WorldWideScience

Sample records for selective firing system

  1. 46 CFR 108.404 - Selection of fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...

  2. Ventilation system in fire modelization

    International Nuclear Information System (INIS)

    Cordero Garcia, S.

    2012-01-01

    There is a model of fire in an enclosure formed by two rooms. In one of them, it will cause the fire and check how the system of ventilation in different configurations responds. In addition, the behavior of selected targets, which will be a configuration of cables similar to those found in nuclear power stations will be analyzed.

  3. Advanced fire information system

    CSIR Research Space (South Africa)

    Frost, PE

    2007-01-01

    Full Text Available The South African Advanced Fire Information System (AFIS) is the first near real-time satellite-based fire monitoring system in Africa. It was originally developed for, and funded by, the electrical power utility Eskom, to reduce the impact of wild...

  4. Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems

    Directory of Open Access Journals (Sweden)

    T. Erden

    2010-10-01

    Full Text Available This study combines AHP and GIS to provide decision makers with a model to ensure optimal site location(s for fire stations selected. The roles of AHP and GIS in determining optimal locations are explained, criteria for site selection are outlined, and case study results for finding the optimal fire station locations in Istanbul, Turkey are included. The city of Istanbul has about 13 million residents and is the largest and most populated city in Turkey. The rapid and constant growth of Istanbul has resulted in the increased number of fire related cases. Fire incidents tend to increase year by year in parallel with city expansion, population and hazardous material facilities. Istanbul has seen a rise in reported fire incidents from 12 769 in 1994 to 30 089 in 2009 according to the interim report of Istanbul Metropolitan Municipality Department of Fire Brigade. The average response time was approximately 7 min 3 s in 2009. The goal of this study is to propose optimal sites for new fire station creation to allow the Fire Brigade in Istanbul to reduce the average response time to 5 min or less. After determining the necessity of suggesting additional fire stations, the following steps are taken into account: six criteria are considered in this analysis. They are: High Population Density (HPD; Proximity to Main Roads (PMR; Distance from Existing Fire Stations (DEF; Distance from Hazardous Material Facilities (DHM; Wooden Building Density (WBD; and Distance from the Areas Subjected to Earthquake Risk (DER. DHM criterion, with the weight of 40%, is the most important criterion in this analysis. The remaining criteria have a weight range from 9% to 16%. Moreover, the following steps are performed: representation of criterion map layers in GIS environment; classification of raster datasets; calculating the result raster map (suitability map for potential fire stations; and offering a model that supports decision makers in selecting fire station sites

  5. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  6. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  7. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  8. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  9. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  10. The Selection of a Marine Artillery Battery Fire Direction Computer System.

    Science.gov (United States)

    1982-12-01

    twenty special fanc -tion keys. Six of the special function keys arc- currently spares and will be programmed -o support the P31 software aiditions...than the size and weight of --h: system. Battery power frees the unit from relying on gene =- a4*or power in fast moving situations. Gererators car

  11. Electronic firing systems and methods for firing a device

    Science.gov (United States)

    Frickey, Steven J [Boise, ID; Svoboda, John M [Idaho Falls, ID

    2012-04-24

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  12. Standpipe systems for fire protection

    CERN Document Server

    Isman, Kenneth E

    2017-01-01

    This important new manual goes beyond the published NFPA standards on installation of standpipe systems to include the rules in the International Building Code, municipal fire codes, the National Fire Code of Canada, and information on inspection, testing, and maintenance of standpipe systems. Also covered are the interactions between standpipe and sprinkler systems, since these important fire protection systems are so frequently installed together. Illustrated with design examples and practical applications to reinforce the learning experience, this is the go-to reference for engineers, architects, design technicians, building inspectors, fire inspectors, and anyone that inspects, tests or maintains fire protection systems. Fire marshals and plan review authorities that have the responsibility for reviewing and accepting plans and hydraulic calculations for standpipe systems are also an important audience, as are firefighters who actually use standpipe systems. As a member of the committees responsible for s...

  13. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  14. Fire protection in ventilation systems and in case of fire operating ventilation systems

    International Nuclear Information System (INIS)

    Zitzelsberger, J.

    1983-01-01

    The fire risks in ventilation systems are discussed. It follows a survey of regulations on fire prevention and fire protection in ventilation systems and smoke and heat exhaust systems applicable to nuclear installations in the Federal Republic of Germany. Fire protection concepts for normal systems and for systems operating also in case of fire will be given. Several structural elements for fire protection in those systems will be illustrated with regard to recent research findings

  15. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  16. Impact of selective catalytic reduction systems on the operation of coal and oil fired boilers and downstream equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The history of the development of selective catalytic reduction (SCR) technology has clearly demonstrated that whenever the technology arrives in a new region of the world new challenges are met. This paper discusses some of these historical challenges and their particular solutions in some detail. The paper shows that the design of successful SCR systems is extremely site-specific, but that the technology continues to evolve to meet these continuously changing demands. Most recently the increased power of CFD technology has enabled SCR to meet the more stringent North American emissions criteria through optimal fluid dynamic design. 4 figs.

  17. Arming and firing system for DISTANT RUNNER

    International Nuclear Information System (INIS)

    Skenandore, L.H.; Johnson, J.P.

    1982-01-01

    Sandia A and F systems Division 1132 provided arming and firing support for the DISTANT RUNNER Test Program at White Sands Missile Range. This report describes the field support and the firing system that was used

  18. Biological and geophysical feedbacks with fire in the Earth system

    Science.gov (United States)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  19. Water Supply Systems For Aircraft Fire And Rescue Protection

    Science.gov (United States)

    1995-01-01

    This Advisory Circular (AC) provides guidance for the selection : of a water source and standards for the design of a distribution system to : support aircraft rescue and fire fighting (ARFF) service operations on : airports.

  20. National Fire Incident Reporting System (NFIRS)

    Data.gov (United States)

    Department of Homeland Security — The National Fire Incident Reporting System (NFIRS) is a reporting standard that fire departments use to uniformly report on the full range of their activities, from...

  1. Fire social science research–selected highlights.

    Science.gov (United States)

    Armando González-Cabán; Richard W. Haynes; Sarah McCaffrey; Evan Mercer; Alan Watson

    2007-01-01

    Forest Service Research and Development has a long-standing component of social fire science that since 2000 has expanded significantly. Much of this new work focuses on research that will increase understanding of the social and economic issues connected with wildland fire and fuels management. This information can enhance the ability of agencies and communities to...

  2. Aging assessment for active fire protection systems

    International Nuclear Information System (INIS)

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further

  3. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  4. Fire auto alarm system intelligent trend

    International Nuclear Information System (INIS)

    Du Chengbao

    1997-01-01

    The author gives the course and trend of the fire alarm system going to more computerized and more intelligent. It is described that only the system applied artificial intelligent and confusion control is the true intelligent fire alarm system. The author gives the detailed analysis on the signal treatment of artificial intelligent applied to analogue fire alarm system as well as the alarm system controlled by confusion technology and artificial nervous net

  5. Southern African advanced fire information system

    CSIR Research Space (South Africa)

    McFerren, G

    2009-05-01

    Full Text Available of ecosystems, yet fires threaten natural systems, infrastructure and life. Spatio-temporal awareness of fire likelihood, occurrence and behaviour is key to appropriate prevention, response and management. This paper focuses on wildfire risk to infrastructure... to pinpoint the location and possibly information on fire temperature and size. Previously, Eskom line managers depended on local residents for necessary information about fire occurrences and locations. Eskom and CSIR, a South African research institute...

  6. Smouldering Fires in the Earth System

    Science.gov (United States)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  7. PG BN 1600 sodium fire protection system

    International Nuclear Information System (INIS)

    Bar, J.; Urbancik, L.

    1978-12-01

    A design was developed of a fire protection system for steam generator of a 1600 MW sodium cooled fast reactor (BN-1600). Chemical reactions are described of liquid sodium with atmospheric components and solid materials coming into contact with sodium in its release from the steam generator, and in safeguarding protection against sodium fires. The requirements for the purity of nitrogen as an atmosphere inert to liquid sodium are given. Characteristics and basic parameters are shown of level and spray fires, elementary terms are explained concerning the properties of aerosols formed during fires, the methods and means of release signalling and fire alarm are described as are fire precautions using fire-fighting equipment, modifying the support tank and the cell bottom and building sewage pits. The design of the system comprises an alarm system for liquid sodium using point and line electric contact sensors and flame photometer based aerosol sensors as well as a fire-fighting system based on the system of channelling liquid sodium into emergency discharge tanks filled with an inert gas, a set of fire extinguishers and other fire fighting material, and measures for the elimination of sodium fire consequences. (J.B.)

  8. Users Guide for Fire Image Analysis System - Version 5.0: A Tool for Measuring Fire Behavior Characteristics

    Science.gov (United States)

    Carl W. Adkins

    1995-01-01

    The Fire Image Analysis System is a tool for quantifying flame geometry and relative position at selected points along a spreading line fire. At present, the system requires uniform terrain (constant slope). The system has been used in field and laboratory studies for determining flame length, depth, cross sectional area, and rate of spread.

  9. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...

  10. Fire in the Earth System

    NARCIS (Netherlands)

    Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D'Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; Kull, C.A.; Marston, J.B.; Moritz, M.A.; Prentice, I.C.; Roos, C.I.; Scott, A.C.; Swetnam, T.W.; van der Werf, G.R.; Pyne, S.J.

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always

  11. Smouldering Subsurface Fires in the Earth System

    Science.gov (United States)

    Rein, Guillermo

    2010-05-01

    Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently

  12. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Science.gov (United States)

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  13. Gas fired advanced turbine system

    Science.gov (United States)

    Lecren, R. T.; White, D. J.

    The basic concept thus derived from the Ericsson cycle is an intercooled, recuperated, and reheated gas turbine. Theoretical performance analyses, however, showed that reheat at high turbine rotor inlet temperatures (TRIT) did not provide significant efficiency gains and that the 50 percent efficiency goal could be met without reheat. Based upon these findings, the engine concept adopted as a starting point for the gas-fired advanced turbine system is an intercooled, recuperated (ICR) gas turbine. It was found that, at inlet temperatures greater than 2450 F, the thermal efficiency could be maintained above 50%, provided that the turbine cooling flows could be reduced to 7% of the main air flow or lower. This dual and conflicting requirement of increased temperatures and reduced cooling will probably force the abandonment of traditional air cooled turbine parts. Thus, the use of either ceramic materials or non-air cooling fluids has to be considered for the turbine nozzle guide vanes and turbine blades. The use of ceramic components for the proposed engine system is generally preferred because of the potential growth to higher temperatures that is available with such materials.

  14. PLCs for nuclear fire control system

    International Nuclear Information System (INIS)

    McArthur, Neil

    1990-01-01

    The new Thermal Oxide Reprocessing Plant (THORP) at British Nuclear Fuel's Sellafield site is a very large and complex system. This article describes the computerized control system used for fire damage control in the two main production areas, the head end and the chemical separation segments. Over one thousand fire dampers are controlled by an interlinking system of small computers linked to a main system in the central control room. The choice of hardware and software is also described. (UK)

  15. Fire Behavior System for the Full Range of Fire Management Needs

    Science.gov (United States)

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  16. Fire extinguishing system in large underground garages

    Directory of Open Access Journals (Sweden)

    Ivan Antonov

    2017-04-01

    Full Text Available In the work is considered an acceptable constructive scheme from a practical point of view at fire extinguishing in underground garages. The garage space is divided into quadrants which covering, for example, 2 cars. In case of ignition on one of them, a sprinkler nozzle system is triggered by the effect of the vertical convective jet. A protective curtain preventing the spread of fire to adjacent vehicles is realized. The solution is based on an integrated method which allows the calculation from hydrodynamic point of view on extinguishing time of the fire extinguishing system.

  17. A fire danger rating system for Hawaii

    Science.gov (United States)

    Robert E. Burgan; Francis M. Fujioka; George H. Hirata

    1974-01-01

    Extremes in rainfall on the Hawaiian Islands make it difficult to judge forest fire danger conditions. The use of an automatic data collection and computer processing system helps to monitor the problem.

  18. 46 CFR 108.405 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and each smoke detection system on a unit must— (1) Be approved by the Commandant; and (2) Have a visual...

  19. 46 CFR 108.413 - Fusible element fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the system...

  20. Advanced Fire Information System - A real time fire information system for Africa

    Science.gov (United States)

    Frost, P. E.; Roy, D. P.

    2012-12-01

    The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports

  1. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  2. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  3. Remote sensing of vegetation fires and its contribution to a fire management information system

    Science.gov (United States)

    Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux

    2004-01-01

    In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...

  4. Technological Improvements for Digital Fire Control Systems

    Science.gov (United States)

    2017-09-30

    Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...accuracy and responsiveness to call for fire. These prototypes shall be more cost effective, sustainable , use a higher percentage of alternative...of the quad charts and provide DOTC with sufficient initiative information, the Quarterly Report must be supplemented with data described below

  5. Development of a Smart Residential Fire Protection System

    Directory of Open Access Journals (Sweden)

    Juhwan Oh

    2013-01-01

    Full Text Available Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual fire test suggests that the developed wireless system for the smart residential fire protection system is reliable in terms of sensors and their communication linkage.

  6. Fires in large scale ventilation systems

    International Nuclear Information System (INIS)

    Gregory, W.S.; Martin, R.A.; White, B.W.; Nichols, B.D.; Smith, P.R.; Leslie, I.H.; Fenton, D.L.; Gunaji, M.V.; Blythe, J.P.

    1991-01-01

    This paper summarizes the experience gained simulating fires in large scale ventilation systems patterned after ventilation systems found in nuclear fuel cycle facilities. The series of experiments discussed included: (1) combustion aerosol loading of 0.61x0.61 m HEPA filters with the combustion products of two organic fuels, polystyrene and polymethylemethacrylate; (2) gas dynamic and heat transport through a large scale ventilation system consisting of a 0.61x0.61 m duct 90 m in length, with dampers, HEPA filters, blowers, etc.; (3) gas dynamic and simultaneous transport of heat and solid particulate (consisting of glass beads with a mean aerodynamic diameter of 10μ) through the large scale ventilation system; and (4) the transport of heat and soot, generated by kerosene pool fires, through the large scale ventilation system. The FIRAC computer code, designed to predict fire-induced transients in nuclear fuel cycle facility ventilation systems, was used to predict the results of experiments (2) through (4). In general, the results of the predictions were satisfactory. The code predictions for the gas dynamics, heat transport, and particulate transport and deposition were within 10% of the experimentally measured values. However, the code was less successful in predicting the amount of soot generation from kerosene pool fires, probably due to the fire module of the code being a one-dimensional zone model. The experiments revealed a complicated three-dimensional combustion pattern within the fire room of the ventilation system. Further refinement of the fire module within FIRAC is needed. (orig.)

  7. The vulcain N expert fire system

    International Nuclear Information System (INIS)

    Roche, A.

    1989-03-01

    The Institute for Nuclear Safety and Protection (IPSN) has begun work on an expert system to aid in the diagnosis of fire hazards in nuclear installations. This system is called Vulcain N and is designed as a support tool for the analyses carried out by the IPSN. Vulcain N, is based on the Vulcain expert system already developed by Bertin for its own needs and incorporates the specific rules and know-how of the IPSN experts. The development of Vulcain N began in October 1986 with the drawing up of the technical specifications, and should be completed by the end of 1988. Vulcain N brings together knowledge from a number of different domains: the locations of the combustible materials, the thermal characteristics of the combustible materials and of the walls of the room, the ventilation conditions and, finally, knowledge of fire experts concerning the development of fire. The latter covers four levels of expert knowledge: standards and their associated calculations, the simplified physics of the fire enabling more precise values to be obtained for the figures given by the standards, the rules and knowledge which enables a certain number of deductions to be made concerning the development of the fire, and a numerical simulation code which can be used to monitor the variation of certain characteristic parameters with time. For a given fire out-break scenario, Vulcain N performs diagnosis of different aspects: development of fire, effect of ventilation, emergency action possibilities, propagation hazards, etc. Owing to its flexibility, it can be used in the analysis of fire hazards to simulate a number of possible scenarios and to very rapidly deduce the essential, predominant factors. It will also be used to assist in drafting emergency procedures for application in facilities with nuclear hazards

  8. Development of a Smart Residential Fire Protection System

    OpenAIRE

    Juhwan Oh; Zhongwei Jiang; Henry Panganiban

    2013-01-01

    Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual...

  9. Impacts of fire, fire-fighting chemicals and post-fire stabilization techniques on the soil-plant system

    OpenAIRE

    Fernández Fernández, María

    2017-01-01

    Forest fires, as well as fire-fighting chemicals, greatly affect the soil-plant system causing vegetation loss, alterations of soil properties and nutrient losses through volatilization, leaching and erosion. Soil recovery after fires depends on the regeneration of the vegetation cover, which protects the soil and prevents erosion. Fire-fighting chemicals contain compounds potentially toxic for plants and soil organisms, and thus their use might hamper the regeneration of burnt ecosystems. In...

  10. FOCUS: a fire management planning system -- final report

    Science.gov (United States)

    Frederick W. Bratten; James B. Davis; George T. Flatman; Jerold W. Keith; Stanley R. Rapp; Theodore G. Storey

    1981-01-01

    FOCUS (Fire Operational Characteristics Using Simulation) is a computer simulation model for evaluating alternative fire management plans. This final report provides a broad overview of the FOCUS system, describes two major modules-fire suppression and cost, explains the role in the system of gaming large fires, and outlines the support programs and ways of...

  11. Fire Effects, Education, and Expert Systems

    Science.gov (United States)

    Robert E. Martin

    1987-01-01

    Predicting the effects of fires in the year 2000 and beyond will be enhanced by the use of expert systems. Although our predictions may have broad confidence limits, expert systems should help us to improve the predictions and to focus on the areas where improved knowledge is most needed. The knowledge of experts can be incorporated into previously existing knowledge...

  12. Fire protection countermeasures for containment ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Bergman, W.; Ford, H.W.; Lipska, A.E.

    1980-01-01

    The goal of this project is to find countermeasures to protect HEPA filters in exit ventilation ducts from the heat and smoke generated by fire. Several methods for partially mitigating the smoke exposure to the HEPA filters were identified through testing and analysis. These independently involve controlling the fuel, controlling the fire, and intercepting the smoke aerosol prior to its sorption on the HEPA filter. Exit duct treatment of aerosols is not unusual in industrial applications and involves the use of scrubbers, prefilters, and inertial impaction, depending on the size, distribution, and concentration of the subject aerosol. However, when these unmodified techniques were applied to smoke aerosols from fires on materials, common to experimental laboratories of LLNL, it was found they offered minimal protection to the HEPA filters. Ultimately, a continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. This technique is capable of protecting HEPA filters over the total duration of the test fires. The reason for success involved the modificaton of the prefiltration media. Commercially available filter media has a particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, we laminated rolling filter media with the desired properties. It is not true that the use of rolling prefilters solely to protect HEPA filters from fire-generated smoke aerosols is cost effective in every type of containment system, especially if standard fire-protection systems are available in the space. But in areas of high fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified

  13. Intelligent buildings, automatic fire alarm and fire-protection control system

    International Nuclear Information System (INIS)

    Tian Deyuan

    1999-01-01

    The author describes in brief the intelligent buildings, and the automatic fire alarm and fire-protection control system. On the basis of the four-bus, three-bus and two-bus, a new transfer technique was developed

  14. Live Fire Evaluation of the Expeditionary Fire Suppression System (EFSS); Phase I

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2004-01-01

    .... The system uses AFFF-based compressed air foam and PKP dry chemical. Phase I evaluated the effectiveness of the modified-commercially available EFSS on live fires on static pool and running fuel fires...

  15. Systematic selection method for probabilistic fire analyses. Final report; Systematisches Auswahlverfahren fuer probabilistische Brandanalysen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Tuerschmann, M.; Linden, J. von; Roewekamp, M.

    2005-07-01

    A PSA for the plant internal fire hazard is carried out in several steps. First step is a selection process ('screening'). The screening can be performed qualitatively or quantitatively or by means of a combined qualitative and quantitative approach as developed by GRS in the frame of a research project. During the revision of the PSA guidance documents it turned out that the GRS screening approach needs further automation and developments, in particular regarding the systems specific part to reduce the effects of expert decisions as far as possible. Therefore, the combined approach has been further improved. The improved screening approach as outlined in this report provides estimated values for damage frequencies. By this means, it is possible to identify relevant fire scenarios and to apply the cut-off criteria defined in the PSA for fire analyses. The approach corresponds as far as possible to the existing PSA models. The event and fault trees of these models describe in detail the correlation between component failures and the occurrence of damage states. The screening process combines fire and compartment specific information for estimating fire induced component failures with the PSA models for determining damage frequencies. The screening process is carried out in three steps starting with an as far as possible automated fire specific screening based on a comprehensive plant specific information collection. In a second step, qualitative PSA specific information is considered. The rooms and/or plant areas not screened out and ranked by fire specific ranking criteria are subject to a quantitative systems specific selection. (orig.)

  16. Fire protection countermeasures for containment ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

    1980-01-01

    The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified

  17. Decision Support System for Blockage Management in Fire Service

    Directory of Open Access Journals (Sweden)

    Krasuski Adam

    2014-08-01

    Full Text Available In this article we present the foundations of a decision support system for blockage management in Fire Service. Blockage refers to the situation when all fire units are out and a new incident occurs. The approach is based on two phases: off-line data preparation and online blockage estimation. The off-line phase consists of methods from data mining and natural language processing and results in semantically coherent information granules. The online phase is about building the probabilistic models that estimate the block-age probability based on these granules. Finally, the selected classifier judges whether a blockage can occur and whether the resources from neighbour fire stations should be asked for assistance.

  18. An Expert System for Designing Fire Prescriptions

    Science.gov (United States)

    Elizabeth Reinhardt

    1987-01-01

    Managers use prescribed fire to accomplish a variety of resource objectives. The knowledge needed to design successful prescriptions is both quantitative and qualitative. Some of it is available through publications and computer programs, but much of the knowledge of expert practitioners has never been collected or published. An expert system being developed at the,...

  19. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  20. The Fire Effects Information System - serving managers since before the Yellowstone fires

    Science.gov (United States)

    Jane Kapler Smith; Janet L. Fryer; Kristin Zouhar

    2009-01-01

    This presentation will describe the current status of the Fire Effects Information System (FEIS) and explore lessons learned from this 23-yearold project about the application of science to fire management issues. FEIS contains literature reviews covering biology and fire ecology for approximately 1,100 species in North America: plants and animals, native and nonnative...

  1. Environmental and economical aspects of selected energy system

    International Nuclear Information System (INIS)

    1991-11-01

    An analysis of environmental and economical aspects of selected renewable energy systems is presented. The aim was to provide a basis for estimating the competitive status in each case, to review the consequences of technological development, to identify attractive markets and to evaluate the effects of various economic conditions. Calculation methods are described and individual solar heating systems are compared to oil-fired boilers, boilers fired with solid fuels are compared to oil-fired boilers and straw-fired cogeneration plants are compared with coal, fuel-oil and straw-fired district heating plants. Results are presented in the form of tables and graphs. (AB)

  2. Seismic design criteria of fire protection systems for DOE facilities

    International Nuclear Information System (INIS)

    Hardy, G.; Cushing, R.; Driesen, G.

    1991-01-01

    Fire protection systems are critical to the safety of personnel and to the protection of inventory during any kind of emergency situation that involves a fire. The importance of these fire protection systems is hightened for DOE facilities which often house nuclear, chemical or scientific processes. Current research into the topic of open-quotes fires following earthquakesclose quotes has demonstrated that the risks of a fire starting as a result of a major earthquake can be significant. Thus, fire protection systems need to be designed to withstand the anticipated seismic event for the site in question

  3. New supply for canyon fire foam system

    International Nuclear Information System (INIS)

    Gainey, T.

    1995-01-01

    The raw water supply for the B-Plant Canyon fire foam system is being replaced. The 4 inche water supply line to the foam system is being rerouted from the 6 inches raw water line in the Pipe Gallery to the 10 inches raw water main in the Operating Gallery. This document states the acceptance criteria for the flushing and testing to be performed by the contractor

  4. Study on aging management of fire protection system in nuclear power plant

    International Nuclear Information System (INIS)

    Fang Huasong; Du Yu; Li Jianwen; Shi Haining; Tu Fengsheng

    2010-01-01

    Fire prevention, fire fighting and fire automatic alarms are three aspects which be included in fire protection system in nuclear power plants. The fire protection system can protect personnel, equipment etc in the fire, so their performance will have a direct influence on the safe operation in nuclear power plants. The disabled accidents caused by aging have happened continuously with the extension of time in the fire protection system, which is the major security risk during the running time in nuclear power plants. In view of the importance of fire protection system and the severity of aging problems, the aging are highly valued by the plant operators and related organizations. Though the feedback of operating experience in nuclear power plant, the impact of the fire-fighting equipment aging on system performance and reliability be assessed, the aging sensitive equipment be selected to carry out the aging analysis and to guide the management and maintenance to guarantee the healthy operation in life time of fire protection system in nuclear power plant. (authors)

  5. Prototype firing range air cleaning system

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1984-07-01

    PNL's study proceeded by examining the characteristics of the aerosol challenge to the filtration system and the operating experience at similar firing ranges. Candidate filtration systems were proposed; including baghouses, cartridge houses, electrostatic precipitators, cleanable high efficiency filters, rolling filters and cyclones--each followed by one or more of the existing filter banks. Methodology was developed to estimate the operating costs of the candidate systems. Costs addressed included the frequency (based on fractional efficiency and loading data) and cost of media replacement, capital investment, maintenance, waste disposal and electrical power consumption. The recommended system will be installed during calendar year 1984

  6. Fire Resistant Aircraft Hydraulic System.

    Science.gov (United States)

    1982-07-01

    Chemical Division "Fluorinert" FC-48 - Fluorinated Hydrocarbon "Fluorinert" FC-70 - Fluorinated Hydrocarbon Montedison S. p. A. "Fomblin" Z-04...forming substances such as varnish which could seize a spool valve or other small-clearance sliding surfaces. The test setup is pictorially described in...breakdown products such as solid particles, gels, and sludge’can plug system filters and even small fluid passages, nozzles, and orifices. Varnish -like

  7. Report on task I: fire protection system study

    International Nuclear Information System (INIS)

    Bernard, E.A.; Cano, G.L.

    1977-02-01

    This study (1) evaluates, on a comparative basis, the national and international regulatory and insurance standards that serve as guidance for fire protection within the nuclear power industry; (2) analyzes the recommendations contained in the major reports on the Browns Ferry Fire; (3) proposes quantitative safety goals and evaluation methods for Nuclear Power Plant Fire Protection Systems (NPPFPS); (4) identifies potential improvements that may be incorporated into NPPFPS; and (5) recommends a plan of action for continuation of the fire protections systems study

  8. Selective catalytic reduction (SCR) NOx control for small natural gas-fired prime movers

    International Nuclear Information System (INIS)

    Shareef, G.S.; Stone, D.K.; Ferry, K.R.; Johnson, K.L.; Locke, K.S.

    1992-01-01

    The application of selective catalytic reduction (SCR) to small natural gas-fired prime movers at cogeneration facilities and compressor stations could possibly increase due to regulatory forces to limit NO x from such sources. The natural gas industry is presently without a current database with which to evaluate the cost and operating characteristics of SCR under the conditions anticipated for small prime movers. This paper presents the results from a two-phase study undertaken to document SCR applications with emphasis on SCR system performance and costs. The database of small natural gas-fired prime mover SCR experience, focusing on prime mover characterization, SCR system performance, and SCR system costs will be described. Result from analysis of performance and cost data will be discussed, including analytical tools developed to project SCR system performance and costs

  9. The Calculation and Design of Fire suppression system in the proton accelerator research center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Cho, J. H.; Min, Y. S.; Mun, K. J.; Cho, J. S.; Nam, J. M.; Park, S. S.; Joo, H. G.

    2010-01-01

    The fire protection system is composed of various fire suppression systems and fire detection and alarm systems. The primary function of the fire protection system is to protect life and property from a fire through detecting fires quickly and suppressing those fires that occur. In this paper, we described the fire suppression system only. The fire suppression system capacity for fire hydrant, the water mist system, sprinkler system and clean agent system is calculated and designed in compliance with the applicable Korean Acts that are applicable to fire protection and the NFSC code

  10. Decision algorithms in fire detection systems

    Directory of Open Access Journals (Sweden)

    Ristić Jovan D.

    2011-01-01

    Full Text Available Analogue (and addressable fire detection systems enables a new quality in improving sensitivity to real fires and reducing susceptibility to nuisance alarm sources. Different decision algorithms types were developed with intention to improve sensitivity and reduce false alarm occurrence. At the beginning, it was free alarm level adjustment based on preset level. Majority of multi-criteria decision work was based on multi-sensor (multi-signature decision algorithms - using different type of sensors on the same location or, rather, using different aspects (level and rise of one sensor measured value. Our idea is to improve sensitivity and reduce false alarm occurrence by forming groups of sensors that work in similar conditions (same world side in the building, same or similar technology or working time. Original multi-criteria decision algorithms based on level, rise and difference of level and rise from group average are discussed in this paper.

  11. Terminology and biology of fire scars in selected central hardwoods

    Science.gov (United States)

    Kevin T. Smith; Elaine Kennedy Sutherland

    2001-01-01

    Dendrochronological analysis of fire scars requires tree survival of fire exposure. Trees survive fire exposure by: (1) avoidance of injury through constitutive protection and (2) induced defense. Induced defenses include (a) compartmentalization processes that resist the spread of injury and infection and (b) closure processes that restore the continuity of the...

  12. Radio frequency security system, method for a building facility or the like, and apparatus and methods for remotely monitoring the status of fire extinguishers

    Science.gov (United States)

    Runyon, Larry [Richland, WA; Gunter, Wayne M [Richland, WA; Gilbert, Ronald W [Gilroy, CA

    2006-07-25

    A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.

  13. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    International Nuclear Information System (INIS)

    1991-12-01

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement

  14. Development of the fire PSA methodology and the fire analysis computer code system

    International Nuclear Information System (INIS)

    Katsunori, Ogura; Tomomichi, Ito; Tsuyoshi, Uchida; Yusuke, Kasagawa

    2009-01-01

    Fire PSA methodology has been developed and was applied to NPPs in Japan for power operation and LPSD states. CDFs of preliminary fire PSA for power operation were the higher than that of internal events. Fire propagation analysis code system (CFAST/FDS Network) was being developed and verified thru OECD-PRISME Project. Extension of the scope for LPSD state is planned to figure out the risk level. In order to figure out the fire risk level precisely, the enhancement of the methodology is planned. Verification and validation of phenomenological fire propagation analysis code (CFAST/FDS Network) in the context of Fire PSA. Enhancement of the methodology such as an application of 'Electric Circuit Analysis' in NUREG/CR-6850 and related tests in order to quantify the hot-short effect precisely. Development of seismic-induced fire PSA method being integration of existing seismic PSA and fire PSA methods is ongoing. Fire PSA will be applied to review the validity of fire prevention and mitigation measures

  15. Cold Vacuum Drying facility fire protection system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings

  16. Factors Related to Communication of Forest Fire Prevention Messages, a Study of Selected Rural Communities.

    Science.gov (United States)

    Griessman, B. Eugene; Bertrand, Alvin L.

    Two rural Louisiana communities were selected to evaluate the effectiveness of certain types of communication in preventing man-caused forest fires. The communities were selected on the basis of differences in fire occurrence rates and other factors related to conservation. Questionnaires and personal interviews were utilized to determine views of…

  17. The role of the fire dampers in the event of fire in a nuclear facility. Selection criteria for devices

    International Nuclear Information System (INIS)

    Savornin, J.; Laborde, J.C.

    1989-10-01

    In nuclear facilities, where unacceptable quantities of radioactive aerosols could be spread in the event of a fire, the ventilation system must be designed so that an underpressure is maintained under such circumstances. This is the reason why the extracting ventilation of the room in which the fire has broken out has generally to be kept going as long as possible. This prevents smoke and radioactive aerosols from spreading to accessways and adjacent rooms. Consequently, the various devices of the ventilation network need to have high fire resistance. Fire dampers can be applied to exhaust air to delay the heat build-up of a major fire. Specialized qualification testing is required for these dampers. The criteria we have used as a basis for specifying the required qualities of installations are defined. The tests that have been performed, or are now in progress, are described. The results obtained so far are given. Devices and arrangements are suggested

  18. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  19. Towards Improved Airborne Fire Detection Systems Using Beetle Inspired Infrared Detection and Fire Searching Strategies

    Directory of Open Access Journals (Sweden)

    Herbert Bousack

    2015-06-01

    Full Text Available Every year forest fires cause severe financial losses in many countries of the world. Additionally, lives of humans as well as of countless animals are often lost. Due to global warming, the problem of wildfires is getting out of control; hence, the burning of thousands of hectares is obviously increasing. Most important, therefore, is the early detection of an emerging fire before its intensity becomes too high. More than ever, a need for early warning systems capable of detecting small fires from distances as large as possible exists. A look to nature shows that pyrophilous “fire beetles” of the genus Melanophila can be regarded as natural airborne fire detection systems because their larvae can only develop in the wood of fire-killed trees. There is evidence that Melanophila beetles can detect large fires from distances of more than 100 km by visual and infrared cues. In a biomimetic approach, a concept has been developed to use the surveying strategy of the “fire beetles” for the reliable detection of a smoke plume of a fire from large distances by means of a basal infrared emission zone. Future infrared sensors necessary for this ability are also inspired by the natural infrared receptors of Melanophila beetles.

  20. Wall and corner fire tests on selected wood products

    Science.gov (United States)

    H. C. Tran; M. L. Janssens

    1991-01-01

    As part of a fire growth program to develop and validate a compartment fire model, several bench-scale and full-scale tests were conducted. This paper reports the full-scale wall and corner test results of step 2 of this study. A room fire test following the ASTM proposed standard specifications was used for these full-scale tests. In step 1, we investigated the...

  1. 29 CFR 1910.164 - Fire detection systems.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fire detection systems. 1910.164 Section 1910.164 Labor... detection systems. (a) Scope and application. This section applies to all automatic fire detection systems... detection systems and components to normal operating condition as promptly as possible after each test or...

  2. Systems thinking and wildland fire management

    Science.gov (United States)

    Matthew P. Thompson; Christopher J. Dunn; David E. Calkin

    2017-01-01

    A changing climate, changing development and land use patterns, and increasing pressures on ecosystem services raise global concerns over growing losses associated with wildland fires. New management paradigms acknowledge that fire is inevitable and often uncontrollable, and focus on living with fire rather than attempting to eliminate it from the landscape. A notable...

  3. FIREMON: Fire effects monitoring and inventory system

    Science.gov (United States)

    Duncan C. Lutes; Robert E. Keane; John F. Caratti; Carl H. Key; Nathan C. Benson; Steve Sutherland; Larry J. Gangi

    2006-01-01

    Monitoring and inventory to assess the effects of wildland fire is critical for 1) documenting fire effects, 2) assessing ecosystem damage and benefit, 3) evaluating the success or failure of a burn, and 4) appraising the potential for future treatments. However, monitoring fire effects is often difficult because data collection requires abundant funds, resources, and...

  4. Prescribed fire, snag population dynamics, and avian nest site selection

    Science.gov (United States)

    Karen E. Bagne; Kathryn L. Purcell; John T. Rotenberry

    2008-01-01

    Snags are an important resource for a wide variety of organisms, including cavity-nesting birds. We documented snag attributes in a mixed conifer forest dominated by ponderosa pine in the Sierra Nevada, California where fire is being applied during spring. A total of 328 snags were monitored before and after fire on plots burned once, burned twice, or left unburned to...

  5. Maintenance of fire systems and equipment at Virginia Power

    International Nuclear Information System (INIS)

    Doubrely, E.B. Jr.

    1989-01-01

    The basics of fire protection systems maintenance are well codified and documented in the National Fire Codes published by the National Fire Protection Association. In addition, Insurers often promulgate minimum standards for fire protection systems design and maintenance to which they attach conditions of insurability. Regulatory agencies and even in-house corporate policies can impact the maintenance of fire protection systems and equipment. This presentation will focus on the various methods and alternate ways of performing system maintenance, whether required by code, insurer, or by some regulatory commitment at Virginia Powers North Anna and Surry nuclear power stations. The approach to performing similar work is handled differently at each station. This difference can be attributed to proximity to outside assistance as well as plant philosophy. In addition to station maintenance practices, a discussion of in-house servicing of portable fire suppression equipment is offered. 1 tab

  6. 46 CFR 153.460 - Fire protection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Fire protection systems. 153.460 Section 153.460... Requirements for Flammable Or Combustible Cargoes § 153.460 Fire protection systems. Each self-propelled ship... protection system listed beside the cargo in Table 1 and described in the footnotes to Table 1. (b) The...

  7. Forest fire forecasting tool for air quality modelling systems

    International Nuclear Information System (INIS)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-01-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  8. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  9. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  10. Wildland fire management. Volume 1: Prevention methods and analysis. [systems engineering approach to California fire problems

    Science.gov (United States)

    Weissenberger, S. (Editor)

    1973-01-01

    A systems engineering approach is reported for the problem of reducing the number and severity of California's wildlife fires. Prevention methodologies are reviewed and cost benefit models are developed for making preignition decisions.

  11. 46 CFR 28.830 - Fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection system. 28.830 Section 28.830 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.830 Fire detection system. (a) Each accommodation space...

  12. 46 CFR 28.325 - Fire detection systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire detection systems. 28.325 Section 28.325 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING... Operate With More Than 16 Individuals on Board § 28.325 Fire detection systems. (a) Each accommodation...

  13. A portable system for characterizing wildland fire behavior

    Science.gov (United States)

    Bret Butler; D. Jimenez; J. Forthofer; K. Shannon; Paul Sopko

    2010-01-01

    A field deployable system for quantifying energy and mass transport in wildland fires is described. The system consists of two enclosures: The first is a sensor/data logger combination package that allows characterization of convective/radiant energy transport in fires. This package contains batteries, a programmable data logger, sensors, and other electronics. The...

  14. Modern tools to evaluate and optimize fire protection systems

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1980-01-01

    Modern techniques, such as fault tree analysis, can be used to obtain engineering descriptions of specific fire protection systems. The analysis allows establishment of an optimum level of fire protection, and evaluates the level of protection provided by various systems. A prime example: the application to fusion energy experiments

  15. Monitoring system of multiple fire fighting based on computer vision

    Science.gov (United States)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  16. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    Science.gov (United States)

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and

  17. Appraisal of Fire Safety Management Systems at Educational Buildings

    Directory of Open Access Journals (Sweden)

    Nadzim N.

    2014-01-01

    Full Text Available Educational buildings are one type of government asset that should be protected, and they play an important role as temporary communal meeting places for children, teachers and communities. In terms of management, schools need to emphasize fire safety for their buildings. It is well known that fires are not only a threat to the building’s occupants, but also to the property and the school environment. A study on fire safety management has been carried out on schools that have recently experienced fires in Penang. From the study, it was found that the school buildings require further enhancement in terms of both active and passive fire protection systems. For instance, adequate fire extinguishers should be provided to the school and the management should inspect and maintain fire protection devices regularly. The most effective methods to increase the level of awareness on fire safety are by organizing related programs on the management of fire safety involving all staff, teachers and students, educational talks on the dangers of fire and important actions to take in the event of an emergency, and, lastly, to appoint particular staff to join the management safety team in schools.

  18. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  19. Liquid nitrogen fire extinguishing system test report

    International Nuclear Information System (INIS)

    Beidelman, J.A.

    1972-01-01

    The objective of this test series was to demonstrate the feasibility of using liquid nitrogen as a fire-extinguishing agent for certain types of metal fires. It was intended to provide data and experience appropriate to the design of a second series which will test the applicability of this technique to plutonium fires and which will develop more detailed operating information and permit more precise measurement of test parameters-oxygen depletion rates and equilibrium concentrations, temperature effects, and nitrogen pressures, flow rates, spray methods and patterns, etc. The test series was directed specifically toward extinguishment of metal fires occurring in well-confined areas and was not intended to be representative of any larger classification. Fires of several types were tested, e.g., magnesium, mixed magnesium and zirconium, sodium and cerium

  20. Fire deaths in aircraft without the crashworthy fuel system.

    Science.gov (United States)

    Springate, C S; McMeekin, R R; Ruehle, C J

    1989-10-01

    Cases reported to the Armed Forces Institute of Pathology were examined for occupants of helicopters without the crashworthy fuel system (CWFS) who survived crashes but died as a result of postcrash fires. There were 16 fire deaths in the 9 such accidents which occurred between January 1976 and April 1984. All of these victims would have survived if there had been no postcrash fire. Partial body destruction by fire probably prevented inclusion of many other cases. The dramatic reduction in fire deaths and injuries due to installation of the CWFS in Army helicopters is discussed. The author concludes that fire deaths and injuries in aircraft accidents could almost be eliminated by fitting current and future aircraft with the CWFS.

  1. Selecting a silvicultural system

    Science.gov (United States)

    Richard M. Godman

    1992-01-01

    Sometimes a name creates a problem. The name of a silvicultural system usually refers to the way a stand is cut to get regeneration-"single tree selection"-for example. Trouble is, the name suggests that the regeneration cut will be the first treatment applied to the stand. Not so. We are now mostly making "intermediate" cuts in our Lake States...

  2. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  3. Performance Evaluation of the Combined Agent Fire Fighting System (CAFFS)

    National Research Council Canada - National Science Library

    Kalberer, Jennifer

    2003-01-01

    ... of the location. The Combined Agent Fire Fighting System (CAFFS) employs innovations in nozzle design, lightweight composites and combination agents to design a system with extinguishment capabilities of much larger ARFF vehicles...

  4. Fire in the Earth System: Bridging data and modeling research

    Science.gov (United States)

    Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.

    2016-01-01

    Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from

  5. Central display system of figures in fire alarm

    International Nuclear Information System (INIS)

    Fang Shaohong; Zhu Zicheng; Zhu Liqun; Ren Yi; Yu Hongmei; Du Chengbao; Xie Guoxue

    1997-01-01

    A new type of 'central display system of figures in fire alarm' includes two parts: (1) software package of drawing picture; (2) real time processing and operate system (POS). Main function of the software package is to draw floor plane figures, fire-fighting facility signs and room numbers; and then all pictures are used in POS. Main functions of POS are to process fire alarm, faults and activation of fire fighting control facility, save and print reports, look over floor plane figures, look over concrete condition of fire fighting facilities, and to show appropriate prompt according to different case. This system realizes many functions, such as, control with mouse, operation with push-button, menu operation interface, flip windows to prompt, and chinese character. It have won acclaim for its amazing interface, its convenience to operate, its reliability and flexibility

  6. General multiplex centralized fire-alarm display system

    International Nuclear Information System (INIS)

    Zhu Liqun; Chen Jinming

    2002-01-01

    The fire-alarm display system is developed, which can connect with each type of fire controllers produced in the factory and SIGMASYS controllers. It can display whole alarm information. The display system software gathers communication, database and multimedia, has functions of inspecting fire, showing alarm, storing data, searching information and so on. The drawing software lets the user expediently add, delete, move and modify fire detection or fire fighting facilities on the building floor maps. The graphic transform software lets the display use the vectorgraph produced by popular plotting software such as Auto CAD. The system software provides the administration function, such as log book of changing shift and managing workers etc.. The software executed on Windows 98 platform. The user interface is friendly and reliable in operation

  7. Fire Effects Information System: New engine, remodeled interior, added options

    Science.gov (United States)

    Jane Kapler Smith

    2010-01-01

    Some of today's firefighters weren't even born when the Fire Effects Information System (FEIS) (Web site ) "hit the streets" in 1986. Managers might remember using a dial-up connection in the early 1990s to access information on biology, ecology, and fire offered by FEIS.

  8. Fire protection system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor

  9. Fire protection system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  10. Introduction of Sodium Fire Extinguishing System for STELLA-1

    International Nuclear Information System (INIS)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung

    2015-01-01

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective

  11. Introduction of Sodium Fire Extinguishing System for STELLA-1

    Energy Technology Data Exchange (ETDEWEB)

    Gam, Dayoung; Kim, Jong-Man; Jung, Min-Hwan; Eoh, Jae-Hyuk; Jeong, Eoh Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This characteristic is a big advantage as a thermal transfer fluid. However, the high reactivity of sodium, especially with water and oxygen, and white aerosol in the event of fire can cause serious accidents. Thus, large sodium facility needs a specific-developed fire extinguishing system for a safe experiment. Korea Atomic Energy Research Institute (KAERI) has conducted sodium heat transfer experiments using the facility named the Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA-1). STELLA-1 fully equipped a sodium fire extinguishing system for the safe experiment and fire spread prevention. In this paper, a preparation of the fire extinguishing system of STELLA-1 facility is introduced. This paper can provide an example of how to design a sodium fire extinguishing system for a large sodium experiment facility. In this paper, a preparation of the fire extinguishment system for STELLA-1 as a large sodium experiment facility was introduced and explained. For safe operation of the liquid sodium utility, it is important to equip specific-developed fire extinguishing system because of the chemical characteristics of sodium. Operators should know the process and operating manual before conducting an experiment to prevent hazardous situation. Though the dry chemical extinguishing agent put out the fire target, removing agent at high temperature state can cause re-combustion. Thus, extinguishment confirmation work should be conducted after sufficient cooling time to stabilize the surface. And in case of fire at a sealed room, a method making the percentage of oxygen low(injecting nitrogen gas or argon gas) is effective.

  12. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  13. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  14. Effectiveness of fire-detection systems in light-water-reactor facilities

    International Nuclear Information System (INIS)

    DiNenno, P.J.; Dungan, K.W.

    1981-08-01

    This report presents a critical review of methods for evaluating fire detection system capabilities. These capabilities must include some measurement of success. The problem of evaluating the effectiveness in terms of probability of success or certainty of success of fire detection systems must be answered either to enable the correct selection of system when a need is identified, or to assess the acceptability of an existing system in meeting an identified need. These methods are complementary to a hazards analysis, which identifies the need, but can be quite independent in their development and use

  15. New probabilistic decision-making tools for fire protection systems

    International Nuclear Information System (INIS)

    Ksobiech, C.; Mowrer, F.

    1991-01-01

    The FIVE methodology provides guidance to utilities in performing an examination of potential plant severe accidents caused by fire initiated events. FIVE is oriented toward uncovering limiting plant design or operating characteristics (vulnerabilities) that make certain fire-initiated events more likely than others. It provides a combination of deterministic and probabilistic techniques for examining a power plant's fire probability and protection characteristics. It includes a two phase progressive screening method and a third phase consisting of a plant walkdown/verification process. The FIVE methodology centers on providing assurance of the availability of at least one train of the safe shutdown systems. FIVE has been developed for implementation by plant personnel who are most experienced with their plant's operations, fire hazards and fire protection features. The methodology provides these plant personnel with guidelines to quickly screen the plant down to the most significant locations where vulnerabilities may exist and then identify options to reduce the vulnerabilities

  16. [Effects of repeated firing on microleakage of selective laser melting ceramic crowns].

    Science.gov (United States)

    Zhong, Qun; Peng, Yan; Wu, Xue-Ying; Weng, Jia-Wei

    2016-12-01

    To investigate the effects of repeated firing on microleakage of selective laser melting ceramic crowns. Fifty molars were randomly divided into 2 groups (25 teeth in each group). Teeth in group A received a chamfer finish line preparation, whereas teeth in group B received a shoulder finish line. After SLM metal crowns were fabricated, all the crowns received initial oxidation step, opaque firing, dentin firing and glaze firing, then crowns in each group were randomly divided into 5 sub-groups according to different time of clinical firings. Glass ionomer was applied for bonding. After 5000 thermocycles ranging from 5degrees centigrade to 55degrees centigrade, all the specimens was evaluated by dye penetration and then microleakage was examined under light microscopy. The data were analyzed with SPSS 20.0 software package. Microleakage between all specimens of group A were not statistically significant (P>0.05) whereas that of group B were statistically significant (P<0.05); After the fifth time of clinical firing, microleakage of specimens in group B(B5) were significantly higher than that of group A(A5). Repeated firings had no significant influence on marginal microleakage of SLM ceramic crowns whereas the crowns of chamfer finish lines result in better clinical performance after repeated firings.

  17. Miniature Intelligent Wireless Fire Detector System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a wireless intelligent dual-band photodetector system for advanced fire detection/recognition, combining UV/IR III...

  18. A heuristic expert system for forest fire guidance in Greece.

    Science.gov (United States)

    Iliadis, Lazaros S; Papastavrou, Anastasios K; Lefakis, Panagiotis D

    2002-07-01

    Forests and forestlands are common inheritance for all Greeks and a piece of the national wealth that must be handed over to the next generations in the best possible condition. After 1974, Greece faces a severe forest fire problem and forest fire forecasting is the process that will enable the Greek ministry of Agriculture to reduce the destruction. This paper describes the basic design principles of an Expert System that performs forest fire forecasting (for the following fire season) and classification of the prefectures of Greece into forest fire risk zones. The Expert system handles uncertainty and uses heuristics in order to produce scenarios based on the presence or absence of various qualitative factors. The initial research focused on the construction of a mathematical model which attempted to describe the annual number of forest fires and burnt area in Greece based on historical data. However this has proven to be impossible using regression analysis and time series. A closer analysis of the fire data revealed that two qualitative factors dramatically affect the number of forest fires and the hectares of burnt areas annually. The first is political stability and national elections and the other is drought cycles. Heuristics were constructed that use political stability and drought cycles, to provide forest fire guidance. Fuzzy logic was applied to produce a fuzzy expected interval for each prefecture of Greece. A fuzzy expected interval is a narrow interval of values that best describes the situation in the country or a part of the country for a certain time period. A successful classification of the prefectures of Greece in forest fire risk zones was done by the system, by comparing the fuzzy expected intervals to each other. The system was tested for the years 1994 and 1995. The testing has clearly shown that the system can predict accurately, the number of forest fires for each prefecture for the following year. The average accuracy was as high as 85

  19. Low NOx firing systems for bituminous coal and lignite

    International Nuclear Information System (INIS)

    Knyrim, W.; Scheffknecht, G.

    1997-01-01

    In the case of lignite fluidized boilers the denitrification down to less than 200 mg/m 3 was possible with primary measures on the firing side only. On account of the excellent results achieved with the reconstructed plants the firing systems for the new generation of brown coal fire steam generators with a capacity of 800 MW and more is designed in a similar way. For bituminous coal fire steam generators the primary measures on the firing side are nor sufficient to keep the German NO x emission limit. Therefore these units had to be retrofitted with a SCR-DENOX plant. The experience with the new firing system made in a 110 MW steam generator in Austria with a wide range of fuels is introduced. One of the largest bituminous coal fired once-trough steam generator built by EVT is the boiler for the power station Bexbach I (750 MW). The firing system is designed as a tangential firing system with 32 jet burners. These are arranged in pairs in the corners and divided into 4 burner levels with 4 burner pairs each. One mill is allocated to each burner level. An important characteristic feature is that the four bowl mills are arranged on one side of the steam generator. The plant is constructed with upper air nozzles which are arranged above the top burner level for the reduced of nitrogen oxides. During tests at steam generator with similar design, the nO x formation could be reduced from 750 to 500 mg/m 3 s.t.p. (dry, 6% O 2 ) with an addition of upper air of 20% at 100% unit capacity and constant total flow. As a main approach for the further reduction of the primary NO x emission at bituminous coal fired steam generators with tangential firing systems, the experience gained from the firing of brown coal has also been taken into account. A fundamental aspect in this respect was the vertical air staging in the direction of the furnace height. The results of many tests in a test reactor have shown that the differences of the achievable NO x values of brown and

  20. 46 CFR 161.002-10 - Automatic fire detecting system control unit.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system control unit. 161.002-10...-10 Automatic fire detecting system control unit. (a) General. The fire detecting system control unit... and the battery to be charged. (h) Automatic fire detecting system, battery charging and control—(1...

  1. 46 CFR 108.407 - Detectors for electric fire detection system.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...

  2. Systems and models of fire blight (Erwinia amylovora prediction

    Directory of Open Access Journals (Sweden)

    Krzysztof Kielak

    2013-12-01

    Full Text Available The paper presents fire blight prediction models and systems, developed in Europe (system Billing - versions: BOS, BRS, BIS95 and originated from this system: Firescreen, FEUERBRA and ANLAFBRA and in United States (Californian system, model Maryblyt and system Cougarblight. Use of above models and systems in various climatic-geographic conditions and comparison of obtained prognostic data to real fire blight occurrence is reviewed. The newest trends in research on improvement of prognostic analyses parameters with their adjustment to particular conditions and consideration of infection source occurrence are also presented.

  3. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  4. Complex systems approach to fire dynamics and climate change impacts

    Science.gov (United States)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire

  5. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  6. Fire Risk in MTBF Evaluation for UPS System

    Directory of Open Access Journals (Sweden)

    Stefano Elia

    2016-01-01

    Full Text Available The reliability improvement of no-break redundant electrical systems is the first aim of the proposed strategy. The failure of some UPS (Uninterruptible Power Supply system may lead to the fire occurrence. The most used electrical configurations are presented and discussed in the paper. The innovation of the proposed method consists of taking into account the fire risk to improve the accuracy of wiring configuration and component’s failure rate. Thorough research on MTBF (Mean Time Between Failure data has been performed for each wiring component and UPS. The fire risk is taken into account introducing an equivalent fire block in the Reliability Block Diagram scheme; it has an MTBF value calculated form yearly statistics of UPS fire events. The reliability of the most used UPS electrical configurations is evaluated by means of the RBD method. Different electrical systems have been investigated and compared based on MTBF. The importance of fire compartmentation between two or more UPS’ connected in parallel is proved here.

  7. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    Science.gov (United States)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  8. Application of the Haines Index in the fire warning system

    Science.gov (United States)

    Kalin, Lovro; Marija, Mokoric; Tomislav, Kozaric

    2016-04-01

    Croatia, as all Mediterranean countries, is strongly affected by large wildfires, particularly in the coastal region. In the last two decades the number and intensity of fires has been significantly increased, which is unanimously associated with climate change, e.g. global warming. More extreme fires are observed, and the fire-fighting season has been expanded to June and September. The meteorological support for fire protection and planning is therefore even more important. At the Meteorological and Hydrological Service of Croatia a comprehensive monitoring and warning system has been established. It includes standard components, such as short term forecast of Fire Weather Index (FWI), but long range forecast as well. However, due to more frequent hot and dry seasons, FWI index often does not provide additional information of extremely high fire danger, since it regularly takes the highest values for long periods. Therefore the additional tools have been investigated. One of widely used meteorological products is the Haines index (HI). It provides information of potential fire growth, taking into account only the vertical instability of the atmosphere, and not the state of the fuel. Several analyses and studies carried out at the Service confirmed the correlation of high HI values with large and extreme fires. The Haines index forecast has been used at the Service for several years, employing European Centre for Medium Range Weather Forecast (ECMWF) global prediction model, as well as the limited-area Aladin model. The verification results show that these forecast are reliable, when compared to radiosonde measurements. All these results provided the introduction of the additional fire warnings, that are issued by the Service's Forecast Department.

  9. Upgrading the Fermilab fire and security reporting system

    International Nuclear Information System (INIS)

    King, C.; Neswold, R.

    2012-01-01

    Fermilab's home grown fire and security system (known as FIRUS - Fire Incident Reporting and Utility System) is highly reliable and has been used for nearly thirty years. The system has gone through some minor upgrades, however, none of those changes made significant, visible changes. In this paper, we present a major overhaul to the system that is halfway complete. We discuss the use of Apple's OS X for the new GUI (Graphical User Interface), upgrading the servers to use the Erlang programming language and allowing limited access for iOS and Android-based mobile devices. (authors)

  10. Literature study regarding fire protection in nuclear power plants. Part 2: Fire detection and -extinguishing systems

    International Nuclear Information System (INIS)

    Isaksson, S.

    1996-01-01

    This literature study has been made on behalf of the Swedish Nuclear Power Inspectorate. The aim is to describe different aspects of fire protection in nuclear power plants. Detection and extinguishing systems in Swedish nuclear power plants have only to a limited extent been designed after functional demands, such as a maximum acceptable damage or a maximum time to detect a fire. The availability of detection systems is difficult to assess, partly because of lack of statistics. The user interface is very important in complex systems as nuclear plants. An extinguishing system designed according to the insurance companies' regulations will only fulfill the basic demands. It should be noted that normal sprinkler design does not aim for extinguishing fires, the objective is to control fire until manual extinguishment is possible. There is a great amount of statistics on wet and dry pipe sprinkler systems, while statistics are more scarce for deluge systems. The statistics on the reliability of gaseous extinguishing systems have been found very scarce. A drawback of these systems is that they are normally designed for one shot only. There are both traditional and more recent extinguishing systems that can replace halons. From now on there will be a greater need for a thorough examination of the properties needed for the individual application and a quantification of the acceptable damage. There are several indications on the importance of a high quality maintenance program as well as carefully developed routines for testing and surveillance to ensure the reliability of detection and extinguishing systems. 78 refs, 8 figs, 10 tabs

  11. Weather Observation Systems and Efficiency of Fighting Forest Fires

    Science.gov (United States)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  12. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Can the water supply for the... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water system? (a) The water supply for the helicopter deck fire protection system required under § 149.420 or...

  13. Performance assessment of fire-sat monitoring system based on satellite time series for fire danger estimation : the experience of the pre-operative application in the Basilicata Region (Italy)

    Science.gov (United States)

    Lanorte, Antonio; Desantis, Fortunato; Aromando, Angelo; Lasaponara, Rosa

    2013-04-01

    This paper presents the results we obtained in the context of the FIRE-SAT project during the 2012 operative application of the satellite based tools for fire monitoring. FIRE_SAT project has been funded by the Civil Protection of the Basilicata Region in order to set up a low cost methodology for fire danger monitoring and fire effect estimation based on satellite Earth Observation techniques. To this aim, NASA Moderate Resolution Imaging Spectroradiometer (MODIS), ASTER, Landsat TM data were used. Novel data processing techniques have been developed by researchers of the ARGON Laboratory of the CNR-IMAA for the operative monitoring of fire. In this paper we only focus on the danger estimation model which has been fruitfully used since 2008 to 2012 as an reliable operative tool to support and optimize fire fighting strategies from the alert to the management of resources including fire attacks. The daily updating of fire danger is carried out using satellite MODIS images selected for their spectral capability and availability free of charge from NASA web site. This makes these data sets very suitable for an effective systematic (daily) and sustainable low-cost monitoring of large areas. The preoperative use of the integrated model, pointed out that the system properly monitor spatial and temporal variations of fire susceptibility and provide useful information of both fire severity and post fire regeneration capability.

  14. Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1)

    OpenAIRE

    F. Li; S. Levis; D. S. Ward

    2013-01-01

    Modeling fire as an integral part of an Earth system model (ESM) is vital for quantifying and understanding fire–climate–vegetation interactions on a global scale and from an Earth system perspective. In this study, we introduce to the Community Earth System Model (CESM) the new global fire parameterization proposed by Li et al. (2012a, b), now with a more realistic representation of the anthropogenic impacts on fires, with a parameterization of peat fires, and with other minor modifications....

  15. Systems for animal exposure in full-scale fire tests

    Science.gov (United States)

    Hilado, C. J.; Cumming, H. J.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Two systems for exposing animals in full-scale fire tests are described. Both systems involve the simultaneous exposure of two animal species, mice and rats, in modular units; determination of mortality, morbidity, and behavioral response; and analysis of the blood for carboxyhemoglobin. The systems described represent two of many possible options for obtaining bioassay data from full-scale fire tests. In situations where the temperatures to which the test animals are exposed can not be controlled, analytical techniques may be more appropriate than bioassay techniques.

  16. A ballistics module as a part of the fire control system

    Directory of Open Access Journals (Sweden)

    Branka R. Luković

    2013-10-01

    Full Text Available This article presents a ballistics module as a part of the fire control system of weapons for fire support (mortars, artillery weapons and rocket launchers. The software is "open" with the prominence of autonomy work. It can be modulated and adapted on the user demand. Moreover, it is independent of the hardware base. Introduction: The fire control system is based on a ballistic module (BM which determines the firing data for each weapon tool in the battery. Ballistic calculations, for the given position of the target in relation to the position of tools in the given weather conditions, determine firing data (elevation, direction, timing and locating devices so that the missile seems to cause the desired effect. This paper gives the basic information about the features the BM performs and the manner of their implementation in the fire control system without going into algorithmic solution procedures. Ballistic problem in the fire control system: Ballistic calculation is based on a trajectory calculation of all kinds of projectiles (current, time-fuze, illuminating, smoke, with conventional propulsion, rocket, with built-in gas generator, etc.. Instead of previous solutions, where a trajectory calculation of the fire control system was done by approximate methods, in this BM the trajectory calculation is made by the same model with the same data as for a weapon and ammunition in the process of creating a firing table. The data used in the fire control system are made simultaneously with the preparation of firing tables for a particular tool and associated ammunition,. A modified model of particle, standardized at the NATO level, is also used. Taking into account the meteorological situation, before the trajectory calculation is done, a relative position of the target in relation to the position of the tool should be determined. A selection or loading check is carried out (possibility of reaching a given target as well as the point at which the

  17. A study of selected problems related to accidental process fires

    Energy Technology Data Exchange (ETDEWEB)

    Drange, Leiv Anfin

    2011-01-15

    An experimental full scale characterization of a turbulent propane jet flame has been made in terms of temperatures and radiation. Sonic propane gas releases were achieved at steady pressure and near steady flow. Commercial propane was used, consisting of a mixture of propane with very small admixtures of sulphur and methanol. The size of the fire was 13-14MW (average burning rate 0,3kg/s). The pressure drop across the horizontally mounted nozzle was 10.3 barg. The experimental setup was simulated using the CFD-code Kameleon FireEx, and characterizations were made for temperature, radiation and gas velocity. The results from experiments and simulations were compared using interpolation techniques for reducing the errors of measurements, and MatLab for visualization. Both transient and time-averaged values were plotted. The main findings in this work were: the length of the visible flame was approx = 5.5m, with a lift-off distance of 0.6m; the highest temperature region of the jet flame was approx = 70% along the visible flame length (i.e not including lift-off). The maximum temperature in the flame was in the region 1200 - 13000C; up to approx = 3m, there was a fuel rich region along the centre trajectory of the flame, where the temperature was approx = 2000C less than in the stoichiometric region, 0.3m away from the centre line; the radiation fraction along the jet trajectory at positions 25%, 50%, 70%, and 95% downstream of the visible flame length was 28%, 57%, 73%, and 63%, respectively; moving outside the flame perpendicular to the jet axis, the radiation fraction gradually increased. At 3m distance from the centerline, it was equal to the total heat flux. This indicated that the convection fraction was close to zero; the radiation heat flux sensors were extremely sensitive to unclean environment. Even when applying nitrogen for purging, it did not keep the soot and other particles away from the inner surface of the gauge's restrictor; the CFD-code KFX

  18. Assessment parameters for coal-fired generation plant site selection

    OpenAIRE

    Abbas, Ahmad Rosly; Low, K. S.; Ahmad, Ir. Mohd Noh; Chan, J. H.; Sasekumar, A.; Abdul Ghaffar, Fauza; Osman Salleh, Khairulmaini; Raj, John K.; Abdul Yamin, Saad; Wan Aida, Wan Zahari; Phua, Y. T.; Phua, Y. N.; Wong, Y. Y.; Jamaludin, Ir. Mashitah; Jaafar, Shaari

    2005-01-01

    In order to meet future demand for electricity, Tenaga Nasional Berhad (TNB) is committedto the long-term strategic planning in locating suitable sites for future development of power stations.Site selection is an important process in the early planning stage of any power plant development asit will have significant implications on the capital investment, operational as well as the environmentand socio-economic costs of the power plant.The aim of this presentation is to briefly describe the t...

  19. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  20. New tendencies in wildland fire simulation for understanding fire phenomena: An overview of the WFDS system capabilities in Mediterranean ecosystems

    Science.gov (United States)

    Pastor, E.; Tarragó, D.; Planas, E.

    2012-04-01

    Wildfire theoretical modeling endeavors predicting fire behavior characteristics, such as the rate of spread, the flames geometry and the energy released by the fire front by applying the physics and the chemistry laws that govern fire phenomena. Its ultimate aim is to help fire managers to improve fire prevention and suppression and hence reducing damage to population and protecting ecosystems. WFDS is a 3D computational fluid dynamics (CFD) model of a fire-driven flow. It is particularly appropriate for predicting the fire behaviour burning through the wildland-urban interface, since it is able to predict the fire behaviour in the intermix of vegetative and structural fuels that comprise the wildland urban interface. This model is not suitable for operational fire management yet due to computational costs constrains, but given the fact that it is open-source and that it has a detailed description of the fuels and of the combustion and heat transfer mechanisms it is currently a suitable system for research purposes. In this paper we present the most important characteristics of the WFDS simulation tool in terms of the models implemented, the input information required and the outputs that the simulator gives useful for understanding fire phenomena. We briefly discuss its advantages and opportunities through some simulation exercises of Mediterranean ecosystems.

  1. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Nationwide Aerial Application of Fire Retardant on... statement for the continued nationwide aerial application of fire retardant on National Forest System lands... Forest Service is working to restore fire-adapted ecosystems through prescribed fire, other fuel...

  2. Fire protection in Angra-2 nuclear power plant. The use of fire protection collars on plastic piping systems

    International Nuclear Information System (INIS)

    Oliveira Segabinaze, R. de

    1994-01-01

    The object of this paper is to briefly the use of fire protection collars on plastic piping systems passing through wall and floor penetration. The fire protection collars consist of a stainless steel housing, in which the leading edges of two pivoting plates are in constant pressure contact with the pipe. In case of fire these plates react on the softened pipe with a guillotine action, thereby stopping the flow; within the housing a foam material expands to fill the space when subject to the heat of the fire. The piping project has to be modified to permit the fixing of the collars to walls and floor penetrations. (author). 2 refs, 9 figs

  3. Air-cleaning systems for sodium-fire-aerosol control

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Muhlestein, L.D.

    1982-05-01

    A development program has been carried out at the Hanford Engineering Development Laboratory (HEDL) with the purpose of developing and proof testing air cleaning components and systems for use under severe sodium fire conditions, including those involving high levels of radioactivity. The air cleaning components tested can be classified as either dry filters or aqueous scrubbers. Test results are presented

  4. Communication interface of computerized automatic fire alarm system

    International Nuclear Information System (INIS)

    Yu Hongmei; Zhu Liqun; Fang Shaohong; Du Chengbao

    1997-01-01

    The problems of communication between multiple single-chip computers and microcomputer have been solved by the way of hardware and software. The automatic fire alarm system is realized by using the serial port both on single-chip computer and microcomputer

  5. The 1978 National Fire-Danger Rating System: technical documentation

    Science.gov (United States)

    Larry S. Bradshaw; John E. Deeming; Robert E. Burgan; Jack D. Cohen

    1984-01-01

    The National Fire-Danger Rating System (NFDRS), implemented in 1972, has been revised and reissued as the 1978 NFDRS. This report describes the full developmental history of the NFDRS, including purpose, technical foundation, and structure. Includes an extensive bibliography and appendixes.

  6. Requirements for VICTORIA Class Fire Control System: Contact Management Function

    Science.gov (United States)

    2014-07-01

    Requirements for VICTORIA Class Fire Control System Contact Management Function Tab Lamoureux CAE Integrated Enterprise Solutions...Contract Report DRDC-RDDC-2014-C190 July 2014 © Her Majesty the Queen in Right of Canada, as represented by the...i Abstract …….. The VICTORIA Class Submarines (VCS) are subject to a continuing program of technical upgrades. One such program is

  7. 46 CFR 95.05-10 - Fixed fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... oil units, valves, or manifolds in the line between the settling tanks and the boilers. (e) Fire... approved system must be installed in all cargo compartments and tanks for combustible cargo, except for vessels engaged exclusively in the carriage of coal or grain in bulk. For cargo compartments and tanks...

  8. COUNTERMEASURE FOR MINIMIZE UNWANTED ALARM OF AUTOMATIC FIRE NOTIFICATION SYSTEM IN THE REPUBLIC OF KOREA

    Directory of Open Access Journals (Sweden)

    Hasung Kong

    2015-01-01

    Full Text Available In this article investigated the cause of error through survey to building officials for minimizing the unwanted alarm of automatic fire notification and suggested countermeasure for minimizing the unwanted alarm. The main cause of the unwanted alarm is defective fire detector, interlocking with automatic fire detection system, lack in fire safety warden’s ability, worn-out fire detect receiving system. The countermeasure for minimizing unwanted alarm is firstly, tightening up the standard of model approval, Secondly, interlocking with cross-section circuit method fire extinguishing system or realizing automatic fire notification system interlocking with home network, thirdly, tightening up licensing examination of fire safety warden, lastly, it suggested term of use rule of fire detect receiving system

  9. COUNTERMEASURE FOR MINIMIZE UNWANTED ALARM OF AUTOMATIC FIRE NOTIFICATION SYSTEM IN THE REPUBLIC OF KOREA

    Directory of Open Access Journals (Sweden)

    Hasung Kong

    2015-01-01

    Full Text Available In this article investigated the cause of error through survey to building officials for minimizing the unwanted alarm of automatic fire notification and suggested countermeasure for minimizing the unwanted alarm. The main cause of the unwanted alarm is defective fire detector, interlocking with automatic fire detection system, lack in fire safety warden’s ability, worn-out fire detect receiving system. The countermeasure for minimizing unwanted alarm is firstly, tightening up the standard of model approval, Secondly, interlocking with cross-section circuit method fire extinguishing system or realizing automatic fire notification system interlocking with home network, thirdly, tightening up licensing examination of fire safety warden, lastly, it suggested term of use rule of fire detect receiving system.

  10. Technique Selectively Represses Immune System

    Science.gov (United States)

    ... Research Matters December 3, 2012 Technique Selectively Represses Immune System Myelin (green) encases and protects nerve fibers (brown). A new technique prevents the immune system from attacking myelin in a mouse model of ...

  11. Concept selection for advanced low-emission coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gorrell, R.L. [Babcock and Wilcox Co., Barberton, OH (United States); Rodgers, L.W.; Farthing, G.A. [Babcock and Wilcox Co., Alliance, OH (United States)

    1993-12-31

    The Babcock & Wilcox Company (B&W), under contract to the US Department of Energy (DOE) with subcontract to Physical Sciences, Inc. (PSIT), the Massachusetts Institute of Technology (MIT) and United Engineers and Constructors (UE&C) has begun development of an advanced low-emission boiler system (LEBS). The initial phase of this multi-phase program required a thorough review and assessment of potential advanced technologies and techniques for control of combustion and flue gas emissions. Results of this assessment are presented in this paper.

  12. Evaluation of a Spoken Dialogue System for Virtual Reality Call for Fire Training

    National Research Council Canada - National Science Library

    Robinson, Susan M; Roque, Antonio; Vaswani, Ashish; Traum, David; Hernandez, Charles; Millspaugh, Bill

    2007-01-01

    .... We briefly describe aspects of the Joint Fires and Effects Trainer System, and the Radiobot-CFF dialogue system, which can engage in voice communications with a trainee in call for fire dialogues...

  13. Selected System Models

    Science.gov (United States)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  14. Fire hazard analysis at the first unit of the Ignalina nuclear power plant: 1. Analysis of fire prevention and ventilation systems and secondary effects

    International Nuclear Information System (INIS)

    Poskas, P.; Simonis, V.; Zujus, R. and others

    2004-01-01

    Evaluation of the fire prevention and ventilation systems and the secondary effects on safety at the Ignalina NPP from the point of view of fire hazard using computerized system is presented. Simplified screening algorithms for fire prevention, ventilation and the evaluation of secondary effects are developed, which allow accelerating fire hazard analysis at the Ignalina NPP. The analysis indicated that the fire prevention systems practically meet the national requirements and international recommendations for fire prevention. But it is necessary to introduce in separate rooms the measures improving fire prevention to guarantee the effective functioning of the ventilation systems and the reduction of the influence of secondary effects on safety. Computerized system of fire prevention and ventilation systems and evaluation of secondary effects on safety can be easily applied for fire hazard analysis at different big plants. (author)

  15. The Hazard Mapping System (HMS)-a Multiplatform Remote Sensing Approach to Fire and Smoke Detection

    Science.gov (United States)

    Kibler, J.; Ruminski, M. G.

    2003-12-01

    The HMS is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico that has been in place since June 2002. This system is an integral part of the National Environmental Satellite and Data Information Service (NESDIS) near realtime hazard detection and mitigation efforts. The system utilizes NOAA's Geostationary Operational Environmental Satellites (GOES), Polar Operational Environmental Satellites (POES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is added by a satellite image analyst. In June 2003 the HMS underwent an upgrade. A number of features were added for users of the products generated on the HMS. Sectors covering Alaska and Hawaii were added. The use of Geographic Information System (GIS) shape files for smoke analysis is a new feature. Shape files show the progression and time of a single smoke plume as each analysis is drawn and then updated. The analyst now has the ability to view GOES, POES, and MODIS data in a single loop. This allows the fire analyst the ability to easily confirm a fire in three different data sets. The upgraded HMS has faster satellite looping and gives the analyst the ability to design a false color image for a particular region. The GOES satellites provide a relatively coarse 4 km infrared resolution at satellite subpoint for thermal fire detection but provide the advantage of a rapid update cycle. GOES imagery is updated every 15 minutes utilizing both GOES-10 and GOES-12. POES imagery from NOAA-15, NOAA-16 and NOAA-17 and MODIS from Terra and Aqua are employed with each satellite providing twice per day coverage (more frequent over Alaska). While the frequency of imagery is much less than with GOES the higher resolution of these satellites (1 km along the suborbital track) allows for detection of

  16. 46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.

    Science.gov (United States)

    2010-10-01

    ... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...

  17. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    Science.gov (United States)

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A GIS-based decision support system for determining the shortest and safest route to forest fires: a case study in Mediterranean Region of Turkey.

    Science.gov (United States)

    Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun

    2012-03-01

    The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.

  19. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  20. Teaching methodology of the diagnosing process on the example of the fire alarm system

    Directory of Open Access Journals (Sweden)

    Paś Jacek

    2017-03-01

    Full Text Available The article presents a method of teaching the process of diagnosing the technical and functional condition of the fire alarm system (SSP. The fire alarm system’s laboratory model is a representation of a real fire alarm system. The lecturer has the opportunity to inflict several different independent damage. The aim of the laboratory exercise is to familiarize students with the methodology and structure of the fire alarm system diagnosing process.

  1. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  2. The impact of fire on the Late Paleozoic Earth System

    Directory of Open Access Journals (Sweden)

    Ian J. Glasspool

    2015-09-01

    Full Text Available Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2 that mass balance models predict prevailed. At higher levels of p(O2, increased fire activity would have rendered vegetation with high moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2 rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can therefore be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2 played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  3. The impact of fire on the Late Paleozoic Earth system.

    Science.gov (United States)

    Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi

    2015-01-01

    Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.

  4. Joint Fire Support in 2020: Development of a Future Joint Fires Systems Architecture for Immediate, Unplanned Targets

    National Research Council Canada - National Science Library

    Gabriel, J. T; Bartel, Matthew; Dorrough, Grashawn J; Paiz, B. L; Peters, Brian; Savage, Matthew; Nordgran, Spencer

    2006-01-01

    ... in support of the commander. In this context, the Joint Fire Support in 2020 project applied systems engineering procedures and principles to develop functional, physical, and operational architectures that maximize rapid...

  5. Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia

    Science.gov (United States)

    Taridala, S.; Yudono, A.; Ramli, M. I.; Akil, A.

    2017-08-01

    Kendari City is a coastal urban region with the smallest area as well as the largest population in Southeast Sulawesi. Fires in Kendari City had rather frequently occurred and caused numerous material losses. This study aims to develop a model of urban fire risk and fire station site assessment. The model is developed using Expert Systems with the Geographic Information System (GIS). The high risk of fire area is the area which of high building density with combustible material, not crossed by arterial nor collector road. The fire station site should be appropriately close by high risk of fire area, located on arterial road and near with potential water resource.

  6. Seismic Fragility of the LANL Fire Water Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mertz

    2007-03-30

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  7. Seismic Fragility of the LANL Fire Water Distribution System

    International Nuclear Information System (INIS)

    Greg Mertz Jason Cardon Mike Salmon

    2007-01-01

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10 -3 that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels

  8. Selecting a Cable System Operator.

    Science.gov (United States)

    Cable Television Information Center, Washington, DC.

    Intended to assist franchising authorities with the process of selecting a cable television system operator from franchise applicants, this document provides a framework for analysis of individual applications. Section 1 deals with various methods which can be used to select an operator. The next section covers the application form, the vehicle a…

  9. CFES--California Fire Economics Simulator: A Computerized System for Wildland Fire Protection Planning

    Science.gov (United States)

    Jeremy S. Fried; J. Keith Gilless; Robert E. Martin

    1987-01-01

    The University of California's Department of Forestry and Resource Management, under contract with the California Department of Forestry and Fire Protection, has developed and released the first version of the California Fire Economics Simulator (CFES). The current release is adapted from the Initial Action Assessment component of the USFS's National Fire...

  10. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  11. Training Effectiveness Evaluation (TEE) of the Advanced Fire Fighting Training System. Focus on the Trained Person.

    Science.gov (United States)

    Cordell, Curtis C.; And Others

    A training effectiveness evaluation of the Navy Advanced Fire Fighting Training System was conducted. This system incorporates simulated fires as well as curriculum materials and instruction. The fires are non-pollutant, computer controlled, and installed in a simulated shipboard environment. Two teams of 15 to 16 persons, with varying amounts of…

  12. BehavePlus fire modeling system, version 5.0: Variables

    Science.gov (United States)

    Patricia L. Andrews

    2009-01-01

    This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...

  13. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  14. Strategy and system of fire protection at Guangdong Daya Bay Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhou Weihong

    1999-12-01

    The fire protection is an important safety issue of nuclear power utilities. The author depicts the strategy and management system of fire protection implemented successfully at Guangdong Daya Bay Nuclear Power Plant of China

  15. OCULUS fire: a command and control system for fire management with crowd sourcing and social media interconnectivity

    Science.gov (United States)

    Thomopoulos, Stelios C. A.; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Dimitros, Kostantinos; Margonis, Christos; Thanos, Giorgos Konstantinos; Skroumpelou, Katerina

    2016-05-01

    AF3 (Advanced Forest Fire Fighting2) is a European FP7 research project that intends to improve the efficiency of current fire-fighting operations and the protection of human lives, the environment and property by developing innovative technologies to ensure the integration between existing and new systems. To reach this objective, the AF3 project focuses on innovative active and passive countermeasures, early detection and monitoring, integrated crisis management and advanced public information channels. OCULUS Fire is the innovative control and command system developed within AF3 as a monitoring, GIS and Knowledge Extraction System and Visualization Tool. OCULUS Fire includes (a) an interface for real-time updating and reconstructing of maps to enable rerouting based on estimated hazards and risks, (b) processing of GIS dynamic re-construction and mission re-routing, based on the fusion of airborne, satellite, ground and ancillary geolocation data, (c) visualization components for the C2 monitoring system, displaying and managing information arriving from a variety of sources and (d) mission and situational awareness module for OCULUS Fire ground monitoring system being part of an Integrated Crisis Management Information System for ground and ancillary sensors. OCULUS Fire will also process and visualise information from public information channels, social media and also mobile applications by helpful citizens and volunteers. Social networking, community building and crowdsourcing features will enable a higher reliability and less false alarm rates when using such data in the context of safety and security applications.

  16. Pool fires in a large scale ventilation system

    International Nuclear Information System (INIS)

    Smith, P.R.; Leslie, I.H.; Gregory, W.S.; White, B.

    1991-01-01

    A series of pool fire experiments was carried out in the Large Scale Flow Facility of the Mechanical Engineering Department at New Mexico State University. The various experiments burned alcohol, hydraulic cutting oil, kerosene, and a mixture of kerosene and tributylphosphate. Gas temperature and wall temperature measurements as a function of time were made throughout the 23.3m 3 burn compartment and the ducts of the ventilation system. The mass of the smoke particulate deposited upon the ventilation system 0.61m x 0.61m high efficiency particulate air filter for the hydraulic oil, kerosene, and kerosene-tributylphosphate mixture fires was measured using an in situ null balance. Significant increases in filter resistance were observed for all three fuels for burning time periods ranging from 10 to 30 minutes. This was found to be highly dependent upon initial ventilation system flow rate, fuel type, and flow configuration. The experimental results were compared to simulated results predicted by the Los Alamos National Laboratory FIRAC computer code. In general, the experimental and the computer results were in reasonable agreement, despite the fact that the fire compartment for the experiments was an insulated steel tank with 0.32 cm walls, while the compartment model FIRIN of FIRAC assumes 0.31 m thick concrete walls. This difference in configuration apparently caused FIRAC to consistently underpredict the measured temperatures in the fire compartment. The predicted deposition of soot proved to be insensitive to ventilation system flow rate, but the measured values showed flow rate dependence. However, predicted soot deposition was of the same order of magnitude as measured soot deposition

  17. Selecting practice management information systems.

    Science.gov (United States)

    Worley, R; Ciotti, V

    1997-01-01

    Despite enormous advances in information systems, the process by which most medical practices select them has remained virtually unchanged for decades: the request for proposal (RFP). Unfortunately, vendors have learned ways to minimize the value of RFP checklists to where purchasers now learn little about the system functionality. The authors describe a selection methodology that replaces the RFP with scored demos, reviews of vendor user manuals and mathematically structured reference checking. In a recent selection process at a major medical center, these techniques yielded greater user buy-in and favorable contract terms as well.

  18. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  19. Application of Composite Materials in the Fire Explosion Suppression System

    Institute of Scientific and Technical Information of China (English)

    REN Shah

    2012-01-01

    In order to lighten the weight of the special vehicles and improve their mobility and flexibility, the weight of all subsystems of the whole vehicle must be reduced in the general planning. A fire explosion suppression system is an important subsystem for the self-protection of vehicle, protection of crews and safety of a vehicle. The performances of the special vehicles determine their survival ability and combat capability. The composite bottle is made of aluminum alloy with externally wrapped carbon fiber ; it has been proven by a large number of tests that the new type explosion suppression fire distinguisher made of such composite materials applied in the special vehicle has reliable performance, each of its technical indexes is higher or equal to that of a steel distinguisher, and the composites can also optimize the assembly structure of the bottle, and improve the reliability and corrosion resistance. Most important is that the composite materials can effectively lighten the weight of the fire explosion suppression system to reach the target of weight reduction of the subsystem in general planning.

  20. Fire-mediated disruptive selection can explain the reseeder-resprouter dichotomy in Mediterranean-type vegetation.

    Science.gov (United States)

    Altwegg, Res; De Klerk, Helen M; Midgley, Guy F

    2015-02-01

    Crown fire is a key selective pressure in Mediterranean-type plant communities. Adaptive responses to fire regimes involve trade-offs between investment for persistence (fire survival and resprouting) and reproduction (fire mortality, fast growth to reproductive maturity, and reseeding) as investments that enhance adult survival lower growth and reproductive rates. Southern hemisphere Mediterranean-type ecosystems are dominated by species with either endogenous regeneration from adult resprouting or fire-triggered seedling recruitment. Specifically, on nutrient-poor soils, these are either resprouting or reseeding life histories, with few intermediate forms, despite the fact that the transition between strategies is evolutionarily labile. How did this strong dichotomy evolve? We address this question by developing a stochastic demographic model to assess determinants of relative fitness of reseeders, resprouters and hypothetical intermediate forms. The model was parameterised using published demographic data from South African protea species and run over various relevant fire regime parameters facets. At intermediate fire return intervals, trade-offs between investment in growth versus fire resilience can cause fitness to peak at either of the extremes of the reseeder-resprouter continuum, especially when assuming realistic non-linear shapes for these trade-offs. Under these circumstances, the fitness landscape exhibits a saddle which could lead to disruptive selection. The fitness gradient between the peaks was shallow, which may explain why this life-history trait is phylogenetically labile. Resprouters had maximum fitness at shorter fire-return intervals than reseeders. The model suggests that a strong dichotomy in fire survival strategy depends on a non-linear trade-off between growth and fire persistence traits.

  1. Selection Method for COTS Systems

    DEFF Research Database (Denmark)

    Hedman, Jonas; Andersson, Bo

    2014-01-01

    feature behind the method is that improved understanding of organizational ‘ends’ or goals should govern the selection of a COTS system. This can also be expressed as a match or fit between ‘ends’ (e.g. improved organizational effectiveness) and ‘means’ (e.g. implementing COTS systems). This way...

  2. Fire safety

    International Nuclear Information System (INIS)

    Keski-Rahkonen, O.; Bjoerkman, J.; Hostikka, S.; Mangs, J.; Huhtanen, R.; Palmen, H.; Salminen, A.; Turtola, A.

    1998-01-01

    According to experience and probabilistic risk assessments, fires present a significant hazard in a nuclear power plant. Fires may be initial events for accidents or affect safety systems planned to prevent accidents and to mitigate their consequences. The project consists of theoretical work, experiments and simulations aiming to increase the fire safety at nuclear power plants. The project has four target areas: (1) to produce validated models for numerical simulation programmes, (2) to produce new information on the behavior of equipment in case of fire, (3) to study applicability of new active fire protecting systems in nuclear power plants, and (4) to obtain quantitative knowledge of ignitions induced by important electric devices in nuclear power plants. These topics have been solved mainly experimentally, but modelling at different level is used to interpret experimental data, and to allow easy generalisation and engineering use of the obtained data. Numerical fire simulation has concentrated in comparison of CFD modelling of room fires, and fire spreading on cables on experimental data. So far the success has been good to fair. A simple analytical and numerical model has been developed for fire effluents spreading beyond the room of origin in mechanically strongly ventilated compartments. For behaviour of equipment in fire several full scale and scaled down calorimetric experiments were carried out on electronic cabinets, as well as on horizontal and vertical cable trays. These were carried out to supply material for CFD numerical simulation code validation. Several analytical models were developed and validated against obtained experimental results to allow quick calculations for PSA estimates as well as inter- and extrapolations to slightly different objects. Response times of different commercial fire detectors were determined for different types of smoke, especially emanating from smoldering and flaming cables to facilitate selection of proper detector

  3. Decision support system to select cover systems

    International Nuclear Information System (INIS)

    Bostick, K.V.

    1995-01-01

    The objective of this technology is to provide risk managers with a defensible, objective way to select capping alternatives for remediating radioactive and mixed waste landfills. The process of selecting containment cover technologies for mixed waste landfills requires consideration of many complex and interrelated technical, regulatory, and economic issues. A Decision Support System (DSS) is needed to integrate the knowledge of experts from scientific, engineering, and management disciplines to help in selecting the best capping practice for the site

  4. FireSignal - Data Acquisition and Control System Software

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Duarte, A.; Carvalho, B.; Sousa, J.; Valcarcel, D.; Varandas, C.; Hron, M.

    2006-01-01

    Control of fusion devices requires good, non-ambiguous, easy to use user-interfaces to configure hardware devices. To solve this problem a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and server are completely independent from each other and might be running in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal was designed from the beginning to be as independent as possible from any kind of constraints as it's a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. All hardware is described in eXtendend Markup Language (XML) and from this information the FireSignal client application can build automatically Graphical User Interfaces (GUI) and validate the user's parameter configuration. Any type of hardware can be integrated in the system as long as it is described in XML and the respective driver is developed. Any modern programming language can be used to develop these drivers, and currently we use Python and Java generic drivers. All data storage and indexing is time stamped event-based s. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks. (author)

  5. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  6. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  7. Selection Process of ERP Systems

    OpenAIRE

    Molnár, Bálint; Szabó, Gyula; Benczúr, András

    2013-01-01

    Background: The application and introduction of ERP systems have become a central issue for management and operation of enterprises. The competition on market enforces the improvement and optimization of business processes of enterprises to increase their efficiency, effectiveness, and to manage better the resources outside the company. The primary task of ERP systems is to achieve the before-mentioned objectives. Objective: The selection of a particular ERP system has a decisive effect on th...

  8. Selection and use of fire-resistant hydraulic fluids for underground mining equipment. [Oil-in-water emulsions; water-in-oil emulsions; phosphate esters; chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A J

    1981-02-01

    During the initial introduction of fire-resistant fluids to the Canadian underground mining industry, all hydraulic systems for which they were being considered were originally designed for operation with mineral oil. This meant that each system had to be individually examined and assessed with regard to its suitability in terms of acceptable component life and operation, at the same time as the selection of a fluid was being undertaken. Fluid selection by cost differential, toxicity content and fire resistancy was narrowed to types HFB and HFC, with HFB water-in-oil emulsion being the preferred fluid based on performance characteristics. By incorporating British mining industry experience and superior fluid types with practical trials, it was found that by modifing the design of some systems and slightly derating the operational parameters of individual components, it was possible to obtain a system performance comparable to that obtained when mineral oil was being used.

  9. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  10. Project 93L-EWL-097, fire alarm system improvements, 300 Area

    International Nuclear Information System (INIS)

    Scott, M.V.

    1995-01-01

    This document contains the Acceptance Test Procedure (ATP) which will demonstrate that the modifications to the Fire Protection systems in the 338 Building function as intended. The ATP will test the fire alarm control panel, flow alarm pressure switch, post indicator valve tamper switch, heat detectors, flow switches, and fire alarm signaling devices

  11. POWER SUPPLY MANAGEMENT SYSTEM DESIGN ON NODE EARLY WARNING SYSTEM FOR PEATLANDS FIRE MITIGATION

    Directory of Open Access Journals (Sweden)

    Taufiq Muammar

    2018-02-01

    Full Text Available Early warning system is one of the technology to detect land fires by utilizing a network of wireless sensors. Constant data transmission by the sensor nodes consumes a large amount of energy on the nodes’ sides that could affect the battery’s longevity. This research is done to discover the amount of power consumption and battery longevity during fire emergencies, and during non-emergency situation on peatlands. Power saving on the fire detecting system uses an LM35 temperature sensor, ATmega8 micro-controller and HC-12 transmission module. The overall result of powered by a 9 volt battery during fire emergencies, and during non-emergency, the power consumption reaches up to 1 Wh, with various longevity levels of the battery. The implementation of sleep/wake up mode scheduling during fire emergencies and non-emergencies could save battery for 2 hours compared to those without the power saving mode implementation. Power saving during fire emergency could be minimalized by activating the sleep mode activation power-down on the micro controller and it can also set the data transmission schedule to minimalize data usage during fire emergency, so that the usage of sleep/wake up mode interval scheduling during transmission could minimalize energy consumption and elongate the power supply active period.

  12. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  13. Proof of safer operation of power station plant during a fire by linking in fire simulation and system technical analysis

    International Nuclear Information System (INIS)

    Hensel, W.; Beyer, H.; Samman, A.

    1997-01-01

    In order to attain the basic aims of protection in power station plant, a series of systems, which must be available also in the event of a fire, are provided. The thermal loads for the systems and components which are necessary to attain the aims of protection are ascertained by means of a simulation of the cause of the fire for the specific scenario. Statements on the availability of the systems and components in the specific scenario are derived from the design values used as the basis. (orig.) [de

  14. Production Systems and Supplier Selection

    DEFF Research Database (Denmark)

    Pedraza-Acosta, Isabel; Pilkington, Alan; Barnes, David

    2016-01-01

    strategic stamping suppliers. Findings: Our contribution is the multi-phased production and product innovation process. This is an advance from traditional supplier selection and also an extension of ideas of supplier-located product development as it includes production system development, and complements...

  15. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Directory of Open Access Journals (Sweden)

    Jordi Fonollosa

    2018-02-01

    Full Text Available Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  16. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.

    Science.gov (United States)

    Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago

    2018-02-11

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.

  17. Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Science.gov (United States)

    Fonollosa, Jordi

    2018-01-01

    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490

  18. Risk assessment of main control board fire using fire dynamics simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il, E-mail: dikang@kaeri.re.kr [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Kilyoo; Jang, Seung-Cheol [KAERI, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Yoo, Seong Yeon [Chungnam National University, 79, Daehagro, Yuseong-Gu, Daejeon (Korea, Republic of)

    2015-08-15

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk.

  19. Risk assessment of main control board fire using fire dynamics simulator

    International Nuclear Information System (INIS)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol; Yoo, Seong Yeon

    2015-01-01

    Highlights: • A decision tree for evaluating the risk of a main control board (MCB) fire was proposed to systematically determine the MCB fire scenarios. • Fire simulations using fire dynamics simulator (FDS) were performed to estimate the time to MCR abandonment. • Non-propagating and propagating fire scenarios were considered for fire simulations. • The current study indicates that the quantification of the MCB fire risk should address the propagating fire and non-propagating fire scenarios if the MCB has no internal barriers between the panels. - Abstract: This paper presents the process and results of a risk assessment for a main control board (MCB) fire using fire dynamics simulator (FDS). A decision tree for evaluating the risk of a MCB fire was proposed to systematically determine the MCB fire scenarios, and fire simulations using FDS were performed to estimate the time to MCR abandonment. As a reference NPP for this study, Hanul unit 3 in Korea was selected and its core damage frequency (CDF) owing to the MCB fire was quantified. Two types of fire scenarios were considered for fire simulations: non-propagating fire scenarios occurring within a single MCB panel and propagating fire scenarios spreading from one control panel to the adjacent panels. Further, the fire scenarios were classified into fires with and without a heating, ventilation, and air conditioning system (HVACS). The fire simulation results showed that the major factor causing the MCR evacuation was the optical density irrelevant to the availability of the HVACS. The risk assessment results showed that the abandonment fire scenario risk was less than the non-abandonment fire scenario risk and the propagating fire scenario risk was greater than the non-propagating fire scenario risk

  20. Review of state-of-the-art decision support systems (DSSs) for prevention and suppression of forest fires

    Institute of Scientific and Technical Information of China (English)

    Stavros Sakellariou; Stergios Tampekis; Fani Samara; Athanassios Sfougaris; Olga Christopoulou

    2017-01-01

    Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selec-tion of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems (DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use:database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology forimmediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.

  1. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  2. Applying the Wildland Fire Decision Support System (WFDSS) to support risk-informed decision making: The Gold Pan Fire, Bitterroot National Forest, Montana, USA

    Science.gov (United States)

    Erin K. Noonan-Wright; Tonja S. Opperman

    2015-01-01

    In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...

  3. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  4. Research of the Fire Resistance оf Translucent and Composite Facade System

    Directory of Open Access Journals (Sweden)

    Nedryshkin Oleg

    2016-01-01

    Full Text Available The paper aims at researching fire resistance of a prototype facade system “Technocom” (type Alucobond A2. Experimental and theoretical research of fire hazard facade system is carried out. The objectives of the study are to determine compliance with the applicable front of special technical requirements. The status of problem reducing fire hazard facade system is reviewed. The method developed by compensatory measures is applied.

  5. Fire hazards evaluation for light duty utility arm system

    International Nuclear Information System (INIS)

    HUCKFELDT, R.A.

    1999-01-01

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented

  6. FireSignal-Data acquisition and control system software

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Hron, M. [Asociace EURATOM IPP.CR, Prague (Czech Republic); Varandas, C.A.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2007-10-15

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks.

  7. FireSignal-Data acquisition and control system software

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F.; Hron, M.; Varandas, C.A.F.

    2007-01-01

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks

  8. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  9. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  10. Enginnering development of coal-fired high performance power systems phase II and III

    International Nuclear Information System (INIS)

    1998-01-01

    This report presents work carried out under contract DE-AC22-95PC95144 ''Engineering Development of Coal-Fired High Performance Systems Phase II and III.'' The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) >47%; NOx, SOx, and particulates 65% of heat input; all solid wastes benign; cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R ampersand D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update

  11. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    Science.gov (United States)

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (Pcast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  12. Appraisal of Passive and Active Fire Protection Systems in Student’s Accommodation

    Directory of Open Access Journals (Sweden)

    Ismail I.

    2014-03-01

    Full Text Available Fire protection systems are very important systems that must be included in buildings. They have a great significance in reducing or preventing the occurrences of fire. This paper presents an assessment of fire protection systems in student’s accommodation. Student accommodation is a particular type of building that provides shelter for students at University. In addition, it is also supposed to be an attractive environment, conducive to learning, and importantly, safe for occupation. The fire safety of occupants in a building, must be in accordance with the requirements of the building’s code. Therefore, the design of the building must comply with the Uniform Building By-Law (UBBL 1984 of Malaysia, and provide all of the required safety features. This paper describes the findings from investigations of passive and active fire protection systems installed in buildings, based on fire safety requirements, UBBL (1984.

  13. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1...-extinguishing system. On such vessels contracted for prior to January 1, 1962, a steam smothering system may be...

  14. 14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.

    Science.gov (United States)

    2010-01-01

    ... detection systems. 25.858 Section 25.858 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If... must be met for each cargo or baggage compartment with those provisions: (a) The detection system must...

  15. A system extinguishing a fire by insulating a liquid fuel

    International Nuclear Information System (INIS)

    Colome, Jacques; Duchene, Alain; Regnier, Jean.

    1975-01-01

    The invention refers to a system for quickly extinguishing a liquid fuel body on fire by insulating it completely from the ambient air. It applies particularly to the case of a high temperature liquid sodium sheet flowing accidentally from a circuit belonging to a fast neutron reactor. The system in question includes a lower receptacle for collecting the liquid fuel and a top cover shutting off the receptacle. This cover has inclined channels to take the liquid fuel flow and openings to allow this liquid through at the bottom end of the channels. These openings are closed by retractable shutters moving away under the pressure of the liquid in the channels and closing automatically after the liquid has flowed into the receptacle [fr

  16. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    Science.gov (United States)

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits

  17. Chaos in integrate-and-fire dynamical systems

    International Nuclear Information System (INIS)

    Coombes, S.

    2000-01-01

    Integrate-and-fire (IF) mechanisms are often studied within the context of neural dynamics. From a mathematical perspective they represent a minimal yet biologically realistic model of a spiking neuron. The non-smooth nature of the dynamics leads to extremely rich spike train behavior capable of explaining a variety of biological phenomenon including phase-locked states, mode-locking, bursting and pattern formation. The conditions under which chaotic spike trains may be generated in synaptically interacting networks of neural oscillators is an important open question. Using techniques originally introduced for the study of impact oscillators we develop the notion of a Liapunov exponent for IF systems. In the strong coupling regime a network may undergo a discrete Turing-Hopf bifurcation of the firing times from a synchronous state to a state with periodic or quasiperiodic variations of the interspike intervals on closed orbits. Away from the bifurcation point these invariant circles may break up. We establish numerically that in this case the largest IF Liapunov exponent becomes positive. Hence, one route to chaos in networks of synaptically coupled IF neurons is via the breakup of invariant circles

  18. Single vs. dual color fire detection systems: operational tradeoffs

    Science.gov (United States)

    Danino, Meir; Danan, Yossef; Sinvani, Moshe

    2017-10-01

    In attempt to supply a reasonable fire plume detection, multinational cooperation with significant capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives, single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter. SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter. On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a guard), to allow the implementation of a simpler and more robust approach for performing the same task. In this paper we present the basics of SCIR & DCIR architecture and the main differences between them. In addition, we will present the results from a thorough study conducted for the purpose of learning about the added value of the additional data available from the second spectral band. Here we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band (guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of operational value. We also present a new approach for tunable filter to such sensor.

  19. INFORMATION-ANALYTICAL SYSTEM OF FORECAST VEGETATION FIRES IN NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    R. M. Kogan

    2015-01-01

    Full Text Available A system for spatial prediction for fire danger as function of weather and pyrological vegetation characteristics was constructed. The method of calculating the time conducted vegetable combustible materials in fire condition of each month of the season was suggested. Calculate the probability of fires and danger periods of plant formations in a monsoon climate. The geographic information system was developed, it was tested in the Middle Amur region in the Russian Far East.

  20. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    International Nuclear Information System (INIS)

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    evaluates different design concepts or approaches for the ventilation and air cleaning system (VACS) that can be used to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions. Various anticipated events or accidents causing hazards in nuclear fuel cycle facilities, e.g. routine hazards, fires, accidental criticality and iodine release have been reviewed and discussed. Also it describes the possible fire protection approaches with their functional classifications and their engineered and administrative safety features. Finally a conclusion on the selection of the best design concept is recommended.

  1. Effects of repeated firing on the marginal accuracy of Co-Cr copings fabricated by selective laser melting.

    Science.gov (United States)

    Zeng, Li; Zhang, Yong; Liu, Zheng; Wei, Bin

    2015-02-01

    Selective laser melting (SLM) is a technique used to fabricate Co-Cr dental restorations; however, because marginal accuracy is important for the long-term success of restorations, the marginal accuracy of SLM after repeated firings must be considered. The purpose of this study was to evaluate the marginal accuracy of dental Co-Cr alloy copings fabricated by SLM and to investigate the effects of repeated firing on the marginal fit of these copings. SLM-fabricated and cast Co-Cr alloy copings (n=15) were prepared for a zirconia die. The marginal gap widths of each group were evaluated with a silicone replica technique after the first, third, fifth, and seventh firing cycle. The thickness of the reference point was measured with a stereomicroscope with ×100 magnification. Analysis of variance was used to evaluate the effect of repeated firing on the marginal accuracy of the 2 alloys. The Student t test was used to compare the marginal gap widths of the SLM-fabricated and cast Co-Cr alloy copings after repeated firing (α=.05). The marginal gap width values between the 2 groups at all firing periods were statistically significant (P.05). The SLM copings demonstrated superior marginal accuracy at all firings. Repeated firing had no significant influence on the marginal accuracy of both copings, and the marginal fit of both copings after repeated firing was within a clinically acceptable range. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  3. Characterization of a mine fire using atmospheric monitoring system sensor data.

    Science.gov (United States)

    Yuan, L; Thomas, R A; Zhou, L

    2017-06-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.

  4. Spatial products available for identifying areas of likely wildfire ignitions using lightning location data-Wildland Fire Assessment System (WFAS)

    Science.gov (United States)

    Paul Sopko; Larry Bradshaw; Matt Jolly

    2016-01-01

    The Wildland Fire Assessment System (WFAS, www.wfas.net) is a one-stop-shop giving wildland fire managers the ability to assess fire potential ranging in scale from national to regional and temporally from 1 to 5 days. Each day, broad-area maps are produced from fire weather station and lightning location networks. Three products are created using 24 hour...

  5. A WebGIS-based command control system for forest fire fighting

    Science.gov (United States)

    Yang, Jianyu; Ming, Dongping; Zhang, Xiaodong; Huang, Haitao

    2006-10-01

    Forest is a finite resource and fire prevention is crucial work. However, once a forest fire or accident occurs, timely and effective fire-fighting is the only necessary measure. The aim of this research is to build a computerized command control system based on WEBGIS to direct fire-fighting. Firstly, this paper introduces the total technique flow and functional modules of the system. Secondly, this paper analyses the key techniques for building the system, and they are data obtaining, data organizing & management, architecture of WebGIS and sharing & interoperation technique. In the end, this paper demonstrates the on line martial symbol editing function to show the running result of system. The practical application of this system showed that it played very important role in the forest fire fighting work. In addition, this paper proposes some strategic recommendations for the further development of the system.

  6. RF Systems for a Proposed Next Step Option (FIRE)

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Swain, D.W.

    1999-04-12

    FIRE (Fusion Ignition Research Experiment) is a high-field, burning-plasma tokamak that is being studied as a possible option for future fusion research. Preliminary parameters for this machine are R0 approximately equal to 2 m, a approximately equal to 0.5 m, B0 approximately equal to 10 T, and Ip approximately equal to 6 MA. Magnetic field coils are to be made of copper and precooled with LN2 before each shot. The flat-top pulse length desired is greater than or equal to 10s. Ion cyclotron and lower hybrid rf systems will be used for heating and current drive. Present specifications call for 30 MW of ion cyclotron heating power, with 25 MW of lower hybrid power as an upgrade option.

  7. RF Systems for a Proposed Next Step Option (FIRE)

    International Nuclear Information System (INIS)

    Carter, M.D.; Swain, D.W.

    1999-01-01

    FIRE (Fusion Ignition Research Experiment) is a high-field, burning-plasma tokamak that is being studied as a possible option for future fusion research. Preliminary parameters for this machine are R 0 approximately equal to 2 m, a approximately equal to 0.5 m, B 0 approximately equal to 10 T, and I p approximately equal to 6 MA. Magnetic field coils are to be made of copper and precooled with LN 2 before each shot. The flat-top pulse length desired is greater than or equal to 10s. Ion cyclotron and lower hybrid rf systems will be used for heating and current drive. Present specifications call for 30 MW of ion cyclotron heating power, with 25 MW of lower hybrid power as an upgrade option

  8. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  9. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  10. 33 CFR 149.416 - What are the requirements for a dry chemical fire suppression system?

    Science.gov (United States)

    2010-07-01

    ... the requirements for a dry chemical fire suppression system? Each natural gas deepwater port must be... dry chemical fire suppression system? 149.416 Section 149.416 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION...

  11. Monitoring of pipeline oil spill fire events using Geographical Information System and Remote Sensing

    Science.gov (United States)

    Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.

    2016-12-01

    Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.

  12. Economic efficiency and risk character of fire management programs, Northern Rocky Mountains

    Science.gov (United States)

    Thomas J. Mills; Frederick W. Bratten

    1988-01-01

    Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...

  13. The improvement of the fire protections system for nuclear cycle facilities. Formulation of a fire protection guideline for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    2012-04-01

    The private side Fire Protection Guideline was investigated with respect to the fire having taken place at the nuclear reactor site followed by the Chuetsu-Oki earthquake in Niigata Prefecture in 2007. To improve the fire protection system especially applicable to MOX fuel fabrication facilities, JNES (Japan Nuclear Energy Safety Organization) investigated private guidelines adopted in Japanese Light Water cooled Reactors, the standardized guidelines used in Nuclear Facilities in other countries including USA, and the standards in the chemical plants. The content of the guideline concerns the prevention of the fire breakout, the prevention of fire extension, the reduction of the fire effects, as well as the facility-characteristic protection countermeasures and the fire effect evaluations. (S. Ohno)

  14. Passive fire building protection system evaluation (case study: millennium ict centre)

    Science.gov (United States)

    Rahman, Vinky; Stephanie

    2018-03-01

    Passive fire protection system is a system that refers to the building design, both regarding of architecture and structure. This system usually consists of structural protection that protects the structure of the building and prevents the spread of fire and facilitate the evacuation process in case of fire. Millennium ICT Center is the largest electronic shopping center in Medan, Indonesia. As a public building that accommodates the crowd, this building needs a fire protection system by the standards. Therefore, the purpose of this study is to evaluate passive fire protection system of Millennium ICT Center building. The study was conducted to describe the facts of the building as well as direct observation to the research location. The collected data is then processed using the AHP (Analytical Hierarchy Process) method in its weighting process to obtain the reliability value of passive fire protection fire system. The results showed that there are some components of passive fire protection system in the building, but some are still unqualified. The first section in your paper

  15. Adsorber fires

    International Nuclear Information System (INIS)

    Holmes, W.

    1987-01-01

    The following conclusions are offered with respect to activated charcoal filter systems in nuclear power plants: (1) The use of activated charcoal in nuclear facilities presents a potential for deep-seated fires. (2) The defense-in-depth approach to nuclear fire safety requires that if an ignition should occur, fires must be detected quickly and subsequently suppressed. (3) Deep-seated fires in charcoal beds are difficult to extinguish. (4) Automatic water sprays can be used to extinguish fires rapidly and reliably when properly introduced into the burning medium. The second part of the conclusions offered are more like challenges: (1) The problem associated with inadvertent actuations of fire protection systems is not a major one, and it can be reduced further by proper design review, installation, testing, and maintenance. Eliminating automatic fire extinguishing systems for the protection of charcoal adsorbers is not justified. (2) Removal of automatic fire protection systems due to fear of inadvertent fire protection system operation is a case of treating the effect rather than the cause. On the other hand, properly maintaining automatic fire protection systems will preserve the risk of fire loss at acceptable levels while at the same time reducing the risk of damage presented by inadvertent operation of fire protection systems

  16. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics.

    Science.gov (United States)

    Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P

    2013-11-30

    Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characterization of modulated integrate-and-fire systems

    International Nuclear Information System (INIS)

    Alstroem, P.; Christiansen, B.; Levinsen, M.T.

    1988-01-01

    The phase locking structure in threshold modulated integrate-and-fire systems is explored. The existence of a smooth critical line where the Poincare map has an infinite slope inflection point is emphasized. At and below this line the system is related to circle map systems. Especially, this allows realization of systems with higher order scaling structures, qualitatively distinct from ordinary third order circle map structures. Hourglass patterns develop in parameter space and at small modulation amplitudes the behavior of the phase-locking regions (Arnold tongues) change dramatically. Above the critical line the Arnold tongues complete the parameter space, leaving along any line a zero-dimensional Cantor set of points associated with irrational rotation numbers. The critical line is not associated with a transition to chaos. In particular non-chaotic regions with complete phase-locking exist. In the supercritical region a gap is present in the Poincare map. The features at this gap are examined. Also local hysteresis may occur. We discuss the applicability of the local approximation. (orig.)

  18. Geometry-Of-Fire Tracking Algorithm for Direct-Fire Weapon Systems

    Science.gov (United States)

    2015-09-01

    this specific application. A scaled-down version for a fire team was created with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers...constructed with XBee Pro radios, Arduino Uno microcontrollers, Raspberry Pi computers and ROS [5]. The XBee Pro radios and Arduino Uno microcontrollers

  19. Wildland fire decision support system air quality tools

    Science.gov (United States)

    Sim Larkin; Tim Brown; Pete Lahm; Tom Zimmerman

    2010-01-01

    Smoke and air quality information have an important role in wildland fire decisionmaking that is reinforced in the 2009 "Guidance for Implementation of Federal Wildland Fire Management Policy." A key intent of the guidance is to allow consideration and use of the full range of strategic and tactical options that are available in the response to every wildland...

  20. Additives for Water Mist Fire Suppression Systems: A Review

    Science.gov (United States)

    2012-11-01

    matériel et aux composants électroniques exposés aux vapeurs acides. Le brouillard d’eau ne contient pas de gaz acides et, par conséquent, peut être...diesel fuel) fire decreased from 175 seconds to 8 seconds when the additive was used and an Avtur (aviation turbine fuel) fire that was not

  1. Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System

    Science.gov (United States)

    Deomore, Dayanand N.; Yarasu, Ravindra B.

    2018-02-01

    The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.

  2. Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu; Zou Yanli

    2008-01-01

    We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network

  3. Design and Realization of Ship Fire Simulation Training System Based on Unity3D

    Science.gov (United States)

    Ting, Ye; Feng, Chen; Wenqiang, Wang; Kai, Yang

    2018-01-01

    Ship fire training is a very important training to ensure the safety of the ship, but limited by the characteristics of the ship itself, it is difficult to carry out fire training on the ship. This paper proposes to introduce a virtual reality technology to build a set of ship fire simulation training system, used to improve the quality of training, reduce training costs. First, the system design ideas are elaborated, and the system architecture diagram is given. Then, the key technologies in the process of system implementation are analyzed. Finally, the system examples are built and tested.

  4. FUEGO — Fire Urgency Estimator in Geosynchronous Orbit — A Proposed Early-Warning Fire Detection System

    Directory of Open Access Journals (Sweden)

    Scott Stephens

    2013-10-01

    Full Text Available Current and planned wildfire detection systems are impressive but lack both sensitivity and rapid response times. A small telescope with modern detectors and significant computing capacity in geosynchronous orbit can detect small (12 m2 fires on the surface of the earth, cover most of the western United States (under conditions of moderately clear skies every few minutes or so, and attain very good signal-to-noise ratio against Poisson fluctuations in a second. Hence, these favorable statistical significances have initiated a study of how such a satellite could operate and reject the large number of expected systematic false alarms from a number of sources. Here we present both studies of the backgrounds in Geostationary Operational Environmental Satellites (GOES 15 data and studies that probe the sensitivity of a fire detection satellite in geosynchronous orbit. We suggest a number of algorithms that can help reduce false alarms, and show efficacy on a few. Early detection and response would be of true value in the United States and other nations, as wildland fires continue to severely stress resource managers, policy makers, and the public, particularly in the western US. Here, we propose the framework for a geosynchronous satellite with modern imaging detectors, software, and algorithms able to detect heat from early and small fires, and yield minute-scale detection times.

  5. Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting

    Science.gov (United States)

    Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong

    There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.

  6. Updating of the fire fighting systems and organization at the Embalse nuclear power plant, Argentina

    International Nuclear Information System (INIS)

    Acevedo, C.F.

    1998-01-01

    A brief description is given of the updating carried out at the Embalse NPP after commissioning, covering the station fire equivalent loads, the station weak points from the fire point of view, the possible upgrading of systems or technological improvements, early alarm and automatic actions, organizations, education and training, and drills. (author)

  7. Grazing management, resilience and the dynamics of a fire driven rangeland system

    NARCIS (Netherlands)

    Anderies, J.M.; Janssen, M.A.; Walker, B.H.

    2002-01-01

    We developed a stylized mathematical model to explore the effects of physical, ecological, and economic factors on the resilience of a managed fire-driven rangeland system. Depending on grazing pressure, the model exhibits one of three distinct configurations: a fire-dominated, grazing-dominated, or

  8. Fuels planning: science synthesis and integration; environmental consequences fact sheet 01: Fire Effects Information System (FEIS)

    Science.gov (United States)

    Steve Sutherland

    2004-01-01

    The Fire Effects Information System (FEIS) provides accessible, up-to-date fire effects summaries, taken from current English-language literature, for almost 900 plant species, about 100 animal species, and 16 Kuchler plant communities found on the North American continent. This fact sheet discusses the development of FEIS and what is contained in the species summary....

  9. The state of development of fire management decision support systems in America and Europe

    Science.gov (United States)

    Robert Mavsar; Armando González-Cabán; Elsa. Varela

    2013-01-01

    Forest fires affect millions of people worldwide, and cause major ecosystem and economic impacts at different scales. The management policies implemented to minimize the negative impacts of forest fires require substantial investment of financial, human and organizational resources, which must be justifiable and efficient. Decision support systems based on economic...

  10. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  11. Recommendations for ionization chamber smoke detectors for commercial and industrial fire protection systems (1988)

    International Nuclear Information System (INIS)

    1989-01-01

    Ionization chamber smoke detectors (ICSDs) utilising a radioactive substance as the source of ionization are used to detect the presence of smoke and hence give early warning of a fire. These recommendations are intended to ensure that the use of ICSDs incorporating radium-226 and americium-241 in commercial/industrial fire protection systems does not give rise to any unnecessary radiation exposure

  12. Subsystem selection for advanced low emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, L.W.; Farthing, G.A. [Babcock & Wilcox, Alliance, OH (United States). Research and Development Div.; Gorrell, R.L. [Babcock & Wilcox, Barberton, OH (United States). Fossil Power Div.

    1993-12-31

    In 1992 the Pittsburgh Energy Technology Center (PETC) initiated a new program called Combustion 2000. The purpose of the program was to address the design issues facing new and replacement coal-fired power plants. The work presented in this paper was conducted under the low-emission boiler system (LEBS) portion of the program. LEBS major goals are: NO{sub x} - No more than 0.20 lbs per million Btu of fuel input firing bituminous coal; SO{sub x} -- no more than 0.2 lbs of SO{sub 2} per million Btu firing coal with at least 3 lbs of sulfur per million btu; Particulate -- no more than 0.015 lbs per million Btu of fuel input; Waste and Air Toxics -- reduced; and Plant Efficiency -- no less than 38%. Other objectives include reducing waste generation, producing usable by-products, improving ash disposability, and increasing plant thermal efficiency while keeping the cost of electricity comparable to a state-of-the-art plant. The Babcock and Wilcox Company has completed the first year of work toward the development of an advanced low-emission boiler system (LEBS). The results of this work have led to a preliminary engineering design and a plan to address remaining technical uncertainties. This was accomplished by conducting a thorough technical assessment and performing a concept selection analysis. A summary of the results of this work is presented in this paper.

  13. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  14. Integrated system of occupational safety and health and fire protection of the fire rescue brigades members.

    Science.gov (United States)

    Božović, Marijola; Živković, Snežana; Mihajlović, Emina

    2018-06-01

    The objective of the conducted research is the identification and determination of requirements of members of fire rescue brigades during operations in the conditions of high risk in order to minimize the possibilities for injury incidence during the intervention. The research is focused on examination, determination and identification of factors affecting the increasing number of occupational injuries of members of fire rescue brigades during interventions. Hypothetical framework of the research problem consists of general hypothesis and six special hypotheses. Results suggest that almost all respondents believe that their skills and abilities are applicable in the intervention phase, but less than a half believe that their skills are applicable in prevention phase. Two-thirds of respondents stated that in their organization they have support for further education and upgrading while a half of respondents stated that they need education concerning identification, assessment and management of risks that can lead to emergency situations.

  15. RCC-F: Design and construction rules for PWR fire protection systems

    International Nuclear Information System (INIS)

    2013-01-01

    The RCC-F code defines the rules for designing, building and installing the fire protection systems used to manage the nuclear hazards inherent in the outbreak of a fire inside the facility and thereby control the fundamental nuclear functions. The code provides fire protection recommendations in terms of: the industrial risk (loss of assets and/or operation), personnel safety, the environment. The code is divided into five main sections: generalities, design safety principles, fire protection design bases, construction provisions, rules for installing the fire protection components and equipment. The RCC-F code is available as an ETC-F version specifically for EPR projects (European pressurized reactor). Contents of the 2013 edition of the ETC-F code: Volume A - Generalities: Structure of ETC-F general points, documentation (in progress), chapter (provision) quality assurance; Volume B - Design safety principles: design nuclear safety principles; Volume C - Fire protection design bases: fire protection design bases; Volume D - Construction provisions: construction provisions; Volume E - Installation rules for fire protection: rules for installing the fire protection, components and equipment

  16. Selective increase of in vivo firing frequencies in DA SN neurons after proteasome inhibition in the ventral midbrain.

    Science.gov (United States)

    Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen

    2014-09-01

    The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K. [eds.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  18. Fire hazard analysis for the K basin fuel transfer system anneses project A-15

    International Nuclear Information System (INIS)

    BARILO, N.F.

    2001-01-01

    The purpose of the Fuel Transfer System (FTS) is to move the spent nuclear fuel currently stored in the K East (KE) Basin and transfer it by shielded cask to the K West (KW) Basin. The fuel will then be processed through the existing fuel cleaning and loading system prior to being loaded into Multi-Canister Overpacks (MCO). The FTS operation is considered an intra-facility transfer because the spent fuel will stay within the 100 K area and between the K Basins. This preliminary Fire Hazards Analysis (FHA) for the K Basin FTS Annexes addresses fire hazards or fire-related concerns in accordance with U.S. Department of Energy (DOE) 420.1 (DOE 2000), and RLID 420.1 (DOE 1999), resulting from or related to the processes and equipment. It is intended to assess the risk from fire associated within the FTS Annexes to ensure that there are no undue fire hazards to site personnel and the public; the potential for the occurrence of a fire is minimized; process control and safety systems are not damaged by fire or related perils; and property damage from fire and related perils does not exceed an acceptable level. Consistent with the preliminary nature of the design information, this FHA is performed on a graded approach

  19. 14 CFR 23.1359 - Electrical system fire protection.

    Science.gov (United States)

    2010-01-01

    ... procedures must be fire-resistant. (c) Insulation on electrical wire and electrical cable must be self... this part, or other approved equivalent methods. The average burn length must not exceed 3 inches (76...

  20. NESDIS Hazard Mapping System Fire and Smoke Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Satellite Services Division of NESDIS/NOAA created an interactive Web-based GIS used to display satellite data of fire detects in near-real time. It converts the...

  1. Dynamical behaviour of the firing in coupled neuronal system

    International Nuclear Information System (INIS)

    Wei Wang; Perez, G.; Cerdeira, H.A.

    1993-03-01

    The time interval sequences and the spatio-temporal patterns of the firings of a coupled neuronal network are investigated in this paper. For a single neuron stimulated by an external stimulus I, the time interval sequences show a low frequency firing of bursts of spikes, and reversed period-doubling cascade to a high frequency repetitive firing state as the stimulus I is increased. For two neurons coupled to each other through the firing of the spikes, the complexity of the time interval sequences becomes simple as the coupling strength increases. A network with large numbers of neurons shows a complex spatio-temporal pattern structure. As the coupling strength increases, the numbers of phase locked neurons increase and the time interval diagram shows temporal chaos and a bifurcation in the space. The dynamical behaviour is also verified by the Lyapunov exponent. (author). 17 refs, 6 figs

  2. Fire fighting system for inflammable liquids and process using it

    International Nuclear Information System (INIS)

    Levillain, C.

    1988-01-01

    For fighting fires of flammable liquids, such as liquid sodium or hydrocarbons, a layer of floating spheres (cellular concrete or hollow metal) is maintained on the surface by a square or preferentially triangular-meshed metallic net [fr

  3. Wood-Fired Boiler System Evaluation at Fort Stewart, GA

    National Research Council Canada - National Science Library

    Potts, Noel

    2002-01-01

    Part of the plan to modernize the central energy plant (CEP) at Fort Stewart, GA is focused on the installations wood-fired boiler, which provides steam for heating, cooling, and domestic hot water. The U.S...

  4. Process and fire extinguishing system for inflammable liquids

    International Nuclear Information System (INIS)

    Levillain, C.

    1988-01-01

    A fire on the surface of a flammable liquid is extinguished by spreading a compact layer of sphere of uniform diameter, floating on the liquid surface. Spheres are stored in a tank and run out by gravity [fr

  5. Rapid turn-around mapping of wildfires and disasters with airborne infrared imagery fro the new FireMapper® 2.0 and Oilmapper systems

    Science.gov (United States)

    James W. Hoffman; Lloyd L. Coulter; Philip J Riggan

    2005-01-01

    The new FireMapper® 2.0 and OilMapper airborne, infrared imaging systems operate in a "snapshot" mode. Both systems feature the real time display of single image frames, in any selected spectral band, on a daylight readable tablet PC. These single frames are displayed to the operator with full temperature calibration in color or grayscale renditions. A rapid...

  6. Fire as a selective force in a Bornean tropical everwet forest

    NARCIS (Netherlands)

    Slik, J.W.F.; Breman, F.C.; Bernard, C.; Beek, van M.; Cannon, C.H.; Eichhorn, K.A.O.; Sidiyasa, K.

    2010-01-01

    Tree species rarely exposed to burning, like in everwet tropical forests, are unlikely to be fire adapted. Therefore, one could hypothesize that these species are affected equally by burning and that tree abundance changes are linked solely to fire behavior. Alternatively, if species do react

  7. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr

  8. Computational study of smoke flow control in garage fires and optimization of the ventilation system

    Directory of Open Access Journals (Sweden)

    Banjac Miloš J.

    2009-01-01

    Full Text Available With the aim of evaluating capabilities of a ventilation system to control the spread of smoke in the emergency operating mode, thereby providing conditions for safe evacuation of people from a fire-struck area, computational fluid dynamics simulation of a fire in a semi-bedded garage was conducted. Using the experimental results of combustion dynamics of a passenger car on fire, optimal positions of ventilation openings were determined. According to recommendations by DIN EN 12101 standard, the operating modes of a ventilation system were verified and optimal start time of the smoke extraction system was defined.

  9. Hesitant Fuzzy Linguistic Preference Utility Set and Its Application in Selection of Fire Rescue Plans

    Science.gov (United States)

    Si, Guangsen; Xu, Zeshui

    2018-01-01

    Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019

  10. Computerized information system on the impacts of coal-fired energy development in the Southwest

    International Nuclear Information System (INIS)

    Layton, D.W.

    1975-01-01

    An important part of the process of assessing the environmental impacts of coal-fired energy development in the Southwest is the transfer of information between electric utilities, federal agencies, and the interested public. There are, however, several problems associated with the transfer of information among the different groups. The acquisition of factual material on power projects by the interested public, for example, is adversely affected by the sufficiency, convenience, and credibility of present sources. Efforts of electric utilities and federal agencies to effectively communicate impact information are hindered by the inability of existing sources to selectively transfer information and to rapidly transmit information on the cumulative impacts of many combinations of power plants. This research concerns the development and evaluation of a computerized information system designed to selectively transfer information on both the cumulative and individual impacts of several electric generating facilities located in the southwestern United States. The information system incorporates features of management information systems, environmental information systems, and an issue-oriented system developed at The University of Illinois, making it a hybrid system capable of communicating impact information derived from a variety of sources

  11. An evaluation of the fire barrier system thermo-lag 330-1

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1994-09-01

    This report presents the results of three fire endurance tests and one ampacity derating test set of the fire barrier system Thermo-Lag 330-1 Subliming Coating. Each test was performed using cable tray specimens protected by a nominal three-hour fire barrier envelope comprised of two layers of nominal 1/2 inch thick material. The fire barrier systems for two of the three fire endurance test articles and for the ampacity derating test article were installed in accordance with the manufacturer's installations procedures. The barrier system for the third fire endurance test article was a full reproduction of one of the original manufacturer's qualification test articles. This final test article included certain installation enhancements not considered typical of current nuclear power plant installations. The primary criteria for fire endurance performance evaluation was based on cable circuit integrity testing. Secondary consideration was also given to the temperature rise limits set forth in the ASTM E119 standard fire barrier test procedure. All three of the fire endurance specimens failed prematurely. Circuit integrity failures for the two fire endurance test articles with procedures-based installations were recorded at approximately 76 and 59 minutes into the exposures for a 6 inch wide and 12 inch wide cable tray respectively. Temperature excursion failures (single point) for these two test articles were noted at approximately 65 and 56 minutes respectively. The first circuit integrity failure for the full reproduction test article was recorded approximately 119 minutes into the exposure, and the first temperature excursion failure for this test article was recorded approximately 110 minutes into the exposure

  12. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  13. Pressure surge free fire water systems increase safety on offshore oil- and gas drilling platforms

    International Nuclear Information System (INIS)

    Carlsen, Randi

    2001-01-01

    The article describes a new fire water system for use on the oil- and gas drilling platforms that is characterized by improved start-up time and reduced energy consumption. Deluge valves are commonly used in fast large-flow fire water systems all over the world. During the test of a new fire water system on a platform a few years ago, a pipe near the living quarter suddenly ruptured due to an unexpected pressure surge thought to be impossible. It was caused by a weakness of the deluge valve. A better valve was needed and the 'UniqValve' was designed and manufactured. The UniqValve operates in cooperation with the fire pumps during start-up as it 'reads' the pressure variations of the water flow and corrects the water flow to the fire areas in less than a tenth of a second. The valve is now integrated in a modular system. The fire water unit is mounted in a container, which reduces cost and simplifies the placement of the fire water installation

  14. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  15. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  16. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    Science.gov (United States)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions

  17. The Integration of the Fire Scout Tactical Unmanned Aerial System into Littoral Combat Ship Missions

    National Research Council Canada - National Science Library

    Marsh, James J

    2007-01-01

    ...) is an effective mission multiplier for the Littoral Combat Ship (LCS). The U.S. Navy relies heavily on unmanned systems, such as the Fire Scout UAS, to enable LCS to conduct several complex littoral missions...

  18. Evaluation of Generic Issue 57: Effects of fire protection system actuation on safety-related equipment

    International Nuclear Information System (INIS)

    Lambright, J.; Bohn, M.; Lynch, J.; Ross, S.; Brosseau, D.

    1992-12-01

    Nuclear power plants have experienced actuations of fire protection systems (FPSs) under conditions for which these systems were not intended to actuate and also have experienced advertent actuations with the presence of a fire. These actuations have often damaged safety-related equipment. A review of the impact of past occurrences of both types of such events and their impact on plant safety systems, an analysis of the risk impacts of such events on nuclear power plant safety, and a cost-benefit analysis of potential corrective measures have been performed. Thirteen different scenarios leading to actuation of fire protection systems due to a variety of causes were identified. These scenarios ranged from inadvertent actuation caused by human error to hardware failure, and include seismic root causes and seismic/fire interactions. A quantification of these thirteen root causes, where applicable, was performed on generically applicable scenarios. This document, Volume 4, contains appendices E and F of this report

  19. Engineering development of coal-fired high performance power systems, Phase II and III

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: thermal efficiency (HHV) {ge} 47%, NOx, SOx, and particulates {le} 10% NSPS (New Source Performance Standard) coal providing {ge} 65% of heat input, all solid wastes benign, and cost of electricity {le} 90% of present plants. Phase 1, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase 1 also included preliminary R and D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase 2, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: Task 2.1 HITAC Combustors; Task 2.2 HITAF Air Heaters; Task 6 HIPPS Commercial Plant Design Update.

  20. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  1. Development and demonstration of sodium fire mitigation system in the SAPFIRE facility

    International Nuclear Information System (INIS)

    Himeno, Y.; Miyahara, S.; Morii, T.; Sasaki, K.

    1989-01-01

    Flow pattern of a realistic sodium leak from the sodium piping equipped with jackets and thermal insulator was experimentally investigated. Then, based on this result, the fire mitigation system consisting of an inclined liner, a drain piping, and a smothering tank has been developed. The performance of the system was, in final, validated in the large-scale sodium leak and fire test in the SAPFIRE facility. (author)

  2. Perspective pulse devices and automatic systems fire explosive protection of the radioactive infected objects

    International Nuclear Information System (INIS)

    Zakhmatov, V.D.; Kozhemyakin, A.S.; Pyatova, A.V.

    1999-01-01

    The suppression of fires in Chernobyl zone has shown complete unprofitable of traditional fire engineering to work on is radioactive of the infected district. In this connection as effective ways extinguishive in object 'Shelter' alongside with known traditional means and the systems offer to apply more perspective pulse systems, based on use energy small practically safe charges of gunpowder or explosive substances, in particular. Pulse explosive cone extinguishive of the device various sizes

  3. Selected problems of mine ventilation under conditions of gas and fire hazards. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J

    1984-01-01

    Activities of the the Department for Ventilation, Fires and Occupational Safety in Wroclaw are evaluated. Until 1981 the Department concentrated its research programs on ventilation in copper mines; since 1982 its programs have also covered ventilation and hazards of endogenous fire in black coal mines. The Department investigated hazards of coal spontaneous combustion in Lower Silesian coal mines and proved that the hazards are associated with occurrence of specific layers in coal seams. When coal left in the goaf area came from a layer prone to spontaneous combustion hazards of endogenous fires were high. The Department developed a method for fire prevention using periodic reversal of goaf ventilation. Schemes for reverse ventilation are discussed.

  4. A Selection Method for COTS Systems

    DEFF Research Database (Denmark)

    Hedman, Jonas

    new skills and methods supporting the process of evaluating and selecting information systems. This paper presents a method for selecting COTS systems. The method includes the following phases: problem framing, requirements and appraisal, and selection of systems. The idea and distinguishing feature...... behind the method is that improved understanding of organizational' ends' or goals should govern the selection of a COTS system. This can also be expressed as a match or fit between ‘ends' (e.g. improved organizational effectiveness) and ‘means' (e.g. implementing COTS systems). This way of approaching...

  5. Low Power Wireless Smoke Alarm System in Home Fires

    Directory of Open Access Journals (Sweden)

    Juan Aponte Luis

    2015-08-01

    Full Text Available A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects.

  6. An operational system of fire danger rating over Mediterranean Europe

    Science.gov (United States)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing

  7. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  8. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  9. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    International Nuclear Information System (INIS)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-01-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  10. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Science.gov (United States)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  11. Fire protection system management in nuclear facilities: strengthening factor of integrated management system - a case study

    International Nuclear Information System (INIS)

    Santos, Joao Regis dos

    2005-01-01

    The present study investigated and analyzed the importance of a system of integrated safety manage, environment and health in a nuclear installation, having as perspective, the fire protection manage. The inquiry was made using a qualitative research involving a case study, where the considered environment was the Reconversion and UO 2 Plant of the Industrias Nucleares do Brasil (INB), located in Resende, Rio de Janeiro and the studied population, the managers and the staff directly involved with the aspects related to the safety of the industrial complex of the related company. The motivation for the research was the search of a bigger interaction of the questions related to the safety, environment and health in the nuclear industry having, as axle of the investigation, the fire protection. As a result, it was observed that in a nuclear installation, although dealing with diversified safety processes, integration is possible and necessary, since there are more reasons for integration than otherwise. (author)

  12. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  13. Study on the Performance of a Proposed Fire Safe Elevator System used for Evacuation in Supertall Buildings

    Directory of Open Access Journals (Sweden)

    Cai Na

    2016-01-01

    Full Text Available Long evacuation time is a key fire safety concern when a supertall building is on fire. The elevator system can be an effective alternative. The performance of a design of fire safe elevator system combining the refuge place with fire safe elevator is studied. An example building based on this proposed design is considered. Smoke spread to the system is studied by the Computational Fluid Dynamics (CFD code Fire Dynamics Simulator (FDS. Different arrangements of smoke extraction with pressurization systems are evaluated by analysing the smoke dispersion and pressure distributions in this fire safe elevator system. Numerical results were compared with that by theoretical equations. The results show that a smoke extraction system with a four-floor approach pressurization system can be an efficient method for smoke control in elevator system for supertall buildings.

  14. PyrE, an interactive fire module within the NASA-GISS Earth System Model

    Science.gov (United States)

    Mezuman, K.; Bauer, S. E.; Tsigaridis, K.

    2017-12-01

    Fires directly affect the composition of the atmosphere and Earth's radiation balance by emitting a suite of reactive gases and particles. Having an interactive fire module in an Earth System Model allows us to study the natural and anthropogenic drivers, feedbacks, and interactions of biomass burning in different time periods. To do so we have developed PyrE, the NASA-GISS interactive fire emissions model. PyrE uses the flammability, ignition, and suppression parameterization proposed by Pechony and Shindell (2009), and is coupled to a burned area and surface recovery parameterization. The burned area calculation follows CLM's approach (Li et al., 2012), paired with an offline recovery scheme based on Ent's Terrestrial Biosphere Model (Ent TBM) carbon pool turnover time. PyrE is driven by environmental variables calculated by climate simulations, population density data, MODIS fire counts and LAI retrievals, as well as GFED4s emissions. Since the model development required extensive use of reference datasets, in addition to comparing it to GFED4s BA, we evaluate it by studying the effect of fires on atmospheric composition and climate. Our results show good agreement globally, with some regional differences. Finally, we quantify the present day fire radiative forcing. The development of PyrE allowed us for the first time to interactively simulate climate and fire activity with GISS-ModelE3

  15. Multiple-Parameter, Low-False-Alarm Fire-Detection Systems

    Science.gov (United States)

    Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill

    2007-01-01

    Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can

  16. The testing of the in situ fire extinction system of the Trawsfynydd splitter debris storage package

    International Nuclear Information System (INIS)

    Newman, R.N.

    1987-01-01

    The proposed design of a Magnox splitter debris storage drum for Trawsfynydd incorporates an in situ solid fire extinguishant Graphex CK23 on the debris surface. This is an interlamellar graphite residue compound that intumesces when heated to provide an air-restricting layer. Two series of fire tests with the extinguishant in place have been carried out on full sized drums containing unirradiated splitter debris, to demonstrate the effectiveness of the system. (author)

  17. Understanding coupled natural and human systems on fire prone landscapes: integrating wildfire simulation into an agent based planning system.

    Science.gov (United States)

    Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John

    2015-04-01

    Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and

  18. Fire Resistant Materials

    Science.gov (United States)

    1982-01-01

    Fire hazard is greater in atmospheres containing a high percentage of oxygen under pressure. NASA intensified its fire safety research after a 1967 Apollo fire. A chemically treated fabric called Durette developed by Monsanto Company, which will not burn or produce noxious fumes, was selected as a material for Apollo astronaut garments. Monsanto sold production rights for this material to Fire Safe Products (FSP). Durette is now used for a wide range of applications such as: sheets, attendants' uniforms in hyperbaric chambers; crew's clothing, furniture and interior walls of diving chambers operated by the U.S. Navy and other oceanographic companies and research organizations. Pyrotect Safety Equipment, Minneapolis, MN produces Durette suits for auto racers, refuelers and crew chiefs from material supplied by FSP. FSP also manufactures Durette bags for filtering gases and dust from boilers, electric generators and similar systems. Durette bags are an alternative to other felted fiber capable of operating at high temperature that cost twice as much.

  19. A new fire alarm system for electrical installations

    CERN Document Server

    Pietersen, A H

    1978-01-01

    Fires in electrical installations are considered to develop in four phases - initiation, smouldering, flame formation and heat development. Cables are among the more sensitive components, with working temperatures around 50 degrees C and fire detection at 70 degrees C. Conventional alarms include smoke detectors. The new technique described uses microcapsules containing powder forming a gas of the Freon type after diffusion. A typical microcapsule loses 4% per year and has a natural life of 10 years. Fabrication methods are described. Detection is by gas concentration, with a sensitivity of 1 to 10 ppm, or by acoustic methods with microphones to pick up the sound of fractures. Pressure/temperature characteristics of various types of Freon mixtures commercially available are given in graphical form.

  20. Gas turbines: gas cleaning requirements for biomass-fired systems

    OpenAIRE

    Oakey, John; Simms, Nigel; Kilgallon, Paul

    2004-01-01

    Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenge...

  1. Best Longitudinal Adjustment of Satellite Trajectories for the Observation of Forest Fires (Blastoff): A Stochastic Programming Approach to Satellite System Design

    Science.gov (United States)

    Hoskins, Aaron B.

    selection of ground stations to maximize the expected amount of data downloaded from a satellite. The approaches of selecting initial orbits and ground station locations including uncertainty will provide a robust system to reduce the amount of damage caused by forest fires.

  2. 29 CFR 1915.507 - Land-side fire protection systems.

    Science.gov (United States)

    2010-07-01

    ... standard for employee safety or employee protection from fire hazards in land-side facilities, including... remains hazardous to employee safety or health, or provide safeguards to prevent employees from entering... hazardous to employee safety or health; and (6) Select, install, inspect, maintain, and test all automatic...

  3. Fires and Smoke Observed from the Earth Observing System MODIS Instrument: Products, Validation, and Operational Use

    Science.gov (United States)

    Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.

  4. Expert System Model for Educational Personnel Selection

    Directory of Open Access Journals (Sweden)

    Héctor A. Tabares-Ospina

    2013-06-01

    Full Text Available The staff selection is a difficult task due to the subjectivity that the evaluation means. This process can be complemented using a system to support decision. This paper presents the implementation of an expert system to systematize the selection process of professors. The management of software development is divided into 4 parts: requirements, design, implementation and commissioning. The proposed system models a specific knowledge through relationships between variables evidence and objective.

  5. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    Science.gov (United States)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness

  6. New methods for testing fire resistance of wood façade systems

    Directory of Open Access Journals (Sweden)

    Mårtensson August

    2016-01-01

    Full Text Available Arson in schools has been a huge problem in Sweden over the last fifteen years. The average amount of school arsons between 2000 and 2014 was 285 cases each year which corresponds to 50% of the total amount of reported fires in school buildings. This is a well-known problem and a lot of research has been done in this area. Investigations has been done about fire and heat detection systems, different technical factors significance in fire scenarios and how to prevent adolescents from starting fires. Another part of the problem that partly been investigated is how the schools are constructed. Roughly 50% of the arsons are outside of the school building. In Sweden one and two storey buildings are allowed to be built with wooden façades in accordance with the building code, which is one of the reasons many schools are built with wooden façade systems. The most critical part in a wood façade system from a fire safety perspective is concluded to be the eaves because of how they usually are built to let air pass through. Even though a wood façade isn't as well resistant to fire compared to a concrete façade, three versions of new test methods for combustible façades have been developed to make it possible to make sure in advance that a construction is resistant enough. The new test methods are focused on specific details and parts of a façade system to provide a more informative and useful result compared to SP Fire 105. Observations and measurements of flame spread and temperature changes in the eave, over the window joints and in the air gap are made. With these parameters in consideration criteria's has been chosen for a critical temperature of 280 ∘C at a critical time of 20 minutes.

  7. Monitoring Fires from Space and Getting Data in to the hands of Users: An Example from NASA's Fire Information for Resource Management System (FIRMS)

    Science.gov (United States)

    Davies, D.; Wong, M.; Ilavajhala, S.; Molinario, G.; Justice, C. O.

    2012-12-01

    This paper discusses the broad uptake of MODIS near-real-time (NRT) active fire data for applications. Prior to the launch of MODIS most real-time satellite-derived fire information was obtained from NOAA AVHRR via direct broadcast (DB) systems. Whilst there were efforts to make direct broadcast stations affordable in developing countries, such as through the Local Applications of Satellite Remote Technologies (LARST), these systems were relatively few and far between and required expertise to manage and operate. One such system was in Etosha National Park (ENP) in Namibia. Prior to the installation of the AVHRR DB system in ENP, fires were reported by rangers and the quality, accuracy and timing of reports was variable. With the introduction of the DB station, early warning of fires improved and fire maps could be produced for park managers within 2-3 hours by staff trained to process data, interpret images and produce maps. Up keep and maintenance of such systems was relatively costly for parks with limited resources therefore when global fire data from MODIS became available uptake was widespread. NRT data from MODIS became availalbe through a collaboration between the MODIS Fire Team and the US Forest Service (USFS) Remote Sensing Applications Center to provide rapid access to imagery to help fight the Montana wildfires of 2001. This prompted the development of a Rapid Response System for fire data that eventually led to the operational use of MODIS data by the USFS for fire monitoring. Building on this success, the Fire Information for Resource Management System (FIRMS) project was funded by NASA Applications, and developed under the umbrella of the GOFC-GOLD Fire program, to further improve products and services for the global fire information community. FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including a fire email alert service which is widely used around the world. FIRMS was initially developed to

  8. Nuclear power plant fire protection: fire detection (subsystems study Task 2)

    International Nuclear Information System (INIS)

    Berry, D.L.

    1977-12-01

    This report examines the adequacy of fire detection in the context of nuclear power plant safety. Topics considered are: (1) establishing area detection requirements, (2) selecting specific detector types, (3) locating and spacing detectors, and (4) performing installation tests and maintenance. Based on a thorough review of fire detection codes and standards and fire detection literature, the report concludes that current design and regulatory guidelines alone are insufficient to ensure satisfactory fire detection system performance. To assure adequate fire detection, this report recommends the use of in-place testing of detectors under conditions expected to occur normally in areas being protected

  9. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Stahovec, J. G.; Urban, R. W.

    1999-01-01

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  10. The development and evaluation of water-mist fire extinguishing systems

    Science.gov (United States)

    Beason, D. G.; Staggs, K. J.

    1994-08-01

    Fire protection for underfloor space is primarily provided by Halon 1301 which has proven to be very effective. However, due to the link between halons and the possible depletion of the stratospheric ozone layer, plans have been implemented to eventually phase out Halon 1301 and 1211. In September 1987 the Montreal Protocol concerning chlorofluorocarbons (CFC) and halons was signed by the United States, the European Economic Community, and 23 other nations. The Montreal Protocol calls for freezing halon production at 1986 levels. Because the majority of underfloor fire protection at Lawrence Livermore National Laboratory (LLNL), as well as other Department of Energy (DOE) sites, is either Halon 1301 or sprinklers, some other means of suppression will have to be developed and verified. The potential loss to facilities housing computer or control rooms damaged by underfloor fires can be extreme. These losses would not only include hardware and software replacement costs, but also lost computing and control capability. Here at LLNL technical research in a facility could be severely affected. Recent studies conducted by the Fire Research Discipline of the Special Projects Division have shown that severe fires fueled by cable insulation can develop within as little as a 6-in-high underfloor space (even with mechanical ventilation shut off). Studies also show that conventional sprinklers may not be effective in preventing this destruction. Therefore, we are investigating the water-mist fire extinguishing system as an alternative to Halon 1301 and sprinklers.

  11. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    Science.gov (United States)

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An overview of the political, technical and economical aspects of gas-fired distributed energy system in China

    International Nuclear Information System (INIS)

    Chen, Qiaohui; Wang, Weilong; Lu, Jianfeng; Ding, Jing

    2013-01-01

    The interest in distributed energy system has been increasing in China in recent years due to the environmental and energy policy concerns. The distributed energy system generates power, heating and cooling to residential, commercial and industrial facilities. Due to cascade utilization of energy, it can make good use of energy to improve energy efficiency and to increase energy savings. Furthermore, it consumes less energy and reduces carbon emissions. This paper reviews existing and newly-built gas-fired distributed energy projects in China. The techno-economic assessment of the selected projects has also been discussed and reported. The results show that in Xiamen Jimei DE project, the primary energy ratio of the DES can be as high as 92.9%, and energy-saving rate is 35.5%. Moreover, exergy efficiency reaches 54.3%, and the system can reduce 0.52 million tons of CO 2 annually. -- Highlights: ► The political, technical and economical aspects of gas-fired DES are analyzed. ► The techno-economic assessment of two selected projects is conducted. ► Primary energy ratio can be as high as 92.9% and energy-saving rate is 35.5%. ► Exergy efficiency is 54.3% and the system can reduce a large amount of CO 2 emissions

  13. Fire science at LLNL: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K. (ed.)

    1990-03-01

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  14. Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

    CERN Document Server

    2017-01-01

    Proposal for the award of a blanket purchase contract for the design, supply, installation and maintenance of automatic fire-detection, fire-protection and voice-alarm systems for the Super Proton Synchrotron

  15. Method for Business Process Management System Selection

    OpenAIRE

    Westelaken, van de, Thijs; Terwee, Bas; Ravesteijn, Pascal

    2013-01-01

    In recent years business process management (BPM) and specifically information systems that support the analysis, design and execution of processes (also called business process management systems (BPMS)) are getting more attention. This has lead to an increase in research on BPM and BPMS. However the research on BPMS is mostly focused on the architecture of the system and how to implement such systems. How to select a BPM system that fits the strategy and goals of a specific organization is ...

  16. 30 CFR 75.1101-16 - Dry powder chemical systems; sensing and fire-suppression devices.

    Science.gov (United States)

    2010-07-01

    ...-contained dry powder chemical system shall be equipped with sensing devices which shall be designed to activate the fire-control system, sound an alarm and stop the conveyor drive motor in the event of a rise... belt drive, each sensor shall be equipped with a standby power source which shall be capable of...

  17. Examining fire-prone forest landscapes as coupled human and natural systems

    Science.gov (United States)

    Thomas A. Spies; Eric M. White; Jeffrey D. Kline; A. Paige Fisher; Alan Ager; John Bailey; John Bolte; Jennifer Koch; Emily Platt; Christine S. Olsen; Derric Jacobs; Bruce Shindler; Michelle M. Steen-Adams; Roger. Hammer

    2014-01-01

    Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challenges for understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and external drivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches...

  18. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Science.gov (United States)

    2010-07-01

    ... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... system by a nationally recognized independent testing laboratory and appropriate for installation at a... recommended inspection and maintenance program and as required by the nationally recognized independent...

  19. DEVELOPMENT OF USER-FRIENDLY SIMULATION SYSTEM OF EARTHQUAKE INDUCED URBAN SPREADING FIRE

    Science.gov (United States)

    Tsujihara, Osamu; Gawa, Hidemi; Hayashi, Hirofumi

    In the simulation of earthquake induced urban spreading fire, the produce of the analytical model of the target area is required as well as the analysis of spreading fire and the presentati on of the results. In order to promote the use of the simulation, it is important that the simulation system is non-intrusive and the analysis results can be demonstrated by the realistic presentation. In this study, the simulation system is developed based on the Petri-net algorithm, in which the easy operation can be realized in the modeling of the target area of the simulation through the presentation of analytical results by realistic 3-D animation.

  20. Roost tree selection by northern myotis (Myotis septentrionalis) maternity colonies following prescribed fire in a Central Appalachian Mountains hardwood forest

    Science.gov (United States)

    Joshua B. Johnson; John W. Edwards; W. Mark Ford; J. Edward Gates

    2009-01-01

    Following decades of fire suppression in eastern forests, prescribed fire as a tool to restore or enhance oak (Quercus spp.)-dominated communities is gaining widespread acceptance in the Appalachian Mountains and elsewhere. However, the interactions of fire with biotic components such as wildlife that might be impacted by prescribed fire are poorly...

  1. A 3D vision system for the measurement of the rate of spread and the height of fire fronts

    International Nuclear Information System (INIS)

    Rossi, L; Molinier, T; Tison, Y; Pieri, A; Akhloufi, M

    2010-01-01

    This paper presents a three-dimensional (3D) vision-based instrumentation system for the measurement of the rate of spread and height of complex fire fronts. The proposed 3D imaging system is simple, does not require calibration, is easily deployable in indoor and outdoor environments and can handle complex fire fronts. New approaches for measuring the position, the rate of spread and the height of a fire front during its propagation are introduced. Experiments were conducted in indoor and outdoor conditions with fires of different scales. Linear and curvilinear fire front spreading were studied. The obtained results are promising and show the interesting performance of the proposed system in operational and complex fire scenarios

  2. Mine shaft fire and smoke protection systems - an update on hardware development and in-mine testing

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1982-01-01

    In 1976, The Bureau of Mines developed a prototype system to sense and extinguish fires in shafts and shaft stations in underground metal and nonmetal mines. Subsequent work modified this technology to include fueling areas, spontaneous combustion zones and coal mines. This paper updates IC-8783 ''In-mine Fire Tests of Mine Shaft Fire and Smoke Protection Systems'', which was published in 1978 and summarized the design and in-mine, actual fire testing of the first prototype mine shaft fire and smoke protection system. This paper also updates related work from IC-8775 ''Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines, (also published in 1978) and IC-8808 ''In-mine Evaluation of Underground Fire and Smoke Detectors'', (published in early 1979)

  3. Seed recovery and regeneration in coal-fired, open-cycle magnetohydrodynamic systems

    International Nuclear Information System (INIS)

    Sheth, A.C.; Jackson, D.M.; Attig, R.C.

    1986-01-01

    Coal-fired magnetohydrodynamic (MHD) power systems not only have high cycle efficiency, but they also have an inherent sulfur removal capability. The potassium compound uses as ''seed'' plays a dual role. It 1) increases the electrical conductivity of the plasma needed to produce power in the MHD electrical topping cycle, and 2) reacts with sulfur dioxide to form potassium sulfate, thereby eliminating most of the sulfur oxides from the gaseous effluent. For economical reasons, the spent seed must be recovered, desulfurized and recycled to the MHD power plant. This paper reviews some of the available experimental results and literature relating to SO 2 removal and seed recovery, and will also discuss several potential seed regeneration processes. Three methods of potassium extraction are discussed, i.e., hot aqueous digestion with CA(OH) 2 /NaOH, acid washing, and aqueous extraction. The selected candidate regeneration systems are discussed from the viewpoint of energy and process water requirements and environmental considerations such as waste discharges and emissions of gaseous, particulate and trace element pollutants

  4. Reliability estimation for multiunit nuclear and fossil-fired industrial energy systems

    International Nuclear Information System (INIS)

    Sullivan, W.G.; Wilson, J.V.; Klepper, O.H.

    1977-01-01

    As petroleum-based fuels grow increasingly scarce and costly, nuclear energy may become an important alternative source of industrial energy. Initial applications would most likely include a mix of fossil-fired and nuclear sources of process energy. A means for determining the overall reliability of these mixed systems is a fundamental aspect of demonstrating their feasibility to potential industrial users. Reliability data from nuclear and fossil-fired plants are presented, and several methods of applying these data for calculating the reliability of reasonably complex industrial energy supply systems are given. Reliability estimates made under a number of simplifying assumptions indicate that multiple nuclear units or a combination of nuclear and fossil-fired plants could provide adequate reliability to meet industrial requirements for continuity of service

  5. The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics.

    Science.gov (United States)

    Eby, Stephanie L; Anderson, T Michael; Mayemba, Emilian P; Ritchie, Mark E

    2014-09-01

    Given the role of fire in shaping ecosystems, especially grasslands and savannas, it is important to understand its broader impact on these systems. Post-fire stimulation of plant nutrients is thought to benefit grazing mammals and explain their preference for burned areas. However, fire also reduces vegetation height and increases visibility, thereby potentially reducing predation risk. Consequently, fire may be more beneficial to smaller herbivores, with higher nutritional needs and greater risks of predation. We tested the impacts of burning on different sized herbivores' habitat preference in Serengeti National Park, as mediated by burning's effects on vegetation height, live : dead biomass ratio and leaf nutrients. Burning caused a less than 4 month increase in leaf nitrogen (N), and leaf non-N nutrients [copper (Cu), potassium (K), and magnesium (Mg)] and a decrease in vegetation height and live : dead biomass. During this period, total herbivore counts were higher on burned areas. Generally, smaller herbivores preferred burned areas more strongly than larger herbivores. Unfortunately, it was not possible to determine the vegetation characteristics that explained burned area preference for each of the herbivore species observed. However, total herbivore abundance and impala (Aepyceros melampus) preference for burned areas was due to the increases in non-N nutrients caused by burning. These findings suggest that burned area attractiveness to herbivores is mainly driven by changes to forage quality and not potential decreases in predation risk caused by reductions in vegetation height. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  6. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  7. Investigation of Lab Fire Prevention Management System of Combining Root Cause Analysis and Analytic Hierarchy Process with Event Tree Analysis

    Directory of Open Access Journals (Sweden)

    Cheng-Chan Shih

    2016-01-01

    Full Text Available This paper proposed a new approach, combining root cause analysis (RCA, analytic hierarchy process (AHP, and event tree analysis (ETA in a loop to systematically evaluate various laboratory safety prevention strategies. First, 139 fire accidents were reviewed to identify the root causes and draw out prevention strategies. Most fires were caused due to runaway reactions, operation error and equipment failure, and flammable material release. These mostly occurred in working places of no prompt fire protection. We also used AHP to evaluate the priority of these strategies and found that chemical fire prevention strategy is the most important control element, and strengthening maintenance and safety inspection intensity is the most important action. Also together with our surveys results, we proposed that equipment design is also critical for fire prevention. Therefore a technical improvement was propounded: installing fire detector, automatic sprinkler, and manual extinguisher in the lab hood as proactive fire protections. ETA was then used as a tool to evaluate laboratory fire risks. The results indicated that the total risk of a fire occurring decreases from 0.0351 to 0.0042 without/with equipment taking actions. Establishing such system can make Environment, Health and Safety (EH&S office not only analyze and prioritize fire prevention policies more practically, but also demonstrate how effective protective equipment improvement can achieve and the probabilities of the initiating event developing into a serious accident or controlled by the existing safety system.

  8. Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Qian Ding

    2014-10-01

    Full Text Available Multi-sensor and information fusion technology based on Dempster-Shafer evidence theory is applied in the system of a building fire alarm to realize early detecting and alarming. By using a multi-sensor to monitor the parameters of the fire process, such as light, smoke, temperature, gas and moisture, the range of fire monitoring in space and time is expanded compared with a single-sensor system. Then, the D-S evidence theory is applied to fuse the information from the multi-sensor with the specific fire model, and the fire alarm is more accurate and timely. The proposed method can avoid the failure of the monitoring data effectively, deal with the conflicting evidence from the multi-sensor robustly and improve the reliability of fire warning significantly.

  9. Mathematical model of optimizing the arrival of fire units with the use of information systems for monitoring transport logistics of Voronezh city

    Directory of Open Access Journals (Sweden)

    A. V. Kochegarov

    2016-01-01

    Full Text Available In recent years, the strong pace of construction is increasing in big cities. With their growth becomes a question of the deployment of firefighters and the number of fire stations. The most effective solution is the problem of finding the optimum route of fire departments, taking into account the information transport logistics systems within the city that will allow us to arrive at the scene at any time, regardless of the degree of congestion of city roads. Prompt arrival of fire units provides the most successful fire fighting. The main objective of the study is to develop a preliminary route and the route in case of unforeseen factors affecting the time fire engine arrived. To construct the routes used to develop actively in the current methods of machine learning artificial neural networks. To construct the optimal route requires a correct prediction of the future behavior of a complex system of urban traffic based on its past behavior. Within the framework of statistical machine learning theory considered the problem of classification and regression. The learning process is to select a classification or a regression function of a predetermined broad class of such functions. After determining the prediction scheme, it is necessary to evaluate the quality of its forecasts, which are measured not on the basis of observations, and on the basis of an improved stochastic process, the result of the construction of the prediction rules. The model is verified on the basis of data collected in real departures real fire brigades, which made it possible to obtain a minimum time of arrival of fire units.

  10. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  11. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  12. Fire hazards analysis for the replacement cross-site transfer system, project W-058

    International Nuclear Information System (INIS)

    Sepahpur, J.B.

    1996-01-01

    The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)

  13. Design and performance of a skid-mounted portable compartment fire gas furnace and monitoring system

    Directory of Open Access Journals (Sweden)

    Mueller K.

    2013-09-01

    Full Text Available A custom, portable natural gas fire furnace was designed and constructed for use at the University of Notre Dame to experimentally investigate the out-of-plane behavior of full-scale reinforced concrete (RC bearing walls under fire. The unique aspects of this furnace allowed the application of large mechanical loads and non-contact optical response monitoring to be done while subjecting the wall to elevated temperatures. The performance of the experimental furnace, mechanical loading, and response monitoring system is reported using the results from the first two RC wall test specimens.

  14. Control Configuration Selection for Multivariable Descriptor Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Stoustrup, Jakob

    2012-01-01

    Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices it is often the case that the system, whi...... is that it can be used to propose a richer sparse or block diagonal controller structure. The interaction measure is used for control configuration selection of the linearized CSTR model with descriptor from....

  15. Monitoring and advisory system for refractory materials fireing production in VSŽ Košice

    Directory of Open Access Journals (Sweden)

    Kostúr Karol

    1996-03-01

    Full Text Available The tunnel furnace produces refractory building materials. Various types of building materials are fired in the temperature interval 1450-1700 •C. The tunnel furnace is approximately 160 m long and consists of 53 moduls, each about length 3 m. Usually three zones of the tunnel furnace are considering: warming, firing and colding. The furnace works in upstream regime. The fired material moves againts the flow of cold air and combustion products. The fuel is the earth gas. The paper is devoted to pointing out some opportunities for the use of classical IBM PC compatible computers for the design of small on-line real-time systems. PC’ s data acquisition card provides high transfer rate for data transfer and primary processing of measured values of technological processes in a tunnel furnace.

  16. Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Ottosen, Lisbeth M.; Hansen, Kurt Kielsgaard

    2012-01-01

    Ion transport in porous materials has been subject of study for several decades. However, the interaction between the pores and the overall pore system make it complicated to obtain a clear picture and predict diffusion and electromigration (transport induced by an applied electric field). Specific...... to the distance to the surface.The influence of the pore system on ion transport through the water saturated pore system of the bricks was supported by measurements for calculation of the electrical resistance and an increasing resistance was found for increasing brick firing temperatures. The effective diffusion...... the pore system to contribute to an overall understanding of ion transport in porous materials.The pore system in bricks are influenced by the firing degree, clay mixture composition and ion content. The present paper focuses on the pore system and effects from clay mixture composition and ion content were...

  17. 30 CFR 75.1103-4 - Automatic fire sensor and warning device systems; installation; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... systems that use carbon monoxide sensors shall provide identification of fire along all belt conveyors. (1... downwind of each belt drive unit, each tailpiece transfer point, and each belt take-up. If the belt drive, tailpiece, and/or take-up for a single transfer point are installed together in the same air course, and the...

  18. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  19. Fire Setting Behavior in a Child Welfare System: Prevalence, Characteristics and Co-Occurring Needs

    Science.gov (United States)

    Lyons, John S.; McClelland, Gary; Jordan, Neil

    2010-01-01

    Fire setting is one of the most challenging behaviors for the child welfare system. However, existing knowledge about its prevalence and correlates has been limited to research on single programs. The Illinois Department of Children and Family Services initiated a uniform assessment process at entry into state custody using a trauma-informed…

  20. Greek Students Research the Effects of Fire on the Soil System through Project-Based Learning

    Science.gov (United States)

    Kioupi, Vasiliki; Arianoutsou, Margarita

    2016-01-01

    This study is focused on the development, implementation and evaluation of an environmental education programme for secondary education students. The programme was entitled "?he effects of fire on the soil system" and it was implemented during the school period of 2008. Twenty-four (24) students (aged from 15 to 20) coming from Lidoriki…

  1. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  2. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  3. NFDRSPC: The National Fire-Danger Rating System on a Personal Computer

    Science.gov (United States)

    Bryan G. Donaldson; James T. Paul

    1990-01-01

    This user's guide is an introductory manual for using the 1988 version (Burgan 1988) of the National Fire-Danger Rating System on an IBM PC or compatible computer. NFDRSPC is a window-oriented, interactive computer program that processes observed and forecast weather with fuels data to produce NFDRS indices. Other program features include user-designed display...

  4. Indicator Systems for School and Teacher Evaluation: Fire-Fighting It Is!

    Science.gov (United States)

    Fitz-Gibbon, C. T.

    In 1979, Gene Glass suggested that it might not be possible to evaluate schools nor to create widely applicable research findings, but that the complexity of education was such that merely "fire-fighting," establishing monitoring systems to alert about educational events, was the best approach. In the United Kingdom, monitoring systems…

  5. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  6. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  7. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  8. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  9. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  10. Process identification of the SCR system of coal-fired power plant for de-NOx based on historical operation data.

    Science.gov (United States)

    Li, Jian; Shi, Raoqiao; Xu, Chuanlong; Wang, Shimin

    2018-05-08

    The selective catalytic reduction (SCR) system, as one principal flue gas treatment method employed for the NO x emission control of the coal-fired power plant, is nonlinear and time-varying with great inertia and large time delay. It is difficult for the present SCR control system to achieve satisfactory performance with the traditional feedback and feedforward control strategies. Although some improved control strategies, such as the Smith predictor control and the model predictive control, have been proposed for this issue, a well-matched identification model is essentially required to realize a superior control of the SCR system. Industrial field experiment is an alternative way to identify the SCR system model in the coal-fired power plant. But it undesirably disturbs the operation system and is costly in time and manpower. In this paper, a process identification model of the SCR system is proposed and developed by applying the asymptotic method to the sufficiently excited data, selected from the original historical operation database of a 350 MW coal-fired power plant according to the condition number of the Fisher information matrix. Numerical simulations are carried out based on the practical historical operation data to evaluate the performance of the proposed model. Results show that the proposed model can efficiently achieve the process identification of the SCR system.

  11. Automated system for smoke dispersion prediction due to wild fires in Alaska

    Science.gov (United States)

    Kulchitsky, A.; Stuefer, M.; Higbie, L.; Newby, G.

    2007-12-01

    Community climate models have enabled development of specific environmental forecast systems. The University of Alaska (UAF) smoke group was created to adapt a smoke forecast system to the Alaska region. The US Forest Service (USFS) Missoula Fire Science Lab had developed a smoke forecast system based on the Weather Research and Forecasting (WRF) Model including chemistry (WRF/Chem). Following the successful experience of USFS, which runs their model operationally for the contiguous U.S., we develop a similar system for Alaska in collaboration with scientists from the USFS Missoula Fire Science Lab. Wildfires are a significant source of air pollution in Alaska because the climate and vegetation favor annual summer fires that burn huge areas. Extreme cases occurred in 2004, when an area larger than Maryland (more than 25000~km2) burned. Small smoke particles with a diameter less than 10~μm can penetrate deep into lungs causing health problems. Smoke also creates a severe restriction to air transport and has tremendous economical effect. The smoke dispersion and forecast system for Alaska was developed at the Geophysical Institute (GI) and the Arctic Region Supercomputing Center (ARSC), both at University of Alaska Fairbanks (UAF). They will help the public and plan activities a few days in advance to avoid dangerous smoke exposure. The availability of modern high performance supercomputers at ARSC allows us to create and run high-resolution, WRF-based smoke dispersion forecast for the entire State of Alaska. The core of the system is a Python program that manages the independent pieces. Our adapted Alaska system performs the following steps \\begin{itemize} Calculate the medium-resolution weather forecast using WRF/Met. Adapt the near real-time satellite-derived wildfire location and extent data that are received via direct broadcast from UAF's "Geographic Information Network of Alaska" (GINA) Calculate fuel moisture using WRF forecasts and National Fire Danger

  12. Selected Methods For Increases Reliability The Of Electronic Systems Security

    Directory of Open Access Journals (Sweden)

    Paś Jacek

    2015-11-01

    Full Text Available The article presents the issues related to the different methods to increase the reliability of electronic security systems (ESS for example, a fire alarm system (SSP. Reliability of the SSP in the descriptive sense is a property preservation capacity to implement the preset function (e.g. protection: fire airport, the port, logistics base, etc., at a certain time and under certain conditions, e.g. Environmental, despite the possible non-compliance by a specific subset of elements this system. Analyzing the available literature on the ESS-SSP is not available studies on methods to increase the reliability (several works similar topics but moving with respect to the burglary and robbery (Intrusion. Based on the analysis of the set of all paths in the system suitability of the SSP for the scenario mentioned elements fire events (device critical because of security.

  13. EFFICIENCY OF FIRE-FIGHTING PROTECTION OBJECTS IN PROVISION OF FIRE SAFETY AT INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    A. V. Zhovna

    2008-01-01

    Full Text Available The paper gives an analysis of economic results pertaining to organization of a system for fire-fighting protection of industrial enterprises in theRepublicofBelarus. Statistical data on operational conditions of technical means of fire-fighting protection, particularly, automatic systems for detection and extinguishing of fires, systems of internal fire-fighting water-supply.  Requirements and provisions  of normative and technical documents are thoroughly studied. Observance of these documents is to ensure the required level of  fire safety. On the basis of the obtained results concerning  economic analysis of efficiency optimization directions are defined for selection of technical means of fire-fighting protection at objects of industrial purpose.

  14. SYSTEMS SAFETY ANALYSIS FOR FIRE EVENTS ASSOCIATED WITH THE ECRB CROSS DRIFT

    International Nuclear Information System (INIS)

    R. J. Garrett

    2001-01-01

    The purpose of this analysis is to systematically identify and evaluate fire hazards related to the Yucca Mountain Site Characterization Project (YMP) Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift (commonly referred to as the ECRB Cross-Drift). This analysis builds upon prior Exploratory Studies Facility (ESF) System Safety Analyses and incorporates Topopah Springs (TS) Main Drift fire scenarios and ECRB Cross-Drift fire scenarios. Accident scenarios involving the fires in the Main Drift and the ECRB Cross-Drift were previously evaluated in ''Topopah Springs Main Drift System Safety Analysis'' (CRWMS M and O 1995) and the ''Yucca Mountain Site Characterization Project East-West Drift System Safety Analysis'' (CRWMS M and O 1998). In addition to listing required mitigation/control features, this analysis identifies the potential need for procedures and training as part of defense-in-depth mitigation/control features. The inclusion of this information in the System Safety Analysis (SSA) is intended to assist the organization(s) (e.g., Construction, Environmental Safety and Health, Design) responsible for these aspects of the ECRB Cross-Drift in developing mitigation/control features for fire events, including Emergency Refuge Station(s). This SSA was prepared, in part, in response to Condition/Issue Identification and Reporting/Resolution System (CIRS) item 1966. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with fires in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate

  15. Failure analysis of fire resistant fluid (FRF piping used in hydraulic control system at oil-fired thermal power generation plant

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-04-01

    Full Text Available This is a case study regarding frequent forced outages in an oil-fired power generating station due to failure of fire resistant fluid (FRF piping of material ASTM A-304. This analysis was done to find out the most probable cause of failure and to rectify the problem. Methods for finding and analyzing the cracks include nondestructive testing techniques such as visual testing (VT and dye penetrant testing (PT along with that periodic monitoring after rectification of problem. The study revealed that pitting and pit to crack transitions were formed in stainless steel piping containing high pressure (system pressure 115 bars fire resistant fluid. However, after replacement of piping the pitting and cracking reoccurred. It was observed that due to possible exposure to chlorinated moisture in surrounding environment pitting was formed which then transformed into cracks. The research work discussed in this paper illustrates the procedure used in detection of the problem and measures taken to solve the problem.

  16. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    International Nuclear Information System (INIS)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira

    2007-01-01

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO 2 ), with thermoelectric power plants being responsible for about 7% of global CO 2 emissions. Microalgae can reduce CO 2 emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO 2 . When cultivated with 6% and 12% CO 2 , C. kessleri showed a high maximum specific growth rate (μ max ) of 0.267/day, with a maximum biomass productivity (P max ) of 0.087 g/L/day at 6% CO 2 . For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO 2 . We also found that these two microalgae also grew well when the culture medium contained up to 18% CO 2 , indicating that they have potential for biofixation of CO 2 in thermoelectric power plants

  17. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    de Morais, M.G.; Costa, J.A.V. [Federal University of Rio Grande, Rio Grande (Brazil)

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({lambda}{sub max}) of 0.267/day, with a maximum biomass productivity (P-max) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  18. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil); Costa, Jorge Alberto Vieira [Department of Chemistry, Laboratory of Biochemistry Engineering, Federal University Foundation of Rio Grande, Rio Grande, RS (Brazil)]. E-mail: dqmjorge@furg.br

    2007-07-15

    Global warming is thought to be caused mainly by the emission of carbon dioxide (CO{sub 2}), with thermoelectric power plants being responsible for about 7% of global CO{sub 2} emissions. Microalgae can reduce CO{sub 2} emissions from thermoelectric power plants, but for this use, they must be resistant to the mixture of gases produced by the power plants. We isolated the microalgae Scenedesmus obliquus and Chlorella kessleri from the waste treatment ponds of the Presidente Medici coal fired thermoelectric power plant in the Southernmost Brazilian state of Rio Grande do Sul and investigated their growth characteristics when exposed to different concentrations of CO{sub 2}. When cultivated with 6% and 12% CO{sub 2}, C. kessleri showed a high maximum specific growth rate ({mu} {sub max}) of 0.267/day, with a maximum biomass productivity (P {sub max}) of 0.087 g/L/day at 6% CO{sub 2}. For S. obliquus, the highest maximum dry weight biomass value was 1.14 g/L with 12% CO{sub 2}. We also found that these two microalgae also grew well when the culture medium contained up to 18% CO{sub 2}, indicating that they have potential for biofixation of CO{sub 2} in thermoelectric power plants.

  19. Selecting RMF Controls for National Security Systems

    Energy Technology Data Exchange (ETDEWEB)

    Witzke, Edward L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    In 2014, the United States Department of Defense started tra nsitioning the way it performs risk management and accreditation of informatio n systems to a process entitled Risk Management Framework for DoD Information Technology or RMF for DoD IT. There are many more security and privacy contro ls (and control enhancements) from which to select in RMF, than there w ere in the previous Information Assurance process. This report is an attempt t o clarify the way security controls and enhancements are selected. After a brief overview and comparison of RMF for DoD I T with the previously used process, this report looks at the determination of systems as National Security Systems (NSS). Once deemed to be an NSS, this report addr esses the categorization of the information system with respect to impact level s of the various security objectives and the selection of an initial baseline o f controls. Next, the report describes tailoring the controls through the use of overl ays and scoping considerations. Finally, the report discusses organizatio n-defined values for tuning the security controls to the needs of the information system.

  20. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    Science.gov (United States)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  1. Selective evolutionary generation systems: Theory and applications

    Science.gov (United States)

    Menezes, Amor A.

    This dissertation is devoted to the problem of behavior design, which is a generalization of the standard global optimization problem: instead of generating the optimizer, the generalization produces, on the space of candidate optimizers, a probability density function referred to as the behavior. The generalization depends on a parameter, the level of selectivity, such that as this parameter tends to infinity, the behavior becomes a delta function at the location of the global optimizer. The motivation for this generalization is that traditional off-line global optimization is non-resilient and non-opportunistic. That is, traditional global optimization is unresponsive to perturbations of the objective function. On-line optimization methods that are more resilient and opportunistic than their off-line counterparts typically consist of the computationally expensive sequential repetition of off-line techniques. A novel approach to inexpensive resilience and opportunism is to utilize the theory of Selective Evolutionary Generation Systems (SECS), which sequentially and probabilistically selects a candidate optimizer based on the ratio of the fitness values of two candidates and the level of selectivity. Using time-homogeneous, irreducible, ergodic Markov chains to model a sequence of local, and hence inexpensive, dynamic transitions, this dissertation proves that such transitions result in behavior that is called rational; such behavior is desirable because it can lead to both efficient search for an optimizer as well as resilient and opportunistic behavior. The dissertation also identifies system-theoretic properties of the proposed scheme, including equilibria, their stability and their optimality. Moreover, this dissertation demonstrates that the canonical genetic algorithm with fitness proportional selection and the (1+1) evolutionary strategy are particular cases of the scheme. Applications in three areas illustrate the versatility of the SECS theory: flight

  2. Decision making under uncertainty: Recommendations for the Wildland Fire Decision Support System (WFDSS)

    Science.gov (United States)

    Matthew P. Thompson

    2015-01-01

    The management of wildfire is a dynamic, complex, and fundamentally uncertain enterprise. Fire managers face uncertainties regarding fire weather and subsequent influence on fire behavior, the effects of fire on socioeconomic and ecological resources, and the efficacy of alternative suppression actions on fire outcomes. In these types of difficult decision environments...

  3. Building 431 fire tests

    International Nuclear Information System (INIS)

    Alvares, N.J.; Beason, D.G.; Ford, H.W.; Magee, M.W.

    1977-01-01

    An extensive discussion of considerations for fire protection in the LLL mirror fusion test facility (MFTF) is presented. Because of the large volume and high bays of the building, sufficient data on fire detection is unavailable. Results of fire detection tests using controlled fire sources in the building are presented. Extensive data concerning the behavior of the building atmosphere are included. Candidate fire detection instrumentation and extinguishing systems for use in the building are briefly reviewed

  4. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  5. Prescribed-fire effects on an aquatic community of a southwest montane grassland system

    Science.gov (United States)

    Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna

    2013-01-01

    The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality

  6. Prototype Early Warning Fire Detection System: Test Series 4 Results

    National Research Council Canada - National Science Library

    Gottuk, Daniel

    2002-01-01

    .... The use of multiple sensors and the Probabilistic Neural Networks alarm algorithm in the EWFD system resulted in improved performance compared to only an ionization or photoelectric smoke detector...

  7. Optimal Sensor Selection for Health Monitoring Systems

    Science.gov (United States)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  8. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  9. Risk-informed decision-making analysis for the electrical raceway fire barrier systems on a BWR-4 plant

    International Nuclear Information System (INIS)

    Wu, Ching-Hui; Lin, Tsu-Jen; Kao, Tsu-Mu; Chen, Chyn-Rong

    2003-01-01

    This paper describes a risk-informed decision-making approach used to resolve the fire barrier issue in a BWR-4 nuclear plant where Appendix R separation requirements cannot be met without installing additional fire protection features such as electrical raceway fire barrier system. The related risk measures in CDF (core damage frequency) and LERF (large early release frequency) of the fire barrier issue can be determined by calculating the difference in plant risks between various alternative cases and that met the requirement of the Appendix R. In some alternative cases, additional early-detection and fast-response fire suppression systems are suggested. In some other cases, cable re-routing of some improper layout of non-safety related cables are required. Sets of fire scenarios are re-evaluated more detailed by reviewing the cable damage impact for the BWR-4 plant. The fire hazard model, COMPBRM III-e, is used in this study and the dominant results in risk measures are benchmarked with the CFD code, FDS 2.0, to ensure that the risk impact of fire barrier is estimated accurately in the risk-informed decision making. The traditional deterministic qualitative methods, such as defense-in-depth, safety margin and post-fire safety shutdown capability are also proceeded. The value-impact analysis for proposed alternatives of fire wrapping required by Appendix R has been completed for technical basis of the exemption on Appendix R application. The outcome of the above analysis should be in compliance with the regulatory guidelines (RG) 1.174 and 1.189 for the applications in the risk-informed decision-making of the fire wrapping issues. (author)

  10. Battery management systems with thermally integrated fire suppression

    Science.gov (United States)

    Bandhauer, Todd M.; Farmer, Joseph C.

    2017-07-11

    A thermal management system is integral to a battery pack and/or individual cells. It relies on passive liquid-vapor phase change heat removal to provide enhanced thermal protection via rapid expulsion of inert high pressure refrigerant during abnormal abuse events and can be integrated with a cooling system that operates during normal operation. When a thermal runaway event occurs and sensed by either active or passive sensors, the high pressure refrigerant is preferentially ejected through strategically placed passages within the pack to rapidly quench the battery.

  11. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira

    2014-12-01

    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover. 

  12. The Effects of Modern-Day Cropland and Pasture Management on Vegetation Fire: An Earth System Modeling Approach

    Science.gov (United States)

    Rabin, S. S.; Malyshev, S.; Shevliakova, E.; Pacala, S. W.

    2014-12-01

    Fire is a major component of the global carbon cycle, with some estimates of the associated emissions reaching 2.5 PgC/yr. This and the other impacts of biomass burning have driven efforts to improve its simulation in Earth system models. Recent global fire models usually include both bioclimatic and anthropogenic drivers of fire, with the latter (via population density and sometimes economic status) serving to increase or suppress burned area. Some models have added the representation of fire used in deforestation and cropland management, the extent and seasonal timing of which may not be accounted for by the usual approach to anthropogenic influence. Human land use can also limit fire by fragmenting landscapes, but this process is not included in most global models. Moreover, although people often use fire to manage grazing lands for livestock, these practices have not been explicitly modeled (except as performed by pre-industrial societies). This could be important for regions such as sub-Saharan Africa, where the seasonality of pasture burning tends to differ from that of other lands, potentially influencing savanna-forest dynamics. Recent efforts elucidating the effects of cropland and pasture on fire regimes at regional scales provide insight into these processes. Using this new understanding, we have developed a fire model with structurally distinct modules for burning of croplands, pasture, and primary and secondary lands, as well as fire use for deforestation. Parameters for each are rigorously constrained using remote-sensing observations of burned area. This structure allows us to disentangle agricultural practices and fragmentation effects from the endogenous processes driving fire on non-agricultural land, resulting in a better ability to simulate how fire works at large scales. This is critical for modeling the future of fire and all the parts of the Earth system that it affects, including vegetation distributions, nutrient cycling, and biosphere

  13. Selection of fire-created snags at two spatial scales by cavity-nesting birds

    Science.gov (United States)

    Victoria A. Saab; Ree Brannon; Jonathan Dudley; Larry Donohoo; Dave Vanderzanden; Vicky Johnson; Henry Lachowski

    2002-01-01

    We examined the use of snag stands by seven species of cavity-nesting birds from 1994-1998. Selection of snags was studied in logged and unlogged burned forests at two spatial scales: microhabitat (local vegetation characteristics) and landscape (composition and patterning of surrounding vegetation types). We modeled nest occurrence at the landscape scale by using...

  14. 46 CFR 118.410 - Fixed gas fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... approved by the Commandant and protected from damage or accidental activation. A pull cable used to... outside against corrosion unless otherwise approved by the Commandant. Aluminum or other low melting... rotating electrical propulsion equipment a fixed carbon dioxide system must meet the following requirements...

  15. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    Science.gov (United States)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  16. Vegetation fire proneness in Europe

    Science.gov (United States)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  17. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A new warning system for fires of electrical origin

    International Nuclear Information System (INIS)

    Pietersen, A.H.

    1977-01-01

    The method described enables overheating to be detected at the incipient stage of a five. Freon-filled microcapsules are applied in the form of powder or paint to the surfaces being monitored. The microcapsules burst at a given temperature and the released freon can be sensed by halogen detectors coupled to the normal smoke-detector system. Alternatively, the noise of the bursting microcapsules can be simply detected by microphones. (Auth.)

  19. Unmanned Systems In Integrating Cross domain Naval Fires

    Science.gov (United States)

    2016-06-01

    2014a). .............................77 Figure 24. A Worker Installs Rotors on the DP-14 Hawk. Source: DPI Systems (2014b...Discrete Event Plotter Results for a Link-16 Equipped DP-5X Wasp and SAG with Organic MH-60R Seahawk Helicopters (Average). ........107 Figure 44. The...and Support Costs in Fiscal Year 206 Dollars. ......126 xv LIST OF TABLES Table 1. SEA23 Project Team Composition

  20. Modeling acute respiratory illness during the 2007 San Diego wildland fires using a coupled emissions-transport system and generalized additive modeling.

    Science.gov (United States)

    Thelen, Brian; French, Nancy H F; Koziol, Benjamin W; Billmire, Michael; Owen, Robert Chris; Johnson, Jeffrey; Ginsberg, Michele; Loboda, Tatiana; Wu, Shiliang

    2013-11-05

    A study of the impacts on respiratory health of the 2007 wildland fires in and around San Diego County, California is presented. This study helps to address the impact of fire emissions on human health by modeling the exposure potential of proximate populations to atmospheric particulate matter (PM) from vegetation fires. Currently, there is no standard methodology to model and forecast the potential respiratory health effects of PM plumes from wildland fires, and in part this is due to a lack of methodology for rigorously relating the two. The contribution in this research specifically targets that absence by modeling explicitly the emission, transmission, and distribution of PM following a wildland fire in both space and time. Coupled empirical and deterministic models describing particulate matter (PM) emissions and atmospheric dispersion were linked to spatially explicit syndromic surveillance health data records collected through the San Diego Aberration Detection and Incident Characterization (SDADIC) system using a Generalized Additive Modeling (GAM) statistical approach. Two levels of geographic aggregation were modeled, a county-wide regional level and division of the county into six sub regions. Selected health syndromes within SDADIC from 16 emergency departments within San Diego County relevant for respiratory health were identified for inclusion in the model. The model captured the variability in emergency department visits due to several factors by including nine ancillary variables in addition to wildfire PM concentration. The model coefficients and nonlinear function plots indicate that at peak fire PM concentrations the odds of a person seeking emergency care is increased by approximately 50% compared to non-fire conditions (40% for the regional case, 70% for a geographically specific case). The sub-regional analyses show that demographic variables also influence respiratory health outcomes from smoke. The model developed in this study allows a

  1. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs

    Directory of Open Access Journals (Sweden)

    Henry Cruz

    2016-06-01

    Full Text Available This article proposes a novel method for detecting forest fires, through the use of a new color index, called the Forest Fire Detection Index (FFDI, developed by the authors. The index is based on methods for vegetation classification and has been adapted to detect the tonalities of flames and smoke; the latter could be included adaptively into the Regions of Interest (RoIs with the help of a variable factor. Multiple tests have been performed upon database imagery and present promising results: a detection precision of 96.82% has been achieved for image sizes of 960 × 540 pixels at a processing time of 0.0447 seconds. This achievement would lead to a performance of 22 f/s, for smaller images, while up to 54 f/s could be reached by maintaining a similar detection precision. Additional tests have been performed on fires in their early stages, achieving a precision rate of p = 96.62%. The method could be used in real-time in Unmanned Aerial Systems (UASs, with the aim of monitoring a wider area than through fixed surveillance systems. Thus, it would result in more cost-effective outcomes than conventional systems implemented in helicopters or satellites. UASs could also reach inaccessible locations without jeopardizing people’s safety. On-going work includes implementation into a commercially available drone.

  2. Integration of Fire Control, Flight Control and Propulsion Control Systems.

    Science.gov (United States)

    1983-08-01

    pourront etre enploy6s. Avant l’attaque, des profils de vole contr~lant I’Anergie seront 6tablis pour augmenter au maximum l’dnergie disponible do...VERIIATION PROCEDURES NTRTO PERFORM CONTROL SYSTEM REPEAT TESTS WITH ACTUAL ENGIRE ITEATO INTEGRATION TO TIENMO. RUUINED TE VALIDATE TESTING TESI ...fonrtionnement est disponible . Teat-dea rodur d’nrf /sortie .an. scs i lquiesent posslde ce* deux dispositife, on test des rodeurs et sx~fiutA *Sur une vote do

  3. Rope rescue in National fire-fighting and rescue system

    OpenAIRE

    SOCHACKI MARIAN

    2008-01-01

    Автор описывает организацию, функционирование и место системы спасения с высоты в Государственной спасательно-гасящей системе.The author describes organization, working and place of rope rescue in National Firefighting and Rescue System (KSRG).

  4. Interim Corrective Measures Work Plan for the Expanded Bioventing System Eglin Main Base Old Fire Training Area

    National Research Council Canada - National Science Library

    1997-01-01

    This interim corrective measures work plan (ICM work plan) presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils at the Eglin Main Base Old Fire Training Area (old Eglin FTA...

  5. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  6. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara

    2000-01-01

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  7. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  8. Towards the development of full-fledged forest fire information systems

    Science.gov (United States)

    Baetens, J.; De Baets, B.

    2012-12-01

    Throughout the last decades much efforts have been spent in obtaining an increased understanding of wildfire dynamics and the way it is influenced by prevailing environmental conditions and settings, such as temperature, humidity, topography, vegetation abundance, and so on, since such a profound apprehension is a prerequisite for achieving enhanced wildfire prevention measures, as well as for optimizing fire fighting and disaster management. Amongst other things, this pursuit has culminated in the deployment of wildfire information systems, such as the Canadian Wildfire Information System (CWFIS), the European Forest Fire Information System (EFFIS) and the United States Active Fire Mapping Program and Landscape Fire and Resource Management Planning Tools (LANDFIRE), which inform any interested stakeholder, be it a citizen or a government official, about the current fire risk, the extent and location of current fires, the inflammability of the vegetation, and so on. Taking into account the coverage of these systems, it should be clear that they strongly rely upon satellite imagery that is obtained from dedicated sensors, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board of NASA's Terra and Aqua satellites and the Advanced Very High Resolution Radiometer (AVHRR) that is carried by NOAA satellites, or more general-purpose instruments on board of spacecrafts such as Landsat or SPOT. Yet, to this day the aforementioned information systems have not yet embraced the power of mathematical modeling in order to enable trustworthy forecasts of the spatio-temporal propagation of wildfires given their current extent, which would nonetheless be extremely useful for optimizing fire fighting and disaster management, taking appropriate preventive measures, and so on. The deployment of such full-fledged wildfire information systems requires a high-level integration of (real-time) satellite imagery, weather reports and forecasts, geographic information, and

  9. Remote multi-function fire alarm system based on internet of things

    Science.gov (United States)

    Wang, Lihui; Zhao, Shuai; Huang, Jianqing; Ji, Jianyu

    2018-05-01

    This project uses MCU STC15W408AS (stable, energy saving, high speed), temperature sensor DS18B20 (cheap, high efficiency, stable), MQ2 resistance type semiconductor smog sensor (high stability, fast response and economy) and NRF24L01 wireless transmitting and receiving module (energy saving, small volume, reliable) as the main body to achieve concentration temperature data presentation, intelligent voice alarming and short distance wireless transmission. The whole system is safe, reliable, cheap, quick reaction and good performance. This project uses the MCU STM32F103RCT6 as the main control chip, and use WIFI module ESP8266, wireless module NRF24L01 to make the gateway. Users can remotely check and control the related devices in real-time on smartphones or computers. We can also realize the functions of intelligent fire monitoring, remote fire extinguishing, cloud data storage through the third party server Big IOT.

  10. Computer-simulation study on fire behaviour in the ventilated cavity of ventilated façade systems

    Directory of Open Access Journals (Sweden)

    Giraldo María P.

    2013-11-01

    Full Text Available Fire spread through the façades is widely recognized as one of the fastest pathways of fire spreading in the buildings. Fire may spread through the façade in different ways depending on the type of façade system and on the elements and materials from which it is constructed. Ventilated façades are multilayer systems whose main feature is the creation of an air chamber of circulating air between the original building wall and the external cladding. The “chimney effect” in the air cavity is a mechanism that improves the façade's thermal behaviour and avoids the appearance of moisture from rain or condensation. However, in a event of fire, it may contribute to the quickest spreading of fire, representing a significant risk to the upper floors of a building. This study deals with some aspects of fire propagation through the ventilated cavity in ventilated façade systems. Also we review the provisions stipulated by the Spanish building code (Código Técnico de la Edificación, CTE [1] to avoid fire spread outside the building. The results highlight the importance of the use of proper fire barriers to ensure the compartmentalization of the ventilated cavity, as well as the use of non-combustible thermal insulation materials, among others. In addition, based on the results, it might be considered that the measures stipulated by the CTE are insufficient to limit the risks associated with this kind of façades systems. The study has been performed using field models of computational fluid-dynamics. In particular, the Fire Dynamics Simulator (FDS software has been used to numerically solve the mathematical integration models.

  11. The selection of flying roller as an effort to increase the power of scooter-matic as the main power of centrifugal pump for fire fighter motor cycle

    Science.gov (United States)

    Hadi Sutrisno, Himawan

    2018-03-01

    In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.

  12. Safety assessment of VHTR hydrogen production system against fire, explosion and acute toxicity

    International Nuclear Information System (INIS)

    Murakami, Tomoyuki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-01-01

    The Japan Atomic Energy Agency has been developing a nuclear hydrogen production system by using heat from the Very High Temperature Reactor (VHTR). This system will handle a large amount of combustible gas and toxic gas. The risk from fire, explosion and acute toxic exposure caused by an accident involving chemical material release in a hydrogen production system is assessed. It is important to ensure the safety of the nuclear plant, and the risks for public health should be sufficiently small. This report provides the basic policy for the safety evaluation in cases of accident involving fire, explosion and toxic material release in a hydrogen production system. Preliminary safety analysis of a commercial-sized VHTR hydrogen production system, GTHTR300C, is performed. This analysis provides us with useful information on the separation distance between a nuclear plant and a hydrogen production system and a prospect that an accident in a hydrogen production system does not significantly increase the risks of the public. (author)

  13. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    International Nuclear Information System (INIS)

    Wang, L.; Chen, G.M.; Wang, Q.; Zhong, M.

    2007-01-01

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  14. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    Science.gov (United States)

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  15. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  16. Clinch River breeder reactor sodium fire protection system design and development

    International Nuclear Information System (INIS)

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-01-01

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant

  17. Supplier Selection Using Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    hamidreza kadhodazadeh

    2014-01-01

    Full Text Available Suppliers are one of the most vital parts of supply chain whose operation has significant indirect effect on customer satisfaction. Since customer's expectations from organization are different, organizations should consider different standards, respectively. There are many researches in this field using different standards and methods in recent years. The purpose of this study is to propose an approach for choosing a supplier in a food manufacturing company considering cost, quality, service, type of relationship and structure standards of the supplier organization. To evaluate supplier according to the above standards, the fuzzy inference system has been used. Input data of this system includes supplier's score in any standard that is achieved by AHP approach and the output is final score of each supplier. Finally, a supplier has been selected that although is not the best in price and quality, has achieved good score in all of the standards.

  18. Measurements and simulation for design optimization for low NOx coal-firing system

    Energy Technology Data Exchange (ETDEWEB)

    E. Bar-Ziv; Y. Yasur; B. Chudnovsky; L. Levin; A. Talanker [Ben-Gurion University of Negev, Beer-Sheva (Israel)

    2003-07-01

    The information required to design a utility steam generator is the heat balance, fuel analysis and emission. These establish the furnace wall configuration, the heat release rates, and the firing technology. The furnace must be sized for (1) residence time for complete combustion with low NOx, and (2) reduction of flue gas temperature to minimize ash deposition. To meet these, computational fluid dynamics (CFD) of the combustion process in the furnace were performed and proven to be a powerful tool for this purpose. Still, reliable numerical simulations require careful interpretation and comparison with measurements. We report numerical results and measurements for a 575 MW pulverized coal tangential firing boiler of the Hadera power plant of Israel Electric Corporation (IEC). Measured and calculated values were found to be in reasonable agreement. We used the simulations for optimization and investigated temperature distribution, heat fluxes and concentration of chemical species. We optimized both the furnace flue gas temperature entering the convective path and the staged residence time for low NOx. We tested mass flow rates through close-coupled and separate overfire air ports and its arrangement and the coal powder fineness. These parameters can control the mixing rate between the fuel and the oxidizer streams and can affect the most important characteristics of the boiler such as temperature regimes, coal burning rate and nitrogen oxidation/reduction. From this effort, IEC started to improve the boiler performance by replacing the existing typical tangential burners to low NOx firing system to ensure the current regulation requirements of emission pollutions.

  19. A probabilistic method for optimization of fire safety in nuclear power plants

    International Nuclear Information System (INIS)

    Hosser, D.; Sprey, W.

    1986-01-01

    As part of a comprehensive fire safety study for German Nuclear Power Plants a probabilistic method for the analysis and optimization of fire safety has been developed. It follows the general line of the American fire hazard analysis, with more or less important modifications in detail. At first, fire event trees in selected critical plant areas are established taking into account active and passive fire protection measures and safety systems endangered by the fire. Failure models for fire protection measures and safety systems are formulated depending on common parameters like time after ignition and fire effects. These dependences are properly taken into account in the analysis of the fire event trees with the help of first-order system reliability theory. In addition to frequencies of fire-induced safety system failures relative weights of event paths, fire protection measures within these paths and parameters of the failure models are calculated as functions of time. Based on these information optimization of fire safety is achieved by modifying primarily event paths, fire protection measures and parameters with the greatest relative weights. This procedure is illustrated using as an example a German 1300 MW PWR reference plant. It is shown that the recommended modifications also reduce the risk to plant personnel and fire damage

  20. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  1. An Architecture for Automated Fire Detection Early Warning System Based on Geoprocessing Service Composition

    Science.gov (United States)

    Samadzadegan, F.; Saber, M.; Zahmatkesh, H.; Joze Ghazi Khanlou, H.

    2013-09-01

    Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA) to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS) has guided geospatial data processing in a Service Oriented Architecture (SOA) platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  2. AN ARCHITECTURE FOR AUTOMATED FIRE DETECTION EARLY WARNING SYSTEM BASED ON GEOPROCESSING SERVICE COMPOSITION

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Rapidly discovering, sharing, integrating and applying geospatial information are key issues in the domain of emergency response and disaster management. Due to the distributed nature of data and processing resources in disaster management, utilizing a Service Oriented Architecture (SOA to take advantages of workflow of services provides an efficient, flexible and reliable implementations to encounter different hazardous situation. The implementation specification of the Web Processing Service (WPS has guided geospatial data processing in a Service Oriented Architecture (SOA platform to become a widely accepted solution for processing remotely sensed data on the web. This paper presents an architecture design based on OGC web services for automated workflow for acquisition, processing remotely sensed data, detecting fire and sending notifications to the authorities. A basic architecture and its building blocks for an automated fire detection early warning system are represented using web-based processing of remote sensing imageries utilizing MODIS data. A composition of WPS processes is proposed as a WPS service to extract fire events from MODIS data. Subsequently, the paper highlights the role of WPS as a middleware interface in the domain of geospatial web service technology that can be used to invoke a large variety of geoprocessing operations and chaining of other web services as an engine of composition. The applicability of proposed architecture by a real world fire event detection and notification use case is evaluated. A GeoPortal client with open-source software was developed to manage data, metadata, processes, and authorities. Investigating feasibility and benefits of proposed framework shows that this framework can be used for wide area of geospatial applications specially disaster management and environmental monitoring.

  3. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  4. Water use/reuse and wastewater management practices at selected Canadian coal fired generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Kissel, R.

    1984-08-01

    Recommended Codes of Practice are currently being developed by Environment Canada aimed at ensuring that the aquatic environment is not significantly impacted upon by wastewater discharges from steam electric generating stations. A study was carried out to: develop a reliable data base of the physical and chemical characteristics of water and wastewater streams at representative generating stations; study advanced water reuse/recirculation and wastewater management to evaluate their potential future use in power generating stations; and to examine and evaluate the relevant aspects of best practical technology as proposed by Environment Canada in the Recommended Codes of Practice. Studies were carried out at Dalhousie Generating Station (GS), New Brunswick, Poplar River GS, Saskatchewan, Battle River GS, Alberta, and Milner GS, Alberta. The studies included on-site flow monitoring and sampling, chemical analyses, treatability studies and engineering analyses of water and wastewater systems. Extensive chemical characterizations of the water and wastewater streams were completed. Some problems were identified with the recirculating bottom ash system at Dalhousie which was a significant wastewater producer, coal pile runoff which caused significant wastewater, and iron which was the principal discharge criteria metal. 14 refs., 41 figs., 2 tabs.

  5. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  6. Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs

    Science.gov (United States)

    Galimova, L. A.

    2017-10-01

    Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.

  7. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    Science.gov (United States)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  8. A synopsis of large or disastrous wildland fires

    Science.gov (United States)

    Robert E. Martin; David B. Sapsis

    1995-01-01

    Wildland fires have occurred for centuries in North America and other selected countries and can be segregated into three periods: prehistoric (presuppression) fires, suppression period fires, and fire management period fires. Prehistoric fires varied in size and damage but were probably viewed fatalistically. Suppression period fires were based on policy that excluded...

  9. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  10. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces

    Science.gov (United States)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard

    2016-04-01

    Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire

  11. WebFIRE

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Factor Information Retrieval (FIRE) Data System is a database management system containing EPA's recommended emission estimation factors for criteria and...

  12. New Solutions to the Firing Squad Synchronization Problems for Neural and Hyperdag P Systems

    Directory of Open Access Journals (Sweden)

    Michael J. Dinneen

    2009-11-01

    Full Text Available We propose two uniform solutions to an open question: the Firing Squad Synchronization Problem (FSSP, for hyperdag and symmetric neural P systems, with anonymous cells. Our solutions take e_c+5 and 6e_c+7 steps, respectively, where e_c is the eccentricity of the commander cell of the dag or digraph underlying these P systems. The first and fast solution is based on a novel proposal, which dynamically extends P systems with mobile channels. The second solution is substantially longer, but is solely based on classical rules and static channels. In contrast to the previous solutions, which work for tree-based P systems, our solutions synchronize to any subset of the underlying digraph; and do not require membrane polarizations or conditional rules, but require states, as typically used in hyperdag and neural P systems.

  13. Cause analysis and suggestion of urea consumption in denitrification system of coal-fired power plant

    Science.gov (United States)

    Zhang, Xueying; Dong, Ruifeng; Guo, Yang; Wang, Fangfang; Yang, Shuo

    2018-02-01

    In the daily operation of many power plants, the urea consumption of denitration system is much more than normal. Therefore, the process of site testing and laboratory analysis are carried out. Several suggestions are given out. (1) The position of sampling hole on the exit flue of denitrification system should be redesigned. (2) The denitrification optimization and adjustment should be carried out based on the technical specifications for the operation system. (3) The flue gas CEMS system for single point sampling should be transformed into two or three point sampling mode. (4) When the coal - fired unit is shutting down, examine the ammonia injection and nozzle branch, in order to improve the operation reliability of denitration system.

  14. Fire Perimeters

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2003. Some fires...

  15. Fire History

    Data.gov (United States)

    California Natural Resource Agency — The Fire Perimeters data consists of CDF fires 300 acres and greater in size and USFS fires 10 acres and greater throughout California from 1950 to 2002. Some fires...

  16. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  17. Nitrogen gas extinguisher system as a countermeasure against a sodium fire at Monju

    International Nuclear Information System (INIS)

    Hasegawa, M.; Ikeda, M.; Kikuchi, H.

    2001-01-01

    Monju is a prototype sodium cooled FBR in Japan and occurred a sodium leakage incident in the secondary heat transport system on Dec. 8, 1995. The cause of the sodium leakage was a thermocouple well tube failure resulting from high cycle fatigue due to flow-induced vibration. The investigative research revealed that this type of flow-induced vibration was not a well-known Von Karman vortex shedding, but a symmetric vortex shedding. In the light of lessons from the sodium leakage incident, Monju will take several improvements in order to enhance the safety and reliability of the plant. A nitrogen gas extinguisher system will be installed at Monju as one of countermeasures against sodium fires. The basic design specifications of the system were determined by some experiments. Three kinds of experiment were conducted with the object of confirming; (1) an oxygen concentration to suppress the sodium fire, (2) a nitrogen gas mixing efficiency to decrease the oxygen concentration, and (3) a nitrogen gas feed rate to prevent air in-leak from the outside to keep the low oxygen atmosphere. This paper reports these tests which were performed to determine the design specification of the system. (authors)

  18. Nitrogen gas extinguisher system as a countermeasure against a sodium fire at Monju

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M; Ikeda, M [MONJU Construction Office, Japan Nuclear Cycle Development Institute (Japan); Kikuchi, H [Kobe Shipyard, Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2001-07-01

    Monju is a prototype sodium cooled FBR in Japan and occurred a sodium leakage incident in the secondary heat transport system on Dec. 8, 1995. The cause of the sodium leakage was a thermocouple well tube failure resulting from high cycle fatigue due to flow-induced vibration. The investigative research revealed that this type of flow-induced vibration was not a well-known Von Karman vortex shedding, but a symmetric vortex shedding. In the light of lessons from the sodium leakage incident, Monju will take several improvements in order to enhance the safety and reliability of the plant. A nitrogen gas extinguisher system will be installed at Monju as one of countermeasures against sodium fires. The basic design specifications of the system were determined by some experiments. Three kinds of experiment were conducted with the object of confirming; (1) an oxygen concentration to suppress the sodium fire, (2) a nitrogen gas mixing efficiency to decrease the oxygen concentration, and (3) a nitrogen gas feed rate to prevent air in-leak from the outside to keep the low oxygen atmosphere. This paper reports these tests which were performed to determine the design specification of the system. (authors)

  19. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Science.gov (United States)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  20. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Żymełka Piotr

    2017-12-01

    Full Text Available Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS data.

  1. Process for Selecting System Level Assessments for Human System Technologies

    Science.gov (United States)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  2. Forecasting distribution of numbers of large fires

    Science.gov (United States)

    Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan

    2015-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...

  3. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Science.gov (United States)

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  4. Fire under control, operating cost too. Wood pellets heating system for the fire brigade building at Gaienhofen on Lake Constance; Feuer unter Kontrolle, Betriebskosten im Griff. Die Feuerwehr in Gaienhofen/Bodensee heizt mit Holzpellets

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Klaus W.

    2008-11-15

    The fire equipment building of Gaienhofen is a new building on the edge of town, neighbouring the buildings of the local soccer and tennis clubs. All three buildings are serviced by a heating station in the basement of the fire brigade building. A solar system for water heating reduces fuel consumption and minimizes the operating cost. (orig.)

  5. GHG AND AEROSOL EMISSION FROM FIRE PIXEL DURING CROP RESIDUE BURNING UNDER RICE AND WHEAT CROPPING SYSTEMS IN NORTH-WEST INDIA

    Directory of Open Access Journals (Sweden)

    P. Acharya

    2016-10-01

    Full Text Available Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI. MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4 during rice and 10.89 t/ha (±8.7 during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  6. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  7. Ikhana: Unmanned Aircraft System Western States Fire Missions. Monographs in Aerospace History, Number 44

    Science.gov (United States)

    Merlin, Peter W.

    2009-01-01

    In 2006, NASA Dryden Flight Research Center, Edwards, Calif., obtained a civil version of the General Atomics MQ-9 unmanned aircraft system and modified it for research purposes. Proposed missions included support of Earth science research, development of advanced aeronautical technology, and improving the utility of unmanned aerial systems in general. The project team named the aircraft Ikhana a Native American Choctaw word meaning intelligent, conscious, or aware in order to best represent NASA research goals. Building on experience with these and other unmanned aircraft, NASA scientists developed plans to use the Ikhana for a series of missions to map wildfires in the western United States and supply the resulting data to firefighters in near-real time. A team at NASA Ames Research Center, Mountain View, Calif., developed a multispectral scanner that was key to the success of what became known as the Western States Fire Missions. Carried out by team members from NASA, the U.S. Department of Agriculture Forest Service, National Interagency Fire Center, National Oceanic and Atmospheric Administration, Federal Aviation Administration, and General Atomics Aeronautical Systems Inc., these flights represented an historic achievement in the field of unmanned aircraft technology.

  8. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology

    Science.gov (United States)

    Driscoll, J. M.

    2015-12-01

    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  9. 309 Building fire protection analysis and justification for deactivation of sprinkler system. Revision 1

    International Nuclear Information System (INIS)

    Conner, R.P.

    1997-01-01

    Provide a 'graded approach' fire evaluation in preparation for turnover to Environmental Restoration Contractor for D and D. Scope includes revising 309 Building book value and evaluating fire hazards, radiological and toxicological releases, and life safety issues

  10. Engineering development of coal-fired high-performance power systems

    International Nuclear Information System (INIS)

    1998-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS

  11. Updates of the fire protection system of the Juzbado Nuclear Fuel Fabrication Plant; Actualizaciones del Sistema de Proteccion Contra Incendios de la Fabrica de Combustible Nuclear de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Dorado, P.; Palomo, J. J.; Romano, A.

    2015-07-01

    The Juzbado Nuclear Fuel Fabrication Plant fire protection system is one of the most important safety system of the plant. Every year, a large part of the annual investment is employed to improve this system, to update its technology, in order to improve detection and extinction capability to minimize fire risk. Over the last few years, several improvement projects have been carried out that focused on fire detection technology update and on optimization of local detectors integration with a centralized control system, as well as on an advanced public address system, which used clear and unambiguous messages improving personnel response to a plant evacuation. Planned projects and those, which are currently under development, focus on improving passive fire protection means as well as fire protection of key emergency response equipment s such as emergency diesel generators and fire extinguishing bombs. (Author)

  12. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Science.gov (United States)

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  13. RECOVER: An Automated, Cloud-Based Decision Support System for Post-Fire Rehabilitation Planning

    Science.gov (United States)

    Schnase, J. L.; Carroll, M. L.; Weber, K. T.; Brown, M. E.; Gill, R. L.; Wooten, M.; May, J.; Serr, K.; Smith, E.; Goldsby, R.; Newtoff, K.; Bradford, K.; Doyle, C.; Volker, E.; Weber, S.

    2014-11-01

    RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data.

  14. RECOVER: An Automated Cloud-Based Decision Support System for Post-fire Rehabilitation Planning

    Science.gov (United States)

    Schnase, John L.; Carroll, Mark; Weber, K. T.; Brown, Molly E.; Gill, Roger L.; Wooten, Margaret; May J.; Serr, K.; Smith, E.; Goldsby, R.; hide

    2014-01-01

    RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data.

  15. General fire protection guidelines for egyptian nuclear facilities. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    Radhad, S; Hussien, A Z; Hammad, F H [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The purpose of this paper is to establish the regulatory requirements of that will provide and ensure fire protection of egyptian nuclear facilities. Those facilities that use, handle and store low and/or medium radioactive substances are included. Two or more classes of occupancy are considered to occur in the same building or structure. Fir protection measures and systems were reviewed for three of the egyptian Nuclear facilities. These are egypt first nuclear reactor (ETRR-1) building and systems, hot laboratories buildings and facilities, and the building including the AECL type Is-6500 industrial cobalt-60 gamma irradiator {sup E}gypt`s mega gamma I{sup .} The study includes the outlines of the various aspects of fire protection with a view to define the relevant highlights and scope of egyptian guideline for nuclear installations. The study considers fire protection aspects including the following items: 1- Site selection. 2- General facility design. 3- Fire alarm, detection and suppression systems. (4- Protection for specific areas/control room, cable spreading room, computer room) 5- Fire emergency response planning. 6- Fire water supply. 7- Emergency lighting and communication. 8- Rescue and escape routes. 9- Explosion protection. 10-Manual fire fighting. 11- Security consideration in the interest of fire protection. 12- quality assurance programme. Therefore, first of all the design stage, then during the construction stage, and later during the operation stage, measures must be taken to forestall the risks associated with the outbreak of fire and to ensure that consequences of fire accidents remain limited.

  16. General fire protection guidelines for egyptian nuclear facilities. Vol. 4

    International Nuclear Information System (INIS)

    Radhad, S.; Hussien, A.Z.; Hammad, F.H.

    1996-01-01

    The purpose of this paper is to establish the regulatory requirements of that will provide and ensure fire protection of egyptian nuclear facilities. Those facilities that use, handle and store low and/or medium radioactive substances are included. Two or more classes of occupancy are considered to occur in the same building or structure. Fir protection measures and systems were reviewed for three of the egyptian Nuclear facilities. These are egypt first nuclear reactor (ETRR-1) building and systems, hot laboratories buildings and facilities, and the building including the AECL type Is-6500 industrial cobalt-60 gamma irradiator E gypt's mega gamma I . The study includes the outlines of the various aspects of fire protection with a view to define the relevant highlights and scope of egyptian guideline for nuclear installations. The study considers fire protection aspects including the following items: 1- Site selection. 2- General facility design. 3- Fire alarm, detection and suppression systems. 4- Protection for specific areas/control room, cable spreading room, computer room) 5- Fire emergency response planning. 6- Fire water supply. 7- Emergency lighting and communication. 8- Rescue and escape routes. 9- Explosion protection. 10-Manual fire fighting. 11- Security consideration in the interest of fire protection. 12- quality assurance programme. Therefore, first of all the design stage, then during the construction stage, and later during the operation stage, measures must be taken to forestall the risks associated with the outbreak of fire and to ensure that consequences of fire accidents remain limited

  17. ERP systems selection in multinational enterprises: a practical guide

    OpenAIRE

    Moutaz Haddara

    2018-01-01

    The Enterprise Resource Planning (ERP) system selection is an early phase in the ERP adoption process. When organizations evaluate an ERP, they commonly develop their own selection criteria that usually involve various system and vendor related factors. While the selection process is critical, however, there is an apparent research gap in literature. The ERP selection effort also focuses on the system’s fit with the organizational requirements and needs. Thus, the selection phase is critical,...

  18. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    Science.gov (United States)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  19. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    International Nuclear Information System (INIS)

    Shenker, J.

    1995-01-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation

  20. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  1. The Angra 1 fire PRA project

    International Nuclear Information System (INIS)

    Silva, Luiz E. Massiere de C.; Kassawara, Robert

    2009-01-01

    The Angra 1 Fire PRA (Probabilistic Risk Assessment) is under development by ELETRONUCLEAR jointly with EPRI (Electric Power Research Institute). The project was started January of 2007 and it is foreseen to be finished in the middle of the next year. The study is being conducted according to the newest methodology developed by EPRI and NRC/RES (U.S. Nuclear Regulatory Commission - Office of Regulatory Research) published in 2005 as Fire PRA Methodology for Nuclear Power Facilities (NUREG/CR-6850 or EPRI TR-1011989) [1]. Starting from the Internal Events Angra 1 PRA model Level 1 the project aims to be a comprehensive plant-specific fire analysis to identify the possible consequences of a fire in the plant vital areas which threaten the integrity of systems relevant to the safety, challenging the safety functions and representing a risk of accident that can lead to a core damage. The main tasks include the plant boundary and partitioning, the fire PRA component selection and the identification of the possible fire scenarios (ignition, propagation, detection, extinction and hazards) considering human failure events to establish the fire-induced risk model for quantification of the risk for nuclear core damage taking into account the plant design and its fire protection resources. This work presents a general discussion on the methodology applied to the completed steps of the project. (author)

  2. An interoperable standard system for the automatic generation and publication of the fire risk maps based on Fire Weather Index (FWI)

    Science.gov (United States)

    Julià Selvas, Núria; Ninyerola Casals, Miquel

    2015-04-01

    It has been implemented an automatic system to predict the fire risk in the Principality of Andorra, a small country located in the eastern Pyrenees mountain range, bordered by Catalonia and France, due to its location, his landscape is a set of a rugged mountains with an average elevation around 2000 meters. The system is based on the Fire Weather Index (FWI) that consists on different components, each one, measuring a different aspect of the fire danger calculated by the values of the weather variables at midday. CENMA (Centre d'Estudis de la Neu i de la Muntanya d'Andorra) has a network around 10 automatic meteorological stations, located in different places, peeks and valleys, that measure weather data like relative humidity, wind direction and speed, surface temperature, rainfall and snow cover every ten minutes; this data is sent daily and automatically to the system implemented that will be processed in the way to filter incorrect measurements and to homogenizer measurement units. Then this data is used to calculate all components of the FWI at midday and for the level of each station, creating a database with the values of the homogeneous measurements and the FWI components for each weather station. In order to extend and model this data to all Andorran territory and to obtain a continuous map, an interpolation method based on a multiple regression with spline residual interpolation has been implemented. This interpolation considerer the FWI data as well as other relevant predictors such as latitude, altitude, global solar radiation and sea distance. The obtained values (maps) are validated using a cross-validation leave-one-out method. The discrete and continuous maps are rendered in tiled raster maps and published in a web portal conform to Web Map Service (WMS) Open Geospatial Consortium (OGC) standard. Metadata and other reference maps (fuel maps, topographic maps, etc) are also available from this geoportal.

  3. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  4. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  5. Fire tests and their relevance

    International Nuclear Information System (INIS)

    Malhotra, H.L.

    1984-01-01

    Background information is provided about the nature of fire tests in general, not specifically designed for testing nuclear flasks. Headings are: brief history (including various temperature/time fire curves); the current position; types of tests; validation of fire tests; fire safety system. (U.K.)

  6. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  7. Web-of-Objects (WoO)-based context aware emergency fire management systems for the Internet of Things.

    Science.gov (United States)

    Shamszaman, Zia Ush; Ara, Safina Showkat; Chong, Ilyoung; Jeong, Youn Kwae

    2014-02-13

    Recent advancements in the Internet of Things (IoT) and the Web of Things (WoT) accompany a smart life where real world objects, including sensing devices, are interconnected with each other. The Web representation of smart objects empowers innovative applications and services for various domains. To accelerate this approach, Web of Objects (WoO) focuses on the implementation aspects of bringing the assorted real world objects to the Web applications. In this paper; we propose an emergency fire management system in the WoO infrastructure. Consequently, we integrate the formation and management of Virtual Objects (ViO) which are derived from real world physical objects and are virtually connected with each other into the semantic ontology model. The charm of using the semantic ontology is that it allows information reusability, extensibility and interoperability, which enable ViOs to uphold orchestration, federation, collaboration and harmonization. Our system is context aware, as it receives contextual environmental information from distributed sensors and detects emergency situations. To handle a fire emergency, we present a decision support tool for the emergency fire management team. The previous fire incident log is the basis of the decision support system. A log repository collects all the emergency fire incident logs from ViOs and stores them in a repository.

  8. Web-of-Objects (WoO-Based Context Aware Emergency Fire Management Systems for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Zia Ush Shamszaman

    2014-02-01

    Full Text Available Recent advancements in the Internet of Things (IoT and the Web of Things (WoT accompany a smart life where real world objects, including sensing devices, are interconnected with each other. The Web representation of smart objects empowers innovative applications and services for various domains. To accelerate this approach, Web of Objects (WoO focuses on the implementation aspects of bringing the assorted real world objects to the Web applications. In this paper; we propose an emergency fire management system in the WoO infrastructure. Consequently, we integrate the formation and management of Virtual Objects (ViO which are derived from real world physical objects and are virtually connected with each other into the semantic ontology model. The charm of using the semantic ontology is that it allows information reusability, extensibility and interoperability, which enable ViOs to uphold orchestration, federation, collaboration and harmonization. Our system is context aware, as it receives contextual environmental information from distributed sensors and detects emergency situations. To handle a fire emergency, we present a decision support tool for the emergency fire management team. The previous fire incident log is the basis of the decision support system. A log repository collects all the emergency fire incident logs from ViOs and stores them in a repository.

  9. Web-of-Objects (WoO)-Based Context Aware Emergency Fire Management Systems for the Internet of Things

    Science.gov (United States)

    Shamszaman, Zia Ush; Ara, Safina Showkat; Chong, Ilyoung; Jeong, Youn Kwae

    2014-01-01

    Recent advancements in the Internet of Things (IoT) and the Web of Things (WoT) accompany a smart life where real world objects, including sensing devices, are interconnected with each other. The Web representation of smart objects empowers innovative applications and services for various domains. To accelerate this approach, Web of Objects (WoO) focuses on the implementation aspects of bringing the assorted real world objects to the Web applications. In this paper; we propose an emergency fire management system in the WoO infrastructure. Consequently, we integrate the formation and management of Virtual Objects (ViO) which are derived from real world physical objects and are virtually connected with each other into the semantic ontology model. The charm of using the semantic ontology is that it allows information reusability, extensibility and interoperability, which enable ViOs to uphold orchestration, federation, collaboration and harmonization. Our system is context aware, as it receives contextual environmental information from distributed sensors and detects emergency situations. To handle a fire emergency, we present a decision support tool for the emergency fire management team. The previous fire incident log is the basis of the decision support system. A log repository collects all the emergency fire incident logs from ViOs and stores them in a repository. PMID:24531299

  10. Real time forest fire warning and forest fire risk zoning: a Vietnamese case study

    Science.gov (United States)

    Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.

    2016-12-01

    Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher

  11. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  12. Fire Risk Assessment in Germany

    International Nuclear Information System (INIS)

    Berg, H. P.

    2000-01-01

    Quantitative fire risk assessment can serve as an additional tool to assess the safety level of a nuclear power plant (NPP) and to set priorities for fire protection improvement measures. The recommended approach to be applied within periodic safety reviews of NPPs in Germany starts with a screening process providing critical fire zones in which a fully developed fire has the potential to both cause an initiating event and impair the function of at least one component or system critical to safety. The second step is to perform a quantitative analysis using a standard event tree has been developed with elements for fire initiation, ventilation of the room, fire detection, fire suppression, and fire propagation. In a final step, the fire induced frequency of initiating events, the main contributors and the calculated hazard state frequency for the fire event are determined. Results of the first quantitative fire risk studies performed in Germany are reported. (author)

  13. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  14. Application of programmable controllers to oil fired boiler light-off system

    International Nuclear Information System (INIS)

    Copeland, H.C.; Gallaway, E.N.

    1978-01-01

    A programmable controller has been used to improve the reliability of an oil-fired boiler burner control system. An outdated and failing Germanium discrete transistor logic control system was replaced with a modern solid state large scale integrated circuit programmable controller. The ease of making this conversion at a modest expenditure during a limited boiler outage is explained, as well as pitfalls and problems encountered. Light-off reliability with fuel savings were prime objectives. The boiler, rated at 575,000 lb/hr at 450 psig, is used as a backup steam supply for the dual purpose N Reactor at Hanford, Washington, which supplies 860 MWe to the Bonneville Power Administration and weapons grade Plutonium for the Department of Energy. High reliability in light-off and load ascension from standby is required of the boiler which serves as the backup power supply for the reactor

  15. Fires of sodium installations

    International Nuclear Information System (INIS)

    Hajek, L.; Tlalka, R.

    1984-01-01

    A survey is presented of the literature dealing with fires of sodium installations between 1974 and 1981. Also described are three experimental fires of ca 50 kg of sodium in an open area, monitored by UJV Rez. The experimental conditions of the experiments are described and a phenomenological description is presented of the course of the fires. The experiments showed a relationship between wind velocity in the area surrounding the fire and surface temperature of the sodium flame. Systems analysis methods were applied to sodium area, spray and tube fires. (author)

  16. A Review of Fire Interactions and Mass Fires

    Directory of Open Access Journals (Sweden)

    Mark A. Finney

    2011-01-01

    Full Text Available The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.

  17. Current trends towards a new regulation and evolution of fire protection systems technologies in nuclear power plants

    International Nuclear Information System (INIS)

    Rodriguez Sanjuan, G.

    1996-01-01

    For some time now, the field of Fire Protection in Nuclear Power Plants has, with its own peculiarities in an otherwise general process, been the centre of some controversy caused by tendencies to reduce regulatory inflexibility by transforming what was originally a prescriptive, pro grammatical and deterministic regulatory system into a system based on risk assessment and operating experience. Such tendencies include: Cost Beneficial Licensing Actions (CBLA) Use of the Probabilistic Safety Analysis (PSA) as a tool for evaluating the impact of postulated fires in nuclear safety Improvement of communications between the regulatory body and the industry These trends have coincided with the arduous process of requalifying passive fire-resistant protection materials, such as Thermo lag and others, which are used to separate redundant Safe Shutdown trains with fire-resistance ranges of one (1) hour or three (3) hours, in compliance with some of the alternatives that Appendix R to 10 CFR 50 offers. The process has involved a lot of effort and financial cost in requalification and in employing compensatory measures until operability of the fire-resistant materials is reestablished. A new test methodology has been created for these barriers (GL 86-10, Supplement 1) and new materials have become available and are currently undergoing qualification. (Author)

  18. 46 CFR 108.419 - Fire main capacity.

    Science.gov (United States)

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fire Main System § 108.419 Fire main capacity. The diameter of the fire... pumps operating simultaneously. ...

  19. The economics of fire protection

    CERN Document Server

    Ramachandran, Ganapathy

    2003-01-01

    This important new book, the first of its kind in the fire safety field, discusses the economic problems faced by decision-makers in the areas of fire safety and fire precautions. The author considers the theoretical aspects of cost-benefit analysis and other relevant economic problems with practical applications to fire protection systems. Clear examples are included to illustrate these techniques in action. The work covers: * the performance and effectiveness of passive fire protection measures such as structural fire resistance and means of escape facilities, and active systems such as sprinklers and detectors * the importance of educating for better understanding and implementation of fire prevention through publicity campaigns and fire brigade operations * cost-benefit analysis of fire protection measures and their combinations, taking into account trade-offs between these measures. The book is essential reading for consultants and academics in construction management, economics and fire safety, as well ...

  20. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  1. Theoretical and experimental evaluation of an indirect-fired GAX cycle cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, V.H.; Vidal, A. [Posgrado en Ingenieria, Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Apdo. Postal 34, 62580 Temixco Morelos (Mexico); Best, R.; Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco S/N, Apdo. Postal 34, 62580 Temixco Morelos (Mexico); Velazquez, N. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Calle de la Normal S/N, Insurgentes Este, 21280 Mexicali, BC (Mexico)

    2008-06-15

    A theoretical and experimental evaluation of an indirect-fired GAX-Prototype Cooling System (GAX-PCS), using ammonia-water as the working fluid, is presented. The GAX-PCS was designed for a cooling capacity of 10.6 kW (3 tons). A simulation model was developed, calibrated and validated with experimental values in order to predict the performance of the system outside the design parameters. Experimental results were obtained using thermal oil, at temperatures from 180 to 195 C, as heating source. An internal heat recovery in the system of {proportional_to}55% with respect to the total heat supplied in the generator was obtained. Also the performance of the GAX absorption system, integrated to a micro gas turbine (MGT) as a cogeneration system was simulated. Overall efficiencies for the cogeneration system from 29% to 49% were obtained for cooling loads from 5 kW to 20 kW, respectively. With the theoretical and experimental study of the proposed cycle, it is concluded that the GAX-PCS presents potential to compete technically in the Mexican air conditioning market. (author)

  2. Analysis of the evaporative towers cooling system of a coal-fired power plant

    Directory of Open Access Journals (Sweden)

    Laković Mirjana S.

    2012-01-01

    Full Text Available The paper presents a theoretical analysis of the cooling system of a 110 MW coal-fired power plant located in central Serbia, where eight evaporative towers cool down the plant. An updated research on the evaporative tower cooling system has been carried out to show the theoretical analysis of the tower heat and mass balance, taking into account the sensible and latent heat exchanged during the processes which occur inside these towers. Power plants which are using wet cooling towers for cooling condenser cooling water have higher design temperature of cooling water, thus the designed condensing pressure is higher compared to plants with a once-through cooling system. Daily and seasonal changes further deteriorate energy efficiency of these plants, so it can be concluded that these plants have up to 5% less efficiency compared to systems with once-through cooling. The whole analysis permitted to evaluate the optimal conditions, as far as the operation of the towers is concerned, and to suggest an improvement of the plant. Since plant energy efficiency improvement has become a quite common issue today, the evaluation of the cooling system operation was conducted under the hypothesis of an increase in the plant overall energy efficiency due to low cost improvement in cooling tower system.

  3. Connecting smoke plumes to sources using Hazard Mapping System (HMS) smoke and fire location data over North America

    Science.gov (United States)

    Brey, Steven J.; Ruminski, Mark; Atwood, Samuel A.; Fischer, Emily V.

    2018-02-01

    Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS-analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories initiate the most air quality forecasts and produce more smoke than any other North American region by measure of the number of HYSPLIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central United States. Only Alaska, the Northwest, the Southwest, and Southeast United States regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western United States could impact other regions.

  4. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  5. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  6. A TBB-CUDA Implementation for Background Removal in a Video-Based Fire Detection System

    Directory of Open Access Journals (Sweden)

    Fan Wang

    2014-01-01

    Full Text Available This paper presents a parallel TBB-CUDA implementation for the acceleration of single-Gaussian distribution model, which is effective for background removal in the video-based fire detection system. In this framework, TBB mainly deals with initializing work of the estimated Gaussian model running on CPU, and CUDA performs background removal and adaption of the model running on GPU. This implementation can exploit the combined computation power of TBB-CUDA, which can be applied to the real-time environment. Over 220 video sequences are utilized in the experiments. The experimental results illustrate that TBB+CUDA can achieve a higher speedup than both TBB and CUDA. The proposed framework can effectively overcome the disadvantages of limited memory bandwidth and few execution units of CPU, and it reduces data transfer latency and memory latency between CPU and GPU.

  7. Remote Sensing of Fires and Smoke from the Earth Observing System MODIS Instrument

    Science.gov (United States)

    Kaufman, Y. J.; Hao, W. M.; Justice, C.; Giglio, L.; Herring, D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The talk will include review of the MODIS (Moderate Resolution Imaging Spectrometer) algorithms and performance e.g. the MODIS algorithm and the changes in the algorithm since launch. Comparison of MODIS and ASTER fire observations. Summary of the fall activity with the Forest Service in use of MODIS data for the fires in the North-West. Validation on the ground of the MODIS fire product.

  8. A Fast Adaptive Receive Antenna Selection Method in MIMO System

    Directory of Open Access Journals (Sweden)

    Chaowei Wang

    2013-01-01

    Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.

  9. Implementation of Computer Assisted Test Selection System in Local Governments

    Directory of Open Access Journals (Sweden)

    Abdul Azis Basri

    2016-05-01

    Full Text Available As an evaluative way of selection of civil servant system in all government areas, Computer Assisted Test selection system was started to apply in 2013. In phase of implementation for first time in all areas in 2014, this system selection had trouble in several areas, such as registration procedure and passing grade. The main objective of this essay was to describe implementation of new selection system for civil servants in the local governments and to seek level of effectiveness of this selection system. This essay used combination of study literature and field survey which data collection was made by interviews, observations, and documentations from various sources, and to analyze the collected data, this essay used reduction, display data and verification for made the conclusion. The result of this essay showed, despite there a few parts that be problem of this system such as in the registration phase but almost all phases of implementation of CAT selection system in local government areas can be said was working clearly likes in preparation, implementation and result processing phase. And also this system was fulfilled two of three criterias of effectiveness for selection system, they were accuracy and trusty. Therefore, this selection system can be said as an effective way to select new civil servant. As suggestion, local governments have to make prime preparation in all phases of test and make a good feedback as evaluation mechanism and together with central government to seek, fix and improve infrastructures as supporting tool and competency of local residents.

  10. Irradiated ignition over solid materials in reduce pressure environment: Fire safety issue in man-made enclosure system

    Science.gov (United States)

    Nakamura, N.; Aoki, A.

    Effects of ambient pressure and oxygen yield on irradiated ignition characteristics over solid combustibles have been studied experimentally Aim of the present study is to elucidate the flammability and chance of fire in depressurized enclosure system and give ideas for the fire safety and fire fighting strategies in such environment Thin cellulosic paper is considered as the solid combustible since cellulose is one of major organic compounds and flammables in the nature Applied atmosphere consists of inert gas either CO2 or N2 and oxygen and various mixture ratios are of concerned Total ambient pressure level is varied from 0 1MPa standard atmospheric pressure to 0 02MPa Ignition is initiated by external thermal flux exposed into the solid surface as a model of unexpected thermal input to initiate the localized fire Thermal degradation of the solid induces combustible gaseous products e g CO H2 or other low class of HCs and the gas mixes with ambient oxygen to form the combustible mixture over the solid Heat transfer from the hot irradiated surface into the mixture accelerates the local exothermic reaction in the gas phase and finally thermal runaway ignition is achieved Ignition event is recorded by high-speed digital video camera to analyze the ignition characteristics Flammable map in partial pressure of oxygen Pox and total ambient pressure Pt plane is made to reveal the fire hazard in depressurized environment Results show that wider flammable range is obtained depending on the imposed ambient

  11. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  12. Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources

    Science.gov (United States)

    Ghoudelbourk, Sihem.; Dib, D.; Meghni, B.; Zouli, M.

    2017-02-01

    The paper deals with the multilevel converters control strategy for photovoltaic system integrated in distribution grids. The objective of the proposed work is to design multilevel inverters for solar energy applications so as to reduce the Total Harmonic Distortion (THD) and to improve the power quality. The multilevel inverter power structure plays a vital role in every aspect of the power system. It is easier to produce a high-power, high-voltage inverter with the multilevel structure. The topologies of multilevel inverter have several advantages such as high output voltage, lower total harmonic distortion (THD) and reduction of voltage ratings of the power semiconductor switching devices. The proposed control strategy ensures an implementation of selective harmonic elimination (SHE) modulation for eleven levels. SHE is a very important and efficient strategy of eliminating selected harmonics by judicious selection of the firing angles of the inverter. Harmonics elimination technique eliminates the need of the expensive low pass filters in the system. Previous research considered that constant and equal DC sources with invariant behavior; however, this research extends earlier work to include variant DC sources, which are typical of lead-acid batteries when used in system PV. This Study also investigates methods to minimize the total harmonic distortion of the synthesized multilevel waveform and to help balance the battery voltage. The harmonic elimination method was used to eliminate selected lower dominant harmonics resulting from the inverter switching action.

  13. Evaluation of accuracy of shade selection using two spectrophotometer systems: Vita Easyshade and Degudent Shadepilot.

    Science.gov (United States)

    Kalantari, Mohammad Hassan; Ghoraishian, Seyed Ahmad; Mohaghegh, Mina

    2017-01-01

    The aim of this in vitro study was to evaluate the accuracy of shade matching using two spectrophotometric devices. Thirteen patients who require a full coverage restoration for one of their maxillary central incisors were selected while the adjacent central incisor was intact. 3 same frameworks were constructed for each tooth using computer-aided design and computer-aided manufacturing technology. Shade matching was performed using Vita Easyshade spectrophotometer, Shadepilot spectrophotometer, and Vitapan classical shade guide for the first, second, and third crown subsequently. After application, firing, and glazing of the porcelain, the color was evaluated and scored by five inspectors. Both spectrophotometric systems showed significantly better results than visual method ( P spectrophotometers ( P Spectrophotometers are a good substitute for visual color selection methods.

  14. Using the forest, people, fire agent-based social network model to investigate interactions in social-ecological systems

    Science.gov (United States)

    Paige Fischer; Adam Korejwa; Jennifer Koch; Thomas Spies; Christine Olsen; Eric White; Derric Jacobs

    2013-01-01

    Wildfire links social and ecological systems in dry-forest landscapes of the United States. The management of these landscapes, however, is bifurcated by two institutional cultures that have different sets of beliefs about wildfire, motivations for managing wildfire risk, and approaches to administering policy. Fire protection, preparedness, and response agencies often...

  15. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  16. Tainted with prejudices. Part 1. Directly fired hall heating systems; Mit Vorurteilen behaftet. T. 1. Direktbefeuerte Hallenheizsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, J. [Jochem Schulte Gruppe, Arnsberg (Germany)

    2008-03-15

    Despite the fact that modern directly fired hall heating systems have many advantages, this branch still faces many concerns from the past. In addition many small craftsmen companies wrongly estimate the installation expenses and are sparing with such installation orders. Nowadays the assembly is not more expensive than the assembly of a conventional heating plant and even the technical requirements are comparable. (orig.)

  17. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase II: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes Phase II of a project which developed a system for delivering fire safety training to board and care providers who serve adults with developmental disabilities. Phase II focused on developing and pilot testing a "train the trainers" workshop for instructors and field testing the provider's workshop. Evaluation of…

  18. A Fire Safety Certification System for Board and Care Operators and Staff. SBIR Phase I: Final Report.

    Science.gov (United States)

    Walker, Bonnie L.

    This report describes the development and pilot testing of a fire safety certification system for board and care operators and staff who serve clients with developmental disabilities. During Phase 1, training materials were developed, including a trainer's manual, a participant's coursebook a videotape, an audiotape, and a pre-/post test which was…

  19. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  20. Evaluation of retrofitting gas-fired cooling and heating systems into BCHP using design optimization

    International Nuclear Information System (INIS)

    Cao Jiacong

    2009-01-01

    The influence of energy prices on the feasibility of a retrofit is investigated. The retrofit describes the conversion of a system from HVAC to BCHP for energy-saving. This includes two optimal retrofit design models, of which the exergetic efficiency and annual costs (AC) are the separate objective functions. The retrofit scheme is planned to insert gas engines as prime movers into the original system, which have adopted gas-fired absorption chillers. The solutions of the optimizations show that such a retrofit can result in a remarkable rise in exergetic efficiency but is not viable with current energy prices. The contradictory solutions reveal a gap between the current energy prices system of the country and the present energy situation. Further investigation gives the critical lines of which each divides the coordinate plane of natural gas-electric prices into two parts of benefit and deficit. If the electric price rises to a certain extent, the retrofit will be advantageous both in benefit and energy-saving. So it is really an urgent task to reform the energy prices system in China. Conclusions may be helpful for other similar retrofit projects, and for legislators and the government which are responsible for improving the energy market in China.

  1. Microfluidic systems with ion-selective membranes.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2014-01-01

    When integrated into microfluidic chips, ion-selective nanoporous polymer and solid-state membranes can be used for on-chip pumping, pH actuation, analyte concentration, molecular separation, reactive mixing, and molecular sensing. They offer numerous functionalities and are hence superior to paper-based devices for point-of-care biochips, with only slightly more investment in fabrication and material costs required. In this review, we first discuss the fundamentals of several nonequilibrium ion current phenomena associated with ion-selective membranes, many of them revealed by studies with fabricated single nanochannels/nanopores. We then focus on how the plethora of phenomena has been applied for transport, separation, concentration, and detection of biomolecules on biochips.

  2. 46 CFR 181.300 - Fire pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD... EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be..., the minimum capacity of the fire pump must be 189 liters (50 gallons) per minute at a pressure of not...

  3. Abandonment terraced hillside and answer of the fire system: some results from Mediterranean old fields

    Energy Technology Data Exchange (ETDEWEB)

    Llovet Lopez, J.; Ruiz Varela, M.; Josa March, R.; Vallejo Calzada, V. R.

    2009-07-01

    The abandonment of agricultural lands promotes temporal changes both in soil characteristics (i.e., increasing organic matter and other quality indicators) and in plant community (i.e., changing its composition and structure, and increasing the fuel load). As a consequence, we can expect differences in the resilience to fire as succession progresses. The aim of this work is to analyse the capacity of an ecosystem to return to pre-fire conditions as a function of the stage of abandonment of old agricultural lands. The study was carried out in the north of Alicante province (E Spain). In long-term abandoned lands, post-fire modulated plant response, which in turn determined soil crusting, runoff and erosion dynamics. In recently-abandoned lands, the plant community seemed less dependent on ratio to recover. Results show a large increase in soil surface crusting in the short term after the fire and it remained high at medium term in long-abandoned lands colonised by pine forest. Fire scarcely modified runoff and erosion in recently-abandoned lands whereas in forest lands the post-fire values increased by some orders of magnitude and remained highly dependent on rain characteristics in the short and medium term after the fire. The results obtained show evidence of increased vulnerability to fire in long-abandoned lands colonised by pine forests. (Author) 4 refs.

  4. Abandonment terraced hillside and answer of the fire system: some results from Mediterranean old fields

    International Nuclear Information System (INIS)

    Llovet Lopez, J.; Ruiz Varela, M.; Josa March, R.; Vallejo Calzada, V. R.

    2009-01-01

    The abandonment of agricultural lands promotes temporal changes both in soil characteristics (i.e., increasing organic matter and other quality indicators) and in plant community (i.e., changing its composition and structure, and increasing the fuel load). As a consequence, we can expect differences in the resilience to fire as succession progresses. The aim of this work is to analyse the capacity of an ecosystem to return to pre-fire conditions as a function of the stage of abandonment of old agricultural lands. The study was carried out in the north of Alicante province (E Spain). In long-term abandoned lands, post-fire modulated plant response, which in turn determined soil crusting, runoff and erosion dynamics. In recently-abandoned lands, the plant community seemed less dependent on ratio to recover. Results show a large increase in soil surface crusting in the short term after the fire and it remained high at medium term in long-abandoned lands colonised by pine forest. Fire scarcely modified runoff and erosion in recently-abandoned lands whereas in forest lands the post-fire values increased by some orders of magnitude and remained highly dependent on rain characteristics in the short and medium term after the fire. The results obtained show evidence of increased vulnerability to fire in long-abandoned lands colonised by pine forests. (Author) 4 refs.

  5. Fire and life in Tarangire : effects of burning and herbivory on an East African Savanna system

    NARCIS (Netherlands)

    Vijver, van de C.A.D.M.

    1999-01-01

    This thesis investigates the effects of fire on quality and quantity of forage for grazers in the savannas of East Africa where fire has been used as a tool in pasture management for centuries. Hereby the mechanisms that cause the effects, as well as the manner in which the effects are

  6. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems

    Science.gov (United States)

    Robert E. Keane

    2013-01-01

    Wildland fuelbeds are exceptionally complex, consisting of diverse particles of many sizes, types and shapes with abundances and properties that are highly variable in time and space. This complexity makes it difficult to accurately describe, classify, sample and map fuels for wildland fire research and management. As a result, many fire behaviour and effects software...

  7. Ground penetrating radar and differential global positioning system data collected in April 2016 from Fire Island, New York

    Science.gov (United States)

    Forde, Arnell S.; Bernier, Julie C.; Miselis, Jennifer L.

    2018-02-22

    Researchers from the U.S. Geological Survey (USGS) conducted a long-term coastal morphologic-change study at Fire Island, New York, prior to and after Hurricane Sandy impacted the area in October 2012. The Fire Island Coastal Change project objectives include understanding the morphologic evolution of the barrier island system on a variety of time scales (months to centuries) and resolving storm-related impacts, post-storm beach response, and recovery. In April 2016, scientists from the USGS St. Petersburg Coastal and Marine Science Center conducted geophysical and sediment sampling surveys on Fire Island to characterize and quantify spatial variability in the subaerial geology with the goal of subsequently integrating onshore geology with other surf zone and nearshore datasets.  This report, along with the associated USGS data release, serves as an archive of ground penetrating radar (GPR) and post-processed differential global positioning system (DGPS) data collected from beach and back-barrier environments on Fire Island, April 6–13, 2016 (USGS Field Activity Number 2016-322-FA). Data products, including unprocessed GPR trace data, processed DGPS data, elevation-corrected subsurface profile images, geographic information system files, and accompanying Federal Geographic Data Committee metadata are available for download.

  8. Fire protection for telecommunications central offices

    International Nuclear Information System (INIS)

    McKenna, L.A. Jr.

    1990-01-01

    The provision of continuous, uninterrupted telecommunications service is vital to modern life. In order to provide uninterrupted service to customers, a service continuity program has been in place with AT and T for many years. This program integrates many different protection strategies and plans, each designed to mitigate one of the many threats to service continuity. The fire protection program implemented within AT and T is a part of this service continuity program. In the design of this program, a number of unusual problems had to be addressed due to the service continuity requirements. Typical solutions to fire protection problems (ignition prevention, detection, and suppression) which are embodied in building and fire prevention codes are inadequate to provide service continuity. This presentation outlines the basic arrangement of a telecommunications central office, the specific fire protection problems encountered, the fire protection philosophy developed through the use of a systems approach, and the implementation of the fire protection program. Special emphasis is placed on the strategies employed in lieu of more traditional fire protection schemes and the stimuli for selecting them

  9. [Wavelength Selection in Hemolytic Evaluation Systems with Spectrophotometry Detection].

    Science.gov (United States)

    Zhang, Hong; Su, Baochang; Ye, Xunda; Luo, Man

    2016-04-01

    Spectrophotometry is a simple hemolytic evaluation method commonly used in new drugs,biomedical materials and blood products.It is for the quantitative analysis of the characteristic absorption peaks of hemoglobin.Therefore,it is essential to select the correct detection wavelength when the evaluation system has influences on the conformation of hemoglobin.Based on the study of changes in the characteristic peaks over time of the hemolysis supernatant in four systems,namely,cell culture medium,phosphate buffered saline(PBS),physiological saline and banked blood preservation solution,using continuous wavelength scanning,the selections of detection wavelength were proposed as follows.In the cell culture medium system,the wavelength of 415 nm should be selected within 4h;,near 408 nm should be selected within 4~72h.In PBS system,within 4h,541 nm,577nm or 415 nm should be selected;4~72h,541 nm,577nm or near 406 nm should be selected.In physiological saline system,within 4h,414 nm should be selected;4~72h,near 405 nm should be selected;within 12 h,541nm or 577 nm could also be selected.In banked blood preservation solution system,within 72 h,415nm,540 nm or 576 nm should be selected.

  10. Method for Business Process Management System Selection

    NARCIS (Netherlands)

    Thijs van de Westelaken; Bas Terwee; Pascal Ravesteijn

    2013-01-01

    In recent years business process management (BPM) and specifically information systems that support the analysis, design and execution of processes (also called business process management systems (BPMS)) are getting more attention. This has lead to an increase in research on BPM and BPMS. However

  11. Biomass co-firing

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized-bed combus......Co-firing biomass with fossil fuels in existing power plants is an attractive option for significantly increasing renewable energy resource utilization and reducing CO2 emissions. This chapter mainly discusses three direct co-firing technologies: pulverized-fuel (PF) boilers, fluidized......-bed combustion (FBC) systems, and grate-firing systems, which are employed in about 50%, 40% and 10% of all the co-firing plants, respectively. Their basic principles, process technologies, advantages, and limitations are presented, followed by a brief comparison of these technologies when applied to biomass co...

  12. Select PC/windows flat to develop data acquisition system

    International Nuclear Information System (INIS)

    Zhang Jin

    1993-01-01

    Through needing analysis, and also, considering user's ability of payment, the characteristic of China computer market, the computer developing tending, and the system's compatibility and up grade capability, PC/Windows flat are selected to develop a data acquisition system

  13. Selection of nuclear power information database management system

    International Nuclear Information System (INIS)

    Zhang Shuxin; Wu Jianlei

    1996-01-01

    In the condition of the present database technology, in order to build the Chinese nuclear power information database (NPIDB) in the nuclear industry system efficiently at a high starting point, an important task is to select a proper database management system (DBMS), which is the hinge of the matter to build the database successfully. Therefore, this article explains how to build a practical information database about nuclear power, the functions of different database management systems, the reason of selecting relation database management system (RDBMS), the principles of selecting RDBMS, the recommendation of ORACLE management system as the software to build database and so on

  14. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  15. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2011-01-01

    system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users' groups are ordered into a sequence. Per-group feedback thresholds

  16. ATTENTIONAL NETWORKS AND SELECTIVE VISUAL SYSTEM

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CASTILLO MORENO

    2006-05-01

    Full Text Available In this paper we checked the principal researches and theories to explain the attention system functioning.We are going to start reviewing along time about the concept of attention, from filter theories andresources distributor theories, to the current theories in which attention is conceived as a control system.From this last point of view, we will emphasize on the attentional networks theory of Posner, thatproposes different systems to explain diverse aspects of attention, but they are related to each other. Atlast in this paper, we will mention experimental results that have been important to characterize theselective attentional mechanisms of the human visual system, using the attentional spotlight model forthis aim.

  17. Computerized adaptive testing item selection in computerized adaptive learning systems

    NARCIS (Netherlands)

    Eggen, Theodorus Johannes Hendrikus Maria; Eggen, T.J.H.M.; Veldkamp, B.P.

    2012-01-01

    Item selection methods traditionally developed for computerized adaptive testing (CAT) are explored for their usefulness in item-based computerized adaptive learning (CAL) systems. While in CAT Fisher information-based selection is optimal, for recovering learning populations in CAL systems item

  18. The system of employees motivation in a selected company

    OpenAIRE

    BEEROVÁ, Petra

    2014-01-01

    The system of employees motivation in a selected company is the title of this thesis that closely analyzes the system of employees motivation in a selected company and outlines some suggestions that could improve the management and performance in this area. Moreover, the focus is placed towards the motivation of employees in the workplace.

  19. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  20. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    Science.gov (United States)

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia