, inconsistent effects on behavior. Supplementing calorie counts with physical activity equivalents may produce stronger results, but few studies of these enhanced labels have been conducted, and the labels' potential to influence exercise-related outcomes remains unexplored. This online study evaluated the impact of no information, calories-only, and calories plus equivalent miles of walking labels on fast food item selection and exercise-related attitudes, perceptions, and intentions. Participants (N = 643) were randomly assigned to a labeling condition and completed a menu ordering task followed by measures of exercise-related outcomes. The labels had little effect on ordering behavior, with no significant differences in total calories ordered and counterintuitive increases in calories ordered in the two informational conditions in some item categories. The labels also had little impact on the exercise-related outcomes, though participants in the two informational conditions perceived exercise as less enjoyable than did participants in the no information condition, and trends following the same pattern were found for other exercise-related outcomes. The present findings concur with literature demonstrating small, inconsistent effects of current menu labeling strategies and suggest that alternatives such as traffic light systems should be explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyses - Review

    International Nuclear Information System (INIS)

    Skrzypek, G.; Sadler, R.; Paul, D.; Forizs, I.

    2011-01-01

    A stable isotope analyst has to make a number of important decisions regarding how to best determine the 'true' stable isotope composition of analysed samples in reference to an international scale. It has to be decided which reference materials should be used, the number of reference materials and how many repetitions of each standard is most appropriate for a desired level of precision, and what normalization procedure should be selected. In this paper we summarise what is known about propagation of uncertainties associated with normalization procedures and propagation of uncertainties associated with reference materials used as anchors for the determination of 'true' values for δ''1''3C and δ''1''8O. Normalization methods Several normalization methods transforming the 'raw' value obtained from mass spectrometers to one of the internationally recognized scales has been developed. However, as summarised by Paul et al. different normalization transforms alone may lead to inconsistencies between laboratories. The most common normalization procedures are: single-point anchoring (versus working gas and certified reference standard), modified single-point normalization, linear shift between the measured and the true isotopic composition of two certified reference standards, two-point and multipoint linear normalization methods. The accuracy of these various normalization methods has been compared by using analytical laboratory data by Paul et al., with the single-point and normalization versus tank calibrations resulting in the largest normalization errors, and that also exceed the analytical uncertainty recommended for δ 13 C. The normalization error depends greatly on the relative differences between the stable isotope composition of the reference material and the sample. On the other hand, the normalization methods using two or more certified reference standards produces a smaller normalization error, if the reference materials are bracketing the whole range of

  2. iMS2Flux – a high–throughput processing tool for stable isotope labeled mass spectrometric data used for metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Poskar C Hart

    2012-11-01

    Full Text Available Abstract Background Metabolic flux analysis has become an established method in systems biology and functional genomics. The most common approach for determining intracellular metabolic fluxes is to utilize mass spectrometry in combination with stable isotope labeling experiments. However, before the mass spectrometric data can be used it has to be corrected for biases caused by naturally occurring stable isotopes, by the analytical technique(s employed, or by the biological sample itself. Finally the MS data and the labeling information it contains have to be assembled into a data format usable by flux analysis software (of which several dedicated packages exist. Currently the processing of mass spectrometric data is time-consuming and error-prone requiring peak by peak cut-and-paste analysis and manual curation. In order to facilitate high-throughput metabolic flux analysis, the automation of multiple steps in the analytical workflow is necessary. Results Here we describe iMS2Flux, software developed to automate, standardize and connect the data flow between mass spectrometric measurements and flux analysis programs. This tool streamlines the transfer of data from extraction via correction tools to 13C-Flux software by processing MS data from stable isotope labeling experiments. It allows the correction of large and heterogeneous MS datasets for the presence of naturally occurring stable isotopes, initial biomass and several mass spectrometry effects. Before and after data correction, several checks can be performed to ensure accurate data. The corrected data may be returned in a variety of formats including those used by metabolic flux analysis software such as 13CFLUX, OpenFLUX and 13CFLUX2. Conclusion iMS2Flux is a versatile, easy to use tool for the automated processing of mass spectrometric data containing isotope labeling information. It represents the core framework for a standardized workflow and data processing. Due to its flexibility

  3. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  4. Enrichment: CRISLA [chemical reaction by isotope selective activation] aims to reduce costs

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1989-01-01

    Every year, more than $3 billion is spent on enriching uranium. CRISLA (Chemical Reaction by Isotope Selective Activation) uses a laser-catalyzed chemical reaction which, its proponents claim, could substantially reduce these costs. In CRISLA, an infrared CO laser illuminates the intracavity reaction cell (IC) at a frequency tuned to excite primarily UF 6 . When UF 6 and co-reactant RX are passed through the IC, the tuned laser photons preferentially enhance the reaction of UF 6 with RX ten-thousand-fold over the thermal reaction rate. Thus the laser serves as an activator and the chemical energy for separation is largely chemical. (author)

  5. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    Guzman R, G.H.

    1980-01-01

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH 3 -H 2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  6. Physical aspects of the isotope separation by laser induced selective ionization, with emphasis on model analysis

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1987-01-01

    Basic studies on the process of isotope separation by laser-induced selective ionization have started about fifteen years ago. In the present time, the interest in this process is considerably increased since some countries' decision of funding a substantial R and D program with the ultimate goal of a possible industrial production of reactor grade uranium in the late nineties'. Several hundreds of professionals in the world are now exploring the science of the process, the components technology and the optimal way of industrialization. This review paper is restricted to the physical aspects of the process as they can be understood from the published literature. 55 refs

  7. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  8. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter.

    Science.gov (United States)

    Haddix, Michelle L; Paul, Eldor A; Cotrufo, M Francesca

    2016-06-01

    The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral-bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual (13) C and (15) N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched (13) C and (15) N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance (13) C-CO2 and (15) N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in (13) C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral-associated organic matter. © 2016 John Wiley & Sons Ltd.

  9. Using traffic light labels to improve food selection in recreation and sport facility eating environments.

    Science.gov (United States)

    Olstad, Dana Lee; Vermeer, Julianne; McCargar, Linda J; Prowse, Rachel J L; Raine, Kim D

    2015-08-01

    Many recreation and sports facilities have unhealthy food environments, however managers are reluctant to offer healthier foods because they perceive patrons will not purchase them. Preliminary evidence indicates that traffic light labeling (TLL) can increase purchase of healthy foods in away-from-home food retail settings. We examined the effectiveness of TLL of menus in promoting healthier food purchases by patrons of a recreation and sport facility concession, and among various sub-groups. TLL of all menu items was implemented for a 1-week period and sales were assessed for 1-week pre- and 1-week post-implementation of TLL (n = 2101 transactions). A subset of consumers completed a survey during the baseline (n = 322) and intervention (n = 313) periods. We assessed change in the proportion of patrons' purchases that were labeled with green, yellow and red lights from baseline to the TLL intervention, and association with demographic characteristics and other survey responses. Change in overall revenues was also assessed. There was an overall increase in sales of green (52.2% to 55.5%; p sales of red (30.4% to 27.2%; p revenues did not differ between the baseline and TLL periods. TLL of menus increased purchase of healthy, and reduced purchase of unhealthy foods in a publicly funded recreation and sport facility, with no loss of revenue. Policymakers should consider extending menu labeling laws to public buildings such as recreation and sports facilities to promote selection of healthier items. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Applying quantitative metabolomics based on chemical isotope labeling LC-MS for detecting potential milk adulterant in human milk.

    Science.gov (United States)

    Mung, Dorothea; Li, Liang

    2018-02-25

    There is an increasing demand for donor human milk to feed infants for various reasons including that a mother may be unable to provide sufficient amounts of milk for their child or the milk is considered unsafe for the baby. Selling and buying human milk via the Internet has gained popularity. However, there is a risk of human milk sold containing other adulterants such as animal or plant milk. Analytical tools for rapid detection of adulterants in human milk are needed. We report a quantitative metabolomics method for detecting potential milk adulterants (soy, almond, cow, goat and infant formula milk) in human milk. It is based on the use of a high-performance chemical isotope labeling (CIL) LC-MS platform to profile the metabolome of an unknown milk sample, followed by multivariate or univariate comparison of the resultant metabolomic profile with that of human milk to determine the differences. Using dansylation LC-MS to profile the amine/phenol submetabolome, we could detect an average of 4129 ± 297 (n = 9) soy metabolites, 3080 ± 470 (n = 9) almond metabolites, 4256 ± 136 (n = 18) cow metabolites, 4318 ± 198 (n = 9) goat metabolites, 4444 ± 563 (n = 9) infant formula metabolites, and 4020 ± 375 (n = 30) human metabolites. This high level of coverage allowed us to readily differentiate the six different types of samples. From the analysis of binary mixtures of human milk containing 5, 10, 25, 50 and 75% other type of milk, we demonstrated that this method could be used to detect the presence of as low as 5% adulterant in human milk. We envisage that this method could be applied to detect contaminant or adulterant in other types of food or drinks. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Process and device for the excitation and selective dissociation by absorption of a laser light and application to isotopic enrichment

    International Nuclear Information System (INIS)

    Rigny, Paul.

    1975-01-01

    The description is given of a process for the excitation and selective dissociation by absorption of the monochromatic light emitted by a high power laser. The laser light at frequency ν 1 is beamed on to an isotopic mixture of gaseous molecules, some of these molecules presenting transitions, between two vibration levels corresponding to a given isotope, separated by an energy interval ΔE 1 =2h ν 1 , and the molecules of a given isotopic species are thus preferentially dissociated into several component parts [fr

  12. Selective labelling of stromal cell-derived factor 1α with carboxyfluorescein to study receptor internalisation.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Baumann, Lars; Beck-Sickinger, Annette G

    2010-10-01

    SDF1α plays an important role in the regeneration of injured tissue after ischemia or stroke by inducing the migration of progenitor cells. In order to study the function of this therapeutically relevant chemokine site-specific protein labelling is of great interest. However, modification of SDF1α is complicated because of its complex tertiary structure. Here, we describe the first site-specific fluorescent modification of SDF1α by EPL. We recombinantly expressed SDF1α (1-49) by intein-mediated protein expression. The C-terminal peptide SDF1α (50-68) was synthesised by SPPS and selectively labelled with carboxyfluorescein at Lys(56). In a cell migration assay, M-[K(56)(CF)]SDF1α showed a clear potency to induce chemotaxis of human T-cell leukaemia cells. Microscopic analysis on HEK293 cells transfected with the CXCR4 revealed specific binding of the fluorescent ligand. Furthermore, receptor-induced internalisation of the ligand could be visualised. These results show that site-specific modification of SDF1α yields in a biologically functional molecule that allows the characterisation of CXCR4 production of cells on a molecular level. © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  13. Temperature-induced evolution of strain and doping in an isotopically labeled two-dimensional graphene-C-70 fullerene peapod

    Czech Academy of Sciences Publication Activity Database

    Verhagen, Timotheus; Valeš, Václav; Kalbáč, Martin; Vejpravová, Jana

    2017-01-01

    Roč. 75, May (2017), s. 140-145 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : two-dimensional peapod * Raman spectroscopy * isotope labelling * topography Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 2.561, year: 2016

  14. Mass spectrometric measurements of norepinephrine synthesis in man from infusion of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine

    International Nuclear Information System (INIS)

    Suzuki, T.; Sakoda, S.; Ueji, M.; Kishimoto, S.

    1985-01-01

    The kinetics of stable isotope-labelled L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS), an immediate precursor of (-)-norepinephrine, was studied to investigate the pharmacologic mechanism of its therapeutic effect on orthostatic hypotension in familial amyloid polyneuropathy (FAP) and on akinesia and freezing in parkinsonism. [ 13 C,D]-L-threo-DOPS was synthesized, and 100 mg of the compound was infused for 2 h into two normal subjects, two FAP patients and two patients with the degenerative diseases of the central nervous system. Labelled and endogenous norepinephrine in urine and plasma was assayed simultaneously by gas chromatography/mass spectrometry. The results indicate that the increase in norepinephrine in biological fluids after administration of L-threo-DOPS is attributable mostly to norepinephrine derived from L-threo-DOPS, not to pre-formed endogenous norepinephrine released by L-threo-DOPS

  15. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-01-01

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  16. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  17. Selective cell-surface labeling of the molecular motor protein prestin

    International Nuclear Information System (INIS)

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Highlights: → Trafficking to the plasma membrane is required for prestin function. → Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. → BAP-prestin can be metabolically labeled with biotin in HEK293 cells. → Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. → The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  18. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics

    DEFF Research Database (Denmark)

    Ong, S.E.; Blagoev, B.; Kratchmarova, I.

    2002-01-01

    Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. H...

  19. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  20. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    Science.gov (United States)

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope abundance variations potentially are large enough to result in future expansion of their atomic weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope-abundance variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio. There are no internationally distributed isotopic reference materials for the elements zinc, selenium, molybdenum, palladium, and tellurium. Preparation of such materials will help to make isotope ratio measurements among

  1. Compensation of matrix effects in gas chromatography-mass spectrometry analysis of pesticides using a combination of matrix matching and multiple isotopically labeled internal standards.

    Science.gov (United States)

    Tsuchiyama, Tomoyuki; Katsuhara, Miki; Nakajima, Masahiro

    2017-11-17

    In the multi-residue analysis of pesticides using GC-MS, the quantitative results are adversely affected by a phenomenon known as the matrix effect. Although the use of matrix-matched standards is considered to be one of the most practical solutions to this problem, complete removal of the matrix effect is difficult in complex food matrices owing to their inconsistency. As a result, residual matrix effects can introduce analytical errors. To compensate for residual matrix effects, we have developed a novel method that employs multiple isotopically labeled internal standards (ILIS). The matrix effects of ILIS and pesticides were evaluated in spiked matrix extracts of various agricultural commodities, and the obtained data were subjected to simple statistical analysis. Based on the similarities between the patterns of variation in the analytical response, a total of 32 isotopically labeled compounds were assigned to 338 pesticides as internal standards. It was found that by utilizing multiple ILIS, residual matrix effects could be effectively compensated. The developed method exhibited superior quantitative performance compared with the common single-internal-standard method. The proposed method is more feasible for regulatory purposes than that using only predetermined correction factors and is considered to be promising for practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Label free selective detection of estriol using graphene oxide-based fluorescence sensor

    Science.gov (United States)

    Kushwaha, H. S.; Sao, Reshma; Vaish, Rahul

    2014-07-01

    Water-soluble and fluorescent Graphene oxide (GO) is biocompatible, easy, and economical to synthesize. Interestingly, GO is also capable of quenching fluorescence. On the basis of its fluorescence and quenching abilities, GO has been reported to serve as an energy acceptor in a fluorescence resonance energy transfer (FRET) sensor. GO-based FRET biosensors have been widely reported for sensing of proteins, nucleic acid, ATP (Adenosine triphosphate), etc. GO complexes with fluorescent dyes and enzymes have been used to sense metal ions. Graphene derivatives have been used for sensing endocrine-disrupting chemicals like bisphenols and chlorophenols with high sensitivity and good reproducibility. On this basis, a novel GO based fluorescent sensor has been successfully designed to detect estriol with remarkable selectivity and sensitivity. Estriol is one of the three estrogens in women and is considered to be medically important. Estriol content of maternal urine or plasma acts as an important screening marker for estimating foetal growth and development. In addition, estriol is also used as diagnostic marker for diseases like breast cancer, osteoporosis, neurodegenerative and cardiovascular diseases, insulin resistance, lupus erythematosus, endometriosis, etc. In this present study, we report for the first time a rapid, sensitive with detection limit of 1.3 nM, selective and highly biocompatible method for label free detection of estriol under physiological conditions using fluorescence assay.

  3. Isotope separation

    International Nuclear Information System (INIS)

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  4. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  5. Quantitation of anacetrapib, stable-isotope labeled-anacetrapib (microdose), and four metabolites in human plasma using liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Chavez-Eng, C M; Lutz, R W; Li, H; Goykhman, D; Bateman, K P; Woolf, E

    2016-02-01

    An ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous determination of (4S,5R)-5-[3,5-bis (trifluoromethyl)phenyl]-3-{[4'-fluoro-5'-isopropyl-2'-methoxy-4-(trifluoromethyl)biphenyl-2-yl] methyl}-4-methyl-1,3-oxazolidin-2-one (anacetrapib, I) and [(13)C5(15)N]-anacetrapib, II in human plasma has been developed to support a clinical study to determine the absolute bioavailability of I. The analytes and the stable-isotope labeled internal standard ([(13)C7(15)N(2)H7]-anacetrapib, III) were extracted from 100μL of human plasma by liquid-liquid extraction using 20/80 isopropyl alcohol/hexane (v/v). The chromatographic separation of the analytes was achieved using Waters BEH Shield RP 18 (50×2.1mm×1.7μm) column and mobile phase gradient of 0.1% formic acid in water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B) at 0.6mL/min flow rate. The MS/MS detection was performed on AB Sciex 5000 or AB 5500 in positive electrospray ionization mode, operated in selected reaction monitoring mode. The assay was validated in the concentration range 1-2000ng/mL for I; and a lower curve range, 0.025-50ng/mL for II. In addition to the absolute bioavailability determination, it was desired to better elucidate the pharmacokinetic behavior of several hydroxylated metabolites of I. Toward this end, two exploratory assays for the hydroxy metabolites of I were qualified in the concentration range 0.5-500ng/mL. All metabolites were separated on a Supelco Ascentis Express Phenyl-Hexyl (50×2.1mm, 2.7μm) column. Metabolite M4 was analyzed in the negative mode with a mobile phase consisting of a gradient mixture of water (A) and acetonitrile (B). The other three metabolites, M1-M3 were analyzed in the positive mode using a mobile phase gradient of water with 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B). The assays were utilized to support a clinical study in which a microdosing approach was used to

  6. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Amiard-Triquet, Claude; Dybowska, Agnieszka; Risso-de Faverney, Christine; Guibbolini, Marielle; Valsami-Jones, Eugénia; Mouneyrac, Catherine

    2012-10-01

    Although it is reported that metal and metal oxide nanoparticles, which are among the most rapidly commercialized materials, can cause toxicity to organisms, their fate in the environment and toxicity to marine organisms are not well understood. In this study, we used a stable isotope labelling approach to trace the fate of nanoparticles (NPs) in sediments and also investigated bio-uptake in two estuarine intra-sedimentary invertebrates Scrobicularia plana and Nereis diversicolor. We selected exposure to 3 mg kg(-1) sediment ZnO NPs since this level is a realistic prediction of the environmental concentration in sediments. 67ZnO NPs (DLS: 21-34 nm, positively charged: 31.3 mV) suspensions were synthesised in diethylene glycol (DEG). We explored the fate of 67ZnO NPs in sediment, 67Zn bioaccumulation and the biochemical (biomarkers of defence and damage) and behavioural (burrowing kinetics and feeding rates) biomarkers in both species to 67ZnO NPs and DEG on its own during a 16 d laboratory exposure. After exposure, 67Zn concentrations in sediment showed higher levels in the upper section (1cm: 2.59 mg kg(-1)) decreasing progressively (2 cm: 1.63 mg kg(-1), 3 cm: 0.90 mg kg(-1), 4 cm: 0.67 mg kg(-1)) to a minimum value at the bottom (5 cm: 0.31 mg kg(-1)). 67Zn bioaccumulation was observed in both organisms exposed to 67ZnO NPs in DEG but no major inter-species differences were found. At the biochemical level, 67ZnO NPs exposure significantly induced increased glutathione-S-transferase activity in worms and catalase activity in clams whereas superoxide dismutase activity and thiobarbituric acid reactive substance levels were not affected in any species. Exposure to DEG on its own leads to a significant increase of metallothionein-like protein levels in clams compared with those exposed to 67ZnO NPs or controls. Burrowing behaviour as well as feeding rate were significantly impaired in both species exposed to 67ZnO NPs. Concerning exposure to DEG on its own

  7. A new high-quality set of singly (H-2) and doubly (H-2 and O-18) stable isotope labeled reference waters for biomedical and other isotope-labeled research

    NARCIS (Netherlands)

    Faghihi, V.; Verstappen-Dumoulin, B. M. A. A.; Jansen, H. G.; van Dijk, G.; Aerts-Bijma, A. T.; Kerstel, E. R. T.; Groening, M.; Meijer, H. A. J.

    2015-01-01

    RATIONALE: Research using water with enriched levels of the rare stable isotopes of hydrogen and/or oxygen requires well-characterized enriched reference waters. The International Atomic Energy Agency (IAEA) did have such reference waters available, but these are now exhausted. New reference waters

  8. Hydrogen atom scrambling in selectively labeled anionic peptides upon collisional activation by MALDI tandem time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Bache, Nicolai; Rand, Kasper Dyrberg; Roepstorff, Peter

    2008-01-01

    have now measured the level of hydrogen scrambling in a deprotonated, selectively labeled peptide using MALDI tandem time-of-flight mass spectrometry. Our results conclusively show that hydrogen scrambling is prevalent in the deprotonated peptide upon collisional activation. The amide hydrogens ((1)H....../(2)H) have migrated extensively in the anionic peptide, thereby erasing the original regioselective deuteration pattern obtained in solution....

  9. "VALIDATION OF 13C-UREA BREATH TEST WITH NON DISPERSIVE ISOTOPE SELECTIVE INFRARED SPECTROSCOPY FOR THE DIAGNOSIS OF HELICOBACTER PYLORI INFECTION: A SURVEY IN IRANIAN POPULATION"

    Directory of Open Access Journals (Sweden)

    "Davood Beiki

    2005-04-01

    Full Text Available The urea breath test (UBT which is carried out with 13C or 14C labeled urea is one of the most important non invasive methods for detection of Helicobacter pylori infection. Application of 13C-UBT is becoming increasingly popular because of its non radioactive nature which makes it suitable for diagnostic purposes in children and women of child bearing ages. While isotope ratio mass spectrometer (IRMS is generally used to detect 13C in expired breath, this instrument is expensive and recently non dispersive isotope selective infrared (NDIR spectroscopy which is a lower cost technique has been employed as a reliable counterpart for IRMS in small clinics. The aim of this study was to assess the validity of NDIR spectroscopy technique in Iranian population in comparison with histological examination, rapid urease test and 14C-urea breath test as gold standard. Seventy six patients with dyspepsia were underwent 13CUBT for diagnosis of Helicobacter pylori infection. Good agreements were found between the 13C-UBT and gold standard methods. The 13C-UBT showed 100% sensitivity, 97.3% specificity, 97.56% positive predictive value, 100% negative predictive value and 98.65% accuracy. On the basis of these results it could be concluded that 13C-UBT performed with NDIR spectroscopy is a reliable, accurate and non invasive diagnostic tool for detection of Helicobacter pylori infection in the Iranian population.

  10. Mechanistic investigation of the gold-catalyzed aerobic oxidation of aldehydes: added insight from Hammett studies and isotopic labelling experiments

    DEFF Research Database (Denmark)

    Fristrup, Peter; Johansen, Louise Bahn; Christensen, Claus Hviid

    2008-01-01

    The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step.......The gold-catalyzed aerobic oxidation of aldehydes proceeds through development of a partial negative charge and has a significant kinetic isotope effect (k(H)/k(D) = 2.8-2.9), which illustrates that activation of the C-H bond takes place in the rate-determining step....

  11. Chemical Composition and Labeling of Substances Marketed as Selective Androgen Receptor Modulators and Sold via the Internet.

    Science.gov (United States)

    Van Wagoner, Ryan M; Eichner, Amy; Bhasin, Shalender; Deuster, Patricia A; Eichner, Daniel

    2017-11-28

    Recent reports have described the increasing use of nonsteroidal selective androgen receptor modulators, which have not been approved by the US Food and Drug Administration (FDA), to enhance appearance and performance. The composition and purity of such products is not known. To determine the chemical identity and the amounts of ingredients in dietary supplements and products marketed and sold through the internet as selective androgen receptor modulators and compare the analyzed contents with product labels. Web-based searches were performed from February 18, 2016, to March 25, 2016, using the Google search engine on the Chrome and Internet Explorer web browsers to identify suppliers selling selective androgen receptor modulators. The products were purchased and the identities of the compounds and their amounts were determined from April to August 2016 using chain-of-custody and World Anti-Doping Association-approved analytical procedures. Analytical findings were compared against the label information. Products marketed and sold as selective androgen receptor modulators. Chemical identities and the amount of ingredients in each product marketed and sold as selective androgen receptor modulators. Among 44 products marketed and sold as selective androgen receptor modulators, only 23 (52%) contained 1 or more selective androgen receptor modulators (Ostarine, LGD-4033, or Andarine). An additional 17 products (39%) contained another unapproved drug, including the growth hormone secretagogue ibutamoren, the peroxisome proliferator-activated receptor-δ agonist GW501516, and the Rev-ErbA agonist SR9009. Of the 44 tested products, no active compound was detected in 4 (9%) and substances not listed on the label were contained in 11 (25%). In only 18 of the 44 products (41%), the amount of active compound in the product matched that listed on the label. The amount of the compounds listed on the label differed substantially from that found by analysis in 26 of 44 products

  12. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  13. Reexamination of the source material of acid igneous rocks, based on the selected Sr isotopic data

    International Nuclear Information System (INIS)

    Kagami, Hiroo; Shuto, Kenji; Gorai, Masao

    1975-01-01

    The relation between the ages and the initial strontium isotopic compositions obtained from acid igneous rocks by the whole-rock isochron method is re-examined, on the basis of the selected data. The points based on the data having high values of standard deviation (on the isochrons) show considerable scattering. This is probably ascribed to admixture of sialic materials, or secondary alteration and other geologic causes. The points based on the data having lower values of standard deviation (sigma value: 0.0001 - 0.0019), on the other hand, are evidently plotted within a narrow region just above the presumed Sr evolutional region of the source material of oceanic tholeiites. It is noteworthy that the former region meets the latter region at an earlier stage of the evolutional history of the earth (about 40 x 10 8 yrs. ago or older). It may be conceivable that the former region is the Sr evolutional region of the source material of acid igneous rocks. Considering from the inclination of the above Sr evolutional region, the source material of most of acid igneous rocks may possibly be a certain basic material, chemically similar to the continental tholeiitic basalts or basaltic andesites. On the other hand, the source material of a few acid igneous rocks with low initial strontium isotopic ratios may be a certain basic material resembling the oceanic tholeiites. Another possibility is that these acid igneous rocks and oceanic tholeiites may have been formed, under different physical conditions, directly from a certain common source material presumably of peridotitic composition. (auth.)

  14. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  15. A voluntary nutrition labeling program in restaurants: Consumer awareness, use of nutrition information, and food selection.

    Science.gov (United States)

    White, Christine M; Lillico, Heather G; Vanderlee, Lana; Hammond, David

    2016-12-01

    Health Check (HC) was a voluntary nutrition labeling program developed by the Heart and Stroke Foundation of Canada as a guide to help consumers choose healthy foods. Items meeting nutrient criteria were identified with a HC symbol. This study examined the impact of the program on differences in consumer awareness and use of nutritional information in restaurants. Exit surveys were conducted with 1126 patrons outside four HC and four comparison restaurants in Ontario, Canada (2013). Surveys assessed participant noticing of nutrition information, influence of nutrition information on menu selection, and nutrient intake. Significantly more patrons at HC restaurants noticed nutrition information than at comparison restaurants (34.2% vs. 28.1%; OR = 1.39; p = 0.019); however, only 5% of HC restaurant patrons recalled seeing the HC symbol. HC restaurant patrons were more likely to say that their order was influenced by nutrition information (10.9% vs. 4.5%; OR = 2.96, p restaurant patrons ordered HC approved items; however, only 1% ordered a HC item and mentioned seeing the symbol in the restaurant in an unprompted recall task, and only 4% ordered a HC item and reported seeing the symbol on the item when asked directly. The HC program was associated with greater levels of noticing and influence of nutrition information, and more favourable nutrient intake; however, awareness of the HC program was very low and differences most likely reflect the type of restaurants that "self-selected" into the program.

  16. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    International Nuclear Information System (INIS)

    Han, Jun; Lin, Karen; Sequeira, Carita; Borchers, Christoph H.

    2015-01-01

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • 13 C 6 analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C 2 –C 6 SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C 18 column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from 13 C 6 -3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a clinically diagnosed type 2

  17. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Lin, Karen; Sequeira, Carita [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Borchers, Christoph H., E-mail: christoph@proteincentre.com [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada)

    2015-01-07

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • {sup 13}C{sub 6} analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C{sub 2}–C{sub 6} SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C{sub 18} column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from {sup 13}C{sub 6}-3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a

  18. Rapid Identification of Stacking Orientation in Isotopically Labeled Chemical-Vapor Grown Bilayer Graphene by Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Fang, W.; Hsu, A. L.; Caudillo, R.; Song, Y.; Birdwell, A. G.; Zakar, E.; Kalbáč, Martin; Dubey, M.; Palacios, T.; Dresselhaus, M. S.; Araujo, P. T.; Kong, J.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 1541-1548 ISSN 1530-6984 R&D Projects: GA ČR(CZ) GAP208/12/1062; GA MŠk LH13022 Institutional support: RVO:61388955 Keywords : AB-stacked bilayer graphene * carbon isotope * fluorination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.940, year: 2013

  19. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  20. Comparative analysis of monoclonal antibody N-glycosylation using stable isotope labelling and UPLC-fluorescence-MS.

    Science.gov (United States)

    Millán Martín, Silvia; Delporte, Cédric; Farrell, Amy; Navas Iglesias, Natalia; McLoughlin, Niaobh; Bones, Jonathan

    2015-03-07

    A twoplex method using (12)C6 and (13)C6 stable isotope analogues (Δmass = 6 Da) of 2-aminobenzoic acid (2-AA) is described for quantitative analysis of N-glycans present on monoclonal antibodies and other glycoproteins using ultra performance liquid chromatography with sequential fluorescence and accurate mass tandem quadrupole time of flight (QToF) mass spectrometric detection.

  1. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  2. Qualitative metabolome analysis of human cerebrospinal fluid by 13C-/12C-isotope dansylation labeling combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by (13)C-dansyl and (12)C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner. © American Society for Mass Spectrometry, 2011

  3. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  4. Direct infusion electrospray ionization–ion mobility–mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Jiapeng, E-mail: jpleng@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuanqi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Wang, Haoyang [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China); Cui, Jianlan; Liu, Qinghao [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang, Zhixu; Zhang, Manyu [Agilent Technologies China Co., Ltd, Shanghai 200080 (China); Guo, Yinlong, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China)

    2015-08-05

    A rapid method for fatty acids (FAs) comparative profiling based on carboxyl-specific stable isotope labeling (SIL) and direct infusion electrospray ionization–ion mobility–mass spectrometry (ESI–IM–MS) is established. The design of the method takes advantage of the three-dimensional characteristics of IM–MS including drift time, m/z and ion intensity, for comparison of d0-/d6-2,4-dimethoxy-6-piperazin-1-yl pyrimidine (DMPP)-labeled FAs. In particular, without chromatographic separation, the method allowed direct FAs profiling in complex samples due to the advantageous priority of DMPP in signal enhancement as well as the extra resolution that IM–MS offered. Additionally, the d0-/d6-DMPP-labeled FAs showed expected features, including very similar drift times, 6 Da mass deviations, specific reporter ions, similar MS responses, and adherence to the drift time rule regarding the influence of carbon chain length and unsaturation on relative drift times. Therefore, the introduction of isotope analogs minimized the matrix effect and variations in quantification and ensured accurate identification of non-targeted FAs by those typical features. Peak intensity ratios between d0-/d6-DMPP-labeled ions were subsequently used in relative quantification for the detected FAs. The established strategy has been applied successfully in the rapid profiling of trace free FAs between normal and cancerous human thyroid tissues. Sixteen free FAs were found with the increased level with a statistically significant difference (p < 0.05) compared to the normal tissue samples. The integrated SIL technique and ESI–IM–MS are expected to serve as an alternative tool for high-throughput analysis of FAs in complex samples. - Highlights: • A novel method based on IM–MS and SIL was developed for FAs comparative profiling. • Without LC separation, the method allowed direct infusion profiling of FAs in complex samples. • Both of the efficiency and accuracy for FAs analyses

  5. Carbon isotope discrimination and indirect selection for seed yield in lentil

    International Nuclear Information System (INIS)

    Matus, A.; Slinkard, A.E.; Van Kessel, C.

    1995-01-01

    Carbon isotope discrimination (CID) has been proposed as a secondary trait to indirectly select for improved seed yield and water-use efficiency. To determine the effectiveness of CID to indirectly select for seed yield, 10 diverse lentil (Lens culinaris Medikus) genotypes were grown at four locations in Saskatchewan in 1992 and 1993. Samples were collected for CID determination from leaves at flowering (CIDLF), leaves at maturity (CIDML) and seed at maturity (CIDMS). Variability for CID was present, but no crossover G x E interactions were observed. A significant crossover genotype by sampling date interaction for CID resulted from a change in ranking of genotypes for CIDLF and CIDML. Seed yield was positively correlated with CIDLF and CIDML. The phenotypic correlation between seed yield and CIDLF was 0.82** (df = 8). However, this highly significant relationship was an artifact resulting from the fact that samples for CIDLF were collected for all genotypes on the same day, although PI 244026, an early maturing genotype, flowered about 15 d earlier than the other lentil lines. When PI244026 was removed from the analysis, variability in CID was greatly reduced and the correlation between CIDLF and seed yield approached zero (r = 0.22, df = 7). The correlation between seed yield and CIDML remained positive and significant, but was inconsistent across locations and years. The broad sense heritability for CIDML (0.73 +/- 0.16) was lower than the broad sense heritability for seed yield (0.98 +/- 0.029). These results suggest that under the conditions tested CID should not be used to indirectly select for seed yield in lentil

  6. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    International Nuclear Information System (INIS)

    Giménez, Estela; Balmaña, Meritxell; Figueras, Joan; Fort, Esther; Bolós, Carme de; Sanz-Nebot, Victòria; Peracaula, Rosa; Rizzi, Andreas

    2015-01-01

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [ 12 C]- and [ 13 C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α 1 -acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a

  7. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Giménez, Estela, E-mail: estelagimenez@ub.edu [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Balmaña, Meritxell [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Figueras, Joan [Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona (Spain); Fort, Esther [Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona (Spain); Bolós, Carme de [Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona (Spain); Sanz-Nebot, Victòria [Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Peracaula, Rosa [Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona (Spain); Rizzi, Andreas [Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna (Austria)

    2015-03-25

    Highlights: • The method enables relative quantitation of hAGP glycans from pathological samples • Pancreatic cancer samples clearly showed an increase of hAGP fucosylated glycans. • Fucosylated glycans could be potential biomarkers for diagnosing pancreatic cancer. • The established method could be extremely useful to find novel glycoprotein biomarkers - Abstract: In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [{sup 12}C]- and [{sup 13}C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α{sub 1}-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in h

  8. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography

    International Nuclear Information System (INIS)

    Rojas, Santiago; Gispert, Juan Domingo; Menchón, Cristina; Baldoví, Herme G.; Buaki-Sogo, Mireia; Rocha, Milagros; Abad, Sergio; Victor, Victor Manuel; García, Hermenegildo; Herance, José Raúl

    2015-01-01

    Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30–130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[ 18 F]fluorobenzoate and thus anchor the 18 F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs

  9. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells

    DEFF Research Database (Denmark)

    Prokhorova, Tatyana A; Rigbolt, Kristoffer T G; Johansen, Pia T

    2009-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research...... embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers......: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase zeta (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell...

  10. Novel methodology for labelling mesoporous silica nanoparticles using the {sup 18}F isotope and their in vivo biodistribution by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Santiago; Gispert, Juan Domingo; Menchón, Cristina [PRBB, Institut d’Alta Tecnologia PRBB Fundació Privada (IAT) (Spain); Baldoví, Herme G.; Buaki-Sogo, Mireia [Polytechnic University of Valencia, University Institute of Chemical Technology (Spain); Rocha, Milagros [Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO) (Spain); Abad, Sergio [PRBB, Institut d’Alta Tecnologia PRBB Fundació Privada (IAT) (Spain); Victor, Victor Manuel [Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO) (Spain); García, Hermenegildo, E-mail: hgarcia@qim.upv.es [Polytechnic University of Valencia, University Institute of Chemical Technology (Spain); Herance, José Raúl, E-mail: jrherance@yahoo.es [PRBB, Institut d’Alta Tecnologia PRBB Fundació Privada (IAT) (Spain)

    2015-03-15

    Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30–130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[{sup 18}F]fluorobenzoate and thus anchor the {sup 18}F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs.

  11. Consensus structures of the Mo(v) sites of sulfite-oxidizing enzymes derived from variable frequency pulsed EPR spectroscopy, isotopic labelling and DFT calculations.

    Science.gov (United States)

    Enemark, John H

    2017-10-10

    Sulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P i ) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here. Errors in some of the previously proposed structures are corrected.

  12. Preparation of soluble isotopically labeled NKp30, a human natural cytotoxicity receptor, for structural studies using NMR

    Czech Academy of Sciences Publication Activity Database

    Grave, L.; Tůmová, L.; Mrázek, Hynek; Kavan, Daniel; Chmelík, Josef; Vaněk, Ondřej; Novák, Petr; Bezouška, K.

    2012-01-01

    Roč. 86, č. 2 (2012), s. 142-150 ISSN 1046-5928 R&D Projects: GA ČR GA303/09/0477; GA ČR GD305/09/H008 Institutional support: RVO:61388971 Keywords : NKp30 * NK cell receptor * Uniformly labeled proteins Subject RIV: CE - Biochemistry Impact factor: 1.429, year: 2012

  13. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Teppei [Goethe University Frankfurt am Main, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (Germany); Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune [Tokyo Metropolitan University, Graduate School of Science (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp; Guentert, Peter [Goethe University Frankfurt am Main, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (Germany)], E-mail: guentert@em.uni-frankfurt.de

    2009-08-15

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly {sup 13}C/{sup 15}N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional 'through-bond' spectrum (and 2D HSQC spectra) in addition to the {sup 13}C-edited and {sup 15}N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  14. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system

    International Nuclear Information System (INIS)

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Guentert, Peter

    2009-01-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13 C/ 15 N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional 'through-bond' spectrum (and 2D HSQC spectra) in addition to the 13 C-edited and 15 N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods

  15. Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system.

    Science.gov (United States)

    Ikeya, Teppei; Takeda, Mitsuhiro; Yoshida, Hitoshi; Terauchi, Tsutomu; Jee, Jun-Goo; Kainosho, Masatsune; Güntert, Peter

    2009-08-01

    Stereo-array isotope labeling (SAIL) has been combined with the fully automated NMR structure determination algorithm FLYA to determine the three-dimensional structure of the protein ubiquitin from different sets of input NMR spectra. SAIL provides a complete stereo- and regio-specific pattern of stable isotopes that results in sharper resonance lines and reduced signal overlap, without information loss. Here we show that as a result of the superior quality of the SAIL NMR spectra, reliable, fully automated analyses of the NMR spectra and structure calculations are possible using fewer input spectra than with conventional uniformly 13C/15N-labeled proteins. FLYA calculations with SAIL ubiquitin, using a single three-dimensional "through-bond" spectrum (and 2D HSQC spectra) in addition to the 13C-edited and 15N-edited NOESY spectra for conformational restraints, yielded structures with an accuracy of 0.83-1.15 A for the backbone RMSD to the conventionally determined solution structure of SAIL ubiquitin. NMR structures can thus be determined almost exclusively from the NOESY spectra that yield the conformational restraints, without the need to record many spectra only for determining intermediate, auxiliary data of the chemical shift assignments. The FLYA calculations for this report resulted in 252 ubiquitin structure bundles, obtained with different input data but identical structure calculation and refinement methods. These structures cover the entire range from highly accurate structures to seriously, but not trivially, wrong structures, and thus constitute a valuable database for the substantiation of structure validation methods.

  16. Deciphering Systemic Wound Responses of the Pumpkin Extrafascicular Phloem by Metabolomics and Stable Isotope-Coded Protein Labeling1[C][W

    Science.gov (United States)

    Gaupels, Frank; Sarioglu, Hakan; Beckmann, Manfred; Hause, Bettina; Spannagl, Manuel; Draper, John; Lindermayr, Christian; Durner, Jörg

    2012-01-01

    In cucurbits, phloem latex exudes from cut sieve tubes of the extrafascicular phloem (EFP), serving in defense against herbivores. We analyzed inducible defense mechanisms in the EFP of pumpkin (Cucurbita maxima) after leaf damage. As an early systemic response, wounding elicited transient accumulation of jasmonates and a decrease in exudation probably due to partial sieve tube occlusion by callose. The energy status of the EFP was enhanced as indicated by increased levels of ATP, phosphate, and intermediates of the citric acid cycle. Gas chromatography coupled to mass spectrometry also revealed that sucrose transport, gluconeogenesis/glycolysis, and amino acid metabolism were up-regulated after wounding. Combining ProteoMiner technology for the enrichment of low-abundance proteins with stable isotope-coded protein labeling, we identified 51 wound-regulated phloem proteins. Two Sucrose-Nonfermenting1-related protein kinases and a 32-kD 14-3-3 protein are candidate central regulators of stress metabolism in the EFP. Other proteins, such as the Silverleaf Whitefly-Induced Protein1, Mitogen Activated Protein Kinase6, and Heat Shock Protein81, have known defensive functions. Isotope-coded protein labeling and western-blot analyses indicated that Cyclophilin18 is a reliable marker for stress responses of the EFP. As a hint toward the induction of redox signaling, we have observed delayed oxidation-triggered polymerization of the major Phloem Protein1 (PP1) and PP2, which correlated with a decline in carbonylation of PP2. In sum, wounding triggered transient sieve tube occlusion, enhanced energy metabolism, and accumulation of defense-related proteins in the pumpkin EFP. The systemic wound response was mediated by jasmonate and redox signaling. PMID:23085839

  17. A voluntary nutrition labeling program in restaurants: Consumer awareness, use of nutrition information, and food selection

    Directory of Open Access Journals (Sweden)

    Christine M. White

    2016-12-01

    Full Text Available Health Check (HC was a voluntary nutrition labeling program developed by the Heart and Stroke Foundation of Canada as a guide to help consumers choose healthy foods. Items meeting nutrient criteria were identified with a HC symbol. This study examined the impact of the program on differences in consumer awareness and use of nutritional information in restaurants. Exit surveys were conducted with 1126 patrons outside four HC and four comparison restaurants in Ontario, Canada (2013. Surveys assessed participant noticing of nutrition information, influence of nutrition information on menu selection, and nutrient intake. Significantly more patrons at HC restaurants noticed nutrition information than at comparison restaurants (34.2% vs. 28.1%; OR = 1.39; p = 0.019; however, only 5% of HC restaurant patrons recalled seeing the HC symbol. HC restaurant patrons were more likely to say that their order was influenced by nutrition information (10.9% vs. 4.5%; OR = 2.96, p < 0.001; and consumed less saturated fat and carbohydrates, and more protein and fibre (p < 0.05. Approximately 15% of HC restaurant patrons ordered HC approved items; however, only 1% ordered a HC item and mentioned seeing the symbol in the restaurant in an unprompted recall task, and only 4% ordered a HC item and reported seeing the symbol on the item when asked directly. The HC program was associated with greater levels of noticing and influence of nutrition information, and more favourable nutrient intake; however, awareness of the HC program was very low and differences most likely reflect the type of restaurants that “self-selected” into the program.

  18. Carbon isotope discrimination during litter decomposition can be explained by selective use of substrate with differing δ13C

    Science.gov (United States)

    Ngao, J.; Cotrufo, M. F.

    2011-01-01

    Temporal dynamics of C isotopic composition (δ13C) of CO2 and leaf litter was monitored during a litter decomposition experiment using Arbutus unedo L., as a slow decomposing model substrate. This allowed us (1) to quantify isotopic discrimination variation during litter decomposition, and (2) to test whether selective substrate use or kinetic fractionation could explain the observed isotopic discrimination. Total cumulative CO2-C loss (CL) comprised 27% of initial litter C. Temporal evolution of CL was simulated following a three-C-pool model. Isotopic composition of respired CO2 (δRL) was higher with respect to that of the bulk litter. The isotopic discrimination Δ(L/R) varied from -2‰ to 0‰ and it is mostly attributed to the variations of δRL. A three-pool model, with the three pools differing in their δ13C, described well the dynamic of Δ(L/R), in the intermediate stage of the process. This suggests that the observed isotopic discrimination between respired CO2 and bulk litter is in good agreement with the hypothesis of successive consumption of C compounds differing in δ13C during decomposition. However, to explain also 13C-CO2 dynamics at the beginning and end of the incubation the model had to be modified, with discrimination factors ranging from -1‰ to -4.6‰ attributed to the labile and the recalcitrance pool, respectively. We propose that this discrimination is also the result of further selective use of specific substrates within the two pools, likely being both the labile and recalcitrant pool of composite nature. In fact, the 2‰ 13C enrichment of the α-cellulose observed by the end of the experiment, and potentially attributable to kinetic fractionation, could not explain the measured Δ(L/R) dynamics.

  19. Autoradiography and density gradient separation of technetium-99m-Exametazime (HMPAO) labelled leucocytes reveals selectivity for eosinophils

    Energy Technology Data Exchange (ETDEWEB)

    Puncher, M.R.B. [Biological Lab., Univ. of Kent, Canterbury (United Kingdom); Blower, P.J. [Nuclear Medicine Dept., Kent and Canterbury Hospital (United Kingdom)

    1994-11-01

    Technetium-99m-Exametazime (HMPAO) is widely used for radiolabelling leucocytes for localization of infection. The subcellular distribution of radionuclide in the labelled cells and the distribution of radioactivity among the leucocyte population are incompletely understood. Frozen section autoradiography was used to determine quantitatively the distribution of {sup 99m}Tc in leucocytes labelled with {sup 99m}Tc-Exametazime. Sections of rapidly frozen suspensions of labelled leucocytes in plasma were autoradiographed on Ilford K2 emulsion and stained with haematoxylin and eosin. Neutrophils, eosinophils and mononuclear cells were separated by Percoll density gradient centrifugation. Cell nuclei were isolated by a rapid cell-breakage and fractionation method. In a typical experiment mean grain densities [grains/100 {mu}m{sup 2} (ESD)] over cells were: eosinophils 31.2 (18.4), neutrophils 3.5 (3.5), mononuclear cells 4.2 (5.1). Mean grain numbers per cell (ESD) were: eosinophils 13 (6.8), neutrophils 1.3 (1.3), mononuclear cells 1.1 (1.3). These findings were confirmed by separation of labelled leucocytes on discontinuous density gradients. In four separation experiments, the mean activity-per-cell ratio for eosinophils to neutrophils was 10.1 (4.8):1, and for eosinophils to mononuclear cells, 14.1 (6.7):1. The subcellular distribution of the label was investigated using image analysis of autoradiographs and cell fractionation. This revealed no selectivity for nuclear or extranuclear compartments. It may be concluded that {sup 99m}Tc-Exametazime has strong selectivity for eosinophils over other leucocytes but no selectivity for nuclear/cytoplasmic compartments. (orig.)

  20. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  1. Palmitic acid-labeled lipids selectively incorporated into platelet cytoskeleton during aggregation

    International Nuclear Information System (INIS)

    Packham, M.A.; Guccione, M.A.; Bryant, N.L.; Livne, A.

    1990-01-01

    Previous experiments showed that during the early stages (20-30 seconds) of aggregation induced by adenosine diphosphate (ADP, 2 microM) or thrombin (0.1 U/mL) of rabbit or human platelets prelabeled with [3H]palmitic acid, labeled lipid became associated with the cytoskeleton isolated after lysis with 1% Triton X-100, 5 mM EGTA [ethylene glycol-bis-(beta-aminoethyl ether)]-N,N,N',N'-tetra-acetic acid. The association appeared to be related to the number of sites of contact and was independent of the release of granule contents. We have now investigated the nature of the labeled lipids by thin-layer and column chromatography and found differences between the distribution of the label in intact platelets (both stimulated and unstimulated) and the isolated cytoskeletons. In both species, and with either ADP or thrombin as aggregating agent, 70-85% of the label in both intact platelets and in the cytoskeletons was in phospholipids. The distribution of label among the phospholipids in the cytoskeletons was similar to that in intact platelets except that the percentage of label in phosphatidylcholine was significantly higher in the cytoskeletons of human platelets than in the intact platelets, and the percentage of label in phosphatidylserine/phosphatidylinositol was significantly lower in the cytoskeletons of rabbit platelets and thrombin-aggregated human platelets than in intact platelets. The cytoskeletons contained a lower percentage of label in triacylglycerol, diacylglycerol, and cholesterol ester than the intact platelets. Contrary to a report in the literature, we found no evidence for the incorporation of diacylglycerol and palmitic acid into the cytoskeleton

  2. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Leng, Jiapeng; Zhu, Dong; Wu, Duojiao; Zhu, Tongyu; Zhao, Ningwei; Guo, Yinlong

    2012-11-15

    Peptidomics analysis of human serum is challenging due to the low abundance of serum peptides and interference from the complex matrix. This study analyzed the differentially expressed (DE) low molecular weight peptides in human serum integrating a DMPITC-based N-terminal isotope labeling technique with nano-liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry (nano-LC/MALDI-MS). The workflow introduced a [d(6)]-4,6-dimethoxypyrimidine-2-isothiocyanate (DMPITC)-labeled mixture of aliquots from test samples as the internal standard. The spiked [d(0)]-DMPITC-labeled samples were separated by nano-LC then spotted on the MALDI target. Both quantitative and qualitative studies for serum peptides were achieved based on the isotope-labeled peaks. The DMPITC labeling technique combined with nano-LC/MALDI-MS not only minimized the errors in peptide quantitation, but also allowed convenient recognition of the labeled peptides due to the 6 Da mass difference. The data showed that the entire research procedure as well as the subsequent data analysis method were effective, reproducible, and sensitive for the analysis of DE serum peptides. This study successfully established a research model for DE serum peptides using DMPITC-based N-terminal isotope labeling and nano-LC/MALDI-MS. Application of the DMPITC-based N-terminal labeling technique is expected to provide a promising tool for the investigation of peptides in vivo, especially for the analysis of DE peptides under different biological conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    International Nuclear Information System (INIS)

    Varlet, V.; Smith, F.; Froidmont, S. de; Dominguez, A.; Rinaldi, A.; Augsburger, M.; Mangin, P.; Grabherr, S.

    2013-01-01

    Graphical abstract: -- Highlights: •We developed a method for CO 2 analysis in cardiac samples and quantification by 13 CO 2 . •This method was fully validated by accuracy profile. •We have applied this method to perform CO 2 precise quantification for forensic applications. •Context of the death could be documented following CO 2 concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO 2 ) in gaseous samples, based on a precise and accurate quantification by 13 CO 2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO 2 . The main drawback of the GC methods discussed in the literature for CO 2 measurement is the lack of a specific internal standard necessary to perform quantification. CO 2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ( 13 CO 2 ) on the basis of the stoichiometric formation of CO 2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH 13 CO 3 ). This method allows a precise measurement of CO 2 concentration and was validated on various human postmortem gas samples in order to study its efficiency

  5. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  6. Radio-isotope scanning using labelled bleomycin in positive and differential diagnosis of primary and secondary malignant pulmonary lesions

    International Nuclear Information System (INIS)

    Robert, J.; Bertrand, A.; Nouel, J.P.; Witz, H.

    1975-01-01

    A lung scan using bleomycin labelled with cobalt 57 was carried out in 308 patients representing 191 primary malignant tumours, 48 pulmonary metastases and 69 benign lesions. The primary and secondary malignant lesions always gave rise to a hyperactive focus except in 8 cases of primary lung tumour. The negative examination may be explained, either by the small size of the lesion or by radiotherapy in progress. Among the benign lesions, only advanced tuberculosis and very inflammatory lung diseases frequently took up labelled bleomycin (15 hyperactive foci out of 69 benign lesions). Quantitative measurements, i.e. ratio of the lesional activity/activity of healthy lung tissue, were carried out in all patients. The malignant lesions were usually more active than the benign lesions. There was no definite correlation between the uptake of labelled bleomycin and the histological nature of the lesion. However, undifferentiated and anaplastic carcinomas were often more active. One should emphasize that these results show that a hyperactive focus has a 94% chance of being a carcinoma. The absence of bleomycin uptake means that there is a 92% chance of a benign lesion [fr

  7. Quantitative Isotope-Dilution High-Resolution-Mass-Spectrometry Analysis of Multiple Intracellular Metabolites in Clostridium autoethanogenum with Uniformly 13C-Labeled Standards Derived from Spirulina.

    Science.gov (United States)

    Schatschneider, Sarah; Abdelrazig, Salah; Safo, Laudina; Henstra, Anne M; Millat, Thomas; Kim, Dong-Hyun; Winzer, Klaus; Minton, Nigel P; Barrett, David A

    2018-04-03

    We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with 13 C, as a readily accessible source of multiple 13 C-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)- 13 C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 μM with excellent linearity for all of the calibration curves ( R 2 ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U- 13 C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.

  8. Development of an isotope labeling ultra-high performance liquid chromatography mass spectrometric method for quantification of acylglycines in human urine

    Energy Technology Data Exchange (ETDEWEB)

    Stanislaus, Avalyn; Guo, Kevin [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Li Liang, E-mail: Liang.Li@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)

    2012-10-31

    Graphical abstract: - Abstract: Acylglycines play a crucial regulatory and detoxification role in the accumulation of the corresponding acyl CoA esters and are an important class of metabolites in the diagnoses of inborn errors of metabolism. Sensitive quantification of a large number of acylglycines not only improves diagnosis but also enables the discovery of potential new biomarkers of diseases. We report an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS) method for quantifying acylglycines in human urine with high sensitivity. This method is based on the use of a newly developed isotope labeling reagent, p-dimethylaminophenacyl (DmPA) bromide, to label acylglycines to improve detection sensitivity. Eighteen acylglycines, namely acetylglycine, propionylglycine, isobutyrylglycine, butyrylglycine, 4-hydroxyphenylacetylglycine, 2-furoylglycine, tiglylglycine, 2-methybutyrylglycine, 3-methylcrotonylglycine, isovalerylglycine, valerylglycine, hexanoylglycine, phenylacetylglycine, phenylpropionylglycine, glutarylglycine, heptanoylglycine, octanoylglycine and suberylglycine, were measured. This method uses calibration standards prepared in surrogate matrix (un-derivatized urine) and stable-isotope labeled analytes as the internal standards. The analysis was carried out in the positive ion detection mode using multiple reaction monitoring (MRM) survey scans. The calibration curves were validated over the range of 1.0-500 nM. The method achieved a lower limit of quantitation (LLOQ) of 1-5 nM for all analytes, as measured by the standard derivations associated with calibration curves and confirmed in surrogate matrix; the signal-to-noise ratio at LLOQ ranged from 12.50 to 156.70. Both accuracy (% RE or relative error) and precision (% CV) were <15%. Matrix effects were minimized using the surrogate matrix. All eighteen analytes were stable in urine for at least 5 h at room temperature, autosampler (4 Degree-Sign C) for 24 h, 7 weeks at -20

  9. Potential effect of physical activity based menu labels on the calorie content of selected fast food meals.

    Science.gov (United States)

    Dowray, Sunaina; Swartz, Jonas J; Braxton, Danielle; Viera, Anthony J

    2013-03-01

    In this study we examined the effect of physical activity based labels on the calorie content of meals selected from a sample fast food menu. Using a web-based survey, participants were randomly assigned to one of four menus which differed only in their labeling schemes (n=802): (1) a menu with no nutritional information, (2) a menu with calorie information, (3) a menu with calorie information and minutes to walk to burn those calories, or (4) a menu with calorie information and miles to walk to burn those calories. There was a significant difference in the mean number of calories ordered based on menu type (p=0.02), with an average of 1020 calories ordered from a menu with no nutritional information, 927 calories ordered from a menu with only calorie information, 916 calories ordered from a menu with both calorie information and minutes to walk to burn those calories, and 826 calories ordered from the menu with calorie information and the number of miles to walk to burn those calories. The menu with calories and the number of miles to walk to burn those calories appeared the most effective in influencing the selection of lower calorie meals (p=0.0007) when compared to the menu with no nutritional information provided. The majority of participants (82%) reported a preference for physical activity based menu labels over labels with calorie information alone and no nutritional information. Whether these labels are effective in real-life scenarios remains to be tested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Synthesis of /sup 14/C- and /sup 3/H-labeled fluoxetine, a selective serotonin uptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, D.W.; Krushinski, J.H.; Wong, D.T.; Kau, D.

    1987-11-01

    Fluoxetine (N-methyl-..gamma..-(4-(trifluoromethyl)phenoxy) benzenepropanamine) is a potent, highly selective serotonin uptake inhibitor that is useful in treating a variety of major psychiatric derangements. We have synthesized this compound in /sup 14/C- and /sup 3/H-labeled forms. The tritium label was introduced in the final step by catalytic dehalogenation of the brominated fluoxetine precursor. Reaction conditions could be controlled such that catalytic hydrogenolysis of the labile C-O benzylic bond was minimized. Following HPLC purification, (/sup 3/H)-fluoxetine was obtained in a state of high radiochemical purity (98%) and specific activity (20.4 Ci/mmol). The /sup 14/C-label was introduced in the final step via a nucleophilic aromatic substitution reaction between the sodium salt of ..cap alpha..-(2-(methylamino)ethyl)benzenemethanol and uniformly ring-labeled p-chlorobenzotrifluoride. Following purification by flash chromatography, (/sup 14/C)-fluoxetine was obtained in 98.3% radiochemical purity with a specific activity of 5.52 mCi/mmol.

  11. Facile syntheses of isotope-labeled chiral octahydroindole-2-carboxylic acid and its N-methyl analog

    International Nuclear Information System (INIS)

    Yinsheng Zhang

    2012-01-01

    We have synthesized deuterium and carbon-14 labeled enantiomerically pure octahydroindole-2-carboxylic acid (PD0140417), N-methyl octahydroindole-2-carboxylic acid (PD0348183) and their racemic analogs (PD0108405 and PD0338055). [ring-U- 14 C]PD0140417 was prepared from [ring-U- 14 C]benzoic acid in a seven-step synthesis in 6.2% overall radiochemical yield. [ 14 C]PD0348183 was prepared from [ 14 C]BaCO 3 in a five-step synthesis in 16% radiochemical yield. Additionally, [D]PD0108405 and [D]PD0338055 were synthesized by direct platinum-catalyzed hydrogenation with deuterium gas. (author)

  12. Radio- and fluorescence-labelling of thapsigargin, a selective inhibitor of microsomal calcium-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A.; Lauridsen, A.; Christensen, S.B. (Copenhagen Univ. (Denmark). Royal Danish School of Pharmacy)

    1992-03-01

    Debutanoylthapsigargin (2) labelled in the skeleton was prepared by stereoselective reduction of the ketone obtained by oxidation of debutanoylthapsigargin. Butanoylation of 2 yielded thapsigargin. The use of sodium boro({sup 3}H)hydride as a reducing agent afforded labelled debutanoyl thapsigargin with a specific activity of 22 Ci/mmol. A fluorescent analogue of thapsigargin (4a) was prepared by allowing 2 to react with N-dansyl-{beta}-alanine. Acetylation of 4a afforded a trisacetate the missing bioactivity of which allows it to be used as a negative control. (Author).

  13. Radio- and fluorescence-labelling of thapsigargin, a selective inhibitor of microsomal calcium-ATPase

    International Nuclear Information System (INIS)

    Andersen, A.; Lauridsen, A.; Christensen, S.B.

    1992-01-01

    Debutanoylthapsigargin (2) labelled in the skeleton was prepared by stereoselective reduction of the ketone obtained by oxidation of debutanoylthapsigargin. Butanoylation of 2 yielded thapsigargin. The use of sodium boro[ 3 H]hydride as a reducing agent afforded labelled debutanoyl thapsigargin with a specific activity of 22 Ci/mmol. A fluorescent analogue of thapsigargin (4a) was prepared by allowing 2 to react with N-dansyl-β-alanine. Acetylation of 4a afforded a trisacetate the missing bioactivity of which allows it to be used as a negative control. (Author)

  14. The use of environmental isotopes on groundwater hydrology in the selected areas in Thailand

    International Nuclear Information System (INIS)

    Buapeng, S.

    1990-11-01

    A detailed environmental isotope investigation (using 0-18, H-2, H-3, C-14 and C-13 isotopes) has been carried out in a multi-layer aquifer system of the Chao-Phraya basin in Thailand. The main emphasis of the applied field research has been placed on the delineation of genesis of water and on studying the regional replenishment and flow characteristics of the groundwater in the lower Chao-Phraya basin (Bangkok Metropolitan Area). The results of isotope data gathered have been evaluated along with hydrochemical and basic hydrogeological data, to provide quantitative information on the replenishment characteristics of the groundwater and on the cause and processes involved in the increase of salinity being observed in the groundwater system of the Bangkok area. The report provides all the isotopic results and other relevant data together with interpretation and evaluation of the results. Refs, figs and tabs

  15. Determination of carbon isotope ratios in plant starch via selective enzymatic hydrolysis

    International Nuclear Information System (INIS)

    Schimmelmann, A.; DeNiro, M.J.

    1983-01-01

    A method for the determination of the carbon isotope ratios in bipolymers hydrolyzed by enzymatic action consists of separating the monomer by passage through a dialysis membrane and then combusting the monomer prior to isotopic analysis. The method is described for application to the analysis of starch, but it should find application for polymers than can be degraded quantitatively to monomers and/or oligomers using specific hydrolytic enzymes

  16. Suitability of selected free-gas and dissolved-gas sampling containers for carbon isotopic analysis.

    Science.gov (United States)

    Eby, P; Gibson, J J; Yi, Y

    2015-07-15

    Storage trials were conducted for 2 to 3 months using a hydrocarbon and carbon dioxide gas mixture with known carbon isotopic composition to simulate typical hold times for gas samples prior to isotopic analysis. A range of containers (both pierced and unpierced) was periodically sampled to test for δ(13)C isotopic fractionation. Seventeen containers were tested for free-gas storage (20°C, 1 atm pressure) and 7 containers were tested for dissolved-gas storage, the latter prepared by bubbling free gas through tap water until saturated (20°C, 1 atm) and then preserved to avoid biological activity by acidifying to pH 2 with phosphoric acid and stored in the dark at 5°C. Samples were extracted using valves or by piercing septa, and then introduced into an isotope ratio mass spectrometer for compound-specific δ(13)C measurements. For free gas, stainless steel canisters and crimp-top glass serum bottles with butyl septa were most effective at preventing isotopic fractionation (pierced and unpierced), whereas silicone and PTFE-butyl septa allowed significant isotopic fractionation. FlexFoil and Tedlar bags were found to be effective only for storage of up to 1 month. For dissolved gas, crimp-top glass serum bottles with butyl septa were again effective, whereas silicone and PTFE-butyl were not. FlexFoil bags were reliable for up to 2 months. Our results suggest a range of preferred containers as well as several that did not perform very well for isotopic analysis. Overall, the results help establish better QA/QC procedures to avoid isotopic fractionation when storing environmental gas samples. Recommended containers for air transportation include steel canisters and glass serum bottles with butyl septa (pierced and unpierced). Copyright © 2015 John Wiley & Sons, Ltd.

  17. The use of stable isotope compositions of selected elements in food origin control

    International Nuclear Information System (INIS)

    Wierzchnicki, R.

    2002-01-01

    Stable isotope ratios have been used widely for authentication of foodstuffs especially for detection of added water and sugar in fruit juices and wines. Hydrogen and oxygen composition are particularly interesting probes for geographical origin and authenticity identification. Carbon and nitrogen composition of fruits contains the finger-print of their metabolism and growing condition. Exemplary data are presented which demonstrated the usefulness of the Isotope Ratio Mass Spectrometry (IRMS) methods for authenticating wines and fruits (juice and pulp). (author)

  18. A novel medium for expression of proteins selectively labeled with {sup 15}N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A. [Max Planck Institute for Biochemistry (Germany)], E-mail: holak.biochem@mpg.de

    2003-04-15

    Whereas bacterial expression systems are widely used for production of uniformly or selectively {sup 15}N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively {sup 15}N-labeled proteins in insect cells. The quantities of {sup 15}N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the {sup 15}N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression.

  19. A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells

    International Nuclear Information System (INIS)

    Brueggert, Michael; Rehm, Till; Shanker, Sreejesh; Georgescu, Julia; Holak, Tad A.

    2003-01-01

    Whereas bacterial expression systems are widely used for production of uniformly or selectively 15 N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively 15 N-labeled proteins in insect cells. The quantities of 15 N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the 15 N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression

  20. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  1. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry

    NARCIS (Netherlands)

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P.; Permentier, Hjalmar P.; Bischoff, Rainer

    2016-01-01

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp

  2. Food and Beverage Selection Patterns among Menu Label Users and Nonusers: Results from a Cross-Sectional Study.

    Science.gov (United States)

    Gruner, Jessie; Ohri-Vachaspati, Punam

    2017-06-01

    By May 5, 2017, restaurants with 20 or more locations nationwide will be required to post calorie information on menus and menu boards. Previous research shows that those who use menu labels purchase fewer calories, but how users are saving calories is unknown. To assess food and beverage selection patterns among menu label users and nonusers. Secondary, cross-sectional analysis using data from a study examining sociodemographic disparities in menu label usage at a national fast-food restaurant chain. Participants were recruited outside restaurant locations, using street-intercept survey methodology. Consenting customers submitted receipts and completed a brief oral survey. Receipt data were used to categorize food and beverage purchases. Side, beverage, and entrée purchases. Sides and beverages were classified as healthier and less-healthy options consistent with the 2015 Dietary Guidelines for Americans. Healthier options contained items promoted in the guidelines, such as whole fruits, vegetables, low-fat dairy, and 100% fruit juice; less-healthy options contained solid fat or added sugar. Entrées were categorized as lower-, medium-, and higher-calorie options, based on quartile cutoffs. Multinomial logistic regression models were used to estimate prevalence ratios (PRs) for purchases among menu label users and nonusers, controlling for sociodemographic characteristics and total price paid. Healthier sides were selected by 7.5% of users vs 2.5% of nonusers; healthier beverages were selected by 34.0% of users vs 11.6% of nonusers; and lowest-calorie entrées were selected by 28.3% of users vs 30.1% of nonusers. Compared with nonusers (n=276), users (n=53) had a higher probability of purchasing healthier sides (PR=5.44; P=0.034), and healthier beverages (PR=3.37; P=0.005). No significant differences were seen in the purchasing patterns of entrées. Targeting educational campaigns to side and beverage purchasing behaviors may increase the effectiveness of menu

  3. A procedure for the preparation of deoxynucleoside-5'-triphosphates labelled with phosphorus isotopes in the alpha position

    International Nuclear Information System (INIS)

    Havranek, M.; Vlna, J.

    1990-01-01

    The procedure concerns preparation of the title compounds labelled in the side chain -CH 2 -O-P * (O)(OH)-O-P(O)(OH)-O-P(O)(OH) 2 . In the first stage, deoxynucleoside with the side chain -CH 2 OH is condensed at 70 to 120 degC with [ 32 P] or [ 33 P]phosphoric acid in a molar ratio of 100:1 to 400:1 using cyanamide or cyanoguanidine as the condensing agent in the presence of optimal humidity, attained by azeotropic distillation. In the second stage, the deoxynucleoside monophosphate is enzymatically converted to the final product, which is purified by column chromatography on PEI cellulose using NH 4 HCO 3 as the eluting agent. (P.A.)

  4. Monitoring the biodegradation of polycyclic aromatic hydrocarbons in a co-contaminated soil using stable isotope labeling

    Science.gov (United States)

    Wawra, Anna; Friesl-Hanl, Wolfgang; Watzinger, Andrea; Soja, Gerhard; Puschenreiter, Markus

    2016-04-01

    Conventional remediation techniques like "dig and dump" are costly and limited in scale. Plant- and microbe-based alternatives, e.g. phytoremediation options, offer a cheap and environmentally friendly approach that can be applied on larger areas. However, the application of phytoremediation techniques to co-contaminated sites may be hindered due to a potential inhibition of biodegradation processes by the presence of heavy metals in soil. Therefore, the objective of this study is to test the hypothesis that the degradation of organic pollutants can be enhanced by immobilising potentially toxic heavy metals. This study aims to identify the influence of heavy metal immobilisation on the degradation of organic pollutants, and to determine chemical, physical and biological measures further accelerating these processes. The influence of heavy metals on organic pollutant degradation dynamics is assessed using 13C-phospholipid fatty acid analysis (13C-PLFA). Application of 13C-labeled phenanthrene allows the identification of microbial groups responsible for the degradation process. For metal immobilisation and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) are deployed, partly in combination with fast-growing and pollution-tolerant woody plants (willow, black locust and alder). Results of an incubation batch experiment show a fast degradation of the phenanthrene label within the first two weeks by various microbial groups (gram negative bacteria as indicated by the cy17:0 peak) resulting in a decrease by up to 80% of the total PAH concentration (Σ 16 EPA PAHs) measured in soil. A similar trend was observed in the greenhouse pot experiment, whereby heavy metal accumulation in the woody plants growing on the co-contaminated soil significantly varied with plant species (willow > black locust, alder).

  5. Synthesizing labeled compounds

    International Nuclear Information System (INIS)

    London, R.E.; Matwiyoff, N.A.; Unkefer, C.J.; Walker, T.E.

    1983-01-01

    A metabolic study is presented of the chemical reactions provided by isotopic labeling and NMR spectroscopy. Synthesis of 13 C-labeled D-glucose, a 6-carbon sugar, involves adding a labeled nitrile group to the 5-carbon sugar D-arabinose by reaction with labeled hydrogen cyanide. The product of this reaction is then reduced and hydrolyzed to a mixture of the labeled sugars. The two sugars are separated by absorption chromotography. The synthesis of 13 C-labeled L-tyrosine, an amino acid, is also presented

  6. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    Science.gov (United States)

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  7. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Directory of Open Access Journals (Sweden)

    John B Hopkins

    Full Text Available Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE. In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10% and other plant foods (56±10% were more important than meat (9±8% to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout, as such information could be useful in predicting how the population will adapt to future environmental change.

  8. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

  9. Innovative method for carbon dioxide determination in human postmortem cardiac gas samples using headspace-gas chromatography–mass spectrometry and stable labeled isotope as internal standard

    Energy Technology Data Exchange (ETDEWEB)

    Varlet, V., E-mail: vincent.varlet@chuv.ch [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Smith, F. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Froidmont, S. de; Dominguez, A.; Rinaldi, A. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Augsburger, M. [Toxicology and Forensic Chemistry Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland); Mangin, P.; Grabherr, S. [Forensic Medicine Unit, University Center of Legal Medicine Lausanne – Geneva, CH-1011 Lausanne (Switzerland)

    2013-06-19

    Graphical abstract: -- Highlights: •We developed a method for CO{sub 2} analysis in cardiac samples and quantification by {sup 13}CO{sub 2}. •This method was fully validated by accuracy profile. •We have applied this method to perform CO{sub 2} precise quantification for forensic applications. •Context of the death could be documented following CO{sub 2} concentrations. -- Abstract: A novel approach to measure carbon dioxide (CO{sub 2}) in gaseous samples, based on a precise and accurate quantification by {sup 13}CO{sub 2} internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography–mass spectrometry (HS-GC–MS) method applicable in the routine determination of CO{sub 2}. The main drawback of the GC methods discussed in the literature for CO{sub 2} measurement is the lack of a specific internal standard necessary to perform quantification. CO{sub 2} measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ({sup 13}CO{sub 2}) on the basis of the stoichiometric formation of CO{sub 2} by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH{sup 13}CO{sub 3}). This method allows a precise measurement of CO{sub 2} concentration and was validated on various human postmortem gas samples in order to study its efficiency.

  10. The influence of menu labeling on calories selected or consumed: a systematic review and meta-analysis.

    Science.gov (United States)

    Sinclair, Susan E; Cooper, Marcia; Mansfield, Elizabeth D

    2014-09-01

    Recent menu labeling initiatives in North America involve posting the calorie content of standard menu items, sometimes with other nutrients of public health concern, with or without contextual information (such as the recommended daily caloric intake for an average adult) or interpretive information (such as traffic light symbols). It is not clear whether this is an effective method to convey nutrition information to consumers wanting to make more-informed food choices. Of particular concern are those consumers who may be limited in their food and health literacy skills to make informed food choices to meet their dietary needs or goals. The purpose of this systematic review was to determine whether the provision of menu-based nutrition information affects the selection and consumption of calories in restaurants and other foodservice establishments. A secondary objective was to determine whether the format of the nutrition information (informative vs contextual or interpretive) influences calorie selection or consumption. Several bibliographic databases were searched for experimental or quasiexperimental studies that tested the effect of providing nutrition information in a restaurant or other foodservice setting on calories selected or consumed. Studies that recruited generally healthy, noninstitutionalized adolescents or adults were included. When two or more studies reported similar outcomes and sufficient data were available, meta-analysis was performed. Menu labeling with calories alone did not have the intended effect of decreasing calories selected or consumed (-31 kcal [P=0.35] and -13 kcal [P=0.61], respectively). The addition of contextual or interpretive nutrition information on menus appeared to assist consumers in the selection and consumption of fewer calories (-67 kcal [P=0.008] and -81 kcal [P=0.007], respectively). Sex influenced the effect of menu labeling on selection and consumption of calories, with women using the information to select and

  11. Synthesis of tritium-labelled (-)-U50,488, a selective kappa opioid agonist

    International Nuclear Information System (INIS)

    Thurkauf, A.; Costa, B. de; Rice, K.C.

    1989-01-01

    The preparation of 3 H labelled (-)-trans-3,4-dichloro-N-methyl-N[2-(1-pyrrolidinyl) cyclohexyl]benzeneacetamide (U50,488) in four steps from N-methylcyclohexylaziridine is described. The synthesis of the pharmacologically active (-) isomer of U50, 488 was accomplished through the resolution of the intermediate 2-[1-(3-pyrrolinyl)]-N-methylcyclohexylamine using (+)-mandelic acid. (Author)

  12. Survey of peanut levels in selected Irish food products bearing peanut allergen advisory labels.

    Science.gov (United States)

    Robertson, Orla N; Hourihane, Jonathan O'B; Remington, Benjamin C; Baumert, Joseph L; Taylor, Steve L

    2013-01-01

    Peanut allergy affects up to 2% of consumers and is responsible for the majority of fatalities caused by food-induced anaphylaxis. Peanut-containing products must be clearly labelled. Manufacturers are not legally required to label peanut if its inclusion resulted from unintentional cross contact with foods manufactured in the same facility. However, the use of allergen advisory statements alerting consumers of the potential presence of peanut allergen has increased in recent years. In previous studies, the vast majority of foods with precautionary allergen statements did not contain detectable levels of peanut, but no data are available on Irish food products. Thirty-eight food products bearing peanut/nut allergen-related statements were purchased from multiple locations in the Republic of Ireland and analysed for the presence of peanut. Peanut was detected in at least one lot in 5.3% (2 of 38) of the products tested. The doses of peanut detected ranged from 0.14 mg to 0.52 mg per suggested serving size (0.035-0.13 mg peanut protein). No detectable levels of peanut were found in the products that indicated peanut/nuts as a minor ingredient. Quantitative risk assessment, based on the known distribution of individual threshold doses for peanut, indicates that only a very small percentage of the peanut-allergic population would be likely to experience an allergic reaction to those products while the majority of products with advisory labels appear safe for the peanut-allergic population. Food manufacturers should be encouraged to analyse products manufactured in shared facilities and even on shared equipment with peanuts for peanut residues to determine whether sufficient risk exists to warrant the use of advisory labelling. Although it appears that the majority of food products bearing advisory nut statements are in fact free of peanut contamination, advice to peanut allergy sufferers to avoid said foods should continue in Ireland and therefore in the wider European

  13. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Hagn, Franz, E-mail: franz.hagn@tum.de; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly {sup 15}N-Phe and {sup 15}N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd{sup 3+}-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.

  14. Labeling of amino acids and peptides with isotopic oxygen as followed by 17O-N.M.R

    International Nuclear Information System (INIS)

    Steinschneider, A.; Burgar, M.I.; Buku, A.; Fiat, D.

    1981-01-01

    17 O was introduced into the respective α- and γ-COOH groups of Boc-Gly and Boc-Glu by saponification of the corresponding O-methyl esters with 1 N NaOH in H 2 17 O. Other 17 O enriched Boc-amino acids were prepared by acid catalyzed exchange into the amino acid α-COOH group followed by t-butyloxycarbonylation with t-butyl S-4, 6-dimethylpyrimidin-2-ylthio carbonate. Final enrichment, by approximately three orders of magnitude over natural abundance, was 60-100% of the possible maximum. The synthesis of [ 17 O]-Gly-Ala, [ 17 O]-Gly-Leu and [ 17 O]-Gly-Glu by DCC/HBT mediated coupling of Boc-Gly-[ 17 O]-α-COOH with amino acid-O-t-butyl esters followed by deprotection with HCL/EtOAc proceeded without undue loss of the isotope. Boc-[ 17 O]-Pro-Leu-Gly-NH 2 was prepared by a similar procedure. [Tyr 2 - 17 O]-, Pro 7 - 17 O]- and [Gly 4 - 17 O]-oxytocin were synthesized using solid phase support. 17 O-chemical shifts of synthetic intermediates and of the final products were as expected for each functional group. Linewith data correlate with the molecular weights of the compounds prepared. (author)

  15. Isotope separation

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  16. Double and triple isotope gamma camera studies with energy selection after data collection

    International Nuclear Information System (INIS)

    Soussaline, F.; Raynaud, C.; Kacperek, A.; Kellershohn, C.; Sauce, M.; Zadje, C.

    1974-01-01

    A system comprising a Toshiba camera and a Informatek data processing system has been used to perform multiple isotope studies. A large window (30-550KeV) is used and the data can be manipulated after data collection, to form sets of dynamic frames for various energies. Linear combinations of matrices have been used to correct for scattering. Double isotope studies using 197Hg/198Au have been used to determine Hg renal uptake in man, and are compared to a previous technique requiring two separate data acquisitions. Animal (pig) renal experiments have been performed using 169 Yb/sup(99m)Tc/ 197 Hg. This pilot study gave good results and indicates the utility of the system for multiple isotope function studies in man [fr

  17. Optimized localization of bacterial infections with technetium-99m labelled human immunoglobulin after protein charge selection

    International Nuclear Information System (INIS)

    Welling, M.; Feitsma, H.I.J.; Calame, W.; Ensing, G.J.; Goedemans, W.; Pauwels, E.K.J.

    1994-01-01

    To improve the scintigraphic detection of bacterial infections a protein charge-purified fraction of polyclonal human immunoglobulin was applied as a radiopharmaceutical. This purification was achieved by attaching the immunoglobulin to an anion-exchanger column and by obtaining the column-bound fraction with buffer. The binding to bacteria in vitro and the target to non-target ratios of an experimental thigh infection with Staphylococcus aureus or Klebsiella pneumoniae in mice were evaluated to compare the purified and the unpurified immunoglobulin. The percentage of binding to all gram-positive and gram-negative bacteria used in this study was significantly (P 99m Tc-labelled protein charge-purified polyclonal human immunoglobulin was administered intravenously. At all time intervals the target (infected thighs) to non-target (non-infected thighs) ratios for both infections were significantly higher (P 99m Tc-labelled protein charge-purified immunoglobulin localizes both a gram-positive and a gram-negative thigh infection more intensely and faster than 99m Tc-labelled unpurified immunoglobulin. (orig.)

  18. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  19. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    International Nuclear Information System (INIS)

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombäck, Margareta; Wallén, Håkan; Jörneskog, Gun

    2012-01-01

    Highlights: ► Fibrinogen was incubated in vitro with glucose or aspirin. ► Acetylations and glycations were found at twelve lysine sites by mass spectrometry. ► The labeling by aspirin and glucose occurred dose-dependently. ► No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent – a phenomenon called “aspirin resistance”. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to “aspirin resistance” in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5–10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the α-chain: αK191, αK208, αK224, αK429, αK457, αK539, αK562, in the β-chain: βK233, and in the γ-chain: γK170 and γK273. Glycations were found at βK133 and γK75, alternatively γK85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [ 14 C-acetyl]salicylic acid and [ 14 C]glucose, a labeling of 0.013–0.084 and 0.12–0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9–100 μM aspirin) and physiologically (2–8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may mechanistically explain why aspirin facilitates fibrin degradation. We find no support for the idea that glycation of fibrin(ogen) interferes with acetylation of

  20. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Jan, E-mail: jan.svensson@ki.se [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Bergman, Ann-Charlotte [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Adamson, Ulf [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden); Blombaeck, Margareta [Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital (Solna), SE-171 76 Stockholm (Sweden); Wallen, Hakan; Joerneskog, Gun [Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, SE-182 88 Stockholm (Sweden)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of

  1. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.

    Science.gov (United States)

    Zhang, Hong-Hai; Lechuga, Thomas J; Chen, Yuezhou; Yang, Yingying; Huang, Lan; Chen, Dong-Bao

    2016-05-01

    Adduction of a nitric oxide moiety (NO•) to cysteine(s), termed S-nitrosylation (SNO), is a novel mechanism for NO to regulate protein function directly. However, the endothelial SNO-protein network that is affected by endogenous and exogenous NO is obscure. This study was designed to develop a quantitative proteomics approach using stable isotope labeling by amino acids in cell culture for comparing vascular endothelial growth factor (VEGFA)- and NO donor-responsive endothelial nitroso-proteomes. Primary placental endothelial cells were labeled with "light" (L-(12)C6 (14)N4-Arg and L-(12)C6 (14)N2-Lys) or "heavy" (L-(13)C6 (15)N4-Arg and L-(13)C6 (15)N2-Lys) amino acids. The light cells were treated with an NO donor nitrosoglutathione (GSNO, 1 mM) or VEGFA (10 ng/ml) for 30 min, while the heavy cells received vehicle as control. Equal amounts of cellular proteins from the light (GSNO or VEGFA treated) and heavy cells were mixed for labeling SNO-proteins by the biotin switch technique and then trypsin digested. Biotinylated SNO-peptides were purified for identifying SNO-proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ratios of light to heavy SNO-peptides were calculated for determining the changes of the VEGFA- and GSNO-responsive endothelial nitroso-proteomes. A total of 387 light/heavy pairs of SNO-peptides were identified, corresponding to 213 SNO-proteins that include 125 common and 27 VEGFA- and 61 GSNO-responsive SNO-proteins. The specific SNO-cysteine(s) in each SNO-protein were simultaneously identified. Pathway analysis revealed that SNO-proteins are involved in various endothelial functions, including proliferation, motility, metabolism, and protein synthesis. We collectively conclude that endogenous NO on VEGFA stimulation and exogenous NO from GSNO affect common and different SNO-protein networks, implicating SNO as a critical mechanism for VEGFA stimulation of angiogenesis. © 2016 by the Society for the Study of Reproduction

  2. Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling.

    Science.gov (United States)

    Matthäus, Christian; Krafft, Christoph; Dietzek, Benjamin; Brehm, Bernhard R; Lorkowski, Stefan; Popp, Jürgen

    2012-10-16

    Monocyte-derived macrophages play a key role in atherogenesis because their transformation into foam cells is responsible for deposition of lipids in plaques within arterial walls. The appearance of cytosolic lipid droplets is a hallmark of macrophage foam cell formation, and the molecular basics involved in this process are not well understood. Of particular interest is the intracellular fate of different individual lipid species, such as fatty acids or cholesterol. Here, we utilize Raman microscopy to image the metabolism of such lipids and to trace their subsequent storage patterns. The combination of microscopic information with Raman spectroscopy provides a powerful molecular imaging method, which allows visualization at the diffraction limit of the employed laser light and biochemical characterization through associated spectral information. In order to distinguish the molecules of interest from other naturally occurring lipids spectroscopically, deuterium labels were introduced. Intracellular distribution and metabolic changes were observed for serum albumin-complexed palmitic and oleic acid and cholesterol and quantitatively evaluated by monitoring the increase in CD scattering intensities at 0.5, 1, 3, 6, 24, 30, and 36 h. This approach may also allow for investigating the cellular trafficking of other molecules, such as nutrients, metabolites, and drugs.

  3. Contribution of chemical modifications and isotopic labelling to the establishment of structure-affinity relations of cyclic oligosaccharides

    International Nuclear Information System (INIS)

    Azaroual-Bellanger, Nathalie

    1993-01-01

    The aim of the present work is to synthesize and investigate cyclodextrin derivatives dedicated to the vectorization of drugs. Cyclodextrins are well known for their ability to include hydrophobic molecules in their cavity. Two classes of molecules have been prepared namely cyclodextrins bearing amino-acids, the peptido-cyclodextrins, as models for derivatives dedicated to target receptors, and amphiphilic cyclodextrins (lollipops) bearing an aliphatics chain which could be inserted into pre-organized phases as vesicles or micelles. To investigate the structure and properties of these molecules, Nuclear Magnetic Resonance was used as the analytical tool. Two types of studies have been performed: - First, self-inclusion and complexation phenomena have been showed along with the determination of stoichiometries and association constants. For this purpose, one and two-dimensional NMR (proton and 13 C) were used. - Second, the dynamic study of natural cyclodextrins, derivatives and inclusion complexes was performed using NMR and relaxation studies on deuterium and 13 C nuclei. For this purpose, deuterium labelled analogs have been prepared. (author) [fr

  4. Identification of core components and transient interactors of the peroxisomal importomer by dual-track stable isotope labeling with amino acids in cell culture analysis.

    Science.gov (United States)

    Oeljeklaus, Silke; Reinartz, Benedikt S; Wolf, Janina; Wiese, Sebastian; Tonillo, Jason; Podwojski, Katharina; Kuhlmann, Katja; Stephan, Christian; Meyer, Helmut E; Schliebs, Wolfgang; Brocard, Cécile; Erdmann, Ralf; Warscheid, Bettina

    2012-04-06

    The importomer complex plays an essential role in the biogenesis of peroxisomes by mediating the translocation of matrix proteins across the organellar membrane. A central part of this highly dynamic import machinery is the docking complex consisting of Pex14p, Pex13p, and Pex17p that is linked to the RING finger complex (Pex2p, Pex10p, Pex12p) via Pex8p. To gain detailed knowledge on the molecular players governing peroxisomal matrix protein import and, thus, the integrity and functionality of peroxisomes, we aimed at a most comprehensive investigation of stable and transient interaction partners of Pex14p, the central component of the importomer. To this end, we performed a thorough quantitative proteomics study based on epitope tagging of Pex14p combined with dual-track stable isotope labeling with amino acids in cell culture-mass spectrometry (SILAC-MS) analysis of affinity-purified Pex14p complexes and statistics. The results led to the establishment of the so far most extensive Pex14p interactome, comprising 9 core and further 12 transient components. We confirmed virtually all known Pex14p interaction partners including the core constituents of the importomer as well as Pex5p, Pex11p, Pex15p, and Dyn2p. More importantly, we identified new transient interaction partners (Pex25p, Hrr25p, Esl2p, prohibitin) that provide a valuable resource for future investigations on the functionality, dynamics, and regulation of the peroxisomal importomer.

  5. Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C

    International Nuclear Information System (INIS)

    McDonald, Chris; Li Liang

    2005-01-01

    Studies of protein-protein and protein-ligand interactions are important for understanding biological functions of proteins. A new technique based on the partial proteolysis of proteins combined with quantitative mass spectrometry is developed as a means of tracking structural changes after the formation of a protein-ligand complex. In this technique, a protein of interest with and without the binding of a ligand is digested with an enzyme to generate a set of peptides, followed by separation of the peptides by liquid chromatography. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is used to identify chromatographically separated peptides, and locate their sequence alignments in the parent protein. Using an isotopically labeled protein as a sample against an unlabeled protein standard, quantitative information can be gathered. This overcomes the inherent lack of quantitative capability of MALDI MS. The utility of the technique to investigate protein-ligand interactions is demonstrated in a model system involving calcium binding to cardiac Troponin C (cTnC). Using this technique, the general location of the three calcium-binding sites of cTnC can be determined by using several different enzymes to generate overlapping peptide maps of cTnC

  6. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  7. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    Science.gov (United States)

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  8. Selective 15N labeling and direct observation by NMR of the active-site glutamine of Fe-containing superoxide dismutase

    International Nuclear Information System (INIS)

    Vance, Carrie K.; Kang, Young M.; Miller, Anne-Frances

    1997-01-01

    The glutamine in position 69 is one of only three conserved active-site amino acid differences between Fe- and Mn-containing superoxide dismutases (SODs). We have refined the conditions for extremely selective labeling of the side chains of glutamine with 15N, and thus obtained dramatically simplified spectra, despite the large size of Fe-SOD. The improved resolution afforded by such highly specific labeling permits the use of direct 15N detection to observe and assign Gln 69, even though its distance to the paramagnetic Fe2+ is only 5A. Selective glutamine side-chain labeling is inexpensive and has general utility for large (and paramagnet-containing) proteins

  9. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  10. Isotopic separation

    International Nuclear Information System (INIS)

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  11. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  12. Isotopic separation

    International Nuclear Information System (INIS)

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  13. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  14. A rapid method for α-spectrometric analysis of radium isotopes in natural waters using ion-selective membrane technology

    International Nuclear Information System (INIS)

    Purkl, Stefan; Eisenhauer, Anton

    2003-01-01

    An α-spectrometric method for the rapid determination of radium isotopes ( 223 Ra, 224 Ra and 226 Ra) in environmental samples is presented. Using Empore TM Radium Rad Disks complete separation of the target radionuclides is achieved. The high selectivity of these Rad Disks allows the straightforward use of 225 Ra as yield tracer. Chemical yield is up to 92±9%. The chemical procedure can be accomplished within 5 h. α-Sources show energy resolution in the range of typically 26-40 keV (FWHM). Despite minimal thickness of the sources no significant radon (Rn) losses can be observed

  15. Time-series analysis of ion and isotope geochemistry of selected springs of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, B.F.; Edkins, J.; Jacobson, R.L.; Hess, J.W.

    1990-11-01

    The temporal variations of ion and isotope geochemistry were observed at six selected springs on the Nevada Test Site, Nye County, Nevada and included: Cane, Whiterock, Captain Jack, Topopah, Tippipah, and Oak Springs. The sites were monitored from 1980 to 1982 and the following parameters were measured: temperature, pH, electrical conductance, discharge, cations (Ca{sup 2+}, Mg{sup 2+}. Na{sup +}, K{sup +}), anions Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}. HCO{sub 3}{sup {minus}}, silica, stable isotopes ({delta}{sup 18}O, {delta}D, {delta}{sup 13}C), and radioactive isotopes ({sup 3}H, {sup 14}C). A more detailed study was continued from 1982 to 1988 at Cane and Whiterock Springs. Field microloggers were installed at these sites in 1985 to measure the high frequency response of temperature, electrical conductance, and discharge to local precipitation. Stage fluctuations near the discharge point dissolve minerals/salts as groundwater inundates the mineralized zone immediately above the equilibrium water table. This phenomena was most noticeable at Whiterock Spring and lagged the discharge response by several hours. Stable isotope analysis of precipitation and groundwater suggests a 1.5 to 2 month travel time for meteoric water to migrate from the recharge area to the discharge point. Groundwater age determinations suggest a mean age of approximately 30 years at Whiterock Spring and possibly older at Cane Spring. However, the short travel time and geochemical integrity of recharge pulses suggest that the waters are poorly mixed along the flow paths. 25 refs., 25 figs., 24 tabs.

  16. Selection of mode for the measurement of lead isotope ratios by inductively coupled plasma mass spectrometry and its application to milk powder analysis

    International Nuclear Information System (INIS)

    Dean, J.R.; Ebdon, L.; Massey, R.

    1987-01-01

    An investigation into the selection of the optimum mode for the measurement of isotope ratios in inductively coupled plasma mass spectrometry (ICP-MS) is reported, with particular reference to lead isotope ratios. Variation in the accuracy and precision achievable using the measurement modes of scanning and peak jumping are discussed. It is concluded that if sufficient sample and time are available, scanning gives best accuracy and precision. Isotope dilution analysis (IDA) has been applied to the measurement of the lead content of two dried milk powders of Australian and European origin introduced as slurries into ICP-MS. Differences in the lead isotope ratios in the two milk powders were investigated and the total lead content determined by IDA. Isotope dilution analysis permitted accurate data to be obtained with an RSD of 4.2% or milk powder containing less than 30 ng g -1 of lead. The ICP-MS technique is confirmed as a useful tool for IDA. (author)

  17. Isotopic composition and radiological properties of uranium in selected fuel cycles

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Liikala, R.C.

    1975-04-01

    Three major topic areas are discussed: First, the properties of the uranium isotopes are defined relative to their respective roles in the nuclear fuel cycle. Secondly, the most predominant fuel cycles expected in the U. S. are described. These are the Light Water Reactor (LWR), High Temperature Gas Cooled Reactor (HTGR), and Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles. The isotopic compositions of uranium and plutonium fuels expected for these fuel cycles are given in some detail. Finally the various waste streams from these fuel cycles are discussed in terms of their relative toxicity. Emphasis is given to the high level waste streams from reprocessing of spent fuel. Wastes from the various fuel cycles are compared based on projected growth patterns for nuclear power and its various components. (U.S.)

  18. Comparative Profiling of Triple-Negative Breast Carcinomas Tissue Glycoproteome by Sequential Purification of Glycoproteins and Stable Isotope Labeling

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2016-01-01

    Full Text Available Background: Women with triple negative breast cancers (TNBCs have a poor prognosis due to lack of suitable targeted therapies. Changes in the protein glycosylation are increasingly being recognized as an important modification associated with cancer etiology. Methods: In an attempt to identify TNBC biomarkers with greater diagnostic and prognostic capabilities, hydrazide- based chemistry method combined with LC-MS/MS were used to purify and identify N-linked glycopeptides or glycoproteins of tissues from TNBC patients. Results: A total of 550 unique N-linked glycoproteins were identified, among these proteins, 72 unique N-linked glycoproteins were significantly regulated in tumor tissues, of which 56 proteins were upregulated and 16 proteins were downregulated. To assess the validity of the results, three selected proteins including Vascular endothelial growth factor receptor 1, Insulin receptor, Tissue factor pathway inhibitor were selected for western blot analysis, and these proteins were found as potential biomarkers of TNBC. The top three pathways of differentially expressed glycoproteins participated in were caveolar-mediated endocytosis signaling, agrin interactions at neuromuscular junction and LXR/RXR activation. Conclusion: This work provides potential glycoprotein markers to function as a novel tissue-based biomarker for TNBC.

  19. Selective intra-coronary injection of sup(99m)Tc-labelled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Degeorges, M; Roucayrol, J C; Comet, M; Sol, C; Devaux, J Y; Delebarre, P; d' Izarn, J J [Hopital Cochin, 75 - Paris (France)

    1977-02-01

    A technique of myocardial perfusion imaging and a clinical experience with this technique in 83 patients with coronary artery disease are described. sup(99m)Tc-labelled microspheres were injected directly into one or both major coronary arteries, at the time of coronary arteriography. Microspheres with a mean diameter of 15..mu.. were used. Myocardial infarcts resulting from small vessel occlusions were detected by this technique. The results were compared to those obtained with coronary arteriography and with scintigraphy using /sup 201/Tl or /sup 131/Cs administered intravenously. Certain conclusions regarding coronary arterial injection can be drawn from this comparison. The possibility of irregularities of microsphere distribution after intra-coronary injection must be considered.

  20. 14C-labeling of a tetrahydroacridine, a novel CNS-selective cholinesterase inhibitor

    International Nuclear Information System (INIS)

    Nishioka, Kazuhiko; Kamada, Takeshi; Kanamaru, Hiroshi

    1992-01-01

    9-Amino-8-fluoro-2,4-methano-1,2,3,4-tetrahydroacridine citrate (SM-10888), a novel cholinesterase inhibitor, was labeled with carbon-14 at C9 of the tetrahydroacridine ring for use in metabolic studies. Carbonation of 2,6-difluorophenyllithium (3) with [ 14 C]carbon dioxide gave the acid (4). Chlorination of 4 followed by treatment of the resulting acid chloride with ammonia afforded the amide (5). Dehydration of 5 with thionyl chloride and subsequent displacement reaction with ammonia gave the aminobenzonitrile (7). Condensation of 7 with the ketone (8) in the presence of anhydrous zinc chloride yielded the aminoacridine (9), which was treated with citric acid to afford [9- 14 C]SM-10888 (1). The overall yield of 1 was 37% from 2, and the specific activity was 1.35 GBq/mmol. (author)

  1. [sup 14]C-labeling of a tetrahydroacridine, a novel CNS-selective cholinesterase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Kazuhiko; Kamada, Takeshi; Kanamaru, Hiroshi (Sumitomo Chemical Co., Ltd., Takatsukasa, Takarazuka (Japan). Environmental Health Science Lab.)

    1992-06-01

    9-Amino-8-fluoro-2,4-methano-1,2,3,4-tetrahydroacridine citrate (SM-10888), a novel cholinesterase inhibitor, was labeled with carbon-14 at C9 of the tetrahydroacridine ring for use in metabolic studies. Carbonation of 2,6-difluorophenyllithium (3) with [[sup 14]C]carbon dioxide gave the acid (4). Chlorination of 4 followed by treatment of the resulting acid chloride with ammonia afforded the amide (5). Dehydration of 5 with thionyl chloride and subsequent displacement reaction with ammonia gave the aminobenzonitrile (7). Condensation of 7 with the ketone (8) in the presence of anhydrous zinc chloride yielded the aminoacridine (9), which was treated with citric acid to afford [9-[sup 14]C]SM-10888 (1). The overall yield of 1 was 37% from 2, and the specific activity was 1.35 GBq/mmol. (author).

  2. The synthesis of isotopic fluorine and iodine-labeled COX-II inhibitor and in vitro validation

    Energy Technology Data Exchange (ETDEWEB)

    An, Gwang Gil; Lee, Tae Sub; Lee, Kyo Chul; Moon, Byung Seok; Choi, Chang Woon; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2005-07-01

    In these day, NASIDs (non-steroidal antiinflammatory drugs) such as aspirin, diclofenac and ibuprofen are the most common medications used to reduce pain and inflammation. However, they act by inhibiting both COX-I and COX-II which can cause serious gastrointestinal side effects such as ulcers, stomach perforations and bleeds. COX-I produces prostaglandins believed to be responsible for the protection of the stomach lining. However, COX-II produces prostaglandins believed to be responsible for pain and inflammation. Recently, the most widely studied selective COX-II inhibitor such as celecoxib and rofecoxib' one work by inhibiting the effect of COX-II on pain and inflammation without inhibiting COX-I which protects gastrointestinal lining.

  3. Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling1[C][W][OA

    Science.gov (United States)

    Liu, Xing; Barkawi, Lana; Gardner, Gary; Cohen, Jerry D.

    2012-01-01

    The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling. PMID:22323783

  4. Selective labelling of 5-HT{sub 7} receptor recognition sites in rat brain using [{sup 3}H]5-carboxamidotryptamine

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, R.L.; Barnes, N.M. [Department of Pharmacology, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    1998-12-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT{sub 7} receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT ([{sup 3}H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 {mu}M) displayed a pharmacological profile similar to the recombinant 5-HT{sub 7} receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, ({+-})-pindolol (10 {mu}M)-insensitive [{sup 3}H]5-CT recognition sites also resembled, pharmacologically, the 5-HT{sub 7} receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [{sup 3}H]5-CT binding to residual, possibly, 5-HT{sub 1A} sites. Competition for this [{sup 3}H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT{sub 7} receptor. Saturation studies also indicated that ({+-})-pindolol (10 {mu}M)/WAY 100635 (100 nM)-insensitive [{sup 3}H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B{sub max}=33.2{+-}0.7 fmol mg{sup -1} protein, pK{sub d}=8.78{+-}0.05, mean{+-}S.E.M., n=3). The development of this 5-HT{sub 7} receptor binding assay will aid investigation of the rat native 5-HT{sub 7} receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine

    International Nuclear Information System (INIS)

    Stowe, R.L.; Barnes, N.M.

    1998-01-01

    The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT 7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT ([ 3 H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 μM) displayed a pharmacological profile similar to the recombinant 5-HT 7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (±)-pindolol (10 μM)-insensitive [ 3 H]5-CT recognition sites also resembled, pharmacologically, the 5-HT 7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [ 3 H]5-CT binding to residual, possibly, 5-HT 1A sites. Competition for this [ 3 H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT 7 receptor. Saturation studies also indicated that (±)-pindolol (10 μM)/WAY 100635 (100 nM)-insensitive [ 3 H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (B max =33.2±0.7 fmol mg -1 protein, pK d =8.78±0.05, mean±S.E.M., n=3). The development of this 5-HT 7 receptor binding assay will aid investigation of the rat native 5-HT 7 receptor. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Selectivity of neuronal [3H]GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons

    International Nuclear Information System (INIS)

    Somogyi, P.; Freund, T.F.; Kisvarday, Z.F.; Halasz, N.

    1981-01-01

    [ 3 H]GABA was injected into the visual cortex of rats in vivo. The labeled amino acid was demonstrated by autoradiography using semithin sections of Golgi material. Selective accumulation was seen in the perikarya of Golgi-stained, gold-toned, aspinous stellate neurons. Spine-laden pyramidal-like cells did not show labeling. This method gives direct information about the dendritic arborization of a neuron, and its putative transmitter, and allows the identification of its synaptic connections. (Auth.)

  7. Origin of sulphur compounds and application of isotope geothermometry in selected geothermal systems of China

    International Nuclear Information System (INIS)

    Pang Zhonghe

    2005-01-01

    Geothermal and groundwater samples from East of Heber (EH) Province in the North China Basin and South of Fujian (SF) Province in Southeast of China were studied using sulphur and water isotopes. EH is located in a Mesozoic-Cenozoic sedimentary basin while SF is composed of small fault-block basins formed in Quaternary period. These systems belong to non-volcanic geothermal environments. Samples were collected from exploratory and production geothermal wells: 11 wells in EH and 17 wells in SF. The samples were analyzed for oxygen-18 (δ 18 O) and deuterium (δ 2 H) in water, sulfur-34 (δ 34 S) and oxygen-18 ((δ 18 O) in aqueous sulphate (SO 4 ). Chemical composition of the water samples was also determined. Results show that aqueous sulphate in the saline thermal waters of SF is of marine origin. The aqueous sulphate in EH waters is of non-marine origin. Reservoir temperature estimated using the oxygen isotope geothermometer is not compatible to those by chemical geothermometers or by down-hole measurements in the sedimentary environment for EH, different from that for the SF samples where aqueous sulphate seems to have reached equilibrium with thermal waters in the main up-flow zone. (author)

  8. Compatibility of Pt-3008 with selected components of the selenide isotope generator system

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1979-04-01

    The first in a new generation of radioisotopic thermoelectric generators being built by Teledyne Energy Systems and designated the Selenide Isotope Generator has thermoelectric materials that can be degraded by reaction with O 2 , H 2 O, CO, and other gases. Consequently, for at least the first ground demonstration system a protective xenon atmosphere will be maintained over the thermoelectrics. The high-temperature portion of the atmosphere-retaining structure will be fabricated from the alloy Pt-3008 (Pt--30 wt % Rh--8 wt % W), which was developed at Oak Ridge National Laboratory. For this application Pt-3008 must be compatible with the various insulations and thermoelectric materials. A study of the compatibility of Pt-3008 with these materials and showed that Pt-3008 was embrittled after exposure to some of the insulations that were not adequately outgassed and by one of the thermoelectric materials (Cu 2 Se) in some of the isothermal tests. It is believed that Pt-3008 will be compatible with the Selenide Isotope Generator materials when they are well outgassed and under the temperature gradient conditions of the operating system

  9. Selective intracoronary injection of technetium 99m-labelled microspheres (outcome of 83 examinations)

    International Nuclear Information System (INIS)

    Delebarre, Philippe.

    1976-01-01

    Coronarography supplies little information on the functional repercussions of a coronary stenosis and the state of the downstream arteriole bed. To overcome these inadequacies and to clarify the indications of aorta-coronary bridging, human albumin particles (microspheres or macro-aggregates) are injected into the coronary trunks during coronarography. The advantage of microspheres over macro-aggregates is their perfectly calibrated diameter (15+-5 microns). In the authors experience, and ours based on 83 examinations, the method presents no particular danger and adds very little to the time taken by conventional coronarography. For the method to be considered reliable it must be proved that the heterogeneities of distribution always correspond to anomalies of the coronary circulation, which seems not always to be the case. Our experience tends to show that as long as a hypoactivity zone or a scintigraphic blank cannot be referred with certainty to an actual functional or anatomical anomaly of the myocardium circulation this examination cannot be used as an argument for or against aorta-coronary bridging nor to predict its development. Where the study of angina pectoris with healthy coronaries is concerned a greater number of observations would be necessary in order to estimate, in cases of normal coronarography, to what extent anomalies of the coronary micro-circulation are responsible. In any case the difficulty of eliminating artefacts is a major obstacle to the reliability of the method. Radioelements such as 43 K or 201 Tl injected intraveinously seem to offer, more simply and without the risk of artefacts, the information looked for on labelled microsphere scintigraphs [fr

  10. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    Science.gov (United States)

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    Science.gov (United States)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l