WorldWideScience

Sample records for selective head cooling

  1. Shivering heat production and core cooling during head-in and head-out immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Cahill, Farrell; Kocay, Sheila; Giesbrecht, Gordon G

    2008-05-01

    Many cold-water scenarios cause the head to be partially or fully immersed (e.g., ship wreck survival, scuba diving, cold-water adventure swim racing, cold-water drowning, etc.). However, the specific effects of head cold exposure are minimally understood. This study isolated the effect of whole-head submersion in cold water on surface heat loss and body core cooling when the protective shivering mechanism was intact. Eight healthy men were studied in 17 degrees C water under four conditions: the body was either insulated or exposed, with the head either out of the water or completely submersed under the water within each insulated/exposed subcondition. Submersion of the head (7% of the body surface area) in the body-exposed condition increased total heat loss by 11% (P < 0.05). After 45 min, head-submersion increased core cooling by 343% in the body-insulated subcondition (head-out: 0.13 +/- 0.2 degree C, head-in: 0.47 +/- 0.3 degree C; P < 0.05) and by 56% in the body-exposed subcondition (head-out: 0.40 +/- 0.3 degree C and head-in: 0.73 +/- 0.6 degree C; P < 0.05). In both body-exposed and body-insulated subconditions, head submersion increased the rate of core cooling disproportionally more than the relative increase in total heat loss. This exaggerated core-cooling effect is consistent with a head cooling induced reduction of the thermal core, which could be stimulated by cooling of thermosensitive and/or trigeminal receptors in the scalp, neck, and face. These cooling effects of head submersion are not prevented by shivering heat production.

  2. Selective covers for natural cooling devices

    International Nuclear Information System (INIS)

    Addeo, A.; Monza, E.; Peraldo, M.; Bartoli, B.; Coluzzi, B.; Silvestrini, V.; Troise, G.

    1978-01-01

    Extra-atmospheric space is practically a pure sink of radiation, and can be used as a nonconventional energy source. In previous papers it has been shown that surfaces with an emissivity matched with the atmospheric (8/13)μm ''transparency window'' (natural emitters) interact with cold space when exposed to clear sky at night, and undergo a sizable cooling effect. In this paper, starting from experimental results concerning the diurnal performances of natural emitters, the problem of their interaction with solar radiation is discussed, and the use is proposed of selective covers which shade the emitter from solar radiation, without preventing the interaction with cold space via emission of infra-red radiation. (author)

  3. Effects of cooling portions of the head on human thermoregulatory response.

    Science.gov (United States)

    Katsuura, T; Tomioka, K; Harada, H; Iwanaga, K; Kikuchi, Y

    1996-03-01

    Seven healthy young male students participated in this study. Each subject sat on a chair in an anteroom at 25 degrees C for 30 min and then entered a climatic chamber, controlled at 40 degrees C and R.H. 50%, and sat on a chair for 90 min. Cooling of frontal portion including the region around the eyes (FC), occipital portion (OC), and temporal portion (TC) began after 50 min of entering. An experiment without head cooling (NC) was also made for the control measurement. Thermal comfort and thermal sensation were improved by head cooling, but response was the same regardless of portion cooled. Although rectal temperature, mean skin temperature and heart rate showed no significant effect due to head cooling, forearm skin blood flow (FBF), sweat rate (SR), and body weight loss (delta Wt) had a tendency to be depressed. FBF in FC and TC decreased during head cooling, but that in OC and NC did not change significantly, while SR in FC was depressed. delta Wt showed total sweating to decrease by FC and TC, and FC to have greater inhibitory effect on sweating than OC. Thermal strain was evaluated by the modified Craig Index (I(s)). I(s) in FC decreased significantly more than in NC. Cooling of other portions of the head had no significant effect on I(s). Cooling of the frontal portion of the head may thus be concluded to have the most effect on thermoregulatory response in a hot environment.

  4. Selective arteriography in femoral head fractures

    Energy Technology Data Exchange (ETDEWEB)

    Mannella, P; Galeotti, R; Borrelli, M; Benea, G; Massari, L; Chiarelli, G M

    1986-01-01

    The choice between conservative and radical operation in case of femoral neck fractures is very important because it is the determining factor for a successfull therapy. In case of epiphysial necrosis, an endoprosthesis as well as an osteosynthesis will be carried out. Selective arteriography of the medical circumflex artery represents the most reliable study to establish, immediately after the fractures, the possible presence of a post-traumatic ischemic necrosis. Angiography, as a reliable diagnostic tool, has to be carried out in the most selective way and needs the image subtraction technique. The authors report their preliminary results on the reliability of angiography in the femoral epiphyseal ischemic necrosis diagnosed by comparing the results of angiography with the wood light test carried out on the surgically removed femoral head. 18 refs.

  5. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  6. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    Science.gov (United States)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  7. Shivering heat production and body fat protect the core from cooling during body immersion, but not during head submersion: a structural equation model.

    Science.gov (United States)

    Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon

    2011-03-01

    Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Protective head-cooling during cardiac arrest and cardiopulmonary resuscitation: the original animal studies

    Directory of Open Access Journals (Sweden)

    Eric W. Brader

    2010-02-01

    Full Text Available Prolonged standard cardiopulmonary resuscitation (CPR does not reliably sustain brain viability during cardiac arrest. Pre-hospital adjuncts to standard CPR are needed in order to improve outcomes. A preliminary dog study demonstrated that surface cooling of the head during arrest and CPR can achieve protective levels of brain hypothermia (30°C within 10 minutes. We hypothesized that protective head-cooling during cardiac arrest and CPR improves neurological outcomes. Twelve dogs under light ketamine-halothane-nitrous oxide anesthesia were arrested by transthoracic fibrillation. The treated group consisted of six dogs whose shaven heads were moistened with saline and packed in ice immediately after confirmation of ventricular fibrillation. Six control dogs remained at room temperature. All 12 dogs were subjected to four minutes of ventricular fibrillation and 20 minutes of standard CPR. Spontaneous circulation was restored with drugs and countershocks. Intensive care was provided for five hours post-arrest and the animals were observed for 24 hours. In both groups, five of the six dogs had spontaneous circulation restored. After three hours, mean neurological deficit was significantly lower in the treated group (P=0.016, with head-cooled dogs averaging 37% and the normothermic dogs 62%. Two of the six head-cooled dogs survived 24 hours with neurological deficits of 9% and 0%, respectively. None of the control group dogs survived 24 hours. We concluded that head-cooling attenuates brain injury during cardiac arrest with prolonged CPR. We review the literature related to the use of hypothermia following cardiac arrest and discuss some promising approaches for the pre-hospital setting.

  9. A comparative analysis of reactor lower head debris cooling models employed in the existing severe accident analysis codes

    International Nuclear Information System (INIS)

    Ahn, K.I.; Kim, D.H.; Kim, S.B.; Kim, H.D.

    1998-08-01

    MELCOR and MAAP4 are the representative severe accident analysis codes which have been developed for the integral analysis of the phenomenological reactor lower head corium cooling behavior. Main objectives of the present study is to identify merits and disadvantages of each relevant model through the comparative analysis of the lower plenum corium cooling models employed in these two codes. The final results will be utilized for the development of LILAC phenomenological models and for the continuous improvement of the existing MELCOR reactor lower head models, which are currently being performed at the KAERI. For these purposes, first, nine reference models are selected featuring the lower head corium behavior based on the existing experimental evidences and related models. Then main features of the selected models have been critically analyzed, and finally merits and disadvantages of each corresponding model have been summarized in the view point of realistic corium behavior and reasonable modeling. Being on these evidences, summarized and presented the potential improvements for developing more advanced models. The present study has been focused on the qualitative comparison of each model and so more detailed quantitative analysis is strongly required to obtain the final conclusions for their merits and disadvantages. In addition, in order to compensate the limitations of the current model, required further studies relating closely the detailed mechanistic models with the molten material movement and heat transfer based on phase-change in the porous medium, to the existing simple models. (author). 36 refs

  10. Fluid-electrolyte shifts and thermoregulation: Rest and work in heat with head cooling.

    Science.gov (United States)

    Greenleaf, J E; Van Beaumont, W; Brock, P J; Montgomery, L D; Morse, J T; Shvartz, E; Kravik, S

    1980-08-01

    Plasma volume and thermoregulatory responses were measured, during head and neck cooling with a liquid-cooled neoprene headgear, in four men (21-43 years old) during 60 min of rest, 60 min of ergometer exercise (45% VO2 max), and 30 min of recovery in the supine position at 40.1 degrees C DBT and 40% rh. Compared with control (noncooling) responses, cooling decreased thigh sweating and increased mean skin temperature (Tsk) at rest, and attenuated the increases in thigh sweating by 0.26 mg/min x cm2 (-22.4%, p cooling facilitated the decreases in thigh sweat rate, heart rate, Tre, and forearm blood flow, and enhanced the increase in Tsk toward control levels. Cooling had no effect upon plasma protein, osmotic, or electrolyte shifts during rest, exercise, or recovery. Plasma volume (PV) loss during exercise was 11.2% without cooling and 10.9% with cooling. Cooling increased PV by 3% (p < 0.05) during rest, and this differential was maintained throughout the exercise and recovery periods.

  11. Emergency core cooling system sump chemical effects on strainer head loss

    International Nuclear Information System (INIS)

    Edwards, M.K.; Qiu, L.; Guzonas, D.A.

    2010-01-01

    Chemical precipitates formed in the recovery water following a Loss of Coolant Accident (LOCA) have the potential to increase head loss across the Emergency Core Cooling System (ECCS) strainer, and could lead to cavitation of the ECCS pumps, pump failure and loss of core cooling. AECL, as a strainer vendor and research organization, has been involved in the investigation of chemical effects on head loss for its CANDU® and Pressurized Water Reactor (PWR) customers. The chemical constituents of the recovery sump water depend on the combination of chemistry control additives and the corrosion and dissolution products from metals, concrete, and insulation materials. Some of these dissolution and corrosion products (e.g., aluminum and calcium) may form significant quantities of precipitates. The presence of chemistry control additives such as sodium hydroxide, trisodium phosphate and boric acid can significantly influence the precipitates formed. While a number of compounds may be shown to be thermodynamically possible under the conditions assumed for precipitation, kinetic factors play a large role in the morphology of precipitates. Precipitation is also influenced by insulation debris, which can trap precipitates and act as nucleation sites for heterogeneous precipitation. This paper outlines the AECL approach to resolving the issue of chemical effects on ECCS strainer head loss, which included modeling, bench top testing and reduced-scale testing; the latter conducted using a temperature-controlled variable-flow closed-loop test rig that included an AECL Finned Strainer® test section equipped with a differential pressure transmitter. Models of corrosion product release and the effects of precipitates on head loss will also be presented. Finally, this paper discusses the precipitates found in test debris beds and presents a possible method for chemical effects head loss modeling. (author)

  12. Core cooling and thermal responses during whole-head, facial, and dorsal immersion in 17 degrees C water.

    Science.gov (United States)

    Pretorius, Thea; Gagnon, Dominique D; Giesbrecht, Gordon G

    2010-10-01

    This study isolated the effects of dorsal, facial, and whole-head immersion in 17 degrees C water on peripheral vasoconstriction and the rate of body core cooling. Seven male subjects were studied in thermoneutral air (approximately 28 degrees C). On 3 separate days, they lay prone or supine on a bed with their heads inserted through the side of an adjustable immersion tank. Following 10 min of baseline measurements, the water level was raised such that the water immersed the dorsum, face, or whole head, with the immersion period lasting 60 min. During the first 30 min, the core (esophageal) cooling rate increased from dorsum (0.29 ± 0.2 degrees C h-1) to face (0.47 ± 0.1 degrees C h-1) to whole head (0.69 ± 0.2 degrees C h(-1)) (p whole-head immersion (114 ± 52% h(-1)) than in either facial (51 ± 47% h-1) or dorsal (41 ± 55% h(-1)) immersion (p whole-head (120.5 ± 13 kJ), facial (86.8 ± 17 kJ), and dorsal (46.0 ± 11 kJ) immersion (p whole head elicited a higher rate of vasoconstriction, the face did not elicit more vasoconstriction than the dorsum. Rather, the progressive increase in core cooling from dorsal to facial to whole-head immersion simply correlates with increased heat loss.

  13. Investigating the cooling ability of reactor vessel head injection in the Maanshan PWR using CFD simulation

    International Nuclear Information System (INIS)

    Tseng Yungshin; Lin Chihhung; Wan Jongrong; Shih Chunkuan; Tsai, F. Peter

    2011-01-01

    In order to reduce the crack growth rate on the welding of penetration pipe, Pressurized Water Reactor (PWR) of Maanshan nuclear power plant (NPP) uses vessel head injection to cool vessel lid and control rod driving components. The injection flow from the cold leg is drained by the pressure difference between cold leg and upper internal components. In this study, 10 million meshes model with 4 sub-models have been developed to simulate the thermal-hydraulic behavior by commercial CFD program FLUENT. The results indicate that the injection nozzles can provide good cooling ability to reduce the maximum temperature for lid on the vessel head. The maximum temperature of vessel lid is about 293.81degC. Based on the simulated temperature, ASME CODE N-729-1 was further used to recount the effective degradation years (EDY) and reinspection years (RIY) factors. It demonstrates that the EDY and RIY factors are still less than 1.0. Therefore, the re-inspection period for Maanshan PWR would not be significantly affected by the miner temperature difference. (author)

  14. Prediction of thermal margin for external cooling of reactor vessel lower head during a severe accident

    International Nuclear Information System (INIS)

    Yoon, Ho Jun; Suh, Kune Y.

    1998-01-01

    In the TMI-2 accident, approximately nineteen (19) tons of molten core material drained into the lower plenum. One of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 .deg. C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident management strategies. As an advanced in-vessel design concept, the COrium Attak Syndrome Immunization Structures (COASIS) are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in -vessel (COASISI) and ex-vessel (COASISO) were demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the TMI-2 and the Korean Standard Nuclear Power Plant (KSNPP) reactors. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. In studying the in-vessel severe accident phenomena, one of the main goals is to verify the cooling mechanism in the reactor vessel lower plenum and thereby to prevent the vessel failure from thermal attack by the molten debris. This paper presents the first-principle calculation results for the thermal margin for the case of external cooling of the reactor vessel lower head. Adopting the method presented by F.B. Cheung, et al., we calculated the departure from nucleate boiling ratio (DNBR) for the three cases of pool boiling, flow boiling

  15. Design and selection of materials for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.

    2011-01-01

    Sodium cooled fast reactors are currently in operation, under construction or under design by a number of countries. The design of sodium cooled fast reactor is covered by French RCC - MR code and ASME code NH. The codes cover rules as regards to materials, design and construction. These codes do not cover the effect of irradiation and environment. Elevated temperature design criteria in nuclear codes are much stringent in comparison to non nuclear codes. Sodium corrosion is not an issue in selection of materials provided oxygen impurity in sodium is controlled for which excellent reactor operating experience is available. Austenitic stainless steels have remained the choice for the permanent structures of primary sodium system. Stabilized austenitic stainless steel are rejected because of poor operating experience and non inclusion in the design codes. Route for improved creep behaviour lies in compositional modifications in 316 class steel. However, the weldability needs to be ensured. For cold leg component is non creep regime, SS 304 class steel is favoured from overall economics. Enhanced fuel burn up can be realized by the use of 9-12%Cr 1%Mo class steel for the wrapper of MOX fuel design, and cladding and wrapper for metal fuel reactors. Minor compositional modifications of 20% cold worked 15Cr-15Ni class austenitic stainless steel will be a strong candidate for the cladding of MOX fuel design in the short term. Long term objective for the cladding will be to develop oxide dispersion strengthened steel. 9%Cr 1%Mo class steel (Gr 91) is an ideal choice for integrated once through sodium heated steam generators. One needs to incorporate operating experience from reactors and thermal power stations, industrial capability and R and D feedback in preparing the technical specifications for procurement of wrought products and welding consumables to ensure reliable operation of the components and systems over the design life. The paper highlights the design approach

  16. Guidelines for selection of radiological protective head covering

    International Nuclear Information System (INIS)

    Galloway, G.R. Jr.

    1995-08-01

    The hood is recognized throughout the nuclear industry as the standard radiological protective head covering for use in radioactively contaminated work environments. As of June 15, 1995, hoods were required for all activities performed in contaminated areas at the Y-12 Plant. The use of hoods had historically been limited to those radiological activities with a high potential for personnel contamination. Due to the large size of many posted contaminated areas at the Y-12 Plant, and compounding safety factors, requirements for the use of hoods are being reevaluated. The purpose of the evaluation is to develop technically sound guidelines for the selection of hoods when prescribing radiological protective head covering. This report presents the guidelines for selection of radiological protective hoods

  17. Sperm head's birefringence: a new criterion for sperm selection.

    Science.gov (United States)

    Gianaroli, Luca; Magli, M Cristina; Collodel, Giulia; Moretti, Elena; Ferraretti, Anna P; Baccetti, Baccio

    2008-07-01

    To investigate the characteristics of birefringence in human sperm heads and apply polarization microscopy for sperm selection at intracytoplasmic sperm injection (ICSI). Prospective randomized study. Reproductive Medicine Unit, Società Italiana Studi Medicina della Riproduzione, Bologna, Italy. A total of 112 male patients had birefringent sperm selected for ICSI (study group). The clinical outcome was compared with that obtained in 119 couples who underwent a conventional ICSI cycle (control group). The proportion of birefringent spermatozoa was evaluated before and after treatment in relation to the sperm sample quality. Embryo development and clinical outcome in the study group were compared with those in the controls. Proportion of birefringent sperm heads, rates of fertilization, cleavage, pregnancy, implantation, and ongoing implantation. The proportion of birefringent spermatozoa was significantly higher in normospermic samples when compared with oligoasthenoteratospermic samples with no progressive motility and testicular sperm extraction samples. Although fertilization and cleavage rates did not differ between the study and control groups, in the most severe male factor condition (oligoasthenoteratospermic with no progressive motility and testicular sperm extraction), the rates of clinical pregnancy, ongoing pregnancy, and implantation were significantly higher in the study group versus the controls. The analysis of birefringence in the sperm head could represent both a diagnostic tool and a novel method for sperm selection.

  18. RETRAN-02 analysis of upper head cooling during controlled natural circulation cooldown of Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Fujita, N.; Helrich, R.E.; Bergeron, P.A.

    1982-01-01

    RETRAN-02 is particularly well-suited for investigating the fluid conditions in the upper head during a natural circulation cooldown. The RETRAN input model was developed with four basic objectives: (1) accurate description of the upper head cooling mechanisms; (2) proper simulation of natural circulation; (3) respresentations of operator actions required to proceed from full-power to shutdown-cooling-system conditions using both automatic and manual controls; and (4) reduction of the computer cost of simulating this evolution of approximately 10-hour duration. The response of the upper head fluid temperature calculated by RETRAN was in close agreement with measured data obtained from a natural circulation cooldown experiment performed for the Connecticut Yankee Plant, whose design is very similar to the Yankee Nuclear Power Station

  19. Selection of steam generator materials for sodium cooled fast breeders

    International Nuclear Information System (INIS)

    Berge, P.

    1977-01-01

    The sodium water heat exchangers are now considered as the stumbling block in the development of liquid metal cooled fast breeders, due to the risk of sodium-water reactions. The selection of the materials for these tube-bundles has been very broad, for the different existing, or in-project, reactors in the world: low alloy 2 1/4 Cr - 1 Mo steels (unstabilized or stabilized); 9 Cr - 1 Mo ferritic steel; 18 Cr - 10 Ni austenitic stainless steels; alloy 800. On can also add other ferritic steels, as 9 Cr - 2 Mo stabilized, which are studied for this application. In the framework of the E.D.F.-C.E.A. working group a major effort was undertaken to study the characteristics of these various materials with respect to the main criteria governing construction of the tube bundles and their performance in service: mechanical characteristics at high temperature; fabrication and welding; behavior with respect to mass transfer in sodium; carburization and decarburization; corrosion resistance. The main lines and results of this program are described [fr

  20. Effects of face/head and whole body cooling during passive heat stress on human somatosensory processing.

    Science.gov (United States)

    Nakata, Hiroki; Namba, Mari; Kakigi, Ryusuke; Shibasaki, Manabu

    2017-06-01

    We herein investigated the effects of face/head and whole body cooling during passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs) at C4' and Fz electrodes. Fourteen healthy subjects received a median nerve stimulation at the left wrist. SEPs were recorded at normothermic baseline (Rest), when esophageal temperature had increased by ~1.2°C (heat stress: HS) during passive heating, face/head cooling during passive heating (face/head cooling: FHC), and after HS (whole body cooling: WBC). The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Latency indicated speed of the subcortical and cortical somatosensory processing, while amplitude reflected the strength of neural activity. Blood flow in the internal and common carotid arteries (ICA and CCA, respectively) and psychological comfort were recorded in each session. Increases in esophageal temperature due to HS significantly decreased the amplitude of N60, psychological comfort, and ICA blood flow in the HS session, and also shortened the latencies of SEPs (all, P body temperature. Copyright © 2017 the American Physiological Society.

  1. Cold-Hearted or Cool-Headed: Physical Coldness Promotes Utilitarian Moral Judgment

    Directory of Open Access Journals (Sweden)

    Hiroko eNakamura

    2014-10-01

    Full Text Available In the current study, we examine the effect of physical coldness on personal moral dilemma judgment. Previous studies have indicated that utilitarian moral judgment—sacrificing a few people to achieve the greater good for others—was facilitated when: (1 participants suppressed an initial emotional response and deliberately thought about the utility of outcomes; (2 participants had a high-level construal mindset and focused on abstract goals (e.g., save many; or (3 there was a decreasing emotional response to sacrificing a few. In two experiments, we exposed participants to extreme cold or typical room temperature and then asked them to make personal moral dilemma judgments. The results of Experiment 1 indicated that coldness prompted utilitarian judgment, but the effect of coldness was independent from deliberate thought or abstract high-level construal mindset. As Experiment 2 revealed, coldness facilitated utilitarian judgment via reduced empathic feelings. Therefore, physical coldness did not affect the cool-headed deliberate process or the abstract high-level construal mindset. Rather, coldness biased people toward being cold-hearted, reduced empathetic concern about a sacrificed victim, and facilitated utilitarian moral judgments.

  2. Selective angiography of the avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Chan; Park, Cheong Hee; Rho, Tae Jin; Yune, Seung Ho; Rhee, Byung Chull [Chung Nam National University College of Medicine, Deajeon (Korea, Republic of)

    1988-10-15

    The diagnosis of the avascular of the femoral head (AVN) has advanced. RI scan, intraosseous pressure monitoring, intramedullary venography, CT, MRI, and selective femoral angiography are used in diagnosis. Among these methods, selective or superselective angiography is necessary to study the change of the vessels of the hip, because the vascular insufficiency could be a major etiology of AVN. Selective femoral angiography was performed for 23 hips of 22 patients who were suspected as AVN by simple rediographs and RI scans in order to estimate the change of vascularity of the femoral head. The results were as follow. 1. The alteration of vasculature appeared in 21 cases among all 23 cases (91%), which included 100% in the traumatic group (4/4 cases) and 90% in nontraumatic group (17/19 cases). 2. The affected vessles in nontraumatic group were the proximal portion of the posterior branch of the medical circumflex artery in 2 cases, the modportion of posterior branch in 2 cases, the distal portion of the posterior branch in 11 cases, and superior capsular branch in 2 cases. 3. The affected vessels in traumatic group were proximal portion in 1 cases, midportion in 1 case, and superior capsular artrey in 2 cases. 4. The obstruction of inferior casular artery was noted in 6 cases of nontraumatic group. 5. The retrograde filling of the posterior branch of medial circumflex artery were noted in 1 case from superior gluteal artery, in 1 case from inferior gluteal artery, in 1 case form superior and inferior gluteal artery and retrograde filling of inferior gluteal artery from medial circumflex artery was in 6 cases.

  3. Selective angiography of the avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Choi, Joong Chan; Park, Cheong Hee; Rho, Tae Jin; Yune, Seung Ho; Rhee, Byung Chull

    1988-01-01

    The diagnosis of the avascular of the femoral head (AVN) has advanced. RI scan, intraosseous pressure monitoring, intramedullary venography, CT, MRI, and selective femoral angiography are used in diagnosis. Among these methods, selective or superselective angiography is necessary to study the change of the vessels of the hip, because the vascular insufficiency could be a major etiology of AVN. Selective femoral angiography was performed for 23 hips of 22 patients who were suspected as AVN by simple rediographs and RI scans in order to estimate the change of vascularity of the femoral head. The results were as follow. 1. The alteration of vasculature appeared in 21 cases among all 23 cases (91%), which included 100% in the traumatic group (4/4 cases) and 90% in nontraumatic group (17/19 cases). 2. The affected vessles in nontraumatic group were the proximal portion of the posterior branch of the medical circumflex artery in 2 cases, the modportion of posterior branch in 2 cases, the distal portion of the posterior branch in 11 cases, and superior capsular branch in 2 cases. 3. The affected vessels in traumatic group were proximal portion in 1 cases, midportion in 1 case, and superior capsular artrey in 2 cases. 4. The obstruction of inferior casular artery was noted in 6 cases of nontraumatic group. 5. The retrograde filling of the posterior branch of medial circumflex artery were noted in 1 case from superior gluteal artery, in 1 case from inferior gluteal artery, in 1 case form superior and inferior gluteal artery and retrograde filling of inferior gluteal artery from medial circumflex artery was in 6 cases.

  4. Synchronous Firefly Algorithm for Cluster Head Selection in WSN

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Baskaran

    2015-01-01

    Full Text Available Wireless Sensor Network (WSN consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.

  5. Physiological and Perceived Effects of Forearm or Head Cooling During Simulated Firefighting Activity and Rehabilitation

    Science.gov (United States)

    Yeargin, Susan; McKenzie, Amy L.; Eberman, Lindsey E.; Kingsley, J. Derek; Dziedzicki, David J.; Yoder, Patrick

    2016-01-01

    Context: Cooling devices aim to protect firefighters by attenuating a rise in body temperature. Devices for head cooling (HC) while firefighting and forearm cooling (FC) during rehabilitation (RHB) intervals are commonly marketed, but research regarding their efficacy is limited. Objective: To investigate the physiological and perceived effects of HC and FC during firefighting drills and RHB. Design: Randomized controlled clinical trial. Setting: Firefighter training center. Patients or Other Participants: Twenty-seven male career firefighters (age = 39 ± 7 years; height = 169 ± 7 cm; weight = 95.4 ± 16.8 kg). Intervention(s): Firefighters were randomly assigned to 1 condition: HC (n = 9), in which participants completed drills wearing a cold gel pack inside their helmet; FC (n = 8), in which participants sat on a collapsible chair with water-immersion arm troughs during RHB; or control (n = 10), in which participants used no cooling devices. Firefighters completed four 15-minute drills (D1−D4) wearing full bunker gear and breathing apparatus. Participants had a 15-min RHB after D2 (RHB1) and D4 (RHB2). Main Outcome Measure(s): Change (Δ) in gastrointestinal temperature (TGI), heart rate (HR), physiological strain index, and perceived thermal sensation. Results: The TGI increased similarly in the HC and control groups, respectively (D1: 0.57°C ± 0.41°C, 0.73°C ± 0.30°C; D2: 0.92°C ± 0.28°C, 0.85°C ± 0.27°C; D3: −0.37°C ± 0.34°C, −0.01°C ± 0.72°C; D4: 0.25°C ± 0.42°C, 0.57°C ± 0.26°C; P > .05). The ΔHR, Δ physiological strain index, and Δ thermal sensation were similar between the HC and control groups during drills (P > .05). The FC group demonstrated a decreased TGI compared with the control group after RHB1 (−1.61°C ± 0.35°C versus −0.23°C ± 0.34°C; P .05). Conclusions: The HC did not attenuate rises in physiological or perceptual variables during firefighting drills. The FC effectively reduced TGI and the

  6. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion.

    Science.gov (United States)

    Mourot, Laurent; Bouhaddi, Malika; Gandelin, Emmanuel; Cappelle, Sylvie; Dumoulin, Gilles; Wolf, Jean-Pierre; Rouillon, Jean Denis; Regnard, Jacques

    2008-01-01

    Moderately cold head-out water immersion stimulates both baro- and cold-receptors, and triggers complex and contradictory effects on the cardiovascular system and its autonomic nervous control. To assess the effects of water immersion and cold on cardiovascular status and related autonomic nervous activity. Hemodynamic variables and indexes of autonomic nervous activity (analysis of heart rate and blood pressure variability) were evaluated in 12 healthy subjects during 3 exposures of 20 min each in the upright position, i.e., in air (AIR, 24-25 degrees C), and during head-out water immersion at 35-36 degrees C (WIn) and 26-27 degrees C (WIc). Plasma noradrenaline, systolic and diastolic blood pressure, and total peripheral resistances were reduced during WIn compared to AIR (263.9 +/- 39.4 vs. 492.5 +/- 35.7 pg x ml(-1), 116.5 +/- 3.7 and 65.4 +/- 1.7 mmHg vs. 140.8 +/- 4.7 and 89.8 +/- 2.8 mmHg, 14.1 +/- 1.0 vs. 16.3 +/- 0.9 mmHg x L(-1) x min, respectively) while they were increased during WIc (530.8 +/- 84.7 pg ml(-1), 148.0 +/- 7.0 mmHg, 80.8 +/- 3.0 mmHg, and 25.8 +/- 1.9 mmHg x L(-1) x min, respectively). The blood pressure variability was reduced to the same extent during WIc and Win compared to AIR. Heart rate decreased during WIn (67.8 +/- 2.7 vs. 81.2 +/- 2.7 bpm during AIR), in parallel with an increased cardiac parasympathetic activity. This pattern was strengthened during WIc (55.3 +/- 2.2 bpm). Thermoneutral WI lowered sympathetic activity and arterial tone, while moderate whole-body skin cooling triggered vascular sympathetic activation. Conversely, both WI and cold triggered cardiac parasympathetic activation, highlighting a complex autonomic control of the cardiovascular system.

  7. Active cooling for downhole instrumentation: Preliminary analysis and system selection

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.A.

    1988-03-01

    A feasibility study and a series of preliminary designs and analyses were done to identify candidate processes or cycles for use in active cooling systems for downhole electronic instruments. A matrix of energy types and their possible combinations was developed and the energy conversion process for each pari was identified. The feasibility study revealed conventional as well as unconventional processes and possible refrigerants and identified parameters needing further clarifications. A conceptual design or series od oesigns for each system was formulated and a preliminary analysis of each design was completed. The resulting coefficient of performance for each system was compared with the Carnot COP and all systems were ranked by decreasing COP. The system showing the best combination of COP, exchangeability to other operating conditions, failure mode, and system serviceability is chosen for use as a downhole refrigerator. 85 refs., 48 figs., 33 tabs.

  8. Hot heads & cool bodies: The conundrums of human brown adipose tissue (BAT) activity research.

    Science.gov (United States)

    Bahler, Lonneke; Holleman, Frits; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-05-01

    Brown adipose tissue is able to increase energy expenditure by converting glucose and fatty acids into heat. Therefore, BAT is able to increase energy expenditure and could thereby facilitate weight loss or at least weight maintenance. Since cold is a strong activator of BAT, most prospective research is performed during cold to activate BAT. In current research, there are roughly two methods of cooling. Cooling by lowering ambient air temperature, which uses a fixed temperature for all subjects and personalized cooling, which uses cooling blankets or vests with temperatures that can be adjusted to the individual set point of shivering. These methods might trigger mechanistically different cold responses and hence result in a different BAT activation. This hypothesis is underlined by two studies with the same research question (difference in BAT activity between Caucasians and South Asians) one study found no differences in BAT activity whereas the other did found differences in BAT activity. Since most characteristics (e.g. age, BMI) were similar in the two studies, the best explanation for the differences in outcomes is the use of different cooling protocols. One of the reasons for differences in outcomes might be the sensory input from the facial skin, which might be important for the activation of BAT. In this review we will elaborate on the differences between the two cooling protocols used to activate BAT. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. The Radio-X-ray Relation in Cool Stars: Are We Headed Toward a Divorce?

    Science.gov (United States)

    Forbrich, J.; Wolk, S. J.; Güdel, M.; Benz, A.; Osten, R.; Linsky, J. L.; McLean, M.; Loinard, L.; Berger, E.

    2011-12-01

    This splinter session was devoted to reviewing our current knowledge of correlated X-ray and radio emission from cool stars in order to prepare for new large radio observatories such as the EVLA. A key interest was to discuss why the X-ray and radio luminosities of some cool stars are in clear breach of a correlation that holds for other active stars, the so-called Güdel-Benz relation. This article summarizes the contributions whereas the actual presentations can be accessed on the splinter website.

  10. LHI (low head safety injection) emergency cooling pump test for the EPR trademark in operation with solid matter loaded water

    International Nuclear Information System (INIS)

    Ganzmann, I.; Schulte, C.

    2010-01-01

    Emergency cooling pumps are essential and indispensable components of the NPP safety philosophy. In case of a loss-of coolant accident solid matter (debris: fibrous insulation material, concrete dust, pigment particles) might be released into the coolant, LHSI (low head safety injection) pumps have to ensure their performance capacity for a certain amount of debris without damage or loss of power. The authors describe the development of a test facility. The LHSI was tested in continuous operation over a time period of 14 days with a debris content of 1500 ppm (90% mineral wool fibers, 3% concrete dust, 3% pigment particles, 4% microporous insulation material). The pump did not show any damage or loss of hydraulic power. Further tests including thermoshock conditions (temperature changes of 160 C) are planned.

  11. Head office GELSENWASSER AG. Heating and cooling with geothermal energy; Hauptverwaltung GELSENWASSER AG. Heizen und Kuehlen mit Erdwaerme

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, Franziska; Fisch, M. Norbert [Technische Univ. Braunschweig (Germany). Inst. fuer Gebaeude- und Solartechnik; Abendroth, Franz-Josef; Koring, Reinhold [Gelsenwasser AG, Gelsenkirchen (Germany)

    2011-10-24

    As part of the research project 'Heat and cold storage in the foundation area of energy-efficient office buildings' at the Institute for Building and Solar Technology of the Technical University Braunschweig (Federal Republic of Germany) the head office of Gelsenwasser AG (Gelsenkirchen, Federal Republic of Germany) in practice is studied. Optimization potentials for the energy efficiency and user comfort were developed. Detailed investigations on the operation and efficiency of the geothermal probe system for heating and cooling of the building were performed. By means of the consumption analysis, the success of the implemented optimization measures is derived and analyzed in order to develop further recommendations for the operation of buildings and facilities.

  12. Fundamental examinations for the mechanisation of the support work in headings by blasting and by using selective cut heading machines

    Energy Technology Data Exchange (ETDEWEB)

    Stoecker, H.M.; Luerig, H.J.

    1982-01-01

    Starting from the results of a stock-taking of the support methods used up to now and from exact analyses of the situation in the heading field, a concept will be elaborated with the aim, in addition to the reduction of the well-known high physical strain by the setting of the support, of rationalization of this partial procedure in case of conventional heading. The principal item is a floor-connected transportation and erection-vehicle with electro-hydraulic drive and an adjustable erection deck, which permits a fully mechanised setting of the support inclusive the side sections. By a transversible novel drilling equipment hung up at the roof of a drift a parallelization of different procedures and therewith a rationalization effect can be reached at the same time. The concept of this realizability will be demonstrated at a volume - right and power - right heading model on a scale 1:5. The developed equipment consist of operationally approved single aggregates and for the test they can also be used separately. Therewith a gradual introduction of the system is possible. At the beginning a provisional safety equipment for the direct at the face area will be introduced for the selective cut heading machine driving. According to the actual stage of the first considerations the main disadvantage of the safety equipment is the insufficient stock safety and its outrigger at the support already set.

  13. Effects of debris generated by chemical reactions on head loss through emergency-core cooling-system strainers

    International Nuclear Information System (INIS)

    Howe, K.; Ghosh, A.; Maji, A.K.; Letellier, B.C.; Johns, R.; Chang, T.Y.

    2004-01-01

    The effect of debris generated during a loss of coolant accident (LOCA) on the emergency core cooling system (ECCS) strainers has been studied via numerous avenues over the last several years. The research described in this manuscript examines the generation and effect of secondary materials -- not debris generated in the LOCA itself, but materials created by chemical reactions between exposed surfaces/debris and cooling system water. The secondary materials studied in the research were corrosion products from exposed metallic surfaces and paint chips that may precipitate out of solution, with a focus on the corrosion products of aluminium, iron, and zinc. The processes of corrosion and leaching of metals with subsequent precipitation is important because: (1) the surface area of exposed metal inside containment represents a large potential source term, even for slow chemical reactions; the chemical composition of the cooling system water (boric acid, lithium, etc.) may affect corrosion or precipitation in ways that have not been studied thoroughly in the past; and (3) an eyewitness report of the presence of gelatinous material in the Three Mile Island containment pool after the 1979 accident suggests the formation of a secondary material that has not been examined under the generic safety issue (GSI)-191 research program. This research was limited in scope and consisted only of small-scale tests. Several key questions were investigated: (1) do credible corrosion mechanisms exist for leaching metal ions from bulk solid surfaces or from zinc-based paint chips, and if so, what are the typical rate constants? (2) can corrosion products accumulate in the containment pool water to the extent that they might precipitate as new chemical species at pH and temperatures levels that are relevant to the LOCA accident sequence? and (3) how do chemical precipitants affect the head loss across an existing fibrous debris bed? A full report of the research is available. (authors)

  14. A ROBUST CLUSTER HEAD SELECTION BASED ON NEIGHBORHOOD CONTRIBUTION AND AVERAGE MINIMUM POWER FOR MANETs

    Directory of Open Access Journals (Sweden)

    S.Balaji

    2015-06-01

    Full Text Available Mobile Adhoc network is an instantaneous wireless network that is dynamic in nature. It supports single hop and multihop communication. In this infrastructure less network, clustering is a significant model to maintain the topology of the network. The clustering process includes different phases like cluster formation, cluster head selection, cluster maintenance. Choosing cluster head is important as the stability of the network depends on well-organized and resourceful cluster head. When the node has increased number of neighbors it can act as a link between the neighbor nodes which in further reduces the number of hops in multihop communication. Promisingly the node with more number of neighbors should also be available with enough energy to provide stability in the network. Hence these aspects demand the focus. In weight based cluster head selection, closeness and average minimum power required is considered for purging the ineligible nodes. The optimal set of nodes selected after purging will compete to become cluster head. The node with maximum weight selected as cluster head. Mathematical formulation is developed to show the proposed method provides optimum result. It is also suggested that weight factor in calculating the node weight should give precise importance to energy and node stability.

  15. Strategy of Cooling Parameters Selection in the Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Falkus J.

    2016-03-01

    Full Text Available This paper presents a strategy of the cooling parameters selection in the process of continuous steel casting. Industrial tests were performed at a slab casting machine at the Arcelor Mittal Poland Unit in Krakow. The tests covered 55 heats for 7 various steel grades. Based on the existing casting technology a numerical model of the continuous steel casting process was formulated. The numerical calculations were performed for three casting speeds - 0.6, 0.8 and 1 m min-1. An algorithm was presented that allows us to compute the values of the heat transfer coefficients for the secondary cooling zone. The correctness of the cooling parameter strategy was evaluated by inspecting the shell thickness, the length of the liquid core and the strand surface temperature. The ProCAST software package was used to construct the numerical model of continuous casting of steel.

  16. Selection of a cryostabilized Nb3Sn conductor cooling system for the large coil program

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Murphy, J.H.; Jones, C.K.

    1977-01-01

    The Large Coil Project (LCP) is a program to design, fabricate and test relatively large superconducting toroidal field coils for tokamak fusion reactor applications. Some basic requirements that affect the conductor design are cryostabilization, 8 tesla peak magnetic field, and a specified maximum refrigeration load. The engineering considerations that led to the selection of a forced flow supercritical helium-cooled cable conductor are described. Comparisons of forced flow supercritical helium cooled cable conductors with pool boiling cooled monolithic conductors were made with regard to a number of factors such as the thermal capacity of the coolant, the thermal design margins, propensity for conductor normalization, predictability of the thermal-flow performance, controllability of the cooling conditions, etc. It was concluded that, although there exists a number of design uncertainties and engineering problems, forced flow supercritical helium cooled conductors can provide a far more reliable coil design than the pool boiling monolithic concept. The design of a cryostabilized Nb 3 Sn hollow cabled conductor involved detailed considerations of the need for fully transposed conductor strands, the nonuniform void and helium flow distributions, heat transfer from the twisted conductor strands, and helium flow rate and pump work requirements. The uncertainties in the design are discussed and the specifications of a reference Nb 3 Sn conductor concept that meets the design requirements and constraints are presented

  17. A New Method of Selective, Rapid Cooling of the Brain: An Experimental Study

    International Nuclear Information System (INIS)

    Allers, Mats; Boris-Moeller, Fredrik; Lunderquist, Anders; Wieloch, Tadeusz

    2006-01-01

    Purpose. To determine whether retrograde perfusion of cooled blood into one internal jugular vein (IJV) in the pig can selectively reduce the brain temperature without affecting the core body temperature (CBT). Methods. In 7 domestic pigs, the left IJV was catheterized on one side and a catheter placed with the tip immediately below the rete mirabile. Thermistors were placed in both brain hemispheres and the brain temperature continuously registered. Thermistors placed in the rectum registered the CBT. From a catheter in the right femoral vein blood was aspirated with the aid of a roller pump, passed through a cooling device, and infused into the catheter in the left IJV at an initial rate of 200 ml/min. Results. Immediately after the start of the infusion of cooled blood (13.8 deg. C) into the IJV, the right brain temperature started to drop from its initial 37.9 deg. C and reached 32 deg. C within 5 min. By increasing the temperature of the perfusate a further drop in the brain temperature was avoided and the brain temperature could be kept around 32 deg. C during the experiment. In 4 of the animals a heating blanket was sufficient to compensate for the slight drop in CBT during the cooling period. Conclusions. We conclude that brain temperature can be reduced in the pig by retrograde perfusion of the internal jugular vein with cooled blood and that the core body temperature can be maintained with the aid of a heating blanket

  18. Ethnography of Cool Roof Retrofits: The Role of Rebates in the Materials Selection Process

    Energy Technology Data Exchange (ETDEWEB)

    Mazur-Stommen, Susan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-02-01

    In the summer of 2010, ethnographic research was conducted with nine households in the Bay Area and Sacramento region. The purpose of this task was to collect methodologically grounded insights into how and why consumers chose the cool roofing material they selected. These nine households comprised fifteen respondents, and their dependents. They were selected from among a pool of respondents to a mail solicitation of all Sacramento Municipal Utility District and Pacific Gas and Electric customers who had received a rebate for their cool roof retrofit. Consumers are uniformly happy with their cool roof retrofits. Consumers typically stayed very close to the aesthetic of the original roof style. Price was not a primary concern, while longevity was paramount. Consumers did not use roofing price, nor energy savings (with one exception), in tracking return on investment through energy savings. The utility rebate had little role to play in terms of incentivizing customers to choose cool materials. Contractors were critical partners in the decision-­making process.

  19. Dimensional accuracy of internal cooling channel made by selective laser melting (SLM And direct metal laser sintering (DMLS processes in fabrication of internally cooled cutting tools

    Directory of Open Access Journals (Sweden)

    Ghani S. A. C.

    2017-01-01

    Full Text Available Selective laser melting(SLM and direct metal laser sintering(DMLS are preferred additive manufacturing processes in producing complex physical products directly from CAD computer data, nowadays. The advancement of additive manufacturing promotes the design of internally cooled cutting tool for effectively used in removing generated heat in metal machining. Despite the utilisation of SLM and DMLS in a fabrication of internally cooled cutting tool, the level of accuracy of the parts produced remains uncertain. This paper aims at comparing the dimensional accuracy of SLM and DMLS in machining internally cooled cutting tool with a special focus on geometrical dimensions such as hole diameter. The surface roughness produced by the two processes are measured with contact perthometer. To achieve the objectives, geometrical dimensions of identical tool holders for internally cooled cutting tools fabricated by SLM and DMLS have been determined by using digital vernier calliper and various magnification of a portable microscope. In the current study, comparing internally cooled cutting tools made of SLM and DMLS showed that generally the higher degree of accuracy could be obtained with DMLS process. However, the observed differences in surface roughness between SLM and DMLS in this study were not significant. The most obvious finding to emerge from this study is that the additive manufacturing processes selected for fabricating the tool holders for internally cooled cutting tool in this research are capable of producing the desired internal channel shape of internally cooled cutting tool.

  20. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  1. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    Science.gov (United States)

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  2. Thermal-hydraulic code selection for modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E M.J.; Bogaard, J.P.A. van den

    1995-06-01

    In order to study the transient thermal-hydraulic system behaviour of modular high temperature gas-cooled reactors, the thermal-hydraulic computer codes RELAP5, MELCOR, THATCH, MORECA, and VSOP are considered at the Netherlands Energy Research Foundation ECN. This report presents the selection of the most appropriate codes. To cover the range of relevant accidents, a suite of three codes is recommended for analyses of HTR-M and MHTGR reactors. (orig.).

  3. Cooling systems for waste heat. Cooling systems, review and selection criteria. Kuehlsysteme fuer Abwaerme. Kuehlsysteme, Ueberblick und Auswahlkriterien

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W. (Jaeggi, Wallisellen (Switzerland))

    1990-05-01

    In many areas of ventilation, air-conditioning and refrigeration engineering, chemical and process engineering and energy production waste heat occurs. If a reduction in energy losses or heat recovery is not possible waste heat has to be drawn off through cooling systems. For this the following systems can be used: dry cooling systems, dry cooler with spray system, open-cycle wet cooler, hybrid dry cooler, and closed-cycle wet cooler. Particularly hybrid cooling systems can give acceptable solutions when the results with other systems are only unsatisfactory. (BWI).

  4. Methodology on sizing and selecting thermoelectric cooler from different TEC manufacturers in cooling system design

    International Nuclear Information System (INIS)

    Tan, F.L.; Fok, S.C.

    2008-01-01

    The search and selection for a suitable thermoelectric cooler (TEC) to optimize a cooling system design can be a tedious task as there are many product ranges from several TEC manufacturers. Although the manufacturers do provide proprietary manuals or electronic search facilities for their products, the process is still cumbersome as these facilities are incompatible. The electronic facilities often have different user interfaces and functionalities, while the manual facilities have different presentations of the performance characteristics. This paper presents a methodology to assist the designer to size and select the TECs from different manufacturers. The approach will allow designers to find quickly and to evaluate the devices from different TEC manufacturers. Based on the approach, the article introduces a new operational framework for an Internet based thermoelectric cooling system design process that would promote the interaction and collaboration between the designers and TEC manufacturers. It is hoped that this work would be useful for the advancement of future tools to assist designers to develop, analyze and optimize thermoelectric cooling system design in minimal time using the latest TECs available on the market

  5. Analytical network process based optimum cluster head selection in wireless sensor network.

    Science.gov (United States)

    Farman, Haleem; Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad

    2017-01-01

    Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of

  6. Selected Parameters of Micro-Jet Cooling Gases in Hybrid Spraying Process

    Directory of Open Access Journals (Sweden)

    Szczucka-Lasota B.

    2016-06-01

    Full Text Available The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF. The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

  7. Comparative economic performance of selected passive solar heating and cooling technologies

    Science.gov (United States)

    Rutter, W.

    1981-05-01

    The economic performance of selected passive solar heating and cooling technologies which incorporate energy storage is assessed by using a set of uniform assumptions and methodologies. Where data are available, a given system is assessed at more than one geographical location. Results are obtained in the form of both payback period and net present value for residential applications, and in terms of net present value only for industrial/commercial uses. Results indicate that ventilated trombe walls, solar roof ponds, and certain night effect/floor storage strategies are cost effective, but night effect/rock bed cooling is not. Results also show that, although direct gain out-performs trombe walls in most parts of the country, both direct gain and trombe walls usually produce a net savings in the residential sector. Generally, however, tax regulations result in net economic loss for direct gain and trombe walls used to heat industrial and commercial buildings.

  8. Effects of prolonged running in the heat and cool environments on selected physiological parameters and salivary lysozyme responses

    Directory of Open Access Journals (Sweden)

    Nur S. Ibrahim

    2017-12-01

    Conclusion: This study found similar lysozyme responses between both hot and cool trials. Thus, room/ambient temperature did not affect lysozyme responses among recreational athletes. Nevertheless, the selected physiological parameters were significantly affected by room temperature.

  9. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    International Nuclear Information System (INIS)

    Raimbault-Hartmann, H.; Bollen, G.; Beck, D.; Koenig, M.; Kluge, H.-J.; Schwarz, S.; Schark, E.; Stein, J.; Szerypo, J.

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low-energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high-mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about 1 x 10 5 has been achieved. Isobar separation has been demonstrated for radioactive rare-earth ion beams delivered by the ISOLDE on-line mass separator. (orig.)

  10. A cylindrical Penning trap for capture, mass selective cooling, and bunching of radioactive ion beams

    CERN Document Server

    Raimbault-Hartmann, H; Bollen, G; König, M; Kluge, H J; Schark, E; Stein, J; Schwarz, S; Szerypo, J

    1997-01-01

    A Penning trap ion accumulator, cooler, and buncher for low energy ion beams has been developed for the ISOLTRAP mass spectrometer at ISOLDE/CERN. A cylindrical electrode configuration is used for the creation of a nested trapping potential. This is required for efficient accumulation of externally produced ions and for high mass selectivity by buffer gas cooling. The design goal of a mass resolving power of about $1\\cdot 10^{5}$ has been achieved. Isobar separation has been demonstrated for radioactive rare earth ion beams delivered by the ISOLDE on-line mass separator.

  11. Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis

    Science.gov (United States)

    Kurtulus, Bedri; Flipo, Nicolas

    2012-01-01

    The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.

  12. Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Science.gov (United States)

    Lundin, Bruce T; Povolny, John H; Chelko, Louis J

    1949-01-01

    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed.

  13. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1991-07-15

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side.

  14. Angiographic analysis of avascular necrosis of a femoral head -selective angiography of medial femoral circumflex artery-

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Yoon, Yup; Lee, Sun Wha; Lim, Jae Hoon

    1991-01-01

    The degree of anatomical revascularization of a necrotic femoral head and traumatic hip would provide information about treatment and prognosis. The authors analyzed the vascular changes of femoral head among unilateral avascular necrosis, bilateral avascular necrosis, and traumatic hips. Forty - four patients with avascular necrosis and 19 patients with traumatic hips were examined by selective angiography of the medial femoral circumflex artery. In the traumatic hip cases, 12 (63%) showed occlusion, 2 (11%) hypertrophy of the capsular branches, and 5 ( 26 % ) were normal . In the avascular necrosis cases, 15 (25%) showed occlusion, 39 (67%) had hypertrophy of the capsular branches, and 4 (7%) had normal findings. Hypertrophy of the superior capsular branch of the medial femoral circumflex artery is more frequently observed in avascular necrosis than in traumatic hip. Bilateral avascular necrosis reveals more frequent incidences than unilateral cases. Selective angiography could help in the therapy plan and also provide information about the contralateral side

  15. The application of super-selective external carotid artery embolization in head and neck diseases

    International Nuclear Information System (INIS)

    Xin Yongtong; Wei Dingtai; Lin Shifeng; Ye Jian'an; Chen Youying

    2006-01-01

    Objective: To study the application of super-selective external carotid artery embolization in head and neck diseases. Methods: DSA and super-selective external carotid artery embolization were carried out in 41 cases of head and neck diseases including 12 cases of epistaxis, 7 nasopharyngeal fibroangioma, 1 traumatic arterial bleeding, 14 vascular malformation, and 7 malignancies. Results: No recurrence of nose bleeding after embolization of epistaxis was seen within 6-12 month follow up. The operative bleeding was reduced significantly by preoperative embolization in nasopharyngeal fibroangioma. No recurrence of bleeding was reduced significantly by preoperative embolization in nasopharyngeal fibroangioma. No recurrence of bleeding was achieved after embolization of traumatic artery. Among the case of vascular malformation, 3 were proven to be significantly efficient, 6 efficient, and 5 inefficient in the 6-12 month follow up. Among the 7 malignant cases, 3 survived more than 2 years. Conclusion: Super-selective external carotid artery embolization is safe and effective in the treatment of head and neck diseases. (authors)

  16. Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gulnaz Ahmed

    2017-02-01

    Full Text Available The longer network lifetime of Wireless Sensor Networks (WSNs is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED clustering, Artificial Bee Colony (ABC, Zone Based Routing (ZBR, and Centralized Energy Efficient Clustering (CEEC using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput.

  17. Understanding the selection of core head design features to match precisely challenging well applications

    Energy Technology Data Exchange (ETDEWEB)

    Zambrana, Roberto; Sousa, J. Tadeu V. de; Antunes, Ricardo [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Reliable rock mechanical information is very important for optimum reservoir development. This information can help specialists to accurately estimate reserves, reservoir compaction, sand production, stress field orientation, etc. In all cases, the solutions to problems involving rock mechanics lead to significant cost savings. Consequently, it is important that the decisions be based on the most accurate information possible. For the describing rock mechanics, cores represent the major source of data and therefore should be of good quality. However, there are several well conditions that cause coring and core recovery to be difficult, for example: unconsolidated formations; laminated and fractured rocks; critical mud losses, etc. The problem becomes even worse in high-inclination wells with long horizontal sections. In such situations, the optimum selections of core heads become critical. This paper will discuss the most important design features that enable core heads to be matched precisely to various challenging applications. Cases histories will be used to illustrate the superior performance of selected core heads. They include coring in horizontal wells and in harsh well conditions with critical mud losses. (author)

  18. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  19. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure - Scoping Assessment

    International Nuclear Information System (INIS)

    Robb, Kevin R.

    2017-01-01

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  20. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure – Scoping Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  1. The Selection Method of RCM in the Primary Cooling System of RSG GA. Siwabessy Related to Functions as the Primary Cooling Reactor RSG GA. Siwabessy

    International Nuclear Information System (INIS)

    Mohammad Tahril Azis; Salman Suprawhardana, M.; Teguh Pudji Purwanto

    2010-01-01

    Reactor RSG GA. Siwabessy to ensure the temperature inside the reactor core and reflectors within the limits of allowable operations during reactor operation. The primary cooling system components must refer to the thermal power reactors and to minimize failure probability of components to operate the reactor in safe and secure. The RCM Method Development (Reliability Centered Maintenance) with a web-based Free Open Source Software (FOSS)/GPL (General Public License), will assist the maintenance support information system that can work in the intranet / internet. Free Open Source Software (FOSS) is software that can provide assurance to the user to perform the development, sharing and make changes if necessary, especially users feel confident that the software actually legal and free (free software). The RCM method recommends maintenance types of 52 task selection to be applied in the primary cooling system with details time directed (td) 35% (18 tasks), condition directed (cd) 63% (33 tasks) and 1% failure finding (1 task). (author)

  2. Cluster Head Selection in a Homogeneous Wireless Sensor Network Ensuring Full Connectivity with Minimum Isolated Nodes

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2014-01-01

    Full Text Available The research work proposes a cluster head selection algorithm for a wireless sensor network. A node can be a cluster head if it is connected to at least one unique neighbor node where the unique neighbor is the one that is not connected to any other node. If there is no connected unique node then the CH is selected on the basis of residual energy and the number of neighbor nodes. With the increase in number of clusters, the processing energy of the network increases; hence, this algorithm proposes minimum number of clusters which further leads to increased network lifetime. The major novel contribution of the proposed work is an algorithm that ensures a completely connected network with minimum number of isolated nodes. An isolated node will remain only if it is not within the transmission range of any other node. With the maximum connectivity, the coverage of the network is automatically maximized. The superiority of the proposed design is verified by simulation results done in MATLAB, where it clearly depicts that the total numbers of rounds before the network dies out are maximum compared to other existing protocols.

  3. Secure and Fair Cluster Head Selection Protocol for Enhancing Security in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    B. Paramasivan

    2014-01-01

    Full Text Available Mobile ad hoc networks (MANETs are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.

  4. Secure and fair cluster head selection protocol for enhancing security in mobile ad hoc networks.

    Science.gov (United States)

    Paramasivan, B; Kaliappan, M

    2014-01-01

    Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.

  5. A hybrid algorithm for selecting head-related transfer function based on similarity of anthropometric structures

    Science.gov (United States)

    Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping

    2010-09-01

    As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.

  6. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests.

    Science.gov (United States)

    Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A

    2017-09-15

    Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code

  7. Percolation cooling of the Three Mile Island Unit 2 lower head by way of thermal cracking and gap formation

    DEFF Research Database (Denmark)

    Thomsen, K.L.

    2002-01-01

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall The bulk permeability of the cracked top crust is estimated based on simple...... fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem...

  8. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    International Nuclear Information System (INIS)

    Thomsen, K.L.

    2002-01-01

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate

  9. Gas Reactor International Cooperative Program. Interim report. Construction and operating experience of selected European Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    1978-09-01

    The construction and operating experience of selected European Gas-Cooled Reactors is summarized along with technical descriptions of the plants. Included in the report are the AVR Experimental Pebble Bed Reactor, the Dragon Reactor, AGR Reactors, and the Thorium High Temperature Reactor (THTR). The study demonstrates that the European experience has been favorable and forms a good foundation for the development of Advanced High Temperature Reactors

  10. On the physics of laser-induced selective photothermolysis of hair follicles: Influence of wavelength, pulse duration, and epidermal cooling.

    Science.gov (United States)

    Svaasand, Lars O; Nelson, J Stuart

    2004-01-01

    The physical basis for optimization of wavelength, pulse duration, and cooling for laser-induced selective photothermolysis of hair follicles in human skin is discussed. The results indicate that the most important optimization parameter is the cooling efficiency of the technique utilized for epidermal protection. The optical penetration is approximately the same for lasers at 694, 755, and 800 nm. The penetration of radiation from Nd:yttrium-aluminum-garnet lasers at 1064 nm is, however, somewhat larger. Photothermal damage to the follicle is shown to be almost independent of laser pulse duration up to 100 ms. The results reveal that epidermal cooling by a 30-80-ms-long cryogen spurt immediately before laser exposure is the only efficient technique for laser pulse durations less than 10 ms. For longer pulse durations in the 30-100 ms range, protection can be done efficiently by skin cooling during laser exposure. For laser pulses of 100 ms, an extended precooling period, e.g., by bringing a cold object into good thermal contact with the skin for about 1 s, can be of value. Thermal quenching of laser induced epidermal temperature rise after pulsed exposure can most efficiently be done with a 20 ms cryogen spurt applied immediately after irradiation. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  11. Balanced Cluster Head Selection Based on Modified k-Means in a Distributed Wireless Sensor Network

    OpenAIRE

    Periyasamy, Sasikumar; Khara, Sibaram; Thangavelu, Shankar

    2016-01-01

    A major problem with Wireless Sensor Networks (WSNs) is the maximization of effective network lifetime through minimization of energy usage in the network nodes. A modified k-means (Mk-means) algorithm for clustering was proposed which includes three cluster heads (simultaneously chosen) for each cluster. These cluster heads (CHs) use a load sharing mechanism to rotate as the active cluster head, which conserves residual energy of the nodes, thereby extending network lifetime. Moreover, it re...

  12. Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals

    Science.gov (United States)

    Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.

    2017-12-01

    On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.

  13. Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection.

    Science.gov (United States)

    Gianaroli, Luca; Magli, M Cristina; Ferraretti, Anna P; Crippa, Andor; Lappi, Michela; Capitani, Serena; Baccetti, Baccio

    2010-02-01

    To verify clinical outcome after injection of spermatozoa that have undergone the acrosome reaction (reacted spermatozoa) vs. those still having an intact acrosome (nonreacted spermatozoa). Prospective, randomized study. Reproductive Medicine Unit, Italian Society for the Study of Reproductive Medicine, Bologna, Italy. According to a prospective randomization including 71 couples with severe male factor infertility, intracytoplasmic sperm injection (ICSI) was performed under polarized light that permitted analysis of the pattern of birefringence in the sperm head. Twenty-three patients had their oocytes injected with reacted spermatozoa, 26 patient's oocytes were injected with nonreacted spermatozoa, and in 22 patients both reacted and nonreacted spermatozoa were injected. Intracytoplasmic sperm injection was performed under polarized light to selectively inject acrosome-reacted and acrosome-nonreacted spermatozoa. Rates of fertilization, cleavage, pregnancy, implantation, and ongoing implantation. There was no effect on the fertilizing capacity and embryo development of either type of sperm, whereas the implantation rate was higher in oocytes injected with reacted spermatozoa (39.0%) vs. those injected with nonreacted spermatozoa (8.6%). The implantation rate was 24.4% in the group injected with both reacted and nonreacted spermatozoa. The delivery rate per cycle followed the same trend. Spermatozoa that have undergone the acrosome reaction seem to be more prone to supporting the development of viable ICSI embryos. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Bautz, M. W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Vikhlinin, A.; Stalder, B.; Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); De Haan, T. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Lin, H. W. [Caddo Parish Magnet High School, Shrevport, LA 71101 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bocquet, S.; Desai, S. [Department of Physics, Ludwig-Maximilians-Universitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Cho, H. M. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Clocchiatti, A., E-mail: mcdonald@space.mit.edu [Departamento de Astronomia y Astrosifica, Pontificia Universidad Catolica (Chile); and others

    2013-09-01

    We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z {approx} 0 to z {approx} 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profile in the inner {approx}100 kpc has not changed dramatically since z {approx} 1, implying that feedback must be providing nearly constant energy injection to maintain the observed ''entropy floor'' at {approx}10 keV cm{sup 2}. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density ({rho}{sub g,0}/{rho}{sub crit}) increasing by an order of magnitude from z {approx} 1 to z {approx} 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, {approx}150 M{sub Sun} yr{sup -1} cooling flow that is unable to cool below entropies of 10 keV cm{sup 2} and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z{sub cool}=1.0{sup +1.0}{sub -0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z {approx}> 0.75), galaxy clusters may be classified as ''cooling flows

  15. Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    Marcio P. Arruda

    2015-11-01

    Full Text Available Genomic selection (GS is a breeding method that uses marker–trait models to predict unobserved phenotypes. This study developed GS models for predicting traits associated with resistance to head blight (FHB in wheat ( L.. We used genotyping-by-sequencing (GBS to identify 5054 single-nucleotide polymorphisms (SNPs, which were then treated as predictor variables in GS analysis. We compared how the prediction accuracy of the genomic-estimated breeding values (GEBVs was affected by (i five genotypic imputation methods (random forest imputation [RFI], expectation maximization imputation [EMI], -nearest neighbor imputation [kNNI], singular value decomposition imputation [SVDI], and the mean imputation [MNI]; (ii three statistical models (ridge-regression best linear unbiased predictor [RR-BLUP], least absolute shrinkage and operator selector [LASSO], and elastic net; (iii marker density ( = 500, 1500, 3000, and 4500 SNPs; (iv training population (TP size ( = 96, 144, 192, and 218; (v marker-based and pedigree-based relationship matrices; and (vi control for relatedness in TPs and validation populations (VPs. No discernable differences in prediction accuracy were observed among imputation methods. The RR-BLUP outperformed other models in nearly all scenarios. Accuracies decreased substantially when marker number decreased to 3000 or 1500 SNPs, depending on the trait; when sample size of the training set was less than 192; when using pedigree-based instead of marker-based matrix; or when no control for relatedness was implemented. Overall, moderate to high prediction accuracies were observed in this study, suggesting that GS is a very promising breeding strategy for FHB resistance in wheat.

  16. Selection of axial hydraulic turbines for low-head microhydropower plants

    Science.gov (United States)

    Šoukal, J.; Pochylý, F.; Varchola, M.; Parygin, A. G.; Volkov, A. V.; Khovanov, G. P.; Naumov, A. V.

    2015-12-01

    The creation of highly efficient hydroturbines for low-head microhydropower plants is considered. The use of uncontrolled (propeller) hydroturbines is a promising means of minimizing costs and the time for their recoupment. As an example, experimental results from Brno University of Technology are presented. The model axial hydraulic turbine produced by Czech specialists performs well. The rotor diameter of this turbine is 194 mm. In the design of the working rotor, ANSYS Fluent software is employed. Means of improving the efficiency of microhydropower plants by optimal selection of the turbine parameters in the early stages of design are outlined. The energy efficiency of the hydroturbine designed for use in a microhydropower plant may be assessed on the basis of the coefficient of energy utilization, which is a function of the total losses in all the pipeline elements and losses in the channel including the hydroturbine rotor. The limit on the coefficient of energy utilization in the pressure pipeline is the hydraulic analog of the Betz-Joukowsky limit, which is widely used in the design of wind generators. The proposed approach is experimentally verified at Moscow Power Engineering Institute. A model axial hydraulic turbine with four different rotors is designed for the research. The diameter of all four rotors is the same: 80 mm. The pipeline takes the form of a siphon. Working rotor R2, designed with parameter optimization, is characterized by the highest coefficient of energy utilization of the pressure pipeline and maximum efficiency. That confirms that the proposed approach is a promising means of maximizing the overall energy efficiency of the microhydropower plant.

  17. A computer program to calculate nuclide yields in complex decay chain for selection of optimum irradiation and cooling condition

    International Nuclear Information System (INIS)

    Takeda, Tsuneo

    1977-11-01

    This report is prepared as a user's input manual for a computer code CODAC-No.5 and provides a general description of the code and instructions for its use. The code represents a modified version of the CODAC-No.4 code. The code developed is capable of calculating radioactive nuclide yields in an any given complex decay and activation chain independent of irradiation history. In this code, eighteen kinds of valuable tables and graphs can be prepared for output. They are available for selection of optimum irradiation and cooling conditions and for other intentions in accordance with irradiation and cooling. For a example, the ratio of a nuclide yield to total nuclide yield depending on irradiation and cooling times is obtained. In these outputs, several kinds of complex and intricate equations and others are included. This code has almost the same input forms as that of CODAC-No.4 code excepting input of irradiation history data. Input method and formats used for this code are very simple for any kinds of nuclear data. List of FORTRAN statements, examples of input data and output results and list of input parameters and its definitions are given in this report. (auth.)

  18. Thermodynamic data for selected gas impurities in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.C.

    1976-12-01

    The literature of thermodynamic data for selected fission-product species is reviewed and supplemented in support of complex chemical equilibrium calculations applied to fission-product distributions in the primary coolant of high-temperature gas-cooled reactors. Thermodynamic functions and heats and free energies of formation are calculated and tabulated to 3000 0 K for CsI (s,l,g), Cs 2 I 2 (g), CH 3 I(g), COI 2 (g), and CsH(g). 79 references

  19. Cooling towers

    International Nuclear Information System (INIS)

    Korik, L.; Burger, R.

    1992-01-01

    What is the effect of 0.6C (1F) temperature rise across turbines, compressors, or evaporators? Enthalpy charts indicate for every 0.6C (1F) hotter water off the cooling tower will require an additional 2 1/2% more energy cost. Therefore, running 2.2C (4F) warmer due to substandard cooling towers could result in a 10% penalty for overcoming high heads and temperatures. If it costs $1,250,000.00 a year to operate the system, $125,000.00 is the energy penalty for hotter water. This paper investigates extra fuel costs involved in maintaining design electric production with cooling water 0.6C (1F) to 3C (5.5F) hotter than design. If design KWH cannot be maintained, paper will calculate dollar loss of saleable electricity. The presentation will conclude with examining the main causes of deficient cold water production. State-of-the-art upgrading and methodology available to retrofit existing cooling towers to optimize lower cooling water temperatures will be discussed

  20. Selective pathologies of the head and neck in children: a developmental perspective.

    Science.gov (United States)

    Ozolek, John A

    2009-09-01

    The range of pathology seen in the head and neck region is truly amazing and to a large extent probably mirrors the complex signaling pathways and careful orchestration of events that occurs between the primordial germ layers during the development of this region. As is true in general for the entire discipline of pediatric pathology, the head and neck pathology within this age group is as diverse and different as its adult counterpart. Cases that come across the pediatric head and neck surgical pathology bench are more heavily weighted toward developmental and congenital lesions such as branchial cleft anomalies, thyroglossal duct cysts, ectopias, heterotopias, choristomas, and primitive tumors. Many congenital "benign" lesions can cause significant morbidity and even mortality if they compress the airway or other vital structures. Exciting investigations into the molecular embryology of craniofacial development have begun to shed light on the pathogenesis of craniofacial developmental lesions and syndromes. Much more investigation is needed, however, to intertwine aberrations in the molecular ontogeny and development of the head and neck regions to the represented pathology. This review will integrate traditional morphologic embryology with some of the recent advances in the molecular pathways of head and neck development followed by a discussion of a variety of developmental lesions finishing with tumors presumed to be derived from pluripotent/progenitor cells and tumors that show anomalous or aborted development.

  1. Rapid analysis of malathion in blood using head space-solid phase microextraction and selected ion monitoring.

    Science.gov (United States)

    Namera, A; Yashiki, M; Nagasawa, N; Iwasaki, Y; Kojima, T

    1997-08-04

    A simple and rapid method for analysis of malathion in blood was developed using head space-solid phase microextraction (HS-SPME) and gas chromatography mass spectrometry/ electron impact ionization-selected ion monitoring (GC-MS/EI-SIM). A vial containing a blood sample, ammonium sulphate, sulphuric acid and fenitrothion as an internal standard, was heated at 90 degrees C for 15 min. The extraction fiber of the SPME was exposed for 5 min in the head space of the vial. The compounds absorbed on the fiber were detached by exposing the fibre in the injection port of GC-MS. A straight calibration curve was obtained between malathion concentrations of 2.5 to 50.0 micrograms g-1 in blood. No interfering substances were found, and the time for analysis was 40 min for one sample.

  2. Rich: Region-based Intelligent Cluster-Head Selection and Node Deployment Strategy in Concentric-based WSNs

    Directory of Open Access Journals (Sweden)

    FAN, C.-S.

    2013-11-01

    Full Text Available In a random deployment, sensor nodes are scattered randomly in the sensing field. Hence, the coverage can not be guaranteed. In contrast, the coverage of uniformly deployment is in general larger than the random deployment. However, uniformly deployment strategy may cause unbalanced traffic pattern in wireless sensor networks (WSNs. In this situation, larger load may be imposed to CHs (cluster heads around the sink. Therefore, CHs close to the sink use up their energy earlier than those farther away from the sink. To overcome this problem, we propose a novel node deployment strategy in the concentric model, namely, Region-based Intelligent Cluster-Head selection and node deployment strategy (called Rich. The coverage, energy consumption and data routing issues are well investigated and taken into consideration in the proposed Rich scheme. The simulation results show that the proposed Rich alleviates the unbalanced traffic pattern significantly, prolongs network lifetime and achieves satisfactory coverage ratio.

  3. Proposals for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1976-01-01

    Design and operational experience of CEGB gas cooled reactors and certain overseas reactor plant is reviewed in relation to in-service inspection and monitoring capabilities. Design guidelines and preliminary proposals are given for in-service inspection and monitoring of selected components located within or part of the primary containment of sodium cooled fast reactors. Specific comments are made on the items of further design and development work believed to be necessary

  4. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  5. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Science.gov (United States)

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  6. Selected hydrologic data from a wastewater spray disposal site on Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.; Belval, D.L.

    1985-01-01

    This study presents data collected during a study of the effects on the water table aquifer from wastewater application at rates of up to 5 inches per week on a wastewater spray disposal site on Hilton Head Island, South Carolina. The study was conducted from April 1982 through December 1983. The disposal site covers approximately 14 acres. Water level and water quality data from organic, inorganic, and nutrient analyses from the water table aquifer to a depth of 30 ft and similar water quality data from the wastewater treatment plant are included. (USGS)

  7. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  8. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  9. Conformational cooling and conformation selective aggregation in dimethyl sulfite isolated in solid rare gases

    Science.gov (United States)

    Borba, Ana; Gómez-Zavaglia, Andrea; Fausto, Rui

    2006-08-01

    Dimethyl sulfite has three conformers of low energy, GG, GT and GG', which have significant populations in the gas phase at room temperature. According to theoretical predictions, the GT and GG' conformers are higher in energy than the GG conformer by 0.83 and 1.18 kJ mol -1, respectively, while the barriers associated with the GG'→GT and GT→GG isomerizations are 1.90 and 9.64 kJ mol -1, respectively. Experimental data obtained for the compound isolated in solid argon, krypton and xenon demonstrated that the GG'→GT energy barrier is low enough to allow an extensive conversion of the GG' form into the GT conformer during deposition of the matrices, the extent of the conversion increasing along the series Arselective aggregation, with the most stable form, which has the highest dipole moment, aggregating more easily than the remaining experimentally relevant conformers (GT and GG').

  10. MUCOSITIS PREVENTION BY SELECTIVE ELIMINATION OF ORAL FLORA IN IRRADIATED HEAD AND NECK-CANCER PATIENTS

    NARCIS (Netherlands)

    SPIJKERVET, FKL; VANSAENE, HKF; VANSAENE, JJM; PANDERS, AK; VERMEY, A; MEHTA, DM

    1990-01-01

    Mucositis induced by irradiation is the reactive inflammatory-like process of the oropharyngeal mucous membranes following irradiation. Bacteria colonizing the oral tissues are thought to contribute to this inflammatory process. The eradication of Gram-negative bacilli (selective elimination of oral

  11. Cooling systems

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1978-01-01

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  12. The influence of intrinsic sympathomimetic activity and beta-1 receptor selectivity on the recovery of finger skin temperature after finger cooling in normotensive subjects.

    Science.gov (United States)

    Lenders, J W; Salemans, J; de Boo, T; Lemmens, W A; Thien, T; van't Laar, A

    1986-03-01

    A double-blind randomized study was designed to investigate differences in the recovery of finger skin temperature after finger cooling during dosing with placebo or one of four beta-blockers: propranolol, atenolol, pindolol, and acebutolol. In 11 normotensive nonsmoking subjects, finger skin temperature was measured with a thermocouple before and 20 minutes after immersion of one hand in a water bath at 16 degrees C. This finger cooling test caused no significant changes in systemic hemodynamics such as arterial blood pressure, heart rate, and forearm blood flow. The recovery of finger skin temperature during propranolol dosing was better than that during pindolol and atenolol dosing. There were no differences between the recoveries of skin temperature during pindolol, atenolol, and acebutolol dosing. Thus we could demonstrate no favorable effect of intrinsic sympathomimetic activity or beta 1-selectivity on the recovery of finger skin temperature after finger cooling.

  13. Cool visitors

    CERN Multimedia

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  14. Cooling techniques

    International Nuclear Information System (INIS)

    Moeller, S.P.

    1994-01-01

    After an introduction to the general concepts of cooling of charged particle beams, some specific cooling methods are discussed, namely stochastic, electron and laser cooling. The treatment concentrates on the physical ideas of the cooling methods and only very crude derivations of cooling times are given. At the end three other proposed cooling schemes are briefly discussed. (orig.)

  15. Heading for the hills: risk avoidance drives den site selection in African wild dogs.

    Science.gov (United States)

    Jackson, Craig R; Power, R John; Groom, Rosemary J; Masenga, Emmanuel H; Mjingo, Ernest E; Fyumagwa, Robert D; Røskaft, Eivin; Davies-Mostert, Harriet

    2014-01-01

    Compared to their main competitors, African wild dogs (Lycaon pictus) have inferior competitive abilities and interspecific competition is a serious fitness-limiting factor. Lions (Panthera leo) are the dominant large carnivore in African savannah ecosystems and wild dogs avoid them both spatially and temporally. Wild dog young are particularly vulnerable and suffer high rates of mortality from lions. Since lions do not utilize all parts of the landscape with an equal intensity, spatial variation in lion densities can be exploited by wild dogs both during their general ranging behaviour, but more specifically when they are confined to a den with vulnerable young. Since patches of rugged terrain are associated with lower lion densities, we hypothesized that these comparatively safe habitats should be selected by wild dogs for denning. We investigated the relationship between the distribution of 100 wild dog den sites and the occurrence of rugged terrain in four wild dog populations located in Tanzania, Zimbabwe and South Africa. A terrain ruggedness index was derived from a 90 m digital elevation model and used to map terrain ruggedness at each site. We compared characteristics of actual and potential (random) den sites to determine how wild dogs select den sites. The distributions of wild dog dens were strongly associated with rugged terrain and wild dogs actively selected terrain that was more rugged than that available on average. The likelihood of encountering lions is reduced in these habitats, minimizing the risk to both adults and pups. Our findings have important implications for the conservation management of the species, especially when assessing habitat suitability for potential reintroductions. The simple technique used to assess terrain ruggedness may be useful to investigate habitat suitability, and even predict highly suitable denning areas, across large landscapes.

  16. Heading for the hills: risk avoidance drives den site selection in African wild dogs.

    Directory of Open Access Journals (Sweden)

    Craig R Jackson

    Full Text Available Compared to their main competitors, African wild dogs (Lycaon pictus have inferior competitive abilities and interspecific competition is a serious fitness-limiting factor. Lions (Panthera leo are the dominant large carnivore in African savannah ecosystems and wild dogs avoid them both spatially and temporally. Wild dog young are particularly vulnerable and suffer high rates of mortality from lions. Since lions do not utilize all parts of the landscape with an equal intensity, spatial variation in lion densities can be exploited by wild dogs both during their general ranging behaviour, but more specifically when they are confined to a den with vulnerable young. Since patches of rugged terrain are associated with lower lion densities, we hypothesized that these comparatively safe habitats should be selected by wild dogs for denning. We investigated the relationship between the distribution of 100 wild dog den sites and the occurrence of rugged terrain in four wild dog populations located in Tanzania, Zimbabwe and South Africa. A terrain ruggedness index was derived from a 90 m digital elevation model and used to map terrain ruggedness at each site. We compared characteristics of actual and potential (random den sites to determine how wild dogs select den sites. The distributions of wild dog dens were strongly associated with rugged terrain and wild dogs actively selected terrain that was more rugged than that available on average. The likelihood of encountering lions is reduced in these habitats, minimizing the risk to both adults and pups. Our findings have important implications for the conservation management of the species, especially when assessing habitat suitability for potential reintroductions. The simple technique used to assess terrain ruggedness may be useful to investigate habitat suitability, and even predict highly suitable denning areas, across large landscapes.

  17. Selected biological markers in various vascular lesions of the head and neck

    Directory of Open Access Journals (Sweden)

    Zuzanna Gronkiewicz

    2014-10-01

    Full Text Available Vascular anomalies are divided according to the contemporary system of classification into two groups: tumors and malformations. However, there is no consensus on juvenile angiofibroma’s place in that system. The general characteristics of selected markers of angiogenesis and tissue remodeling are presented in the series in the context of current knowledge in the field of pathophysiology of vascular lesions. The mentioned markers are currently the subjects of multidirectional studies in oncology, as they take part in the process of neoangiogenesis and proliferation of tumors. Nevertheless, they have not been widely examined in vascular lesions. The indirect goal of that series is to indicate the possible research direction on vascular lesions to determine their molecular profile, to create a more specific system of classification, and above all to develop new diagnostic and treatment methods.

  18. Optimized Energy Harvesting, Cluster-Head Selection and Channel Allocation for IoTs in Smart Cities

    Science.gov (United States)

    Aslam, Saleem; Hasan, Najam Ul; Jang, Ju Wook; Lee, Kyung-Geun

    2016-01-01

    This paper highlights three critical aspects of the internet of things (IoTs), namely (1) energy efficiency, (2) energy balancing and (3) quality of service (QoS) and presents three novel schemes for addressing these aspects. For energy efficiency, a novel radio frequency (RF) energy-harvesting scheme is presented in which each IoT device is associated with the best possible RF source in order to maximize the overall energy that the IoT devices harvest. For energy balancing, the IoT devices in close proximity are clustered together and then an IoT device with the highest residual energy is selected as a cluster head (CH) on a rotational basis. Once the CH is selected, it assigns channels to the IoT devices to report their data using a novel integer linear program (ILP)-based channel allocation scheme by satisfying their desired QoS. To evaluate the presented schemes, exhaustive simulations are carried out by varying different parameters, including the number of IoT devices, the number of harvesting sources, the distance between RF sources and IoT devices and the primary user (PU) activity of different channels. The simulation results demonstrate that our proposed schemes perform better than the existing ones. PMID:27918424

  19. Optimized Energy Harvesting, Cluster-Head Selection and Channel Allocation for IoTs in Smart Cities.

    Science.gov (United States)

    Aslam, Saleem; Hasan, Najam Ul; Jang, Ju Wook; Lee, Kyung-Geun

    2016-12-02

    This paper highlights three critical aspects of the internet of things (IoTs), namely (1) energy efficiency, (2) energy balancing and (3) quality of service (QoS) and presents three novel schemes for addressing these aspects. For energy efficiency, a novel radio frequency (RF) energy-harvesting scheme is presented in which each IoT device is associated with the best possible RF source in order to maximize the overall energy that the IoT devices harvest. For energy balancing, the IoT devices in close proximity are clustered together and then an IoT device with the highest residual energy is selected as a cluster head (CH) on a rotational basis. Once the CH is selected, it assigns channels to the IoT devices to report their data using a novel integer linear program (ILP)-based channel allocation scheme by satisfying their desired QoS. To evaluate the presented schemes, exhaustive simulations are carried out by varying different parameters, including the number of IoT devices, the number of harvesting sources, the distance between RF sources and IoT devices and the primary user (PU) activity of different channels. The simulation results demonstrate that our proposed schemes perform better than the existing ones.

  20. Optimized Energy Harvesting, Cluster-Head Selection and Channel Allocation for IoTs in Smart Cities

    Directory of Open Access Journals (Sweden)

    Saleem Aslam

    2016-12-01

    Full Text Available This paper highlights three critical aspects of the internet of things (IoTs, namely (1 energy efficiency, (2 energy balancing and (3 quality of service (QoS and presents three novel schemes for addressing these aspects. For energy efficiency, a novel radio frequency (RF energy-harvesting scheme is presented in which each IoT device is associated with the best possible RF source in order to maximize the overall energy that the IoT devices harvest. For energy balancing, the IoT devices in close proximity are clustered together and then an IoT device with the highest residual energy is selected as a cluster head (CH on a rotational basis. Once the CH is selected, it assigns channels to the IoT devices to report their data using a novel integer linear program (ILP-based channel allocation scheme by satisfying their desired QoS. To evaluate the presented schemes, exhaustive simulations are carried out by varying different parameters, including the number of IoT devices, the number of harvesting sources, the distance between RF sources and IoT devices and the primary user (PU activity of different channels. The simulation results demonstrate that our proposed schemes perform better than the existing ones.

  1. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.

    Science.gov (United States)

    Onogi, Akio; Watanabe, Maya; Mochizuki, Toshihiro; Hayashi, Takeshi; Nakagawa, Hiroshi; Hasegawa, Toshihiro; Iwata, Hiroyoshi

    2016-04-01

    It is suggested that accuracy in predicting plant phenotypes can be improved by integrating genomic prediction with crop modelling in a single hierarchical model. Accurate prediction of phenotypes is important for plant breeding and management. Although genomic prediction/selection aims to predict phenotypes on the basis of whole-genome marker information, it is often difficult to predict phenotypes of complex traits in diverse environments, because plant phenotypes are often influenced by genotype-environment interaction. A possible remedy is to integrate genomic prediction with crop/ecophysiological modelling, which enables us to predict plant phenotypes using environmental and management information. To this end, in the present study, we developed a novel method for integrating genomic prediction with phenological modelling of Asian rice (Oryza sativa, L.), allowing the heading date of untested genotypes in untested environments to be predicted. The method simultaneously infers the phenological model parameters and whole-genome marker effects on the parameters in a Bayesian framework. By cultivating backcross inbred lines of Koshihikari × Kasalath in nine environments, we evaluated the potential of the proposed method in comparison with conventional genomic prediction, phenological modelling, and two-step methods that applied genomic prediction to phenological model parameters inferred from Nelder-Mead or Markov chain Monte Carlo algorithms. In predicting heading dates of untested lines in untested environments, the proposed and two-step methods tended to provide more accurate predictions than the conventional genomic prediction methods, particularly in environments where phenotypes from environments similar to the target environment were unavailable for training genomic prediction. The proposed method showed greater accuracy in prediction than the two-step methods in all cross-validation schemes tested, suggesting the potential of the integrated approach in

  2. Options to reduce the required energy for cooling in datahotels. ICT. Keep a cool head; Mogelijkheden tot vermindering van de benodigde koelenergie in datahotels. ICT. Houd het hoofd koel

    Energy Technology Data Exchange (ETDEWEB)

    Sijpheer, N.C.; Ligthart, F.A.T.M. [ECN Zonne-energie, Petten (Netherlands)

    2002-02-01

    It is expected that the electrical power consumption of the ICT (Information and Communication Technologies) sector in the Netherlands will increase to 300 MW in 2005 (equals the electricity use of at least 850,000 Dutch households). Cooling of computer rooms covers up to 30% of the total energy use of an ICT company. Reduction of the energy used for cooling can be easily achieved by increasing the temperature in the computer rooms and by applying 'free' cooling. Current practise implies that it is necessary for the computer equipment to cool the computer rooms at a set point of 20/22C. An inventory of ambient requirements and power consumption of computer equipment used by ICT companies is presented. The main conclusions of this inventory are: (1) Cooling of the computer equipment, listed in this inventory, shows that temperatures below 30C are not required; (2) Humidity demands of the computer equipment are mainly between 10% and 90% RH (relative humidity); (3) The real power consumption of the computer equipment appears to be almost a factor 5 lower than stated in the technical specifications of the equipment; (4) Compared to the situation where the computer room is being cooled at 20C dividing the computer room in 3 temperature zones of 30C, 35C and 40C can save: 60% cooling energy for the compressors of the cooling machines; 95% of the cooling energy if free cooling is applied as well. [Dutch] Momenteel verwacht NOVEM een landelijke toename van het elektrisch aansluitvermogen tot 300 MW in 2005 veroorzaakt door ICT bedrijven, ongeveer gelijk verdeeld over de datahotels en telecomswitches. Wanneer dit vermogen werkelijk door de ICT branche wordt benut, dan wordt een hoeveelheid energie gebruikt waarmee ten minste 850.000 eengezinswoningen van elektriciteit zouden kunnen worden voorzien. Dit is ruim 2,5% van het totaal jaarlijks elektriciteitsgebruik in Nederland. De verwachting is dat het dataverkeer en het gebruik van de mobiele telefonie blijft

  3. Oral mucositis and selective elimination of oral flora in head and neck cancer patients receiving radiotherapy : a double-blind randomised clinical trial

    NARCIS (Netherlands)

    Stokman, MA; Spijkervet, FKL; Burlage, FR; Dijkstra, PU; Manson, WL; de Vries, EGE; Roodenburg, JLN

    2003-01-01

    Mucositis is an acute inflammation of the oral mucosa because of radiotherapy and/or chemotherapy. All patients receiving radiotherapy in the head and neck region develop oral mucositis. The aim of this study was to analyse the effects of selective oral flora elimination on radiotherapy-induced oral

  4. Selection of the optimal hard facing (HF technology of damaged forging dies based on cooling time t8/5

    Directory of Open Access Journals (Sweden)

    D. Arsić

    2016-01-01

    Full Text Available In exploitation, the forging dies are exposed to heating up to very high temperatures, variable loads: compressive, impact and shear. In this paper, the reparatory hard facing of the damaged forging dies is considered. The objective was to establish the optimal reparatory technology based on cooling time t8/5 . The verification of the adopted technology was done by investigation of the hard faced layers microstructure and measurements of hardness within the welded layers’ characteristic zones. Cooling time was determined theoretically, numerically and experimentally.

  5. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  6. A new optimization approach for nozzle selection and component allocation in multi-head beam-type SMD placement machines

    NARCIS (Netherlands)

    Torabi, S.A.; Hamedi, M.; Ashayeri, J.

    2013-01-01

    This paper addresses a highly challenging scheduling problem faced in multi-head beam-type surface mounting devices (SMD) machines. An integrated mathematical model is formulated aiming to balance workloads over multiple heads as well as improving the traveling speed of the robotic arm by

  7. An approach to the selection of recommended cooling intervals for the activation analysis of unknown samples with Ge(Li) gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Hirose, Akio; Ishii, Daido

    1975-01-01

    Estimation of the optimum cooling interval by the mathematic or graphic method for Ge(Li) γ-ray spectrometry performed in the presence of some Compton interferences, and the recommended cooling intervals available for activation analysis of unknown samples have been proposed, and applied to the non-destructive activation analysis of gold in pure copper. In the presence of Compton interferences, two kinds of optimum cooling intervals were discussed. One maximizes the S/N ratio of a desired photo-peak. This interval had been originated by Isenhour, et al. Using the computer technique, this work is abbreviated as tsub( s/ n). The other, which minimizes the relative standard deviation (delta s/S) of a net photo-peak counting rate of interest (S) was originated by Tomov, et al. and Quittner, et al., this work is abbreviated as tsub(opt) or t'sub(opt). All equations derived by the above authors, however, have the practical disadvantage of including a term relating to the intensity of the desired photo-peak, thus making it difficult to predict the optimum cooling interval before irradiation. Since in chemical analysis, the concentration of the desired element, or the intensity of the photo-peak of interest, should be considered as ''unknown''. In the present work, an approach to the selection of recommended cooling interval applicable to the unknown sample has been discussed, and the interval, tsub(opt), which minimizes the lower limit of detection of a desired element under given irradiation and counting conditions has been proposed. (Evans, J.)

  8. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Leduc, R.J.; Richard, J.W.; Malandra, L.J.

    1989-01-01

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  9. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (IIV), Part I, IZ-240-o379-1963, Vol. I, Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. Materials for irradiation are metallurgy and chemical samples. In addition to the project objectives, this volume includes technical specifications of the coolant loop head, thermal calculations, calculations of mechanical stress, antireactivity and activation of the construction materials, cost estimation, scheme of the coolant loop head, diagrams of CO 2 gas temperature, thermal neutron flux distribution, design specifications of two proposed solutions for head of low temperature coolant loop [sr

  10. Gas cooled reactors

    International Nuclear Information System (INIS)

    Kojima, Masayuki.

    1985-01-01

    Purpose: To enable direct cooling of reactor cores thereby improving the cooling efficiency upon accidents. Constitution: A plurality sets of heat exchange pipe groups are disposed around the reactor core, which are connected by way of communication pipes with a feedwater recycling device comprising gas/liquid separation device, recycling pump, feedwater pump and emergency water tank. Upon occurrence of loss of primary coolants accidents, the heat exchange pipe groups directly absorb the heat from the reactor core through radiation and convection. Although the water in the heat exchange pipe groups are boiled to evaporate if the forcive circulation is interrupted by the loss of electric power source, water in the emergency tank is supplied due to the head to the heat exchange pipe groups to continue the cooling. Furthermore, since the heat exchange pipe groups surround the entire circumference of the reactor core, cooling is carried out uniformly without resulting deformation or stresses due to the thermal imbalance. (Sekiya, K.)

  11. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. proposal for standardizing terminology and procedure based on the surgical experience

    International Nuclear Information System (INIS)

    Gregoire, V.; Coche, E.; Cosnard, G.; Hamoir, M.; Reychler, H.

    2000-01-01

    The increasing use of 3D treatment planning in head and neck radiation oncology has created an urgent need for new guidelines for the selection and the delineation of the neck node areas to be included in the clinical target volume. Surgical literature has provided us with valuable information on the extent of pathological nodal involvement in the neck as a function of the primary tumor site. In addition, few clinical series have also reported information on radiological nodal involvement in those areas not commonly included in radical neck dissection. Taking all these data together, guidelines for the selection of the node levels to be irradiated for the major head and neck sites could be proposed. To fill the missing link between these Guidelines and the 3D treatment planning, recommendations for the delineation of these node levels (levels I-VI and retropharyngeal) on CT (or MRI) slices have been proposed using the guidelines outlined by the Committee for Head and Neck Surgery and Oncology of the American Academy for Otolarynology-Head and Neck Surgery. These guidelines were adapted to take into account specific radiological landmarks more easily identified on CT or MRI slices than in the operating field. (author)

  12. 46 CFR 119.420 - Engine cooling.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine cooling. 119.420 Section 119.420 Shipping COAST... Machinery Requirements § 119.420 Engine cooling. (a) Except as otherwise provided in paragraph (b) of this section, all engines must be water cooled and meet the requirements of this paragraph. (1) The engine head...

  13. Final environmental statement for selection of the preferred closed cycle cooling system at Indian Point Unit No. 3, Docket No. 50-286

    International Nuclear Information System (INIS)

    1979-12-01

    The environmental statement includes information concerning the alternative closed cycle cooling systems; schedule and permits; environmental impacts of feasible alternative closed cycle cooling systems; socio-economic impact of closed cycle cooling systems; and evaluation of proposed action

  14. Work related to increasing the exploitation and experimental possibilities of the RA reactor, 05. Independent CO2 loop for cooling the samples irradiated in the RA vertical experimental channels (I-IV), Part II, IZ-240-0379-1963, Vol. II Head of the low temperature RA reactor coolant loop

    International Nuclear Information System (INIS)

    Pavicevic, M.

    1963-07-01

    The objective of the project was to design the head of the CO 2 coolant loop for cooling the materials during irradiation in the RA reactor. Six heads of coolant loops will be placed in the RA reactor, two in the region of heavy water in the experimental channels VEK-6 and four in the graphite reflector in the channels VEK-G. maximum generated heat in the heads of the coolant loop is 10500 kcal/h and minimum generated heat is 1500 kcal/h. The loops are cooled by CO 2 gas, coolant flow is 420 kg/h, and the pressure is 4.5 atu. There is a need to design and construct the secondary coolant loop for the low temperature coolant loop. This volume includes technical specifications of the secondary CO 2 loop with instructions for construction and testing; needed calculations; specification of materials; cost estimation for materials, equipment and construction; and graphical documentation [sr

  15. Adoption of milk cooling technology among smallholder dairy farmers in Kenya

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Andersen, Laura Mørch; Pedersen, Søren Marcus

    2014-01-01

    Factors influencing adoption of milk cooling technology were studied with data for 90 smallholder dairy farmers who were randomly selected from seven dairy cooperative societies in Kiambu County, Kenya. Logistic regression identified the age of the household head, daily household milk consumption......, freehold land ownership, fodder production area, number of female calves, cooperative membership and cooperative services as significant factors influencing farmers’ willingness to invest in milk cooling technology. These findings offer an entry point for increased interventions by policy makers...... and various dairy sector stakeholders in promoting milk cooling technology with the aim of significantly reducing post-harvest losses and increasing the sector’s competitiveness....

  16. A Graphic Overlay Method for Selection of Osteotomy Site in Chronic Radial Head Dislocation: An Evaluation of 3D-printed Bone Models.

    Science.gov (United States)

    Kim, Hui Taek; Ahn, Tae Young; Jang, Jae Hoon; Kim, Kang Hee; Lee, Sung Jae; Jung, Duk Young

    2017-03-01

    Three-dimensional (3D) computed tomography imaging is now being used to generate 3D models for planning orthopaedic surgery, but the process remains time consuming and expensive. For chronic radial head dislocation, we have designed a graphic overlay approach that employs selected 3D computer images and widely available software to simplify the process of osteotomy site selection. We studied 5 patients (2 traumatic and 3 congenital) with unilateral radial head dislocation. These patients were treated with surgery based on traditional radiographs, but they also had full sets of 3D CT imaging done both before and after their surgery: these 3D CT images form the basis for this study. From the 3D CT images, each patient generated 3 sets of 3D-printed bone models: 2 copies of the preoperative condition, and 1 copy of the postoperative condition. One set of the preoperative models was then actually osteotomized and fixed in the manner suggested by our graphic technique. Arcs of rotation of the 3 sets of 3D-printed bone models were then compared. Arcs of rotation of the 3 groups of bone models were significantly different, with the models osteotomized accordingly to our graphic technique having the widest arcs. For chronic radial head dislocation, our graphic overlay approach simplifies the selection of the osteotomy site(s). Three-dimensional-printed bone models suggest that this approach could improve range of motion of the forearm in actual surgical practice. Level IV-therapeutic study.

  17. Normative values for selected linear indices of the intracranial fluid spaces based on CT images of the head in children

    International Nuclear Information System (INIS)

    Wilk, R.; Syc, B.; Bajor, G.; Kluczewska, E.

    2011-01-01

    Currently, a few imaging methods are used in CNS diagnostics: computed tomography - CT, magnetic resonance imaging - MRI, and ultrasonography - USG. The ventricular system changes its dimensions with child's development. Linear indices commonly used in the diagnostics of hydrocephalus do not consider developmental changes of the intracranial fluid spaces. The aim of our work was to identify reference values for selected linear indices in specific age groups. Material/Methods: The material included 507 CT examinations of the head in children of different age and both sexes. There were 381 CT examinations considered as normal and they were used to establish the reference values. They were compared with 126 CTs from the observational zone (3-10 percentile and 90-97 percentile). The children were divided into 7 following age groups: 0-12 months, > 12-36 months, > 3-6 years, > 6-9 years, > 9-12 years, > 12-15 years, > 15-18 years. For every group, the 10 th , 25 th , 50 th , 75 th and 90 th percentile was calculated. The range between the 10 th and the 90 th percentile was described as a norm. Results: Reference values for particular indices: Huckman Number from 3.3 to 5.0 cm with correlation coefficient according to age equal to 0.34; Evans' Index from 0.218 to 0.312 with correlation coefficient of -0.12; Bifrontal Index from 0.265 to 0.380 with correlation coefficient of 0.18; Bicaudate / Frontal Index from 0.212 to 0.524 with correlation coefficient of -0,33; Bicaudate Index from 0.059 to 0.152 with correlation coefficient of -0.26; Bicaudate / Temporal Index from 0.051 to 0.138 with correlation coefficient of 0.32; Schiersmann's Index from 3.545 to 6.038 with correlation coefficient of 0.42. Conclusions: The intracerebral CSF spaces increased in a non-uniform manner with age. All indices established on the basis of linear parameters were relatively higher in younger children than in the older ones. In proportion to the cranial size, the intracranial fluid spaces

  18. Heads Up

    Science.gov (United States)

    ... Connect with Us HEADS UP Apps Reshaping the Culture Around Concussion in Sports Get HEADS UP on Your Web Site Concussion ... HEADS UP on your web site! Create a culture of safety for young athletes Officials, learn how you can ... UP to Providers HEADS UP to Youth Sports HEADS UP to School Sports HEADS UP to ...

  19. ROSA-V/LSTF vessel top head LOCA tests SB-PV-07 and SB-PV-08 with break sizes of 1.0 and 0.1% and operator recovery actions for core cooling

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    2010-02-01

    A series of break size parameter tests (SB-PV-07 and SB-PV-08) were conducted at the Large Scale Test Facility (LSTF) of ROSA-V Program by simulating a vessel top small break loss-of-coolant accident (SBLOCA) at a pressurized water reactor (PWR). Typical phenomena to the vessel top break LOCA and effectiveness of operator recovery actions on core cooling were studied under an assumption of total failure of high pressure injection (HPI) system. The LSTF simulates a 4-loop 3423 MWt PWR by a full-height, full-pressure and 1/48 volume scaling two-loop system. Typical phenomena of vessel top break LOCA are clarified for the cases with break sizes of 1.0 and 0.1% cold leg break equivalent. The results from a 0.5% top break LOCA test (SB-PV-02) in the early ROSA-IV Program was referred during discussion. Operator actions of HPI recovery in the 1.0% top break test and steam generator (SG) depressurization in the 0.1% top break test were initiated when temperature at core exit thermocouple (CET) reached 623 K during core boil-off. Both operator actions resulted in immediate recovery of core cooling. Based on the obtained data, several thermal-hydraulic phenomena were discussed further such as relations between vessel top head water level and steam discharge at the break, and between coolant mass inventory transient and core heat-up and quench behavior, and CET performances to detect core heat-up under influences of three-dimensional (3D) steam flows in the core and core exit. (author)

  20. Heading and head injuries in soccer.

    Science.gov (United States)

    Kirkendall, D T; Jordan, S E; Garrett, W E

    2001-01-01

    In the world of sports, soccer is unique because of the purposeful use of the unprotected head for controlling and advancing the ball. This skill obviously places the player at risk of head injury and the game does carry some risk. Head injury can be a result of contact of the head with another head (or other body parts), ground, goal post, other unknown objects or even the ball. Such impacts can lead to contusions, fractures, eye injuries, concussions or even, in rare cases, death. Coaches, players, parents and physicians are rightly concerned about the risk of head injury in soccer. Current research shows that selected soccer players have some degree of cognitive dysfunction. It is important to determine the reasons behind such deficits. Purposeful heading has been blamed, but a closer look at the studies that focus on heading has revealed methodological concerns that question the validity of blaming purposeful heading of the ball. The player's history and age (did they play when the ball was leather and could absorb significant amounts of water), alcohol intake, drug intake, learning disabilities, concussion definition and control group use/composition are all factors that cloud the ability to blame purposeful heading. What does seem clear is that a player's history of concussive episodes is a more likely explanation for cognitive deficits. While it is likely that the subconcussive impact of purposeful heading is a doubtful factor in the noted deficits, it is unknown whether multiple subconcussive impacts might have some lingering effects. In addition, it is unknown whether the noted deficits have any affect on daily life. Proper instruction in the technique is critical because if the ball contacts an unprepared head (as in accidental head-ball contacts), the potential for serious injury is possible. To further our understanding of the relationship of heading, head injury and cognitive deficits, we need to: learn more about the actual impact of a ball on the

  1. Early processing variations in selective attention to the color and direction of moving stimuli during 30 days head-down bed rest

    Science.gov (United States)

    Wang, Lin-Jie; He, Si-Yang; Niu, Dong-Bin; Guo, Jian-Ping; Xu, Yun-Long; Wang, De-Sheng; Cao, Yi; Zhao, Qi; Tan, Cheng; Li, Zhi-Li; Tang, Guo-Hua; Li, Yin-Hui; Bai, Yan-Qiang

    2013-11-01

    Dynamic variations in early selective attention to the color and direction of moving stimuli were explored during a 30 days period of head-down bed rest. Event-related potentials (ERPs) were recorded at F5, F6, P5, P6 scalp locations in seven male subjects who attended to pairs of bicolored light emitting diodes that flashed sequentially to produce a perception of movement. Subjects were required to attend selectively to a critical feature of the moving target, e.g., color or direction. The tasks included: a no response task, a color selective response task, a moving direction selective response task, and a combined color-direction selective response task. Subjects were asked to perform these four tasks on: the 3rd day before bed rest; the 3rd, 15th and 30th day during the bed rest; and the 5th day after bed rest. Subjects responded quickly to the color than moving direction and combined color-direction response. And they had a longer reaction time during bed rest on the 15th and 30th day during bed rest after a relatively quicker response on the 3rd day. Using brain event-related potentials technique, we found that in the color selective response task, the mean amplitudes of P1 and N1 for target ERPs decreased in the 3rd day during bed rest and 5th day after bed rest in comparison with pre-bed rest, 15th day and 30th day during bed rest. In the combined color-direction selective response task, the P1 latencies for target ERPs on the 3rd and 30th day during bed rest were longer than on the 15th day during bed rest. As 3rd day during bed rest was in the acute adaptation period and 30th day during bed rest was in the relatively adaptation stage of head-down bed rest, the results help to clarify the effects of bed rest on different task loads and patterns of attention. It was suggested that subjects expended more time to give correct decision in the head-down tilt bed rest state. A difficulty in the recruitment of brain resources was found in feature selection task

  2. Cooling towers

    International Nuclear Information System (INIS)

    Boernke, F.

    1975-01-01

    The need for the use of cooling systems in power plant engineering is dealt with from the point of view of a non-polluting form of energy production. The various cooling system concepts up to the modern natural-draught cooling towers are illustrated by examples. (TK/AK) [de

  3. Obeying the Rules or Gaming the System? Delegating Random Selection for Examinations to Head Teachers within an Accountability System

    Science.gov (United States)

    Elstad, Eyvind; Turmo, Are

    2011-01-01

    As education systems around the world move towards increased accountability based on performance measures, it is important to investigate the unintended effects of accountability systems. This article seeks to explore the extent to which head teachers in a large Norwegian municipality may resort to gaming the incentive system to boost their…

  4. Indices of slowness of information processing in head injury patients : Tests for selective attention related to ERP latencies

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Naalt, van der Joukje; Weerden , van Tiemen; Zomeren , van Adriaan H.

    2004-01-01

    We explored the relation between neuropsychological (attention tests involving time constraints) and neurophysiological (N2 and P3 event-related potential (ERP) latencies) indices of slowness of information processing after closed head injury (CHI). A group of 44 CHI patients performed worse than

  5. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N.; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; McKinstry, Robert C. [Barnes Jewish Hospital, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Washington University School of Medicine, St. Louis, MO (United States); Vyhmeister, Ross [Washington University School of Medicine, St. Louis, MO (United States); Ramirez-Giraldo, Juan Carlos [Siemens Healthcare, Malvern, PA (United States)

    2015-03-17

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality. (orig.)

  6. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    Science.gov (United States)

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  7. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury

    Science.gov (United States)

    Shear, Deborah A.; Deng-Bryant, Ying; Leung, Lai Yee; Wei, Guo; Chen, Zhiyong; Tortella, Frank C.

    2016-01-01

    Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7–21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13–17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple

  8. Cooling towers: a bibliography

    International Nuclear Information System (INIS)

    Whitson, M.O.

    1981-02-01

    This bibliography cites 300 selected references containing information on various aspects of large cooling tower technology, including design, construction, operation, performance, economics, and environmental effects. The towers considered include natural-draft and mechanical-draft types employing wet, dry, or combination wet-dry cooling. A few references deal with alternative cooling methods, principally ponds or spray canals. The citations were compiled for the DOE Energy Information Data Base (EDB) covering the period January to December 1980. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators

  9. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  10. Head First into the Patron-Driven Acquisition Pool: A Comparison of Librarian Selections versus Patron Purchases

    Science.gov (United States)

    Shen, Lisa; Cassidy, Erin Dorris; Elmore, Eric; Griffin, Glenda; Manolovitz, Tyler; Martinez, Michelle; Turney, Linda M.

    2011-01-01

    Although many recent studies have been conducted on the implementation and results of patron-driven acquisition (PDA) initiatives at academic libraries, very few have focused on whether, or how, patrons' selections vary from selection choices librarians would have made. This study compares titles selected by patrons during a PDA pilot program…

  11. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  12. Fat suppression failure artifacts at the susceptibility interface on frequency selective fat suppression MR imaging in the head and neck

    International Nuclear Information System (INIS)

    Anzai, Yoshimi; Minoshima, Satoshi; Uno, Kimiichi; Arimizu, Noboru; Lufkin, R.B.; Ishihara, Makiko; Yui, Nobuharu.

    1994-01-01

    Fat suppression MR imaging is a valuable technique mainly used for the orbit, head and neck, and spine, where the high signal from fat can often obscure adjacent pathology. Fat suppression failure artifact manifested as a high signal area without geographic disortion. The purpose of this study was to investigate the frequency and common location of these artifacts in clinical MR imaging and to caution against their misinterpretation. Fat suppression MR imaging of the head and neck was performed in 30 consecutive patients. The artifact was found in the orbital floor (57%), the skull base (10%), and subcutaneous fat (10%), where the air-fat interface is parallel to the static magnetic field direction. The fat signal in the air-fat interface perpendicular to the static magnetic field was well suppressed. This artifact was independent of the duration of TE, frequency/phase encoding direction, and the strength of gradient amplitude, and appeared to be related to the amount of surrounding air. This may simulate pathology if fat suppression is only performed following Gd-DTPA administration. The radiologist should be aware of the presence of artifact by considering the geographic relation to the static magnetic field. (author)

  13. Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses

    Energy Technology Data Exchange (ETDEWEB)

    Riffel, Philipp; Michaely, Henrik J.; Attenberger, Ulrike I.; Schoenberg, Stefan O.; Haneder, Stefan [University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Morelli, John N. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Pfeuffer, Josef [Siemens Healthcare Sector, Application Development, Erlangen (Germany)

    2014-10-15

    To evaluate the feasibility of zoomed diffusion-weighted EPI (z-EPI) in the head and neck in a healthy volunteer population and to compare to conventional single-shot EPI (c-EPI). Nine volunteers were included in this prospective, IRB-approved study. Examinations were performed on a 3 T-MR system equipped with a two-channel, fully-dynamic parallel transmit array. The acquired sequences consisted of a T2w-TSE, a c-EPI, and two z-EPI acquisitions. For quantitative assessment of distortion artefacts, DW images were fused with T2-TSE images. Misregistration of DW images with T2-TSE images was assessed in the cervical spine. For qualitative assessment, two readers ranked c-EPI and z-EPI sequences in terms of susceptibility artefacts, image blur, and overall imaging preference. ADC values of several anatomical regions were calculated and compared between sequences. Mean maximum distortion with the c-EPI was 5.9 mm ± 1.6 mm versus 2.4 mm ± 1 mm (p < 0.05) with z-EPI. Both readers found more blur and susceptibility artefacts in every case with c-EPI. No statistically significant differences in calculated ADC values were observed. z-EPI of the head and neck leads to substantial image quality improvements relative to c-EPI due to a reduction in susceptibility artefacts and image blur. (orig.)

  14. Nord Stream 2: keeping the head cool

    International Nuclear Information System (INIS)

    Aoun, Marie-Claire

    2016-01-01

    Nord Stream 2 is the name of a project of a pipeline which will transport Russian natural gas into the European Union. The author first presents the context of this project announced during a forum in Saint Petersburg, and signed in september 2015 between Gazprom and several European stakeholders (Eon, BASF, Engie, Shell and OMV). The objective is for Moscow to secure its north-western European market on the long term. Some physical characteristics of the project are evoked, and the European dependence on gas imports is described. The author then discusses how European countries are divided about this project: some support it (like mainly Germany) while some others are fiercely against (Eastern European countries which complain about their loss of transfer revenues, or countries like Bulgaria, Greece and Italy about the loss of an alternative gas corridor). The project also faces legal obstacles related to patrimony separation and access of third parties to the network. Finally, and while mentioning other projects (Nord Stream 1 and South Stream), the author shows that the difficulties and problems faced by this project are a perfect illustration of a fractured European gas sector

  15. Patterns of recurrence after selective postoperative radiation therapy for patients with head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Murakami, Naoya; Matsumoto, Fumihiko; Yoshimoto, Seiichi; Ito, Yoshinori; Mori, Taisuke; Ueno, Takao; Tuchida, Keisuke; Kashihara, Tairo; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Itami, Jun

    2016-01-01

    The radiation field for patients with postoperative head and neck squamous cell carcinoma is narrower in our institution than in Western countries to reduce late radiation related toxicities. This strategy is at a risk of loco-regional or distant metastasis. However, because patients are more closely checked than in Western countries by every 1 to 2 months intervals and it is supposed that regional recurrences are identified and salvage surgeries are performed more quickly. Therefore, it is considered that patient survival would not be compromised with this strategy. The aim of this study was to investigate the feasibility of this strategy retrospectively. Patients who underwent neck dissection with close or positive margin, extra-capsular spread (ECS), multiple regional lymph node metastasis, pT4, with or without primary tumor resection were treated with postoperative radiation therapy. The volume of radiation field, especially the coverage of prophylactic regional lymph node area, was discussed among head and neck surgeons and radiation oncologists taking into account the clinical factors including patient’s age, performance status, number of positive lymph nodes, size of metastatic lymph nodes, extension of primary tumor beyond the midline, and existence of ECS. Seventy-two patients were identified who were treated with postoperative radiation therapy for head and neck squamous cell carcinoma between November 2005 and December 2014. There were 20 patients with oropharynx, 19 with hypopharynx, 7 with larynx, 23 with oral cavity, and 3 with other sites. Thirty eight patients had their neck irradiated bilaterally and 34 unilaterally. Median follow-up period for patients without relapse was 20.7 months (5.1–100.7). Thirty two patients had disease relapse after treatment including 22 loco-regional recurrence and 14 distant metastases. Among 22 loco-regional recurrence, seven patients underwent salvage surgery and one of them was no relapse at the time of the

  16. Differences between head CT and MRI for selecting patients for intravenous rt-PA during hyperacute brain infarction. Comparative study of intracranial bleeding complications and prognosis

    International Nuclear Information System (INIS)

    Deguchi, Ichiro; Takeda, Hidetaka; Furuya, Daisuke

    2010-01-01

    The objective of this study was to investigate the differences in usefulness between head CT and MRI for selecting patients for intravenous injection of recombinant tissue plasminogen activator (rt-PA) during hyperacute brain infarction. Of a total of 1280 brain infarction patients who were admitted from October 2005 to March 2009, 45 patients (33 men and 12 women with an average age of 69.2±11.6 years) received intravenous rt-PA. Of these, 16 patients in whom only head CT was performed (593 inpatients from October 2005 to March 2007, CT standard group, 11 men and 5 women, average age 67.4±15.4 years) and 29 patients in whom head CT and MRI were performed (687 inpatients from April 2007 to March 2009, MRI standard group, 21 men and 7 women, average age 70.1±9.0 years) were studied. The median National Institutes of Health Stroke Scale (NIHSS) scores immediately before intravenous rt-PA for the CT and MRI standard groups were 19 and 11, respectively; disease severity was lower for the MRI standard group. Three months later, the modified Rankin Scale (mRS) score for the MRI standard group (0-1: 31%, 2-3: 38%, 4-5: 24%, and 6: 12%) was better than for the CT standard group (0-1: 25%, 2-3: 25%, 4-5: 38%, and 6: 12%). The frequency of symptomatic intracranial hemorrhage was lower for the MRI standard group (6.9%) than for the CT standard group (18.8%). However, there was no statistical difference in the prognosis and incidence of intracranial hemorrhage between the 2 groups, due to the small number of cases. When selecting patients for intravenous rt-PA, brain infarction improved more, prognosis was better three months later, and the frequency of symptomatic intracranial hemorrhage was lower among patients selected based on MRI standards than among those selected based on CT standards. (author)

  17. [Arthroscopy-guided core decompression and bone grafting combined with selective arterial infusion for treatment of early stage avascular necrosis of femoral head].

    Science.gov (United States)

    Guo, Hao-Shan; Tian, Yi-Jun; Liu, Gang; An, Long; Zhou, Zhan-Guo; Liu, Huan-Zhen

    2018-01-25

    To observe the clinical effects of arthroscopy-guided core decompression and bone grafting combined with selective arterial infusion for early stage avascular necrosis of femoral head. From January 2010 to December 2014, 76 patients(76 hips) diagnosed as Ficat II stage avascular necrosis of femoral head were randomly divided into experimental group and control group. In the experimental group, there were 27 males and 8 females aged from 24 to 55 years old with an average of (43.96±6.81) years, treated with arthroscopic-guided core decompression and bone grafting combined with selective arterial infusion. Along the direction of the femoral neck, an 8 mm-diameter tunnel to necrotic areas was drilled, then curettage of necrotic bone was performed under arthroscope, and the iliac bone was grafted. In the control group, there were 29 males and 12 females aged from 26 to 56 years old with an average of (44.62±7.33) years, treated with percutaneous core decompression combined with selective arterial infusion. The preoperative and postoperative Harris scores were recorded and the changes of X-rays were analyzed. All the patients were followed up with an average of 30 months. Postoperative follow-up at 12 months showed that there was significant difference in imaging outcome between two groups( P 0.05), but there was significant difference in postoperative Harris score( P necrosis are effective. Using arthroscopic-guided core decompression method, the necrotic bone can be positioned and scraped more accurately, and can obtain better results. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.

  18. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  19. Proceedings: Cooling tower and advanced cooling systems conference

    International Nuclear Information System (INIS)

    1995-02-01

    This Cooling Tower and Advanced Cooling Systems Conference was held August 30 through September 1, 1994, in St. Petersburg, Florida. The conference was sponsored by the Electric Power Research Institute (EPRI) and hosted by Florida Power Corporation to bring together utility representatives, manufacturers, researchers, and consultants. Nineteen technical papers were presented in four sessions. These sessions were devoted to the following topics: cooling tower upgrades and retrofits, cooling tower performance, cooling tower fouling, and dry and hybrid systems. On the final day, panel discussions addressed current issues in cooling tower operation and maintenance as well as research and technology needs for power plant cooling. More than 100 people attended the conference. This report contains the technical papers presented at the conference. Of the 19 papers, five concern cooling tower upgrades and retrofits, five to cooling tower performance, four discuss cooling tower fouling, and five describe dry and hybrid cooling systems. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  20. Reirradiation of head and neck cancer in the era of intensity-modulated radiotherapy: Patient selection, practical aspects, and current evidence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Sil [Dept. of Radiation Oncology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul(Korea, Republic of)

    2017-03-15

    Locoregional failure is the most frequent pattern of failure in locally advanced head and neck cancer patients and it leads to death in most of the patients. Second primary tumors occurring in the other head and neck region reach up to almost 40% of long-term survivors. Recommended and preferred retreatment option in operable patients is salvage surgical resection, reporting a 5-year overall survival of up to 40%. However, because of tumor location, extent, and underlying comorbidities, salvage surgery is often limited and compromised by incomplete resection. Reirradiation with or without combined chemotherapy is an appropriate option for unresectable recurrence. Reirradiation is carefully considered with a case-by-case basis. Reirradiation protocol enrollment is highly encouraged prior to committing patient to an aggressive therapy. Radiation doses greater than 60 Gy are usually recommended for successful salvage. Despite recent technical improvement in intensity-modulated radiotherapy (IMRT), the use of concurrent chemotherapy, and the emergence of molecularly targeted agents, careful patient selection remain as the most paramount factor in reirradiation. Tumors that recur or persist despite aggressive prior chemoradiation therapy imply the presence of chemoradio-resistant clonogens. Treatment protocols that combine novel targeted radiosensitizing agents with conformal high precision radiation are required to overcome the resistance while minimizing toxicity. Recent large number of data showed that IMRT may provide better locoregional control with acceptable acute or chronic morbidities. However, additional prospective studies are required before a definitive conclusion can be drawn on safety and effectiveness of IMRT.

  1. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  2. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements.

  3. Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment

    International Nuclear Information System (INIS)

    1985-01-01

    Topics covered during the 'Specialists' meeting on gas-cooled reactor fuel development and spent fuel treatment' were as follows: Selection of constructions and materials, fuel element development concepts; Fabrication of spherical coated fuel particles and fuel element on their base; investigation of fuel properties; Spent fuel treatment and storage; Head-end processing of HTGR fuel elements; investigation of HTGR fuel regeneration process; applicability of gas-fluorine technology of regeneration of spent HTGR fuel elements

  4. Cooling tower

    Energy Technology Data Exchange (ETDEWEB)

    Norbaeck, P; Heneby, H

    1976-01-22

    Cooling towers to be transported on road vehicles as a unit are not allowed to exceed certain dimensions. In order to improve the efficiency of such a cooling tower (of cross-flow design and box-type body) with given dimensions, it is proposed to arrange at least one of the scrubbing bodies displaceable within a module or box. Then it can be moved out of the casing into working position, thereby increasing the front surface available for the inlet of air (and with it the efficiency) by nearly a factor of two.

  5. Giving offspring a head start in life: field and experimental evidence for selection on maternal basking behaviour in lizards.

    Science.gov (United States)

    Wapstra, E; Uller, T; While, G M; Olsson, M; Shine, R

    2010-03-01

    The timing of birth is often correlated with offspring fitness in animals, but experimental studies that disentangle direct effects of parturition date and indirect effects mediated via variation in female traits are rare. In viviparous ectotherms, parturition date is largely driven by female thermal conditions, particularly maternal basking strategies. Our field and laboratory studies of a viviparous lizard (Niveoscincus ocellatus) show that earlier-born offspring are more likely to survive through their first winter and are larger following that winter, than are later-born conspecifics. Thus, the association between parturition date and offspring fitness is causal, rather than reflecting an underlying correlation between parturition date and maternal attributes. Survival selection on offspring confers a significant advantage for increased maternal basking in this species, mediated through fitness advantages of earlier parturition. We discuss the roles of environmentally imposed constraints and parent-offspring conflict in the evolution of maternal effects on parturition date.

  6. Mucositis reduction by selective elimination of oral flora in irradiated cancers of the head and neck: a placebo-controlled double-blind randomized study

    International Nuclear Information System (INIS)

    Wijers, Oda B.; Levendag, Peter C.; Harms, Erik; Gan-Teng, A.M.; Schmitz, Paul I.M.; Hendriks, W.D.H.; Wilms, Erik B.; Est, Henri van der; Visch, Leo L.

    2001-01-01

    Purpose: The aim of the study was to test the hypothesis that aerobic Gram-negative bacteria (AGNB) play a crucial role in the pathogenesis of radiation-induced mucositis; consequently, selective elimination of these bacteria from the oral flora should result in a reduction of the mucositis. Methods and Materials: Head-and-neck cancer patients, when scheduled for treatment by external beam radiation therapy (EBRT), were randomized for prophylactic treatment with an oral paste containing either a placebo or a combination of the antibiotics polymyxin E, tobramycin, and amphotericin B (PTA group). Weekly, the objective and subjective mucositis scores and microbiologic counts of the oral flora were noted. The primary study endpoint was the mucositis grade after 3 weeks of EBRT. Results: Seventy-seven patients were evaluable. No statistically significant difference for the objective and subjective mucositis scores was observed between the two study arms (p=0.33). The percentage of patients with positive cultures of AGNB was significantly reduced in the PTA group (p=0.01). However, complete eradication of AGNB was not achieved. Conclusions: Selective elimination of AGNB of the oral flora did not result in a reduction of radiation-induced mucositis and therefore does not support the hypothesis that these bacteria play a crucial role in the pathogenesis of mucositis

  7. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  8. Stochastic cooling

    International Nuclear Information System (INIS)

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron

  9. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  10. Using Multivariate Regression Model with Least Absolute Shrinkage and Selection Operator (LASSO) to Predict the Incidence of Xerostomia after Intensity-Modulated Radiotherapy for Head and Neck Cancer

    Science.gov (United States)

    Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Wu, Jia-Ming; Wang, Hung-Yu; Horng, Mong-Fong; Chang, Chun-Ming; Lan, Jen-Hong; Huang, Ya-Yu; Fang, Fu-Min; Leung, Stephen Wan

    2014-01-01

    Purpose The aim of this study was to develop a multivariate logistic regression model with least absolute shrinkage and selection operator (LASSO) to make valid predictions about the incidence of moderate-to-severe patient-rated xerostomia among head and neck cancer (HNC) patients treated with IMRT. Methods and Materials Quality of life questionnaire datasets from 206 patients with HNC were analyzed. The European Organization for Research and Treatment of Cancer QLQ-H&N35 and QLQ-C30 questionnaires were used as the endpoint evaluation. The primary endpoint (grade 3+ xerostomia) was defined as moderate-to-severe xerostomia at 3 (XER3m) and 12 months (XER12m) after the completion of IMRT. Normal tissue complication probability (NTCP) models were developed. The optimal and suboptimal numbers of prognostic factors for a multivariate logistic regression model were determined using the LASSO with bootstrapping technique. Statistical analysis was performed using the scaled Brier score, Nagelkerke R2, chi-squared test, Omnibus, Hosmer-Lemeshow test, and the AUC. Results Eight prognostic factors were selected by LASSO for the 3-month time point: Dmean-c, Dmean-i, age, financial status, T stage, AJCC stage, smoking, and education. Nine prognostic factors were selected for the 12-month time point: Dmean-i, education, Dmean-c, smoking, T stage, baseline xerostomia, alcohol abuse, family history, and node classification. In the selection of the suboptimal number of prognostic factors by LASSO, three suboptimal prognostic factors were fine-tuned by Hosmer-Lemeshow test and AUC, i.e., Dmean-c, Dmean-i, and age for the 3-month time point. Five suboptimal prognostic factors were also selected for the 12-month time point, i.e., Dmean-i, education, Dmean-c, smoking, and T stage. The overall performance for both time points of the NTCP model in terms of scaled Brier score, Omnibus, and Nagelkerke R2 was satisfactory and corresponded well with the expected values. Conclusions

  11. Cooling pancakes

    International Nuclear Information System (INIS)

    Bond, J.R.; Wilson, J.R.

    1984-01-01

    In theories of galaxy formation with a damping cut-off in the density fluctuation spectrum, the first non-linear structures to form are Zeldovich pancakes in which dissipation separates gas from any collisionless dark matter then present. One-dimensional numerical simulations of the collapse, shock heating, and subsequent thermal evolution of pancakes are described. Neutrinos (or any other cool collisionless particles) are followed by direct N-body methods and the gas by Eulerian hydrodynamics with conduction as well as cooling included. It is found that the pressure is relatively uniform within the shocked region and approximately equals the instantaneous ram pressure acting at the shock front. An analytic theory based upon this result accurately describes the numerical calculations. (author)

  12. Cool Sportswear

    Science.gov (United States)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  13. SWR 1000 severe accident control through in-vessel melt retention by external RPV cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, N.I. [Framatome Advanced Nuclear Power, NDSI, Erlangen (Germany)

    2001-07-01

    Framatome Advanced Nuclear Power is being designing a new generation NPP with boiling water reactor SWR1000. Besides of various of modern passive and active safety features the system is also designed for controlling of a postulated severe accident with extreme low probability of occurrence. This work presents the rationales behind the decision to select the external cooling as a safety management strategy during severe accident. Bounding scenery are analyzed regarding the core melting, melt-water interaction during relocation of the melt from the core region into the lower head and the external coolability of the lower head. The conclusion is reached that the external cooling for the SWR1000 is a valuable strategy for accident management during postulated severe accidents. (authors)

  14. SWR 1000 severe accident control through in-vessel melt retention by external RPV cooling

    International Nuclear Information System (INIS)

    Kolev, N.I.

    2001-01-01

    Framatome Advanced Nuclear Power is being designing a new generation NPP with boiling water reactor SWR1000. Besides of various of modern passive and active safety features the system is also designed for controlling of a postulated severe accident with extreme low probability of occurrence. This work presents the rationales behind the decision to select the external cooling as a safety management strategy during severe accident. Bounding scenery are analyzed regarding the core melting, melt-water interaction during relocation of the melt from the core region into the lower head and the external coolability of the lower head. The conclusion is reached that the external cooling for the SWR1000 is a valuable strategy for accident management during postulated severe accidents. (authors)

  15. Modelization of cooling system components

    Energy Technology Data Exchange (ETDEWEB)

    Copete, Monica; Ortega, Silvia; Vaquero, Jose Carlos; Cervantes, Eva [Westinghouse Electric (Spain)

    2010-07-01

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  16. Provisioning cooling elements for chillerless data centers

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.

    2018-02-13

    Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.

  17. Demineralised water cooling in the LHC accelerator

    CERN Document Server

    Peón-Hernández, G

    2002-01-01

    In spite of the LHC accelerator being a cryogenic machine, it remains nevertheless a not negligible heat load to be removed by conventional water-cooling. About 24MW will be taken away by demineralised water cooled directly by primary water from the LHC cooling towers placed at the even points. This paper describes the demineralised water network in the LHC tunnel including pipe diameters, lengths, water speed, estimated friction factor, head losses and available supply and return pressures for each point. It lists all water cooled equipment, highlights the water cooled cables as the most demanding equipment followed by the radio frequency racks and cavities, and by the power converters. Their main cooling requirements and their positions in the tunnel are also presented.

  18. Head Lice

    Science.gov (United States)

    ... nits. You should also use hot water to wash any bed linens, towels, and clothing recently worn by the person who had head lice. Vacuum anything that can’t be washed, such as the couch, carpets, your child’s car seat, and any stuffed animals. Because head lice ...

  19. Cooling your home naturally

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  20. Assessing the Challenges Heads of Department Encounter in Instructional Supervision in Ghana. A Case of Selected Senior High Schools in Kwabre East District

    Science.gov (United States)

    Simpson, Kweku Bedu; Howard, Peggy Maansah Ankai; Peligah, Y. S.; Cann, Lily Obu

    2016-01-01

    The purpose of the study was to assess the challenges HoDs in Senior High Schools face during instructional supervision. In so doing, the study employed case study and used mixed method approach. In all a total of 92 questionnaires were administered with a response rate of 75.40%. The population consisted of School Heads /Assistant Heads, HoDs and…

  1. Head Injuries

    Science.gov (United States)

    ... a severe blow to the head can still knock the brain into the side of the skull ... following certain precautions and taking a break from sports and other activities that make symptoms worse. Playing ...

  2. An Approach for Selection of Flow Regime and Models for Conservative Evaluation of a Vessel Integrity Monitoring System for Water-Cooled Vacuum Vessels

    International Nuclear Information System (INIS)

    Pointer, W. David; Ruggles, Arthur E.

    2003-01-01

    Thin-walled vacuum containment vessels cooled by circulating water jackets are often utilized in research and industrial applications where isolation of equipment or experiments from the influences of the surrounding environment is desirable. The development of leaks in these vessels can result in costly downtime for the facility. A Vessel Integrity Monitoring System (VIMS) is developed to detect leak formation and estimate the size of the leak to allow evaluation of the risk associated with continued operation. A wide range of leak configurations and fluid flow phenomena are considered in the evaluation of the rate at which a tracer gas dissolved in the cooling jacket water is transported into the vacuum vessel. A methodology is presented that uses basic fluid flow models and careful evaluation of their ranges of applicability to provide a conservative estimate of the transport rates for the tracer gas and hence the time required for the VIMS to detect a leak of a given size

  3. Cool snacks

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Brock, Steen; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  4. Quantification of selected volatile organic compounds in human urine by gas chromatography selective reagent ionization time of flight mass spectrometry (GC-SRI-TOF-MS) coupled with head-space solid-phase microextraction (HS-SPME).

    Science.gov (United States)

    Mochalski, Paweł; Unterkofler, Karl

    2016-08-07

    Selective reagent ionization time of flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS(NO(+))) in conjunction with gas chromatography (GC) and head-space solid-phase microextraction (HS-SPME) was used to determine selected volatile organic compounds in human urine. A total of 16 volatiles exhibiting high incidence rates were quantified in the urine of 19 healthy volunteers. Amongst them there were ten ketones (acetone, 2-butanone, 3-methyl-2-butanone, 2-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, and 4-heptanone), three volatile sulphur compounds (dimethyl sulfide, allyl methyl sulfide, and methyl propyl sulfide), and three heterocyclic compounds (furan, 2-methylfuran, 3-methylfuran). The concentrations of the species under study varied between 0.55 nmol L(-1) (0.05 nmol mmol(-1)creatinine) for allyl methyl sulfide and 11.6 μmol L(-1) (1.54 μmol mmol(-1)creatinine) for acetone considering medians. Limits of detection (LODs) ranged from 0.08 nmol L(-1) for allyl methyl sulfide to 1.0 nmol L(-1) for acetone and furan (with RSDs ranging from 5 to 9%). The presented experimental setup assists both real-time and GC analyses of volatile organic compounds, which can be performed consecutively using the same analytical system. Such an approach supports the novel concept of hybrid volatolomics, an approach which combines VOC profiles obtained from two or more body fluids to improve and complement the chemical information on the physiological status of an individual.

  5. Film cooling air pocket in a closed loop cooled airfoil

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  6. Divertor cooling device

    International Nuclear Information System (INIS)

    Nakayama, Tadakazu; Hayashi, Katsumi; Handa, Hiroyuki

    1993-01-01

    Cooling water for a divertor cooling system cools the divertor, thereafter, passes through pipelines connecting the exit pipelines of the divertor cooling system and the inlet pipelines of a blanket cooling system and is introduced to the blanket cooling system in a vacuum vessel. It undergoes emission of neutrons, and cooling water in the divertor cooling system containing a great amount of N-16 which is generated by radioactivation of O-16 is introduced to the blanket cooling system in the vacuum vessel by way of pipelines, and after cooling, passes through exit pipelines of the blanket cooling system and is introduced to the outside of the vacuum vessel. Radiation of N-16 in the cooling water is decayed sufficiently with passage of time during cooling of the blanket, thereby enabling to decrease the amount of shielding materials such as facilities and pipelines, and ensure spaces. (N.H.)

  7. WORKSHOP: Beam cooling

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Cooling - the control of unruly particles to provide well-behaved beams - has become a major new tool in accelerator physics. The main approaches of electron cooling pioneered by Gersh Budker at Novosibirsk and stochastic cooling by Simon van der Meer at CERN, are now complemented by additional ideas, such as laser cooling of ions and ionization cooling of muons

  8. Validation of the sensitivity of the National Emergency X-Radiography Utilization Study (NEXUS Head computed tomographic (CT decision instrument for selective imaging of blunt head injury patients: An observational study.

    Directory of Open Access Journals (Sweden)

    William R Mower

    2017-07-01

    Full Text Available Clinicians, afraid of missing intracranial injuries, liberally obtain computed tomographic (CT head imaging in blunt trauma patients. Prior work suggests that clinical criteria (National Emergency X-Radiography Utilization Study [NEXUS] Head CT decision instrument [DI] can reliably identify patients with important injuries, while excluding injury, and the need for imaging in many patients. Validating this DI requires confirmation of the hypothesis that the lower 95% confidence limit for its sensitivity in detecting serious injury exceeds 99.0%. A secondary goal of the study was to complete an independent validation and comparison of the Canadian and NEXUS Head CT rules among the subgroup of patients meeting the inclusion and exclusion criteria.We conducted a prospective observational study of the NEXUS Head CT DI in 4 hospital emergency departments between April 2006 and December 2015. Implementation of the rule requires that patients satisfy 8 criteria to achieve "low-risk" classification. Patients are excluded from "low-risk" classification and assigned "high-risk" status if they fail to meet 1 or more criteria. We examined the instrument's performance in assigning "high-risk" status to patients requiring neurosurgical intervention among a cohort of 11,770 blunt head injury patients. The NEXUS Head CT DI assigned high-risk status to 420 of 420 patients requiring neurosurgical intervention (sensitivity, 100.0% [95% confidence interval [CI]: 99.1%-100.0%]. The instrument assigned low-risk status to 2,823 of 11,350 patients who did not require neurosurgical intervention (specificity, 24.9% [95% CI: 24.1%-25.7%]. None of the 2,823 low-risk patients required neurosurgical intervention (negative predictive value [NPV], 100.0% [95% CI: 99.9%-100.0%]. The DI assigned high-risk status to 759 of 767 patients with significant intracranial injuries (sensitivity, 99.0% [95% CI: 98.0%-99.6%]. The instrument assigned low-risk status to 2,815 of 11

  9. Numerical analysis of the heat and mass transfer processes in selected M-Cycle heat exchangers for the dew point evaporative cooling

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey

    2015-01-01

    Highlights: • The comparative numerical study of the eight M-Cycle heat exchangers was presented. • The mathematical model is compared against the experimental data. • The results show, that the original M-Cycle heat and mass exchanger can be improved. • The effectiveness of the heat and mass exchangers depends strongly on the inlet air parameters. - Abstract: This paper investigates a mathematical simulation of heat and mass transfer in eight different types of the Maisotsenko Cycle (M-Cycle) heat and mass exchangers (HMXs) used for indirect evaporative air cooling. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process and quantifying the overall performance. The mathematical model was validated against experimental data. A numerical simulation reveals many unique features of the considered HMXs, enabling an accurate prediction of their performance. Results of the model allow for comparison of the analyzed devices in order to improve the performance of the original HMX

  10. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  11. Head Start.

    Science.gov (United States)

    Greenman, Geri

    2000-01-01

    Discusses an art project in which students created drawings of mop heads. Explains that the approach of drawing was more important than the subject. States that the students used the chiaroscuro technique, used by Rembrandt and Caravaggio, in which light appears out of the darkness. (CMK)

  12. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  13. Draft environmental statement for selection of the preferred closed cycle cooling system at Indian Point Unit No. 3: (Docket No. 50-286)

    International Nuclear Information System (INIS)

    1977-08-01

    The proposed action is the issuance of an amendment to the Facility Operating License No. DPR-64 for Indian Point Unit No. 3, located in the State of New York, Westchester County, Village of Buchanan, 24 miles north of the New York City boundary line. This facility is owned by the Power Authority of the State of New York and operated by the Consolidated Edison Company of New York, Inc. There will be drift (0.002%) deposited in small amounts over a substantial area, resulting in increased salt concentrations. There is a small possibility that injury may occur occasionally to certain species of plants. There may be a small increase (a matter of hours per year) in the amount of fogging and icing in the area, which are considered negligible. During construction, noise levels and traffic will be increased; however, these are temporary conditions. A monetary direct cost of approximately $245 million (present value) will be incurred by the licensee and the average annual plant capacity will be reduced by 33.5 MWe (4% of the total) while peak generating capability will be reduced by 77.5 MWe (9% of the total). Water taken from the river for cooling purposes will be reduced to approximately one-tenth that taken for once-through cooling of Unit No. 3. This will reduce impingement and entrapment of aquatic species by a similar amount and, thus, aid in the maintenance of biotic populations. The increased tax base will provide additional monies to various communities. 120 refs., 90 figs., 55 tabs

  14. Investigation of the Potential for In-Vessel Melt Retention in the Lower Head of a BWR by Cooling through the Control Rod Guide Tubes. APRl 4, Stage 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Jasiulevicius, A.; Konovalikhin, M.

    2004-01-01

    This report describes the experiments performed at the Division, investigating the coolability potential offered by the Control Rod Guide Tubes (CRGTs), which are present in large numbers in the lower head of a BWR and there is a water flow circuit in each one of them. This investigation is related to the overall goal of retaining the core melt in the lower head of a BWR during a postulated severe accident, through accident management procedures, or strategy. The experiments were performed in two facilities, i.e. POMECO (Porous MEdium COolability) and COMECO (Core MElt COolability), respectively, for investigating the coolability when the core material is in the form of a particulate debris bed and when it is in the form of a melt. The POMECO facility employed a sand bed heated electrically to heating levels of up to 1 MW/m 3 and experiments performed in that facility obtained the enhancement in the dryout heat flux and in the quench velocity due to presence of a CRGT, with, and without, water flow in it. The COMECO facility employed a simulant material melt pool heated electrically to power levels of = 1.3 MW/m 3 and the experiments in it also determined the enhancement in the heat removal from the melt pool that could be obtained by the presence of a CRGT, with, or without water flow in it. In each of the experiments in these facilities, the scaling employed was of a unit cell of core material around a prototypic geometry CRGT with the prototypic decay heat input. The experimental results showed that a CRGT is able to offer a substantial additional potential for coolability of particulate and melt material in the lower head of a BWR. Analysis of the data obtained in the set of experiments performed lead to the following results for the heat flux through the CRGT: - for a water filled particulate debris bed: - 40 kW/m 2 ; - for a day hot particulate debris bed: - 150 kW/m 2 ; - for a melt pool with a crust formed on the CRGT surface: -350 kW/m 2 . It is

  15. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  16. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  17. HANARO cooling features: design and experience

    International Nuclear Information System (INIS)

    Park, Cheol; Chae, Hee-Taek; Han, Gee-Yang; Jun, Byung-Jin; Ahn, Guk-Hoon

    1999-01-01

    In order to achieve the safe core cooling during normal operation and upset conditions, HANARO adopted an upward forced convection cooling system with dual containment arrangements instead of the forced downward flow system popularly used in the majority of forced convection cooling research reactors. This kind of upward flow system was selected by comparing the relative merits of upward and downward flow systems from various points of view such as safety, performance, maintenance. However, several operational matters which were not regarded as serious at design come out during operation. In this paper are presented the design and operational experiences on the unique cooling features of HANARO. (author)

  18. Flued head replacement alternatives

    International Nuclear Information System (INIS)

    Smetters, J.L.

    1987-01-01

    This paper discusses flued head replacement options. Section 2 discusses complete flued head replacement with a design that eliminates the inaccessible welds. Section 3 discusses alternate flued head support designs that can drastically reduce flued head installation costs. Section 4 describes partial flued head replacement designs. Finally, Section 5 discusses flued head analysis methods. (orig./GL)

  19. Goniometer head

    International Nuclear Information System (INIS)

    Dzhazairov-Kakhramanov, V.; Berger, V.D.; Kadyrzhanov, K.K.; Zarifov, R.A.

    1994-01-01

    The goniometer head is an electromechanical instrument that performs the independent transfer of a testing sample on three coordinate axes (X, Y, Z) within limits of ±8 mm and independent rotation relative of these directions. The instrument comprises a sample holder, bellows component and three electrometer drives. The sample holder rotates around the axes X and Y, and is installed on the central arm which rotates around axis Z. One characteristic of this instrument is its independence which allows its use in any camera for researches in the field of radiation physics. 2 figs

  20. Heavy liquid metal cooled FBR. Results 2003

    International Nuclear Information System (INIS)

    Hayahune, Hiroki; Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2004-08-01

    Concepts of the reactor, SG and main coolant pump have been studied considering maintainability and aseismic capability, which is a medium size pool type lead-bismuth cooled reactor. The results are following. (1) Reconsideration of reactor design concepts concerning maintainability: In pursuit of good reactor maintainability, the structural concepts of SG, UIS and core support structures have been changed to be drawn up above the upper area of the reactor system. After a few decade of interval, lead-bismuth inventory in the reactor vessel shall be fully drained for easy ISI operation of in-vessel main components such as core support structures. From the viewpoint of the reactor aseismic capability, the axial length of reactor vessel was reduced and the reactor vessel support location was changed from the top handing to the circumference of the vessel. (2) SG concept selection in conjunction with a compact reactor vessel: The concept of SG consisting of a once through type with helical coil tube is selected. 6 units of a small scale SG are arranged on a reactor roof deck along the peripheral direction, in addition to 3 units of a centrifugal mechanical pump. (3) Aseismic structural integrity of the reactor components: Aseismic structural integrity of the reactor vessel, core support structures, UIS, FHM, SG and the main pumps has been vigorously examined respectively. These components besides FHM could keep the aseismic structural integrity for strong S2 earthquake under the design condition. FHM could also keep the integrity for S1 earthquake. (4) Safety evaluation: Thermal transients following loss of flow type accident due to plant total blackout and typical manual reactor trip incident, have been evaluated to assure the pant safety design, by analyzing thermal hydraulic behavior of transients concerning core flow rate and temperatures of the plant cooling system. Loss of flow accident due to plant total blackout: The reactor coolant pumps shall be tripped and

  1. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  2. Heat exchanger, head and shell acceptance criteria

    International Nuclear Information System (INIS)

    Lam, P.S.; Sindelar, R.L.

    1992-09-01

    Instability of postulated flaws in the head component of the heat exchanger could not produce a large break, equivalent to a DEGB in the PWS piping, due to the configuration of the head and restraint provided by the staybolts. Rather, leakage from throughwall flaws in the head would increase with flaw length with finite leakage areas that are bounded by a post-instability flaw configuration. Postulated flaws at instability in the shell of the heat exchanger or in the cooling water nozzles could produce a large break in the Cooling Water System (CWS) pressure boundary. An initial analysis of flaw stability for postulated flaws in the heat exchanger head was performed in January 1992. This present report updates that analysis and, additionally, provides acceptable flaw configurations to maintain defined structural or safety margins against flaw instability of the external pressure boundary components of the heat exchanger, namely the head, shell, and cooling water nozzles. Structural and flaw stability analyses of the heat exchanger tubes, the internal pressure boundary of the heat exchangers or interface boundary between the PWS and CWS, were previously completed in February 1992 as part of the heat exchanger restart evaluation and are not covered in this report

  3. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  4. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  5. The Cool Colors Project

    Science.gov (United States)

    Gov. Arnold Schwarzenegger, second from left, a sample from the Cool Colors Project, a roof product ) (Jeff Chiu - AP) more Cool Colors make the front page of The Sacramento Bee (3rd highest circulation newspaper in California) on 14 August 2006! Read the article online or as a PDF. The Cool Colors Project

  6. Is HEADS in our heads?

    DEFF Research Database (Denmark)

    Boisen, Kirsten A; Hertz, Pernille Grarup; Blix, Charlotte

    2016-01-01

    contraception], Safety, Self-harm) interview is a feasible way of exploring health risk behaviors and resilience. OBJECTIVE: The purpose of this study was to evaluate how often HEADS topics were addressed according to young patients and staff in pediatric and adult outpatient clinics. METHODS: We conducted...... care professionals participated. We found only small reported differences between staff and young patients regarding whether home, education, and activity were addressed. However, staff reported twice the rate of addressing smoking, alcohol, illegal drugs, sexuality, and contraception compared to young...... patients. Young patients reported that smoking, alcohol, illegal drugs, sexuality, and contraception were addressed significantly more at adult clinics in comparison to pediatric clinics. After controlling for age, gender and duration of illness, according to young patients, adjusted odds ratios...

  7. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  8. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  9. Permeability enhancement by shock cooling

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of

  10. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  11. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc.

    Science.gov (United States)

    Wiwart, Marian; Suchowilska, Elżbieta; Kandler, Wolfang; Sulyok, Michael; Wachowska, Urszula; Krska, Rudolf

    2016-04-15

    Several cultivars and pure lines of Triticum monococcum, T. dicoccon, T. polonicum, T. spelta and T. aestivum were inoculated with Fusarium culmorum, the causal agent of Fusarium head blight in wheat. During the three-year study, the infection decreased the values of the analyzed yield components: spike weight (by 5.6% to 15.8%), number of kernels per spike (by 2.8% to 11.8%) and one kernel weight (by 8.4% to 10.7%). T. spelta was characterized by the weakest average response to infection. The grain from inoculated spikes contained significantly higher concentrations of deoxynivalenol (DON) and its 3-β-D-glucoside (D3G) than control grain. The D3G/DON ratio ranged from 11.4% to 21.4% in control grain and from 8.1% to 11.6% in inoculated grain. The lowest levels of mycotoxins were found in spelt, and the highest in T. polonicum lines and Kamut. PCA revealed that the grain of T. polonicum was characterized by an entirely different mycotoxin profile. The weakest response to F. culmorum infections was noted in T. spelta, and the strongest response in T. polonicum breeding lines and Kamut.

  12. Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Mao, Liang; Fan, Teng-Fei; Wu, Lei; Yu, Guang-Tao; Deng, Wei-Wei; Chen, Lei; Bu, Lin-Lin; Ma, Si-Rui; Liu, Bing; Bian, Yansong; Kulkarni, Ashok B; Zhang, Wen-Feng; Sun, Zhi-Jun

    2017-09-01

    Immature myeloid cells including myeloid-derived suppressor cells (MDSCs) and tumour-associated macrophages (TAMs) promote tumour growth and metastasis by facilitating tumour transformation and angiogenesis, as well as by suppressing antitumour effector immune responses. Therefore, strategies designed to reduce MDSCs and TAMs accumulation and their activities are potentially valuable therapeutic goals. In this study, we show that negative immune checkpoint molecule B7-H3 is significantly overexpressed in human head and neck squamous cell carcinoma (HNSCC) specimen as compared with normal oral mucosa. Using immunocompetent transgenic HNSCC models, we observed that targeting inhibition of B7-H3 reduced tumour size. Flow cytometry analysis revealed that targeting inhibition of B7-H3 increases antitumour immune response by decreasing immunosuppressive cells and promoting cytotoxic T cell activation in both tumour microenvironment and macroenvironment. Our study provides direct in vivo evidence for a rationale for B7-H3 blockade as a future therapeutic strategy to treat patients with HNSCC. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith Sacc.

    Directory of Open Access Journals (Sweden)

    Marian Wiwart

    2016-04-01

    Full Text Available Several cultivars and pure lines of Triticum monococcum, T. dicoccon, T. polonicum, T. spelta and T. aestivum were inoculated with Fusarium culmorum, the causal agent of Fusarium head blight in wheat. During the three-year study, the infection decreased the values of the analyzed yield components: spike weight (by 5.6% to 15.8%, number of kernels per spike (by 2.8% to 11.8% and one kernel weight (by 8.4% to 10.7%. T. spelta was characterized by the weakest average response to infection. The grain from inoculated spikes contained significantly higher concentrations of deoxynivalenol (DON and its 3-β-d-glucoside (D3G than control grain. The D3G/DON ratio ranged from 11.4% to 21.4% in control grain and from 8.1% to 11.6% in inoculated grain. The lowest levels of mycotoxins were found in spelt, and the highest in T. polonicum lines and Kamut. PCA revealed that the grain of T. polonicum was characterized by an entirely different mycotoxin profile. The weakest response to F. culmorum infections was noted in T. spelta, and the strongest response in T. polonicum breeding lines and Kamut.

  14. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  15. Head Impact Laboratory (HIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The HIL uses testing devices to evaluate vehicle interior energy attenuating (EA) technologies for mitigating head injuries resulting from head impacts during mine/...

  16. Passive Cooling of Body Armor

    Science.gov (United States)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  17. Laser cooling of solids

    CERN Document Server

    Petrushkin, S V

    2009-01-01

    Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors. Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews p...

  18. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  19. Dynamic change of ERPs related to selective attention to signals from left and right visual field during head-down tilt

    Science.gov (United States)

    Wei, Jinhe; Zhao, Lun; Van, Gongdong; Chen, Wenjuan; Ren, Wei; Duan, Ran

    To study further the effect of head-down tilt(HDT) on slow positive potential in the event-related potentials(ERPs), the temporal and spatial features of visual ERPs changes during 2 hour HDT(-10 °) were compared with that during HUT(+20°) in 15 normal subjects. The stimuli were consisted of two color LED flashes appeared randomly in left or right visual field(LVF or RVF) with same probability. The subjects were asked to make switch response to target signals(T) differentially: switching to left for T in LVF and to right for T in RVF, ignoring non-target signals(N). Five sets of tests were made during HUT and HDT. ERPs were obtained from 9 locations on scalp. The mean value of the ERPs in the period from 0.32-0.55 s was taken as the amplitude of slow positive potential(P400). The main results were as follows. 1)The mean amplitude of P400 decreased during HDT which was more significant at the 2nd, 3rd and 5th set of tests; 2)spatially, the reduction of mean P400 amplitude during HDT was more significant for signals from RVF and was more significant at posterior and central brain regions than that on frontal locations. As that the positive potential probably reflects the active inhibition activity in the brain during attention process, these data provide further evidence showing that the higher brain function was affected by the simulated weightlessness and that this effect was not only transient but also with interesting spatial characteristics.

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  1. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  2. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  3. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  4. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  5. The cooling of particle beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling

  6. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  7. Power electronics cooling apparatus

    Science.gov (United States)

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  8. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  9. Head Trauma: First Aid

    Science.gov (United States)

    First aid Head trauma: First aid Head trauma: First aid By Mayo Clinic Staff Most head trauma involves injuries that are minor and don't require ... 21, 2015 Original article: http://www.mayoclinic.org/first-aid/first-aid-head-trauma/basics/ART-20056626 . Mayo ...

  10. Thermal effects of dorsal head immersion in cold water on nonshivering humans.

    Science.gov (United States)

    Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M

    2005-11-01

    Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.

  11. Head and neck cancer

    International Nuclear Information System (INIS)

    Vogl, S.E.

    1988-01-01

    This book contains 10 chapters. Some of the titles are: Combined Surgical Resection and Irradiation for Head and Neck Cancers; Analysis of Radiation Therapy Oncology Group Head and Neck Database: Identification of Prognostic Factors and the Re-evaluation of American Joint Committee Stages; Combined Modality Approach to Head and Neck Cancer; Induction Combination Chemotherapy of Regionally Advanced Head and Neck Cancer; and Outcome after Complete Remission to Induction Chemotherapy in Head and Neck Cancer

  12. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  13. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  14. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Vakilian, M.

    1977-05-01

    The present study is the second part of a general survey of Gas Cooled Reactors (GCRs). In this part, the course of development, overall performance and present development status of High Temperature Gas Cooled Reactors (HTCRs) and advances of HTGR systems are reviewed. (author)

  15. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  16. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  17. Reactor core cooling device

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro.

    1986-01-01

    Purpose: To safely and effectively cool down the reactor core after it has been shut down but is still hot due to after-heat. Constitution: Since the coolant extraction nozzle is situated at a location higher than the coolant injection nozzle, the coolant sprayed from the nozzle, is free from sucking immediately from the extraction nozzle and is therefore used effectively to cool the reactor core. As all the portions from the top to the bottom of the reactor are cooled simultaneously, the efficiency of the reactor cooling process is increased. Since the coolant extraction nozzle can be installed at a point considerably higher than the coolant injection nozzle, the distance from the coolant surface to the point of the coolant extraction nozzle can be made large, preventing cavitation near the coolant extraction nozzle. Therefore, without increasing the capacity of the heat exchanger, the reactor can be cooled down after a shutdown safely and efficiently. (Kawakami, Y.)

  18. Stochastic cooling at Fermilab

    International Nuclear Information System (INIS)

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system

  19. Liquid cooling applications on automotive exterior LED lighting

    Science.gov (United States)

    Aktaş, Mehmet; Şenyüz, Tunç; Şenyıldız, Teoman; Kılıç, Muhsin

    2018-02-01

    In this study cooling of a LED unit with heatsink and liquid cooling block which is used in automotive head lamp applications has been investigated numerically and experimentally. Junction temperature of a LED which is cooled with heatsink and liquid cooling block obtained in the experiment. 23°C is used both in the simulation and the experiment phase. Liquid cooling block material is choosed aluminium (Al) and polyamide. All tests and simulation are performed with three different flow rate. Temperature distribution of the designed product is investigated by doing the numerical simulations with a commercially software. In the simulations, fluid flow is assumed to be steady, incompressible and laminar and 3 dimensional (3D) Navier-Stokes equations are used. According to the calculations it is obtained that junction temperature is higher in the heatsink design compared to block cooled one. By changing the block material, it is desired to investigate the variation on the LED junction temperature. It is found that more efficient cooling can be obtained in block cooling by using less volume and weight. With block cooling lifetime of LED can be increased and flux loss can be decreased with the result of decreased junction temperature.

  20. Cooled-Spool Piston Compressor

    Science.gov (United States)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  1. Methods and apparatus for cooling electronics

    Science.gov (United States)

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  2. Estimation on the Pressure Loss of the Conceptual Primary Cooling System and Design of the Primary Cooling Pump for a Research Reactor

    International Nuclear Information System (INIS)

    Seo, Kyoung Woo; Oh, Jae Min; Park, Jong Hark; Chae, Hee Taek; Seo, Jae Kwang; Park, Cheon Tae; Yoon, Ju Hyeon; Lee, Doo Jeong

    2009-01-01

    A new conceptual primary cooling system (PCS) for a research reactor has been designed for an adequate cooling to the reactor core which has various powers ranging from 30MW through 80MW. The developed primary cooling system consisted of decay tanks, pumps, heat exchangers, vacuum breakers, some isolation and check valves, connection piping, and instruments. Because the system flow rate should be determined by the thermal hydraulic design analysis for the core, the heads to design the primary cooling pumps (PCPs) in a PCS will be estimated by the variable system flow rates. The heads of the part of a research reactor vessel was evaluated by the previous study. The various pressure losses of the PCS can be calculated by the dimensional analysis of the pipe flow and the head loss coefficient of the components. The purpose of this research is to estimate the various pressure losses and to design the PCPs

  3. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  4. Cooling system with automated seasonal freeze protection

    Science.gov (United States)

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  5. CFD Analysis for Advanced Integrated Head Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Won Ho; Kang, Tae Kyo; Cho, Yeon Ho; Kim, Hyun Min [KEPCO Engineering and Construction Co., Daejeon (Korea, Republic of)

    2016-10-15

    The Integrated Head Assembly (IHA) is permanently installed on the reactor vessel closure head during the normal plant operation and refueling operation. It consists of a number of systems and components such as the head lifting system, seismic support system, Control Element Drive Mechanism (CEDM) cooling system, cable support system, cooling shroud assemblies. With the operating experiences of the IHA, the needs for the design change to the current APR1400 IHA arouse to improve the seismic resistance and to accommodate the convenient maintenance. In this paper, the effects of the design changes were rigorously studied for the various sizes of the inlet openings to assure the proper cooling of the CEDMs. And the system pressure differentials and required flow rate for the CEDM cooling fan were analyzed regarding the various operating conditions for determining the capacity of the fan. As a part of the design process of the AIHA, the number of air inlets and baffle regions are reduced by simplifying the design of the APR1400 IHA. The design change of the baffle regions has been made such that the maximum possible space are occupied inside the IHA cooling shroud shell while avoiding the interference with CEDMs. So, only the air inlet opening was studied for the design change to supply a sufficient cooling air flow for each CEDM. The size and location of the air inlets in middle cooling shroud assembly were determined by the CFD analyses of the AIHA. And the case CFD analyses were performed depending on the ambient air temperature and fan operating conditions. The size of the air inlet openings is increased by comparison with the initial AIHA design, and it is confirmed that the cooling air flow rate for each CEDM meet the design requirement of 800 SCFM ± 10% with the increased air inlets. At the initial analysis, the fan outlet flow rate was assumed as 48.3 lbm/s, but the result revealed that the less outflow rate at the fan is enough to meet the design requirement

  6. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  7. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  8. Local body cooling to improve sleep quality and thermal comfort in a hot environment.

    Science.gov (United States)

    Lan, L; Qian, X L; Lian, Z W; Lin, Y B

    2018-01-01

    The effects of local body cooling on thermal comfort and sleep quality in a hot environment were investigated in an experiment with 16 male subjects. Sleep quality was evaluated subjectively, using questionnaires completed in the morning, and objectively, by analysis of electroencephalogram (EEG) signals that were continuously monitored during the sleeping period. Compared with no cooling, the largest improvement in thermal comfort and sleep quality was observed when the back and head (neck) were both cooled at a room temperature of 32°C. Back cooling alone also improved thermal comfort and sleep quality, although the effects were less than when cooling both back and head (neck). Mean sleep efficiency was improved from 84.6% in the no cooling condition to 95.3% and 92.8%, respectively, in these conditions, indicating good sleep quality. Head (neck) cooling alone slightly improved thermal comfort and subjective sleep quality and increased Stage N3 sleep, but did not otherwise improve sleep quality. The results show that local cooling applied to large body sections (back and head) could effectively maintain good sleep and improve thermal comfort in a hot environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Cost-effectiveness analysis of scalp cooling to reduce chemotherapy-induced alopecia

    NARCIS (Netherlands)

    van den Hurk, C.J.; van den Akker-van Marle, E.M.; Breed, W.P.M.; van de Poll-Franse, L.V.; Nortier, J.; Coebergh, J.W.W.

    2014-01-01

    Background. Alopecia is a frequently occurring side effect of chemotherapy that often can be prevented by cooling the scalp during the infusion. This study compared effects and costs of scalp cooling with usual general oncological care, i.e. purchasing a wig or head cover. Material and methods.

  10. History of nuclear cooling

    International Nuclear Information System (INIS)

    Kuerti, M.

    1998-01-01

    The historical development of producing extreme low temperatures by magnetic techniques is overviewed. With electron spin methods, temperatures down to 1 mK can be achieved. With nuclear spins theoretically 10 -9 K can be produced. The idea of cooling with nuclear demagnetization is not new, it is a logical extension of the concept of electron cooling. Using nuclear demagnetization experiment with 3 T water cooled solenoids 3 mK could be produced. The cold record is held by Olli Lounasmaa in Helsinki with temperatures below 10 -9 K. (R.P.)

  11. A Thermal Test System for Helmet Cooling Studies

    Directory of Open Access Journals (Sweden)

    Shaun Fitzgerald

    2018-02-01

    Full Text Available One of the primary causes of discomfort to both irregular and elite cyclists is heat entrapment by a helmet resulting in overheating and excessive sweating of the head. To accurately assess the cooling effectiveness of bicycle helmets, a heated plastic thermal headform has been developed. The construction consists of a 3D-printed headform of low thermal conductivity with an internal layer of high thermal mass that is heated to a constant uniform temperature by an electrical heating element. Testing is conducted in a wind tunnel where the heater power remains constant and the resulting surface temperature distribution is directly measured by 36 K-type thermocouples embedded within the surface of the head in conjunction with a thermal imaging camera. Using this new test system, four bicycle helmets were studied in order to measure their cooling abilities and to identify ‘hot spots’ where cooling performance is poor.

  12. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  13. Head injury - first aid

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000028.htm Head injury - first aid To use the sharing features on this page, ... a concussion can range from mild to severe. First Aid Learning to recognize a serious head injury and ...

  14. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... the head uses special x-ray equipment to help assess head injuries, severe headaches, dizziness, and other ... aneurysm, bleeding, stroke and brain tumors. It also helps your doctor to evaluate your face, sinuses, and ...

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association ... Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... When the image slices are reassembled by computer software, the result is a very detailed multidimensional view ... Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography (CT) - Head Sponsored by ...

  17. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... the limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, ... than regular radiographs (x-rays). top of page What are some common uses of the procedure? CT ...

  18. Microbial analysis of meatballs cooled with vacuum and conventional cooling.

    Science.gov (United States)

    Ozturk, Hande Mutlu; Ozturk, Harun Kemal; Koçar, Gunnur

    2017-08-01

    Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

  19. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  20. Passive cooling of control rod drive mechanisms

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Schwirian, R.E.

    1992-01-01

    A method and apparatus are provided for passively cooling the control rod drive mechanisms (CRDMs) in the reactor vessel of a nuclear power plant. Passive cooling is achieved by dispersing a plurality of chimneys within the CRDM array in positions where a control rod is not required. The chimneys induce convective air currents which cause ambient air from within the containment to flow over the CRDM coils. The air heated by the coils is guided into inlets in the chimneys by baffles. The chimney is insulated and extends through the seismic support platform and missile shield disposed above the closure head. A collar of adjustable height mates with plate elements formed at the distal end of the CRDM pressure housings by an interlocking arrangement so that the seismic support platform provides lateral restraint for the chimneys. (Author)

  1. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  2. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  3. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  4. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  5. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  6. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  7. Cooling of superconducting devices by liquid storage and refrigeration unit

    Science.gov (United States)

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  8. Comparing Social Stories™ to Cool versus Not Cool

    Science.gov (United States)

    Leaf, Justin B.; Mitchell, Erin; Townley-Cochran, Donna; McEachin, John; Taubman, Mitchell; Leaf, Ronald

    2016-01-01

    In this study we compared the cool versus not cool procedure to Social Stories™ for teaching various social behaviors to one individual diagnosed with autism spectrum disorder. The researchers randomly assigned three social skills to the cool versus not cool procedure and three social skills to the Social Stories™ procedure. Naturalistic probes…

  9. Plants for passive cooling. A preliminary investigation of the use of plants for passive cooling in temperate humid climates

    Energy Technology Data Exchange (ETDEWEB)

    Spirn, A W; Santos, A N; Johnson, D A; Harder, L B; Rios, M W

    1981-04-01

    The potential of vegetation for cooling small, detached residential and commercial structures in temperate, humid climates is discussed. The results of the research are documented, a critical review of the literature is given, and a brief review of energy transfer processes is presented. A checklist of design objectives for passive cooling, a demonstration of design applications, and a palette of selected plant species suitable for passive cooling are included.

  10. Effects of semen preservation on boar spermatozoa head membranes.

    Science.gov (United States)

    Buhr, M M; Canvin, A T; Bailey, J L

    1989-08-01

    Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Extended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25 degrees C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40 degrees C, 0.4 degrees C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P less than 0.05). Fluidity of head membranes from all sources decreased at 25 degrees C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5 degrees C reduced the rate of fluidity change for plasma membranes from the sperm-rich fraction, while heating over 30 degrees C caused a significantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25 degrees C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25 degrees C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.

  11. Head, Neck, and Oral Cancer

    Medline Plus

    Full Text Available ... Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ... Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ...

  12. The Cool 100 book

    Energy Technology Data Exchange (ETDEWEB)

    Haselip, J.; Pointing, D.

    2011-07-01

    substantially reduced energy use and costs and supported the lifestyles and needs of communities. 8. The Runde Environmental Centre on Norway's western coast, which supports research into impacts on the marine environment and the development of innovative and sustainable technologies for fisheries and aquaculture, marine transport and renewable ocean energy. 9. A suite of online calculators, developed by the Energy Agency Iceland, that assist consumers in selecting cars for purchase or hire, planning trips, and neutralising associated carbon emissions, based on the fuel consumption data of almost all modern cars. 10. The H2SEED project, which reduces fossil fuel use in the Western Isles of Scotland, an area where the electricity grid can't support more renewable energy, by producing hydrogen for energy storage and as a transport fuel, from renewable energy sources. 11. The Chaninik Wind Group project, a collaboration between Native communities in remote areas of Alaska that harnesses wind power to reduce energy costs, promotes selfsufficiency and economic development. An additional 89 projects are examined in less detail, though each entry provides relevant links to further information. These projects range from examples of successfully operating sustainable energy systems in isolated communities around the world, to community education and outreach-focused programs, regional and national initiatives and networks, and other specific information resources and tools. The locations of the projects featured in the book range across the northern hemisphere, but also Antarctica, and less cold regions of the planet, but have a particular focus on communities in the northern hemisphere. In addition to the printed publication, the Cool 100 is also an evolving database of practical and sustainable energy solutions for isolated communities in cooler regions. All projects featured in the book are located on an online, wiki-style portal, which anyone can edit and/or make

  13. Heat transfer between relocated materials and the RPV lower head

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Kohriyama, T. [INSS, Fukui (Japan)

    2001-07-01

    Questions about the coolability of a continuous mass of relocated corium were raised during the Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) Post-accident examinations indicate that nearly half of the material that relocated to the vessel lower head during the TMI-2 accident formed a cohesive or ''continuous'' layer. TMI-2 VIP results and other evidence suggest that conduction through this continuous layer of solidified corium materials was assisted by other cooling mechanisms. Because increased knowledge about in-vessel coolability of corium materials may assist reactor designers in demonstrating that their concepts are passively safe, there is international interest in this topic. However, data are needed to identify what cooling mechanism(s) occurred and to develop a validated model for predicting this cooling. Corium cooling models significantly impact predictions for subsequent accident progression, such as the estimated time and mode of vessel failure. Hence, improved cooling models will provide a much needed, missing component of severe accident analyses. This paper provides a critical review of research investigating the coolability of corium relocating to a water-filled lower head. Where possible, existing models and data for predicting cooling are quantitatively compared; and governing relationships are identified. Key phenomena that should be incorporated into models for predicting this heat transfer are discussed, and deficiencies in current models and available data for predicting cooling are noted. Recommendations for improving these models and for obtaining data to validate these models are also provided. (author)

  14. Heat transfer between relocated materials and the RPV lower head

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Kohriyama, T.

    2001-01-01

    Questions about the coolability of a continuous mass of relocated corium were raised during the Three Mile Island Unit 2 (TMI-2) Vessel Investigation Project (VIP) Post-accident examinations indicate that nearly half of the material that relocated to the vessel lower head during the TMI-2 accident formed a cohesive or ''continuous'' layer. TMI-2 VIP results and other evidence suggest that conduction through this continuous layer of solidified corium materials was assisted by other cooling mechanisms. Because increased knowledge about in-vessel coolability of corium materials may assist reactor designers in demonstrating that their concepts are passively safe, there is international interest in this topic. However, data are needed to identify what cooling mechanism(s) occurred and to develop a validated model for predicting this cooling. Corium cooling models significantly impact predictions for subsequent accident progression, such as the estimated time and mode of vessel failure. Hence, improved cooling models will provide a much needed, missing component of severe accident analyses. This paper provides a critical review of research investigating the coolability of corium relocating to a water-filled lower head. Where possible, existing models and data for predicting cooling are quantitatively compared; and governing relationships are identified. Key phenomena that should be incorporated into models for predicting this heat transfer are discussed, and deficiencies in current models and available data for predicting cooling are noted. Recommendations for improving these models and for obtaining data to validate these models are also provided. (author)

  15. Cyclotron resonance cooling by strong laser field

    International Nuclear Information System (INIS)

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-01-01

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers

  16. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  17. Technology of power plant cooling

    International Nuclear Information System (INIS)

    Maulbetsch, J.S.; Zeren, R.W.

    1976-01-01

    The following topics are discussed: the thermodynamics of power generation and the need for cooling water; the technical, economic, and legislative constraints within which the cooling problem must be solved; alternate cooling methods currently available or under development; the water treatment requirements of cooling systems; and some alternatives for modifying the physical impact on aquatic systems

  18. Meltdown reactor core cooling facility

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi.

    1992-01-01

    The meltdown reactor core cooling facility comprises a meltdown reactor core cooling tank, a cooling water storage tank situates at a position higher than the meltdown reactor core cooling tank, an upper pipeline connecting the upper portions of the both of the tanks and a lower pipeline connecting the lower portions of them. Upon occurrence of reactor core meltdown, a high temperature meltdown reactor core is dropped on the cooling tank to partially melt the tank and form a hole, from which cooling water is flown out. Since the water source of the cooling water is the cooling water storage tank, a great amount of cooling water is further dropped and supplied and the reactor core is submerged and cooled by natural convection for a long period of time. Further, when the lump of the meltdown reactor core is small and the perforated hole of the meltdown reactor cooling tank is small, cooling water is boiled by the high temperature lump intruding into the meltdown reactor core cooling tank and blown out from the upper pipeline to the cooling water storage tank to supply cooling water from the lower pipeline to the meltdown reactor core cooling tank. Since it is constituted only with simple static facilities, the facility can be simplified to attain improvement of reliability. (N.H.)

  19. Cool WISPs for stellar cooling excesses

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, Maurizio [Physical Sciences, Barry University, 11300 NE 2nd Avenue, Miami Shores, FL 33161 (United States); Irastorza, Igor; Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, España (Spain); Ringwald, Andreas, E-mail: mgiannotti@barry.edu, E-mail: igor.irastorza@cern.ch, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de [Theory group, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg (Germany)

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  20. Cool WISPs for stellar cooling excesses

    International Nuclear Information System (INIS)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-01-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  1. Gas-cooled reactors

    International Nuclear Information System (INIS)

    Schulten, R.; Trauger, D.B.

    1976-01-01

    Experience to date with operation of high-temperature gas-cooled reactors has been quite favorable. Despite problems in completion of construction and startup, three high-temperature gas-cooled reactor (HTGR) units have operated well. The Windscale Advanced Gas-Cooled Reactor (AGR) in the United Kingdom has had an excellent operating history, and initial operation of commercial AGRs shows them to be satisfactory. The latter reactors provide direct experience in scale-up from the Windscale experiment to fullscale commercial units. The Colorado Fort St. Vrain 330-MWe prototype helium-cooled HTGR is now in the approach-to-power phase while the 300-MWe Pebble Bed THTR prototype in the Federal Republic of Germany is scheduled for completion of construction by late 1978. THTR will be the first nuclear power plant which uses a dry cooling tower. Fuel reprocessing and refabrication have been developed in the laboratory and are now entering a pilot-plant scale development. Several commercial HTGR power station orders were placed in the U.S. prior to 1975 with similar plans for stations in the FRG. However, the combined effects of inflation, reduced electric power demand, regulatory uncertainties, and pricing problems led to cancellation of the 12 reactors which were in various stages of planning, design, and licensing

  2. Gas cooled leads

    International Nuclear Information System (INIS)

    Shutt, R.P.; Rehak, M.L.; Hornik, K.E.

    1993-01-01

    The intent of this paper is to cover as completely as possible and in sufficient detail the topics relevant to lead design. The first part identifies the problems associated with lead design, states the mathematical formulation, and shows the results of numerical and analytical solutions. The second part presents the results of a parametric study whose object is to determine the best choice for cooling method, material, and geometry. These findings axe applied in a third part to the design of high-current leads whose end temperatures are determined from the surrounding equipment. It is found that cooling method or improved heat transfer are not critical once good heat exchange is established. The range 5 5 but extends over a large of values. Mass flow needed to prevent thermal runaway varies linearly with current above a given threshold. Below that value, the mass flow is constant with current. Transient analysis shows no evidence of hysteresis. If cooling is interrupted, the mass flow needed to restore the lead to its initially cooled state grows exponentially with the time that the lead was left without cooling

  3. Emergency core cooling system

    International Nuclear Information System (INIS)

    Arai, Kenji; Oikawa, Hirohide.

    1990-01-01

    The device according to this invention can ensure cooling water required for emerency core cooling upon emergence such as abnormally, for example, loss of coolant accident, without using dynamic equipments such as a centrifugal pump or large-scaled tank. The device comprises a pressure accumulation tank containing a high pressure nitrogen gas and cooling water inside, a condensate storage tank, a pressure suppression pool and a jet stream pump. In this device there are disposed a pipeline for guiding cooling water in the pressure accumulation tank as a jetting water to a jetting stream pump, a pipeline for guiding cooling water stored in the condensate storage tank and the pressure suppression pool as pumped water to the jetting pump and, further, a pipeline for guiding the discharged water from the jet stream pump which is a mixed stream of pumped water and jetting water into the reactor pressure vessel. In this constitution, a sufficient amount of water ranging from relatively high pressure to low pressure can be supplied into the reactor pressure vessel, without increasing the size of the pressure accumulation tank. (I.S.)

  4. Emergency reactor cooling circuit

    International Nuclear Information System (INIS)

    Araki, Hidefumi; Matsumoto, Tomoyuki; Kataoka, Yoshiyuki.

    1994-01-01

    Cooling water in a gravitationally dropping water reservoir is injected into a reactor pressure vessel passing through a pipeline upon occurrence of emergency. The pipeline is inclined downwardly having one end thereof being in communication with the pressure vessel. During normal operation, the cooling water in the upper portion of the inclined pipeline is heated by convection heat transfer from the communication portion with the pressure vessel. On the other hand, cooling water present at a position lower than the communication portion forms cooling water lumps. Accordingly, temperature stratification layers are formed in the inclined pipeline. Therefore, temperature rise of water in a vertical pipeline connected to the inclined pipeline is small. With such a constitution, the amount of heat lost from the pressure vessel by way of the water injection pipeline is reduced. Further, there is no worry that cooling water to be injected upon occurrence of emergency is boiled under reduced pressure in the injection pipeline to delay the depressurization of the pressure vessel. (I.N.)

  5. Can Cooler Heads Prevail?

    Science.gov (United States)

    Rice, A. R.

    2015-12-01

    The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and

  6. Micro-jet Cooling by Compressed Air after MAG Welding

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2016-06-01

    Full Text Available The material selected for this investigation was low alloy steel weld metal deposit (WMD after MAG welding with micro-jet cooling. The present investigation was aimed as the following tasks: analyze impact toughness of WMD in terms of micro-jet cooling parameters. Weld metal deposit (WMD was first time carried out for MAG welding with micro-jet cooling of compressed air and gas mixture of argon and air. Until that moment only argon, helium and nitrogen and its gas mixture were tested for micro-jet cooling.

  7. Core cooling systems

    International Nuclear Information System (INIS)

    Hoeppner, G.

    1980-01-01

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  8. Reactor cooling system

    International Nuclear Information System (INIS)

    Kato, Etsuji.

    1979-01-01

    Purpose: To eliminate cleaning steps in the pipelines upon reactor shut-down by connecting a filtrating and desalting device to the cooling system to thereby always clean up the water in the pipelines. Constitution: A filtrating and desalting device is connected to the pipelines in the cooling system by way of drain valves and a check valve. Desalted water is taken out from the exit of the filtrating and desalting device and injected to one end of the cooling system pipelines by way of the drain valve and the check valve and then returned by way of another drain valve to the desalting device. Water in the pipelines is thus always desalted and the cleaning step in the pipelines is no more required in the shut-down. (Kawakami, Y.)

  9. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  10. Emergency core cooling device

    International Nuclear Information System (INIS)

    Suzaki, Kiyoshi; Inoue, Akihiro.

    1979-01-01

    Purpose: To improve core cooling effect by making the operation region for a plurality of water injection pumps more broader. Constitution: An emergency reactor core cooling device actuated upon failure of recycling pipe ways is adapted to be fed with cooling water through a thermal sleeve by way of a plurality of water injection pump from pool water in a condensate storage tank and a pressure suppression chamber as water feed source. Exhaust pipes and suction pipes of each of the pumps are connected by way of switching valves and the valves are switched so that the pumps are set to a series operation if the pressure in the pressure vessel is high and the pumps are set to a parallel operation if the pressure in the pressure vessel is low. (Furukawa, Y.)

  11. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  12. Cooling nuclear reactor fuel

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1975-01-01

    Reference is made to water or water/steam cooled reactors of the fuel cluster type. In such reactors it is usual to mount the clusters in parallel spaced relationship so that coolant can pass freely between them, the coolant being passed axially from one end of the cluster in an upward direction through the cluster and being effective for cooling under normal circumstances. It has been suggested, however, that in addition to the main coolant flow an auxiliary coolant flow be provided so as to pass laterally into the cluster or be sprayed over the top of the cluster. This auxiliary supply may be continuously in use, or may be held in reserve for use in emergencies. Arrangements for providing this auxiliary cooling are described in detail. (U.K.)

  13. Stochastic cooling for beginners

    International Nuclear Information System (INIS)

    Moehl, D.

    1984-01-01

    These two lectures have been prepared to give a simple introduction to the principles. In Part I we try to explain stochastic cooling using the time-domain picture which starts from the pulse response of the system. In Part II the discussion is repeated, looking more closely at the frequency-domain response. An attempt is made to familiarize the beginners with some of the elementary cooling equations, from the 'single particle case' up to equations which describe the evolution of the particle distribution. (orig.)

  14. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  15. Cooling pond fog studies

    International Nuclear Information System (INIS)

    Hicks, B.B.

    1978-01-01

    The Fog Excess Water Index (FEWI) method of fog prediction has been verified by the use of data obtained at the Dresden cooling pond during 1976 and 1977 and by a reanalysis of observations made in conjunction with a study of cooling pond simulators during 1974. For applications in which the method is applied to measurements or estimates of bulk water temperature, a critical value of about 0.7 mb appears to be most appropriate. The present analyses confirm the earlier finding that wind speed plays little part in determining the susceptibility for fog generation

  16. Electrically-cooled HPGe detector for advanced x-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Marian, V.; Clauss, J.; Pirard, B.; Quirin, P.; Flamanc, J.; Lampert, M.O. [CANBERRA France, Parc des Tanneries, 1, chemin de la roseraie, 67380 Lingolsheim (France)

    2015-07-01

    High Purity Germanium (HPGe) detectors are used for high-resolution x- and gamma-ray spectroscopy. For their operation, the necessary cryogenic cooling is performed with liquid nitrogen or with electromechanical coolers. Although mature and industrialized solutions, most of HPGe detectors integrating electrical coolers present a limited spectroscopic performance due to the generated mechanical vibration and electromagnetic interference. This paper describes a novel HPGe detector, specifically designed to address the challenges of ultimate x-ray spectroscopy and imaging applications. Due to the stringent demands associated with nano-scale imaging in synchrotron applications, a custom-designed cryostat was built around a Canberra CP5-Plus electrical cooler featuring extremely low vibration levels and high cooling power. The heat generated by the cryo-cooler itself, as well as the electronics, is evacuated via an original liquid cooling circuit. This architecture can also be used to address high ambient temperature, which does not allow conventional cryo-coolers to work properly. The multichannel detector head can consist of a segmented monolithic HPGe sensor, or several closely packed sensors. Each sensor channel is read out by state-of-the-art pulse-reset preamplifiers in order to achieve excellent energy resolution for count rates in excess of 1 Mcps. The sensitive electronics are located in EMI-proof housings to avoid any interference from other devices on a beam-line. The front-end of the detector is built using selected high-purity materials and alloys to avoid any fluorescence effects. We present a detailed description of the detector design and we report on its performance. A discussion is also given on the use of electrically cooled HPGe detectors for applications requiring ultimate energy resolution, such as synchrotron, medicine or nuclear industry. (authors)

  17. Head CT scan

    Science.gov (United States)

    ... scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... head size in children Changes in thinking or behavior Fainting Headache, when you have certain other signs ...

  18. Bottom head assembly

    International Nuclear Information System (INIS)

    Fife, A.B.

    1998-01-01

    A bottom head dome assembly is described which includes, in one embodiment, a bottom head dome and a liner configured to be positioned proximate the bottom head dome. The bottom head dome has a plurality of openings extending there through. The liner also has a plurality of openings extending there through, and each liner opening aligns with a respective bottom head dome opening. A seal is formed, such as by welding, between the liner and the bottom head dome to resist entry of water between the liner and the bottom head dome at the edge of the liner. In the one embodiment, a plurality of stub tubes are secured to the liner. Each stub tube has a bore extending there through, and each stub tube bore is coaxially aligned with a respective liner opening. A seat portion is formed by each liner opening for receiving a portion of the respective stub tube. The assembly also includes a plurality of support shims positioned between the bottom head dome and the liner for supporting the liner. In one embodiment, each support shim includes a support stub having a bore there through, and each support stub bore aligns with a respective bottom head dome opening. 2 figs

  19. Experimental investigation of creep behavior of reactor vessel lower head

    International Nuclear Information System (INIS)

    Chu, T.Y.; Pilch, M.; Bentz, J.H.; Behbahani, A.

    1998-03-01

    The objective of the USNRC supported Lower Head Failure (LHF) Experiment Program at Sandia National Laboratories is to experimentally investigate and characterize the failure of the reactor pressure vessel (RPV) lower head due to the thermal and pressure loads of a severe accident. The experimental program is complemented by a modeling program focused on the development of a constitutive formulation for use in standard finite element structure mechanics codes. The problem is of importance because: lower head failure defines the initial conditions of all ex-vessel events; the inability of state-of-the-art models to simulate the result of the TMI-II accident (Stickler, et al. 1993); and TMI-II results suggest the possibility of in-vessel cooling, and creep deformation may be a precursor to water ingression leading to in-vessel cooling

  20. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    2001-01-01

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling

  1. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  2. Cooling tower and environment

    International Nuclear Information System (INIS)

    Becker, J.; Ederhof, A.; Gosdowski, J.; Harms, A.; Ide, G.; Klotz, B.; Kowalczyk, R.; Necker, P.; Tesche, W.

    The influence of a cooling tower on the environment, or rather the influence of the environment on the cooling tower stands presently -along with the cooling water supply - in the middle of much discussion. The literature on these questions can hardly be overlooked by the experts concerned, especially not by the power station designers and operators. The document 'Cooling Tower and Environment' is intented to give a general idea of the important publications in this field, and to inform of the present state of technology. In this, the explanations on every section make it easier to get to know the specific subject area. In addition to older standard literature, this publication contains the best-known literature of recent years up to spring 1975, including some articles written in English. Further English literature has been collected by the ZAED (KFK) and is available at the VGB-Geschaefsstelle. Furthermore, The Bundesumweltamt compiles the literature on the subject of 'Environmental protection'. On top of that, further documentation centres are listed at the end of this text. (orig.) [de

  3. Warm and Cool Cityscapes

    Science.gov (United States)

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  4. Passive cooling containment study

    International Nuclear Information System (INIS)

    Shin, J.J.; Iotti, R.C.; Wright, R.F.

    1993-01-01

    Pressure and temperature transients of nuclear reactor containment following postulated loss of coolant accident with a coincident station blackout due to total loss of all alternating current power are studied analytically and experimentally for the full scale NPR (New Production Reactor). All the reactor and containment cooling under this condition would rely on the passive cooling system which removes reactor decay heat and provides emergency core and containment cooling. Containment passive cooling for this study takes place in the annulus between containment steel shell and concrete shield building by natural convection air flow and thermal radiation. Various heat transfer coefficients inside annular air space were investigated by running the modified CONTEMPT code CONTEMPT-NPR. In order to verify proper heat transfer coefficient, temperature, heat flux, and velocity profiles were measured inside annular air space of the test facility which is a 24 foot (7.3m) high, steam heated inner cylinder of three foot (.91m) diameter and five and half foot (1.7m) diameter outer cylinder. Comparison of CONTEMPT-NPR and WGOTHIC was done for reduced scale NPR

  5. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  6. Emergency core cooling system

    International Nuclear Information System (INIS)

    Ando, Masaki.

    1987-01-01

    Purpose: To actuate an automatic pressure down system (ADS) and a low pressure emergency core cooling system (ECCS) upon water level reduction of a nuclear reactor other than loss of coolant accidents (LOCA). Constitution: ADS in a BWR type reactor is disposed for reducing the pressure in a reactor container thereby enabling coolant injection from a low pressure ECCS upon LOCA. That is, ADS has been actuated by AND signal for a reactor water level low signal and a dry well pressure high signal. In the present invention, ADS can be actuated further also by AND signal of the reactor water level low signal, the high pressure ECCS and not-operation signal of reactor isolation cooling system. In such an emergency core cooling system thus constituted, ADS operates in the same manner as usual upon LOCA and, further, ADS is operated also upon loss of feedwater accident in the reactor pressure vessel in the case where there is a necessity for actuating the low pressure ECCS, although other high pressure ECCS and reactor isolation cooling system are not operated. Accordingly, it is possible to improve the reliability upon reactor core accident and mitigate the operator burden. (Horiuchi, T.)

  7. Emergency core cooling system

    International Nuclear Information System (INIS)

    Kato, Ken.

    1989-01-01

    In PWR type reactors, a cooling water spray portion of emergency core cooling pipelines incorporated into pipelines on high temperature side is protruded to the inside of an upper plenum. Upon rupture of primary pipelines, pressure in a pressure vessel is abruptly reduced to generate a great amount of steams in the reactor core, which are discharged at a high flow rate into the primary pipelines on high temperature side. However, since the inside of the upper plenum has a larger area and the steam flow is slow, as compared with that of the pipelines on the high temperature side, ECCS water can surely be supplied into the reactor core to promote the re-flooding of the reactor core and effectively cool the reactor. Since the nuclear reactor can effectively be cooled to enable the promotion of pressure reduction and effective supply of coolants during the period of pressure reduction upon LOCA, the capacity of the pressure accumulation vessel can be decreased. Further, the re-flooding time for the reactor is shortened to provide an effect contributing to the improvement of the safety and the reduction of the cost. (N.H.)

  8. Cooling method with automated seasonal freeze protection

    Science.gov (United States)

    Cambell, Levi; Chu, Richard; David, Milnes; Ellsworth, Jr, Michael; Iyengar, Madhusudan; Simons, Robert; Singh, Prabjit; Zhang, Jing

    2016-05-31

    An automated multi-fluid cooling method is provided for cooling an electronic component(s). The method includes obtaining a coolant loop, and providing a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  9. Cooling water requirements and nuclear power plants

    International Nuclear Information System (INIS)

    Rao, T.S.

    2010-01-01

    Indian nuclear power programme is poised to scuttle the energy crisis of our time by proposing joint ventures for large power plants. Large fossil/nuclear power plants (NPPs) rely upon water for cooling and are therefore located near coastal areas. The amount of water a power station uses and consumes depends on the cooling technology used. Depending on the cooling technology utilized, per megawatt existing NPPs use and consume more water (by a factor of 1.25) than power stations using other fuel sources. In this context the distinction between 'use' and 'consume' of water is important. All power stations do consume some of the water they use; this is generally lost as evaporation. Cooling systems are basically of two types; Closed cycle and Once-through, of the two systems, the closed cycle uses about 2-3% of the water volumes used by the once-through system. Generally, water used for power plant cooling is chemically altered for purposes of extending the useful life of equipment and to ensure efficient operation. The used chemicals effluent will be added to the cooling water discharge. Thus water quality impacts on power plants vary significantly, from one electricity generating technology to another. In light of massive expansion of nuclear power programme there is a need to develop new ecofriendly cooling water technologies. Seawater cooling towers (SCT) could be a viable option for power plants. SCTs can be utilized with the proper selection of materials, coatings and can achieve long service life. Among the concerns raised about the development of a nuclear power industry, the amount of water consumed by nuclear power plants compared with other power stations is of relevance in light of the warming surface seawater temperatures. A 1000 MW power plant uses per day ∼800 ML/MW in once through cooling system; while SCT use 27 ML/MW. With the advent of new marine materials and concrete compositions SCT can be constructed for efficient operation. However, the

  10. Cooling Tower Losses in Industry

    OpenAIRE

    Barhm Mohamad

    2017-01-01

    Cooling towers are a very important part of many chemical plants. The primary task of a cooling tower is to reject heat into the atmosphere. They represent a relatively inexpensive and dependable means of removing low-grade heat from cooling water. The make-up water source is used to replenish water lost to evaporation. Hot water from heat exchangers is sent to the cooling tower. The water exits the cooling tower and is sent back to the exchangers or to other units for further cooling.

  11. Cooling concepts for HTS components

    International Nuclear Information System (INIS)

    Binneberg, A.; Buschmann, H.; Neubert, J.

    1993-01-01

    HTS components require that low-cost, reliable cooling systems be used. There are no general solutions to such systems. Any cooling concept has to be tailored to the specific requirements of a system. The following has to he taken into consideration when designing cooling concepts: - cooling temperature - constancy and controllability of the cooling temperature - cooling load and refrigerating capacity - continuous or discontinuous mode - degree of automation - full serviceability or availability before evacuation -malfunctions caused by microphonic, thermal or electromagnetic effects -stationary or mobile application - investment and operating costs (orig.)

  12. Cooling out of the blue

    International Nuclear Information System (INIS)

    Schmid, W.

    2006-01-01

    This article takes a look at solar cooling and air-conditioning, the use of which is becoming more and more popular. The article discusses how further research and development is necessary. The main challenge for professional experts is the optimal adaptation of building, building technology and solar-driven cooling systems to meet these new requirements. Various solar cooling technologies are looked at, including the use of surplus heat for the generation of cold for cooling systems. Small-scale solar cooling systems now being tested in trials are described. Various developments in Europe are discussed, as are the future chances for solar cooling in the market

  13. Cooling-water amounts, temperature, and the environment

    International Nuclear Information System (INIS)

    Koops, F.B.J.; Donze, M.; Hadderingh, R.H.

    1979-01-01

    The release of heat from power plants into a water can take place with relative small quantities of cooling water, highly warmed up accordingly, or with large quantities of cooling water slightly warmed up. The utilization of cooling water is bound to certain guidelines established by the authorities. With the intention to protect the environment, the admissable temperatures and warming-up have been strictly limited by the authorities. In the Netherlands, we have presently temporary cooling water guidelines which allow a max. temperature of the cooling water in the cooling cycle of 30 0 C and a maximum admissible temperature rise in the condenser between 7 0 C during summer and 15 0 C during winter. It has also been determined in these requirements how much cooling water at least has to be used to discharge a specified quantity of heat. Plankton, spawn and young fish are dragged with the cooling water. Harm to these organisms can be caused mechanically by pumps, sieves and the condenser or they can be harmed by the temperature rise in the condenser. Investigations showed that mechanical harm to spawn and young fish in the cooling water flow should not be ignored, and that detectable harm to plankton organisms takes place only at water temperatures above 32 0 C. The cooling water consumption can therefore be optimised as follows: The solution of a greater temperature increase and a slightly higher value for the temperature maximum can reduce the cooling water quantity. This reduction of the cooling water quantity reduces the destruction of the fish quantity, which gets into the cooling water system, especially during the summer. If the temperature rise and the temperature itself are not selected too high, the destruction of fish may be reduced without causing serious damage to the plankton. (orig.) [de

  14. Study of an electromagnetic pump in a sodium cooled reactor. Design study of secondary sodium main pumps (Joint research)

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Kisohara, Naoyuki; Hishida, Masahiko; Fujii, Tadashi; Konomura, Mamoru; Ara, Kuniaki; Hori, Toru; Uchida, Akihito; Nishiguchi, Youhei; Nibe, Nobuaki

    2006-07-01

    In the feasibility study on commercialized fast breeder cycle system, a medium scale sodium cooled reactor with 750 MW electricity has been designed. In this study, EMPs are applied to the secondary sodium main pump. The EMPs type is selected to be an annular linear induction pump (ALIP) type with double stators which is used in the 160 m 3 /min EMP demonstration test. The inner structure and electromagnetic features are decided reviewing the 160 m 3 /min EMP. Two dimensional electromagnetic fluid analyses by EAGLE code show that Rms (magnetic Reynolds number times slip) is evaluated to be 1.08 which is less than the stability limit 1.4 confirmed by the 160 m 3 /min EMP test, and the instability of the pump head is evaluated to be 3% of the normal operating pump head. Since the EMP stators are cooled by contacting coolant sodium duct, reliability of the inner structures are confirmed by temperature distribution and stator-duct contact pressure analyses. Besides, a power supply system, maintenance and repair feature and R and D plan of EMP are reported. (author)

  15. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  17. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Computed tomography (CT) of the head uses special x-ray equipment to help assess head injuries, severe headaches, ... is a diagnostic medical test that, like traditional x-rays, produces multiple images or pictures of the inside ...

  18. Reactor head shielding apparatus

    International Nuclear Information System (INIS)

    Schukei, G.E.; Roebelen, G.J.

    1992-01-01

    This patent describes a nuclear reactor head shielding apparatus for mounting on spaced reactor head lifting members radially inwardly of the head bolts. It comprises a frame of sections for mounting on the lifting members and extending around the top central area of the head, mounting means for so mounting the frame sections, including downwardly projecting members on the frame sections and complementary upwardly open recessed members for fastening to the lifting members for receiving the downwardly projecting members when the frame sections are lowered thereto with lead shielding supported thereby on means for hanging lead shielding on the frame to minimize radiation exposure or personnel working with the head bolts or in the vicinity thereof

  19. Cooling device for thermonuclear reactor and modular packing block for the wall realization of a such device

    International Nuclear Information System (INIS)

    Archer, J.; Stalport, G.; Besson, D.; Faron, R.; Coulon, M.

    1988-01-01

    The cooling device for a thermonuclear reactor wall is made by modular thermally conductive heat-resistant blocks (graphite by example), a prismatic head on one face of each block, the opposite face bearing against cooling tubes, a base to each block with an aperture and rods passing through the apertures reversibly fixing each row of blocks to a support [fr

  20. Magnetic entropy and cooling

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl; Kuhn, Luise Theil; Bahl, Christian Robert Haffenden

    2010-01-01

    Some manifestations of magnetism are well-known and utilized on an everyday basis, e.g. using a refrigerator magnet for hanging that important note on the refrigerator door. Others are, so far, more exotic, such as cooling by making use of the magnetocaloric eect. This eect can cause a change...... in the temperature of a magnetic material when a magnetic eld is applied or removed. For many years, experimentalists have made use of dilute paramagnetic materials to achieve milliKelvin temperatures by use of the magnetocaloric eect. Also, research is done on materials, which might be used for hydrogen, helium...... or nitrogen liquefaction or for room-temperature cooling. The magnetocaloric eect can further be used to determine phase transition boundaries, if a change in the magnetic state occurs at the boundary.In this talk, I will introduce the magnetocaloric eect (MCE) and the two equations, which characterize...

  1. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  2. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  3. ITER cooling systems

    International Nuclear Information System (INIS)

    Natalizio, A.; Hollies, R.E.; Sochaski, R.O.; Stubley, P.H.

    1992-06-01

    The ITER reference system uses low-temperature water for heat removal and high-temperature helium for bake-out. As these systems share common equipment, bake-out cannot be performed until the cooling system is drained and dried, and the reactor cannot be started until the helium has been purged from the cooling system. This study examines the feasibility of using a single high-temperature fluid to perform both heat removal and bake-out. The high temperature required for bake-out would also be in the range for power production. The study examines cost, operational benefits, and impact on reactor safety of two options: a high-pressure water system, and a low-pressure organic system. It was concluded that the cost savings and operational benefits are significant; there are no significant adverse safety impacts from operating either the water system or the organic system; and the capital costs of both systems are comparable

  4. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  5. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  6. Cooling device for reactor container

    International Nuclear Information System (INIS)

    Arai, Kenji.

    1996-01-01

    Upon assembling a static container cooling system to an emergency reactor core cooling system using dynamic pumps in a power plant, the present invention provides a cooling device of lowered center of gravity and having a good cooling effect by lowering the position of a cooling water pool of the static container cooling system. Namely, the emergency reactor core cooling system injects water to the inside of a pressure vessel using emergency cooling water stored in a suppression pool as at least one water source upon loss of reactor coolant accident. In addition, a cooling water pool incorporating a heat exchanger is disposed at the circumference of the suppression pool at the outside of the container. A dry well and the heat exchanger are connected by way of steam supply pipes, and the heat exchanger is connected with the suppression pool by way of a gas exhaustion pipe and a condensate returning pipeline. With such a constitution, the position of the heat exchanger is made higher than an ordinary water level of the suppression pool. As a result, the emergency cooling water of the suppression pool water is injected to the pressure vessel by the operation of the reactor cooling pumps upon loss of coolant accident to cool the reactor core. (I.S.)

  7. Conduction cooling: multicrate fastbus hardware

    International Nuclear Information System (INIS)

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications

  8. Design of conformal cooling for plastic injection moulding by heat transfer simulation

    Directory of Open Access Journals (Sweden)

    Sabrina Marques

    2015-12-01

    Full Text Available The cooling channels of a mold for plastic injection have to be as close as possible to the part geometry in order to ensure fast and homogeneous cooling. However, conventional methods to manufacture cooling channels (drilling can only produce linear holes. Selective laser melting (SLM is an additive manufacturing technique capable to manufacture complex cooling channels (known as conformal cooling. Nevertheless, because of the high costs of SLM the benefits of conformal collings are still not clear. The current work investigates two designs of conformal coolings: i parallel circuit; ii serial circuit. Both coolings are evaluated against to traditional cooling circuits (linear channels by CAE simulation to produce parts of polypropylene. The results show that if the conformal cooling is not properly designed it cannot provide reasonable results. The deformation of the product can be reduced significantly after injection but the cycle time reduced not more than 6%.

  9. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  10. Lamination cooling system

    Science.gov (United States)

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  11. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  12. Reactor container cooling device

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Koji; Kinoshita, Shoichiro

    1995-11-10

    The device of the present invention efficiently lowers pressure and temperature in a reactor container upon occurrence of a severe accident in a BWR-type reactor and can cool the inside of the container for a long period of time. That is, (1) pipelines on the side of an exhaustion tower of a filter portion in a filter bent device of the reactor container are in communication with pipelines on the side of a steam inlet of a static container cooling device by way of horizontal pipelines, (2) a back flow check valve is disposed to horizontal pipelines, (3) a steam discharge valve for a pressure vessel is disposed closer to the reactor container than the joint portion between the pipelines on the side of the steam inlet and the horizontal pipelines. Upon occurrence of a severe accident, when the pressure vessel should be ruptured and steams containing aerosol in the reactor core should be filled in the reactor container, the inlet valve of the static container cooling device is closed. Steams are flown into the filter bent device of the reactor container, where the aerosols can be removed. (I.S.).

  13. Emergency core cooling system

    International Nuclear Information System (INIS)

    Abe, Nobuaki.

    1993-01-01

    A reactor comprises a static emergency reactor core cooling system having an automatic depressurization system and a gravitationally dropping type water injection system and a container cooling system by an isolation condenser. A depressurization pipeline of the automatic depressurization system connected to a reactor pressure vessel branches in the midway. The branched depressurizing pipelines are extended into an upper dry well and a lower dry well, in which depressurization valves are disposed at the top end portions of the pipelines respectively. If loss-of-coolant accidents should occur, the depressurization valve of the automatic depressurization system is actuated by lowering of water level in the pressure vessel. This causes nitrogen gases in the upper and the lower dry wells to transfer together with discharged steams effectively to a suppression pool passing through a bent tube. Accordingly, the gravitationally dropping type water injection system can be actuated faster. Further, subsequent cooling for the reactor vessel can be ensured sufficiently by the isolation condenser. (I.N.)

  14. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  15. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  16. Design change of tower cooling water system for proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G.

    2012-01-01

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted

  17. Design change of tower cooling water system for proton accelerator research center

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, G. P.; Kim, J. Y.; Song, I. T.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Han, Y. G. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The Tower Cooling Water System (TC) is designed to reject the heat load generated by operating the accelerators and the utility facilities through the component cooling water (CCW) heat exchangers. The circulating water discharged from the circulating water pumps passes through the CCW heat exchangers, the Chiller condenser and the air compressor, and the heated circulating water is return to the cooling tower for the heat removal. In this study, The design of Tower Cooling Water System is changed as follows : At First, The quantity of cells is changed into six in order to operate the cooling tower accurately correspond with condition of each equipment of head loads. The fans of cooling tower are controlled by the signal of TEW installed in the latter parts of it. The type of circulation water pump is modified to centrifugal pump and debris filter system is deleted.

  18. Thermal effects of whole head submersion in cold water on nonshivering humans.

    Science.gov (United States)

    Pretorius, Thea; Bristow, Gerald K; Steinman, Alan M; Giesbrecht, Gordon G

    2006-08-01

    This study isolated the effect of whole head submersion in cold water, on surface heat loss and body core cooling, when the confounding effect of shivering heat production was pharmacologically eliminated. Eight healthy male subjects were studied in 17 degrees C water under four conditions: the body was either insulated or uninsulated, with the head either above the water or completely submersed in each body-insulation subcondition. Shivering was abolished with buspirone (30 mg) and meperidine (2.5 mg/kg), and subjects breathed compressed air throughout all trials. Over the first 30 min of immersion, exposure of the head increased core cooling both in the body-insulated conditions (head out: 0.47 +/- 0.2 degrees C, head in: 0.77 +/- 0.2 degrees C; P body-exposed conditions (head out: 0.84 +/- 0.2 degrees C and head in: 1.17 +/- 0.5 degrees C; P body surface area) in the body-exposed conditions increased total heat loss by only 10%. In both body-exposed and body-insulated conditions, head submersion increased core cooling rate much more (average of 42%) than it increased total heat loss. This may be explained by a redistribution of blood flow in response to stimulation of thermosensitive and/or trigeminal receptors in the scalp, neck and face, where a given amount of heat loss would have a greater cooling effect on a smaller perfused body mass. In 17 degrees C water, the head does not contribute relatively more than the rest of the body to surface heat loss; however, a cold-induced reduction of perfused body mass may allow this small increase in heat loss to cause a relatively larger cooling of the body core.

  19. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  20. Improve crossflow cooling tower operation

    International Nuclear Information System (INIS)

    Burger, R.

    1989-01-01

    This paper reports how various crossflow cooling tower elements can be upgraded. A typical retrofit example is presented. In the past decade, cooling tower technology has progressed. If a cooling tower is over ten years old, chances are the heat transfer media and mechanical equipment were designed over 30 to 40 years ago. When a chemical plant expansion is projected or a facility desires to upgrade its equipment for greater output and energy efficiency, the cooling tower is usually neglected until someone discovers that the limiting factor of production is the quality of cold water returning from the cooling tower

  1. Femoral head avascular necrosis

    International Nuclear Information System (INIS)

    Chrysikopoulos, H.; Sartoris, D.J.; Resnick, D.L.; Ashburn, W.; Pretorius, T.

    1988-01-01

    MR imaging has been shown to be more sensitive and specific than planar scintigraphy for avascular necrosis (AVN) of the femoral head. However, experience with single photon emission CT (SPECT) is limited. The authors retrospectively compared 1.5-T MR imaging with SPECT in 14 patients with suspected femoral head AVN. Agreement between MR imaging and SPECT was present in 24 femurs, 14 normal and ten with AVN. MR imaging showed changes of AVN in the remaining four femoral heads. Of these, one was normal and the other three inconclusive for AVN by SPECT. The authors conclude that MR imaging is superior to SPECT for the evaluation of AVN of the hip

  2. Protective head of sensors

    International Nuclear Information System (INIS)

    Liska, K.; Anton, P.

    1987-01-01

    The discovery concerns the protective heads of diagnostic assemblies of nuclear power plants for conductors of the sensors from the fuel and control parts of the said assemblies. A detailed description is presented of the design of the protective head which, as compared with the previous design, allows quick and simple assembly with reduced risk of damaging the sensors. The protective head may be used for diagnostic assemblies both in power and in research reactors and it will be used for WWER reactor assemblies. (A.K.). 3 figs

  3. 45 CFR 1305.6 - Selection process.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Selection process. 1305.6 Section 1305.6 Public... PROGRAM ELIGIBILITY, RECRUITMENT, SELECTION, ENROLLMENT AND ATTENDANCE IN HEAD START § 1305.6 Selection process. (a) Each Head Start program must have a formal process for establishing selection criteria and...

  4. Cooling device in thermonuclear device

    International Nuclear Information System (INIS)

    Honda, Tsutomu.

    1988-01-01

    Purpose: To prevent loss of cooling effect over the entire torus structure directly after accidental toubles in a cooling device of a thermonuclear device. Constitution: Coolant recycling means of a cooling device comprises two systems, which are alternately connected with in-flow pipeways and exit pipeways of adjacent modules. The modules are cooled by way of the in-flow pipeways and the exist pipeways connected to the respective modules by means of the coolant recycling means corresponding to the respective modules. So long as one of the coolant recycling means is kept operative, since every one other modules of the torus structure is still kept cooled, the heat generated from the module put therebetween, for which the coolant recycling is interrupted, is removed by means of heat conduction or radiation from the module for which the cooling is kept continued. No back-up emergency cooling system is required and it can provide high economic reliability. (Kamimura, M.)

  5. Head and Neck Cancer

    International Nuclear Information System (INIS)

    Tomita, Toshiki; Imanishi, Yorihisa

    2008-01-01

    The limitation of concurrent chemo-radiotherapy (CCRT) in head and neck cancer (HNC) as the primary treatment is described based on recent findings. Limits in the application/indication involve factors of age, performance status (PS) and renal function. The first is that, as deaths in >71 years old patients are derived from other causes (41%) than HNC, CCRT is only useful for younger population; the second, patients with PS 0-1 or Karnofsky performance score >60-70 can be indicated; and third, contraindicated are those with creatinine clearance (CCr) <60 mL/min as the key drug cisplatin in CCRT has a high renal toxicity. It should be recognized that completion rates of chemotherapy and RT are as low as 66-85% and 84-92%, respectively, in CCRT. CCRT has such limiting adverse events as mucitis, dry mouth, dysohagia, weight loss, neutropenia, sepsis, etc., which are most important in CCRT application. CCRT is recommended for the primary cancers of larynx and hypopharynx because they are significantly better conserved than middle pharyngeal, oral and upper jaw cancers. Evidence of CCRT is poor for cancers in paranasal sinuses. Planned neck dissection (PND) is for the cervical metastatic lymph nodes and conducted 6-12 weeks after CCRT regardless to its outcome. In fluorodeoxyglucose-positron emission tomography (FDG-PET) negative cases, PND can be omitted. Necessity of PND is possibly inversely proportional to CCRT intensity performed. For control of remote metastasis, CCRT has obvious limits and inductive chemotherapy before it is currently considered. Salvage surgery post CCRT does not always yield a relief because of complication. Patients with advanced laryngeal cancer can be selected either to surgery or CCRT depending on results of the inductive chemotherapy. To predict the sensitivity to CCRT, some biomarkers like HPV, EGFR and VEGF have been suggested to be useful by retrospective studies. Understanding the limitation is as important as knowing the usefulness in

  6. Selective analysis of power plant operation on the Hudson River with emphasis on the Bowline Point Generating Station. Volume 2. [Multiple impact of power plant once-through cooling systems on fish populations

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L. W.; Cannon, J. B.; Christensen, S. G.

    1977-07-01

    Because of the location of the Bowline, Roseton, and Indian Point power generating facilities in the low-salinity zone of the Hudson estuary, operation of these plants with the present once-through cooling systems will adversely influence the fish populations that use the area for spawning and initial periods of growth and development. Recruitment rates and standing crops of several fish species may be lowered in response to the increased mortality caused by entrainment of nonscreenable eggs and larvae and by impingement of screenable young of the year. Entrainment and impingement data are particularly relevant for assessing which fish species have the greatest potential for being adversely affected by operation of Bowline, Roseton, and Indian Point with once-through cooling. These data from each of these three plants suggest that the six species that merit the greatest consideration are striped bass, white perch, tomcod, alewife, blueback herring, and bay anchovy. Two points of view are available for assessing the relative importance of the fish species in the Hudson River. From the fisheries point of view, the only two species of major importance are striped bass and shad. From the fish-community and ecosystem point of view, the dominant species, as determined by seasonal and regional standing crops (in numbers and biomass per hectare), are the six species most commonly entrained and impinged, namely, striped bass, white perch, tomcod, alewife, blueback herring, and anchovy.

  7. An investigation of critical heat fluxes in vertical tubes internally cooled by Freon-12. Part I - Critical heat flux experiments with axially uniform and non-uniform heating and comparisons of data with selected correlations

    International Nuclear Information System (INIS)

    Green, W.J.; Stevens, J.R.

    1981-08-01

    Experiments have been performed using vertical heated tubes, cooled internally by Freon-12, to determine critical heat fluxes (CHFs) for both a uniformly heated section and an exit region with a separately controlled power supply. Heated lengths of the main separately were 2870 mm (8.48 and 16.76 mm tube bores) and 3700 mm (for 21.34 mm tube bore); heated length of the exit section was 230 mm. Coolant pressures, exit qualities and mass fluxes were in the range 0.9 to 1.3 MPa, 0.19 to 0.86, and 380 to 2800 kg m -2 s -1 , respectively. The data have been compared with published empirical correlations specifically formulated to predict CHFs in Freon-cooled, vertical tubes; relevant published CHF data have also been compared with these correlations. These comparisons show that, even over the ranges of conditions for which the correlations were developed, predicted values are only accurate to within +-20 per cent. Moreover, as mass fluxes increase above 3500 kg m -2 s -1 , the modified Groeneveld correlation becomes increasingly inadequate, and the Bertoletti and modified Bertoletti correlations under-predict CHF values by increasing amounts. At mass fluxes below 750 kg m -2 s -1 the Bertoletti correlations exhibit increasing inaccuracy with a decrease in mass flux. For non-uniform heating, the correlations are at variance with the experimental data

  8. Javanese House’s Roof (Joglo) with the Opening as a Cooling Energy Provider

    Science.gov (United States)

    Pranoto S, M.

    2018-01-01

    Natural ventilation and air movement could be considered under the heading structural controls as it does not rely on any form of energy supply or mechanical installation but due to its importance for human comfort, it deserves a separate section. Air infiltration can destroy the performance of ventilation systems. Good ventilation design combined with optimum air tightness is needed to ensure energy efficient ventilation. Ultimately, ventilation needs depend on occupancy pattern and building use. A full cost and energy analysis is therefore needed to select an optimum ventilation strategy.The contains of paper is about the element of Javanese house (the roof) as the element of natural ventilation and a cooling energy provider. In this research, The Computational Fluid Dynamics Program, is used to draw and analysis. That tool can be track the pattern and the direction of movement of air also the air velocity in the object of ventilation of the roof Javanese house based. Finally, the ventilation of the roof of this Javanese house can add the velocity of air at indoor, average 0.4 m/s and give the effect of cooling, average 0.7°C.

  9. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  10. Design Of Cooling Configuration For Military Aeroengine V-Gutter

    Directory of Open Access Journals (Sweden)

    Batchu Suresh

    2017-07-01

    Full Text Available Military aircraft engines employ afterburner system for increasing the thrust required during combat and take-off flight conditions. V-gutter is employed for stabilisation of the flame during reheat. For fifth generation aero engine the gas temperature at the start of the afterburner is be-yond the allowable material limits of the V-gutter so it is required to cool the V-gutter to obtain acceptable creep life. The design of cooling configuration for the given source pressure is worked out for different rib configurations to obtain the allowable metal temperature with minimum coolant mass flow.1D network analysis is used to estimate the cooling mass flow and metal temperature for design flight condition. CFD analysis is carried out for four cooling configurations with different rib orientations. Out of four configurations one configuration is selected for the best cooling configuration.

  11. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... you! Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to ...

  12. Exploding head syndrome.

    Science.gov (United States)

    Sharpless, Brian A

    2014-12-01

    Exploding head syndrome is characterized by the perception of abrupt, loud noises when going to sleep or waking up. They are usually painless, but associated with fear and distress. In spite of the fact that its characteristic symptomatology was first described approximately 150 y ago, exploding head syndrome has received relatively little empirical and clinical attention. Therefore, a comprehensive review of the scientific literature using Medline, PsycINFO, Google Scholar, and PubMed was undertaken. After first discussing the history, prevalence, and associated features, the available polysomnography data and five main etiological theories for exploding head syndrome are summarized. None of these theories has yet reached dominance in the field. Next, the various methods used to assess and treat exploding head syndrome are discussed, as well as the limited outcome data. Finally, recommendations for future measure construction, treatment options, and differential diagnosis are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... medically necessary because of potential risk to the baby. This risk is, however, minimal with head CT ... intravenous contrast indicate mothers should not breastfeed their babies for 24-48 hours after contrast medium is ...

  14. Early Head Start Evaluation

    Data.gov (United States)

    U.S. Department of Health & Human Services — Longitudinal information from an evaluation where children were randomly assigned to Early Head Start or community services as usual;direct assessments and...

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Brain Tumors Radiation Therapy for ... Tomography (CT) - Head Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of the Head? Computed tomography, more commonly known as a CT or CAT scan, is a diagnostic ... white on the x-ray; soft tissue, such as organs like the heart or liver, shows up ...

  17. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... microphone. top of page How does the procedure work? In many ways CT scanning works very much ... head CT scanning. Manufacturers of intravenous contrast indicate mothers should not breastfeed their babies for 24-48 ...

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... rays). top of page What are some common uses of the procedure? CT scanning of the head ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  19. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... rays). top of page What are some common uses of the procedure? CT scanning of the head ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  20. Head Start Impact Study

    Data.gov (United States)

    U.S. Department of Health & Human Services — Nationally representative, longitudinal information from an evaluation where children were randomly assigned to Head Start or community services as usual;direct...

  1. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  2. TCGA head Neck

    Science.gov (United States)

    Investigators with The Cancer Genome Atlas (TCGA) Research Network have discovered genomic differences – with potentially important clinical implications – in head and neck cancers caused by infection with the human papillomavirus (HPV).

  3. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... your doctor to evaluate your face, sinuses, and skull or to plan radiation therapy for brain cancer. ... typically used to detect: bleeding, brain injury and skull fractures in patients with head injuries. bleeding caused ...

  4. Aseptic necrosis of femoral head complicating thalassemia

    International Nuclear Information System (INIS)

    Orzincolo, C.; Castaldi, G.; Scutellary, P.N.; Bariani, L.; Pinca, A.

    1986-01-01

    Aseptic necrosis of the femoral head is described in 4 patients, selected from 280 patients with homozygous β-thalassemia (Cooley anemia). The incidence of the complication appears to be very high (14.5per mille) in thalassemia, compared to the general population. The possible mechanism are discussed. (orig.)

  5. The exploding head syndrome.

    Science.gov (United States)

    Green, M W

    2001-06-01

    This article reviews the features of an uncommon malady termed "the exploding head syndrome." Sufferers describe terrorizing attacks of a painless explosion within their head. Attacks tend to occur at the onset of sleep. The etiology of attacks is unknown, although they are considered to be benign. Treatment with clomipramine has been suggested, although most sufferers require only reassurance that the spells are benign in nature.

  6. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  7. Illumination and radiative cooling

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shanhui; Raman, Aaswath Pattabhi; Zhu, Linxiao; Rephaeli, Eden

    2018-03-20

    Aspects of the present disclosure are directed to providing and/or controlling electromagnetic radiation. As may be implemented in accordance with one or more embodiments, an apparatus includes a first structure that contains an object, and a second structure that is transparent at solar wavelengths and emissive in the atmospheric electromagnetic radiation transparency window. The second structure operates with the first structure to pass light into the first structure for illuminating the object, and to radiatively cool the object while preserving the object's color.

  8. Rotary engine cooling system

    Science.gov (United States)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  9. Gas cooled HTR

    International Nuclear Information System (INIS)

    Schweiger, F.

    1985-01-01

    In the He-cooled, graphite-moderated HTR with spherical fuel elements, the steam generator is fixed outside the pressure vessel. The heat exchangers are above the reactor level. The hot gases stream from the reactor bottom over the heat exchanger, through an annular space around the heat exchanger and through feed lines in the side reflector of the reactor back to its top part. This way, in case of shutdown there is a supplementary natural draught that helps the inner natural circulation (chimney draught effect). (orig./PW)

  10. GPK heading machine

    Energy Technology Data Exchange (ETDEWEB)

    Krmasek, J.; Novosad, K.

    1981-01-01

    This article evaluates performance tests of the Soviet made GPK heading machine carried out in 4 coal mines in Czechoslovakia (Ostrava-Karvina region and Kladno mines). GPK works in coal seams and rocks with compression strength of 40 to 50 MPa. Dimensions of the tunnel are height 1.8 to 3.8 m and width 2.6 to 4.7 m, tunnel gradient plus to minus 10 degrees. GPK weighs 16 t, its conical shaped cutting head equipped with RKS-1 cutting tools is driven by an electric motor with 55 kW capacity. Undercarriage of the GPK, gathering-arm loader, hydraulic system, electric system and dust supression system (water spraying or pneumatic section) are characterized. Specifications of GPK heading machines are compared with PK-3r and F8 heading machines. Reliability, number of failures, dust level, noise, productivity depending on compression strength of rocks, heading rate in coal and in rocks, energy consumption, performance in inclined tunnels, and cutting tool wear are evaluated. Tests show that GPK can be used to drive tunnels in coal with rock constituting up to 50% of the tunnel crosscut, as long as rock compression strength does not exceed 50 MPa. In rocks characterized by higher compression strength cutting tool wear sharply increases. GPK is characterized by higher productivity than that of the PK-3r heading machine. Among the weak points of the GPK are: unsatisfactory reliability and excessive wear of its elements. (4 refs.) (In Czech)

  11. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  12. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  13. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  14. Cooling power technology at a turning point

    International Nuclear Information System (INIS)

    Hese, L.H.

    1978-01-01

    From freshwater cooling and efflux condenser cooling to wet recirculation cooling, hybrid and dry cooling towers, cooling tower technology has seen a development characterized by higher cooling tower costs and reduced power plant efficiency. Therefore, all research work done at the moment concentrates on making up for the economic losses connected with improved environmental protection. (orig.) [de

  15. Head injury: audit of a clinical guideline to justify head CT

    International Nuclear Information System (INIS)

    Haydon, Nicholas B.

    2013-01-01

    Head injury causes significant morbidity and mortality, and there is contention about which patients to scan. The UK National Health Service Clinical Guideline (CG) 56 provides criteria for selecting patients with clinically important brain injury who may benefit from a head CT scan, while minimising the radiation and economic burden of scanning patients without significant injury. This study aims to audit the documentation of the use of these guidelines in a busy UK trauma hospital and discusses the comparison with an Australian (New South Wales (NSW) ) head injury guideline. A retrospective cohort study of 480 patients presenting with head injury to the emergency department over 2 months was performed. The patient notes were assessed for documentation of each aspect of the clinical guidelines. Criteria were established to assess the utilisation of the CG 56. A database of clinical data was amalgamated with the head CT scan results for each patient. For the UK CG 56, 73% of the criteria were documented, with the least documented being 'signs of basal skull fracture' and 'amnesia of events'. Thirty-two per cent of patients received head CT and of these, 24% (37 patients) were reported to have pathology. Twenty-four patients underwent head CT without clinical justification being documented, none of which had reported pathology on CT. The study shows that the head injury guidelines are not being fully utilised at a major UK trauma hospital, resulting in 5% of patients being exposed to ionising radiation without apparent documented clinical justification. The NSW guideline has distinct differences to the CG 56, with a more complex algorithm and an absence of specific time frames for head CT completion. The results suggest a need for further education and awareness of head injury clinical guidelines.

  16. Study on external reactor vessel cooling capacity for advanced large size PWR

    International Nuclear Information System (INIS)

    Jin Di; Liu Xiaojing; Cheng Xu; Li Fei

    2014-01-01

    External reactor vessel cooling (ERVC) is widely adopted as a part of in- vessel retention (IVR) in severe accident management strategies. In this paper, some flow parameters and boundary conditions, eg., inlet and outlet area, water inlet temperature, heating power of the lower head, the annular gap size at the position of the lower head and flooding water level, were considered to qualitatively study the effect of them on natural circulation capacity of the external reactor vessel cooling for an advanced large size PWR by using RELAP5 code. And the calculation results provide some basis of analysis for the structure design and the following transient response behavior of the system. (authors)

  17. Approaching hospital administration about adopting cooling technologies.

    Science.gov (United States)

    Kirkland, Lisa L; Parham, William M; Pastores, Stephen M

    2009-07-01

    The purpose of this article is to provide intensivists with information and examples regarding cooling technology selection, cost assessment, adaptation, barriers, and presentation to hospital administrators. A review of medical and business literature was conducted using the following search terms: technology assessment, organizational innovation, intensive care, critical care, hospital administration, and presentation to administrators. General recommendations for intensivists are made for assessing cooling technology with descriptions of common new technology implementation stages. A study of 16 hospitals implementing a new cardiac surgery technology is described. A description of successful implementation of an induced hypothermia protocol by one of the authors is presented. Although knowledgeable about the applications of new technologies, including cooling technology, intensivists have little guidance or training on tactics to obtain a hospital administration's funding and support. Intensive care unit budgets are usually controlled by nonintensivists whose interests are neutral, at best, to the needs of intensivists. To rise to the top of the large pile of requisition requests, an intensivist's proposal must be well conceived and aligned with hospital administration's strategic goals. Intensivists must understand the hospital acquisition process and administrative structure and participate on high-level hospital committees. Using design thinking and strong leadership skills, the intensivist can marshal support from staff and administrators to successfully implement cooling technology.

  18. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  19. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  20. Cooled spool piston compressor

    Science.gov (United States)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  1. Water cooling system for sintering furnaces of nuclear fuel pellets

    International Nuclear Information System (INIS)

    1996-01-01

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  2. Alternatives for metal hydride storage bed heating and cooling

    International Nuclear Information System (INIS)

    Fisher, I.A.; Ramirez, F.B.; Koonce, J.E.; Ward, D.E.; Heung, L.K.; Weimer, M.; Berkebile, W.; French, S.T.

    1991-01-01

    The reaction of hydrogen isotopes with the storage bed hydride material is exothermic during absorption and endothermic during desorption. Therefore, storage bed operation requires a cooling system to remove heat during absorption, and a heating system to add the heat needed for desorption. Three storage bed designs and their associated methods of heating and cooling and accountability are presented within. The first design is the current RTF (Replacement Tritium Facility) nitrogen heating and cooling system. The second design uses natural convection cooling with ambient glove box nitrogen and electrical resistance for heating. This design is referred to as the Naturally Cooled/Electrically Heated (NCEH) design. The third design uses forced convection cooling with ambient glove box nitrogen and electrical resistance for heating. The design is referred to as the Forced Convection Cooled/Electrically Heated (FCCEH) design. In this report the operation, storage bed design, and equipment required for heating, cooling, and accountability of each design are described. The advantages and disadvantages of each design are listed and discussed. Based on the information presented within, it is recommended that the NCEH design be selected for further development

  3. Structural Stress Analysis of an Engine Cylinder Head

    Directory of Open Access Journals (Sweden)

    R. Tichánek

    2005-01-01

    Full Text Available This paper deals with a structural stress analysis of the cylinder head assembly of the C/28 series engine. A detailed FE model was created for this purpose. The FE model consists of the main parts of the cylinder head assembly, and it includes a description of the thermal and mechanical loads and the contact interaction between their parts. The model considers the temperature dependency of the heat transfer coefficient on wall temperature in cooling passages. The paper presents a comparison of computed and measured temperature. The analysis was carried out using the FE program ABAQUS. 

  4. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  5. Computational Analysis of Droplet Mass and Size Effect on Mist/Air Impingement Cooling Performance

    Directory of Open Access Journals (Sweden)

    Zhenglei Yu

    2013-01-01

    Full Text Available Impingement cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes, and blades. A promising technology is proposed to enhance impingement cooling with water droplets injection. However, previous studies were conducted on blade shower head film cooling, and less attention was given to the transition piece cooling. As a continuous effort to develop a realistic mist impingement cooling scheme, this paper focuses on simulating mist impingement cooling under typical gas turbine operating conditions of high temperature and pressure in a double chamber model. Furthermore, the paper presents the effect of cooling effectiveness by changing the mass and size of the droplets. Based on the heat-mass transfer analogy, the results of these experiments prove that the mass of 3E – 3 kg/s droplets with diameters of 5–35 μm could enhance 90% cooling effectiveness and reduce 122 K of wall temperature. The results of this paper can provide guidance for corresponding experiments and serve as the qualification reference for future more complicated studies with convex surface cooling.

  6. Micro-jet Cooling by Compressed Air after MAG Welding

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Tarasiuk W.; Stanik Z.; Gabrylewski M.

    2016-01-01

    The material selected for this investigation was low alloy steel weld metal deposit (WMD) after MAG welding with micro-jet cooling. The present investigation was aimed as the following tasks: analyze impact toughness of WMD in terms of micro-jet cooling parameters. Weld metal deposit (WMD) was first time carried out for MAG welding with micro-jet cooling of compressed air and gas mixture of argon and air. Until that moment only argon, helium and nitrogen and its gas mixture were tested for mi...

  7. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  8. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  10. Head, Neck, and Oral Cancer

    Medline Plus

    Full Text Available ... find out more. Oral, Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ... find out more. Oral, Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ...

  11. Head, Neck, and Oral Cancer

    Science.gov (United States)

    ... find out more. Oral, Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ... find out more. Oral, Head and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed ...

  12. Cooling During Exercise: An Overlooked Strategy for Enhancing Endurance Performance in the Heat.

    Science.gov (United States)

    Stevens, Christopher J; Taylor, Lee; Dascombe, Ben J

    2017-05-01

    It is well established that endurance performance is negatively affected by environmental heat stress due to a complex interaction of physical, physiological and psychological alterations. Numerous scientific investigations have attempted to improve performance in the heat with pre-cooling (cooling prior to an exercise test), and as such this has become a well-established ergogenic practice for endurance athletes. However, the use of mid-cooling (cooling during an exercise test) has received considerably less research attention in comparison, despite recent evidence to suggest that the advantage gained from mid-cooling may outweigh that of pre-cooling. A range of mid-cooling strategies are beneficial for endurance performance in the heat, including the ingestion of cold fluids and ice slurry, both with and without menthol, as well as cooling of the neck and face region via a cooling collar or water poured on the head and face. The combination of pre-cooling and mid-cooling has also been effective, but few comparisons exist between the timing and type of such interventions. Therefore, athletes should experiment with a range of suitable mid-cooling strategies for their event during mock competition scenarios, with the aim to determine their individual tolerable limits and performance benefits. Based on current evidence, the effect of mid-cooling on core temperature appears largely irrelevant to any subsequent performance improvements, while cardiovascular, skin temperature, central nervous system function and psychophysiological factors are likely involved. Research is lacking on elite athletes, and as such it is currently unclear how this population may benefit from mid-cooling.

  13. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  14. Electronic cooling using thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zebarjadi, M., E-mail: m.zebarjadi@rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States); Institute of Advanced Materials, Devices, and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  15. teachers' perception of their head teachers' role effectiveness

    African Journals Online (AJOL)

    Global Journal

    This paper is a survey study focused on teacher's perception of their head ... constructed and distributed to 100 teachers selected from primary schools in the ... Ability to motivate the student to learn ... policies, a counsellor and decision maker.

  16. Head injury and risk for Parkinson disease

    DEFF Research Database (Denmark)

    Kenborg, Line; Rugbjerg, Kathrine; Lee, Pei-Chen

    2015-01-01

    in medical records. Patients were matched to 1,785 controls randomly selected from the Danish Central Population Register on sex and year of birth. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. RESULTS: We observed no association between any head......OBJECTIVE: To examine the association between head injuries throughout life and the risk for Parkinson disease (PD) in an interview-based case-control study. METHODS: We identified 1,705 patients diagnosed with PD at 10 neurologic centers in Denmark in 1996-2009 and verified their diagnoses...

  17. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  18. Stochastic cooling technology at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, R.J. E-mail: pasquin@fnal.gov

    2004-10-11

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  19. Stochastic cooling technology at Fermilab

    Science.gov (United States)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  20. Stochastic cooling technology at Fermilab

    International Nuclear Information System (INIS)

    Pasquinelli, R.J.

    2004-01-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented

  1. Cardiovascular and ventilatory responses to dorsal, facial, and whole-head water immersion in eupnea.

    Science.gov (United States)

    Gagnon, Dominique D; Pretorius, Thea; McDonald, Gerren; Kenny, Glen P; Giesbrecht, Gordon G

    2013-06-01

    Facial cooling can regulate reflexes of the dive response whereas further body cooling generally induces the cold-shock response. We examined the cardiovascular and ventilatory parameters of these responses during 3-min immersions of the head dorsum, face, and whole head in 17 degrees C water while breathing was maintained. From a horizontal position, the head was inserted into a temperature controlled immersion tank in which the water level could be changed rapidly. On four occasions, either the head dorsum, face or whole head (prone and supine) were exposed to water. Mean decrease in heart rate (14%) and increases in systolic (9%) and diastolic (5%) blood pressures were seen during immersion. Relative mean finger skin blood flow had an early transient decrease (31%) for 90 s and then returned to baseline values. A strong transient increase was seen in minute ventilation (92%) at 20 s of immersion via tidal volume (85%). There were no consistent differences between the head dorsum, face, and whole head for all variables in response to immersion. The cold-shock response (increased minute ventilation and tidal volume) predominated over the dive response in the initial moments of immersion only. The order of emergence of these responses provides further recommendation to avoid head submersion upon cold water entry. It is important to protect the face, with a facemask, and the head dorsum, with an insulative hood, in cold water.

  2. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    Science.gov (United States)

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  3. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  4. Theory of tapered laser cooling

    International Nuclear Information System (INIS)

    Okamoto, Hiromi; Wei, J.

    1998-01-01

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory

  5. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  6. Emergency core cooling systems

    International Nuclear Information System (INIS)

    Kubokoya, Takashi; Okataku, Yasukuni.

    1984-01-01

    Purpose: To maintain the fuel soundness upon loss of primary coolant accidents in a pressure tube type nuclear reactor by injecting cooling heavy water at an early stage, to suppress the temperature of fuel cans at a lower level. Constitution: When a thermometer detects the temperature rise and a pressure gauge detects that the pressure for the primary coolants is reduced slightly from that in the normal operation upon loss of coolant accidents in the vicinity of the primary coolant circuit, heavy water is caused to flow in the heavy water feed pipeway by a controller. This enables to inject the heavy water into the reactor core in a short time upon loss of the primary coolant accidents to suppress the temperature rise in the fuel can thereby maintain the fuel soundness. (Moriyama, K.)

  7. Cooling of rectangular bars

    International Nuclear Information System (INIS)

    Frainer, V.J.

    1979-01-01

    A solution of the time-transient Heat Transfer Differential Equation in rectangular coordinates is presented, leading to a model which describes the temperature drop with time in rectangular bars. It is similar to an other model for cilindrical bars which has been previously developed in the Laboratory of Mechanical Metallurgy of UFRGS. Following these models, a generalization has been made, which permits cooling time evaluation for all profiles. These results are compared with experimental laboratory data in the 1200 to 800 0 C range. Some other existing models were also studied which have the purpose of studing the same phenomenon. Their mathematical forms and their evaluated values are analyzed and compared with experimental ones. (Author) [pt

  8. ATLAS' major cooling project

    CERN Multimedia

    2005-01-01

    In 2005, a considerable effort has been put into commissioning the various units of ATLAS' complex cryogenic system. This is in preparation for the imminent cooling of some of the largest components of the detector in their final underground configuration. The liquid helium and nitrogen ATLAS refrigerators in USA 15. Cryogenics plays a vital role in operating massive detectors such as ATLAS. In many ways the liquefied argon, nitrogen and helium are the life-blood of the detector. ATLAS could not function without cryogens that will be constantly pumped via proximity systems to the superconducting magnets and subdetectors. In recent weeks compressors at the surface and underground refrigerators, dewars, pumps, linkages and all manner of other components related to the cryogenic system have been tested and commissioned. Fifty metres underground The helium and nitrogen refrigerators, installed inside the service cavern, are an important part of the ATLAS cryogenic system. Two independent helium refrigerators ...

  9. Reactor core cooling device for nuclear power plant

    International Nuclear Information System (INIS)

    Tsuda, Masahiko.

    1992-01-01

    The present invention concerns a reactor core cooling facility upon rupture of pipelines in a BWR type nuclear power plant. That is, when rupture of pipelines should occur in the reactor container, an releasing safety valve operates instantly and then a depressurization valve operates to depressurize the inside of a reactor pressure vessel. Further, an injection valve of cooling water injection pipelines is opened and cooling water is injected to cool the reactor core from the time when the pressure is lowered to a level capable of injecting water to the pressure vessel by the static water head of a pool water as a water source. Further, steams released from the pressure vessel and steams in the pressure vessel are condensed in a high pressure/low pressure emergency condensation device and the inside of the reactor container is depressurized and cooled. When the reactor is isolated, since the steams in the pressure vessel are condensed in the state that the steam supply valve and the return valve of a steam supply pipelines are opened and a vent valve is closed, the reactor can be maintained safely. (I.S.)

  10. Core catcher cooling for a gas-cooled fast breeder

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  11. Film cooling for a closed loop cooled airfoil

    Science.gov (United States)

    Burdgick, Steven Sebastian; Yu, Yufeng Phillip; Itzel, Gary Michael

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  12. Performance of a conduction-cooled high-temperature superconducting bearing

    International Nuclear Information System (INIS)

    Strasik, M.; Hull, J.R.; Johnson, P.E.; Mittleider, J.; McCrary, K.E.; McIver, C.R.; Day, A.C.

    2008-01-01

    We report rotational loss measurements for a high-temperature superconducting (HTS) bearing whose cooling consists of a thermal conduction path to the cold head of a cryocooler. Losses have been measured for rotational rates up to 14,500 rpm at different HTS temperatures. The rotational losses decrease with decreasing HTS temperature. For temperatures that can be obtained in a liquid-nitrogen thermosiphon system, at a given speed and gap, the loss of the conduction-cooled HTS bearing is not significantly higher than the loss of a nearly identical HTS bearing cooled by flowing nitrogen from the thermosiphon

  13. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Lee, Young Sub; Jung, Hoan Sung; Lim, In Chul [KAERI, Daejeon (Korea, Republic of)

    2007-07-01

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power.

  14. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    OpenAIRE

    Broeze, J.; Sluis, van der, S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation & storage. The project was aimed to create innovative combinations of these renewable cooling technologies and sophisticated control systems, to design renewable climate systems for various applicati...

  15. Head first Ajax

    CERN Document Server

    Riordan, Rebecca M

    2008-01-01

    Ajax is no longer an experimental approach to website development, but the key to building browser-based applications that form the cornerstone of Web 2.0. Head First Ajax gives you an up-to-date perspective that lets you see exactly what you can do -- and has been done -- with Ajax. With it, you get a highly practical, in-depth, and mature view of what is now a mature development approach. Using the unique and highly effective visual format that has turned Head First titles into runaway bestsellers, this book offers a big picture overview to introduce Ajax, and then explores the use of ind

  16. Head First Statistics

    CERN Document Server

    Griffiths, Dawn

    2009-01-01

    Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics

  17. The Coolness of Capitalism Today

    Directory of Open Access Journals (Sweden)

    Jim McGuigan

    2012-05-01

    Full Text Available This paper is about the reconciliation of cultural analysis with political economy in Marxist-inspired research on communications. It traces how these two traditions became separated with the development of a one-dimensional and consumerist cultural studies, on the one-hand, and a more classically Marxist political economy of communications, on the other hand, that was accused of holding a simplistic and erroneous concept of ideology. The paper defends a conception of ideology as distorted communication motivated by unequal power relations and sketches a multidimensional mode of cultural analysis that takes account of the moments of production, consumption and textual meaning in the circulation of communications and culture. In accordance with this framework of analysis, the cool-capitalism thesis is outlined and illustrated with reference to Apple, the ‘cool’ corporation. And, the all-purpose mobile communication device is selected as a key and urgent focus of attention for research on commodity fetishism and labour exploitation on a global scale today.

  18. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    Science.gov (United States)

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  19. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    Science.gov (United States)

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  20. Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus.

    Science.gov (United States)

    Aguirre, W E; Akinpelu, O

    2010-09-01

    This study examined sexual dimorphism of head morphology in the ecologically diverse three-spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size-adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter-population differences in head length were correlated between sexes, thus population-level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter-population variation and location of sexual dimorphism in G. aculeatus head morphology. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  1. Survey of Permethrin and Malathion Resistance in Human Head Lice Populations from Denmark

    DEFF Research Database (Denmark)

    Kristensen, Michael; Knorr, Mette; Rasmussen, Anne-Marie

    2006-01-01

    was selected, 2 ng of permethrin and 100 ng of malathion per head louse, respectively. Head lice were collected from heads of infested children in Denmark at 33 primary schools, one kindergarten, and seven boarding schools. The lice were collected by combing of dry hair, with a fine-toothed antilouse comb...

  2. Newton's Law of Cooling Revisited

    Science.gov (United States)

    Vollmer, M.

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer…

  3. Be Cool, Man! / Jevgeni Levik

    Index Scriptorium Estoniae

    Levik, Jevgeni

    2005-01-01

    Järg 1995. aasta kriminaalkomöödiale "Tooge jupats" ("Get Shorty") : mängufilm "Be Cool, Chili Palmer on tagasi!" ("Be Cool") : režissöör F. Gary Gray, peaosades J. Travolta ja U. Thurman : USA 2005. Lisatud J. Travolta ja U. Thurmani lühiintervjuud

  4. Core cooling system for reactor

    International Nuclear Information System (INIS)

    Kondo, Ryoichi; Amada, Tatsuo.

    1976-01-01

    Purpose: To improve the function of residual heat dissipation from the reactor core in case of emergency by providing a secondary cooling system flow channel, through which fluid having been subjected to heat exchange with the fluid flowing in a primary cooling system flow channel flows, with a core residual heat removal system in parallel with a main cooling system provided with a steam generator. Constitution: Heat generated in the core during normal reactor operation is transferred from a primary cooling system flow channel to a secondary cooling system flow channel through a main heat exchanger and then transferred through a steam generator to a water-steam system flow channel. In the event if removal of heat from the core by the main cooling system becomes impossible due to such cause as breakage of the duct line of the primary cooling system flow channel or a trouble in a primary cooling system pump, a flow control valve is opened, and steam generator inlet and outlet valves are closed, thus increasing the flow rate in the core residual heat removal system. Thereafter, a blower is started to cause dissipation of the core residual heat from the flow channel of a system for heat dissipation to atmosphere. (Seki, T.)

  5. Theory of semiconductor laser cooling

    Science.gov (United States)

    Rupper, Greg

    Recently laser cooling of semiconductors has received renewed attention, with the hope that a semiconductor cooler might be able to achieve cryogenic temperatures. In order to study semiconductor laser cooling at cryogenic temperatures, it is crucial that the theory include both the effects of excitons and the electron-hole plasma. In this dissertation, I present a theoretical analysis of laser cooling of bulk GaAs based on a microscopic many-particle theory of absorption and luminescence of a partially ionized electron-hole plasma. This theory has been analyzed from a temperature 10K to 500K. It is shown that at high temperatures (above 300K), cooling can be modeled using older models with a few parameter changes. Below 200K, band filling effects dominate over Auger recombination. Below 30K excitonic effects are essential for laser cooling. In all cases, excitonic effects make cooling easier then predicted by a free carrier model. The initial cooling model is based on the assumption of a homogeneous undoped semiconductor. This model has been systematically modified to include effects that are present in real laser cooling experiments. The following modifications have been performed. (1) Propagation and polariton effects have been included. (2) The effect of p-doping has been included. (n-doping can be modeled in a similar fashion.) (3) In experiments, a passivation layer is required to minimize non-radiative recombination. The passivation results in a npn heterostructure. The effect of the npn heterostructure on cooling has been analyzed. (4) The effect of a Gaussian pump beam was analyzed and (5) Some of the parameters in the cooling model have a large uncertainty. The effect of modifying these parameters has been analyzed. Most of the extensions to the original theory have only had a modest effect on the overall results. However we find that the current passivation technique may not be sufficient to allow cooling. The passivation technique currently used appears

  6. Closed loop steam cooled airfoil

    Science.gov (United States)

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  7. Selection, Training and Simulation

    Science.gov (United States)

    2000-03-01

    most Neck training, Altitudetehamber, PBG, Gas nixtures, Trampoline , important in flying. In years to come we will have a Statoergometer, Raling...superagile world, are mentioned neck, more if X-tra head worn equipment is used put below. a lot of stress to this system. In addition stress will 6-6 be...acceleration Pilot selection criteria like body-type, heart-cerebral forces, mainly head to foot (Gz). The heart itself is distance, vagal and sympathetic nerve

  8. Cooling off with physics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Chris [Unilever R and D (United Kingdom)

    2003-08-01

    You might think of ice cream as a delicious treat to be enjoyed on a sunny summer's day. However, to the ice-cream scientists who recently gathered in Thessaloniki in Greece for the 2nd International Ice Cream Symposium, it is a complex composite material. Ice cream consists of three dispersed phases: ice crystals, which have a mean size of 50 microns, air bubbles with a diameter of about 70 microns, and fat droplets with a size of 1 micron. These phases are held together by what is called the matrix - not a sci-fi film, but a viscous solution of sugars, milk proteins and polysaccharides. The microstructure, and hence the texture that you experience when you eat ice cream, is created in a freezing process that has remained fundamentally unchanged since the first ice-cream maker was patented in the 1840s. The ingredients - water, milk protein, fat, sugar, emulsifiers, stabilizers, flavours and a lot of air - are mixed together before being pasteurized and homogenized. They are then pumped into a cylinder that is cooled from the outside with a refrigerant. As the mixture touches the cylinder wall it freezes and forms ice crystals, which are quickly scraped off by a rotating blade. The blade is attached to a beater that disperses the ice crystals into the mixture. At the same time, air is injected and broken down into small bubbles by the shear that the beater generates. As the mixture passes along the cylinder, the number of ice crystals increases and its temperature drops. As a result, the viscosity of the mixture increases, so that more energy input is needed to rotate the beater. This energy is dissipated as heat, and when the ice cream reaches about -6 deg. C the energy input through the beater equals the energy removed as heat by the refrigerant. The process therefore becomes self-limiting and it is not possible to cool the ice cream any further. However, at -6 deg. C the microstructure is unstable. The ice cream therefore has to be removed from the freezer

  9. Silva as the Head

    DEFF Research Database (Denmark)

    Svabo, Connie

    2015-01-01

    The head of the performance design programme is substituted by a sister's academy delegate. this performance situation formed part of a week of semesterstart where the students and professors visited Sister's Academy, Malmø. I participated in the Sister's Academy as visiting researcher and here i...

  10. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head ...

  11. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... are present in the paranasal sinuses. plan radiation therapy for cancer of the brain or other tissues. guide the ... RTAnswers.org Radiation Therapy for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association top ...

  12. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Blood Clots CT Perfusion of the Head CT Angiography ( ...

  13. The Twente humanoid head

    NARCIS (Netherlands)

    Reilink, Rob; Visser, L.C.; Bennik, J.; Carloni, Raffaella; Brouwer, Dannis Michel; Stramigioli, Stefano

    2009-01-01

    This video shows the results of the project on the mechatronic development of the Twente humanoid head. The mechanical structure consists of a neck with four degrees of freedom (DOFs) and two eyes (a stereo pair system) which tilt on a common axis and rotate sideways freely providing a three more

  14. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    Science.gov (United States)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P heat-stressed humans.

  15. 46 CFR 153.432 - Cooling systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a manual...

  16. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  17. Head injury in children

    International Nuclear Information System (INIS)

    Sugiura, Makoto; Mori, Nobuhiko; Yokosuka, Reiko; Yamamoto, Masaaki; Imanaga, Hirohisa

    1981-01-01

    Findings of computerized tomography (CT) in 183 cases of head injury in children were investigated with special reference to CT findings of mild head injury. As was expected, CT findings of mild head injury fell within the normal range, in almost all cases. However, abnormal findings were noticed in 4 out of 34 cases (12%) in acute stage and 7 out of 76 cases (9%) in chronic stage. They were 3 cases of localized low density area in acute stage and 6 cases of mild cerebral atrophy in chronic stage, etc. There were some cases of mild head injury in which CT findings were normal while EEG examination revealed abnormality. Also in some cases, x-ray study demonstrated linear skull fracture which CT failed to show. These conventional techniques could be still remained as useful adjunct aid in diagnosis of head injury. CT findings of cases of cerebral contusion in their acute stage were divided as follows; normal, low density, small ventricle and ventricular and/or cisternal hemorrhage, frequency of incidence being 38, 17, 22, 11% respectively. These findings were invariably converted to cerebral atrophy from 10 days to 2 months after the impacts. In the cases with intracranial hematoma revealed by CT, only 32% of them showed clinical signs of Araki's type IV in their acute stage and 63% of them showed no neurological defects, that is Araki's type I and II. A case of extreme diffuse cerebral atrophy which followed acute subdural hematoma caused by tear of bridging veins without cortical contusion was presented. (author)

  18. Huge opportunity for solar cooling

    International Nuclear Information System (INIS)

    Rowe, Daniel

    2014-01-01

    In Europe more than 400 solar cooling systems have been installed. By contrast, only a small number of solar cooling installations exist in Australia - primarily adsorption and absorption systems for commercial and hospitals - although these systems are growing. As with other renewable energy technologies, cost is a challenge. However solar cooling is currently competitive with other technologies, with some suggesting that system costs have been decreasing by about 20% per annum in recent times. Australia is also leading efforts in the development of residential solar desiccant technology, currently commercialising Australian-developed technology. Commercial and industrial enterprises are increasingly aware of the impact of demand charges, the potential to install technology as a hedge against future energy price rises and opportunities associated with increased on-site generation and reduced reliance on the grid, often necessitating on-site demand reduction and management. They are also driven by environmental and corporate social responsibility objectives as well as the opportunity for energy independence and uninterruptible operation. Interestingly, many of these interests are mirrdred at residential level, inspiring CSIRO's commercialisation of a domestic scale solar air conditioner with Australian manufacturer Brevis Climate Systems. Australia and other countries are increasingly aware of solar cooling as technology which can reduce or replace grid-powered cooling, particularly in applications where large building thermal energy requirements exist. In these applications, heating, cooling and hot water are generated and used in large amounts and the relative amounts of each can be varied dynamically, depending on building requirements. Recent demonstrations of solar cooling technology in Australia include Hunter TAFE's Solar Desiccant Cooling System - which provides heating, cooling and hot water to commercial training kitchens and classrooms - GPT

  19. Emergency core cooling system

    International Nuclear Information System (INIS)

    Sato, Akira; Kobayashi, Masahide.

    1983-01-01

    Purpose: To enable a stable operation of an emergency core cooling system by preventing the system from the automatic stopping at an abnormally high level of the reactor water during its operation. Constitution: A pump flow rate signal and a reactor water level signal are used and, when the reactor water level is increased to a predetermined level, the pump flow rate is controlled by the reactor water level signal instead of the flow rate signal. Specifically, when the reactor water level is gradually increased by the water injection from the pump and exceeds a setting signal for the water level, the water level deviation signal acts as a demand signal for the decrease in the flow rate of the pump and the output signal from the water level controller is also decreased depending on the control constant. At a certain point, the output signal from the water level controller becomes smaller than the output signal from the flow rate controller. Thus, the output signal from the water level controller is outputted as the output signal for the lower level preference device. In this way, the reactor water level and the pump flow rate can be controlled within a range not exceeding the predetermined pump flow rate. (Horiuchi, T.)

  20. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  1. Magnet cooling economics

    International Nuclear Information System (INIS)

    Parmer, J.F.; Liggett, M.W.

    1985-01-01

    The recommendation to use superfluid helium II in superconducting magnet design has become more prevalent in recent years. Advanced fusion reactor studies such as the Mirror Advanced Reactor Study recently completed by the Lawrence Livermore National Laboratory (LLML) have based superconducting magnet design on the use of He II because of reduced magnet volume, improved stability characteristics, or increased superconductor critical current at fields above 9 Tesla. This paper reports the results of a study to determine the capital costs ($/watt) and the operating costs (watts/watt) of refrigeration systems in the 1.8K to 300K temperature range. The cost data is applied to a 1.8K magnet that is subject to neutronic heating wherein the magnet case is insulated from the winding so that the case can be cooled at a higher temperature (less costly) than the winding. The life cycle cost (capital plus operating) is reported as a function of coil temperature and insulation thickness. In some cases there is an optimum, least-cost thickness. In addition, the basic data can be used to evaluate the impact of neutron shielding effectiveness trades on the combined shield, magnet, cryorefrigerator, and operating life cycle cost

  2. The WFCAM transit survey and cool white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available We present results from our search for cool white dwarfs in the WTS (WFCAM Transit Survey. Repeat observations starting in 2007 allowed to produce deep stacked images in J and measure proper motions. We combine this with deep optical imaging to select cool white dwarf candidates (Teff < 5000 K. About 27 cool white dwarf candidates with proper motions above 0.10 arcsec/yr were identified in one of the fields representing 1/8th of the survey area. Follow-up spectroscopy with the 10.2 m GTC telescope at La Palma confirmed the white dwarf status for all observed candidates. On-going work is being carried out to increase the sample of cool white dwarfs that will allow a more comprehensive study of the thick disk/halo white dwarf population.

  3. Optoacoustic laser monitoring of cooling and freezing of tissues

    International Nuclear Information System (INIS)

    Larin, Kirill V; Larina, I V; Motamedi, M; Esenaliev, R O

    2002-01-01

    Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast. (laser biology and medicine)

  4. Stochastic cooling in muon colliders

    International Nuclear Information System (INIS)

    Barletta, W.A.; Sessler, A.M.

    1993-09-01

    Analysis of muon production techniques for high energy colliders indicates the need for rapid and effective beam cooling in order that one achieve luminosities > 10 30 cm -2 s -1 as required for high energy physics experiments. This paper considers stochastic cooling to increase the phase space density of the muons in the collider. Even at muon energies greater than 100 GeV, the number of muons per bunch must be limited to ∼10 3 for the cooling rate to be less than the muon lifetime. With such a small number of muons per bunch, the final beam emittance implied by the luminosity requirement is well below the thermodynamic limit for beam electronics at practical temperatures. Rapid bunch stacking after the cooling process can raise the number of muons per bunch to a level consistent with both the luminosity goals and with practical temperatures for the stochastic cooling electronics. A major advantage of our stochastic cooling/stacking scheme over scenarios that employ only ionization cooling is that the power on the production target can be reduced below 1 MW

  5. Renewal of cooling system of JMTR

    International Nuclear Information System (INIS)

    Onoue, Ryuji; Kawamata, Takanori; Otsuka, Kaoru; Koike, Sumio; Nishiyama, Yutaka; Fukasaku, Akitomi

    2011-06-01

    The Japan Materials Testing Reactor (JMTR) is a light water moderated and cooled tank-type reactor, and its thermal power is 50 MW. The JMTR is categorized as high flux testing reactors in the world. The JMTR has been utilized for irradiation experiments of nuclear fuels and materials, as well as for radioisotope productions since the first criticality in March 1968 until August 2006. JAEA decided to refurbish the JMTR as an important fundamental infrastructure to promote the nuclear research and development. The refurbishment work was started from 2007, and restart is planned in 2011. Renewal facilities were selected from evaluation on their damage and wear in terms of aging. Facilities whose replacement parts are no longer manufactured or not likely to be manufactured continuously in near future, are selected as renewal ones. Replacement priority was decided with special attention to safety concerns. A monitoring of aging condition by the regular maintenance activity is an important factor in selection of continuous using after the restart. In this report, renewal of the cooling system within refurbishment facilities in the JMTR is summarized. (author)

  6. Head and Neck Cancer Treatment

    Science.gov (United States)

    ... Professions Site Index A-Z Head and Neck Cancer Treatment Head and neck cancer overview What are my ... and neck cancer. For updated information on new cancer treatments that are available, you should discuss these issues ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  9. Head, Neck, and Oral Cancer

    Medline Plus

    Full Text Available ... and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed with ... and Neck Pathology Oral, Head and Neck Pathology Close to 49,750 Americans will be diagnosed with ...

  10. Head Lice: Prevention and Control

    Science.gov (United States)

    ... and General Public. Contact Us Parasites Home Prevention & Control Language: English (US) Español (Spanish) Recommend on Facebook ... that can be taken to help prevent and control the spread of head lice: Avoid head-to- ...

  11. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  12. Emergency cooling system for a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Cook, R.K.; Burylo, P.S.

    1975-01-01

    The site of the gas-cooled reactor with direct-circuit gas turbine is preferably the sea coast. An emergency cooling system with safety valve and emergency feed-water addition is designed which affects at least a part of the reactor core coolant after leaving the core. The emergency cooling system includes a water emergency cooling circuit with heat exchanger for the core coolant. The safety valve releases water or steam from the emergency coolant circuit when a certain temperature is exceeded; this is, however, replaced by the emergency feed-water. If the gas turbine exhibits a high and low pressure turbine stage, which are flowed through by coolant one behind another, a part of the coolant can be removed in front of each part turbine by two valves and be added to the haet exchanger. (RW/LH) [de

  13. CO$_2$ cooling experience (LHCb)

    CERN Document Server

    Van Lysebetten, Ann; Verlaat, Bart

    2007-01-01

    The thermal control system of the LHCb VErtex LOcator (VELO) is a two-phase C0$_2$ cooling system based on the 2-Phase Accumulator Controlled Loop (2PACL) method. Liquid carbon dioxide is mechanically pumped in a closed loop, chilled by a water-cooled freon chiller and evaporated in the VELO detector. The main goal of the system is the permanent cooling of the VELO silicon sensors and of the heat producing front-end electronics inside a vacuum environment. This paper describes the design and the performance of the system. First results obtained during commissioning are also presented.

  14. Cooling towers principles and practice

    CERN Document Server

    Hill, G B; Osborn, Peter D

    1990-01-01

    Cooling Towers: Principles and Practice, Third Edition, aims to provide the reader with a better understanding of the theory and practice, so that installations are correctly designed and operated. As with all branches of engineering, new technology calls for a level of technical knowledge which becomes progressively higher; this new edition seeks to ensure that the principles and practice of cooling towers are set against a background of up-to-date technology. The book is organized into three sections. Section A on cooling tower practice covers topics such as the design and operation of c

  15. Obstetric Antecedents to Body Cooling Treatment of the Newborn Infant

    Science.gov (United States)

    Nelson, David B.; Lucke, Ashley M.; McIntire, Donald D.; Sánchez, Pablo J.; Leveno, Kenneth J.; Chalak, Lina F.

    2014-01-01

    Objective Obstetric antecedents were analyzed in births where the infant received whole-body cooling for neonatal encephalopathy. Methods This retrospective cohort study included all live-born singleton infants delivered at or beyond 36 weeks gestation from October 2005 through December 2011. Infants who had received whole-body cooling identified by review of a prospective neonatal registry were compared to a control group comprising the remaining obstetric population delivered at greater than 36 weeks but not cooled. Univariable analysis was followed by a staged, stepwise selection of variables with the intent to rank significant risk factors for cooling. Results A total of 86,371 women delivered during the study period and 98 infants received whole-body cooling (1.1/1,000 livebirths). Of these 98 infants, 80 (88%) newborns had moderate encephalopathy and 10 (12%) had severe encephalopathy prior to cooling. Maternal age less than or equal to 15 years, low parity, maternal body habitus (BMI ≥ 40 kg/m2), diabetes, preeclampsia, induction, epidural analgesia, chorioamnionitis, length of labor, and mode of delivery were associated with significantly increased risk of infant cooling during univariable analysis. Catastrophic events to include umbilical cord prolapse (OR 14; 95%CI, 3–72), placental abruption (OR 17; 95%CI, 7–44), uterine rupture (OR 130; 95%CI, 11–1477) were the strongest factors associated with infant cooling after staged-stepwise logistic analysis. Conclusion A variety of intrapartum characteristics were associated with infant cooling for neonatal encephalopathy with the most powerful antecedents being umbilical cord prolapse, placental abruption, and uterine rupture. PMID:24530976

  16. Passive low energy cooling of buildings

    CERN Document Server

    Givoni, Baruch

    1994-01-01

    A practical sourcebook for building designers, providing comprehensive discussion of the impact of basic architectural choices on cooling efficiency, including the layout and orientation of the structure, window size and shading, exterior color, and even the use of plantings around the site. All major varieties of passive cooling systems are presented, with extensive analysis of performance in different types of buildings and in different climates: ventilation; radiant cooling; evaporative cooling; soil cooling; and cooling of outdoor spaces.

  17. A parametric study of solar operated cooling system

    International Nuclear Information System (INIS)

    Zagalei, Abdullatif Salin

    2006-01-01

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  18. MRI in head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo [Shin Wha Hospital, Seoul (Korea, Republic of)

    1986-02-15

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  19. Where is Russia heading?

    Directory of Open Access Journals (Sweden)

    Natalija Pliskevič

    1999-10-01

    Full Text Available The author examines the proceedings from the collection Where is Russia Heading? (= Куда идёт Россия?, published between 1994 and 1998 in connection with the international symposium held under this name each year in Moscow. The symposia and their proceeding, involving leading Russian and foreign experts, were significant in that they encompassed a wide range of themes – social, economic, political, legislative, cultural and other transformations that have been occurring in Russia during the past decades. The author, however, limits her review to contributions dealing with ethno-political and socio-cultural transformations in Russia. She concludes that the question – “Where is Russia heading?” – still remains open to answers.

  20. MRI in head trauma

    International Nuclear Information System (INIS)

    Hong, Jin Kyo

    1986-01-01

    In the diagnosis of head injury, Magnetic Resonance Imaging (MRI), like CT, is an effective method of distinguishing between intracerebral and extracerebral lesions. In our experience of MRI, early hematomas are almost isointense by Saturation Recovery (SR) method, so these must be performed with Spin Echo (SE) method for better visualization of hematomas. Isodense subdural hematomas, which is a diagnostic dilemma on CT images, are clearly seen on MRI. Delayed hematomas or residual parenchymal lesions are better demonstrated on MRI than on CT. Direct cornal, sagittal images and multiplanar facility of MRI provides excellent visualization of the the location and shape of extracerebral collection of hematoma. For the screening of head traumas, SE method is a technique of choice because of its excellent sensitivity within limited time.

  1. "Head versus heart"

    Directory of Open Access Journals (Sweden)

    Paul Rozin

    2007-08-01

    Full Text Available Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this study that American adults and undergraduates are substantially less likely to acknowledge magical effects when the judgments involve money (amount willing to pay to avoid an ``unpleasant'' magical contact than they are when using preference or rating measures. We conclude that in ``head-heart'' conflicts of this type, money tips the balance towards the former, or, in other words, that money makes the mind less magical.

  2. Tackler’s head position relative to the ball carrier is highly correlated with head and neck injuries in rugby

    Science.gov (United States)

    Hasegawa, Yoshinori; Shiota, Yuki; Ota, Chihiro; Yoneda, Takeshi; Tahara, Shigeyuki; Maki, Nobukazu; Matsuura, Takahiro; Sekiguchi, Masahiro; Itoigawa, Yoshiaki; Tateishi, Tomohiko; Kaneko, Kazuo

    2018-01-01

    Objectives To characterise the tackler’s head position during one-on-one tackling in rugby and to determine the incidence of head, neck and shoulder injuries through analysis of game videos, injury records and a questionnaire completed by the tacklers themselves. Methods We randomly selected 28 game videos featuring two university teams in competitions held in 2015 and 2016. Tackles were categorised according to tackler’s head position. The ‘pre-contact phase’ was defined; its duration and the number of steps taken by the ball carrier prior to a tackle were evaluated. Results In total, 3970 tackles, including 317 (8.0%) with the tackler’s head incorrectly positioned (ie, in front of the ball carrier) were examined. Thirty-two head, neck or shoulder injuries occurred for an injury incidence of 0.8% (32/3970). The incidence of injury in tackles with incorrect head positioning was 69.4/1000 tackles; the injury incidence with correct head positioning (ie, behind or to one side of the ball carrier) was 2.7/1000 tackles. Concussions, neck injuries, ‘stingers’ and nasal fractures occurred significantly more often during tackles with incorrect head positioning than during tackles with correct head positioning. Significantly fewer steps were taken before tackles with incorrect head positioning that resulted in injury than before tackles that did not result in injury. Conclusion Tackling with incorrect head position relative to the ball carrier resulted in a significantly higher incidence of concussions, neck injuries, stingers and nasal fractures than tackling with correct head position. Tackles with shorter duration and distance before contact resulted in more injuries. PMID:29162618

  3. The influence of airflow inlet region modifications on the local efficiency of natural draft cooling tower operation

    OpenAIRE

    Hočevar, Marko; Širok, Brane; Dvoršek, Matjaž; Holeček, Nikola; Donevski, Božin

    2015-01-01

    We present the influence of the cooling tower airflow inlet region modifications at the Šoštanj 4 thermal power plant on cooling tower local efficiency. Local efficiency change was estimated based on temperature fields of drift eliminators before and after the reconstruction of the cooling tower. Temperature fields were measured with thermal vision method. The local reduction of cooling tower efficiency was analyzed based on phenomenological relations of heat transfer obtained from the select...

  4. [The exploding head syndrome].

    Science.gov (United States)

    Bongers, K M; ter Bruggen, J P; Franke, C L

    1991-04-06

    The case is reported of a 47-year old female suffering from the exploding head syndrome. This syndrome consists of a sudden awakening due to a loud noise shortly after falling asleep, sometimes accompanied by a flash of light. The patient is anxious and experiences palpitations and excessive sweating. Most patients are more than fifty years of age. Further investigations do not reveal any abnormality. The pathogenesis is unknown, and no therapy other than reassurance is necessary.

  5. Where are we heading

    International Nuclear Information System (INIS)

    Noto, L.A.

    1996-01-01

    The present paper deals with different aspects connected to the global petroleum industry by discussing the way of heading. The aspects cover themes like new frontiers, new relationships, sanctions, global climate change, new alliances and new technology. New frontiers and relationships concern domestic policy affecting the industry, and sanctions are discussed in connection with trade. The author discusses the industry's participation in the global environmental policy and new alliances to provide greater opportunity for developing new technology

  6. "Head versus heart"

    OpenAIRE

    Paul Rozin; Heidi Grant; Stephanie Weinberg; Scott Parker

    2007-01-01

    Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach) are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this ...

  7. Head segmentation in vertebrates

    OpenAIRE

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Her...

  8. Energy Savers: Cool Summer Tips

    International Nuclear Information System (INIS)

    Miller, M.

    2001-01-01

    A tri-fold brochure addressing energy-saving tips for homeowners ranging from low- or no-cost suggestions to higher cost suggestions for longer-term savings. Cooling, windows, weatherizing, and landscaping are addressed

  9. Extended analysis of cooling curves

    International Nuclear Information System (INIS)

    Djurdjevic, M.B.; Kierkus, W.T.; Liliac, R.E.; Sokolowski, J.H.

    2002-01-01

    Thermal Analysis (TA) is the measurement of changes in a physical property of a material that is heated through a phase transformation temperature range. The temperature changes in the material are recorded as a function of the heating or cooling time in such a manner that allows for the detection of phase transformations. In order to increase accuracy, characteristic points on the cooling curve have been identified using the first derivative curve plotted versus time. In this paper, an alternative approach to the analysis of the cooling curve has been proposed. The first derivative curve has been plotted versus temperature and all characteristic points have been identified with the same accuracy achieved using the traditional method. The new cooling curve analysis also enables the Dendrite Coherency Point (DCP) to be detected using only one thermocouple. (author)

  10. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  11. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  12. Cooling methods for power plants

    International Nuclear Information System (INIS)

    Gaspersic, B.; Fabjan, L.; Petelin, S.

    1977-01-01

    There are some results of measurements carried out on the wet cooling tower 275 MWe at TE Sostanj and on the experimental cooling tower at Jozef Stefan Institute, as well. They are including: the measurements of the output air conditions, the measurements of the cross current of water film and vapour-air flowing through two plates, and the distribution of velocity in boundary layer measured by anemometer

  13. Induced draught circular cooling tower

    International Nuclear Information System (INIS)

    Blanquet, J.C.

    1980-01-01

    Induced draught atmospheric cooling towers are described, to wit those in which the circulation is by power fans. This technique with fans grouped together in the centre enables a single tower to be used and provides an excellent integration of the steam wreath into the atmosphere. This type of cooling tower has been chosen for fitting out two 900 MW units of the Chinon power station in France [fr

  14. DETERMINATION OF RADIATOR COOLING SURFACE

    Directory of Open Access Journals (Sweden)

    A. I. Yakubovich

    2009-01-01

    Full Text Available The paper proposes a methodology for calculation of a radiator cooling surface with due account of heat transfer non-uniformity on depth of its core. Calculation of radiator cooling surfaces of «Belarus-1221» and «Belarus-3022» tractors has been carried out in the paper. The paper also advances standard size series of radiators for powerful «Belarus» tractor type.

  15. Universal crystal cooling device for precession cameras, rotation cameras and diffractometers

    International Nuclear Information System (INIS)

    Hajdu, J.; McLaughlin, P.J.; Helliwell, J.R.; Sheldon, J.; Thompson, A.W.

    1985-01-01

    A versatile crystal cooling device is described for macromolecular crystallographic applications in the 290 to 80 K temperature range. It utilizes a fluctuation-free cold-nitrogen-gas supply, an insulated Mylar crystal cooling chamber and a universal ball joint, which connects the cooling chamber to the goniometer head and the crystal. The ball joint is a novel feature over all previous designs. As a result, the device can be used on various rotation cameras, precession cameras and diffractometers. The lubrication of the interconnecting parts with graphite allows the cooling chamber to remain stationary while the crystal and goniometer rotate. The construction allows for 360 0 rotation of the crystal around the goniometer axis and permits any settings on the arcs and slides of the goniometer head (even if working at 80 K). There are no blind regions associated with the frame holding the chamber. Alternatively, the interconnecting ball joint can be tightened and fixed. This results in a set up similar to the construction described by Bartunik and Schubert where the cooling chamber rotates with the crystal. The flexibility of the systems allows for the use of the device on most cameras or diffractometers. THis device has been installed at the protein crystallographic stations of the Synchrotron Radiation Source at Daresbury Laboratory and in the Laboratory of Molecular Biophysics, Oxford. Several data sets have been collected with processing statistics typical of data collected without a cooling chamber. Tests using the full white beam of the synchrotron also look promising. (orig./BHO)

  16. Emergency core cooling system for a fast reactor

    International Nuclear Information System (INIS)

    Johnson, H.G.; Madsen, R.N.

    1976-01-01

    The main heat transport system for a liquid-metal-cooled nuclear reactor is constructed with elevated piping and guard vessels or pipes around all components of the system below the elevation of the elevated piping so the head developed by the pumps at emergency motor speed will be unsufficient to lift the liquid-metal-coolant over the top of the guard tanks or pipes or out of the elevated piping in the event of a loss-of-coolant accident. In addition, inlet downcomers to the reactor vessel are contained within guard standpipes having a clearance volume as small as practicable. 4 claims, 2 drawing figures

  17. Selecting and Buying Educational Software.

    Science.gov (United States)

    Ahl, David H.

    1983-01-01

    Guidelines for selecting/buying educational software are discussed under the following headings: educational soundness; appropriateness; challenge and progress; motivation and reward; correctness; compatibility with systems; instructions and handlings. Includes several sources of software reviews. (JN)

  18. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  19. Integrated approach for stress analysis of high performance diesel engine cylinder head

    Science.gov (United States)

    Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.

    2018-03-01

    Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.

  20. Shock and vibration protection of submerged jet impingement cooling systems: Theory and experiment

    International Nuclear Information System (INIS)

    Haji Hosseinloo, Ashkan; Tan, Siow Pin; Yap, Fook Fah; Toh, Kok Chuan

    2014-01-01

    In the recent years, advances in high power density electronics and computing systems have pushed towards more advanced thermal management technologies and higher-capacity cooling systems. Among different types of cooling systems, jet impingement technology has gained attention and been widely used in different industries for its adaptability, cooling uniformity, large heat capacity, and ease of its localization. However, these cooling systems may not function properly in dynamically harsh environment inherent in many applications such as land, sea and air transportation. In this research article, a novel double-chamber jet impingement cooling system is fabricated and its performance is studied in harsh environment. Using the authors' previous studies, isolators with optimum properties are selected to ruggedize the chassis containing the cooling chamber against shock and random vibration. Experiments are conducted on both hard-mounted and isolated chassis and the cooling performance of the system is assessed using the inlet, and impingement surface temperatures of the cooling chamber. The experimental results show the isolation system prevents any failure that otherwise would occur, and also does not compromise the thermal performance of the system. - Highlights: • A novel double-chamber jet impingement cooling system was designed and fabricated. • Comprehensive set of random vibration and shock tests are conducted. • The isolation system proved to protect the cooling system properly against mechanical failure. • Cooling system performance was not significantly affected by the input random vibration and shock

  1. Emergency cooling system for a liquid metal cooled reactor

    International Nuclear Information System (INIS)

    Murata, Ryoichi; Fujiwara, Toshikatsu.

    1980-01-01

    Purpose: To suitably cool liquid metal as coolant in emergency in a liquid metal cooled reactor by providing a detector for the pressure loss of the liquid metal passing through a cooling device in a loop in which the liquid metal is flowed and communicating the detector with a coolant flow regulator. Constitution: A nuclear reactor is stopped in nuclear reaction by control element or the like in emergency. If decay heat is continuously generated for a while and secondary coolant is insufficiently cooled with water or steam flowed through a steam and water loop, a cooler is started. That is, low temperature air is supplied by a blower through an inlet damper to the cooler to cool the secondary coolant flowed into the cooler through a bypass pipe so as to finally safely stop an entire plant. Since the liquid metal is altered in its physical properties by the temperature at this time, it is detected to regulate the opening of the valve of the damper according to the detected value. (Sekiya, K.)

  2. Dry-type cooling systems in electric power production

    International Nuclear Information System (INIS)

    Li, K.W.

    1973-01-01

    This study indicates that the dry-type cooling tower could be adopted in this country as an alternative method for removing waste heat from power plants. The use of dry cooling towers would not only lead to a change of cooling system design, but also to a change of overall thermal design in a power generating system. The principal drawbacks to using dry cooling towers in a large steam-turbine plant are the generating capacity loss, increased fuel consumption and the high capital cost of the dry cooling towers. These economic penalties must be evaluated in each specific case against the benefits that may result from the use of dry cooling towers. The benefits are principally these: (1) Fewer constraints in the selection of power plant sites, (2) No thermal discharge to the natural water bodies, (3) Elimination of vapor plumes and water evaporation loss, and (4) Freedom of adding new units to an existing facility where inadequate water supply may otherwise rule out this possibility

  3. Performance limit of daytime radiative cooling in warm humid environment

    Directory of Open Access Journals (Sweden)

    Takahiro Suichi

    2018-05-01

    Full Text Available Daytime radiative cooling potentially offers efficient passive cooling, but the performance is naturally limited by the environment, such as the ambient temperature and humidity. Here, we investigate the performance limit of daytime radiative cooling under warm and humid conditions in Okayama, Japan. A cooling device, consisting of alternating layers of SiO2 and poly(methyl methacrylate on an Al mirror, is fabricated and characterized to demonstrate a high reflectance for sunlight and a selective thermal radiation in the mid-infrared region. In the temperature measurement under the sunlight irradiation, the device shows 3.4 °C cooler than a bare Al mirror, but 2.8 °C warmer than the ambient of 35 °C. The corresponding numerical analyses reveal that the atmospheric window in λ = 16 ∼ 25 μm is closed due to a high humidity, thereby limiting the net emission power of the device. Our study on the humidity influence on the cooling performance provides a general guide line of how one can achieve practical passive cooling in a warm humid environment.

  4. Eye and head movements shape gaze shifts in Indian peafowl.

    Science.gov (United States)

    Yorzinski, Jessica L; Patricelli, Gail L; Platt, Michael L; Land, Michael F

    2015-12-01

    Animals selectively direct their visual attention toward relevant aspects of their environments. They can shift their attention using a combination of eye, head and body movements. While we have a growing understanding of eye and head movements in mammals, we know little about these processes in birds. We therefore measured the eye and head movements of freely behaving Indian peafowl (Pavo cristatus) using a telemetric eye-tracker. Both eye and head movements contributed to gaze changes in peafowl. When gaze shifts were smaller, eye movements played a larger role than when gaze shifts were larger. The duration and velocity of eye and head movements were positively related to the size of the eye and head movements, respectively. In addition, the coordination of eye and head movements in peafowl differed from that in mammals; peafowl exhibited a near-absence of the vestibulo-ocular reflex, which may partly result from the peafowl's ability to move their heads as quickly as their eyes. © 2015. Published by The Company of Biologists Ltd.

  5. Air-cooled recirculation cooling systems. Technical and economic comparison; Luftgekuehlte Rueckkuehlsysteme. Technisch wirtschaftlicher Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, G. [Fa. Jaeggi/Guentner (Schweiz) AG, Trimbach (Switzerland)

    2000-03-01

    There are several air-cooled forced-circulation cooling systems for heat removal from refrigeration systems. Optimum solutions should not be selected on the basis of the cost factor alone; an integrative approach should be used instead. An exemplary investigation is presented. [German] Fuer die Waermeabfuhr aus kaeltetechnischen Anlagen stehen verschiedene luftgekuehlte, zwangsbelueftete Rueckkuehlsysteme zur Verfuegung. Die Auswahl des Systems ist oft von kurzfristigem Kostendenken gepraegt, was in technischer und wirtschaftlicher Hinsicht aber nicht immer der optimalen Loesung entspricht. Erst die genauere Kenntnis der verschiedenen Systeme und eine ganzheitliche Betrachtungsweise ermoeglichen die optimale Wahl fuer den einzelnen Fall. Die hier praesentierte Untersuchung wird anhand eines konkreten Falls dargestellt, wobei Preise und technische Produktdaten auf realen Anfragen beruhen. Der Autor ist um objetive Bewertung bemueht, der Leser moege aber selbst urteilen. (orig./AKF)

  6. Kinematics of the AM-50 heading machine cutting head

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Bak, K; Klich, R [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1987-01-01

    Analyzes motion of the cutter head of the AM-50 heading machine. Two types of head motion are comparatively evaluated: planar motion and spatial motion. The spatial motion consists of the head rotational motion and horizontal or vertical feed motion, while planar motion consists of rotational motion and vertical feed motion. Equations that describe head motion under conditions of cutter vertical or horizontal feed motion are derived. The angle between the cutting speed direction and working speed direction is defined. On the basis of these formulae variations of cutting speed depending on the cutting tool position on a cutter head are calculated. Calculations made for 2 extreme cutting tools show that the cutting speed ranges from 1,205 m/s to 3,512 m/s. 4 refs.

  7. Head First Web Design

    CERN Document Server

    Watrall, Ethan

    2008-01-01

    Want to know how to make your pages look beautiful, communicate your message effectively, guide visitors through your website with ease, and get everything approved by the accessibility and usability police at the same time? Head First Web Design is your ticket to mastering all of these complex topics, and understanding what's really going on in the world of web design. Whether you're building a personal blog or a corporate website, there's a lot more to web design than div's and CSS selectors, but what do you really need to know? With this book, you'll learn the secrets of designing effecti

  8. Head first C#

    CERN Document Server

    Stellman, Andrew

    2008-01-01

    Head First C# is a complete learning experience for object-oriented programming, C#, and the Visual Studio IDE. Built for your brain, this book covers C# 3.0 and Visual Studio 2008, and teaches everything from language fundamentals to advanced topics including garbage collection, extension methods, and double-buffered animation. You'll also master C#'s hottest and newest syntax, LINQ, for querying SQL databases, .NET collections, and XML documents. By the time you're through, you'll be a proficient C# programmer, designing and coding large-scale applications. Every few chapters you will come

  9. Head first C#

    CERN Document Server

    Stellman, Andrew

    2010-01-01

    You want to learn C# programming, but you're not sure you want to suffer through another tedious technical book. You're in luck: Head First C# introduces this language in a fun, visual way. You'll quickly learn everything from creating your first program to learning sophisticated coding skills with C# 4.0, Visual Studio 2010 and .NET 4, while avoiding common errors that frustrate many students. The second edition offers several hands-on labs along the way to help you build and test programs using skills you've learned up to that point. In the final lab, you'll put everything together. From o

  10. Head First Python

    CERN Document Server

    Barry, Paul

    2010-01-01

    Ever wished you could learn Python from a book? Head First Python is a complete learning experience for Python that helps you learn the language through a unique method that goes beyond syntax and how-to manuals, helping you understand how to be a great Python programmer. You'll quickly learn the language's fundamentals, then move onto persistence, exception handling, web development, SQLite, data wrangling, and Google App Engine. You'll also learn how to write mobile apps for Android, all thanks to the power that Python gives you. We think your time is too valuable to waste struggling with

  11. Head First Mobile Web

    CERN Document Server

    Gardner, Lyza; Grigsby, Jason

    2011-01-01

    Despite the huge number of mobile devices and apps in use today, your business still needs a website. You just need it to be mobile. Head First Mobile Web walks you through the process of making a conventional website work on a variety smartphones and tablets. Put your JavaScript, CSS media query, and HTML5 skills to work-then optimize your site to perform its best in the demanding mobile market. Along the way, you'll discover how to adapt your business strategy to target specific devices. Navigate the increasingly complex mobile landscapeTake both technical and strategic approaches to mobile

  12. Development and testing of the cooling coil cleaning end effector

    International Nuclear Information System (INIS)

    Johnson, K.I.; Mullen, O.D.; Powell, M.R.; Daly, D.S.; Engel, D.W.

    1997-01-01

    The Retrieval Process Development and Enhancement (KPD ampersand E) program has developed and tested an end effector to support the waste retrieval mission at the Idaho National Engineering and Environmental Laboratory (INEEL). The end effector was developed specifically to remove a sticky waste material from the cooling coils in the High Level Liquid Waste (HLLW) tank, and to vacuum up a sediment layer that has settled beneath the cooling coils. An extensive testing program was conducted in the hydraulic test bed (HTB) at the Pacific Northwest National Laboratory (PNNL) to evaluate the performance of the end effector under simulated in-tank conditions. A mock up of the cooling coils was installed in the test bed tank, and simulated waste materials were included to represent the sticky waste on the tubes and the particulate waste settled beneath them. The testing program focused on assessing long-duration mining strategies for cleaning the cooling coils and removing the particulate waste forms. The report describes the results of the end effector testing program at PNNL. Section 2 describes the physical characteristics of the HLLW tanks, including the layout of the cooling coils, and it also describes what is known of the waste forms in the tanks. Section 3 describes the cleaning and retrieval strategy that was used in developing the end effector design. Section 4 describes the cooling coil mockup in the hydraulic test bed. Section 5 discusses the rationale used in selecting the simulants for the tarry waste and particulate waste forms. Section 6 describes the tests that were performed to evaluate cleaning of the cooling coils and retrieval of the particulate simulant. Section 7 summarizes the cleaning and retrieval tests, assesses the relative importance of cleaning the cooling coils and retrieving the particulate waste, and suggests modifications that would simplify the end effector design

  13. Atmospheric emissions from power plant cooling towers

    International Nuclear Information System (INIS)

    Micheletti, W.

    2006-01-01

    Power plant recirculated cooling systems (cooling towers) are not typically thought of as potential sources of air pollution. However, atmospheric emissions can be important considerations that may influence cooling tower design and operation. This paper discusses relevant U.S. environmental regulations for potential atmospheric pollutants from power plant cooling towers, and various methods for estimating and controlling these emissions. (orig.)

  14. Power semiconductor device adaptive cooling assembly

    NARCIS (Netherlands)

    2011-01-01

    The invention relates to a power semiconductor device (100) cooling assembly for cooling a power semiconductor device (100), wherein the assembly comprises an actively cooled heat sink (102) and a controller (208; 300), wherein the controller (208; 300) is adapted for adjusting the cooling

  15. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  16. Specific cooling capacity of liquid nitrogen

    Science.gov (United States)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  17. 14 CFR 29.908 - Cooling fans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling fans. 29.908 Section 29.908... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.908 Cooling fans. For cooling fans that are a part of a powerplant installation the following apply: (a) Category A. For cooling fans installed...

  18. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics

    International Nuclear Information System (INIS)

    Lei, Jiawei; Kumarasamy, Karthikeyan; Zingre, Kishor T.; Yang, Jinglei; Wan, Man Pun; Yang, En-Hua

    2017-01-01

    Highlights: • Cool colored coating and PCM are two complementary passive cooling strategies. • A PCM cool colored coating system is developed. • The coating reduces cooling energy by 8.5% and is effective yearly in tropical Singapore. - Abstract: Cool colored coating and phase change materials (PCM) are two passive cooling strategies often used separately in many studies and applications. This paper investigated the integration of cool colored coating and PCM for building cooling through experimental and numerical studies. Results showed that cool colored coating and PCM are two complementary passive cooling strategies that could be used concurrently in tropical climate where cool colored coating in the form of paint serves as the “first protection” to reflect solar radiation and a thin layer of PCM forms the “second protection” to absorb the conductive heat that cannot be handled by cool paint. Unlike other climate zones where PCM is only seasonally effective and cool paint is only beneficial during summer, the application of the proposed PCM cool colored coating in building envelope could be effective throughout the entire year with a monthly cooling energy saving ranging from 5 to 12% due to the uniform climatic condition all year round in tropical Singapore.

  19. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  20. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  1. Newton's law of cooling revisited

    International Nuclear Information System (INIS)

    Vollmer, M

    2009-01-01

    The cooling of objects is often described by a law, attributed to Newton, which states that the temperature difference of a cooling body with respect to the surroundings decreases exponentially with time. Such behaviour has been observed for many laboratory experiments, which led to a wide acceptance of this approach. However, the heat transfer from any object to its surrounding is not only due to conduction and convection but also due to radiation. The latter does not vary linearly with temperature difference, which leads to deviations from Newton's law. This paper presents a theoretical analysis of the cooling of objects with a small Biot number. It is shown that Newton's law of cooling, i.e. simple exponential behaviour, is mostly valid if temperature differences are below a certain threshold which depends on the experimental conditions. For any larger temperature differences appreciable deviations occur which need the complete nonlinear treatment. This is demonstrated by results of some laboratory experiments which use IR imaging to measure surface temperatures of solid cooling objects with temperature differences of up to 300 K.

  2. TPX heating and cooling system

    International Nuclear Information System (INIS)

    Kungl, D.J.; Knutson, D.S.; Costello, J.; Stoenescu, S.; Yemin, L.

    1995-01-01

    TPX, while having primarily super-conducting coils that do not require water cooling, still has very significant water cooling requirements for the plasma heating systems, vacuum vessel, plasma facing components, diagnostics, and ancillary equipment. This is accentuated by the 1000-second pulse requirement. Two major design changes, which have significantly affected the TPX Heating and Cooling System, have been made since the conceptual design review in March of 1993. This paper will discuss these changes and review the current status of the conceptual design. The first change involves replacing the vacuum vessel neutron shielding configuration of lead/glass composite tile by a much simpler and more reliable borated water shield. The second change reduces the operating temperature of the vacuum vessel from 150 C to ≥50 C. With this temperature reduction, all in-vessel components and the vessel will be supplied by coolant at a common ≥50 C inlet temperature. In all, six different heating and cooling supply requirements (temperature, pressure, water quality) for the various TPX components must be met. This paper will detail these requirements and provide an overview of the Heating and Cooling System design while focusing on the ramifications of the TPX changes described above

  3. Helium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Longton, P.B.; Cowen, H.C.

    1975-01-01

    In helium cooled HTR's there is a by-pass circuit for cleaning purposes in addition to the main cooling circuit. This is to remove such impurities as hydrogen, methane, carbon monoxide and water from the coolant. In this system, part of the coolant successively flows first through an oxidation bed of copper oxide and an absorption bed of silica gel, then through activated charcoal or a molecular sieve. The hydrogen and carbon monoxide impurities are absorbed and the dry gas is returned to the main cooling circuit. To lower the hydrogen/water ratio without increasing the hydrogen fraction in the main cooling circuit, some of the hydrogen fraction converted into water is added to the cooling circuit. This is done, inter alia, by bypassing the water produced in the oxidation bed before it enters the absorption bed. The rest of the by-pass circuit, however, also includes an absorption bed with a molecular sieve. This absorbs the oxidized carbon monoxide fraction. In this way, such side effects as the formation of additional methane, carburization of the materials of the by-pass circuit or loss of graphite are avoided. (DG/RF) [de

  4. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor

    2014-01-01

    . To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air......We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  5. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  6. To cool, but not too cool: that is the question--immersion cooling for hyperthermia.

    Science.gov (United States)

    Taylor, Nigel A S; Caldwell, Joanne N; Van den Heuvel, Anne M J; Patterson, Mark J

    2008-11-01

    Patient cooling time can impact upon the prognosis of heat illness. Although ice-cold-water immersion will rapidly extract heat, access to ice or cold water may be limited in hot climates. Indeed, some have concerns regarding the sudden cold-water immersion of hyperthermic individuals, whereas others believe that cutaneous vasoconstriction may reduce convective heat transfer from the core. It was hypothesized that warmer immersion temperatures, which induce less powerful vasoconstriction, may still facilitate rapid cooling in hyperthermic individuals. Eight males participated in three trials and were heated to an esophageal temperature of 39.5 degrees C by exercising in the heat (36 degrees C, 50% relative humidity) while wearing a water-perfusion garment (40 degrees C). Subjects were cooled using each of the following methods: air (20-22 degrees C), cold-water immersion (14 degrees C), and temperate-water immersion (26 degrees C). The time to reach an esophageal temperature of 37.5 degrees C averaged 22.81 min (air), 2.16 min (cold), and 2.91 min (temperate). Whereas each of the between-trial comparisons was statistically significant (P < 0.05), cooling in temperate water took only marginally longer than that in cold water, and one cannot imagine that the 45-s cooling time difference would have any meaningful physiological or clinical implications. It is assumed that this rapid heat loss was due to a less powerful peripheral vasoconstrictor response, with central heat being more rapidly transported to the skin surface for dissipation. Although the core-to-water thermal gradient was much smaller with temperate-water cooling, greater skin and deeper tissue blood flows would support a superior convective heat delivery. Thus, a sustained physiological mechanism (blood flow) appears to have countered a less powerful thermal gradient, resulting in clinically insignificant differences in heat extraction between the cold and temperate cooling trials.

  7. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  8. Cooled Beam Diagnostics on LEIR

    CERN Document Server

    Tranquille, G; Carli, C; Chanel, M; Prieto, V; Sautier, R; Tan, J

    2008-01-01

    Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the LINAC3 are transformed into short highbrightness bunches using multi-turn injection, cooling and accumulation in the Low Energy Ion Ring, LEIR [1]. The cooling process must therefore be continuously monitored in order to guarantee that the lead ions have the required characteristics in terms of beam size and momentum spread. In LEIR a number of systems have been developed to perform these measurements. These include Schottky diagnostics, ionisation profile monitors and scrapers. Along with their associated acquisition and analysis software packages these instruments have proved to be invaluable for the optimisation of the electron cooler.

  9. Assessment of cooling tower impact

    International Nuclear Information System (INIS)

    1986-01-01

    This guideline describes the state of the art of the meteorological impact of wet cooling towers that are about 80 m to 170 m high, and have a waste heat power in the range of 1000 MW and 2500 MW. The physical processes occurring in the lowest layer of the atmosphere and their impact in the dispersion of cooling tower emissions are represented. On the basis of these facts, the impact on weather or climate in the vicinity of a high wet cooling tower is estimated. Thereby the results of the latest investigations (observations, measurements, and modeling) on the different locations of plants as well as their different power and construction types are taken into consideration. (orig.) [de

  10. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  11. Emergency cooling device for reactors

    International Nuclear Information System (INIS)

    Inoue, Hisamichi; Naito, Masanori; Sato, Chikara; Chino, Koichi.

    1975-01-01

    Object: To pour high pressure cooling water into a core, when coolant is lost in a boiling water reactor, thereby restraining the rise of fuel cladding. Structure: A control rod guiding pipe, which is moved up and down by a control rod, is mounted on the bottom of a pressure vessel, the control rod guiding pipe being communicated with a high pressure cooling water tank positioned externally of the pressure vessel, and a differential in pressure between the pressure vessel and the aforesaid tank is detected when trouble of coolant loss occurs, and the high pressure cooling water within the tank is poured into the core through the control rod guiding pipe to restrain the rise of fuel cladding. (Kamimura, M.)

  12. Emergency cooling apparatus for reactor

    International Nuclear Information System (INIS)

    Sakaguchi, S.

    1975-01-01

    A nuclear reactor is described which has the core surrounded by coolant and an inert cover gas all sealed within a container, an emergency cooling apparatus employing a detector that will detect cover gas or coolant, particularly liquid sodium, leaking from the container of the reactor, to release a heat exchange material that is inert to the coolant, which heat exchange material is cooled during operation of the reactor. The heat exchange material may be liquid niitrogen or a combination of spheres and liquid nitrogen, for example, and is introduced so as to contact the coolant that has leaked from the container quickly so as to rapidly cool the coolant to prevent or extinguish combustion. (Official Gazette)

  13. Cooling many particles at once

    International Nuclear Information System (INIS)

    Vitiello, G.; Knight, P.; Beige, A.

    2005-01-01

    Full text: We propose a mechanism for the collective cooling of a large number N of trapped particles to very low temperatures by applying red-detuned laser fields and coupling them to the quantized field inside an optical resonator. The dynamics is described by what appear to be rate equations but where some of the major quantities are coherences and not populations. It is shown that the cooperative behaviour of the system provides cooling rates of the same order of magnitude as the cavity decay rate. This constitutes a significant speed-up compared to other cooling mechanisms since this rate can, in principle, be as large as the square root of N times the single-particle cavity or laser coupling constants. (author)

  14. Using the Leaderless Group Discussion Technique for the Selection of Residence Hall Counselors

    Science.gov (United States)

    Banta, Trudy W.; McCormick, Jane E.

    1969-01-01

    Describes successful effort to involve head residents in selection responsibilities. Discusses use of Record of Previous Leadership Experience, behavior ratings adapted from Interview and LGD Rating Scale (T. W. Banta) recommendation from head resident as selection criteria. (CJ)

  15. New Technique for Cryogenically Cooling Small Test Articles

    Science.gov (United States)

    Rodriquez, Karen M.; Henderson, Donald J.

    2011-01-01

    Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud

  16. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  17. Cooling for newborns with hypoxic ischaemic encephalopathy.

    Science.gov (United States)

    Jacobs, Susan E; Berg, Marie; Hunt, Rod; Tarnow-Mordi, William O; Inder, Terrie E; Davis, Peter G

    2013-01-31

    Newborn animal studies and pilot studies in humans suggest that mild hypothermia following peripartum hypoxia-ischaemia in newborn infants may reduce neurological sequelae without adverse effects. To determine the effect of therapeutic hypothermia in encephalopathic asphyxiated newborn infants on mortality, long-term neurodevelopmental disability and clinically important side effects. We used the standard search strategy of the Cochrane Neonatal Review Group as outlined in The Cochrane Library (Issue 2, 2007). Randomised controlled trials evaluating therapeutic hypothermia in term and late preterm newborns with hypoxic ischaemic encephalopathy were identified by searching the Oxford Database of Perinatal Trials, the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, 2007, Issue 2), MEDLINE (1966 to June 2007), previous reviews including cross-references, abstracts, conferences, symposia proceedings, expert informants and journal handsearching. We updated this search in May 2012. We included randomised controlled trials comparing the use of therapeutic hypothermia with standard care in encephalopathic term or late preterm infants with evidence of peripartum asphyxia and without recognisable major congenital anomalies. The primary outcome measure was death or long-term major neurodevelopmental disability. Other outcomes included adverse effects of cooling and 'early' indicators of neurodevelopmental outcome. Four review authors independently selected, assessed the quality of and extracted data from the included studies. Study authors were contacted for further information. Meta-analyses were performed using risk ratios (RR) and risk differences (RD) for dichotomous data, and weighted mean difference for continuous data with 95% confidence intervals (CI). We included 11 randomised controlled trials in this updated review, comprising 1505 term and late preterm infants with moderate/severe encephalopathy and evidence of intrapartum asphyxia

  18. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  19. Beam Dynamics With Electron Cooling

    CERN Document Server

    Uesugi, T; Noda, K; Shibuya, S; Syresin, E M

    2004-01-01

    Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.

  20. Magnetization effects in electron cooling

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Skrinskii, A.N.

    A study is made of cooling in an electron beam which is accompanied by a strong magnetic field and a longitudinal temperature low compared to the transverse temperature. It is shown that the combination of two factors--magnetization and low longitudinal temperature of electrons--can sharply increase the cooling rate of a heavy-particle beam when the velocity spread is smaller than the transverse spread of electron velocities and reduce its temperature to the longitudinal temperature of the electrons, which is lower than that of the cathode by several orders of magnitude