WorldWideScience

Sample records for selective excitation relaxation

  1. Pure-Phase Selective Excitation in Fast-Relaxing Systems

    Science.gov (United States)

    Zangger, Klaus; Oberer, Monika; Sterk, Heinz

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T2 relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90° pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).

  2. Relaxation processes in optically excites metal clusters; Relaxationsprozesse in optisch angeregten Metallclustern

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, J.

    2007-08-10

    The present work is concerned with the dynamics of optically excited metal clusters in the gas phase. Small mass-selected gold and tungsten cluster anions (Au{sup -}{sub n}, n=5-8, 14, 20 and W{sup -}{sub n}, n=3-14) are studied using femtosecond time-resolved photoelectron spectroscopy. Depending on the electronic structure in the valence region as well as on the optical excitation energy fundamentally different relaxation processes are observed. In small gold cluster anions excited with 1.56 eV an isolated electronically excited state is populated. The time-dependent measurements are strongly sizedependent and open insights into photoinduced geometry changes of the nuclear framework. Oscillatory vibrational wavepacket motion in Au{sup -}{sub 5}, an extremely longlived ({tau} >90 ns) electronically excited state in Au{sup -}{sub 6} as well as photoinduced melting in Au{sup -}{sub 7} and Au{sup -}{sub 8} is monitored in real time. By increasing the OPTICAL excitation energy to 3.12 eV a completely different scenario is observed. A multitude of electronically excited states can be reached upon optical excitation and as a consequence electronic relaxation processes that take place on a time scale of 1 ps are dominating. This is shown for Au{sup -}{sub 7}, Au{sup -}{sub 14} and Au{sup -}{sub 20}. Compared to gold clusters, tungsten clusters are characterized by a significantly higher electronic density of states in the valence region. Therefore electronic relaxation processes are much more likely and take place on a significantly faster time scale. The fast electronic relaxation processes are distinguished from pure vibrational relaxation. It is shown that already in the four atomic tungsten cluster W{sup -}{sub 4} electronic relaxation processes take place on a time scale of 30 fs. In all investigated tungsten cluster anions (W{sup -}{sub n}, n=3-14) an equilibrium between electronic and vibrational system is reached within around 1 ps after optical excitation which

  3. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  4. Relaxation of helium levels excited by heavy ion impact: III.- Orientation by anisotropic relaxation of excited atoms in previously aligned states

    International Nuclear Information System (INIS)

    Chamoun, E.; Lombardi, M.; Carre, M.; Gaillard, M.L.

    1977-01-01

    In the last paper of this series devoted to relaxation phenomena in a low pressure cell of helium excited by an accelerated ion beam, experimental evidence is given for a new mechanism of transfer between alignment and orientation through anisotropic relaxation of initially aligned excited states. The theory predicting this effect is briefly outlined and then description is given of the exact experimental conditions to detect the circularly polarized component of the light emitted by the target excited in the 4 1 D level of He I by Na + impact [fr

  5. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  6. Excitation dynamics and relaxation in a molecular heterodimer

    International Nuclear Information System (INIS)

    Balevičius, V.; Gelzinis, A.; Abramavicius, D.; Mančal, T.; Valkunas, L.

    2012-01-01

    Highlights: ► Dynamics of excitation within a heterogenous molecular dimer. ► Excited states can be swapped due to different reorganization energies of monomers. ► Conventional excitonic basis becomes renormalized due to interaction with the bath. ► Relaxation is independent of mutual positioning of monomeric excited states. -- Abstract: The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the molecular excitation energy gap, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  7. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  8. Excitation relaxation and structure of TPPS4 J-aggregates

    International Nuclear Information System (INIS)

    Kelbauskas, L.; Bagdonas, S.; Dietel, W.; Rotomskis, R.

    2003-01-01

    The energy relaxation kinetics and the structure of the J-aggregates of water-soluble porphyrin 5,10,15,20-tetrasulphonatophenyl porphine (TPPS 4 ) were investigated in aqueous medium by means of time-resolved fluorescence spectroscopy and confocal laser-scanning fluorescence microscopy. The excitation of the J-aggregates, at excitation intensities higher than ∼10 15 photons/cm 2 per pulse, results in a remarkable decrease of the fluorescence quantum yield and in the appearance of an additional, non-exponential energy relaxation channel with a decay constant that depends on the excitation intensity. This relaxation mechanism was attributed to the exciton single-singlet annihilation. The exciton lifetime in the absence of the annihilation was calculated to be ∼150 ps. Using exciton annihilation theory, the exciton migration within the J-aggregates could be characterized by determining the exciton diffusion constant (1.8±0.9) 10 -3 cm 2 /s and the hopping time (1.2±0.6) ps. Using the experimental data, the size of the J-aggregate could be evaluated and was seen to yield at least 20 TPPS 4 molecules per aggregate. It was shown by means of confocal fluorescence laser scanning microscopy that TPPS 4 does self-associate in polyvinyl alcohol (PVA) at acidic pH forming molecular macro-assemblies on a scale of ∼1 μm in PVA matrices

  9. Picosecond relaxation of X-ray excited GaAs

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  10. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses; Processus electroniques d'excitation et de relaxation dans les solides dielectriques excites par des impulsions IR et XUV ultracourtes

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J

    2005-11-15

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  11. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  12. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  13. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  14. Electron-phonon relaxation and excited electron distribution in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, V. P. [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg (Russian Federation); Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tyuterev, V. G., E-mail: valtyut00@mail.ru [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk (Russian Federation); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain); Echenique, P. M. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain)

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.

  15. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music

    OpenAIRE

    Ooishi, Yuuki; Mukai, Hideo; Watanabe, Ken; Kawato, Suguru; Kashino, Makio

    2017-01-01

    Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that li...

  16. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  17. Geometrical relaxation of excitations in one-dimensional conjugated polymers; Giichijigen kyoeki kobunshi reiki jotai no shusa kozo kanwa

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, M. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-12-15

    Large ultrafast optical nonlinearities in conjugated polymers have attracted much attention because of possible applications to nonlinear optical devices. One-dimensional systems such as conjugated polymers have localized excited states with geometrical relaxation. In this study, photoexcited states in polydiacetylene has been investigated by femtosecond Raman gain spectroscopy with 300-fs resolution. A new photoinduced Raman peak with lifetime of 1.5 ps has been observed at 1200cm{sup -1} for the first time. This peak indicates acetylene-like structure of the main chain relaxes to butatriene-like structure due to the formation of self-trapped exciting with the geometrical relaxation. The formation and decay kinetics of the Raman signals is consistent with the relaxation processes of exciting observed by femtosecond absorption spectroscopy. 8 refs., 5 figs.

  18. Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses

    International Nuclear Information System (INIS)

    Caird, J.A.; Ramponi, A.J.; Staver, P.R.

    1991-01-01

    Radiometrically calibrated spectroscopic techniques employing an integrating-sphere detection system have been used to determine the fluorescence quantum efficiencies for two commercially available Nd 3+ -doped phosphate laser glasses, LG-750 and LG-760. Quantum efficiencies and fluorescence lifetimes were measured for samples with various neodymium concentrations. It is shown that the effects of concentration quenching are accurately described when both resonant nonradiative excitation hopping (the Burshtein model) and annihilation by cross relaxation are accounted for by Foerster--Dexter dipole--dipole energy-transfer theory. The Foerster--Dexter critical range for nonradiative excitation hopping was found to be R DD =11 A, while the critical range for cross relaxation was close to R DA =4 A in these glasses. The quantum efficiency at low Nd 3+ concentrations was (92±5)%, implying a nonradiative relaxation rate of 210±150 s -1 for isolated ions. Improved values for the radiative lifetimes and the stimulated emission cross sections for these glasses were also deduced from the measurements

  19. A study of vibrational relaxation of electronically-excited molecules

    International Nuclear Information System (INIS)

    Datsyuk, V.V.; Izmailov, I.A.; Kochelap, V.A.

    1992-09-01

    The time kinetics of the vibrational relaxation of excimers is studied in the diffusional approximation. Simple formulae for functions of nonstationary vibrational distribution are found for the electronically excited molecules. Some spectral-kinetic dependencies of the excimer luminescence are explained in a new way. The possibilities of the determination of excimer parameters are discussed. The dependence of energetical characteristics of excimer lasers on these parameters is particularly emphasized. (author). 22 refs, 5 figs

  20. Water-selective excitation of short T2 species with binomial pulses.

    Science.gov (United States)

    Deligianni, Xeni; Bär, Peter; Scheffler, Klaus; Trattnig, Siegfried; Bieri, Oliver

    2014-09-01

    For imaging of fibrous musculoskeletal components, ultra-short echo time methods are often combined with fat suppression. Due to the increased chemical shift, spectral excitation of water might become a favorable option at ultra-high fields. Thus, this study aims to compare and explore short binomial excitation schemes for spectrally selective imaging of fibrous tissue components with short transverse relaxation time (T2 ). Water selective 1-1-binomial excitation is compared with nonselective imaging using a sub-millisecond spoiled gradient echo technique for in vivo imaging of fibrous tissue at 3T and 7T. Simulations indicate a maximum signal loss from binomial excitation of approximately 30% in the limit of very short T2 (0.1 ms), as compared to nonselective imaging; decreasing rapidly with increasing field strength and increasing T2 , e.g., to 19% at 3T and 10% at 7T for T2 of 1 ms. In agreement with simulations, a binomial phase close to 90° yielded minimum signal loss: approximately 6% at 3T and close to 0% at 7T for menisci, and for ligaments 9% and 13%, respectively. Overall, for imaging of short-lived T2 components, short 1-1 binomial excitation schemes prove to offer marginal signal loss especially at ultra-high fields with overall improved scanning efficiency. Copyright © 2013 Wiley Periodicals, Inc.

  1. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  2. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    Science.gov (United States)

    Ramon, John Glenn Santos

    The potential for using conducting polymers as the active material in optoelectronic devices has come to fruition in the past few years. Understanding the fundamental photophysics behind their operations points to the significant role played by the polymer interface in their performance. Current device architectures involve the use of bulk heterojunctions which intimately blend the donor and acceptor polymers to significantly increase not only their interfacial surface area but also the probability of exciton formation within the vicinity of the interface. In this dissertation, we detail the role played by the interface on the behavior and performance of bulk heterojunction systems. First, we explore the relation between the exciton binding energy to the band offset in determining device characteristics. As a general rule, when the exciton binding energy is greater than the band offset, the exciton remains the lowest energy excited state leading to efficient light-emitting properties. On the other hand, if the offset is greater than the binding energy, charge separation becomes favorable leading to better photovoltaic behavior. Here, we use a Wannier function, configuration interaction based approach to examine the essential excited states and predict the vibronic absorption and emission spectra of the PPV/BBL, TFB/F8BT and PFB/F8BT heterojunctions. Our results underscore the role of vibrational relaxation in the formation of charge-transfer states following photoexcitation. In addition, we look at the relaxation dynamics that occur upon photoexcitation. For this, we adopt the Marcus-Hush semiclassical method to account for lattice reorganization in the calculation of the interconversion rates in TFB/F8BT and PFB/F8BT. We find that, while a tightly bound charge-transfer state (exciplex) remains the lowest excited state, a regeneration pathway to the optically active lowest excitonic state in TFB/F8BT is possible via thermal repopulation from the exciplex. Finally

  3. QM/MM studies on the excited-state relaxation mechanism of a semisynthetic dTPT3 base.

    Science.gov (United States)

    Guo, Wei-Wei; Zhang, Teng-Shuo; Fang, Wei-Hai; Cui, Ganglong

    2018-02-14

    Semisynthetic alphabets can potentially increase the genetic information stored in DNA through the formation of unusual base pairs. Recent experiments have shown that near-visible-light irradiation of the dTPT3 chromophore could lead to the formation of a reactive triplet state and of singlet oxygen in high quantum yields. However, the detailed excited-state relaxation paths that populate the lowest triplet state are unclear. Herein, we have for the first time employed the QM(MS-CASPT2//CASSCF)/MM method to explore the spectroscopic properties and excited-state relaxation mechanism of the aqueous dTPT3 chromophore. On the basis of the results, we have found that (1) the S 2 ( 1 ππ*) state of dTPT3 is the initially populated excited singlet state upon near-visible light irradiation; and (2) there are two efficient relaxation pathways to populate the lowest triplet state, i.e. T 1 ( 3 ππ*). In the first one, the S 2 ( 1 ππ*) system first decays to the S 1 ( 1 nπ*) state near the S 2 /S 1 conical intersection, which is followed by an efficient S 1 → T 1 intersystem crossing process at the S 1 /T 1 crossing point; in the second one, an efficient S 2 → T 2 intersystem crossing takes place first, and then, the T 2 ( 3 nπ*) system hops to the T 1 ( 3 ππ*) state through an internal conversion process at the T 2 /T 1 conical intersection. Moreover, an S 2 /S 1 /T 2 intersection region is found to play a vital role in the excited-state relaxation. These new mechanistic insights help in understanding the photophysics and photochemistry of unusual base pairs.

  4. Describing excited state relaxation and localization in TiO2 nanoparticles using TD-DFT

    International Nuclear Information System (INIS)

    Berardo, Enrico; Hu, Han-Shi; Van Dam, Hubertus J. J.; Shevlin, Stephen A.; Woodley, Scott M.; Kowalski, Karol; Zwijnenburg, Martijn A.

    2014-01-01

    We have investigated the description of excited state relaxation in naked and hydrated TiO 2 nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials; B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree-Fock Like Exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT-problems for certain particles. We hypothesize that the spurious stabilization of CT-states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries than those obtained using TD-CAM-B3LYP or TD-BHLYP. In conclusion, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in naked and hydrated TiO 2 nanoparticles is predicted to be associated with a large Stokes' shift

  5. Process of optical excitation and relaxation of color center in synthetic diamond and its application to optoelectronics

    International Nuclear Information System (INIS)

    Nishida, Yoshio

    1989-01-01

    Irradiation of high-pressure synthesized diamond is carried out by using a nuclear reactor or a linac. Then, the effect of annealing on the color centers is observed. A study is made to identify different color centers and to provide techniques to control their introduction. Investigations cover the relation of color center formation with annealing temperature, dependence of color center formation on radiation dose, migration of H3 center and hydrogen, and applicability of five different color centers to optoelectronics. Next, a study is made of the formation and relaxation of the nitrogen vacancy (NV) center in a metastable excited state produced by optical excitation. An optical gain is essential to provide laser. Optical amplification is measured at the vibronic emission band of the NV center. An increase in absorption is detected, indicating that the NV center will not provide laser. In the optical excitation-relaxation process, the relaxation proceeds via a metastable state. Finally, hole burning of ZPL of the NV center is observed in the temperature range from 20K to 80K, and some of its features are described. (N.K.)

  6. Predicting the effect of relaxation during frequency-selective adiabatic pulses

    Science.gov (United States)

    Pfaff, Annalise R.; McKee, Cailyn E.; Woelk, Klaus

    2017-11-01

    Adiabatic half and full passages are invaluable for achieving uniform, B1-insensitive excitation or inversion of macroscopic magnetization across a well-defined range of NMR frequencies. To accomplish narrow frequency ranges with adiabatic pulses (computer-calculated data with experimental results demonstrates that, in non-viscous, small-molecule fluids, it is possible to model magnetization and relaxation by considering standard T1 and T2 relaxation in the traditional rotating frame. The proposed model is aimed at performance optimizations of applications in which these pulses are employed. It differs from previous reports which focused on short high-power adiabatic pulses and relaxation that is governed by dipole-dipole interactions, cross polarization, or chemical exchange.

  7. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    Science.gov (United States)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  8. Macroscopic theory of the relaxation of collective excitations in disordered and noncollinear magnets

    International Nuclear Information System (INIS)

    Bar'yakhtar, V.G.; Belykh, V.G.; Soboleva, T.K.

    1989-01-01

    In the framework of the general hydrodynamic approach a method is proposed for describing the relaxation of low-frequency magnetic excitations in disordered spin systems and many-sublattice magnets. Expressions are obtained in terms of Goldstone fields for the dissipation function both in the exchange approximation and when allowance is made for relativistic interactions

  9. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  10. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2 '-bipyridine)(CN)4]2-

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Kunnus, Kristjan; Harlang, Tobias C. B.

    2018-01-01

    The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer...... the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state...... developed for solar applications....

  11. Excited-state relaxation of Ag8 clusters embedded in helium droplets

    International Nuclear Information System (INIS)

    Radcliffe, Paul; Przystawik, Andreas; Diederich, Thomas; Doeppner, Tilo; Tiggesbaeumker, Josef; Meiwes-Broer, Karl-Heinz

    2004-01-01

    Neutral silver clusters Ag N are grown in ultracold helium nanodroplets. By exploiting a strong absorption resonance recently found for Ag 8 , first photoelectron spectra of this neutral species are recorded. Variation of the laser photon energy reveals that direct vertical two-photon ionization is hindered by rapid relaxation into the lower edge of a long-living excited state manifold. The analysis of the dynamics gives a precise value of (6.89±0.09) eV for the vertical ionization potential of Ag 8 . The influence of the helium matrix on photoemission is discussed

  12. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  13. Selective excitation, relaxation, and energy channeling in molecular systems

    International Nuclear Information System (INIS)

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems

  14. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music.

    Directory of Open Access Journals (Sweden)

    Yuuki Ooishi

    Full Text Available Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR and calculated the heart rate variability (HRV to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF to HF ratio (LF/HF increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in

  15. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music

    Science.gov (United States)

    Watanabe, Ken; Kawato, Suguru; Kashino, Makio

    2017-01-01

    Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR) and calculated the heart rate variability (HRV) to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF) increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF) to HF ratio (LF/HF) increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in physiological

  16. Increase in salivary oxytocin and decrease in salivary cortisol after listening to relaxing slow-tempo and exciting fast-tempo music.

    Science.gov (United States)

    Ooishi, Yuuki; Mukai, Hideo; Watanabe, Ken; Kawato, Suguru; Kashino, Makio

    2017-01-01

    Relaxation and excitation are components of the effects of music listening. The tempo of music is often considered a critical factor when determining these effects: listening to slow-tempo and fast-tempo music elicits relaxation and excitation, respectively. However, the chemical bases that underlie these relaxation and excitation effects remain unclear. Since parasympathetic and sympathetic nerve activities are facilitated by oxytocin and glucocorticoid, respectively, we hypothesized that listening to relaxing slow-tempo and exciting fast-tempo music is accompanied by increases in the oxytocin and cortisol levels, respectively. We evaluated the change in the salivary oxytocin and cortisol levels of participants listening to slow-tempo and fast-tempo music sequences. We measured the heart rate (HR) and calculated the heart rate variability (HRV) to evaluate the strength of autonomic nerve activity. After listening to a music sequence, the participants rated their arousal and valence levels. We found that both the salivary oxytocin concentration and the high frequency component of the HRV (HF) increased and the HR decreased when a slow-tempo music sequence was presented. The salivary cortisol level decreased and the low frequency of the HRV (LF) to HF ratio (LF/HF) increased when a fast-tempo music sequence was presented. The ratio of the change in the oxytocin level was correlated with the change in HF, LF/HF and HR, whereas that in the cortisol level did not show any correlation with indices of autonomic nerve activity. There was no correlation between the change in oxytocin level and self-reported emotions, while the change in cortisol level correlated with the arousal level. These findings suggest that listening to slow-tempo and fast-tempo music is accompanied by an increase in the oxytocin level and a decrease in the cortisol level, respectively, and imply that such music listening-related changes in oxytocin and cortisol are involved in physiological

  17. Spectroscopy and intramolecular relaxation of methyl salicylate in its first excited singlet state

    Science.gov (United States)

    Kuper, Jerry W.; Perry, David S.

    1984-05-01

    High resolution fluorescence excitation experiments are reported for the blue emitting rotamer of methyl salicylate in its first excited singlet state. These experiments employ moderate expansions of methyl salicylate seeded in argon ( P0D=5-8 Torr cm) to achieve rotational and vibrational cooling in a pulsed supersonic jet. The rotational contour of the electronic origin at 30 055.3 cm-1 is shown to be consistent with a geometrically distorted π-π* excited state, partially polarized along the A axis and with a rotational temperature of 5-7 K. A noticeable broadening of the spectral features beyond the rotational contour begins at 500 cm-1 above the origin and then increases rapidly above 900 cm-1 reaching a width of 12 cm-1 near 1200 cm-1. The constancy of fluorescence decay lifetimes in this region indicate that intramolecular vibrational relaxation in the S1 manifold is the broadening mechanism.

  18. Ultrafast excited-state relaxation of a binuclear Ag(i) phosphine complex in gas phase and solution.

    Science.gov (United States)

    Kruppa, S V; Bäppler, F; Klopper, W; Walg, S P; Thiel, W R; Diller, R; Riehn, C

    2017-08-30

    The binuclear complex [Ag 2 (dcpm) 2 ](PF 6 ) 2 (dcpm = bis(dicyclohexylphosphino)methane) exhibits a structure with a close silver-silver contact mediated by the bridging ligand and thus a weak argentophilic interaction. Upon electronic excitation this cooperative effect is strongly increased and determines the optical and luminescence properties of the compound. We have studied here the ultrafast electronic dynamics in parallel in gas phase by transient photodissociation and in solution by transient absorption. In particular, we report the diverse photofragmentation pathways of isolated [Ag 2 (dcpm) 2 ] 2+ in an ion trap and its gas phase UV photodissociation spectrum. By pump-probe fragmentation action spectroscopy (λ ex = 260 nm) in the gas phase, we have obtained fragment-specific transients which exhibit a common ultrafast multiexponential decay. This is fitted to four time constants (0.6/5.8/100/>1000 ps), highlighting complex intrinsic photophysical processes. Remarkably, multiexponential dynamics (0.9/8.5/73/604 ps) are as well found for the relaxation dynamics in acetonitrile solution. Ab initio calculations at the level of approximate coupled-cluster singles-doubles (CC2) theory of ground and electronically excited states of the reduced model system [Ag 2 (dmpm) 2 ] 2+ (dmpm = bis(dimethylphosphino)methane) indicate a shortening of the Ag-Ag distance upon excitation by 0.3-0.4 Å. In C 2 geometry two close-lying singlet states S 1 ( 1 MC(dσ*-pπ), 1 B, 4.13 eV) and S 2 ( 1 MC(dσ*-pσ), 1 A, 4.45 eV) are found. The nearly dark S 1 state has not been reported so far. The excitation of the S 2 state carries a large oscillator strength for the calculated vertical transition (266 nm). Two related triplets are calculated at T 1 (3.87 eV) and T 2 (3.90 eV). From these findings we suggest possible relaxation pathways with the two short time constants ascribed to ISC/IVR and propose from the obtained similar values in gas phase that the fast solution dynamics

  19. Electron excitation relaxation in wide-gap single crystal insulators under swift heavy-ion irradiation

    International Nuclear Information System (INIS)

    Yavlinskii, Yu.N.

    2000-01-01

    A heavy, multicharged ion moving in a solid interacts with nuclei and electrons of the matter atoms. If the projectile velocity exceeds the typical orbital velocity of the target electrons, the main process is excitation of the electronic subsystem, i.e., excitation and ionization of bound electrons. Initially, relaxation of the electron excitations results from electronic processes alone, and energy transfer from electrons to lattice happens later. Since free charge carriers are absent in insulators before irradiation, the motion of the excited electrons is possible only together with holes. Due to inner pressure of the electron-hole plasma the expansion takes place. The velocity of the expansion is determined by the heat velocity of electron-hole pairs. As the excitation region expands, the density of the electron-hole pairs decreases, the average distance between pairs increases, and excitons are produced. The expansion can be terminated in the time t≅10 -13 s, when, due to the electron-phonon interaction, self-trapped holes (and excitons) are formed. The annihilation of the trapped excitons gives rise to Frenkel defects. The set of equations comprising the continuity equation, the Euler equation and energy conservation is considered. The analytic dependence on time of the electron temperature and the radius of the excitation region is derived. The observation of projectile traces in a target is discussed in the single projectile regime

  20. Sexual selection halts the relaxation of protamine 2 among rodents.

    Directory of Open Access Journals (Sweden)

    Lena Lüke

    Full Text Available Sexual selection has been proposed as the driving force promoting the rapid evolutionary changes observed in some reproductive genes including protamines. We test this hypothesis in a group of rodents which show marked differences in the intensity of sexual selection. Levels of sperm competition were not associated with the evolutionary rates of protamine 1 but, contrary to expectations, were negatively related to the evolutionary rate of cleaved- and mature-protamine 2. Since both domains were found to be under relaxation, our findings reveal an unforeseen role of sexual selection: to halt the degree of degeneration that proteins within families may experience due to functional redundancy. The degree of relaxation of protamine 2 in this group of rodents is such that in some species it has become dysfunctional and it is not expressed in mature spermatozoa. In contrast, protamine 1 is functionally conserved but shows directed positive selection on specific sites which are functionally relevant such as DNA-anchoring domains and phosphorylation sites. We conclude that in rodents protamine 2 is under relaxation and that sexual selection removes deleterious mutations among species with high levels of sperm competition to maintain the protein functional and the spermatozoa competitive.

  1. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available of Photochemistry and Photobiology A: Chemistry 293 (2014) 72–80 An instant photo-excited electrons relaxation on the photo- degradation properties of TiO2−x films S.S. Nkosi a,b,∗, I. Kortidis d, D.E. Motaungc,∗, P.R. Makgwanec, O.M. Ndwandwe b, S.S. Rayc, G...

  2. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM.

    Science.gov (United States)

    Bhattacharyya, Kalishankar; Datta, Ayan

    2017-08-25

    The excited state dynamics of an unnatural base pair (UBP) d5SICS/dNaM were investigated by accurate ab-initio calculations. Time-dependent density functional and high-level multireference calculations (MS-CASPT2) were performed to elucidate the excitation of this UBP and its excited state relaxation mechanism. After excitation to the bright state S 2 (ππ*), it decays to the S 1 state and then undergoes efficient intersystem crossing to the triplet manifold. The presence of sulfur atom in d5SICS leads to strong spin-orbit coupling (SOC) and a small energy gap that facilitates intersystem crossing from S 1 (n s π*) to T 2 (ππ*) followed by internal conversion to T 1 state. Similarly in dNaM, the deactivation pathway follows analogous trends. CASPT2 calculations suggest that the S 1 (ππ*) state is a dark state below the accessible S 2 (ππ*) bright state. During the ultrafast deactivation, it exhibits bond length inversion. From S 1 state, significant SOC leads the population transfer to T 3 due to a smaller energy gap. Henceforth, fast internal conversion occurs from T 3 to T 2 followed by T 1 . From time-dependent trajectory surface hopping dynamics, it is found that excited state relaxation occurs on a sub-picosecond timescale in d5SICS and dNaM. Our findings strongly suggest that there is enough energy available in triplet state of UBP to generate reactive oxygen species and induce phototoxicity with respect to cellular DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  4. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  5. Selective reversal of muscle relaxation in general anesthesia: focus on sugammadex

    Directory of Open Access Journals (Sweden)

    Sorin J Brull

    2009-04-01

    Full Text Available Sorin J Brull1, Mohamed Naguib21Department of Anesthesiology, Mayo Clinic College of Medicine, Mayo Clinic Hospital, Jacksonville, FL, USA; 2Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center,  Houston, TX, USAAbstract: Despite the significant improvements in the pharmacology of muscle relaxants in the past six decades, the search for the ideal muscle relaxant continues, mainly because of the incomplete efficacy and persistent side effects associated with their antagonism. Clinical concerns remain about the residual paralysis and hemodynamic side effects associated with the classic pharmacologic reversal agents, the acetylcholinesterase inhibitors. Although the development of the “ideal muscle relaxant” remains illusory, pharmacologic advancements hold promise for improved clinical care and patient safety. Recent clinical advances include the development of short-acting nondepolarizing muscle relaxant agents that have fast onset and a very rapid metabolism that allows reliable and complete recovery; and the development of selective, “designer” reversal agents that are specific for a single drug or class of drugs. This article reviews recent developments in the pharmacology of these selective reversal agents: plasma cholinesterases, cysteine, and sugammadex. Although each of the selective reversal agents is specific in its substrate, the clinical use of the combination of muscle relaxant with its specific reversal agent will allow much greater intraoperative titrating ability, decreased side effect profile, and may result in a decreased incidence of postoperative residual paralysis and improved patient safety.Keywords: selective reversal agents, cysteine, plasma cholinesterases, sugammadex

  6. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  7. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  8. Site selective dissociation of ozone upon core excitation

    International Nuclear Information System (INIS)

    Mocellin, A.; Mundim, M.S.P.; Coutinho, L.H.; Homem, M.G.P.; Naves de Brito, A.

    2007-01-01

    We present new measurements applied to core excitation of ozone molecule using to analyze the dissociation channels the photo-electron-photo-ion coincidence (PEPICO) and the photo-electron-photo-ion-photo-ion coincidence (PEPIPICO) technique. The new experimental set-up allows measuring O + /O + ion pair coincidences without discrimination. The dissociation channels of several core-excited states have been investigated. The relative yields of dissociation channels were determined from coincidence data. The core excitation from O terminal (O T ) or O central (O C ) induce different fragmentation; preferentially one bond is broken at the O terminal excitation and two bonds when O central is excited, showing site selectivity fragmentation of ozone upon core excitation. The ultra-fast dissociation of the O T 1s -1 7a 1 1 core-excited state is confirmed by the relative yield of dissociation

  9. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    Science.gov (United States)

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  10. Excited delirium: Consideration of selected medical and psychiatric issues

    Directory of Open Access Journals (Sweden)

    Edith Samuel

    2009-01-01

    Full Text Available Edith Samuel1, Robert B Williams1, Richard B Ferrell21Department of Psychology, Atlantic Baptist University, Moncton, New Brunswick Canada; 2Department of Psychiatry, Dartmouth Medical School, Lebanon, New Hampshire, USAAbstract: Excited delirium, sometimes referred to as agitated or excited delirium, is the label assigned to the state of acute behavioral disinhibition manifested in a cluster of behaviors that may include bizarreness, aggressiveness, agitation, ranting, hyperactivity, paranoia, panic, violence, public disturbance, surprising physical strength, profuse sweating due to hyperthermia, respiratory arrest, and death. Excited delirium is reported to result from substance intoxication, psychiatric illness, alcohol withdrawal, head trauma, or a combination of these. This communication reviews the history of the origins of excited delirium, selected research related to its causes, symptoms, management, and the links noted between it and selected medical and psychiatric conditions. Excited delirium involves behavioral and physical symptoms that are also observed in medical and psychiatric conditions such as rhabdomyolysis, neuroleptic malignant syndrome, and catatonia. A useful contribution of this communication is that it links the state of excited delirium to conditions for which there are known and effective medical and psychiatric interventions.Keywords: excited delirium, excited states, cocaine misuse, restraint or in custody deaths

  11. Site selective dissociation of ozone upon core excitation

    Energy Technology Data Exchange (ETDEWEB)

    Mocellin, A. [Instituto de Fisica, Universidade de Brasilia-UnB, Box 04455, CEP 70919-970, Brasilia-DF (Brazil)], E-mail: mocellin@fis.unb.br; Mundim, M.S.P. [Instituto de Fisica, Universidade de Brasilia-UnB, Box 04455, CEP 70919-970, Brasilia-DF (Brazil); Coutinho, L.H. [Instituto de Quimica, Universidade Federal do Rio de Janeiro-UFRJ, Box 68563, CEP 21945-970, Rio de Janeiro-RJ (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron-LNLS, Box 6192, CEP 13084-971, Campinas-SP (Brazil); Naves de Brito, A. [Laboratorio Nacional de Luz Sincrotron-LNLS, Box 6192, CEP 13084-971, Campinas-SP (Brazil); Instituto de Fisica, Universidade de Brasilia-UnB, Box 04455, CEP 70919-970, Brasilia-DF (Brazil)

    2007-05-15

    We present new measurements applied to core excitation of ozone molecule using to analyze the dissociation channels the photo-electron-photo-ion coincidence (PEPICO) and the photo-electron-photo-ion-photo-ion coincidence (PEPIPICO) technique. The new experimental set-up allows measuring O{sup +}/O{sup +} ion pair coincidences without discrimination. The dissociation channels of several core-excited states have been investigated. The relative yields of dissociation channels were determined from coincidence data. The core excitation from O terminal (O{sub T}) or O central (O{sub C}) induce different fragmentation; preferentially one bond is broken at the O terminal excitation and two bonds when O central is excited, showing site selectivity fragmentation of ozone upon core excitation. The ultra-fast dissociation of the O{sub T} 1s{sup -1}7a{sub 1}{sup 1} core-excited state is confirmed by the relative yield of dissociation.

  12. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  13. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  14. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine2(CN2

    Directory of Open Access Journals (Sweden)

    Kasper S. Kjær

    2017-07-01

    Full Text Available We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy2(CN2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT excitation. The excited-state absorption in the transient UV-visible spectra, associated with the 2,2′-bipyridine radical anion, provides a robust marker for the MLCT excited state, while the transient Kβ x-ray emission spectra provide a clear measure of intermediate and high spin metal-centered excited states. From these measurements, we conclude that the MLCT state of [Fe(bpy2(CN2] undergoes ultrafast spin crossover to a metal-centered quintet excited state through a short lived metal-centered triplet transient species. These measurements of [Fe(bpy2(CN2] complement prior measurement performed on [Fe(bpy3]2+ and [Fe(bpy(CN4]2− in dimethylsulfoxide solution and help complete the chemical series [Fe(bpyN(CN6–2N]2N-4, where N = 1–3. The measurements confirm that simple ligand modifications can significantly change the relaxation pathways and excited state lifetimes and support the further investigation of light harvesting and photocatalytic applications of 3d transition metal complexes.

  15. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  16. Hybrid collaborative optimization based on selection strategy of initial point and adaptive relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Aimin; Yin, Xu; Yuan, Minghai [Hohai University, Changzhou (China)

    2015-09-15

    There are two problems in Collaborative optimization (CO): (1) the local optima arising from the selection of an inappropriate initial point; (2) the low efficiency and accuracy root in inappropriate relaxation factors. To solve these problems, we first develop the Latin hypercube design (LHD) to determine an initial point of optimization, and then use the non-linear programming by quadratic Lagrangian (NLPQL) to search for the global solution. The effectiveness of the initial point selection strategy is verified by three benchmark functions with some dimensions and different complexities. Then we propose the Adaptive relaxation collaborative optimization (ARCO) algorithm to solve the inconsistency between the system level and the disciplines level, and in this method, the relaxation factors are determined according to the three separated stages of CO respectively. The performance of the ARCO algorithm is compared with the standard collaborative algorithm and the constant relaxation collaborative algorithm with a typical numerical example, which indicates that the ARCO algorithm is more efficient and accurate. Finally, we propose a Hybrid collaborative optimization (HCO) approach, which integrates the selection strategy of initial point with the ARCO algorithm. The results show that HCO can achieve the global optimal solution without the initial value and it also has advantages in convergence, accuracy and robustness. Therefore, the proposed HCO approach can solve the CO problems with applications in the spindle and the speed reducer.

  17. Hybrid collaborative optimization based on selection strategy of initial point and adaptive relaxation

    International Nuclear Information System (INIS)

    Ji, Aimin; Yin, Xu; Yuan, Minghai

    2015-01-01

    There are two problems in Collaborative optimization (CO): (1) the local optima arising from the selection of an inappropriate initial point; (2) the low efficiency and accuracy root in inappropriate relaxation factors. To solve these problems, we first develop the Latin hypercube design (LHD) to determine an initial point of optimization, and then use the non-linear programming by quadratic Lagrangian (NLPQL) to search for the global solution. The effectiveness of the initial point selection strategy is verified by three benchmark functions with some dimensions and different complexities. Then we propose the Adaptive relaxation collaborative optimization (ARCO) algorithm to solve the inconsistency between the system level and the disciplines level, and in this method, the relaxation factors are determined according to the three separated stages of CO respectively. The performance of the ARCO algorithm is compared with the standard collaborative algorithm and the constant relaxation collaborative algorithm with a typical numerical example, which indicates that the ARCO algorithm is more efficient and accurate. Finally, we propose a Hybrid collaborative optimization (HCO) approach, which integrates the selection strategy of initial point with the ARCO algorithm. The results show that HCO can achieve the global optimal solution without the initial value and it also has advantages in convergence, accuracy and robustness. Therefore, the proposed HCO approach can solve the CO problems with applications in the spindle and the speed reducer

  18. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    Science.gov (United States)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  19. Ultrafast excited state relaxation in long-chain polyenes

    International Nuclear Information System (INIS)

    Antognazza, Maria Rosa; Lueer, Larry; Polli, Dario; Christensen, Ronald L.; Schrock, Richard R.; Lanzani, Guglielmo; Cerullo, Giulio

    2010-01-01

    Graphical abstract: Excited state dynamics of a long-chain polyene studied by femtosecond pump-probe spectroscopy. - Abstract: We present a comprehensive study, by femtosecond pump-probe spectroscopy, of excited state dynamics in a polyene that approaches the infinite chain limit. By excitation with sub-10-fs pulses resonant with the 0-0 S 0 → S 2 transition, we observe rapid loss of stimulated emission from the bright excited state S 2 , followed by population of the hot S 1 state within 150 fs. Vibrational cooling of S 1 takes place within 500 fs and is followed by decay back to S 0 with 1 ps time constant. By excitation with excess vibrational energy we also observe the ultrafast formation of a long-living absorption, that is assigned to the triplet state generated by singlet fission.

  20. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  1. Radiative and nonradiative lifetimes in excited states of Ar, Kr and Xe atoms in Ne matrix

    International Nuclear Information System (INIS)

    Hahn, U.; Schwentner, N.

    1979-10-01

    Synchrotron radiation with its intense continuum and its excellent time structure has been exploited for time resolved luminescence spectroscopy in the solid state. By selective excitation of n = 1, n' = 1 and n = 2 exciton states of Xe, Kr and Ar atoms in Ne matrix we were able to identify the emitting states involved. Lifetimes within the cascade of radiative and radiationless relaxation between excited states as well as the radiative lifetimes for transitions to the ground state have been derived from the decay curves. Energy positions and radiative lifetimes of the emitting states correspond quite well with those of the free atoms. Radiative and radiationless relaxation processes take place within the manifold of excited states of the guest atoms. The rate constants for radiationless decay confirm an energy gap law. The order of the radiationless processes reaches in some cases extremely high values. Selection rules for spin and angular momentum are essential to understand the observed radiationless transition rates. (orig.)

  2. Effect of relaxation and decay of a charge transfer shakeup satellite on Auger-electron spectroscopy spectra and Auger-photoelectron coincidence spectroscopy spectra of adsorbates

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    An electron excited to an unoccupied part of adsorbate-substrate hybrid states in a chemisorbed molecule by a resonant core electron excitation or charge transfer (CT) shakeup may delocalize on time scale of core-hole decay so that the excited core-hole state relaxes partly or completely to a fully relaxed one. The Auger decay of the fully relaxed core-hole state via the relaxation of the excited one introduces an additional feature in the resonant Auger-electron spectroscopy (RAES) spectrum and the AES spectrum. However, the additional feature in the RAES spectrum is a normal AES spectrum by decay of the fully relaxed core-hole state, whereas the one in the AES spectrum is the AES spectrum by decay of the fully relaxed core-hole state broadened by the photoelectron spectroscopy (PES) CT shakeup satellite weighted by the branching ratio of the relaxation width. The discrepancies between the AES spectrum measured at high above the ionization threshold and the additional feature in the RAES spectrum consist of the symmetric-like part by the decay of the fully relaxed core-hole state via the relaxation of the CT shakeup state and the asymmetric part by the direct decay of the shakeup states. The asymmetric part increases with a decrease in the hybridization strength. This explains the variation with the hybridization strength in the discrepancies between the RAES spectra and the AES spectra of chemisorbed molecules such as CO/Ni, CO/Cu and CO/Ag. A comparison of the singles PES spectrum with the one measured in coincidence with the AES main line of a selected kinetic energy (KE) provides the delocalization rate of the excited electron in the CT shakeup state as a function of photoelectron KE. The coincidence measurement to obtain the partial singles PES spectrum is discussed

  3. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  4. Influence of excitation light on the frequency upconversion of trivalent lanthanide ions

    International Nuclear Information System (INIS)

    Fu Zhenxing; Zheng Hairong; Tian Yu; Zhang Zhenglong; Cui Min

    2010-01-01

    The upconversion mechanisms of the 1 D 2 level of Tm 3+ ion under different excitation lights were analyzed. The influences of the excitation lights on the upconversion process, nonradiative relaxation from level 3 F 2 to 3 H 4 and fluorescence properties were investigated. It was shown that the one-color cw excitation could affect the profile of fluorescence, while information of the nonradiative relaxation could not be extracted. The nonradiative relaxation rate measured with the one-color pulsed excitation in crystal phase was in agreement with what was obtained in the free-standing nanometer crystal particles through the two-color pulsed excitation. The characteristics of the fluorescent emissions of Tm 3+ ions doped in various host materials were also discussed under different excitation lights. As a result of the discussion, a possible way to obtain nonradiative relaxation rate directly from a spectroscopic method in frequency domain was proposed. The study can be extended to other trivalent lanthanide ions that have upconversion through excited state absorption.

  5. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  6. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  7. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.; Dobryakov, A. L.; Hecht, S., E-mail: sh@chemie.hu-berlin.de, E-mail: skovale@chemie.hu-berlin.de; Kovalenko, S. A., E-mail: sh@chemie.hu-berlin.de, E-mail: skovale@chemie.hu-berlin.de [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, 12489 Berlin (Germany); Ioffe, I. N. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Granovsky, A. A. [Firefly Project, 117593 Moscow (Russian Federation)

    2015-07-14

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S{sub 1} state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S{sub 1} → S{sub n} due to resonant absorption of a third pump photon. Subsequent S{sub n} → S{sub 1} internal conversion (with τ{sub 1} = 1 ps) prepares a very hot S{sub 1} state which cools down with τ{sub 2} = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ{sup (2)} = 32 ⋅ 10{sup −50} cm{sup 4} s at 752 nm are evaluated from the bleach signal.

  8. Effects of distribution function nonequilibrium tails on relaxation and transfer processes in rarefied gases

    International Nuclear Information System (INIS)

    Grigoryev, Yu.N.; Mikhalitsyn, A.N.; Yanenko, N.N.

    1984-01-01

    Quantitative characteristics of the nonmonotone relaxation process are studied in a gas of pseudo-Maxwell molecules. Basic results are obtained by a direct numerical integration of the nonlinear Boltzmann equation. The evolution of initial distributions being finite or having exponential asymptotics of tails was researched. In particular, initial data obtained by selective excitation (absorption) against the Maxwell background encountered in laser physics problems have been considered. It is shown that under conditions of a developed effect of nonmonotone relaxation the overpopulation in the velocity range 4 <= upsilon <= 10 exceeds on the average 2-3 times the equilibrium value. For the given particles energy the excitation is preserved during t = 5/6 and the total relaxation time of the overpopulation wave reaches t asymptotically equals 20. The amplitudes and the relaxation time of overpopulation in the ''cupola'' region of distribution are substantially lower than in the case of a developed effect in the tail. The influence of the effect on the kinetics of threshold chemical reaction is studied. From the results it follows that in the process of nonmonotone relaxation the mean rates of binary threshold reactions can exceed more than twice the equilibrium values. This estimate is valid for all power like intermolecular repulsive potentials from the pseudo-Maxwell model up to rigid spheres. Time intervals over which the mean reaction rate exceeds considerably the equilibrium one make from 5 to 15 mean free path times increasing with the decrease in the potential ''rigidity''. (author)

  9. Cross-relaxation solid state lasers

    International Nuclear Information System (INIS)

    Antipenko, B.M.

    1989-01-01

    Cross-relaxation functional diagrams provide a high quantum efficiency for pumping bands of solid state laser media and a low waste heat. A large number of the cross-relaxation mechanisms for decay rare earth excited states in crystals have been investigated. These investigations have been a starting-point for development of the cross-relaxation solid state lasers. For example, the cross-relaxation interactions, have been used for the laser action development of LiYF 4 :Gd-Tb. These interactions are important elements of the functional diagrams of the 2 μm Ho-doped media sensitized with Er and Tm and the 3 μm Er-doped media. Recently, new efficient 2 μm laser media with cross-relaxation pumping diagrams have been developed. Physical aspects of these media are the subject of this paper. A new concept of the Er-doped medium, sensitized with Yb, is illustrated

  10. Vibrational relaxation of matrix-isolated CH3F and HCl

    International Nuclear Information System (INIS)

    Young, L.

    1981-08-01

    Kinetic and spectroscopic studies have been performed on CH 3 F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH 3 F, relaxation from any of the levels near 3.5 μ, i.e. the CH stretching fundamentals or bend overtones, occurs via rapid ( 3 with subsequent relaxation of the ν 3 (CF stretch) manifold. Lifetimes of 2ν 3 and ν 3 were determined through overtone, ΔV = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2ν 3 and ν 3 is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V → R transition in the rate limiting step

  11. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated Raman spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenjian; Donohoo-Vallett, Paul J.; Zhou, Jiawang; Bragg, Arthur E., E-mail: artbragg@jhu.edu [Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 (United States)

    2014-07-28

    A combination of transient absorption (TAS) and femtosecond stimulated Raman (FSRS) spectroscopies were used to interrogate the photo-induced nuclear relaxation dynamics of poly(3-cyclohexyl,4-methylthiophene) (PCMT). The large difference in inter-ring dihedral angles of ground and excited-state PCMT make it an ideal candidate for studying large-amplitude vibrational relaxation associated with exciton trapping. Spectral shifting in the S{sub 1} TA spectra on sub-ps timescales (110 ± 20 and 800 ± 100 fs) is similar to spectroscopic signatures of excited-state relaxation observed with related photoexcited conjugated polymers and which have been attributed to exciton localization and a combination of resonant energy transfer and torsional relaxation, respectively. Measurements made with both techniques reveal fast PCMT S{sub 1} decay and triplet formation (τ{sub S1} = 25–32 ps), which is similar to the excited-state dynamics of short oligothiophenes and highly twisted polyconjugated molecules. On ultrafast timescales FSRS of S{sub 1} PCMT offers a new perspective on the nuclear dynamics that underlie localization of excitons in photoexcited conjugated polymers: Spectral dynamics in the C=C stretching region (1400–1600 cm{sup −1}) include a red-shift of the in-phase C=C stretching frequency, as well as a change in the relative intensity of in-phase and out-of-phase stretch intensities on a timescale of ∼100 fs. Both changes indicate an ultrafast vibrational distortion that increases the conjugation length in the region of the localized excitation and are consistent with exciton self-localization or trapping. Wavelength-dependent excited-state FSRS measurements further demonstrate that the C=C stretching frequency provides a useful spectroscopic handle for interrogating the degree of delocalization in excited conjugated polymers given the selectivity achieved via resonance enhancement.

  12. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  13. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    Science.gov (United States)

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  14. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film

    International Nuclear Information System (INIS)

    Murphy, Sean; Huang, Libai

    2013-01-01

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM–AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films. (paper)

  15. Relaxation process of coherent transients in the presence of an adjacent strongly driven transition

    International Nuclear Information System (INIS)

    Feng Xiaomin; Yang Lijun; Li Xiaoli; Zhang Lianshui; Han Li; Guo Qinglin; Fu Guangsheng

    2007-01-01

    Coherent transient occurs when a two-level transition is subjected to pulsed laser excitation. The relaxation process of coherent transient depends on both the longitudinal and transverse relaxation parameters of the two-level transition, which is related to the population and coherence decay rates. In this paper we study relaxation process of a new type coherent transients observed by applying a pulsed laser excitation to a two-level transition in the presence of a second strong continuous-wave (cw) coherent field coupling one of the two levels to a third level, that is, in a three-level double-resonance configuration. The relaxation process of coherent transients is studied as a function of relaxation parameters of both the two-level transition excited by the pulsed laser field and the transition coupled by the cw laser field. It is shown that by involving a third level with coherent field the relaxation process of coherent transients of a two-level transition can be modified. Our study illustrates a new way of controlling relaxation process of coherent transients in a two-level transition by a second coherent laser and this has important implication for quantum information storage and quantum computing

  16. Asymmetries in Chickens from Lines Selected and Relaxed for High or Low Antibody Titers to Sheep Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Yunjie Tu

    2015-03-01

    Full Text Available Wattle length, width, and area were measured to classify bilateral asymmetries in four lines of chickens. The lines were the S26 generation of White Leghorns selected for high (HAS or low (LAS response to sheep red blood cells and sublines in which selection had been relaxed for three generations (high antibody relaxed [HAR] and low antibody relaxed [LAR]. Antibody titers (AB were greater for HAS than for HAR with both greater than for LAS and LAR which while different for males did not differ for females. The low antibody lines were heavier and reached sexual maturity at younger age than the high antibody lines. In general, wattle length, width, and area were greater in the low than high antibody lines. In 24 comparisons for bilaterality 18 exhibited fluctuating asymmetry and 6 exhibited directional asymmetry with 5 of the 6 being for wattle length. There was not a clear pattern for changes in degree of asymmetry when selection was relaxed for 3 generations. For females, the relative asymmetry (RA of wattle area was larger (p≤0.05 for HAR than for LAR and not different from the selected lines and relaxed lines. There were no differences among lines for RA of wattle length and width of females and wattle length, width, and area of males.

  17. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  18. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1992-01-01

    We have made measurements of state-to-state deactivation cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models and both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. This type of experiment can now be compared with recent calculations of state-to-state collisional relaxation in rare-gases by Hickman, Huestis, and Saxon. We have also made significant progress in the study of the electronic spectra of small molecules of the rare gases. Spectra have been obtained for Xe 2 , Xe 3 , Xe 4 , and larger clusters. As guidance for the larger clusters of the rare gases we have obtained the first multiphoton spectra for excitons in condensed xenon. In collaboration with research on the multiphoton spectra of the rare gases, we have continued experiments using synchrotron radiation in collaboration with the University of Hamburg. In experiments there we have observed excitation and fluorescence spectra for single xenon atoms at the surface, within the second layer, and within the bulk of large argon clusters

  19. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts.

    Science.gov (United States)

    Babbitt, G A

    2010-10-15

    The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome. 2010 Elsevier B.V. All rights reserved.

  20. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  1. Increasing the effective energy barrier promoted by the change of a counteranion in a Zn-Dy-Zn SMM: slow relaxation via the second excited state.

    Science.gov (United States)

    Oyarzabal, I; Ruiz, J; Ruiz, E; Aravena, D; Seco, J M; Colacio, E

    2015-08-11

    The trinuclear complex [ZnCl(μ-L)Dy(μ-L)ClZn]PF6 exhibits a single-molecule magnetic behaviour under zero field with a relatively large effective energy barrier of 186 cm(-1). Ab initio calculations reveal that the relaxation of the magnetization is symmetry-driven (the Dy(III) ion possesses a C2 symmetry) and occurs via the second excited state.

  2. Slow relaxation in weakly open rational polygons.

    Science.gov (United States)

    Kokshenev, Valery B; Vicentini, Eduardo

    2003-07-01

    The interplay between the regular (piecewise-linear) and irregular (vertex-angle) boundary effects in nonintegrable rational polygonal billiards (of m equal sides) is discussed. Decay dynamics in polygons (of perimeter P(m) and small opening Delta) is analyzed through the late-time survival probability S(m) approximately equal t(-delta). Two distinct slow relaxation channels are established. The primary universal channel exhibits relaxation of regular sliding orbits, with delta=1. The secondary channel is given by delta>1 and becomes open when m>P(m)/Delta. It originates from vertex order-disorder dual effects and is due to relaxation of chaoticlike excitations.

  3. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  4. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    Science.gov (United States)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  5. Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Junsheng; Chábera, Pavel; Pascher, Torbjörn; Messing, Maria E; Schaller, Richard; Canton, Sophie; Zheng, Kaibo; Pullerits, Tõnu

    2017-10-19

    Cesium lead bromide (CsPbBr 3 ) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr 3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.

  6. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  7. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  8. Excitation and recombination of donor-acceptor pairs in ZnTe

    International Nuclear Information System (INIS)

    Nakashima, S.; Yasuda, S.

    1979-01-01

    The photoluminescence spectra and its excitation spectra of the donor-acceptor pairs are observed in ZnTe crystals doped with Li and As in the region below the bandgap energy. The relaxation of electrons and holes into the first excited state of d-a pairs is studied for the three excitation processes: (1) bound-to-bound transitions, (2) bound-to-free transitions, and (3) free-to-free transitions. It is concluded that most of the electrons and holes at the excited states of each impurity level are relaxed rapidly into their ground states before the occurrence of the recombination involving the excited states. For the excitation process (2), conduction electrons are preferentially trapped by positively charged pairs. The redistribution of bound holes by hopping is suggested to explain the broad d-a emission band observed for the bound-to-free excitation for very distant pairs. (author)

  9. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  10. Highest-order optical phonon-mediated relaxation in CdTe/ZnTe quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Nomura, Mitsuhiro; Okuno, Tsuyoshi; Terai, Yoshikazu; Kuroda, Shinji; Takita, K.

    2003-01-01

    The highest 19th-order longitudinal optical (LO) phonon-mediated relaxation was observed in photoluminescence excitation spectra of CdTe self-assembled quantum dots grown in ZnTe. Hot excitons photoexcited highly in the ZnTe barrier layer are relaxed into the wetting-layer state by emitting multiple LO phonons of the barrier layer successively. Below the wetting-layer state, the LO phonons involved in the relaxation are transformed to those of interfacial Zn x Cd 1-x Te surrounding CdTe quantum dots. The ZnTe-like and CdTe-like LO phonons of Zn x Cd 1-x Te and lastly acoustic phonons are emitted in the relaxation into the CdTe dots. The observed main relaxation is the fast relaxation directly into CdTe quantum dots and is not the relaxation through either the wetting-layer quantum well or the band bottom of the ZnTe barrier layer. This observation shows very efficient optical phonon-mediated relaxation of hot excitons excited highly in the ZnTe conduction band through not only the ZnTe extended state but also localized state in the CdTe quantum dots reflecting strong exciton-LO phonon interaction of telluride compounds

  11. Hotspot relaxation dynamics in a current-carrying superconductor

    Science.gov (United States)

    Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.

    2016-03-01

    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.

  12. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected ¹³C CPMG relaxation dispersion.

    Science.gov (United States)

    Weininger, Ulrich; Respondek, Michal; Akke, Mikael

    2012-09-01

    Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.

  13. Process and system for isotope separation using the selective vibrational excitation of molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1976-01-01

    This invention concerns the separation of isotopes by using the isotopically selective vibrational excitation and the vibration-translation reactions of the excited particles. UF 6 molecular mixed with a carrier gas, such as argon, are directed through a refrigerated chamber lighted by a laser radiation tuned to excite vibrationally the uranium hexafluoride molecules of a particular uranium isotope. The density of the carrier gas is preferably maintained above the density of the uranium hexafluoride to allow a greater collision probability of the vibrationally excited molecules with a carried molecule. In such a case, the vibrationally excited uranium hexafluoride will collide with a carrier gas molecule provoking the conversion of the excitation energy into a translation of the excited molecule, resulting in thermal energy or greater diffusibility than that of the other uranium hexafluoride molecules [fr

  14. Selective Excitation of Lamb-Waves for Damage Detection in Composites

    Science.gov (United States)

    Petculescu, G.; Krishnaswamy, S.; Achenbach, J. D.

    2006-03-01

    Sensors based on periodic arrays of coherent piezoelectric sources (comb design) are used to selectively excite and detect Lamb waves in aluminum and AS4/3601 unidirectional carbon-epoxy plates. 110 μm PVDF film poled in the thickness direction is used as piezoelectric material. An algorithm to eliminate the effect of coupling in amplitude measurements, using individual Lamb modes excited/detected by the same transducer pair, is described. A multiple-impact test showing a decrease in amplitude and group velocity as damage progresses is used as an example.

  15. Frequency and wavenumber selective excitation of spin waves through coherent energy transfer from elastic waves

    OpenAIRE

    Hashimoto, Yusuke; Bossini, Davide; Johansen, Tom H.; Saitoh, Eiji; Kirilyuk, Andrei; Rasing, Theo

    2017-01-01

    Using spin-wave tomography (SWaT), we have investigated the excitation and the propagation dynamics of optically-excited magnetoelastic waves, i.e. hybridized modes of spin waves and elastic waves, in a garnet film. By using time-resolved SWaT, we reveal the excitation dynamics of magnetoelastic waves through coherent-energy transfer between optically-excited pure-elastic waves and spin waves via magnetoelastic coupling. This process realizes frequency and wavenumber selective excitation of s...

  16. Two-photon excitation laser scanning microscopy of porcine nasal septal cartilage following Nd:YAG laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Rasouli, Alexandre; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-05-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within porcine nasal septal cartilage tissue over a 4-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation (lambda equals 1.32 micrometer) using parameters that result in mechanical stress relaxation (6.0 W, 5.4 mm spot diameter). TPM excitation (780 nm) result in induction of fluorescence from endogenous agents such as NADH, NADPH, and flavoproteins in the 400 - 500 nm spectral region. During laser irradiation diffuse reflectance (from a probe HeNe laser, (lambda) equals 632.8 nm), surface temperature, and stress relaxation were measured dynamically. Each specimen received one, two, or three sequential laser exposures (average irradiation times of 5, 6, and 8 seconds). The cartilage reached a peak surface temperature of about 70 degrees Celsius during irradiation. Cartilage denatured in 50% EtOH (20 minutes) was used as a positive control. TPM was performed using a mode-locked 780 nm Titanium:Sapphire (Ti:Al203) beam with a, 63X, 1.2 N.A. water immersion objective (working distance of 200 mm) to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns (lateral resolution equals 35 micrometer X 35 micrometer). Images were obtained immediately following laser exposure, and also after 4 days in culture. In both cases, the irradiated and non-irradiated specimens do not show any discernible difference in general shape or auto fluorescence. In contrast, positive controls (immersed in 50% ethanol), show markedly increased fluorescence relative to both the native and irradiated specimens, in the cytoplasmic region.

  17. Relaxation dynamics of a quantum emitter resonantly coupled to a metal nanoparticle

    DEFF Research Database (Denmark)

    Nerkararyan, K. V.; Bozhevolnyi, S. I.

    2014-01-01

    consequence of this relaxation process is that the emission, being largely determined by the MNP, comes out with a substantial delay. A large number of system parameters in our analytical description opens new possibilities for controlling quantum emitter dynamics. (C) 2014 Optical Society of America......The presence of a metal nanoparticle (MNP) near a quantum dipole emitter, when a localized surface plasmon mode is excited via the resonant coupling with an excited quantum dipole, dramatically changes the relaxation dynamics: an exponential decay changes to step-like behavior. The main physical...

  18. Cross Relaxation in rare-earth-doped oxyfluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-15

    The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The

  19. Nonlocal and collective relaxation in stellar systems

    Science.gov (United States)

    Weinberg, Martin D.

    1993-01-01

    The modal response of stellar systems to fluctuations at large scales is presently investigated by means of analytic theory and n-body simulation; the stochastic excitation of these modes is shown to increase the relaxation rate even for a system which is moderately far from instability. The n-body simulations, when designed to suppress relaxation at small scales, clearly show the effects of large-scale fluctuations. It is predicted that large-scale fluctuations will be largest for such marginally bound systems as forming star clusters and associations.

  20. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  1. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  2. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow; UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg; Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  3. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  4. Vibronic relaxation in molecular mixed crystals : Pentacene in naphthalene and p-terphenyl

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1981-01-01

    Picosecond photon echo techniques are used to measure directly vibronic relaxation times in the first excited singlet state of pentacene in naphthalene and p-terphenyl. In regions of low (< 300 cm–1) and high (> 1000 cm–1) vibrational energy, relaxation is fast (τ <2 ps) due to direct phonon

  5. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  6. Magnon interaction and relaxation in yttrium iron garnet

    International Nuclear Information System (INIS)

    Mukimov, K.M.; Jumaev, M.R.; Kenjaev, Z.M.

    2007-01-01

    Full text: Magnon interaction and relaxation are the fundamental characteristics describing the response of any system to an external AC field. Almost all experiments aimed at magnon excitation have been carried out in the microwave frequency range where only magnons with energies 0.1 - 5 K can be excited. Nevertheless, all magnons with energy lower or order of the temperature are involved in the processes of low energy magnon relaxation. The present study deals with the interactions of magnons in YIG in thermodynamic equilibrium at temperatures up to 300 K. We consider the exchange and magnetic - dipole terms in the YIG Hamiltonian and a term due to the local uniaxial crystallographic anisotropy, find the corresponding amplitudes of three - and four - magnon process, and calculate the relaxation rate and the correction to the ferromagnon frequency to the first order in the interaction. This correction is positive, in contrast to the case of ferromagnets, and it is proportional to at temperatures up to, in agreement with experiment. The exchange - relaxation rate of the magnons is found as a function of the wave vector and temperature. In the region this rate agrees with the familiar expression for ferromagnets. At higher temperatures, at which the main contribution to the exchange damping is from the magnons of the linear part of the spectrum, the temperature dependence of the damping becomes stronger. (authors)

  7. Site-selective spectroscopy of Er in GaN

    International Nuclear Information System (INIS)

    Dierolf, V.; Sandmann, C.; Zavada, J.; Chow, P.; Hertog, B.

    2004-01-01

    We investigated different Er 3+ defect sites found in Er-doped GaN layers by site-selective combined excitation-emission spectroscopy and studied the role of these sites in different direct and multistep excitation schemes. The layers were grown by molecular beam epitaxy and were 200 nm thick. Two majority sites were found along with several minority sites. The sites strongly differ in excitation and energy transfer efficiencies as well as branching ratios during relaxation. For this reason, relative emission intensities from these sites depend strongly on emission and excitation. The sites were identified for several transitions and a comprehensive list of energy levels has been compiled. One of the minority sites appears strongly under ultraviolet excitation above the GaN band gap suggesting that this site is an excellent trap for excitation energy of electron-hole pairs

  8. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  9. Ultrafast Physics Behind the Nonradiative Relaxation Process of Chromium Ions in Forsterite Crystals.

    Science.gov (United States)

    Demos, Stavros Gregorios

    The nonradiative relaxation following photoexcitation has been studied in Cr^{4+} -doped forsterite (Mg_2SiO _4) using picosecond laser excitation and ultrasensitive photon counting detection. The experimental techniques utilized were time resolved antiStokes Raman scattering and up-converted hot and ordinary luminescence. The up-converted hot luminescence technique allowed the investigation of the upper state nonradiative relaxation of the excited state manifold of Cr^{4+ }-doped forsterite. The excitation involves the absorption of two photons per photoexcited ion in a two-step absorption. Discrete peaks are observed in the hot up-converted luminescence spectrum and are attributed to the population of nonequilibrium vibronic levels during the deexcitation of the ions by phonon emission. This work reveals that the phonon modes participating in the initial steps of the nonradiative relaxation of the photoexcited ions have energies 218 +/- 20, 325 +/- 20, 365 +/- 20 and 513 +/- 12 cm^ {-1}. The shape of the luminescence spectral envelope suggests two electronic bottlenecks at ~2.1 and ~2.45 eV associated with slower rates of vibrational relaxation at different parts of the excited state manifold. Time resolved measurements indicated that the average time for phonon emission is of the order of hundreds of fs. Information on the nonequilibrium phonon dynamics of the 225, 335 and 370 cm^{-1} modes of forsterite has been obtained using time resolved Raman scattering. Laser pulses of 450 fs in duration and 590 nm in wavelength were used to excite the Cr ions 2.1 eV above the ground state. The probe pulses (obtained from the same laser) are monitoring the nonequilibrium phonon population through the intensity of the antiStokes Raman lines at various pump-probe delay times. Experiments were performed at room and liquid nitrogen temperatures. The observed nonequilibrium phonon populations are associated with the overall complex nonradiative decay following the excitation of

  10. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    Science.gov (United States)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  11. The Effects of Suggestibility on Relaxation.

    Science.gov (United States)

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  12. Some kinetic and spectroscopic evidence on intramolecular relaxation processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Quack, M.

    1983-01-01

    The description and definition of intramolecular vibrational relaxation processes is discussed within the framework of the quantum mechanical and statistical mechanical equations of motion. The evidence from quite different experimental sources is summarized under the common aspect of vibrational relaxation. Although much of the evidence remains ambiguous, there is good indication that a localized vibrational excitation relaxes typically in 0.1 to 10 picoseconds, which is long compared to many optical and reactive processes

  13. 13C spin relaxation measurements in RNA: Sensitivity and resolution improvement using spin-state selective correlation experiments

    International Nuclear Information System (INIS)

    Boisbouvier, Jerome; Brutscher, Bernhard; Simorre, Jean-Pierre; Marion, Dominique

    1999-01-01

    A set of new NMR pulse sequences has been designed for the measurement of 13 C relaxation rate constants in RNA and DNA bases: the spin-lattice relaxation rate constant R(C z ), the spin-spin relaxation rate constant R(C + ), and the CSA-dipolar cross-correlated relaxation rate constant Γ C,CH xy . The use of spin-state selective correlation techniques provides increased sensitivity and spectral resolution. Sensitivity optimised C-C filters are included in the pulse schemes for the suppression of signals originating from undesired carbon isotopomers. The experiments are applied to a 15% 13 C-labelled 33-mer RNA-theophylline complex. The measured R(C + )/Γ C,CH xy ratios indicate that 13 C CSA tensors do not vary significantly for the same type of carbon (C 2 , C 6 , C 8 ), but that they differ from one type to another. In addition, conformational exchange effects in the RNA bases are detected as a change in the relaxation decay of the narrow 13 C doublet component when varying the spacing of a CPMG pulse train. This new approach allows the detection of small exchange effects with a higher precision compared to conventional techniques

  14. Automatic vibration mode selection and excitation; combining modal filtering with autoresonance

    Science.gov (United States)

    Davis, Solomon; Bucher, Izhak

    2018-02-01

    Autoresonance is a well-known nonlinear feedback method used for automatically exciting a system at its natural frequency. Though highly effective in exciting single degree of freedom systems, in its simplest form it lacks a mechanism for choosing the mode of excitation when more than one is present. In this case a single mode will be automatically excited, but this mode cannot be chosen or changed. In this paper a new method for automatically exciting a general second-order system at any desired natural frequency using Autoresonance is proposed. The article begins by deriving a concise expression for the frequency of the limit cycle induced by an Autoresonance feedback loop enclosed on the system. The expression is based on modal decomposition, and provides valuable insight into the behavior of a system controlled in this way. With this expression, a method for selecting and exciting a desired mode naturally follows by combining Autoresonance with Modal Filtering. By taking various linear combinations of the sensor signals, by orthogonality one can "filter out" all the unwanted modes effectively. The desired mode's natural frequency is then automatically reflected in the limit cycle. In experiment the technique has proven extremely robust, even if the amplitude of the desired mode is significantly smaller than the others and the modal filters are greatly inaccurate.

  15. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  16. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    Energy Technology Data Exchange (ETDEWEB)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 ..mu..s, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N/sub 2/ and O/sub 2/ matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data.

  17. Vibrational relaxation and energy transfer of matrix isolated HCl and DCl

    International Nuclear Information System (INIS)

    Wiesenfeld, J.M.

    1977-12-01

    Vibrational kinetic and spectroscopic studies have been performed on matrix-isolated HCl and DCl between 9 and 20 K. Vibrational relaxation rates for v = 2 and v = 1 were measured by a tunable infrared laser-induced, time-resolved fluorescence technique. In an Ar matrix, vibrational decay times are faster than radiative and it is found that HCl relaxes about 35 times more rapidly than CCl, in spite of the fact that HCl must transfer more energy to the lattice than DCl. This result is explained by postulating that the rate-determining step for vibrational relaxation produces a highly rotationally excited guest in a V yield R step; rotational relaxation into lattice phonons follows rapidly. HCl v = 1, but not v = 2, excitation rapidly diffuses through the sample by a resonant dipole-dipole vibrational energy transfer process. Molecular complexes, and in particular the HCl dimer, relax too rapidly for direct observation, less than or approximately 1 μs, and act as energy sinks in the energy diffusion process. The temperature dependence for all these processes is weak--less than a factor of two between 9 and 20 K. Vibrational relaxation of HCl in N 2 and O 2 matrices is unobservable, presumably due to rapid V yield V transfer to the host. A V yield R binary collision model for relaxation in solids is successful in explaining the HCl(DCl)/Ar results as well as results of other experimenters. The model considers relaxation to be the result of ''collisions'' due to molecular motion in quantized lattice normal modes--gas phase potential parameters can fit the matrix kinetic data

  18. Generation and relaxation of high rank coherences in AX3 systems in a selectively methionine labelled SH2 domain

    International Nuclear Information System (INIS)

    Kloiber, Karin; Fischer, Michael; Ledolter, Karin; Nagl, Michael; Schmid, Walther; Konrat, Robert

    2007-01-01

    The usefulness of selective isotope labelling patterns is demonstrated using the C-terminal SH2 domain of PLC-γ1 selectively 13 C labelled at methionine methyl groups. We demonstrate the generation and relaxation of coherences that are second rank in protons and first rank in carbons that derive from quadrupolar order in protons. The decay rates of second rank double quantum proton coherences are measured. These terms exhibit fewer channels for cross-correlated relaxation compared to single quantum coherences. Our results indicate the potential application of the measurement of high order proton coherences to the analysis of dynamics in methyl-bearing side chains

  19. CdZnTe quantum dots study: energy and phase relaxation process

    International Nuclear Information System (INIS)

    Viale, Yannick

    2004-01-01

    We present a study of the electron-hole pair energy and phase relaxation processes in a CdTe/ZnTe heterostructure, in which quantum dots are embedded. CdZnTe quantum wells with a high Zinc concentration, separated by ZnTe barriers, contain islands with a high cadmium concentration. In photoluminescence excitation spectroscopy experiments, we evidence two types of electron hole pair relaxation processes. After being excited in the CdZnTe quantum well, the pairs relax their energy by emitting a cascade of longitudinal optical phonons until they are trapped in the quantum dots. Before their radiative recombination follows an intra-dot relaxation, which is attributed to a lattice polarization mechanism of the quantum dots. It is related to the coupling between the electronic and the vibrational states. Both relaxation mechanisms are reinforced by the strong polar character of the chemical bond in II-VI compounds. Time resolved measurements of transmission variations in a pump-probe configuration allowed us to investigate the population dynamics of the electron-hole pairs during the relaxation process. We observe a relaxation time of about 2 ps for the longitudinal phonon emission cascade in the quantum well before a saturation of the quantum dot transition. We also measured an intra-box relaxation time of 25 ps. The comparison of various cascades allows us to estimate the emission time of a longitudinal optical phonon in the quantum well to be about 100 fs. In four waves mixing experiments, we observe oscillations that we attribute to quantum beats between excitonic and bi-excitonic transitions. The dephasing times that we measure as function of the density of photons shows that excitons are strongly localized in the quantum dots. The excitonic dephasing time is much shorter than the radiative lifetime and is thus controlled by the intra-dot relaxation time. (author) [fr

  20. Statistics of excitations in the electron glass model

    Science.gov (United States)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  1. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  2. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  3. Practical considerations for investigation of protein conformational dynamics by {sup 15}N R{sub 1ρ} relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Walinda, Erik [Kyoto University, Department of Molecular and Cellular Physiology, Graduate School of Medicine (Japan); Morimoto, Daichi; Shirakawa, Masahiro; Sugase, Kenji, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2017-03-15

    It is becoming increasingly apparent that proteins are not static entities and that their function often critically depends on accurate sampling of multiple conformational states in aqueous solution. Accordingly, the development of methods to study conformational states in proteins beyond their ground-state structure (“excited states”) has crucial biophysical importance. Here we investigate experimental schemes for optimally probing chemical exchange processes in proteins on the micro- to millisecond timescale by {sup 15}N R{sub 1ρ} relaxation dispersion. The schemes use selective Hartmann–Hahn cross-polarization (CP) transfer for excitation, and derive peak integrals from 1D NMR spectra (Korzhnev et al. in J Am Chem Soc 127:713–721, 2005; Hansen et al. in J Am Chem Soc 131:3818–3819, 2009). Simulation and experiment collectively show that in such CP-based schemes care has to be taken to achieve accurate suppression of undesired off-resonance coherences, when using weak spin-lock fields. This then (i) ensures that relaxation dispersion profiles in the absence of chemical exchange are flat, and (ii) facilitates extraction of relaxation dispersion profiles in crowded regions of the spectrum. Further improvement in the quality of the experimental data is achieved by recording the free-induction decays in an interleaved manner and including a heating-compensation element. The reported considerations will particularly benefit the use of CP-based R{sub 1ρ} relaxation dispersion to analyze conformational exchange processes in larger proteins, where resonance line overlap becomes the main limiting factor.

  4. Relaxation of photoconductivity and persistent photoconductivity in TiO2 nanotubes

    International Nuclear Information System (INIS)

    Enachi, Mihail; Braniste, Tudor; Borodin, Eugeniu; Postolache, Vitalie

    2013-01-01

    Relaxation of photoconductivity is investigated in titania nanotubes produced by electrochemical treatment of Ti foils in organic electrolytes with subsequent thermal treatment at 400 degrees Celsius in air. The photoconductivity was excited both in air and in vacuum with the radiation from a xenon lamp passed through different filters to vary the excitation intensity and wavelength. It was found that the photoconductivity relaxation process consists of two components, i. e. a fast component a slow one. These two components behave differently in air and in the vacuum. The fast component is even faster under vacuum, while the slow component in vacuum is much slower, therefore leading to persistent photoconductivity. The possibility of removing the persistent photoconductivity state by exposure to air is investigated. (authors)

  5. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication.

    Science.gov (United States)

    Wang, Ming-Shan; Zhang, Rong-Wei; Su, Ling-Yan; Li, Yan; Peng, Min-Sheng; Liu, He-Qun; Zeng, Lin; Irwin, David M; Du, Jiu-Lin; Yao, Yong-Gang; Wu, Dong-Dong; Zhang, Ya-Ping

    2016-05-01

    As noted by Darwin, chickens have the greatest phenotypic diversity of all birds, but an interesting evolutionary difference between domestic chickens and their wild ancestor, the Red Junglefowl, is their comparatively weaker vision. Existing theories suggest that diminished visual prowess among domestic chickens reflect changes driven by the relaxation of functional constraints on vision, but the evidence identifying the underlying genetic mechanisms responsible for this change has not been definitively characterized. Here, a genome-wide analysis of the domestic chicken and Red Junglefowl genomes showed significant enrichment for positively selected genes involved in the development of vision. There were significant differences between domestic chickens and their wild ancestors regarding the level of mRNA expression for these genes in the retina. Numerous additional genes involved in the development of vision also showed significant differences in mRNA expression between domestic chickens and their wild ancestors, particularly for genes associated with phototransduction and photoreceptor development, such as RHO (rhodopsin), GUCA1A, PDE6B and NR2E3. Finally, we characterized the potential role of the VIT gene in vision, which experienced positive selection and downregulated expression in the retina of the village chicken. Overall, our results suggest that positive selection, rather than relaxation of purifying selection, contributed to the evolution of vision in domestic chickens. The progenitors of domestic chickens harboring weaker vision may have showed a reduced fear response and vigilance, making them easier to be unconsciously selected and/or domesticated.

  6. Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase

    International Nuclear Information System (INIS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoit

    2008-01-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states

  7. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population.

    Science.gov (United States)

    Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li

    2017-10-01

    Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.

  8. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  9. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph [Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse (France); Falvo, Cyril [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-08-07

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  10. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-14

    The excited state relaxation dynamics of the solvated electron in H{sub 2}O and D{sub 2}O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H{sub 2}O and 102 ± 8 fs in D{sub 2}O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  11. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  12. Selective excitation of the yellow and blue luminescence in n- and p-doped Gallium Nitride

    International Nuclear Information System (INIS)

    Colton, John S.

    2000-01-01

    GaN is an interesting material: technologically very useful, but still having many unexplained features. Two such features are the broad defect-related luminescence bands: the YL of n-type GaN and the BL of Mg-doped p-type GaN. We have employed selective excitation to investigate these bands. In the case of the YL, most of the previous evidence has supported a recombination model between distant donors and acceptors, most likely a transition involving a shallow donor to a deep acceptor. Our selective excitation experiments have resolved finer structures within the YL. Our results indicate that the YL in bulk samples is related to the YL in film samples. We suggest that selectively excited YL involves recombination at DAP complexes, rather than between spatially distant DAPs (however other recombination channels, including that of distant DAPs may become significant under other excitation conditions). Characteristics of the DAP complexes within our YL model include (a) an electron localization energy of around 60-70 meV, (b) a localized phonon energy of around 40 meV, and (c) excited states of the complex at 200 and 370 meV above the ground state. In the case of the BL, the deep defect responsible for the BL is unknown, and there may not even be a deep defect involved. Also in dispute is the role of potential fluctuations in the properties of the BL. Our results have been explain in a model whereby emission is from DAPs, and significant effects are produced by doping-related potential fluctuations and disorder. Characteristics of the our model for the BL include (a) an Urbach tail, having width E 0 = 33 meV, (b) a strong electron-LO phonon coupling occurring with a Frank-Condon shift of ∼ 180 meV between excitation and emission, (c) a mobility gap at 2.8 eV, separating highly mobile states and highly localized states, and (d) PL-like behavior for excitation energies larger than 2.8 eV, having a blue-shift with increasing excitation energy caused by the increased

  13. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  14. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    International Nuclear Information System (INIS)

    Saini, R.K.; Das, K.

    2013-01-01

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment

  15. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    In a previous study we have considered the catalytic synthesis of ammonia in the presence of vibrationally excited nitrogen. The distribution over vibrational states was assumed to be maintained during the reaction, and it was shown that the yield of ammonia increased considerably compared...... to that from conventional synthesis. In the present study the nitrogen molecules are only excited at the inlet of a plug flow reactor, and the importance of vibrational relaxation is investigated. We show that vibrational excitation can give an enhanced yield of ammonia also in the situation where vibrational...

  16. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  17. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  18. Process and device for the selective excitation and separation of isotopes

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1976-01-01

    Description is given of a method for selectively populating high-lying excited states of atoms or molecules. It comprises: excitation of atoms or molecules with a first circularly polarized pulsed radiation, the coherent frequency components of first pulsed radiation have frequencies corresponding to the energy difference between a lower energy level and the frequency split levels of an intermediate energy level, the duration of pulse being less than 2π/Δω, where Δω is the frequency difference of the split levels; applying a second circularly polarized pulsed radiation to atoms or molecules for a time subsequent to the termination of first radiation, the coherent frequency components of second pulsed radiation have frequencies corresponding to the energy difference between the split levels of intermediate energy level and an upper energy level, the duration of second pulse being less than 2π/Δω. The first and second radiation have the same handedness of circular polarization, whereby upper energy level has a greater population than prior to excitation by first and second radiation pulses [fr

  19. Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules

    International Nuclear Information System (INIS)

    Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.

    2006-01-01

    We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system

  20. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  1. Electronic relaxation dynamics of a metal atom deposited on argon cluster

    International Nuclear Information System (INIS)

    Awali, Slim

    2014-01-01

    This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Ar n were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KAr n (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KAr n clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a

  2. Surface-NMR measurements of the longitudinal relaxation time T1 in a homogeneous sandy aquifer in Skive, Denmark

    Science.gov (United States)

    Walbrecker, J.; Behroozmand, A.

    2011-12-01

    Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded

  3. Picosecond energy relaxation in La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Dorosinets, Vladimir; Richter, Pablo; Mohler, Ernst; Roskos, Hartmut G.; Jakob, Gerhard

    2005-01-01

    Investigating the reflectance response dynamics of La 0.67 Ca 0.33 MnO 3 thin films after excitation by femtosecond laser pulses, we identify for the first time a picosecond relaxation step which only exists below the Curie temperature T C . The relaxation time increases from zero at T C to several picoseconds at low temperatures. The data can be explained with the existence of a magnetization-related effective energy gap, and assuming relaxation between these states to be mediated by a Frohlich-type electron-lattice interaction

  4. Electronic relaxation processes in polyatomic molecules. Progress report, October 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Lim, E.C.

    1976-09-01

    Excitation energy dependence of radiationless decay rate under collision-free conditions was utilized as a probe of intramolecular vibrational relaxation in tetracene and pentacene. The results give evidence of vibrational relaxation which competes with electronic relaxation. The substitution dependence of T 1 (nπ*) → S 0 radiationless transition in monocyclic diazines and the temperature dependence of S 1 non-radiative decay rate in alcoholic solutions of polycyclic monoazines indicate that the vibronic interaction between the lowest energy nπ* and ππ* states leads to a rapid radiationless deactivation of the lower of the two electronic states. Finally, a photon-counting spectrofluorometer of very high sensitivity was constructed, and it was used to record T 2 → T 1 fluorescence in bromoanthracenes and S 2 → S 1 fluorescence in azulene. These spectra represent the first bona-fide, or the most convincing, observation of fluorescence between excited electronic states

  5. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  6. Excitation Chains at the Glass Transition

    International Nuclear Information System (INIS)

    Langer, J. S.

    2006-01-01

    The excitation-chain theory of the glass transition, proposed in an earlier publication, predicts diverging, super-Arrhenius relaxation times and, via a similarly diverging length scale, suggests a way of understanding the relations between dynamic and thermodynamic properties of glass-forming liquids. I argue here that critically large excitation chains play a role roughly analogous to that played by critical clusters in the droplet model of vapor condensation. Unlike a first-order condensation point in a vapor, the glass transition is not a conventional phase transformation, and may not be a thermodynamic transition at all

  7. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  8. Bond selective photochemistry in CH2BrI through electronic excitation at 210 nm

    International Nuclear Information System (INIS)

    Butler, L.J.; Hintsa, E.J.; Lee, Y.T.

    1986-01-01

    To explore the possibility of bond selective photochemistry in an excited electronic state, we have studied the photolysis of CH 2 BrI in a molecular beam at 210 nm. Following the direct local excitation of a repulsive transition on the C--Br bond at 210 nm, the fragments were detected by time-of-flight mass spectrometry. The dominant channel was found to be C--Br fission (60%) releasing an average of 15 kcal/mol into translation with the remainder reacting to form CH 2 +IBr and CH 2 +I+Br. There was no evidence for the primary fission of the C--I bond, making this the first clear example of the selective cleavage of a stronger bond in a molecule over the weakest one

  9. Laser enhanced radioactive decay and selective transmutation of nuclear waste

    International Nuclear Information System (INIS)

    Saloman, R.; Aarnio, P.; Ala-Heikkila, J.; Hakola, A.; Santala, M.

    2007-01-01

    We have investigated narrow-band coherent laser radiation - ranging from visible to X- and to gamma-ray wave length region - and their interactions both directly with photon-nuclear couplings and indirectly through the photon-electron and electron-nucleus interactions. In particular we discuss various means of selective excitation of nuclear resonance states by narrowband lasers. During the relaxation process the active nucleus may return to its initial ground-state or find another final state. In the latter case the nucleus is transmuted into a state which may have beneficial properties for instance concerning radioactivity. One ideal case would be the destruction of long-lived nuclear waste isotopes into faster decaying ones. The essential presumption is that the excitation process is selective and efficient as regards background processes due to unwanted excitation channels of the primary isotope and due to other surrounding nuclides. The paper consists of 1) a short review of generating short-wave length coherent light sources, 2) a survey of potential photon-induced nuclear states and their decay channels, and 3) a determination of the selectivity of the transmutation process

  10. On the exponential energy gap law in He--I2 vibrational relaxation

    International Nuclear Information System (INIS)

    Maricq, M.M.

    1990-01-01

    A comparison between coupled states, infinite order sudden, and classical path calculations is used to elucidate the origin of an exponential energy gap law recently observed for vibrational relaxation from highly excited states in the B 0 + u state of I 2 due to collisions with He. All three methods provide relaxation cross sections in good agreement with experiment. Anharmonic effects play an important role, with accurate results obtained with a Morse, but not harmonic, oscillator description of the I * 2 molecule. The nearly exact agreement between rotationally summed coupled states cross sections and the IOSA is consistent with the view that the I * 2 molecule does not rotate significantly during a collision. A closed form solution of the forced harmonic oscillator, valid for highly excited states, predicts a J 2 |Δv| distribution of vibrationally relaxed states at a given collision angle and impact parameter. The vibrationally close coupled-infinite order sudden (VCC-IOSA) results bear this out and show that the observed exponential scaling law arises from a superposition of such distributions over θ and b

  11. Dark excited states of carotenoids: Consensus and controversy

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Sundström, V.

    2009-01-01

    Roč. 477, 1-3 (2009), s. 1-11 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009

  12. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  13. Localized hole effects in inner-shell excitation

    International Nuclear Information System (INIS)

    Rescigno, T.N.; Orel, A.E.

    1983-01-01

    Ab initio calculations of valence shell ionization potentials have shown that orbital relaxation and correlation differences usually make contributions of comparable magnitude. In marked contrast to this observation is the situation for deep core ionization, where correlation differences (approx. 1 eV) play a relatively minor role compared to orbital relaxation (approx. 20 eV). Theoretical calculations have shown that this relaxation is most easily described if the 1s-vacancy created by a K-shell excitation is allowed to localize on one of the atomic centers. For molecules possessing a center of inversion, this means that the molecular orbitals that best describe the final state do not transform as any irreducible representation of the molecular point group. Recent experimental work by Shaw, King, Read and Cvejanovic and by Stefani and coworkers has prompted us to carry out further calculations on N 2 , as well as analogous investigations of 1s/sub N/ → π* excitation in NO and N 2 O. The generalized oscillator strengths display a striking similarity and point to the essential correctness of the localized hole picture for N 2 . The theoretical calculations are briefly described, followed by a summary of the results and comparison to experiment, followed by a short discussion

  14. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    Science.gov (United States)

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  15. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  16. Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor

    Science.gov (United States)

    Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.

    2017-12-01

    Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.

  17. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  18. Music preference and relaxation in Taiwanese elderly people.

    Science.gov (United States)

    Lai, Hui-Ling

    2004-01-01

    The purpose of this study was to identify individual musical preferences, investigate the relationship between an individual's musical preferences and demographic variables, and examine the effects of the selected music on relaxation. Fifty healthy subjects (mean age 65.7; SD = 5.2) from the community participated in the study. Musical preference interviews and relaxed responses to selected music were administered to the study participants individually in the investigator's office. Participants' heart rates, respiratory rates, and finger temperature were measured before they listened to the introductory tape and again after they listened to the selected music for 20 minutes. The participants were asked to judge how much they liked the 6 types of soothing music and were asked to rate it on a scale. The results indicated that Chinese orchestral music was the preferred choice, followed by harp, piano, synthesizer, orchestral, and finally slow jazz. There were no differences among types of music on relaxation, and no significant differences between musical preference and any demographic variables. The heart rates and respiratory rates of the participants were significantly lower (t = 21.24, P music. These findings suggest that soothing music selections have beneficial effects on relaxation in community-residing elderly people.

  19. Energy relaxation in IR laser excited Hg1-xCdxTe

    International Nuclear Information System (INIS)

    Storebo, A K; Brudevoll, T; Olsen, O; Norum, O C; Breivik, M

    2009-01-01

    IR laser excitation of Hg l-x Cd x Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x ∼ 0.2 and x ∼ 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 μm for x ∼ 0.2 and 3.8 - 4.8 μm for x ∼ 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm 2 . Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg l-x Cd x Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate lately. In this respect, information from

  20. Ultrafast dynamics of electronically excited molecules and clusters

    International Nuclear Information System (INIS)

    Lietard, Aude

    2014-01-01

    This PhD thesis investigated the ultrafast dynamics of photo-chromic molecules and argon clusters in the gas phase at the femtosecond timescale. Pump-probe experiments are performed in a set-up which associates a versatile pulsed molecular beam coupled to a photoelectron/photoion velocity map imager (VMI) and a time-of-flight mass spectrometer (TOF-MS). Theses pump-probe experiments provides the temporal evolution of the electronic distribution for each system of interest. Besides, a modelization has been performed in order to characterize the density and the velocity distribution in the pulsed beam. Regarding the photo-chromic di-thienyl-ethene molecules, parallel electronic relaxation pathways were observed. This contrasts with the observation of sequential relaxation processes in most molecules studied so far. In the present case, the initial wave packet splits in two parts. One part is driven to the ground state at the femtosecond time scale through a conical intersection, and the second part remains for ps in the excited state and experiences oscillations in a suspended well. This study has shed light into the intrinsic dynamics of the molecules under study and a general relaxation mechanism has been proposed, which applies to the whole family of di-thienyl-ethene molecules whatever the state of matter (gas phase or solution) in which they have been investigated. Concerning argon clusters excited at about 14 eV, two behaviors of different time scale have been observed at different time scales. The first one occurs in the first picoseconds of the dynamics. It corresponds to the electronic relaxation of an excitonic state at a rate of 1 eV.ps -1 . The second phenomenon corresponds to the localization of the exciton on the excimer Ar 2 *. This phenomenon is observed 4-5 ps after the excitation. In this study, we also observed the ejection of excited argon atoms, addressing the lifetime of the delocalized excitonic state. This work provide additional informations

  1. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  2. Selective Coherent Excitation of Charged Density Waves

    NARCIS (Netherlands)

    Tsvetkov, A.A.; Sagar, D.M.; Loosdrecht, P.H.M. van; Marel, D. van der

    2003-01-01

    Real time femtosecond pump-probe spectroscopy is used to study collective and single particle excitations in the charge density wave state of the quasi-1D metal, blue bronze. Along with the previously observed collective amplitudon excitation, the spectra show several additional coherent features.

  3. Spin-relaxation without coherence loss: Fine-structure splitting of localized excitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Zimmermann, R.; Runge, E.

    2000-01-01

    We investigate the polarization dynamics of the secondary emission from a disordered quantum well after resonant excitation. Using the speckle analysis technique we determine the coherence degree of the emission, and find that the polarization-relaxed emission has a coherence degree comparable to...

  4. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  5. Mechanism of resveratrol-induced relaxation of the guinea pig fundus.

    Science.gov (United States)

    Tsai, Ching-Chung; Tey, Shu-Leei; Lee, Ming-Che; Liu, Ching-Wen; Su, Yu-Tsun; Huang, Shih-Che

    2018-04-01

    Resveratrol is a polyphenolic compound that can be isolated from plants and also is a constituent of red wine. Resveratrol induces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Impaired gastric accommodation plays an important role in functional dyspepsia and fundic relaxation and is a therapeutic target of functional dyspepsia. Although drugs for fundic relaxation have been developed, these types of drugs are still rare. The purpose of this study was to investigate the relaxant effects of resveratrol in the guinea pig fundus. We studied the relaxant effects of resveratrol in the guinea pig fundus. In addition, we investigated the mechanism of resveratrol-induced relaxation on the guinea pig fundus by using tetraethylammonium (a non-selective potassium channel blocker), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channels), glibenclamide (an ATP-sensitive potassium channel blocker), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker) and G-15 (a G-protein coupled estrogen receptor antagonist). The results of this study showed that resveratrol has potent and dose-dependent relaxant effects on the guinea pig fundic muscle. In addition, the results showed that resveratrol-induced relaxation of the guinea pig fundus occurs through nitric oxide and ATP-sensitive potassium channels. This study provides the first evidence concerning the relaxant effects of resveratrol in the guinea pig fundic muscle strips. Furthermore, resveratrol may be a potential drug to relieve gastrointestinal dyspepsia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. Muon spin relaxation by electronic excitations moving in one dimension

    International Nuclear Information System (INIS)

    Jestaedt, Th.; Sivia, D.S.; Cox, S.F.J.

    1997-01-01

    The manner in which an electronic spin, executing a linear random walk, e.g. along a polymer chain, depolarizes a muon (or proton) probe spin, is investigated by computer simulation. The essential features of the model are the assumptions of a contact hyperfine interaction with limited range and of loss of coherence between successive encounters. The low dimensionality of the motion is reflected in the shape of the relaxation functions generated, which depart significantly from simple exponentials. Fits to various functional forms are examined for different combinations of hop rate and chain length, hyperfine constant and applied magnetic field

  7. Stretched Exponential relaxation in pure Se glass

    Science.gov (United States)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  8. Anomalous relaxation in binary mixtures: a dynamic facilitation picture

    International Nuclear Information System (INIS)

    Moreno, A J; Colmenero, J

    2007-01-01

    Recent computational investigations of polymeric and non-polymeric binary mixtures have reported anomalous relaxation features when both components exhibit very different mobilities. Anomalous relaxation is characterized by sublinear power-law behaviour for mean-squared displacements, logarithmic decay in dynamic correlators, and a striking concave-to-convex crossover in the latter by tuning the relevant control parameter, in analogy with predictions of the mode-coupling theory for state points close to higher-order transitions. We present Monte Carlo simulations on a coarse-grained model for relaxation in binary mixtures. The liquid structure is substituted by a three-dimensional array of cells. A spin variable is assigned to each cell, representing unexcited and excited local states of a mobility field. Changes in local mobility (spin flip) are permitted according to kinetic constraints determined by the mobilities of the neighbouring cells. We introduce two types of cell ('fast' and 'slow') with very different rates for spin flip. This coarse-grained model qualitatively reproduces the mentioned anomalous relaxation features observed for real binary mixtures

  9. Selective Excitation of Window and Buffer Layers in Chalcopyrite Devices and Modules

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, Stephen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burst, James M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beall, Carolyn L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bowers, Karen A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mansfield, Lorelle M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-02

    Window and buffer layers in chalcopyrite devices are well known to affect junctions, conduction, and photo-absorption properties of the device. Some of these layers, particularly 'buffers,' which are deposited directly on top of the absorber, exhibit metastable effects upon exposure to light. Thus, to understand device performance and/or metastability, it is sometimes desirable to selectively excite different layers in the device stack. Absorption characteristics of various window and buffer layers used in chalcopyrite devices are measured. These characteristics are compared with emission spectra of common and available light sources that might be used to optically excite such layers. Effects of the window and buffer absorption on device quantum efficiency and metastability are discussed. For the case of bath-deposited Zn(O,S) buffers, we conclude that this layer is not optically excited in research devices or modules. This provides a complimentary mechanism to the chemical differences that may cause long time constants (compared to devices with CdS buffers) associated with reaching a stable 'light-soaked' state.

  10. Influence of relaxation times on the Bloch-Siegert shift

    International Nuclear Information System (INIS)

    Cao Long Van

    1981-01-01

    A new method for calculations of Bloch-Siegert shifts in resonances between excited states with the inclusion of relaxation times is given. It will be shown that in this case the definition of the resonance given by I. Bialynicka-Birula is in agreement with the criterion defining the resonance used by D.A. Andrews and G. Newton. (author)

  11. Controllability of multi-partite quantum systems and selective excitation of quantum dots

    International Nuclear Information System (INIS)

    Schirmer, S G; Pullen, I C H; Solomon, A I

    2005-01-01

    We consider the degrees of controllability of multi-partite quantum systems, as well as necessary and sufficient criteria for each case. The results are applied to the problem of simultaneous control of an ensemble of quantum dots with a single laser pulse. Finally, we apply optimal control techniques to demonstrate selective excitation of individual dots for a simultaneously controllable ensemble of quantum dots

  12. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  13. Radiative and non-radiative relaxation of excitons in strain-compensated quantum dots

    International Nuclear Information System (INIS)

    Kujiraoka, M.; Ishi-Hayase, J.; Akahane, K.; Yamamoto, Y.; Ema, K.; Sasaki, M.

    2008-01-01

    We have investigated the population dynamics of excitons in strain-compensated InAs quantum dots (QDs) using a pump-probe technique under resonant excitation. Precise control of polarization directions of incident pulses enabled us to selectively estimate population lifetimes for two orthogonally polarized exciton ground states according to polarization selection rules. Measured decay times of the probe transmissions were highly dependent on the polarization directions of the exciton states. We found that the ratio of the decay times for the orthogonally polarized states is in quantitative agreement with the ratio of square of the transition dipole moments. This indicates that radiative recombination processes have a dominant effect on the population dynamics and that non-radiative and spin relaxations are negligible in our QDs. As a result, we can estimate the radiative lifetimes to be 1.0±0.1 and 1.7±0.2 ns for orthogonally polarized exciton ground states

  14. Investigation of the vacuum ultraviolet fluorescence of gaseous xenon under optical excitation in an extended wavelength region

    International Nuclear Information System (INIS)

    Brodmann, R.; Zimmerer, G.; Hamburg Univ.; Hahn, U.

    1976-02-01

    The fluorescence of Xe at a pressure of 10 Torr has been excited by monochromatic light in the wavelength region from 1,040 A to 1,500 A. Besides the well known first and second continuum additional emission bands appear at 1,192 A and 1,300 A. They are ascribed to an atomic transition 5d(3/2) 1 → 1 S 0 and a molecular transition O + sub(u)(6s'(1/2) + 1 S 0 ) → O + sub(g)( 1 S 0 + 1 S 0 ). The excitation spectra of the first and second continuum yield high fluorescence efficiency if higher Rydberg states are excited. Excitation of the first resonance line of Xe results in a low fluorescence intensity. Obviously the formation of highly excited molecules Xe** and intramolecular relaxation play an important role for the population of the vibrationally relaxed excited states (O + sub(u), 1sub(u)) of the Xe* 2 molecule. (orig.) [de

  15. Interrogating the vibrational relaxation of highly excited polyatomics with time-resolved diode laser spectroscopy: C6H6, C6D6, and C6F6+CO2

    International Nuclear Information System (INIS)

    Sedlacek, A.J.; Weston, R.E. Jr.; Flynn, G.W.

    1991-01-01

    The vibrational relaxation of highly excited ground state benzene, benzene d 6 , and hexafluorobenzene by CO 2 has been investigated with high resolution diode laser spectroscopy. The vibrationally hot polyatomics are formed by single photon 248 nm excitation to the S 1 state followed by rapid radiationless transitions. It has been found that in all cases less than 1% of the energy initially present in the polyatomics is deposited into the high frequency mode of CO 2 (ν 3 ). An investigation of the CO 2 (00 0 1) nascent rotational distribution under single collision conditions reveals that very little rotational excitation accompanies vibrational energy transfer to the ν 3 mode. The CO 2 (ν 3 ) rotational states can be described by temperatures, T rot , as follows: C 6 H 6 , T rot =360±30 K; C 6 D 6 , T rot =350±35 K and C 6 F 6 , T rot =340±23 K. An estimate of left-angle ΔE right-angle ν3 , the mean energy transferred to the CO 2 ν 3 mode per collision, suggests that as the availability of low frequency modes in the excited molecule increases, less energy is deposited into the high frequency mode of CO 2 . Finally, evidence is presented suggesting that even at moderate laser fluences, the two-photon ionization of benzene can lead to substantial CO 2 ν 3 excitation via electron+CO 2 inelastic collisions

  16. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  17. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    Science.gov (United States)

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  18. Molecular excitation dynamics and relaxation quantum theory and spectroscopy

    CERN Document Server

    Valkunas, Leonas; Mancal, Tomas

    2013-01-01

    Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects.Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate

  19. Nuclear Spin relaxation mediated by Fermi-edge electrons in n-type GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Kavokin, K. V.; Korenev, V. L.; Namozov, B. R.; Pak, P. E.; Kusrayev, Yu. G.

    2014-03-01

    A method based on the optical orientation technique was developed to measure the nuclear-spin lattice relaxation time T 1 in semiconductors. It was applied to bulk n-type GaAs, where T 1 was measured after switching off the optical excitation in magnetic fields from 400 to 1200 G at low (< 30 K) temperatures. The spin-lattice relaxation of nuclei in the studied sample with n D = 9 × 1016 cm-3 was found to be determined by hyperfine scattering of itinerant electrons (Korringa mechanism) which predicts invariability of T 1 with the change in magnetic field and linear dependence of the relaxation rate on temperature. This result extends the experimentally verified applicability of the Korringa relaxation law in degenerate semiconductors, previously studied in strong magnetic fields (several Tesla), to the moderate field range.

  20. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response funtion theory in systems far-from-equilibrium are reviewed in Section II. In Section III we present some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered. In last section we present a brief summary of the different aspects of the subject. (author) [pt

  1. Ultra-fast relaxation kinetics in semiconductors

    International Nuclear Information System (INIS)

    Luzzi, R.

    1983-01-01

    It is presented a brief description of relaxation processes in highly excited semiconductor plasmas (HESP). Comparison with experimental data obtained by means of ultra-fast laser light spectroscopy (UFLS) is made. Some aspects of response function theory in systems far-from-equilibrium are reviewed in Section II. In Section III some comments on the question of nonequilibrium thermodynamics relevant to the problem to be considered are presented. In last Section a brief summary of the different aspects of the subject is also presented. (Author) [pt

  2. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  3. Fragmentation of HCl following excitation at the chlorine K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L.; Arrasate, M.E. [Univ. of Nevada, Las Vegas, NV (United States); Cotter, J.P. [Univ. of Nevada, Reno, NV (United States)] [and others

    1997-04-01

    A space-focused time-of-flight (TOF) mass spectrometer was used to study the relaxation dynamics of HCl following excitation in the vicinity of the Cl-K edge ({approximately}2.8 keV) using x-rays from B.L. 9.3.1. At the lowest resonant excitation to a {sigma}{sup *} antibonding orbital (1{sigma} {r_arrow} 6{sigma}), a significant fraction of the excited molecules decay by emission of a neutral H atom. While neutral-H emission has been observed for shallow core levels (e.g., Cl 2p in HCl), the authors believe this to be the first observation of neutral-atom emission as a significant decay channel following resonant excitation of a deep core hole. The dissociation of neutral hydrogen atoms raises the issue of how effectively dissociation competes with Auger decay in the relaxation of these deep core levels (i.e., Cl 1s). Graphical evidence is presented to support the dissociation agrument. In addition, trends in fractional ion yields from Photo-Ion Photo-Ion COincidence (PIPICO) spectra suggest the presence of post-collision interaction (PCI). While, electron spectroscopy studies are required to confirm the observation of this effect, the authors believe this to be the first evidence of PCI moderated dissociation in molecules.

  4. Selective vibrational excitation of the ethylene--fluorine reaction in a nitrogen matrix. II

    International Nuclear Information System (INIS)

    Frei, H.

    1983-01-01

    The product branching between 1,2-difluoroethane and vinyl fluoride (plus HF) of the selective vibrationally stimulated reaction of molecular fluorine with C 2 H 4 has been studied in a nitrogen matrix at 12 K and found to be the same for five different vibrational transitions of C 2 H 4 between 1896 and 4209 cm -1 . The HF/DF branching ratio of the reaction of F 2 with CH 2 CD 2 , trans-CHDCHD, and cis-CHDCHD was determined to be 1.1, independent of precursor C 2 H 2 D 2 isomer and particular mode which excited the reaction. These results, as well as the analysis of the mixtures of partially deuterated vinyl fluoride molecules produced by each C 2 H 2 D 2 isomer indicate that the product branching occurs by αβ elimination of HF(DF) from a vibrationally excited, electronic ground state 1,2-difluoroethane intermediate. Selective vibrational excitation of fluorine reactions in isotopically mixed matrices t-CHDCHD/C 2 H 4 /F 2 /N 2 and CH 2 CD 2 /C 2 H 4 /F 2 /N 2 , and in matrices C 2 H 2 /C 2 H 4 /F 2 /N 2 revealed a high degree of isotopic and molecular selectivity. The extent to which intermolecular energy transfer occurred is qualitatively explained in terms of dipole coupled vibrational energy transfer. A study of the loss of absorbance of the C 2 H 4 x F 2 pairs in case of ν 9 as a function of both the laser irradiation frequency within the absorption profile, and the ethylene concentration showed that the C 2 H 4 x F 2 absorption is inhomogeneously broadened. Substantial depletion of reactive pairs which did not absorb laser light is interpreted in terms of Forster transfer

  5. Tuning excitation laser wavelength for secondary resonance in low-intensity phase-selective laser-induced breakdown spectroscopy for in-situ analytical measurement of nanoaerosols

    Science.gov (United States)

    Xiong, Gang; Li, Shuiqing; Tse, Stephen D.

    2018-02-01

    In recent years, a novel low-intensity phase-selective laser-induced breakdown spectroscopy (PS-LIBS) technique has been developed for unique elemental-composition identification of aerosolized nanoparticles, where only the solid-phase nanoparticles break down, forming nanoplasmas, without any surrounding gas-phase breakdown. Additional work has demonstrated that PS-LIBS emissions can be greatly enhanced with secondary resonant excitation by matching the excitation laser wavelength with an atomic transition line in the formed nanoplasma, thereby achieving low limits of detection. In this work, a tunable dye laser is employed to investigate the effects of excitation wavelength and irradiance on in-situ PS-LIBS measurements of TiO2 nanoaerosols. The enhancement factor by resonant excitation can be 220 times greater than that for non-resonant cases under similar conditions. Moreover, the emitted spectra are unique for the selected resonant transition lines for a given element, suggesting the potential to make precise phase-selective and analyte-selective measurements of nanoparticles in a multicomponent multiphase system. The enhancement factor by resonant excitation is highly sensitive to excitation laser wavelength, with narrow excitation spectral windows, i.e., 0.012 to 0.023 nm (FWHM, full width at half maximum) for Ti (I) neutral atomic lines, and 0.051 to 0.139 nm (FWHM) for Ti (II) single-ionized atomic lines. Boltzmann analysis of the emission intensities, temporal response of emissions, and emission dependence on excitation irradiance are investigated to understand aspects of the generated nanoplasmas such as temperature, local thermodynamic equilibrium (LTE), and excitation mechanism.

  6. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  7. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  8. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...

  9. Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals

    International Nuclear Information System (INIS)

    Giri, Ashutosh; Hopkins, Patrick E.

    2015-01-01

    Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states

  10. Confinement sensitivity in quantum dot singlet-triplet relaxation

    Science.gov (United States)

    Wesslén, C. J.; Lindroth, E.

    2017-11-01

    Spin-orbit mediated phonon relaxation in a two-dimensional quantum dot is investigated using different confining potentials. Elliptical harmonic oscillator and cylindrical well results are compared to each other in the case of a two-electron GaAs quantum dot subjected to a tilted magnetic field. The lowest energy set of two-body singlet and triplet states are calculated including spin-orbit and magnetic effects. These are used to calculate the phonon induced transition rate from the excited triplet to the ground state singlet for magnetic fields up to where the states cross. The roll of the cubic Dresselhaus effect, which is found to be much more important than previously assumed, and the positioning of ‘spin hot-spots’ are discussed and relaxation rates for a few different systems are exhibited.

  11. Singlet and triplet polaron relaxation in doubly charged self-assembled quantum dots

    International Nuclear Information System (INIS)

    Grange, T; Zibik, E A; Ferreira, R; Bastard, G; Carpenter, B A; Phillips, P J; Stehr, D; Winnerl, S; Helm, M; Steer, M J; Hopkinson, M; Cockburn, J W; Skolnick, M S; Wilson, L R

    2007-01-01

    Polaron relaxation in self-assembled InAs/GaAs quantum dot samples containing 2 electrons per dot is studied using far-infrared, time-resolved pump-probe measurements for transitions between the s-like ground and p-like first excited conduction band states. Spin-flip transitions between singlet and triplet states are observed experimentally in the decay of the absorption bleaching, which shows a clear biexponential dependence. The initial fast decay (∼30 ps) is associated with the singlet polaron decay, while the decay component with the longer time constant (∼5 ns) corresponds to the excited state triplet lifetime. The results are explained by considering the intrinsic Dresselhaus spin-orbit interaction, which induces spin-flip transitions by acoustic phonon emission or phonon anharmonicity. We have calculated the spin-flip decay times, and good agreement is obtained between the experiment and the simulation of the pump-probe signal. Our results demonstrate the importance of spin-mixing effects for intraband energy relaxation in InAs/GaAs quantum dots

  12. STRESS RELAXATION CHARACTERISTICS OF SELECTED COMMERCIALLY PRODUCED GLASSES

    Directory of Open Access Journals (Sweden)

    Chocholoušek J.

    2013-06-01

    Full Text Available This paper describes a quantitative method of stress relaxation measurement in prismatic glass samples during two different time-temperature regimes using the Sénarmont compensator. Four types of glass (Barium crystal glass, Eutal, Simax, and Container glass were subjected to observation in an assembled measuring device. Results will be used for parameterization of the Tool-Narayanaswamy-Mazurin model and consequently implemented in a finite element method code.

  13. Effect of iodine impurity on relaxation of photoexcited silver chloride

    International Nuclear Information System (INIS)

    Vostrikova, Yu. V.; Klyuev, V. G.

    2008-01-01

    The time and temperature dependences of relaxation of excited AgCl and AgCl:I crystals is studied by the method of photostimulated flash of luminescence. The presence of iodine impurity in silver chloride gives rise to hole recombination (luminescence) centers and hole traps in the band gap. It is shown that the main contribution to the decrease in the concentration of electrons localized at deep traps is made by the recombination of electrons with holes released thermally from shallow localization levels (iodine-related centers). Estimation of activation energy for the relaxation process showed that these energies for the AgCl and AgCl:I samples under study are the same within the experimental error and are equal to E rel1 = 0.01 ± 0.0005 eV for the initial stage of relaxation and E rel2 = 0.09 ± 0.005 eV for the final state. This fact indicates that the majority of hole traps involved in the relaxation process in AgCl are related to iodine impurity. In the course of thermal relaxation in AgCl, relocalization of nonequilibrium charge carriers from shallow levels to deep levels is observed. The depth of the corresponding trap is E arl = 0.174 ± 0.03 eV.

  14. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected

  15. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Lauri Mikonranta

    Full Text Available Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.

  16. Azemiopsin, a Selective Peptide Antagonist of Muscle Nicotinic Acetylcholine Receptor: Preclinical Evaluation as a Local Muscle Relaxant

    Directory of Open Access Journals (Sweden)

    Irina V. Shelukhina

    2018-01-01

    Full Text Available Azemiopsin (Az, a linear peptide from the Azemiops feae viper venom, contains no disulfide bonds, is a high-affinity and selective inhibitor of nicotinic acetylcholine receptor (nAChR of muscle type and may be considered as potentially applicable nondepolarizing muscle relaxant. In this study, we investigated its preclinical profile in regard to in vitro and in vivo efficacy, acute and chronic toxicity, pharmacokinetics, allergenic capacity, immunotoxicity and mutagenic potency. The peptide effectively inhibited (IC50 ~ 19 nM calcium response of muscle nAChR evoked by 30 μM (EC100 acetylcholine but was less potent (IC50 ~ 3 μM at α7 nAChR activated by 10 μM (EC50 acetylcholine and had a low affinity to α4β2 and α3-containing nAChR, as well as to GABAA or 5HT3 receptors. Its muscle relaxant effect was demonstrated at intramuscular injection to mice at doses of 30–300 µg/kg, 30 µg/kg being the initial effective dose and 90 µg/kg—the average effective dose. The maximal muscle relaxant effect of Az was achieved in 10 min after the administration and elimination half-life of Az in mice was calculated as 20–40 min. The longest period of Az action observed at a dose of 300 µg/kg was 55 min. The highest acute toxicity (LD50 510 μg/kg was observed at intravenous injection of Az, at intramuscular or intraperitoneal administration it was less toxic. The peptide showed practically no immunotoxic, allergenic or mutagenic capacity. Overall, the results demonstrate that Az has good drug-like properties for the application as local muscle relaxant and in its parameters, is not inferior to the relaxants currently used. However, some Az modification might be effective to extend its narrow therapeutic window, a typical characteristic and a weak point of all nondepolarizing myorelaxants.

  17. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO) 2I 2 complex

    Science.gov (United States)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkiö, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [ trans-I-Ru(dcbpy)(CO) 2I 2] (dcbpy= 4,4 '-dicarboxy-2,2 '-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [ cis-I-Ru(dcbpy)(CO)(Sol)I 2] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  18. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO)2I2 complex

    International Nuclear Information System (INIS)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-01-01

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO) 2 I 2 ] (dcbpy4,4 ' -dicarboxy-2,2 ' -bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I 2 ] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm -1 ) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes

  19. Vibrational relaxation of CDCl3 induced by infrared laser radiation

    International Nuclear Information System (INIS)

    Alvarez, R.F.; Azcarate, M.L.; Alonso, E.M.; Dangelo, R.J.; Quel, E.J.

    1990-01-01

    A CO 2 TEA laser was used to excite mode ν 4 of CDCl 3 (914cm- 1 ). The laser was constructed at the laboratory, tuned in line 10P(48), (10.91 μm). Infrared fluorescence technique was used to determine V-T/R relaxation times for CDCl 3 both pure and in Ar mixtures. (Author). 9 refs., 3 figs

  20. Real-Time Observation of Ultrafast Intraband Relaxation and Exciton Multiplication in PbS Quantum Dots

    KAUST Repository

    El-Ballouli, Ala’a O.

    2014-03-19

    We examine ultrafast intraconduction band relaxation and multiple-exciton generation (MEG) in PbS quantum dots (QDs) using transient absorption spectroscopy with 120 fs temporal resolution. The intraconduction band relaxation can be directly and excellently resolved spectrally and temporally by applying broadband pump-probe spectroscopy to excite and detect the wavelengths around the exciton absorption peak, which is located in the near-infrared region. The time-resolved data unambiguously demonstrate that the intraband relaxation time progressively increases as the pump-photon energy increases. Moreover, the relaxation time becomes much shorter as the size of the QDs decreases, indicating the crucial role of spatial confinement in the intraband relaxation process. Additionally, our results reveal the systematic scaling of the intraband relaxation time with both excess energy above the effective energy band gap and QD size. We also assess MEG in different sizes of the QDs. Under the condition of high-energy photon excitation, which is well above the MEG energy threshold, ultrafast bleach recovery due to the nonradiative Auger recombination of the multiple electron-hole pairs provides conclusive experimental evidence for the presence of MEG. For instance, we achieved quantum efficiencies of 159, 129 and 106% per single-absorbed photon at pump photoexcition of three times the band gap for QDs with band gaps of 880 nm (1.41 eV), 1000 nm (1.24 eV) and 1210 nm (1.0 eV), respectively. These findings demonstrate clearly that the efficiency of transferring excess photon energy to carrier multiplication is significantly increased in smaller QDs compared with larger ones. Finally, we discuss the Auger recombination dynamics of the multiple electron-hole pairs as a function of QD size.

  1. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  2. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  3. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  4. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  5. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    Science.gov (United States)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  6. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  7. Elementary excitations in single-chain magnets

    Science.gov (United States)

    Lutz, Philipp; Aguilà, David; Mondal, Abhishake; Pinkowicz, Dawid; Marx, Raphael; Neugebauer, Petr; Fâk, Björn; Ollivier, Jacques; Clérac, Rodolphe; van Slageren, Joris

    2017-09-01

    Single-chain magnets (SCMs) are one-dimensional coordination polymers or spin chains that display slow relaxation of the magnetization. Typically their static magnetic properties are described by the Heisenberg model, while the description of their dynamic magnetic properties is based on an Ising-like model. The types of excitations predicted by these models (collective vs localized) are quite different. Therefore we probed the nature of the elementary excitations for two SCMs abbreviated Mn2Ni and Mn2Fe , as well as a mononuclear derivative of the Mn2Fe chain, by means of high-frequency electron paramagnetic resonance spectroscopy (HFEPR) and inelastic neutron scattering (INS). We find that the HFEPR spectra of the chains are clearly distinct from those of the monomer. The momentum transfer dependence of the INS intensity did not reveal significant dispersion, indicating an essentially localized nature of the excitations. At the lowest temperatures these are modified by the occurrence of short-range correlations.

  8. Spin relaxation dynamics of holes in intrinsic GaAs quantum wells studied by transient circular dichromatic absorption spectroscopy at room temperature.

    Science.gov (United States)

    Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu

    2017-03-21

    Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.

  9. Spectroscopic properties of the S1 state of linear carotenoids after excess energy excitation

    Science.gov (United States)

    Kuznetsova, Valentyna; Southall, June; Cogdell, Richard J.; Fuciman, Marcel; Polívka, Tomáš

    2017-09-01

    Properties of the S1 state of neurosporene, spheroidene and lycopene were studied after excess energy excitation in the S2 state. Excitation of carotenoids into higher vibronic levels of the S2 state generates excess vibrational energy in the S1 state. The vibrationally hot S1 state relaxes faster when carotenoid is excited into the S2 state with excess energy, but the S1 lifetime remains constant regardless of which vibronic level of the S2 state is excited. The S∗ signal depends on excitation energy only for spheroidene, which is likely due to asymmetry of the molecule, facilitating conformations responsible for the S∗ signal.

  10. Study of excitation energy sharing in heavy ion collisions as a function of their inelasticity

    International Nuclear Information System (INIS)

    Lott, B.

    1986-01-01

    The excitation energy sharing between the fragments of a heavy ion collision has been studied for quasi-elastic and deep inelastic mechanisms. A 32 S beam of 232 MeV incident energy has been used to bombard several targets (S, 58 Ni, 93 Nb). The evaporated charged particle multiplicities have been measured by inclusive measurements of the projectile-like nuclei and exclusive measurements of the two final nuclei. Evaporation calculations using the Hauser-Feshbach formalism allows us to deduce from the multiplicity measurements the projectile-like excitation energy. These results are compatible with the assumption of an equal sharing of excitation energies for quasi-elastic reaction products, and with the assumption of a mass ratio sharing for fully relaxed reaction products. Limiting values for the relaxation time of this mode have been deduced and are in agreement with predictions from the model developed by Randrup [fr

  11. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  12. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  13. Laser selective cutting of biological tissues by impulsive heat deposition through ultrafast vibrational excitations.

    Science.gov (United States)

    Franjic, Kresimir; Cowan, Michael L; Kraemer, Darren; Miller, R J Dwayne

    2009-12-07

    Mechanical and thermodynamic responses of biomaterials after impulsive heat deposition through vibrational excitations (IHDVE) are investigated and discussed. Specifically, we demonstrate highly efficient ablation of healthy tooth enamel using 55 ps infrared laser pulses tuned to the vibrational transition of interstitial water and hydroxyapatite around 2.95 microm. The peak intensity at 13 GW/cm(2) was well below the plasma generation threshold and the applied fluence 0.75 J/cm(2) was significantly smaller than the typical ablation thresholds observed with nanosecond and microsecond pulses from Er:YAG lasers operating at the same wavelength. The ablation was performed without adding any superficial water layer at the enamel surface. The total energy deposited per ablated volume was several times smaller than previously reported for non-resonant ultrafast plasma driven ablation with similar pulse durations. No micro-cracking of the ablated surface was observed with a scanning electron microscope. The highly efficient ablation is attributed to an enhanced photomechanical effect due to ultrafast vibrational relaxation into heat and the scattering of powerful ultrafast acoustic transients with random phases off the mesoscopic heterogeneous tissue structures.

  14. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu, E-mail: suiyu@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Song, Bo, E-mail: songbo@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2016-07-11

    In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.

  15. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  16. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  17. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  18. Effects of ligand substitution on the excited state dynamics of the Ru(dcbpy)(CO){sub 2}I{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehtovuori, Viivi; Kallioinen, Jani; Myllyperkioe, Pasi; Haukka, Matti; Korppi-Tommola, Jouko

    2003-11-15

    Spectroscopic evidence suggest [PCCP 3 (2001) 1992] that illumination with visible light of the [trans-I-Ru(dcbpy)(CO){sub 2}I{sub 2}] (dcbpy4,4{sup '}-dicarboxy-2,2{sup '}-bipyridine) complex in solution induces dissociation of a CO group followed by reorganization of the ligands and attachment of a solvent molecule. In the present study, we report results on excited state dynamics of this ruthenium complex and its photoproduct. Femtosecond transient absorption measurements reveal dominance of excited state absorption of the reactant and the photoproduct [cis-I-Ru(dcbpy)(CO)(Sol)I{sub 2}] (Sol=ethanol or acetonitrile) in the visible spectral region. The time-resolved measurements for the reactant at 77 K indicate interligand charge transfer from mixed Ru-I states to empty dcbpy orbitals. For the photoproduct, no such transfer was observed. In both complexes recovery from the lowest energy excited triplet state to the ground state occurs via two channels: radiative relaxation and a parallel barrier controlled non-radiative relaxation. The barrier is much higher in the reactant (about 850 cm{sup -1}) than in the product. A combination of DFT and ZINDO/CI calculations was used to estimate excited singlet and triplet spectra of the reactant and the product molecules. Calculated singlet-triplet difference spectra qualitatively match the observed transient spectra 500 fs after excitation supporting the idea that observed excited state relaxation occurs from the triplet states in both complexes.

  19. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  20. Non-adiabatic Excited State Molecule Dynamics Modeling of Photochemistry and Photophysics of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.

  1. Competition between electronic energy transfer and relaxation in Xe doped Ar and Ne matrices studied by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schwentner, N.; Koch, E.E.

    1976-01-01

    Thin films of solid Ar and Ne doped with 1% Xe were excited with photons in the energy range from 10 eV to 20 eV in order to measure the energy distribution of the emitted electrons. Binding energies of th host and guest levels are deduced. When host excitons are excited, strong emission of electrons is observed indicating an efficient transfer of the host exciton energy to the Xe guest atoms. The energy of the free excitons is transferred, as can be deduced from the kinetic energy of the photoemitted electrons, rather than the energy of the bound (self-trapped) excitons which are observed in luminescence experiments. Furthermore, there is a striking difference between the Ar and the Ne matrix: In the Ne matrix a fast relaxation from the n = 2 to the n = 1 state was observed and only the energy of the n = 1 exciton is transferred even when higher excitons are excited, in contrast to Ar, where the transferred energy is higher for excitation of the n = 2 excitons than for n = 1. From these observations, time hierarchies for the competition between electronic energy transfer and relaxation are deduced. (orig.) [de

  2. Broadband non-selective excitation of plutonium isotopes for isotope ratio measurements in resonance ionization mass spectrometry: a theoretical study.

    Science.gov (United States)

    Sankari, M

    2012-10-15

    Making isotope ratio measurements with minimum isotope bias has always been a challenging task to mass spectrometrists, especially for the specific case of plutonium, owing to the strategic importance of the element. In order to use resonance ionization mass spectrometry (RIMS) as a tool for isotope ratio measurements, optimization of the various laser parameters and other atomic and system parameters is critical to minimize isotopic biases. Broadband simultaneous non-selective excitation of the isotopes of plutonium in the triple resonance excitation scheme with λ(1) = 420.77 nm, λ(2) = 847.28 nm, and λ(3) = 767.53 nm based on density matrix formalism has been theoretically computed for the determination of isotope ratios. The effects of the various laser parameters and other factors such as the atomization temperature and the dimensions of the atomic beam on the estimation of isotope ratios were studied. The effects of Doppler broadening, and time-dependent excitation parameters such as Rabi frequencies, ionization rate and the effect of non-Lorenztian lineshape have all been incorporated. The average laser powers and bandwidths for the three-excitation steps were evaluated for non-selective excitation. The laser intensity required to saturate the three-excitation steps were studied. The two-dimensional lineshape contour and its features were investigated, while the reversal of peak asymmetry of two-step and two-photon excitation peaks under these conditions is discussed. Optimized powers for the non-selective ionization of the three transitions were calculated as 545 mW, 150 mW and 545 mW and the laser bandwidth for all the three steps was ~20 GHz. The isotopic bias between the resonant and off-resonant isotope under the optimized conditions was no more than 9%, which is better than an earlier reported value. These optimized laser power and bandwidth conditions are better than in the earlier experimental work since these comprehensive calculations yield

  3. Site selective excitation spectroscopy of CsCdBr sub 3 :U sup 3 sup +

    CERN Document Server

    Yin Min

    2002-01-01

    The CsCdBr sub 3 :U sup 3 sup + crystal was grown by the Bridgman technique from the starting materials CsBr, CdBr sub 2 and UBr sub 4. X-ray check showed that the sample crystallized in the CsNiBr sub 3 structure. Under selective excitation at low temperature, the emission spectra and the fluorescence decay curve were measured and discussed

  4. Band-selective excited ultrahigh resolution PSYCHE-TOCSY: fast screening of organic molecules and complex mixtures.

    Science.gov (United States)

    Kakita, Veera Mohana Rao; Vemulapalli, Sahithya Phani Babu; Bharatam, Jagadeesh

    2016-04-01

    Precise assignments of (1) H atomic sites and establishment of their through-bond COSY or TOCSY connectivity are crucial for molecular structural characterization by using (1) H NMR spectroscopy. However, this exercise is often hampered by signal overlap, primarily because of (1) H-(1) H scalar coupling multiplets, even at typical high magnetic fields. The recent developments in homodecoupling strategies for effectively suppressing the coupling multiplets into nice singlets (pure-shift), particularly, Morris's advanced broadband pure-shift yielded by chirp excitation (PSYCHE) decoupling and ultrahigh resolution PSYCHE-TOCSY schemes, have shown new possibilities for unambiguous structural elucidation of complex organic molecules. The superior broadband PSYCHE-TOCSY exhibits enhanced performance over the earlier TOCSY methods, which however warrants prolonged experimental times due to the requirement of large number of dwell increments along the indirect dimension. Herein, we present fast and band-selective analog of the broadband PSYCHE-TOCSY, which is useful for analyzing complex organic molecules that exhibit characteristic yet crowded spectral regions. The simple pulse scheme relies on band-selective excitation (BSE) followed by PSYCHE homodecoupling in the indirect dimension. The BSE-PSYCHE-TOCSY has been exemplified for Estradiol and a complex carbohydrate mixture comprised of six constituents of closely comparable molecular weights. The experimental times are greatly reduced viz., ~20 fold for Estradiol and ~10 fold for carbohydrate mixture, with respect to the broadband PSYCHE-TOCSY. Furthermore, unlike the earlier homonuclear band-selective decoupling, the BSE-PSYCHE-decoupling provides fully decoupled pure-shift spectra for all the individual chemical sites within the excited band. The BSE-PSYCHE-TOCSY is expected to have significant potential for quick screening of complex organic molecules and mixtures at ultrahigh resolution. Copyright © 2015 John Wiley

  5. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  6. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-01-01

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M r < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters

  7. Investigation of oxygen vibrational relaxation by quasi-classical trajectory method

    International Nuclear Information System (INIS)

    Andrienko, Daniil; Boyd, Iain D.

    2015-01-01

    Highlights: • Importance of attraction for the O 2 –O energy exchange in hypersonic flows. • O 2 –O vibrational relaxation time cannot be described by the Millikan–White equation. • Weak dependence of exothermic transition rates on translational temperature. • Multiquantum jumps in molecular oxygen occur mostly via the exchange reaction. - Abstract: O 2 –O collisions are studied by the quasi-classical trajectory method. A full set of cross sections for the vibrational ladder is obtained utilizing an accurate O 3 potential energy surface. Vibrational relaxation is investigated at temperatures between 1000 and 10,000 K, that are relevant to hypersonic flows. The relaxation time is derived based on the removal rate for the first excited vibrational level. A significant deviation from the formula by Millikan and White is observed for temperatures beyond those reported in experimental work. Relaxation becomes less efficient at high temperatures, suggesting that the efficiency of the energy randomization is strongly to the attractive component of the O 3 potential energy surface. These results are explained by analyzing the microscopic parameter of collisions that reflects the number of exchanges in the shortest interatomic distance. The rates of exothermic transitions are found to be nearly independent of the translational temperature in the range of interest.

  8. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  9. Nonbehavioral Selection for Pawns, Mutants of PARAMECIUM AURELIA with Decreased Excitability

    Science.gov (United States)

    Schein, Stanley J.

    1976-01-01

    The reversal response in Paramecium aurelia is mediated by calcium which carries the inward current during excitation. Electrophysiological studies indicate that strontium and barium can also carry the inward current. Exposure to high concentrations of barium rapidly paralyzes and later kills wild-type paramecia. Following mutagenesis with nitrosoguanidine, seven mutants which continued to swim in the `high-barium' solution were selected. All of the mutants show decreased reversal behavior, with phenotypes ranging from extremely non-reversing (`extreme' pawns) to nearly wild-type reversal behavior (`partial' pawns). The mutations fall into three complementation groups, identical to the pwA, pwB, and pwC genes of Kung et al. (1975). All of the pwA and pwB mutants withstand longer exposure to barium, the pwB mutants surviving longer than the pwA mutants. Among mutants of each gene, survival is correlated with loss of reversal behavior. Double mutants (A–B, A–C, B–C), identified in the exautogamous progeny of crosses between `partial' mutants, exhibited a more extreme non-reversing phenotype than either of their single-mutant (`partial' pawn) parents.———Inability to reverse could be expected from an alteration in the calcium-activated reversal mechanism or in excitation. A normal calcium-activated structure was demonstrated in all pawns by chlorpromazine treatment. In a separate report (Schein, Bennett and Katz 1976) the results of electrophysiological investigations directly demonstrate decreased excitability in all of the mutants, a decrease due to an altered calcium activation. The studies of the genetics, the survival in barium and the electro-physiology of the pawns demonstrate that the pwA and pwB genes have different effects on calcium activation. PMID:1001878

  10. Phased laser diode array permits selective excitation of ultrasonic guided waves in coated bone-mimicking tubes

    Science.gov (United States)

    Moilanen, Petro; Salmi, Ari; Kilappa, Vantte; Zhao, Zuomin; Timonen, Jussi; Hæggström, Edward

    2017-10-01

    This paper validates simulation predictions, which state that specific modes could be enhanced in quantitative ultrasonic bone testing. Tunable selection of ultrasonic guided wave excitation is useful in non-destructive testing since it permits the mediation of energy into diagnostically useful modes while reducing the energy mediated into disturbing contributions. For instance, it is often challenging to distinguish and extract the useful modes from ultrasound signals measured in bone covered by a soft tissue. We show that a laser diode array can selectively excite ultrasound in bone mimicking phantoms. A fiber-coupled diode array (4 elements) illuminated two solid tubes (2-3 mm wall thickness) embraced by an opaque soft-tissue mimicking elastomer coating (5 mm thick). A predetermined time delay matching the selected mode and frequency was employed between the outputs of the elements. The generated ultrasound was detected by a 215 kHz piezo receiver. Our results suggest that this array reduces the disturbances caused by the elastomer cover and so pave way to permit non-contacting in vivo guided wave ultrasound assessment of human bones. The implementation is small, inexpensive, and robust in comparison with the conventional pulsed lasers.

  11. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity

    Science.gov (United States)

    Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-05-01

    Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.

  12. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions

    DEFF Research Database (Denmark)

    Donolato, M.; Sogne, E.; Dalslet, Bjarke Thomas

    2011-01-01

    We demonstrate the detection of the Brownian relaxation frequency of 250 nm diameter magnetic beads using a lab-on-chip platform based on current lines for exciting the beads with alternating magnetic fields and highly sensitive magnetic tunnel junction (MTJ) sensors with a superparamagnetic free...

  13. Intraminiband Relaxation In Doped GaAs/AlGaAs Superlattices Studied By Two-Color Infrared Pump-Probe Experiments

    International Nuclear Information System (INIS)

    Wagner, M.; Stehr, D.; Schneider, H.; Helm, M.; Andrews, A. M.; Roch, T.; Strasser, G.

    2010-01-01

    In this work we report on two-color pump-probe measurements to investigate the intraminiband dynamics of doped GaAs/AlGaAs superlattices with different miniband widths smaller or larger than the optical phonon energy. For a miniband with a width larger than the optical phonon energy we found a fast relaxation, independent of the excitation intensity. For narrow minibands this relaxation takes longer and shows a strong temperature and intensity dependence.

  14. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  15. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  16. Theoretical and experimental study of the relaxation of excited states of the DCM laser dye. Intra-molecular electron transfer and photo-isomerization. Solvent effects

    International Nuclear Information System (INIS)

    Marguet, Sylvie

    1992-01-01

    This research thesis reports the study of a styrenic laser dye, the 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino) styryl]-4H-pyrane or DCM for the characterization of the first electronic states and of the influence of the solvent on efficiencies of different relaxation processes of the first excited state S1 of the DCM. Due to the presence of a combination of a donor group and acceptor group, this compound has interesting properties of intra-molecular charge transfer and of photo-isomerization which highly depend on solvent polarity. Two approaches have been adopted to study these complementary processes: an experimental approach (determination of rate constants of the different deactivation ways of the S1 state by measuring fluorescence quantum efficiencies, photo-isomerization quantum efficiencies, and fluorescence lifetimes of DCM in about twenty solvent of increasing polarity), and a computational approach (a CS-INDO-MRI type quantum chemistry calculation to obtain potential energy curves, charge distributions, and dipolar moments of DCM first electronic states) [fr

  17. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  18. Theoretical study of singlet oxygen molecule generation via an exciplex with valence-excited thiophene.

    Science.gov (United States)

    Sumita, Masato; Morihashi, Kenji

    2015-02-05

    Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.

  19. Excited States and Photodebromination of Selected Polybrominated Diphenyl Ethers: Computational and Quantitative Structure—Property Relationship Studies

    Directory of Open Access Journals (Sweden)

    Jin Luo

    2015-01-01

    Full Text Available This paper presents a density functional theory (DFT/time-dependent DFT (TD-DFT study on the lowest lying singlet and triplet excited states of 20 selected polybrominateddiphenyl ether (PBDE congeners, with the solvation effect included in the calculations using the polarized continuum model (PCM. The results obtained showed that for most of the brominated diphenyl ether (BDE congeners, the lowest singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* excitation. In triplet excited states, structure of the BDE congeners differed notably from that of the BDE ground states with one of the specific C–Br bonds bending off the aromatic plane. In addition, the partial least squares regression (PLSR, principal component analysis-multiple linear regression analysis (PCA-MLR, and back propagation artificial neural network (BP-ANN approaches were employed for a quantitative structure-property relationship (QSPR study. Based on the previously reported kinetic data for the debromination by ultraviolet (UV and sunlight, obtained QSPR models exhibited a reasonable evaluation of the photodebromination reactivity even when the BDE congeners had same degree of bromination, albeit different patterns of bromination.

  20. Multireference theoretical investigation on selectivity of the bond fissions in photodissociation of acetyl cyanide

    Science.gov (United States)

    Xiao, Hong-Yan; Liu, Ya-Jun; Fang, Wei-Hai

    2007-12-01

    The selectivity of the C -CH3 and C-CN bond fissions upon excitation of acetyl cyanide at 193nm has been investigated at the theoretical level of multistate complete active space self-consistent field second order perturbation. The calculated results indicated that the initially excited S3 state relaxes to S2 via ultrafast internal conversion. The S2 state could dissociate via two pathways. One, adiabatically dissociates to CH3CO(X˜)+CN(Ã). The other one internally converts to S1 before S1 intersystem crossing to T1. The T1 state subsequently dissociates to two groups of products: CH3(X˜)+OCCN(X˜) and CH3CO(X˜)+CN(X˜). The experimentally observed preference branching of CN elimination over CH3 one and bond selectivity are the results of the competition between the adiabatic and nonadiabatic dynamics of the S2 state.

  1. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  2. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  3. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  4. Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)

    2009-07-01

    Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.

  5. Magnetic-relaxation method of analysis of inorganic substances

    International Nuclear Information System (INIS)

    Popel', A.A.

    1978-01-01

    The magnetic-relaxation method is considered of the quantitative analysis of inorganic substances based on time dependence of magnetic nuclei relaxation on the quantity of paramagnetic centres in a solution. The characteristic is given of some methods of measuring nuclear magnetic relaxation times: method of weak oscillation generator and pulse methods. The effect of temperature, general solution viscosity, diamagnetic salt concentration, medium acidity on nuclear relaxation velocity is described. The determination sensitivity is estimated and the means of its increase definable concentration intervals and method selectivity are considered. The method application when studying complexing in the solution is described. A particular attention is given to the investigation of heteroligand homocentre, heterocentre and protonated complexes as well as to the problems of particle exchange of the first coordination sphere with particles from the mass of solution. The equations for equilibrium constant calculation in different systems are given. Possibilities of determining diamagnetic ions by the magnetic-relaxation method using paramagnetic indicators are confirmed by the quantitative analysis of indium, gallium, thorium and scandium in their salt solutions

  6. Supersonic Localized Excitations Mediate Microscopic Dynamic Failure

    Science.gov (United States)

    Ghaffari, H. O.; Griffith, W. A.; Pec, M.

    2017-12-01

    A moving rupture front activates a fault patch by increasing stress above a threshold strength level. Subsequent failure yields fast slip which releases stored energy in the rock. A fraction of the released energy is radiated as seismic waves carrying information about the earthquake source. While this simplified model is widely accepted, the detailed evolution from the onset of dynamic failure to eventual re-equilibration is still poorly understood. To study dynamic failure of brittle solids we indented thin sheets of single mineral crystals and recorded the emitted ultrasound signals (high frequency analogues to seismic waves) using an array of 8 to 16 ultrasound probes. The simple geometry of the experiments allows us to unravel details of dynamic stress history of the laboratory earthquake sources. A universal pattern of failure is observed. First, stress increases over a short time period (1 - 2 µs), followed by rapid weakening (≈ 15 µs). Rapid weakening is followed by two distinct relaxation phases: a temporary quasi-steady state phase (10 µs) followed by a long-term relaxation phase (> 50 µs). We demonstrate that the dynamic stress history during failure is governed by formation and interaction of local non-dispersive excitations, or solitons. The formation and annihilation of solitons mediates the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i.e. shortening of solitons' characteristic length. Interestingly, a soliton can propagate as fast as 37 km/s, much faster than the p-wave velocity, implying that a fraction of the energy transmits through soliton excitations. The quasi-steady state phase delays the long-term ageing of the damaged crystal, implying a potentially weaker material. Our results open new horizons for understanding the complexity of earthquake sources, and, more generally, non-equilibrium relaxation of many body systems.

  7. Optical properties of ion-implanted InP and GaAs: Selectivity-excited photoluminescence spectra

    International Nuclear Information System (INIS)

    Makita, Yunosuke; Yamada, Akimasa; Kimura, Shinji; Niki, Shigeru; Yoshinaga, Hiroshi; Matsumori, Tokue; Iida, Tsutomu; Uekusa, Ichiro

    1993-01-01

    Implantation of Mg+ ions was carried out into high purity InP grown by liquid encapsulated Czochralski method. Mg+ ion-implanted InP presented the formation of plural novel emissions with increasing Mg concentration, [Mg] in the low temperature photoluminescence spectra. Selectively-excited photoluminescence (SPL) measurements were made to examine the features of two-hole replicas pertinent to the emissions of excitons bound to neutral Mg and residual Zn acceptors. Systematic variation of the emission intensities from the two types of two-hole replicas was found to be utilized for the evaluation of ion-implanted materials. The significant discrepancy of emission spectra between PL and SPL was attributed to the difference of the depth examined by using the excitation light with high and low absorption coefficient. The results revealed that the diffusion of ion-implanted Mg is extremely enhanced when [Mg] exceeds 1x10 17 cm -3

  8. Influence of different environments on the excited-state proton transfer and dual fluorescence of fisetin

    Science.gov (United States)

    Guharay, Jayanti; Dennison, S. Moses; Sengupta, Pradeep K.

    1999-05-01

    The influence of different protic and aprotic solvent environments on the excited-state intramolecular proton transfer (ESIPT) leading to a dual fluorescence behaviour of a biologically important, naturally occurring, polyhydroxyflavone, fisetin (3,3',4',7-tetrahydroxyflavone), has been investigated. The normal fluorescence band, in particular, is extremely sensitive to solvent polarity with νmax shifting from 24 510 cm -1 in dioxane ( ET(30)=36.0) to 20 790 cm -1 in methanol ( ET(30)=55.5). This is rationalized in terms of solvent dipolar relaxation process, which also accounts for the red edge excitation shifts (REES) observed in viscous environments such as glycerol at low temperatures. Significant solvent dependence of the tautomer fluorescence properties ( νmax, yield and decay kinetics) reveals the influence of external hydrogen bonding perturbation on the internal hydrogen bond of the molecule. These excited-state relaxation phenomena and their relevant parameters have been used to probe the microenvironment of fisetin in a membrane mimetic system, namely AOT reverse micelles in n-heptane at different water/surfactant molar ratio ( w0).

  9. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  10. Energy relaxation in IR laser excited Hg{sub 1-x}Cd{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    Storebo, A K; Brudevoll, T [FFI - Norwegian Defence Research Establishment, PO Box 25, NO-2027 Kjeller, Norway NTNU (Norwegian University of Science and Technology) (Norway); Olsen, O; Norum, O C [Department of Physics and Department of Electronics and Telecommunications NO-7491 Trondheim (Norway); Breivik, M, E-mail: asta-katrine.storebo@ffi.n [Department of Electronics and Telecommunications NO-7491 Trondheim (Norway)

    2009-11-15

    IR laser excitation of Hg{sub l-x}Cd{sub x}Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x {approx} 0.2 and x {approx} 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 {mu}m for x {approx} 0.2 and 3.8 - 4.8 {mu}m for x {approx} 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm{sup 2}. Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg{sub l-x}Cd{sub x}Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate

  11. Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2013-01-01

    Single crystalline films of Bi-doped Y 2 SiO 5 are studied at 4.2–350 K by the time-resolved luminescence methods under excitation in the 3.8–6.2 eV energy range. Ultraviolet luminescence of Y 2 SiO 5 :Bi (≈3.6 eV) is shown to arise from the radiative decay of the metastable and radiative minima of the triplet relaxed excited state (RES) of Bi 3+ centers which are related to the 3 P 0 and 3 P 1 levels of a free Bi 3+ ion, respectively. The lowest-energy excitation band of this emission, located at ≈4.5 eV, is assigned to the 1 S 0 → 3 P 1 transitions of a free Bi 3+ ion. The phenomenological model is proposed to describe the excited-state dynamics of Bi 3+ centers in Y 2 SiO 5 :Bi, and parameters of the triplet RES are determined. -- Highlights: •Luminescence of Y 2 SiO 5 :Bi is investigated for the first time. •Ultraviolet emission arises from Bi 3+ ions located in Y lattice sites. •The triplet relaxed excited states parameters of Bi 3+ centers are determined

  12. Distinct site- and state-selective dissociation of methyl-trifluoroacetate observed in core-electron excitation at the oxygen K-edge region

    Science.gov (United States)

    Yamanaka, T.; Tabayashi, K.; Maruyama, T.; Harada, C.; Yoshida, H.

    2009-11-01

    Distinct site- and state-selective dissociation following the O1s core-excitation has been found in the gaseous molecules of methyl trifluoroacetate (MTFA). The site- and state-selective dissociation was examined by measuring the branching ratios of dominant CH3+ and CHO+ fragments. The branching ratios from MTFA showed that site-selective dissociation takes place via the excitation from the different atomic sites to the same π*CO resonance state, (O1sCO-1π*CO) and (O1sOMe-1π*CO). A pronounced O1sOMe site-selectivity was identified by a significant increment of CHO+ formation at the (O1sOMe→π*CO) band. The site-selectivity was also justified by an equivalent core approximation using the density functional theory calculation. State-selective dissociation was identified among the (O1sOMe-1π*CO), (O1sOMe-1σ*O-Me) and (O1sOMe-1σ*C-OMe) transitions originated from the same OMe core. State-selective production of CH3+ could be found at the (O1sOMe→σ*O-Me) band, whereas state-selective formation of CHO+ was observed at the (O1sOMe→π*CO) and (O1sOMe→σ*C-OMe) bands.

  13. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 Al. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (orig.)

  14. In-reactor stress relaxation of selected metals and alloys at low temperatures

    International Nuclear Information System (INIS)

    Causey, A.R.; Carpenter, G.J.C.; MacEwen, S.R.

    1980-01-01

    Stress relaxation of bent beam specimens under fast neutron irradiation at 340 and 570 K has been studied for a range of materials, as follows: several stainless steels, a maraged steel, AISI-4140, Ni, Inconel X-750, Ti, Zircaloy-2, Zr-2.5% Nb and Zr 3 A1. All specimens were in the annealed or solution-treated condition. Where comparisons were possible, the creep coefficients derived from the stress relaxation tests were found to be consistent with other studies of irradiation-induced creep. The steels showed the lowest rates of stress relaxation; the largest rates were observed with Zr-Nb, Ti and Ni. For most materials, the creep coefficient at 340 K was equal to or greater than that at 570 K. Such weak temperature dependence is not easily reconciled with existing models of irradiation creep based on dislocation climb, such as SIPA or climb-induced glide. Rate theory calculations indicate that because the vacancy mobility becomes very low at the lower temperature, recombination should dominate point defect annealing, resulting in a very low creep rate compared to that at the higher temperature. It is shown that the weak temperature dependence observed experimentally cannot be accounted for by the inclusion of more mobile divacancies in the calculation. (author)

  15. A theoretical study of the relaxation of a phenyl group chemisorbed to an RDX freestanding thin film

    Energy Technology Data Exchange (ETDEWEB)

    Pereverzev, Andrey, E-mail: pereverzeva@missouri.edu; Sewell, Thomas D., E-mail: sewellt@missouri.edu [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211-7600 (United States)

    2016-08-07

    Energy relaxation from an excited phenyl group chemisorbed to the surface of a crystalline thin film of α-1,3,5-trinitro-1,3,5-triazacyclohexane (α-RDX) at 298 K and 1 atm is simulated using molecular dynamics. Two schemes are used to excite the phenyl group. In the first scheme, the excitation energy is added instantaneously as kinetic energy by rescaling momenta of the 11 atoms in the phenyl group. In the second scheme, the phenyl group is equilibrated at a higher temperature in the presence of static RDX geometries representative of the 298 K thin film. An analytical model based on ballistic phonon transport that requires only the harmonic part of the total Hamiltonian and includes no adjustable parameters is shown to predict, essentially quantitatively, the short-time dynamics of the kinetic energy relaxation (∼200 fs). The dynamics of the phenyl group for times longer than about 6 ps follows exponential decay and agrees qualitatively with the dynamics described by a master equation. Long-time heat propagation within the bulk of the crystal film is consistent with the heat equation.

  16. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    Science.gov (United States)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  17. Spin–transfer torque oscillator in magnetic tunneling junction with short–wavelength magnon excitation

    Directory of Open Access Journals (Sweden)

    Shizhu Qiao

    2018-05-01

    Full Text Available Bloch–Bloembergen–Slonczewski (BBS equation is established by extending Bloch–Bloembergen equation, and it is used to study magnetization oscillation in the free magnetic layer of a magnetic tunneling junction. Since both short–wavelength magnon excitation and spin–transfer torque are taken into account in the BBS equation, it is distinguished from Landau–Lifshitz–Gilbert–Slonczewski equation. The macro–spin BBS model predicts that the transverse relaxation time in free magnetic layer should be long enough, as compared with the longitudinal relaxation time, to achieve stable magnetization oscillation for spin–transfer torque oscillator application. Moreover, field–like torque favors the tolerance of fast transverse relaxation, which makes magnetic tunneling junction a better choice than spin valve for the spin–transfer torque oscillator application.

  18. MR pulse sequences for selective relaxation time measurements: a phantom study

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Jensen, M

    1990-01-01

    a Siemens Magnetom wholebody magnetic resonance scanner operating at 1.5 Tesla was used. For comparison six imaging pulse sequences for relaxation time measurements were tested on the same phantom. The spectroscopic pulse sequences all had an accuracy better than 10% of the reference values....

  19. Calculation of isotope selective excitation of uranium isotopes using spectral simulation method

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.

    2009-06-01

    Isotope ratio enhancement factor and isotope selectivity of 235 U in five excitation schemes (I: 0→10069 cm - 1 →IP, II: 0 →10081 cm - 1 →IP, III: 0 →25349 cm - 1→ IP, IV: 0→28650 cm - 1 →IP, V: 0→16900 cm - 1 →34659 cm - 1 →IP), were computed by a spectral simulation approach. The effect of laser bandwidth and Doppler width on the isotope ratio enhancement factor and isotope selectivity of 235 U has been studied. The photoionization scheme V gives the highest isotope ratio enhancement factor. The main factors which effect the separation possibility are the isotope shift and the relative intensity of the transitions between hyperfine levels. The isotope ratio enhancement factor decreases exponentially by increasing the Doppler width and the laser bandwidth, where the effect of Doppler width is much greater than the effect of the laser bandwidth. (author)

  20. Vibrational energy relaxation: proposed pathway of fast local chromatin denaturation

    International Nuclear Information System (INIS)

    Harder, D.; Greinert, R.

    2002-01-01

    The molecular mechanism responsible for the a component of exchange-type chromosome aberrations, of chromosome fragmentation and of reproductive cell death is one of the unsolved issues of radiation biology. Under review is whether vibrational energy relaxation in the constitutive biopolymers of chromatin, induced by inelastic energy deposition events and mediated via highly excited vibrational states, may provide a pathway of fast local chromatin denaturation, thereby producing the severe DNA lesion able to interact chemically with other, non-damaged chromatin. (author)

  1. Pharmacological identification of β-adrenoceptor subtypes mediating isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle.

    Science.gov (United States)

    Chino, Daisuke; Sone, Tomoyo; Yamazaki, Kumi; Tsuruoka, Yuri; Yamagishi, Risa; Shiina, Shunsuke; Obara, Keisuke; Yamaki, Fumiko; Higai, Koji; Tanaka, Yoshio

    2018-01-01

    Object We aimed to identify the β-adrenoceptor (β-AR) subtypes involved in isoprenaline-induced relaxation of guinea pig colonic longitudinal smooth muscle using pharmacological and biochemical approaches. Methods Longitudinal smooth muscle was prepared from the male guinea pig ascending colon and contracted with histamine prior to comparing the relaxant responses to three catecholamines (isoprenaline, adrenaline, and noradrenaline). The inhibitory effects of subtype-selective β-AR antagonists on isoprenaline-induced relaxation were then investigated. Results The relaxant potencies of the catecholamines were ranked as: isoprenaline > noradrenaline ≈ adrenaline, whereas the rank order was isoprenaline > noradrenaline > adrenaline in the presence of propranolol (a non-selective β-AR antagonist; 3 × 10 -7 M). Atenolol (a selective β 1 -AR antagonist; 3 × 10 -7 -10 -6  M) acted as a competitive antagonist of isoprenaline-induced relaxation, and the pA 2 value was calculated to be 6.49 (95% confidence interval: 6.34-6.83). The relaxation to isoprenaline was not affected by ICI-118,551 (a selective β 2 -AR antagonist) at 10 -9 -10 -8  M, but was competitively antagonized by 10 -7 -3 × 10 -7  M, with a pA 2 value of 7.41 (95% confidence interval: 7.18-8.02). In the presence of propranolol (3 × 10 -7 M), the relaxant effect of isoprenaline was competitively antagonized by bupranolol (a non-selective β-AR antagonist), with a pA 2 value of 5.90 (95% confidence interval: 5.73-6.35). Conclusion These findings indicated that the β-AR subtypes involved in isoprenaline-induced relaxation of colonic longitudinal guinea pig muscles are β 1 -AR and β 3 -AR.

  2. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  3. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  4. Self-Consistent Optimization of Excited States within Density-Functional Tight-Binding.

    Science.gov (United States)

    Kowalczyk, Tim; Le, Khoa; Irle, Stephan

    2016-01-12

    We present an implementation of energies and gradients for the ΔDFTB method, an analogue of Δ-self-consistent-field density functional theory (ΔSCF) within density-functional tight-binding, for the lowest singlet excited state of closed-shell molecules. Benchmarks of ΔDFTB excitation energies, optimized geometries, Stokes shifts, and vibrational frequencies reveal that ΔDFTB provides a qualitatively correct description of changes in molecular geometries and vibrational frequencies due to excited-state relaxation. The accuracy of ΔDFTB Stokes shifts is comparable to that of ΔSCF-DFT, and ΔDFTB performs similarly to ΔSCF with the PBE functional for vertical excitation energies of larger chromophores where the need for efficient excited-state methods is most urgent. We provide some justification for the use of an excited-state reference density in the DFTB expansion of the electronic energy and demonstrate that ΔDFTB preserves many of the properties of its parent ΔSCF approach. This implementation fills an important gap in the extended framework of DFTB, where access to excited states has been limited to the time-dependent linear-response approach, and affords access to rapid exploration of a valuable class of excited-state potential energy surfaces.

  5. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  6. Paramagnetic relaxation effects in perturbed angular correlations for arbitrary electronic relaxation time

    International Nuclear Information System (INIS)

    Chopin, C.; Spanjaard, D.; Hartmann-Boutron, F.

    1975-01-01

    Previous perturbation treatments of paramagnetic relaxation effects in γγ PAC were limited to the case of very short electronic relaxation times. This limitation is circumvented by invoking a new perturbation theory recently elaborated by Hirst and others for handling relaxation effects in Moessbauer spectra. Under the assumption of spherical electronic relaxation the perturbation factors are computed as functions of certain relaxation parameters which are directly related to the microscopic relaxation Hamiltonian. The results are compared to those of the stochastic theory of Scherer and Blume [fr

  7. Ferromagnetism versus slow paramagnetic relaxation in Fe-doped Li3N

    Science.gov (United States)

    Fix, M.; Jesche, A.; Jantz, S. G.; Bräuninger, S. A.; Klauss, H.-H.; Manna, R. S.; Pietsch, I. M.; Höppe, H. A.; Canfield, P. C.

    2018-02-01

    We report on isothermal magnetization, Mössbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrystalline Li2(Li1 -xFex) N with x =0 and x ≈0.30 . Magnetic hysteresis emerges at temperatures below T ≈50 K with coercivity fields of up to μ0H =11.6 T at T =2 K and magnetic anisotropy energies of 310 K (27 meV). The ac susceptibility is strongly frequency-dependent (f =10 -10 000 Hz) and reveals an effective energy barrier for spin reversal of Δ E ≈1100 K (90 meV). The relaxation times follow Arrhenius behavior for T >25 K . For T <10 K , however, the relaxation times of τ ≈1010 s are only weakly temperature-dependent, indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than 25 J molFe-1 K-1, which significantly exceeds R ln 2 , the value expected for the entropy of a ground-state doublet. Thermal expansion and magnetostriction indicate a weak magnetoelastic coupling in accordance with slow relaxation of the magnetization. The classification of Li2(Li1 -xFex) N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.

  8. Impact of nuclear lattice relaxation on the excitation energy transfer along a chain of pi-conjugated molecules

    NARCIS (Netherlands)

    Schmid, S.A.; Abbel, R.J.; Schenning, A.P.H.J.; Meijer, E.W.; Herz, L.M.

    2010-01-01

    We have investigated the extent to which delocalization of the ground-state and excited-state wave functions of a p-conjugated molecule affects the excitation energy transfer (EET) between such molecules. Using femtosecond photoluminescence spectroscopy, we experimentally monitored the EET along

  9. Site-selective laser spectroscopy of Sm{sup 3+} ions in Y{sub 4}Al{sub 2}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkan, M., E-mail: m.kaczkan@elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Koszykowa 75, Warsaw 00-662 (Poland); Boruc, Z. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, Warsaw 00-662 (Poland); Turczyński, S.; Pawlak, D. [Institute of Electronic Materials Technology, Wolczynska 133, Warsaw 01-919 (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, Warsaw 00-662 (Poland)

    2016-02-15

    Sm{sup 3+} doped Y{sub 4}Al{sub 2}O{sub 9} (YAM) crystals were prepared by the micro-pulling down method. Optical-absorption and laser-selective-excitation techniques along with luminescence decays have been used to reveal that Sm{sup 3+} ions in YAM normally occupy four sites, which were characterized and discussed. The comprehensive sets of Stark energy levels of the four Sm{sup 3+} centers in YAM were established. The intensity ratio of forced electric dipole ({sup 4}G{sub 5/2} → {sup 6}H{sub 9/2}) and magnetic dipole ({sup 4}G{sub 5/2} → {sup 6}H{sub 5/2}) transitions has been used to estimate the degree of asymmetry of Sm{sup 3+} sites. The lifetime of Sm{sup 3+} ions and the cross-relaxation rates were experimentally determined as a function of concentration for two distinct crystallographic Sm{sup 3+} centers. The dependencies of the nearest surroundings on the relaxation of the {sup 4}G{sub 5/2} excited state was discussed.

  10. Carbonyl carbon transverse relaxation dispersion measurements and ms-μs timescale motion in a protein hydrogen bond network

    International Nuclear Information System (INIS)

    Ishima, Rieko; Baber, James; Louis, John M.; Torchia, Dennis A.

    2004-01-01

    A constant-time, Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation, R 2 , dispersion experiment for carbonyl carbons was designed and executed to detect μs-ms time-scale dynamics of protein backbone carbonyl sites. Because of the large (ca. 55 Hz) C α -C' J-coupling, the carbonyl signal intensity is strongly modulated as the spacing between CPMG pulses is varied, in uniformly 13 C enriched proteins, unless care is taken to minimize the perturbation of the C α magnetization by the CPMG pulses. CPMG pulse trains consisting of either a band-selective pulse, such as RE-BURP, or rectangular (with an excitation null in the C α region of the spectrum) pulses were employed in order to minimize C' signal modulation by C α -C' J-coupling. The performance of these types of CPMG refocusing pulses was assessed by computer simulation, and by comparing dispersion profiles measured for (1) uniformly [ 13 C, 15 N, 2 H] ( 2 H at non-labile hydrogen sites) labeled, and (2) uniformly 15 N/selectively- 13 C' labeled samples of HIV-1 protease bound to a potent inhibitor, DMP323. In addition, because the uniformly 13 C/ 15 N/ 2 H labeled sample was well suited to measure 15 N and 1 H R 2 dispersion as well as 13 C' dispersion, conformational exchange in the inter subunit β-sheet hydrogen-bond network of the inhibitor-bound protease was elucidated using relaxation dispersion data of all three types of nuclei

  11. Effects of optical pumping in the photo-excitation of organic triplet states

    International Nuclear Information System (INIS)

    Lin, Tien-Sung; Yang, Tran-Chin; Sloop, David J.

    2013-01-01

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping

  12. Effects of optical pumping in the photo-excitation of organic triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tien-Sung, E-mail: lin@wustl.edu; Yang, Tran-Chin; Sloop, David J.

    2013-08-30

    Highlights: • High electron spin polarization (ESP) was observed in pentacene triplets at room temperature. • The high ESP is transfer to the surrounding nuclear spin by optical pumping in zero-field (ZF). • The ZF transition frequencies and their line width depend on the laser pumping rate. • The spin–lattice relaxation times of the nuclear system are evaluated. - Abstract: Upon the application of laser and microwave pulses, non-zero magnetic moment of a photo-excited triplet state of organic molecules is generated in zero-field (ZF). The time evolution of the transient magnetic moments can be measured by free induction decay (FID) in ZF. The observed ZF spectra become broadened and ZF transition shifted to lower frequencies when the repetition rate of laser excitation is increased, which are attributed to the optical pumping of nuclear polarization (ONP) effect and the associated nuclear spin lattice relaxation processes. The observed ONP effect is discussed in terms of the local field effect and spin diffusion processes in optical pumping.

  13. Study of hot carrier relaxation in quantum wells by subpicosecond Raman scattering

    International Nuclear Information System (INIS)

    Kim, Dai-sik; Yu, P.Y.

    1990-03-01

    Relaxation of hot carriers excited by subpicosecond laser pulses has been studied by Raman scattering in GaAs/AlAs multiple quantum wells with well widths varying between 100 and 1000 Angstrom. The hot phonon population observed by Raman scattering is found to decrease with the well width despite the fact that the hot electron temperature remains constant. The results are explained in terms of confinement of both electrons and optical phonons in quantum wells

  14. Calculation of a CO sub 2 gasdynamic laser with selective thermal excitation and an unstable resonator

    Energy Technology Data Exchange (ETDEWEB)

    Kuz' min, A.I.; Lavrov, A.V.; Chernysheva, N.V. (Leningradskii Gosudarstvennyi Universitet, Leningrad (USSR))

    1989-03-01

    The problem of calculating an unstable telescopic resonator for a CO{sub 2} gasdynamic laser with selective thermal excitation is studied. Parabolized Navier-Stokes equations and equations of field propagation in the resonator are used to describe the GDL in the geometric optic approximation. The efficiency is studied as a function of the magnification factor and of the distance between the mirrors. 19 refs.

  15. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    moment, excites the molecule to a dissociative electronic state. We consider the HOD molecule which is ideal due to the local mode structure of the vibrational states. It is shown that selective and localized bond stretching can be created in simple laser fields. When such a nonstationary vibrating HOD...... molecule is photodissociated with a short laser pulse (~5 fs) complete selectivity between the channels H+OD and D+OH is observed over the entire absorption band covering these channels. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  16. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  17. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...

  18. Spin-lattice relaxation in phosphorescent triplet state molecules

    International Nuclear Information System (INIS)

    Verbeek, P.J.F.

    1979-01-01

    The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)

  19. Irreversible Markov chains in spin models: Topological excitations

    Science.gov (United States)

    Lei, Ze; Krauth, Werner

    2018-01-01

    We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.

  20. Laser isotope separation by selective excited state photochemistry. Annual progress report, March 31, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    Zare, R.N.

    1977-03-01

    Experimental results are presented providing insight into the mechanisms of photochemical separation of Cd isotopes by selective excitation of ICl in the presence of halogenated olefins. The types of scrambling reactions that can be expected in isotope separation by scavenging are discussed along with strategies for minimizing such reactions. The experimental results are summarized and the reaction mechanisms are represented by graphic equations

  1. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  2. Ultrafast charge transfer and radiationless relaxations from higher excited state (S2) of directly linked Zn-porphyrin (ZP)-acceptor dyads: investigations into fundamental problems of exciplex chemistry

    International Nuclear Information System (INIS)

    Mataga, Noboru; Taniguchi, Seiji; Chosrowjan, Haik; Osuka, Atsuhiro; Yoshida, Naoya

    2003-01-01

    We have investigated photoinduced electron transfer and related processes from the higher excited electronic state (S 2 ) of Zn-porphyrin-imide acceptor directly linked supramolecular systems (ZP-I) designed especially for the critical studies of the energy gap law (EGL) of the charge separation (CS) from the S 2 state and solvent effects upon EGL. We have confirmed the modification of the EGL by change of solvent polarity from acetonitrile (ACN), tetrahydrofuran (THF) to toluene (Tol) and methyl-cyclohexane (MCH), from rather typical bell-shaped one in ACN to that with less prominent normal region and prominent inverted region with moderate slope extending over wider range of -ΔG CS values in nonpolar solvent MCH. We have demonstrated that these solvent effects upon EGL affect delicately various radiationless relaxation processes from S 2 state. We have examined also effects of the hydrogen bonding solvent ethanol (EtOH) on the EGL for CS and found very specific effect controlling the CS reaction and related processes

  3. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  4. Physical aspects of relaxation and shake-up effects in XPS and core →2π* absorption spectra of CO chemisorbed on Ni (111)

    International Nuclear Information System (INIS)

    Gumhalter, B.

    1985-07-01

    The physical origin of the peculiar relaxation shifts and spectral shapes appearing in x-ray induced core-to-valence excitation and core level photoemission spectra of CO chemisorbed on Ni(111) are discussed and interpreted within a unique framework. Within the model presented the electronic transitions in core-to-valence excitation spectroscopy and XPS are shown to give rise to drastic electronic rearrangements within the adsorption system and to the charge shake-up in the CO 2π* derived resonance partly filled via the backdonation mechanism. Such singular relaxation processes, common to both spectroscopies, are closely related and can be treated on the same footing. This makes possible to establish unique relaxation shifts and spectral characteristics for two seemingly different experimental situations. The use of this formalism in analysing the experimental data enables one to estimate and distinguish between the extra-adsorbate (image or nonbonding) and intra-adsorbate (chemically induced) screening of the core holes created either by x-ray induced core-to-valence electronic transitions or core level photoionization in CO/Ni(111). (author)

  5. The importance of spectroscopy for infrared multiphoton excitation

    International Nuclear Information System (INIS)

    Fuss, W.; Kompa, K.L.

    1980-07-01

    It is substantiated by examples that the infrared spectra of molecules in high vibrational states are similar in width to those of the ground states. Therefore in order to explain collisionless infrared multiphoton excitation, the existence of resonance has to be checked, not only for the first three steps, but for all of them. That is, their (low resolution) spectra should be studied. This review summarizes the spectroscopic mechanisms contributing to multiphoton excitation, which have been suggested to date, including several kinds of rotational compensation and of vibrational level splitting, which cooperate to overcome the anharmonic shift. The spectral quasicontinuum, generated by intensity borrowing, must neither be very broad nor dense, and collisionless vibrational relaxation is only important at very high energies. Knowledge of relatively few spectroscopic detailes helps to understand many details and many differences in multiphoton excitatio. (orig.)

  6. Origin of Bi.sup.3+./sup.-related luminescencecentres in Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. :Bi and Y.sub.3./sub.Al.sub.5./sub.O.sub.12./sub.:Bi single crystalline films and the structure of their relaxed excited states

    Czech Academy of Sciences Publication Activity Database

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Makhov, A.; Mihóková, Eva; Nikl, Martin; Zazubovich, S.; Zorenko, Y.

    2012-01-01

    Roč. 249, č. 5 (2012), s. 1039-1045 ISSN 0370-1972 R&D Projects: GA ČR GA202/08/0893; GA AV ČR IAA100100810 Institutional research plan: CEZ:AV0Z10100521 Keywords : LuAG:Bi * YAG:Bi * single crystalline films * time-resolved photoluminescence * triplet relaxed excited state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.489, year: 2012

  7. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  8. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.

    Science.gov (United States)

    Li, Ziman; Sansom, Rebecca; Bonella, Sara; Coker, David F; Mullin, Amy S

    2005-09-01

    Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.

  9. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  10. Corroborative evidences of TV γ -scaling of the α-relaxation originating from the primitive relaxation/JG β relaxation

    Science.gov (United States)

    Ngai, K. L.; Paluch, M.

    2017-12-01

    Successful thermodynamic scaling of the structural alpha-relaxation time or transport coefficients of glass-forming liquids determined at various temperatures T and pressures P means the data conform to a single function of the product variable TVgamma, where V is the specific volume and gamma is a material specific constant. In the past two decades we have witnessed successful TVgamma-scaling in many molecular, polymeric, and even metallic glass-formers, and gamma is related to the slope of the repulsive part of the intermolecular potential. The advances made indicate TVgamma-scaling is an important aspect of the dynamic and thermodynamic properties of glass-formers. In this paper we show the origin of TVgamma-scaling is not from the structural alpha-relaxation time. Instead it comes from its precursor, the Johari-Goldstein beta-relaxation or the primitive relaxation of the Coupling Model and their relaxation times or tau_0 respectively. It is remarkable that all relaxation times are functions of TVgamma with the same gama, as well as the fractional exponent of the Kohlrausch correlation function of the structural alpha-relaxation. We arrive at this conclusion convincingly based on corroborative evidences from a number of experiments and molecular dynamics simulations performed on a wide variety of glass-formers and in conjunction with consistency with the predictions of the Coupling Model.

  11. Selective reflection of resonance radiation from excited media

    International Nuclear Information System (INIS)

    Veklenko, B.A.; Gusarov, R.B.; Sherkunov, Yu.B.

    1998-01-01

    According to quantum electrodynamics, the cross section for resonant scattering of radiation on an aggregate of excited atoms can be written as a sum of positive definite terms. This type of structure is not consistent with the Fresnel formulas for the reflection coefficient of radiation from thermally excited media. The difference shows up on a macroscopic level and indicates that semiclassical radiation theory cannot be used. A study of the correlation between elastic scattering and stimulated emission processes clarifies the reason for the discrepancies. The resulting singularities require summing of Feynman diagrams which appear beginning in the sixth order of perturbation theory. A lower bound estimate for the reflection coefficient from a plane layer is given, including processes which violate the statistics of radiation. The contribution of stimulated emission processes caused by the initially scattered photon are examined specifically. An experiment is proposed which would settle the choice of theories

  12. Endothelium-dependent relaxant responses to selective 5-HT(1B/1D) receptor agonists in the isolated middle cerebral artery of the rat

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Løvland Hoel, Natalie; Nilsson, Elisabeth

    2003-01-01

    perfused. Luminally added 5- hydroxytryptamine (5-HT), sumatriptan and rizatriptan induced maximal dilatations of 22 +/- 4, 10 +/- 2 and 13 +/- 5%, respectively, compared to the resting diameter. The relaxant effect of sumatriptan was blocked by the 5- HT(1B/1D) receptor selective antagonist GR 55562 (10......The vasomotor effects of triptans in the middle cerebral artery (MCA) of rats were studied using the pressurised arteriography method and in vitro vessel baths. Using the arteriograph, MCAs from Sprague-Dawley rats were mounted on two glass micropipettes, pressurised to 85 mm Hg and luminally...... response to 5-HT and triptans. Using the vessel bath technique, MCA segments were mounted on two metal wires. The relaxant responses to sumatriptan could not be reproduced using this model; instead, weak contractile responses (6 +/- 3% of submaximal contractile capacity) were observed. The difference...

  13. Investigation of the spectroscopy and relaxation dynamics of benzaldehyde using molecular orbital calculations and laser ionization time-of-flight mass spectroscopy

    Science.gov (United States)

    da Silva, Maria Cristina Rodrigues

    1998-11-01

    Molecular orbital methods and laser ionization mass spectrometry measurements are used to investigate the spectroscopy and relaxation dynamics of benzaldehyde following excitation to its S2(/pi/pi/sp/*) state. Energies, equilibrium geometries and vibrational frequencies of ground and low-lying excited states of benzaldehyde neutral and cation determined by ab initio calculations provide a theoretical description of the electronic spectroscopy of benzaldehyde and of the changes occurring on excitation and ionization. The S2(/pi/pi/sp/*)[/gets]S0 excitation spectrum of jet-cooled benzaldehyde acquired using two-color laser ionization mass spectrometry techniques is interpreted with the aid of these calculations. The spectrum is dominated by the origin band and by transitions involving some of the ring modes consistent with the results of the molecular orbital calculations that indicate that the major geometric changes on excitation to S2 are located in the aromatic ring. Ten fundamental vibrations of the S2(/pi/pi/sp/*) state are assigned. The dissociation dynamics of benzaldehyde into benzene and carbon monoxide following excitation to its S2(/pi/pi/sp/*) state are investigated under jet- cooled conditions by two-color laser ionization mass spectrometry using a pump-probe technique. This experimental arrangement allows monitoring the benzaldehyde reactant and the benzene product ion signals as a function of the time delay between the excitation and ionization steps. A kinetic model is proposed to explain the observed biexponential decay of the benzaldehyde signal and the single exponential growth of the benzene product signal in terms of a sequential decay of two excited states of benzaldehyde, one of which leads to formation of benzene molecules in its lowest triplet state. Reactant disappearance and product appearance rates are determined for a number of vibronic transitions of the S2 state. They are found to increase with excitation energy without any indication

  14. Role of step stiffness and kinks in the relaxation of vicinal (001) with zigzag [110] steps

    Science.gov (United States)

    Mahjoub, B.; Hamouda, Ajmi BH.; Einstein, TL.

    2017-08-01

    We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉 steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps. In this study we show how this leads to different relaxation dynamics as well as to different steady state configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-bond breaking processes for 〈100〉-steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of 〈110〉-zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step effective interactions.

  15. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... biosensor based on the detection of the dynamic response of magnetic beads....

  16. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  17. Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT

    Science.gov (United States)

    Błaziak, Kacper; Panek, Jarosław J.; Jezierska, Aneta

    2015-07-01

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied.

  18. Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT

    International Nuclear Information System (INIS)

    Błaziak, Kacper; Panek, Jarosław J.; Jezierska, Aneta

    2015-01-01

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied

  19. Excited-state imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Vredenbregt, E.J.D.; Scholten, R.E.; Deshmukh, P.C.; Chakraborty, P.; Williams, J.F.

    2007-01-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes

  20. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  1. Pharmacological characterization of the relaxant effect induced by adrenomedullin in rat cavernosal smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Leite, L.N. [Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Gonzaga, N.A. [Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tirapelli, D.P.C.; Tirapelli, L.F. [Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Tirapelli, C.R. [Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-08-15

    The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F{sub 1α} (6-keto-PGF{sub 1α}; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM{sub 22-52}, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP{sub 8-37}, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with N{sup G}-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K{sup +} channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K{sup +} channels), and

  2. Pharmacological characterization of the relaxant effect induced by adrenomedullin in rat cavernosal smooth muscle

    International Nuclear Information System (INIS)

    Leite, L.N.; Gonzaga, N.A.; Tirapelli, D.P.C.; Tirapelli, L.F.; Tirapelli, C.R.

    2014-01-01

    The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F 1α (6-keto-PGF 1α ; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM 22-52 , a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP 8-37 , a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with N G -nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K + channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K + channels), and apamin (Ca 2+ -activated

  3. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  4. Picosecond dynamics of the glutamate receptor in response to agonist-induced vibrational excitation.

    Science.gov (United States)

    Kubo, Minoru; Shiomitsu, Eiji; Odai, Kei; Sugimoto, Tohru; Suzuki, Hideo; Ito, Etsuro

    2004-02-01

    Conformational changes of proteins are dominated by the excitation and relaxation processes of their vibrational states. To elucidate the mechanism of receptor activation, the conformation dynamics of receptors must be analyzed in response to agonist-induced vibrational excitation. In this study, we chose the bending vibrational mode of the guanidinium group of Arg485 of the glutamate receptor subunit GluR2 based on our previous studies, and we investigated picosecond dynamics of the glutamate receptor caused by the vibrational excitation of Arg485 via molecular dynamics simulations. The vibrational excitation energy in Arg485 in the ligand-binding site initially flowed into Lys730, and then into the J-helix at the subunit interface of the ligand-binding domain. Consequently, the atomic displacement in the subunit interface around an intersubunit hydrogen bond was evoked in about 3 ps. This atomic displacement may perturb the subunit packing of the receptor, triggering receptor activation. Copyright 2003 Wiley-Liss, Inc.

  5. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    Science.gov (United States)

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Thermal Dynamics of Xanthene Dye in Polymer Matrix Excited by Double Pulse Laser Radiation

    Science.gov (United States)

    Samusev, Ilia; Borkunov, Rodion; Tsarkov, Maksim; Konstantinova, Elizaveta; Antipov, Yury; Demin, Maksim; Bryukhanov, Valery

    2018-01-01

    Double-pulse laser excitation of the eosin and silver nanoparticles embedded into polymer media is known to be a method of electronic-vibrational energy deactivation kinetic process information obtaining and polymer thermal dynamics investigation. We have studied the vibrational relaxation processes in dye molecules (eosin) and nanoparticles in polyvinyl alcohol after two time-shifted laser pulses with fast and delayed fluorescence kinetics study. In order to simulate thermal and photophysical processes caused by double photon excitation, we solved heat transfer and energy deactivation differential equations numerically. The simulation allowed us to obtain the value of heat conductivity coefficient of polymer matrix.

  7. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The Effects of Two Different Stretching Programs on Balance Control and Motor Neuron Excitability

    Science.gov (United States)

    Kaya, Fatih; Biçer, Bilal; Yüktasir, Bekir; Willems, Mark E. T.; Yildiz, Nebil

    2018-01-01

    We examined the effects of training (4d/wk for 6 wks) with static stretching (SS) or contract-relax proprioceptive neuromuscular facilitation (PNF) on static balance time and motor neuron excitability. Static balance time, H[subscript max]/M[subscript max] ratios and H-reflex recovery curves (HRRC) were measured in 28 healthy subjects (SS: n = 10,…

  9. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  10. Localizations in cellular automata with mutualistic excitation rules

    International Nuclear Information System (INIS)

    Adamatzky, Andrew

    2009-01-01

    Every cell of two-dimensional cellular automaton with eight-cell neighborhood takes three states: resting, excited and refractory, and updates excited to refractory and refractory to resting states unconditionally. A resting cell excites depending on number of excited and refractory neighbors. We made exhaustive study of spatio-temporal excitation dynamics for all rules of this type and selected several classes of rules. The classes supporting self-localizations are studied in details. We uncover basic types of mobile (gliders) and stationary localizations, and characterize their morphology and dynamics.

  11. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  12. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  13. Search for mode-selective chemistry: The unimolecular dissociation of t-butyl hydroperoxide induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Chandler, D.W.; Farneth, W.E.; Zare, R.N.

    1982-01-01

    The use of optoacoustic spectroscopy permits both the monitoring of the overtone excitation of t-butylhydroperoxide (t-BuOOH) and the in situ detection of the resulting reaction product t-butanol (t-BuOH). The sample is contained in a reaction cell, equipped with a microphone, in which all surfaces have been specially passivated. The cell is placed inside the cavity of a dye laser tuned to excite the 5--0 O--H stretch of the t-BuOOH at 619.0 nm. The dissociation process yields directly xOH and t-BuOx, and the latter readily abstracts a hydrogen atom from a parent molecule to form t-butanol (t-BuOH). The appearance rate of t-BuOH is obtained by ratioing the area under the 5--0 O--H stretch of t-BuOH to that of a combination band of t-BuOOH. At low pressures, below 40 Torr, a plot of the reciprocal of the t-BuOH appearance rate versus total pressure shows near linear behavior. This linearlity can be well described by a statistical model (RRKM) when careful averaging of the dissociation rate over the thermal energy distribution of the photoactivated molecules is included. At pressures above 40 Torr, a marked deviation from linearity appears. This deviation is fit to a kinetic model in which the dissociation rate of an energy nonrandomized molecule competes with the rate of intramolecular energy relaxation. This places a lower bound of > or =5.0 x 10 11 s -1 on the rate of energy randomization. A discussion of this model in the context of other possible kinetic schemes as well as other photoactivated and chemically activated systems is presented

  14. [Central muscle relaxant activities of 2-methyl-3-aminopropiophenone derivatives].

    Science.gov (United States)

    Kontani, H; Mano, A; Koshiura, R; Yamazaki, M; Shimada, Y; Oshita, M; Morikawa, K; Kato, H; Ito, Y

    1987-02-01

    In this experiment, we synthetized new 2-methyl-3-aminopropiophenone (MP) derivatives, whose structure is known to have central muscle relaxant activities, and quinolizidine and indan . tetralin derivatives derived from MP by cyclization, and we investigated the central muscle relaxant activity. Among the quinolizidine derivatives, there was a very strong central depressant agent, trans (3H, 9aH)-3-(p-chloro) benzoyl-quinolizidine (HSR-740), and among the indan . tetralin derivatives, there was an excitant agents, trans (1H, 2H)-5-methoxy-3, 3-dimethyl-2-piperidinomethyl indan-1-ol (HSR-719). From the results, these derivatives were not considered to be adequate for central muscle relaxant. Among the MP derivatives, (4'-chloro-2'-methoxy-3-piperidino) propiophenone HCl (HSR-733) and (4'-ethyl-2-methyl-3-pyrrolidino) propiophenone HCl (HSR-770) strongly inhibited the cooperative movement in the rotating rod method using mice, and it exerted almost the same depressant activity on the cross extensor reflex using alpha-chloralose anesthetized rats. However, the inhibitory effects of HSR-733 on the anemic decerebrate rigidity and the rigidity induced by intracollicular decerebration in rats were weaker than those of HSR-770 and eperisone. In spinal cats, at a low dose (5 mg/kg, i.v.), HSR-733 depressed monosynaptic and dorsal root reflex potentials as compared with polysynaptic reflex potentials, and inhibitory effects of HSR-733 on these three reflex potentials were more potent than those of eperisone and HSR-770. Although HSR-770 acts on the spinal cord and supraspinal level on which eperisone has been reported to act, HSR-733 may mainly act on the spinal cord. These results indicate that the MP derivative with a 2-methyl group may be suitable as a central muscle relaxant. HSR-770, which has equipotent muscle relaxant activity to eperisone, exerted strong inhibitory effects on oxotremorine-induced tremor and weak inhibitory effects on spontaneous motor activity in the

  15. Holographic relaxation of finite size isolated quantum systems

    International Nuclear Information System (INIS)

    Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2014-01-01

    We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects

  16. A nuclear magnetic relaxation study on internal motion of polyelectrolytes in solution

    International Nuclear Information System (INIS)

    Schriever, J.

    1977-01-01

    The aim of this thesis is to investigate the significance and the amount of information which can be extracted from the study of frequency dependence of magnetic relaxation rates in solutions of a synthetic macromolecule. Solutions of poly(methacrylic acid), PMA, in water were chosen as the object of the present work. A short survey of nuclear magnetic relaxation in solutions of simple macromolecules is presented. Results obtained by continuous wave experiments on PMA solutions are shown (viz. the information about the transverse relaxation from line width analysis of 60 MHz proton spectra). Water enriched in 17 O is used in magnetic relaxation studies; the results of the determination of hydrogen lifetimes in aqueous solutions of acetic acid and poly(methacrylic acid) are given. The possibility of obtaining information about the dynamics of deuterons in the acid side groups of weak polyacids by measuring deuteron relaxation in heavy water solutions of those acids is considered. The use of deuteron relaxation rate experiments on solutions of selectively methylene deuterated poly(methacrylic acid), [-CD 2 -CCH 3 COOH-]n, is demonstrated and the backbone methylene C-atom motion is charachterized. The magne-tic relaxation of nuclei in the side groups of methylene deuterated PMA, viz. protons in the methyland deuterons in the acid side groups is presented

  17. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Joseph Robert [Lawrence Berkeley Lab., CA (United States); California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10-8 s-1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring 14N-1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T1 and T2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  18. Selective excitation of higher-radial-order Laguerre-Gaussian beams using a solid-state digital laser

    CSIR Research Space (South Africa)

    Bell, Teboho

    2017-01-01

    Full Text Available Filter (LF) was introduced to only transmit 1064 nm and block the 808 nm pump. The laser beam was transmitted out of the cavity through an output coupler mirror (M3 on Figure 1) and was 1:1 relay imaged using two 125 mm lenses (L3 and L4) to a Photon...; Published December 30, 2016 Citation: Bell T, Ngcobo S (2016) Selective Excitation of Higher-radial-order Laguerre-Gaussian Beams Using a Solid-state Digital Laser. J Laser Opt Photonics 3: 144. doi: 10.4172/2469-410X.1000144 Copyright: © 2016 Bell T, et...

  19. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  20. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Science.gov (United States)

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  1. On the Temperature Behavior of Pulse Propagation and Relaxation in Worms, Nerves and Gels.

    Directory of Open Access Journals (Sweden)

    Christian Fillafer

    Full Text Available The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C. However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels or their temperature-dependent behaviour. By following Einstein's approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS. Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.

  2. Carbonyl carbon transverse relaxation dispersion measurements and ms-{mu}s timescale motion in a protein hydrogen bond network

    Energy Technology Data Exchange (ETDEWEB)

    Ishima, Rieko [National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Molecular Structural Biology Unit (United States); Baber, James; Louis, John M.; Torchia, Dennis A. [National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Molecular Structural Biology Unit (United States)

    2004-06-15

    A constant-time, Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation, R{sub 2}, dispersion experiment for carbonyl carbons was designed and executed to detect {mu}s-ms time-scale dynamics of protein backbone carbonyl sites. Because of the large (ca. 55 Hz) C{sub {alpha}}-C' J-coupling, the carbonyl signal intensity is strongly modulated as the spacing between CPMG pulses is varied, in uniformly {sup 13}C enriched proteins, unless care is taken to minimize the perturbation of the C{sub {alpha}} magnetization by the CPMG pulses. CPMG pulse trains consisting of either a band-selective pulse, such as RE-BURP, or rectangular (with an excitation null in the C{sub {alpha}} region of the spectrum) pulses were employed in order to minimize C' signal modulation by C{sub {alpha}}-C' J-coupling. The performance of these types of CPMG refocusing pulses was assessed by computer simulation, and by comparing dispersion profiles measured for (1) uniformly [{sup 13}C,{sup 15}N, {sup 2}H] ({sup 2}H at non-labile hydrogen sites) labeled, and (2) uniformly {sup 15}N/selectively-{sup 13}C' labeled samples of HIV-1 protease bound to a potent inhibitor, DMP323. In addition, because the uniformly {sup 13}C/{sup 15}N/{sup 2}H labeled sample was well suited to measure {sup 15}N and {sup 1}H R{sub 2} dispersion as well as {sup 13}C' dispersion, conformational exchange in the inter subunit {beta}-sheet hydrogen-bond network of the inhibitor-bound protease was elucidated using relaxation dispersion data of all three types of nuclei.

  3. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  4. Dynamics of Solid Body in Magnetic Suspension under Periodic Excitation

    Directory of Open Access Journals (Sweden)

    A. M. Gouskov

    2017-01-01

    Full Text Available The article studies dynamics of ferromagnetic body in hybrid magnetic suspension (HMS. The body is supposed to have one degree of freedom and a nonlinear magnetic force dependence on the current and displacement. The magnetic force induced in the HMS is divided into a passive component and an active one. Specifying the law of current variation in the coil allows us to generate nonlinear oscillations under electromagnet action. To provide periodic excitation the appropriate law of the current variation in the electromagnet coil is proposed. The mathematical model includes external periodic step-excitation. The equation of motion is formed. The scales of similarity are highlighted in the system, and the equation of motion is reduced to dimensionless form.The motion dynamics is studied numerically. The relaxation method was used to determine the periodic motions at different values of dimensionless frequency of the electromagnet excitation as well as to estimate the influence of other dimensionless parameters on the system dynamics. The amplitude-frequency curve analysis allows us to come to conclusion that the nature of system nonlinearity is rigid. Adding the external periodic step-excitation leads to the qualitative change in the nature of movement. This points to the occurrence of bifurcation.

  5. Assessment of relevant hepatic steatosis in obese adolescents by rapid fat-selective GRE imaging with spatial-spectral excitation: a quantitative comparison with spectroscopic findings

    International Nuclear Information System (INIS)

    Springer, Fabian; Schick, Fritz; Ehehalt, Stefan; Binder, Gerhard; Sommer, Julia; Ballweg, Verena; Machann, Juergen; Claussen, Claus D.

    2011-01-01

    To test the feasibility of fat-selective GRE imaging using a spectral-spatial excitation technique for determination of intrahepatic lipid content (IHL) in obese adolescents. Fat-selective MR imaging (1.5 T) was applied to record a single axial slice through a representative liver region within a single breath-hold. The sequence uses six equidistant slice-selective excitation pulses with binomial amplitude ratios to achieve high selectivity for lipid signals after appropriate shimming. IHL MRI content was quantified using signal intensity of adjacent subcutaneous adipose tissue. As the gold standard for IHL quantification, single-voxel stimulated echo magnetic resonance spectroscopy (MRS) was applied. IHL MRS was quantified using the water peak as a reference. Forty-five MR examinations could be performed, and IHL MRS content ranged from 0.7% to 19.1%. Results from MRS and fat-selective imaging correlated well with Spearman coefficients between r = 0.78 and r = 0.86. There were no relevant regional differences in IHL within the liver parenchyma (p > 0.6359). Fat-selective imaging was able to reliably identify patients with IHL content above 5% with positive/negative likelihood ratio of 11.8 and 0.05, respectively. Fat-selective MR imaging provides both a reliable and a convenient method of rapidly quantifying IHL content in obese adolescents. (orig.)

  6. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  7. Analytical and experimental study of two delay-coupled excitable units.

    Science.gov (United States)

    Weicker, Lionel; Erneux, Thomas; Keuninckx, Lars; Danckaert, Jan

    2014-01-01

    We investigate the onset of time-periodic oscillations for a system of two identical delay-coupled excitable (nonoscillatory) units. We first analyze these solutions by using asymptotic methods. The oscillations are described as relaxation oscillations exhibiting successive slow and fast changes. The analysis highlights the determinant role of the delay during the fast transition layers. We then study experimentally a system of two coupled electronic circuits that is modeled mathematically by the same delay differential equations. We obtain quantitative agreements between analytical and experimental bifurcation diagrams.

  8. Associative ionization of two laser excited Na atoms

    International Nuclear Information System (INIS)

    Meijer, H.A.J.

    1988-01-01

    An investigation into the associative ionization of two sodium atoms excited by polarized laser beams is described. It was possible to excite the Na atoms in a velocity-selective way by exploiting the Doppler effect. The excitation of Na to the 3 2 P 3/2 , F=3 level is discussed on the basis of so-called saturation curves. Experiments with seven different combinations of polarization of the two exciting laser beams are described and the results discussed. 86 refs.; 53 figs.; 6 tabs

  9. Off-centre dynamic Jahn-Teller effect studied by electron spin relaxation of Cu2+ ions in SrF2 crystal

    International Nuclear Information System (INIS)

    Hoffmann, S.K.

    2000-01-01

    Temperature cw-EPR and pulsed EPR electron spin echo experiments were performed for a low concentration of Cu 2+ ions in cubic SrF 2 crystals. The well resolved EPR spectrum at low temperatures (below 30 K) with parameters g parallel = 2.493, g perpendicular = 2.083, A parallel = 121, A perpendicular = 8.7, A parallel ( 19 F) = 135, A parallel ( 19 F) = 33.0 (A-values in 10 -4 cm -1 ) is transformed continuously into a single broad line above 225 K on heating, due to the g-factor shift and EPR line broadening. These data along with the angular variation EPR data are described in terms of a pseudo-Jahn-Teller effect of (T 2g +A 2u )x(a 1g +e g +t 1u ) type producing six off-centre positions of the Cu 2+ ion in the fluorine cube. Above 30 K a two-step averaging g -factor process occurs and is governed by vibronic dynamics between potential wells of the off-centre positions. This dynamics governs the electron spin relaxation in the whole temperature range. The electron spin-lattice relaxation rate 1/T 1 grows rapidly by six orders of magnitude in the temperature range 30-100 K and is determined by the Orbach-type process with excitations to two excited vibronic levels of energy 83 and 174 cm -1 . For higher temperatures the relaxation is dominated by overbarrier jumps leading to the isotropic EPR spectrum above 225 K. The phase memory time T M has the rigid lattice value 3.5 μs determined by nuclear spectral diffusion and its temperature variation is governed by the vibronic dynamics indicating that the excitations between vibronic levels produce a dephasing of the electron spin precessional motion. (author)

  10. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    Science.gov (United States)

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  11. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at [Institut für Theoretische Physik, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz (Austria)

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  12. Ionization relaxation in shock-heated krypton-argon mixtures

    International Nuclear Information System (INIS)

    Ezumi, Hiromichi; Kawamura, Masahiko; Yokota, Toshiaki.

    1977-01-01

    The ionization relaxation processes behind shock waves in pure krypton and krypton-argon mixtures have been investigated using a Mach-Zehnder interferometer technique. The incident shock velocity was fixed in the neighborhood of Us=2800 m/sec, and the initial pressure was fixed at 0.95 Torr. The experimental results were compared with theoretical values based on the two-step collisional ionization model taking into account of the wall boundary-layer effect. The slope constants of excitation cross section against relative kinetic energy between krypton atom-atom collisions, krypton atom-electron collisions, and krypton-argon atom-atom collisions were determined to be 4.2 x 10 -19 cm 2 /eV, 1.2 x 10 -17 cm 2 /eV, and 4.2 x 10 -19 cm 2 /eV, respectively. (auth.)

  13. Monte Carlo study of electron relaxation in graphene with spin polarized, degenerate electron gas in presence of electron-electron scattering

    Science.gov (United States)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-12-01

    The Monte Carlo simulation method is applied to study the relaxation of excited electrons in monolayer graphene. The presence of spin polarized background electrons population, with density corresponding to highly degenerate conditions is assumed. Formulas of electron-electron scattering rates, which properly account for electrons presence in two energetically degenerate, inequivalent valleys in this material are presented. The electron relaxation process can be divided into two phases: thermalization and cooling, which can be clearly distinguished when examining the standard deviation of electron energy distribution. The influence of the exchange effect in interactions between electrons with parallel spins is shown to be important only in transient conditions, especially during the thermalization phase.

  14. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  15. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Verma

    2016-03-01

    Full Text Available We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps followed by decay (≈390 ps to the corresponding ground state.

  16. Surface excitation correction of electron IMFP of selected polymers

    International Nuclear Information System (INIS)

    Gergely, G.; Orosz, G.T.; Lesiak, B.; Jablonski, A.; Toth, J.; Varga, D.

    2004-01-01

    Complete text of publication follows. The IMFP [1] of selected polymers: polythiophenes, polyanilines, polyethylene (PE) [2] was determined by EPES [3] experiments, using Si, Ge and Ag (for PE) reference samples. Experiments were evaluated by Monte Carlo (MC) simulations [1] applying the NIST 64 (1996 and 2002) databases and IMFP data of Tanuma and Gries [1]. The integrated experimental elastic peak ratios of sample and reference are different from those calculated by Monte Carlo (MC) simulation [1]. The difference was attributed to the difference of surface excitation parameters (SEP) [4] of the sample and reference. The SEP parameters of the reference samples were taken from Chen and Werner. A new procedure was developed for experimental determination of the SEP parameters of polymer samples. It is a trial and error method for optimising the SEP correction of the IMFP and the correction of experimental elastic peak ratio [4]. Experiments made with a HSA spectrometer [5] covered the E = 0.2-2 keV energy range. The improvements with SEP correction appears in reduc- ing the difference between the corrected and MC calculated IMFPs, assuming Gries and Tanuma's et al IMFPs [1] for polymers and standard respectively. The experimental peak areas were corrected for the hydrogen peak. For the direct detection of hydrogen see Ref. [6] and [7]. Results obtained with the different NIST 64 databases and atomic potentials [8] are presented. This work was supported by the Hungarian Science Foundation of OTKA: T037709 and T038016. (author)

  17. Spin wave relaxation and magnetic properties in [M/Cu] super-lattices; M=Fe, Co and Ni

    International Nuclear Information System (INIS)

    Fahmi, A.; Qachaou, A.

    2009-01-01

    In this work, we study the elementary excitations and magnetic properties of the [M/Cu] super-lattices with: M=Fe, Co and Ni, represented by a Heisenberg ferromagnetic system with N atomic planes. The nearest neighbour (NN), next nearest neighbour (NNN) exchange, dipolar interactions and surface anisotropy effects are taken into account and the Hamiltonian is studied in the framework of the linear spin wave theory. In the presence of the exchange alone, the excitation spectrum E(k) and the magnetization z >/S analytical expressions are obtained using the Green's function formalism. The obtained relaxation time of the magnon populations is nearly the same in the Fe and Co-based super-lattices, while these magnetic excitations would last much longer in the Ni-based super lattice. A numerical study of the surface anisotropy and long-ranged dipolar interaction combined effects are also reported. The exchange integral values deduced from a comparison with experience for the three super-lattices are coherent.

  18. A model of magnetic and relaxation properties of the mononuclear [Pc2Tb](-)TBA+ complex.

    Science.gov (United States)

    Reu, O S; Palii, A V; Ostrovsky, S M; Tregenna-Piggott, P L W; Klokishner, S I

    2012-10-15

    The present work is aimed at the elaboration of the model of magnetic properties and magnetic relaxation in the mononuclear [Pc(2)Tb](-)TBA(+) complex that displays single-molecule magnet properties. We calculate the Stark structure of the ground (7)F(6) term of the Tb(3+) ion in the exchange charge model of the crystal field, taking account for covalence effects. The ground Stark level of the complex possesses the maximum value of the total angular momentum projection, while the energies of the excited Stark levels increase with decreasing |M(J)| values, thus giving rise to a barrier for the reversal of magnetization. The one-phonon transitions between the Stark levels of the Tb(3+) ion induced by electron-vibrational interaction are shown to lead to magnetization relaxation in the [Pc(2)Tb](-)TBA(+) complex. The rates of all possible transitions between the low-lying Stark levels are calculated in the temperature range 14 Krelaxation time of magnetization, we solve the set of master equations for the populations of the Stark levels. The relaxation time is shown to diminish from 3.2 × 10(-2) s to 1.52 × 10(-4) s as the temperature increases from 27 K to 40 K. The obtained values of the relaxation time are in satisfactory agreement with the observed ones. The developed model also provides satisfactory description of the dc-magnetic data and paramagnetic shifts.

  19. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  20. Laser-excited fluorescence spectroscopy of oxide glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1977-01-01

    Laser-induced fluorescence line narrowing was applied to investigate the local fields and interactions of paramagnetic ions in oxide glasses. Studies included the site dependence of energy levels, radiative and nonradiative transition probabilities, homogeneous line broadening, and ion--ion energy transfer of rare earth ions. These results and the experimental techniques are reviewed briefly; the use of paramagnetic ions other than the rare earths is also considered. Recently, laser-excited fluorescence spectroscopy was used to investigate modifications in the local structure of lithium borate glass caused by compositional changes and phase separation and the site dependence of nonradiative relaxation of paramagnetic ions by multiphonon processes. These results and their implications are discussed. 6 figures

  1. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  2. Near field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber

    NARCIS (Netherlands)

    Tsekrekos, C.P.; Smink, R.W.; Hon, de B.P.; Tijhuis, A.G.; Koonen, A.M.J.

    2007-01-01

    Abstract: Selective excitation of graded-index multimode fibers (GIMMFs) with a single-mode fiber (SMF) has gained increased interest for telecommunication applications. It has been proposed as a way to enhance the transmission bandwidth of GI-MMF links and/or create parallel communication channels

  3. Assessment of relevant hepatic steatosis in obese adolescents by rapid fat-selective GRE imaging with spatial-spectral excitation: a quantitative comparison with spectroscopic findings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Fabian; Schick, Fritz [University Hospital Tuebingen, Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Ehehalt, Stefan; Binder, Gerhard [University Children' s Hospital Tuebingen, Paediatric Endocrinology and Diabetes, Tuebingen (Germany); Sommer, Julia; Ballweg, Verena; Machann, Juergen [University Hospital Tuebingen, Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Claussen, Claus D. [University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2011-04-15

    To test the feasibility of fat-selective GRE imaging using a spectral-spatial excitation technique for determination of intrahepatic lipid content (IHL) in obese adolescents. Fat-selective MR imaging (1.5 T) was applied to record a single axial slice through a representative liver region within a single breath-hold. The sequence uses six equidistant slice-selective excitation pulses with binomial amplitude ratios to achieve high selectivity for lipid signals after appropriate shimming. IHL{sub MRI} content was quantified using signal intensity of adjacent subcutaneous adipose tissue. As the gold standard for IHL quantification, single-voxel stimulated echo magnetic resonance spectroscopy (MRS) was applied. IHL{sub MRS} was quantified using the water peak as a reference. Forty-five MR examinations could be performed, and IHL{sub MRS} content ranged from 0.7% to 19.1%. Results from MRS and fat-selective imaging correlated well with Spearman coefficients between r = 0.78 and r = 0.86. There were no relevant regional differences in IHL within the liver parenchyma (p > 0.6359). Fat-selective imaging was able to reliably identify patients with IHL content above 5% with positive/negative likelihood ratio of 11.8 and 0.05, respectively. Fat-selective MR imaging provides both a reliable and a convenient method of rapidly quantifying IHL content in obese adolescents. (orig.)

  4. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes.

    Directory of Open Access Journals (Sweden)

    Charles E Chapple

    Full Text Available BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may

  5. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  6. Energy relaxation and transfer in excitonic trimer

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Urbanec, Martin

    2004-01-01

    Two models describing exciton relaxation and transfer (the Redfield model in the secular approximation and Capek's model) are compared for a simple example - a symmetric trimer coupled to a phonon bath. Energy transfer within the trimer occurs via resonance interactions and coupling between the trimer and the bath occurs via modulation of the monomer energies by phonons. Two initial conditions are adopted: (1) one of higher eigenstates of the trimer is initially occupied and (2) one local site of the trimer is initially occupied. The diagonal exciton density matrix elements in the representation of eigenstates are found to be the same for both models, but this is not so for the off-diagonal density matrix elements. Only if the off-diagonal density matrix elements vanish initially (initial condition (1)), they then vanish at arbitrary times in both models. If the initial excitation is local, the off-diagonal matrix elements essentially differ

  7. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  8. The Effect of Relaxation and Positive Self-Talk on Symptoms of Premenstrual Syndrome

    Directory of Open Access Journals (Sweden)

    Kimiyaee Asadi

    2016-05-01

    Full Text Available Background Premenstrual syndrome (PMS is characterized by recurrent, moderate-to-severe affective, physical, and behavioral symptoms that develop during the luteal menstrual cycle and disappear within a few days of menstruation. Objectives This article aims to identify the effects of relaxation, positive self-talk, and a combination of relaxation and positive self-talk on premenstrual syndrome. Methods In this quasi-experimental study, 80 women with PMS disorder were selected using a simple random sampling method, in Hamadan, west of Iran. They were randomly divided into four groups. The first and second groups underwent positive self-talk and relaxation, respectively. The third group experienced positive self-talk and relaxation at the same time. The fourth group did not receive any treatment. The duration of treatment was 8 one-hour sessions. Data were collected using a PMS symptom severity questionnaire. All groups were followed up for six months after the intervention. Finally, data analysis was performed using SPSS version 18 for ANCOVA and Bonferroni tests. Results The results showed that compared to the control group, relaxation (23.2 and positive self-talk (21.25 treatment methods alone can reduce PMS (P < 0.001. On the other hand, a combined (relaxation + positive self-talk treatment method (13.75 was more effective in reducing PMS compared to relaxation or positive self-talk alone. Conclusions It seems that psychological therapy based on relaxation and positive self-talk can be significantly effective in reducing PMS.

  9. Modeling of Self-Excited Isolated Permanent Magnet Induction Generator Using Iterative Numerical Method

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa R.

    2016-01-01

    Full Text Available Self-Excited Permanent Magnet Induction Generator (PMIG is commonly used in wind energy generation systems. The difficulty of Self-Excited Permanent Magnet Induction Generator (SEPMIG modeling is the circuit parameters of the generator vary at each load conditions due to the a change in the frequency and stator voltage. The paper introduces a new modeling for SEPMIG using Gauss-sidle relaxation method. The SEPMIG characteristics using the proposed method are studied at different load conditions according to the wind speed variation, load impedance changes and different shunted capacitor values. The system modeling is investigated due to the magnetizing current variation, the efficiency variation, the power variation and power factor variation. The proposed modeling system satisfies high degree of simplicity and accuracy.

  10. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  11. Dissociative ionization of liquid water induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H + and OH - ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H 2 O, the quantum yield at 283 +- 1 K varies from 2 x 10 -9 to 4 x 10 -5 for wave numbers between 7605 and 18140 cm -1 . In D 2 O, the dependence of quantum yield on wavelength has the same qualitative shape as for H 2 O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D 2 O than for excitation of D 2 O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H 2 O and with isotopic composition at 25 +- 1 0 C

  12. New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2018-01-01

    Full Text Available The question of whether mesospheric OH(v rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v rotational population distributions. Rapid OH(high-v + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v rotational distributions. The effective rotational temperatures of mesospheric OH(v are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.

  13. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  14. Fast treatment plan modification with an over-relaxed Cimmino algorithm

    International Nuclear Information System (INIS)

    Wu Chuan; Jeraj, Robert; Lu Weiguo; Mackie, Thomas R.

    2004-01-01

    A method to quickly modify a treatment plan in adaptive radiotherapy was proposed and studied. The method is based on a Cimmino-type algorithm in linear programming. The fast convergence speed is achieved by over-relaxing the algorithm relaxation parameter from its sufficient convergence range of (0, 2) to (0, ∞). The algorithm parameters are selected so that the over-relaxed Cimmino (ORC) algorithm can effectively approximate an unconstrained re-optimization process in adaptive radiotherapy. To demonstrate the effectiveness and flexibility of the proposed method in adaptive radiotherapy, two scenarios with different organ motion/deformation of one nasopharyngeal case were presented with comparisons made between this method and the re-optimization method. In both scenarios, the ORC algorithm modified treatment plans have dose distributions that are similar to those given by the re-optimized treatment plans. It takes us using the ORC algorithm to finish a treatment plan modification at least three times faster than the re-optimization procedure compared

  15. Site selective excitation of Eu 3+ ions in the lanthanum squarate

    International Nuclear Information System (INIS)

    Piriou, B.; Petit, J.F.; Trombe, J.C.; Gleizes, A.

    1989-01-01

    Microcrystalline powder of La 2 (H 2 0) 11 (C 4 0 4 ) 3 . 2H 2 0 doped with 2.5 % Eu 3+ was studied at 77K. The site selective excitation in the 5 D 2 sub-levels and the time resolved spectroscopy were needed to distinguish very similar sites, in the structure with very closely spaced (2 cm -1 ) 5 D 0 levels. Two sites without symmetry were characterized in agreement with the structure. The presence of a minority third one is supposed to be due to the large concentration of the doping europium. The energy of all the Stark components of 7 F 1 7 F 2 5 D 0 and 5 D 2 are given. The sets of the energy levels of each site are very similar. This corresponds to the accidental identity of the coordination polyedron of inequivalent sites and shows the weak contribution to the crystalline field due to the second and farther neighbours. The spectra are correlated to the sites on the criterion of the 5 D 0 life time, 142 and 130 μs for the sites having respectively five and six water molecules [fr

  16. Transition rate diagrams - A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    Science.gov (United States)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-02-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar-H2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given.

  17. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1977-01-01

    A system for isotope separation or enrichment wherein molecules of a selected isotope type in a flow of molecules of plural isotope types are vibrationally excited and collided with a background gas to provide enhanced diffusivity for the molecules of the selected isotope type permitting their separate collection. The system typically is for the enrichment of uranium using a uranium hexafluoride gas in combination with a noble gas such as argon. The uranium hexafluoride molecules having a specific isotope of uranium are vibrationally excited by laser radiation. The vibrational energy is converted to a translation energy upon collision with a particle of the background gas and the added translation energy enhances the diffusivity of the selected hexafluoride molecules facilitating its condensation on collection surfaces provided for that purpose. This process is periodically interrupted and the cryogenic flow halted to permit evaporation of the collected molecules to provide a distinct, enriched flow

  18. Study on the excited diatomic molecules of rare gas

    International Nuclear Information System (INIS)

    Kasama, Kunihiko; Arai, Shigeyoshi

    1981-01-01

    The study on the excited diatomic molecules of rare gas is presented. The absorption spectra, the mechanism of formation and attenuation and the reactions with other molecules are described. The excitation of rare gas was made by using a pulsed electron beam generator. The absorption of excited diatomic molecules was measured as the functions of time. Two absorption peaks were observed. The electron states of rare gases were estimated. The observed and calculated transition values were given for each peak. The absorption spectra of Ne change with time. The spectra of Ar do not change with time. Four and eleven absorption maxima were seen in the spectra of Kr and Xe, respectively. In the case of Ar, the thermal equilibrium existed. The constants of the production and attenuation rates were obtained as the functions of Ar gas pressure. In the case of Ne, there wad definitely the time dependence of absorption spectra. The attenuation constant was obtained for each transition between various vibration levels. It is necessary to consider the relaxation from high vibrational levels. The energy transfer between vibrational levels hardly occurred in Ne because the intervals are large. When there are other molecules, the attnuation was accelerated. (Kato, T.)

  19. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection

    DEFF Research Database (Denmark)

    Weininger, Ulrich; Brath, Ulrika; Modig, Kristofer

    2014-01-01

    Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications...... on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because...... they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C...

  20. {CoIII2DyIII2} single molecule magnet with two resolved thermal activated magnetization relaxation pathways at zero field.

    Science.gov (United States)

    Funes, Alejandro V; Carrella, Luca; Rentschler, Eva; Alborés, Pablo

    2014-02-14

    The new complex [Co(III)2Dy(III)2(OMe)2(teaH)2(Piv)6] in the {Co(III)2Dy(III)2} family, shows two well resolved thermal activated magnetization relaxation pathways under AC experiments in zero DC field. Fitted crystal field parameters suggest that the origin of these two pathways relies on two different excited mJ sub-levels.

  1. Measurement of the signs of methyl {sup 13}C chemical shift differences between interconverting ground and excited protein states by R{sub 1{rho}}: an application to {alpha}B-crystallin

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Andrew J.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-05-15

    Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible 'excited' conformational states. Recently it has also become possible to determine atomic resolution structural models of excited states using a wide array of CPMG RD approaches. Analysis of CPMG RD datasets provides the magnitudes of the chemical shift differences between the ground and excited states, {Delta}{omega}, but not the sign. In order to obtain detailed structural insights from, for example, excited state chemical shifts and residual dipolar coupling measurements, these signs are required. Here we present an NMR experiment for obtaining signs of {sup 13}C chemical shift differences of {sup 13}CH{sub 3} methyl groups using weak field off-resonance R{sub 1{rho}} relaxation measurements. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering sample conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated against those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring signs of chemical shift differences and the relative strengths of each method are discussed. In the case of the 650 kDa human {alpha}B-crystallin complex where there are large transverse relaxation differences between ground and excited state spins the R{sub 1{rho}} method is shown to be superior to more 'traditional' experiments for sign determination.

  2. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  3. SPIDYAN, a MATLAB library for simulating pulse EPR experiments with arbitrary waveform excitation.

    Science.gov (United States)

    Pribitzer, Stephan; Doll, Andrin; Jeschke, Gunnar

    2016-02-01

    Frequency-swept chirp pulses, created with arbitrary waveform generators (AWGs), can achieve inversion over a range of several hundreds of MHz. Such passage pulses provide defined flip angles and increase sensitivity. The fact that spectra are not excited at once, but single transitions are passed one after another, can cause new effects in established pulse EPR sequences. We developed a MATLAB library for simulation of pulse EPR, which is especially suited for modeling spin dynamics in ultra-wideband (UWB) EPR experiments, but can also be used for other experiments and NMR. At present the command line controlled SPin DYnamics ANalysis (SPIDYAN) package supports one-spin and two-spin systems with arbitrary spin quantum numbers. By providing the program with appropriate spin operators and Hamiltonian matrices any spin system is accessible, with limits set only by available memory and computation time. Any pulse sequence using rectangular and linearly or variable-rate frequency-swept chirp pulses, including phase cycling can be quickly created. To keep track of spin evolution the user can choose from a vast variety of detection operators, including transition selective operators. If relaxation effects can be neglected, the program solves the Liouville-von Neumann equation and propagates spin density matrices. In the other cases SPIDYAN uses the quantum mechanical master equation and Liouvillians for propagation. In order to consider the resonator response function, which on the scale of UWB excitation limits bandwidth, the program includes a simple RLC circuit model. Another subroutine can compute waveforms that, for a given resonator, maintain a constant critical adiabaticity factor over the excitation band. Computational efficiency is enhanced by precomputing propagator lookup tables for the whole set of AWG output levels. The features of the software library are discussed and demonstrated with spin-echo and population transfer simulations. Copyright © 2016

  4. Theory of strong hybridization-induced relaxation in uranium systems

    International Nuclear Information System (INIS)

    Hu, G.; Cooper, B.R.

    1988-01-01

    Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment

  5. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  6. Cortical excitability correlates with the event-related desynchronization during brain-computer interface control

    Science.gov (United States)

    Daly, Ian; Blanchard, Caroline; Holmes, Nicholas P.

    2018-04-01

    Objective. Brain-computer interfaces (BCIs) based on motor control have been suggested as tools for stroke rehabilitation. Some initial successes have been achieved with this approach, however the mechanism by which they work is not yet fully understood. One possible part of this mechanism is a, previously suggested, relationship between the strength of the event-related desynchronization (ERD), a neural correlate of motor imagination and execution, and corticospinal excitability. Additionally, a key component of BCIs used in neurorehabilitation is the provision of visual feedback to positively reinforce attempts at motor control. However, the ability of visual feedback of the ERD to modulate the activity in the motor system has not been fully explored. Approach. We investigate these relationships via transcranial magnetic stimulation delivered at different moments in the ongoing ERD related to hand contraction and relaxation during BCI control of a visual feedback bar. Main results. We identify a significant relationship between ERD strength and corticospinal excitability, and find that our visual feedback does not affect corticospinal excitability. Significance. Our results imply that efforts to promote functional recovery in stroke by targeting increases in corticospinal excitability may be aided by accounting for the time course of the ERD.

  7. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  8. Accurate determination of the binding energy of the formic acid dimer: The importance of geometry relaxation

    Science.gov (United States)

    Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2014-02-01

    The formic acid dimer in its C2h-symmetrical cyclic form is stabilized by two equivalent H-bonds. The currently accepted interaction energy is 18.75 kcal/mol whereas the experimental binding energy D0 value is only 14.22 ±0.12 kcal/mol [F. Kollipost, R. W. Larsen, A. V. Domanskaya, M. Nörenberg, and M. A. Suhm, J. Chem. Phys. 136, 151101 (2012)]. Calculation of the binding energies De and D0 at the CCSD(T) (Coupled Cluster with Single and Double excitations and perturbative Triple excitations)/CBS (Complete Basis Set) level of theory, utilizing CCSD(T)/CBS geometries and the frequencies of the dimer and monomer, reveals that there is a 3.2 kcal/mol difference between interaction energy and binding energy De, which results from (i) not relaxing the geometry of the monomers upon dissociation of the dimer and (ii) approximating CCSD(T) correlation effects with MP2. The most accurate CCSD(T)/CBS values obtained in this work are De = 15.55 and D0 = 14.32 kcal/mol where the latter binding energy differs from the experimental value by 0.1 kcal/mol. The necessity of employing augmented VQZ and VPZ calculations and relaxing monomer geometries of H-bonded complexes upon dissociation to obtain reliable binding energies is emphasized.

  9. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  10. Electron spin echo study of the E'-center phase relaxation in γ-irradiated quartz glass

    International Nuclear Information System (INIS)

    Dudkin, V.I.; Petrun'kin, V.Yu.; Rubinov, S.V.; Uspenskij, L.I.

    1986-01-01

    Experimental studies of phase relaxation of E'-centres in γ-irradiated quartz glass are conducted by the method of electron spin echo (ESE) for different concentrations of paramagnetic centres. Contribution of mechanisms of spectral and prompt diffusion to kinetics of amplitude drop of echo signal is proved to reduce with growth of delay time between exciting microwave pulse that results in increase of phase memory time at large delays. The mentioned property can be used in electric controlled delay lines on the base of ESE

  11. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    Science.gov (United States)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  12. Theory of stochastic space-dependent neutron kinetics with a Gaussian parametric excitation

    International Nuclear Information System (INIS)

    Saito, K.

    1980-01-01

    Neutron kinetics and statics in a multiplying medium with a statistically fluctuating reactivity are unified and systematically studied by applying the Novikov-Furutsu formula. The parametric or multiplicative noise is spatially distributed and of Gaussian nature with an arbitrary spectral profile. It is found that the noise introduces a new definite production term into the conventional balance equation for the mean neutron number. The term is characterized by the magnitude and the correlation function of the random excitation. Its relaxation phenomena bring forth a non-Markoffian or a memory effect, which is conceptualised by introducing 'pseudo-precursors' or 'pseudo-delayed neutrons'. By using the concept, some typical reactor physical problems are solved; they are (1) reactivity and flux perturbation originating from the random dispersal of core materials and (2) analysis of neutron decay mode and it relaxation constant, and derivation of the corresponding new inhour equation. (author)

  13. Cross relaxation in nitroxide spin labels

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Cross relaxation, and mI-dependence of the intrinsic electron spin-lattice relaxation rate We, are incorporated explicitly into the rate equations for the electron-spin population differences that govern the saturation behaviour of 14N- and 15N-nitroxide spin labels. Both prove important in spin......-label EPR and ELDOR, particularly for saturation recovery studies. Neither for saturation recovery, nor for CW-saturation EPR and CW-ELDOR, can cross relaxation be described simply by increasing the value of We, the intrinsic spin-lattice relaxation rate. Independence of the saturation recovery rates from...... the hyperfine line pumped or observed follows directly from solution of the rate equations including cross relaxation, even when the intrinsic spin-lattice relaxation rate We is mI-dependent....

  14. Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states.

    Science.gov (United States)

    Moritz, B; Kemper, A F; Sentef, M; Devereaux, T P; Freericks, J K

    2013-08-16

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

  15. Hopping ladder and power relaxation due to donor-acceptor pairs

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Hopping between donor-acceptor pairs leads to peculiar temperature dependence of the conductivity and the photoconductivity under subband gap illumination in the form of non-linear activation energies ladder. The correlated and uncorrelated distributions of pairs are considered and the conditions for the ladder existence are determined. The relaxation of the carrier concentration fluctuations is studied and power type decay is found. The temperature dependence of the exponent is calculated in agreement with the non-exponential decay of the pulse excited luminescence observed by Dean et al. The temperature dependence of the luminescence intensity also shows variable activation energy as found here. The exponent value α=1.316 is also in agreement with the data for crystalline and amorphous materials. (author)

  16. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.

    Science.gov (United States)

    Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B

    2018-05-31

    Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.

  17. Relaxation of excited surface states of thin Ge-implanted silica films probed by OSEE spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zatsepin, A.F., E-mail: a.f.zatsepin@urfu.ru [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Buntov, E.A.; Mikhailovich, A.P.; Slesarev, A.I. [Ural Federal University, Mira Street 19, 620002 Ekaterinburg (Russian Federation); Schmidt, B. [Research Center Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, D-01314 Dresden (Germany); Czarnowski, A. von; Fitting, Hans-Joachim [Institute of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany)

    2016-01-15

    As an example of thin silica films, 30 nm SiO{sub 2}–Si heterostructures implanted with Ge{sup +} ions (10{sup 16} cm{sup −2} fluence) and rapid thermally annealed (RTA) at 950 °C are studied by means of optically stimulated electron emission (OSEE) in the spectral region of optical transparency for bulk silica. Quartz glass samples were used as references. Experimental data revealed a strong dependence between electron emission spectral features and RTA annealing time. The spectral contributions of both surface band tail states and interband transitions were clearly distinguished. The application of emission Urbach rule as well as Kane and Pässler equations allowed to analyze the OSEE spectra at different optical excitation energy ranges and to retrieve the important microstructural and energy parameters. The observed correlations between parameter values of Urbach- and Kane-related models suggest the implantation-induced conversion of both the vibrational subsystem and energy band of surface and interface electronic states. - Highlights: • Peculiarities of electron emission from excited surface states of SiO{sub 2}:Ge structures are studied. • Spectral contributions of surface band tails and interband transitions are distinguished. • Urbach and Kane models allow to examine photo-thermal emission mechanism. • Surface energy gap and structural disorder parameters are determined.

  18. Influence of relaxation on emission and excitation of coherent states of electromagnetic field in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Verlan, E.M.

    2003-01-01

    A two-level atom interacting with a field mode is considered. The field frequency is assumed to be equal to the atom transition frequency. The relaxation equations of the atom - field system are written in the basis of dressed states of the Jaynes - Cummings model taking into account quasi-resonant pumping. Their solutions are derived for a stationary regime. The average amplitude of a coherent electromagnetic field is found

  19. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  20. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  1. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H{sub 2}O and D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, J-H [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Dulieu, F [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Baouche, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Lemaire, J-L [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France); Jochims, H W [Institut fuer Physikalische und Theoretische Chemie der Freien Universitaet Berlin, Takustrasse 3, D-14195 Berlin 33 (Germany); Leach, S [LERMA, CNRS-UMR 8112, Observatoire de Paris-Meudon, 5 place J Janssen, F-92195, Meudon (France)

    2003-07-14

    The absorption cross section and the ionization quantum yield of H{sub 2}O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first A-tilde {sup 2}A{sub 1} and to the second B-tilde {sup 2}B{sub 2} excited states of H{sub 2}O{sup +}. Comparison with D{sub 2}O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  2. State-selective multireference coupled-cluster theory: In pursuit of property calculation

    International Nuclear Information System (INIS)

    Ghose, K.B.; Piecuch, P.; Pal, S.; Adamowicz, L.

    1996-01-01

    In this work, we examine the efficiency of the recently developed [P. Piecuch et al., J. Chem. Phys. 99, 6732 (1993)] state-selective (SS) multi-reference (MR) coupled-cluster (CC) method for calculation of molecular properties. In our earlier papers, we demonstrated that the SSMRCC method with inclusion of single, double, and internal and semi-internal triple excitations [SSCCSD(T) approach] is capable of providing an accurate description of the ground-state potential energy surfaces. In this paper, we present the dipole moment and polarizability values of the HF molecule at equilibrium and stretched geometries calculated using finite field technique and SSCCSD(T) ansatz. The calculations use double zeta quality basis sets with and without polarization functions. Molecular orbital basis sets include both relaxed and nonrelaxed orbitals. copyright 1996 American Institute of Physics

  3. Process for separating U isotopes by infrared excitation

    International Nuclear Information System (INIS)

    Lyon, R.K.; Kaldor, Andrew.

    1976-01-01

    This invention concerns a process for separating a substance into at least two parts in which the isotopic abundances of a given element differ from those of the isotopes of the substance prior to separation. Specifically, the invention concerns a process for the selective excitation of the isotopes of a gaseous phase UF 6 by absorption of infra-red photons, then by selective reaction of UF 6 excited with atomics chlorine, bromine or iodine, forming a product that may be separated by a standard method. The preference criteria of the atomic chlorine, bromine and iodine are related to the thermal dilution problem [fr

  4. TOMROP: a sequence for determining the longitudinal relaxation time T1 in NMR

    International Nuclear Information System (INIS)

    Graumann, R.; Barfuss, H.; Fischer, H.; Hentschel, D.; Oppelt, A.

    1987-01-01

    We developed the pulse sequence TOMROP (T One by Multiple Read Out Pulses) for determining precisely the spatial distribution of the longitudinal relaxation time T 1 in nuclear magnetic resonance (NMR): a series of small-angle selection pulses is used to read out longitudinal magnetization from its initial state till thermal equilibrium. Hence, one measurement will produce several images with different T 1 weightings whose pixel brilliance depends exponentially from read-out time. T 1 can be determined from these independent of initial magnetization and selection pulse angle. The measuring time corresponds to the time needed in multi-echo imaging for the determination of the transversal relaxation time T 2 . We demonstrate this new method using head images of volunteers produced with a 0.23 T test facility. (orig./HP) [de

  5. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats.

    Science.gov (United States)

    Lee, Liang-Ming; Tsai, Tsung-Chin; Chung, Hsien-Hui; Tong, Yat-Ching; Cheng, Juei-Tang

    2012-09-01

    What's known on the subject? and What does the study add? Neurotransmitters are known to control prostate contractility. Agmatine is one of them and induces relaxation through imidazoline receptors. The paper shows that the action of agmatine is reduced in hypertensive rats, and that this change is related to the decrease of ATP-sensitive potassium channels in the prostate. The findings can increase our understanding of the possible underlying mechanism for the development of clinical benign prostatic hyperplasia. To compare agmatine-induced prostatic relaxation in hypertensive and control rats. To investigate the responsible mechanism(s) and the role of the ATP-sensitive potassium channel. Prostate strips were isolated from male spontaneously hypertensive (SH) rats and normal Wistar-Kyoto (WKY) rats for measurement of isometric tension. The strips were precontracted with 1 µmol/L phenylephrine or 50 mmol/L KCl. Dose-dependent relaxation of the prostatic strips was studied by cumulative administration of agmatine, 1 to 100 µmol/L, into the organ bath. Effects of specific antagonists on agmatine-induced relaxation were studied. Western blotting analysis was used to measure the gene expression of the ATP-sensitive potassium channel in the rat prostate. Prostatic relaxation induced by agmatine was markedly reduced in SH rats compared with WKY rats. The relaxation caused by agmatine was abolished by BU224, a selective imidazoline I(2)-receptor antagonist, but was not modified by efaroxan at a dose sufficient to block imidazoline I(1)-receptors. The relaxation induced by diazoxide at a concentration sufficient to activate ATP-sensitive potassium channels was markedly reduced in the SH rat prostate. Expressions of ATP-sensitive potassium channel sulphonylurea receptor and inwardly rectifying potassium channel (Kir) 6.2 subunits were both decreased in the prostate of SH rats. The decrease of agmatine-induced prostatic relaxation in SH rats is related to the change in

  6. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  7. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  8. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model.

    Science.gov (United States)

    Glowacki, David R; Orr-Ewing, Andrew J; Harvey, Jeremy N

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol(-1) localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral

  9. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  10. Excitations in ferromagnetic quantum chains: an experimental study on the influence of solitons and spinwaves

    International Nuclear Information System (INIS)

    Tinus, A.M.C.

    1986-01-01

    In this thesis, the author deals with one of the simplest 1D magnetic systems: the S = 1/2 ferromagnetic chain with an almost isotropic interaction between adjacent magnetic moments. Experimental realizations of this system became available only recently with the synthesis of the compounds [C 6 H 11 NH 3 ]CuCl 3 (CHAC) and [C 6 H 11 NH 3 ]CuBr 3 (CHAB). The present understanding of the crystallographic and magnetic properties of CHAC and CHAB is summarized. Attention is given to the anisotropy in the intrachain interaction, which to a large extent determines the static and dynamic properties. Heat capacity measurements on CHAB are presented as well as nuclear spin-lattice relaxation measurements on both CHAC and CHAB. The experimental results on both compounds are compared with numerical calculations on the Raman and three-spinwave relaxation processes within the framework of linear spinwave theory. In the case of CHAB, the author also discusses the contribution of soliton excitations to the observed relaxation rate. (Auth.)

  11. PDE1A inhibition elicits cGMP-dependent relaxation of rat mesenteric arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala Michell; Dalsgaard, Thomas; Larsen, Peter Hjorringgaard

    2017-01-01

    (EC50 = 32 nM). Inhibition of NOS with L-NAME, soluble GC with ODQ, or PKG with Rp-8-Br-PET-cGMP all attenuated PDE1 inhibition-induced relaxation, whereas PKA inhibition with H89 had no effect. CONCLUSION AND IMPLICATIONS: Pde1a was the dominant PDE1 isoform present in VSMC and relaxation mediated...... by PDE1A-inhibition was predominantly driven by enhanced cGMP signalling. These results imply that isoform-selective PDE1 inhibitors are powerful investigative tools allowing examination of physiological and pathological roles of PDE1 isoforms....

  12. Stress relaxation of bi-disperse polystyrene melts

    DEFF Research Database (Denmark)

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  13. Dissociative ionization of liquid water induced by vibrational overtone excitation

    Energy Technology Data Exchange (ETDEWEB)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  14. Transition rate diagrams — A new approach to the study of selective excitation processes: The spectrum of manganese in a Grimm-type glow discharge

    International Nuclear Information System (INIS)

    Weiss, Zdeněk; Steers, Edward B.M.; Pickering, Juliet C.; Mushtaq, Sohail

    2014-01-01

    The emission spectra of manganese observed using a Grimm-type glow discharge in pure argon, argon with 0.3% v/v hydrogen and pure neon were studied in order to identify major excitation and ionization processes of manganese in the plasma. A new procedure is proposed, in which each observed emission line is associated with the corresponding transition between different states of the Mn atom or Mn ion, and, by considering all the observed transitions from and into a specific state, a measure of the total rate is determined at which this state is radiatively populated and depopulated. These resulting population/depopulation rates are then plotted as function of level energy. Such plots, called here “transition rate diagrams”, show the role of individual states in the formation of the observed spectrum and can be used to identify possible selective excitation processes. Also, cascade excitation by radiative decay of higher excited states can be conveniently evaluated in this way. A detailed description of the observed Mn I and Mn II spectra is given for Ar, Ar–H 2 and Ne plasmas and relevant excitation/ionization mechanisms are discussed. Matrix effects in analysis of manganese by glow discharge spectroscopy are discussed. A list of important Mn I and Mn II lines excited in the glow discharge plasma is given. - Highlights: • We measured GD-OES spectra of Mn in Ar, Ar(H) and Ne discharges. • We determined transition rate diagrams of Mn I and Mn II in these discharges. • Using those diagrams, we identified major excitation processes involved

  15. Plasmon-mediated energy relaxation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, D. K. [School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Somphonsane, R. [Department of Physics, King Mongkut' s Institute of Technology, Ladkrabang, Bangkok 10520 (Thailand); Ramamoorthy, H.; Bird, J. P. [Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260-1500 (United States)

    2015-12-28

    Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.

  16. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    Science.gov (United States)

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  17. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  18. Guanidine and guanidinium cation in the excited state—theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Antol, Ivana, E-mail: iantol@emma.irb.hr; Glasovac, Zoran [Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Crespo-Otero, Rachel; Barbatti, Mario [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (Germany)

    2014-08-21

    Diverse ab initio and density-functional-theory methods were used to investigate geometries, energies, and electronic absorption spectra of guanidine and its protonated form, as well as their photo-deactivation processes. It was shown that the guanidine is a weakly absorbing species with the excitation spectrum consisting mostly of transitions to the Rydberg excited states and one valence n-π{sub 4} state. The lowest energy band has a maximum at ca. 6.9 eV (∼180 nm). The protonation of guanidine affects its excitation spectrum substantially. A major shift of the Rydberg states to higher energies is clearly visible and strongly absorbing transitions from the ground state to the π{sub 3}-π{sub 4} and π{sub 2}-π{sub 4} states appears at 7.8 eV (∼160 nm). Three low-lying conical intersections (two for guanidine and one for protonated guanidine) between the ground state and the first excited singlet state were located. They are accessible from the Franck–Condon region through amino N–H stretching and out-of-plane deformations in guanidine and protonated guanidine, respectively. The relaxation of the π{sub 3}-3s Rydberg state via amino N–H bond stretching was hindered by a barrier. The nondissociated conical intersection in protonated guanidine mediates the radiationless deactivation of the compound after excitation into the π{sub 3}-π{sub 4} state. This fact is detrimental for the photostability of guanidine, since its conjugate acid is stable in aqueous solution over a wide pH range and in protein environment, where guanidinium moiety in arginine is expected to be in a protonated form.

  19. Dynamics of the α-relaxation in glass-forming polymers. Study by neutron scattering and relaxation techniques

    Science.gov (United States)

    Colmenero, J.

    1993-12-01

    The dynamics of the α-relaxation in three different polymeric systems, poly(vinyl methyl ether) (PVME), poly(vinyl chloride) (PVC) and poly(bisphenol A, 2-hydroxypropylether) (PH) has been studied by means of relaxation techniques and quasielastic neutron scattering (backscattering spectrometers IN10 and IN13 at the ILL-Grenoble). By using these techniques we have covered a wide time scale ranging from mesoscopic to macroscopic times (10 -10 -10 1 s). For analyzing the experimental data we have developed a phenomenological procedure in the frequency domain based on the Havriliak-Negami relaxation function, which in fact implies a Kohlrausch-Williams-Watts relaxation function in the time domain. The results obtained indicate that the dynamics of the α-relaxation in a wide time scale shows a clear non-Debye behaviour. The shape of the relaxation functions is found to be similar for the different techniques used and independent of temperature and momentum transfer ( Q). Moreover, the characteristic relaxation times deduced from the fitting of the experimental data can also be described using only one Vogel-Fulcher functional form. Besides we found that the Q-dependence of the relaxation times obtained by QENS is given by a power law, τ( Q) ∞ Q- n ( n>2), n being dependent on the system, and that the Q-behaviour and the non-Debye behaviour are directly correlated. In the case of PVC, time of flight (TOF) neutron scattering experiments confirm these results in a shorter time scale (2×10 -11 -2× 10 -12 s). Moreover, TOF results also suggest the possibility of interpreting the “fast process” usually detected in glass-forming systems as a Debye-like short regime of the α-relaxation.

  20. The relationships between suggestibility, influenceability, and relaxability.

    Science.gov (United States)

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  1. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  2. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  3. Photovoltaic Properties and Ultrafast Plasmon Relaxation Dynamics of Diamond-Like Carbon Nanocomposite Films with Embedded Ag Nanoparticles.

    Science.gov (United States)

    Meškinis, Šarūnas; Peckus, Domantas; Vasiliauskas, Andrius; Čiegis, Arvydas; Gudaitis, Rimantas; Tamulevičius, Tomas; Yaremchuk, Iryna; Tamulevičius, Sigitas

    2017-12-01

    Ultrafast relaxation dynamics of diamond-like carbon (DLC) films with embedded Ag nanoparticles (DLC:Ag) and photovoltaic properties of heterojunctions consisting of DLC:Ag and crystalline silicon (DLC:Ag/Si) were investigated by means of transient absorption (TAS) spectroscopy and photovoltaic measurements. The heterojunctions using both p type and n type silicon were studied. It was found that TAS spectra of DLC:Ag films were dependent on the used excitation wavelength. At wavelengths where Ag nanoparticles absorbed light most intensively, only DLC signal was registered. This result is in good accordance with an increase of the DLC:Ag/Si heterojunction short circuit current and open circuit voltage with the excitation wavelength in the photovoltaic measurements. The dependence of the TAS spectra of DLC:Ag films and photovoltaic properties of DLC:Ag/Si heterostructures on the excitation wavelength was explained as a result of trapping of the photoexcited hot charge carriers in DLC matrix. The negative photovoltaic effect was observed for DLC:Ag/p-Si heterostructures and positive ("conventional") for DLC:Ag/n-Si ones. It was explained by the excitation of hot plasmonic holes in the Ag nanoparticles embedded into DLC matrix. Some decrease of DLC:Ag/Si heterostructures photovoltage as well as photocurrent with DLC:Ag film thickness was observed, indicating role of the interface in the charge transfer process of photocarriers excited in Ag nanoparticles.

  4. Stress relaxation in viscous soft spheres.

    Science.gov (United States)

    Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P

    2017-10-04

    We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.

  5. Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD{sub 3}CN treated with a parallel multi-state EVB model

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, David R., E-mail: drglowacki@gmail.com [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Department of Computer Science, University of Bristol, Bristol BS8 1UB (United Kingdom); PULSE Institute and Department of Chemistry, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Orr-Ewing, Andrew J. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Harvey, Jeremy N. [Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee (Belgium)

    2015-07-28

    We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD{sub 3}CN → DF + CD{sub 2}CN reaction in CD{sub 3}CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD{sub 3}CN solvent, equilibrium power spectra of DF in CD{sub 3}CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ∼23 kcal mol{sup −1} localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD{sub 3}CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational

  6. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  7. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  8. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  9. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  10. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH.

    Science.gov (United States)

    Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  11. Spot profile analysis and lifetime mapping in ultrafast electron diffraction: Lattice excitation of self-organized Ge nanostructures on Si(001

    Directory of Open Access Journals (Sweden)

    T. Frigge

    2015-05-01

    Full Text Available Ultrafast high energy electron diffraction in reflection geometry is employed to study the structural dynamics of self-organized Germanium hut-, dome-, and relaxed clusters on Si(001 upon femtosecond laser excitation. Utilizing the difference in size and strain state the response of hut- and dome clusters can be distinguished by a transient spot profile analysis. Surface diffraction from {105}-type facets provide exclusive information on hut clusters. A pixel-by-pixel analysis of the dynamics of the entire diffraction pattern gives time constants of 40, 160, and 390 ps, which are assigned to the cooling time constants for hut-, dome-, and relaxed clusters.

  12. The laser second threshold: Its exact analytical dependence on detuning and relaxation rates

    International Nuclear Information System (INIS)

    Bakasov, A.A.; Abraham, N.B.

    1992-11-01

    An exact analysis has been carried out for general analytical expressions for the second threshold of a single-mode homogeneously broadened laser and for the initial pulsation frequency at the second threshold for arbitrary physical values of the relaxation rates, and at arbitrary detuning between the cavity frequency and the atomic resonance frequency. These expressions also give correspondingly exact forms for asymptotic cases that have previously studied with some approximations. Earlier approximate results are partly confirmed and partly improved by these more general expressions. The physical status of various expressions and approximations is re-considered and specified more clearly, including an analysis of which reasonably can be attained in lasers or masers. A general analytical proof is given that for larger detuning of the laser cavity from resonance a higher value of the laser excitation is required to destabilize the steady state solution (the second threshold). We also present results for the minimum value of the second threshold at fixed detuning as a function of the other parameters of the system and on the dependence of the ratio of the second threshold to the first threshold as a function of detuning. Minima of the second threshold and of the threshold ratio occur only if the population relaxation rate is equal to zero. The minima of the threshold ratio are shown to be bounded from above as well as from below (as functions of the relaxation rates, so long as the second threshold exists). The upper bound on the threshold ratio is equal to 17. The variation of the second threshold in the semi-infinite parameter space of the decay rates is shown at various detunings in plots with a finite domain by normalizing the material relaxation rates to the cavity decay rate. (author). 53 refs, 22 figs, 3 tabs

  13. Dissociation of deep-core-excited CH{sub 3}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.L.; Martin, R.; Vanderford, B. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Using x-rays from B.L. 9.3.1, a space-focused time-of-flight (TOF) was used to study photofragmentation of CH{sub 3}Cl following excitation in the neighborhood of the Cl K-shell threshold ({approximately} 2.8 keV). Multi-ion coincidence measurements were used to search for selective dissociation of specific bonds in the molecule. Such selectivity has been observed for excitation near outer-core-level thresholds (e.g., Cl 2p), but this is the first study in deep core levels, where very-short core-hole lifetimes and Auger cascade effects may influence fragmentation. Both high-resolution time-of-flight spectroscopy and multi-coincidence photoelectron-photoion-photoion (PE-PIPICO), as well as photoelectron-photoion-photoion-photoion (PE3PICO) measurements were performed. Dramatic changes in the line shapes for different fragment ions are observed as a function of the excitation energy, and are attributed to selective dissociation of the CH{sub 3}Cl molecule along the C-Cl bond. In addition, pronounced angular distributions of the ejected ions are observed on resonance.

  14. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint?

    Science.gov (United States)

    Harpur, Brock A; Zayed, Amro

    2013-07-01

    The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.

  15. Encapsulation of 3-hydroxyflavone and fisetin in β-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies

    Science.gov (United States)

    Banerjee, Anwesha; Sengupta, Pradeep K.

    2006-06-01

    Excited-state intramolecular proton-transfer (ESIPT) and dual emission properties (emission profile, anisotropy and decay kinetics) of 3-hydroxyflavone (a synthetic, model flavonol) and fisetin (3,7,3',4'-OH-flavone, a therapeutically active plant flavonol) have been exploited to study their encapsulation in nano-cavities comprising of natural and chemically modified β-cyclodextrins. In the presence of β-CDs, both the flavonols show significantly enhanced relative yields (along with changes in other emission parameters) of the tautomer emission. In addition, for fisetin, large blue shifts are observed for the normal emission (which has significant charge transfer character). From these we infer that the flavonols are encaged in predominantly hydrophobic micro-environments, where external hydrogen bonding perturbations (interfering with the intrinsic ESIPT), and dipolar relaxation effects, are minimized. This is further explained from results of molecular mechanics calculations which indicate selectivity in orientation of the encapsulated flavonols. Moreover, chemical modification of the β-CDs is found to profoundly influence the binding affinities of the guest flavonols.

  16. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    Science.gov (United States)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  17. Sandpile model for relaxation in complex systems

    International Nuclear Information System (INIS)

    Vazquez, A.; Sotolongo-Costa, O.; Brouers, F.

    1997-10-01

    The relaxation in complex systems is, in general, nonexponential. After an initial rapid decay the system relaxes slowly following a long time tail. In the present paper a sandpile moderation of the relaxation in complex systems is analysed. Complexity is introduced by a process of avalanches in the Bethe lattice and a feedback mechanism which leads to slower decay with increasing time. In this way, some features of relaxation in complex systems: long time tails relaxation, aging, and fractal distribution of characteristic times, are obtained by simple computer simulations. (author)

  18. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  19. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Schlaak, Boris H; Münchau, Alexander

    2012-01-01

    In non-human primates, invasive tracing and electrostimulation studies have identified strong ipsilateral cortico-cortical connections between dorsal premotor- (PMd) and the primary motor cortex (M1(HAND) ). Here, we applied dual-site transcranial magnetic stimulation (dsTMS) to left PMd and M1......(HAND) through specifically designed minicoils to selectively probe ipsilateral PMd-to-M1(HAND) connectivity in humans. A suprathreshold test stimulus (TS) was applied to M1(HAND) producing a motor evoked potential (MEP) of about 0.5 mV in the relaxed right first dorsal interosseus muscle (FDI......) facilitation did not change as a function of CS intensity. Even at higher intensities, the CS alone failed to elicit a MEP or a cortical silent period in the pre-activated FDI, excluding a direct spread of excitation from PMd to M1(HAND). No MEP facilitation was present while CS was applied rostrally over...

  20. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  1. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  2. Non linear excitation of waves at the vicinity of plasma resonance

    International Nuclear Information System (INIS)

    Chiron, Arnaud

    1992-01-01

    This research thesis reports the study of the non linear evolution of ionic acoustic and plasma waves excited by resonant absorption of an electromagnetic wave, in a non collisional plasma, without external magnetic field, and with a parabolic density profile. The plasma resonance occurs about the density profile peak. The numerical resolution of the Zakharov equation system is performed to describe the coupled evolution of the plasma wave electric field envelope, and low frequency density disturbances. Experiments performed in the microwave domain show the existence of a new effect related to the modification of the electromagnetic wave propagation under the influence of plasma density disturbances created by the ponderomotive force. This effect which results in a collisional relaxation of plasma waves trapped in the cavity formed at resonance, cannot be taken into account by a numerical simulation using a capacitive pump field. Measurements showed that plasma waves were trapped and relaxing in a cavity with characteristic dimensions of some thousands of Debye lengths, and that the plasma wave in the cavity was stationary. A new turbulence regime is thus highlighted [fr

  3. Relaxation Time of High-Density Amorphous Ice

    Science.gov (United States)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  4. Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins

    International Nuclear Information System (INIS)

    Lee, Andrew L.; Urbauer, Jeffrey L.; Wand, A. Joshua

    1997-01-01

    Selective incorporation of 13 C into the methyl groups of protein side chains is described as a means for simplifying the measurement and interpretation of 13 C relaxation parameters.High incorporation (>90%) is accomplished by using pyruvate(3- 13 C, 99%) as the sole carbon source in the growth media for protein overexpression in E. coli. This improved labeling scheme increases the sensitivity of the relaxation experiments by approximately fivefold when compared to randomly fractionally 13 C-labeled protein, allowing high-quality measurements on relatively dilute (<1 mM)protein samples at a relatively low cost

  5. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  6. Relaxation in x-space magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  7. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  8. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2′-bipyridine)2(CN)2

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Zhang, Wenkai; Alonso-Mori, Roberto

    2017-01-01

    We have used femtosecond resolution UV-visible and Kβ x-ray emission spectroscopy to characterize the electronic excited state dynamics of [Fe(bpy)2(CN)2], where bpy=2,2′-bipyridine, initiated by metal-to-ligand charge transfer (MLCT) excitation. The excited-state absorption in the transient UV-visible...

  9. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  10. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR

    2016-10-05

    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  11. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Science.gov (United States)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  12. Zeeman effect on disalignment of excited atoms by radiation re-absorption: neon 2p2 atoms in a discharge plasma

    International Nuclear Information System (INIS)

    Deguchi, K; Imagawa, T; Shikama, T; Hasuo, M

    2009-01-01

    We have measured the relaxation rate of alignment of neon atoms in a 2p 2 (in Paschen notation) level, which were excited by a linearly polarized laser pulse in a glow discharge plasma at 77 K, in a magnetic field of up to 3 T in the Voigt configuration. The relaxation rate decreased with an increase in the magnetic field strength of up to 0.5 T and showed no magnetic field dependence above 0.5 T. We developed a Monte Carlo simulation method to calculate alignment relaxation, or disalignment, by radiation re-absorption of atomic resonance lines in a magnetic field. The simulated result was found to be consistent with the observed magnetic field dependence. We analysed the results of the simulation from a point of competition between the Zeeman splitting and the Doppler broadening of the transition lines from the 2p 2 level.

  13. Excited state dynamics in In0.5Al0.04Ga0.46As/Al0.08Ga0.92As self-assembled quantum dots

    DEFF Research Database (Denmark)

    Smith, L.M.; Leosson, Kristjan; Østergaard, John Erland

    2001-01-01

    We use time-resolved photoluminescence spectroscopy to probe the relaxation of excited states in In0.5Al0.04Ga0.40As/Al0.08Ga0.92As self-assembled quantum dots. The relaxation rate of excitons confined to the quantum dots increases by nearly an order of magnitude as the energy of the states...... approaches the top of the quantum dot potential. This dramatic change in the dynamics of these states reflects the increasing complexity of the states localized near the top of the quantum dots....

  14. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  15. Relaxation of synchronization on complex networks.

    Science.gov (United States)

    Son, Seung-Woo; Jeong, Hawoong; Hong, Hyunsuk

    2008-07-01

    We study collective synchronization in a large number of coupled oscillators on various complex networks. In particular, we focus on the relaxation dynamics of the synchronization, which is important from the viewpoint of information transfer or the dynamics of system recovery from a perturbation. We measure the relaxation time tau that is required to establish global synchronization by varying the structural properties of the networks. It is found that the relaxation time in a strong-coupling regime (K>Kc) logarithmically increases with network size N , which is attributed to the initial random phase fluctuation given by O(N-1/2) . After elimination of the initial-phase fluctuation, the relaxation time is found to be independent of the system size; this implies that the local interaction that depends on the structural connectivity is irrelevant in the relaxation dynamics of the synchronization in the strong-coupling regime. The relaxation dynamics is analytically derived in a form independent of the system size, and it exhibits good consistency with numerical simulations. As an application, we also explore the recovery dynamics of the oscillators when perturbations enter the system.

  16. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  17. Stress relaxation under cyclic electron irradiation

    International Nuclear Information System (INIS)

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  18. Spin excitations in the quasi-two-dimensional charge-ordered insulator α -(BEDT-TTF ) 2I3 probed via 13C NMR

    Science.gov (United States)

    Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi

    2016-08-01

    The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.

  19. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...... of randomly oriented heteronuclear diatomic molecules can be obtained under simultaneous irradiation by a resonant and an off-resonant intense IR laser pulse: Molecules with one initial orientation will be vibrationally excited, while those with the opposite orientation will be at rest. The orientation-dependent...... distribution. (C) 2000 American Institute of Physics....

  20. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  1. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    Science.gov (United States)

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  2. Comparison of sensory modes of biofeedback in relaxation training of frontalis muscle.

    Science.gov (United States)

    Chen, W

    1981-12-01

    The purpose of this study was to compare the effectiveness of various sensory modes of EMG biofeedback to relaxation training of the frontalis muscle. 19 male and 29 female subjects were randomly selected from a pool of college volunteers. They were then randomly assigned 12 each to audiofeedback, visual feedback, audiovisual feedback, and no feedback groups. There were 11 20-min. sessions per subject. Subjects in the biofeedback groups were trained to reduce muscle tension voluntarily by utilizing Cyborg J33 EMG portable trainers. The subjects in the three feedback groups exhibited significantly lower muscle tension than did the subjects in the no-feedback control group. There were no significant differences in relaxation among the three feedback groups.

  3. Excited state redox properties of phthalocyanines: influence of the axial ligand on the rates of relaxation and electron-transfer quenching of the lowest /sup 3/. pi pi. /sup */ excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ferraudi, G J; Prasad, D R

    1874-01-01

    Laser flash excitations at 640 nm have been used to generate the transient spectra of the lowest-lying /sup 3/..pi pi../sup */ state of phthalocyaninatoruthenium(II) complexes. The properties of this excited state such as the properties of the maxima, lambda/sub max/ = 500 +/- 30 nm, and lifetimes, t/sub 1/2/ = 70-4500 ns, exhibit a large dependence on the electron-accepting and electron-withdrawing tendencies of the axial ligands. A similar influence was observed upon the rate of electron-transfer quenching of the /sup 3/..pi pi../sup */ state. Values between 10/sup 6/ and 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ for the self-exchange rate constant have been obtained, according to Marcus-Hush theoretical treatments, for (Ru(pc.)LL')/sup +//(/sup 3/..pi pi../sup */)(Ru(pc)LL') (L and L' = neutral axial ligands; pc = phthalocyaninate (2-)) and isoelectronic cobalt(III) and rhodium(III) couples. The redox properties of the ground and excited states are correlated with axial ligand-induced perturbations of the electronic structure.

  4. Relaxed states with plasma flow

    International Nuclear Information System (INIS)

    Avinash, K.; Taylor, J.B.

    1991-01-01

    In the theory of relaxation, a turbulent plasma reaches a state of minimum energy subject to constant magnetic helicity. In this state the plasma velocity is zero. Attempts have been made by introducing a number of different constraints, to obtain relaxed states with plasma flow. It is shown that these alternative constraints depend on two self-helicities, one for ions, and one for electrons. However, whereas there are strong arguments for the effective invariance of the original magnetic-helicity, these arguments do not apply to the self-helicities. Consequently the existence of relaxed states with flow remains in doubt. (author)

  5. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    International Nuclear Information System (INIS)

    Khenfouch, M.; Wéry, J.; Baïtoul, M.; Maaza, M.

    2014-01-01

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods

  6. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    Energy Technology Data Exchange (ETDEWEB)

    Khenfouch, M., E-mail: khenfouch@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Wéry, J. [Institut des Matériaux Jean Rouxel, Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3 (France); Baïtoul, M., E-mail: baitoul@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); Maaza, M. [iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa)

    2014-01-15

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods.

  7. Automated NMR relaxation dispersion data analysis using NESSY

    Directory of Open Access Journals (Sweden)

    Gooley Paul R

    2011-10-01

    Full Text Available Abstract Background Proteins are dynamic molecules with motions ranging from picoseconds to longer than seconds. Many protein functions, however, appear to occur on the micro to millisecond timescale and therefore there has been intense research of the importance of these motions in catalysis and molecular interactions. Nuclear Magnetic Resonance (NMR relaxation dispersion experiments are used to measure motion of discrete nuclei within the micro to millisecond timescale. Information about conformational/chemical exchange, populations of exchanging states and chemical shift differences are extracted from these experiments. To ensure these parameters are correctly extracted, accurate and careful analysis of these experiments is necessary. Results The software introduced in this article is designed for the automatic analysis of relaxation dispersion data and the extraction of the parameters mentioned above. It is written in Python for multi platform use and highest performance. Experimental data can be fitted to different models using the Levenberg-Marquardt minimization algorithm and different statistical tests can be used to select the best model. To demonstrate the functionality of this program, synthetic data as well as NMR data were analyzed. Analysis of these data including the generation of plots and color coded structures can be performed with minimal user intervention and using standard procedures that are included in the program. Conclusions NESSY is easy to use open source software to analyze NMR relaxation data. The robustness and standard procedures are demonstrated in this article.

  8. Time-resolved UV spectroscopy on ammonia excited by a pulsed CO2 laser

    International Nuclear Information System (INIS)

    Holbach, H.

    1980-07-01

    This work investigates the excitation of ammonia by a pulsed CO 2 laser, in particular the processes associated with collisions with argon. It was prompted by two previous observations: the previously reported infrared multiphoton dissociation of NH 3 under nearly collisionless conditions, and the ill understood excitation mechanism of apparently nonresonant low vibrational levels in the presence of Ar. Based on recent spectroscopic data, all vibrational-rotational levels were determined which are simultaneously excited by different CO 2 laser lines. Transitions between the 1 + and 2 - vibrational levels were also taken into account. The linewidth in these calculations was dominated by power broadening, which generates a half width at half maximum of 0.36 cm -1 at the typical power density of 10 MW/cm 2 . In order to reproduce published experimental absorption data, it proved necessary to take account all transitions within a distance of 20 cm -1 from the laser line. This fact implies in most cases the simultaneous population of a large number of vibrational-rotational levels. The population of levels by absorption or by subsequent collisional processes was probed by time-resolved absorption measurement of vibrational bands and their rotational envelope in the near UV. Time resolution (5...10) was sufficient to observe rotational relaxation within individual vibrational levels. Characteristic differences were found for the various excitation lines. (orig.) [de

  9. Process and device for the excitation and selective dissociation by absorption of a laser light and application to isotopic enrichment

    International Nuclear Information System (INIS)

    Rigny, Paul.

    1975-01-01

    The description is given of a process for the excitation and selective dissociation by absorption of the monochromatic light emitted by a high power laser. The laser light at frequency ν 1 is beamed on to an isotopic mixture of gaseous molecules, some of these molecules presenting transitions, between two vibration levels corresponding to a given isotope, separated by an energy interval ΔE 1 =2h ν 1 , and the molecules of a given isotopic species are thus preferentially dissociated into several component parts [fr

  10. Reflexogenic relaxation gastroduodenography by the acupuncture method

    Energy Technology Data Exchange (ETDEWEB)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, then followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect.

  11. Reflexogenic relaxation gastroduodenography by the acupuncture method

    International Nuclear Information System (INIS)

    Rabkin, I.Kh.; Tsibulyak, V.N.; Mnatsakyan, K.A.; Kondorskaya, I.L.; Galkina, T.V.

    1985-01-01

    The communication is based upon the results of x-ray examination of the stomach and duodenum in 63 patients with stenoses of the pyloroduodenal zone, cicatrical deformities of the duodenal bulb, bulbar ulcer, duodenal organic lesions, and functional stenosis of the loop. First a routine X-ray examination of the stomach and duodenum was performed using barium-water mixture, than followed acupuncture aimed at hypotension in the definite points of the floor of the auricle where branches of the vagus innervating the stomach and duodenum are located. As distinct from pharmacological relaxation this method produces a purpose-oriented selective effect

  12. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  13. Dual excitation acoustic paramagnetic logging tool

    Energy Technology Data Exchange (ETDEWEB)

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  14. On aggregation of relaxed T-indistinguishability operators

    Energy Technology Data Exchange (ETDEWEB)

    Fuster-Parra, P.

    2017-07-01

    The notion of T -indistinguishability operator was introduced by E. Trillas in [7] with the aim of fuzzifying the classical (crisp) notion of equivalence relation. Relaxed metrics and indistinguishability operators are closely related. Indeed, in [1] it has been stated that the logical counterpart for relaxed metrics is, in some sense, a generalized indistinguishability operator (relaxed T -indistinguishability operator). Notice that the notion of T -indistinguishability operator is retrieved as a particular case of relaxed T -indistinguishability operator whenever the relaxed T - indistinguishability operator satisfies also the reflexivity. In fact, a relaxed indistinguishability operator is a indistinguishability operator if and only if it holds the reflexivity. The same occurs when we consider T -indistinguishability operator that separates points. Several authors have studied the aggregation of some classes of fuzzy relations (see [3, 4, 5, 6]), where it is stated that transitivity is one of the most important properties of a fuzzy relation. In [5] a study of aggregation of T-indistinguishability operators is presented, motivated by this work the aim of this study is to analyze the case of aggregating relaxed T-indistinguishability operators. (Author)

  15. Nuclear spin-lattice relaxation in carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Panich, A.M., E-mail: pan@bgu.ac.i [Department of Physics, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Sergeev, N.A. [Institute of Physics, University of Szczecin, 70-451 Szczecin (Poland)

    2010-04-15

    Interpretation of nuclear spin-lattice relaxation data in the carbon nanostructures is usually based on the analysis of fluctuations of dipole-dipole interactions of nuclear spins and anisotropic electron-nuclear interactions responsible for chemical shielding, which are caused by molecular dynamics. However, many nanocarbon systems such as fullerene and nanotube derivatives, nanodiamonds and carbon onions reveal noticeable amount of paramagnetic defects with unpaired electrons originating from dangling bonds. The interaction between nuclear and electron spins strongly influences the nuclear spin-lattice relaxation, but usually is not taken into account, thus the relaxation data are not correctly interpreted. Here we report on the temperature dependent NMR spectra and spin-lattice relaxation measurements of intercalated fullerenes C{sub 60}(MF{sub 6}){sub 2} (M=As and Sb), where nuclear relaxation is caused by both molecular rotation and interaction between nuclei and unpaired electron spins. We present a detailed theoretical analysis of the spin-lattice relaxation data taking into account both these contributions. Good agreement between the experimental data and calculations is obtained. The developed approach would be useful in interpreting the NMR relaxation data in different nanostructures and their intercalation compounds.

  16. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    Science.gov (United States)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  17. Glass-like, low-energy excitations in neutron-irradiated quartz

    International Nuclear Information System (INIS)

    Gardner, J.W.

    1980-01-01

    The specific heat and thermal conductivity of neutron-irradiated crystalline quartz have been measured for temperatures approx. = 0.1 to 5 K. Four types of low-energy excitations are observed in the irradiated samples, two of which can be removed selectively by heat treatment. One set of remaining excitations gives rise to low-temperature thermal behavior characteristic of glassy (amorphous) solids. The density of these glass-like excitations can be 50% the density observed in vitreous silica, yet the sample still retains long-range atomic order. In a less-irradiated sample, glass-like excitations may be present with a density only approx. = 2.5% that observed in vitreous silica and possess a similar broad energy spectrum over 0.1 to 1 K

  18. Thermosonic Testing with Phased Matched Guided Wave Excitation

    OpenAIRE

    Markus RAHAMMER, Igor SOLODOV, Wolfgang BISLE, Dieter SCHERLING , Marc KREUTZBRUCK

    2016-01-01

    Abstract. Vibrothermography, is an established NDT method praised for its full-field and defect-selective imaging. Especially for cracks and similar damage, defect signals are produced within seconds for a wide variety of materials. Usually high power sonotrodes that are applied with kN pressure are employed in order to maximize ultrasonic excitation of the specimens. An increase in excitation power is used for boosting the defect signal strength, i.e. the rise in temperature. Improvements...

  19. Selective optical switching of interface-coupled relaxation dynamics in carbon nanotube-Si heterojunctions

    KAUST Repository

    Ponzoni, Stefano

    2014-10-16

    By properly tuning the photon energy of a femtosecond laser pump, we disentangle, in carbon nanotube-Si (CNT/Si) heterojunctions, the fast relaxation dynamics occurring in CNT from the slow repopulation dynamics due to hole charge transfer at the junction. In this way we are able to track the transfer of the photogenerated holes from the Si depletion layer to the CNT layer, under the action of the built-in heterojunction potential. This also clarifies that CNT play an active role in the junction and do not act only as channels for charge collection and transport.

  20. Selective optical switching of interface-coupled relaxation dynamics in carbon nanotube-Si heterojunctions

    KAUST Repository

    Ponzoni, Stefano; Galimberti, Gianluca; Sangaletti, L.; Castrucci, Paola; Del Gobbo, Silvano; Morbidoni, Maurizio; Scarselli, Manuela A.; Pagliara, Stefania

    2014-01-01

    By properly tuning the photon energy of a femtosecond laser pump, we disentangle, in carbon nanotube-Si (CNT/Si) heterojunctions, the fast relaxation dynamics occurring in CNT from the slow repopulation dynamics due to hole charge transfer at the junction. In this way we are able to track the transfer of the photogenerated holes from the Si depletion layer to the CNT layer, under the action of the built-in heterojunction potential. This also clarifies that CNT play an active role in the junction and do not act only as channels for charge collection and transport.

  1. Combined two-photon excitation and d → f energy-transfer in Ir/lanthanide dyads with time-gated selection from a two-component emission spectrum.

    Science.gov (United States)

    Edkins, Robert M; Sykes, Daniel; Beeby, Andrew; Ward, Michael D

    2012-10-14

    In a pair of Ir/Eu and Ir/Tb dyads, two-photon excitation of the Ir-phenylpyridine chromophore at 780 nm is followed by partial d → f energy-transfer to give a combination of short-lived Ir-based (blue) and long-lived lanthanide-based (red or green) emission; these components can be selected separately by time-gated detection.

  2. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  3. Selective modification of NMR relaxation time in human colorectal carcinoma by using gadolinium-diethylenetriaminepentaacetic acid conjugated with monoclonal antibody 19-9.

    Science.gov (United States)

    Curtet, C; Tellier, C; Bohy, J; Conti, M L; Saccavini, J C; Thedrez, P; Douillard, J Y; Chatal, J F; Koprowski, H

    1986-01-01

    Monoclonal antibody 19-9 (mAb 19-9) against human colon adenocarcinoma was conjugated with gadolinium X diethylenetriaminepentaacetic acid (Gd X DTPA) and used as a contrast agent in nuclear magnetic resonance (NMR) in an effort to improve tumor target selectivity in nude mice. The data indicate that Gd X DTPA-mAb 19-9 in solution decreased the T1 relaxation of water protons at 90 MHz in direct proportion to the gadolinium concentration, and this effect was greater than in Gd X DTPA solutions. T1 relaxation time at 90 MHz, measured in tumors removed from nude mice 24 hr after injection of Gd X DTPA-mAb 19-9 (Gd, 20 mumol/kg; 16 DTPA molecules per mAb molecule), was significantly decreased (by 15%) as compared with the control group. Similar results were obtained in tumors from mice injected with Gd X DTPA-mAb 19-9 solutions in which Gd was used at 2, 6, or 10 mumol/kg (16 DTPA molecules per mAb molecule). These doses are lower than those commonly used for Gd X DTPA (10-100 mumol/kg) as contrast agent. Tumor localization by the Gd X DTPA-mAb 19-9 complex containing radioactive Gd (0.3 microCi/microgram of 153Gd) to confirm scintigraphy revealed significant concentrations of the complex (5% of the injected dose per gram of tissue) in the tumor. Scan images recorded in planar scintigraphy at day 5 showed good visualization of tumors. Images PMID:3459174

  4. Heteronuclear relaxation in time-dependent spin systems: 15N-T1ρ dispersion during adiabatic fast passage

    International Nuclear Information System (INIS)

    Konrat, Robert; Tollinger, Martin

    1999-01-01

    A novel NMR experiment comprising adiabatic fast passage techniques for the measurement of heteronuclear self-relaxation rates in fully 15N-enriched proteins is described. Heteronuclear self-relaxation is monitored by performing adiabatic fast passage (AFP) experiments at variable adiabaticity (e.g., variation of RF spin-lock field intensity). The experiment encompasses gradient- selection and sensitivity-enhancement. It is shown that transverse relaxation rates derived with this method are in good agreement with the ones measured by the classical Carr-Purcell-Meiboom-Gill (CPMG) sequences. An application of this method to the study of the carboxyl-terminal LIM domain of quail cysteine and glycine-rich protein qCRP2(LIM2) is presented

  5. [A study on Korean concepts of relaxation].

    Science.gov (United States)

    Park, J S

    1992-01-01

    Relaxation technique is an independent nursing intervention used in various stressful situations. The concept of relaxation must be explored for the meaning given by the people in their traditional thought and philosophy. Korean relaxation technique, wanting to become culturally acceptable and effective, is learning to recognize and develop Korean concepts, experiences, and musics of relaxation. This study was aimed at discovering Korean concepts, experiences and musics of relaxation and contributing the development of the relaxation technique for Korean people. The subjects were 59 nursing students, 39 hospitalized patients, 61 housewives, 21 rural residents and 16 researchers. Data were collected from September 4th to October 24th, 1991 by interviews or questionnaires. The data analysis was done by qualitative research method, and validity assured by conformation of the concept and category by 2 nursing scientists who had written a Master's thesis on the relaxation technique. The results of the study were summarized as follows; 1. The meaning of the relaxation concept; From 298 statements, 107 concepts were extracted and then 5 categories "Physical domain", "Psychological domain", "Complex domain", "Situation", and "environment" were organized. 'Don't have discomforts, 'don't have muscle tension', 'don't have energy (him in Korean)', 'don't have activities' subcategories were included in "Physical domain". 'Don't have anxiety', 'feel good', 'emotional stability', 'don't have wordly thoughts', 'feel one's brain muddled', 'loss of desire' subcategories were included in "physical domain" 'Comfort body and mind', 'don't have tension of body and mind', 'be sagged' 'liveliness of thoughts' subcategories were included in "Complex domain". 'Rest', 'sleep', 'others' subcategories were included in "Situation domain". And 'quite environment' & 'comfortable environment' subcategories were included in "Environmental domain". 2. The experiences of the relaxation; From 151

  6. Relaxation processes in aqueous solutions upon X-ray exposure. Entanglement of electronic and nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Isaak

    2017-07-01

    About a decade ago new types of electronic non-radiative relaxation processes, involving the environment of an electronically excited or ionized monomer, have been predicted for van der Waals clusters and these were also the first systems where such processes have been detected experimentally. These new autoionization channels encompass the recombination of an electron and a hole, and the energy transfer to a neighboring atom or molecule. Two processes can be distinguished here. In the intermolecular Coulombic decay (ICD) the hole created upon ionization of a monomer is filled by a valence electron of the same species, and the energy released in this electron-hole recombination is used to ionize a neighboring species. In the electron transfer mediated decay (ETMD) the initial hole is filled by an electron from a neighboring species, and the energy released by this recombination is either used to ionize the same neighbor species, or to ionize a third monomer. In more recent experiments on liquid water it has been discovered that these non- local autoionization processes are strongly coupled with ultrafast nuclear dynamics. The core ionization initiates proton motion along a hydrogen donor-bond of the electronically excited water cation. This nuclear dynamics leads to the formation of transient cationic species where a proton is shared by two neighboring water molecules. Subsequent autoionization, either via Auger decay, ICD or ETMD, then occurs from any of such structure transients. This relaxation process is termed proton transfer mediated charge separation, PTM-CS. It has been found in a number of experiments that the probability of PTM-CS to occur depends on the hydrogen-bond strength between the core-ionized molecule and solvent molecules.

  7. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca(2+) -activated K(+) channels.

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-06-01

    Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). At a concentration without direct effect on vascular tone, kaempferol (3 × 10(-6) M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by N(ω)-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10(-4) M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10(-6) M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10(-3) M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa 1.1; 10(-7) M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa 1.1 channels. © 2015 The British Pharmacological Society.

  8. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  9. Magnetic Resonance Fingerprinting with short relaxation intervals.

    Science.gov (United States)

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  10. The Role of Relaxation Training to Pregnant Mothers on Health Index of Infants

    Directory of Open Access Journals (Sweden)

    SA Mosaviasl

    2009-07-01

    Full Text Available ABSTRACT: Introduction & Objective: Investigations have shown that the emotional stress during the pregnancy period could have sustainable effects on the embryo. Different factors such as family members, spouse, supporting friends could relive these effects, but coping skills especially relaxation could be more effective on stress. This study was conducted to investigate the effect of relaxation training to pregnant mothers on health index such as Apgar index, weight, height, and cowlick grade in infants. Materials & Methods: This is a clinical trail in which 100 pregnant women who referred to health center of Yasuj (2006-2008 were selected using simple sampling method and assigned randomly to case and control groups. The relaxation was taught to the case group whereas nothing was taught to control groups. At the time of delivery the above mentioned indices were assessed. The gathered data was analyzed using SPSS software. Results: The results showed a significant difference between two groups in weight, height, cephalic index, and colic grade (with better situation in case group. There was no significant difference between two groups in Apgar scores. Conclusion: Considering the results of this study, it seems that teaching of relaxation to pregnant women could be effective in health index of children especially in the time of delivery. Therefore attention should be paid to different methods for reducing the stress in this group of mothers. Keywords: relaxation, pregnant women, infants, Apgar scores

  11. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  12. Use of relaxation skills in differentially skilled athletes.

    OpenAIRE

    Kudlackova, K.; Eccles, D. W.; Dieffenbach, K.

    2013-01-01

    Objectives: To examine the use of relaxation skills by differentially skilled athletes in relation to the deliberate practice framework. Design: Differentially skilled athletes completed a survey about their use of relaxation skills. Method: 150 athletes representing three skill levels (recreational, college, and professional) completed the deliberate relaxation for sport survey, which assessed relaxation on three deliberate practice dimensions (relevancy, concentration, and ...

  13. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  14. Vibrational and electronic excitation of hexatriacontane thin films by low energy electron impact

    International Nuclear Information System (INIS)

    Vilar, M.R.; Schott, M.; Pfluger, P.

    1990-01-01

    Thin polycrystalline films of hexatriacontane (HTC) were irradiated with low energy (E=0.5--15 eV) electrons, and off-specular backscattered electron spectra were measured. Below E∼7 eV, single and multiple vibrational excitations only are observed, which relax the electrons down to the bottom of the HTC conduction band. Due to the negative electron affinity of HTC, thermal electrons are emitted into vacuum. Structure in the backscattered electron current at kinetic energies about 1.5 and 4 eV are associated to conduction band density of states. Above E∼7 eV, the dominant losses correspond to electronic excitations, excitons, or above a threshold (energy of the electron inside the HTC film) at 9.2±0.1 eV, electron--hole pair generation. The latter process is very efficient and reaches a yield of the order of one ∼11 eV. Evidence for chemical reaction above E∼4 eV is observed

  15. Mean excitation energies for use in Bethe's stopping-power formula

    International Nuclear Information System (INIS)

    Berger, M.J.; Seltzer, S.M.

    1983-01-01

    A review has been made of the mean excitation energies that can be derived from the analysis of stopping-power and range measurements, and from semi-empirical dipole oscillator-strength distributions for gases and dielectric-response functions for solids. On the basis of this review, mean excitation energies have been selected for 43 elemental substances and 54 compounds. Additivity rules have also been considered which allow one to estimate the mean excitation energies for compounds for which no direct data are available. These additivity rules are based on the use of mean excitation energies for atomic constituents which, to a certain extent, take into account the effects of chemical binding and physical aggregation

  16. Low-lying excited states by constrained DFT

    Science.gov (United States)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  17. Relaxation and Distraction in Experimental Desensitization.

    Science.gov (United States)

    Weir, R. O.; Marshall, W. L.

    1980-01-01

    Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)

  18. Emission spectrum and relaxation kinetics of SO2 induced by 266 nm laser.

    Science.gov (United States)

    Zhang, Guiyin; Zhang, Lianshui; Jin, Yidong

    2010-09-15

    Laser induced fluorescence (LIF) emission spectrum of SO(2) in the range of 270.0-470.0 nm has been obtained with the quadruple harmonic output (266 nm) of a pulsed Nd:YAG laser as excitation source. The spectrum is composed of a continuous envelope in the short wavelength side, while it shows the character of banded structure superimposed on a continuous one in the long wavelength region. Fluorescence emission from the hybrid states of A(1)A(2)+B(1)B(1) and X(1)A(1)+B(1)B(1) forms the continuous envelope and phosphorescence emission from the triplet state a(3)B(1) forms the banded progression. It is also found that direct emission from laser excited states is very weak. The primary portion of the emission is from the energy levels populated by collision relaxation or collision induced intersystem crossing process. The harmonic frequencies and inharmonic coefficients of the symmetric stretching vibration and the bending vibration of X(1)A(1) state are derived from the ascription of the phosphorescence progression. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  20. Relaxation training after stroke: potential to reduce anxiety.

    Science.gov (United States)

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth

    2014-01-01

    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  1. Relaxation properties in classical diamagnetism

    Science.gov (United States)

    Carati, A.; Benfenati, F.; Galgani, L.

    2011-06-01

    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out.

  2. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    Science.gov (United States)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  3. Relaxation Techniques to Manage IBS Symptoms

    Science.gov (United States)

    ... for 15–20 seconds and then begin again. Progressive Muscle Relaxation This method of relaxation focuses on ... helpful, please consider supporting IFFGD with a small tax- deductible donation. Make Donation Adapted from IFFGD Publication # ...

  4. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  5. Control of population of excited nitrogen molecules by mixing hydrogen in low pressure discharge; Chisso jun`antei reiki bunshi mitsudo no quenching ni yoru seigyo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, K.; Yumoto, M.; Sakai, T. [Musashi Institute of Technology, Tokyo (Japan)

    1998-06-01

    The authors have studied on surface treatment of PTFE by a low pressure discharge. It is deduced that excited nitrogen molecules contribute to introduce polar components on the surface. To confirm the speculation, we tried to change population of metastable nitrogen N2 (A{sup 3}{Sigma}u{sup +}) by quenching precursor N2 (B{sup 3}{pi}g), with hydrogen molecule. The decrease of relaxation time which indicates a change of excited molecule and measured by emission spectroscopy using a time after glow method was obtained. As a result, the relaxation times of N2 (B{sup 3}{pi}g) and N2 (A{sup 3}{Sigma}u{sup +}) decreased to 55% and 20% respectively, when mixing ratio of hydrogen was 3%. It was also deduced that hydrogen atom may take a part in a quenching process of N2 (A{sup 3}{Sigma}u{sup +}). 14 refs., 11 figs., 1 tab.

  6. Entrance channel excitations in the 28Si + 28Si reaction

    International Nuclear Information System (INIS)

    Decowski, P.; Gierlik, E.; Box, P.F.; Kamermans, R.; Nieuwenhuizen, G.J. van; Meijer, R.J.; Griffioen, K.A.; Wilschut, H.W.; Giorni, A.; Morand, C.; Demeyer, A.; Guinet, D.

    1991-01-01

    Velocity spectra of heavy ions produced in the 28 Si + 28 Si reaction at bombarding energies of 19.7 and 30 MeV/nucleon were measured and interpreted within the Q-optimum model extended by the inclusion of particle evaporation from excited fragments. Regions of forward angle spectra corresponding to the mutual excitation of the reaction partners with net mass transfer zero projected onto the Q-value variable show an enhancement at Q-values of -60 - -80 MeV (excitation energies of the reaction partners equal to 30 - 40 MeV). This energy range coincides with the region of 2ℎω - 3ℎω excitations characteristic for giant osciallations. This selective excitation, which occurs at a very early stage of the reaction (the cross section is the largest at very forward angles), provides an important doorway to other dissipative processes

  7. Interstitial relaxations due to hydrostatic stress in niobium--oxygen alloys

    International Nuclear Information System (INIS)

    Tewari, S.N.

    1974-01-01

    Experimental investigations of the anelastic relaxation induced by hydrostatic stress in the range from ambient to 81 ksi were made for niobium--oxygen alloys. The anelastic responses, both for the pressurization and the pressure release experiments, were followed by measuring the relative length change between the oxygenated niobium sample and a pure niobium frame with a precision of about 2 A. The relaxation spectrum observed was shown to be made up of three distinct relaxations with unique relaxation times and strengths. The pressure dependence of the relaxation times gave the apparent activation volume for these relaxations of the order of 4 cm 3 /mole. The relaxations were observed to have relaxation strengths of the order of 10 -4 which were found to be independent of pressure up to 81 ksi. The relaxation times for these relaxations were found to occur in the same general temperature range as those for the Snoek relaxations of oxygen clusters in niobium. The temperature dependence of the relaxation times, however, gave activation energies of about 11 to 15 kcal/mole, as compared with roughly 27 to 29 kcal/mole for the Snoek relaxation of oxygen clusters in niobium. Several possible models for these relaxations were developed, however, none could predict the observed temperature dependence. The best interpretation of the data is that due to some anomalous competing relaxation the actual temperature dependence of these relaxations could not be observed. A completely self-consistent analysis is found which is based upon this assumption. (U.S.)

  8. Relaxed Bell inequalities and Kochen-Specker theorems

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Michael J. W. [Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2011-08-15

    The combination of various physically plausible properties, such as no signaling, determinism, and experimental free will, is known to be incompatible with quantum correlations. Hence, these properties must be individually or jointly relaxed in any model of such correlations. The necessary degrees of relaxation are quantified here via natural distance and information-theoretic measures. This allows quantitative comparisons between different models in terms of the resources, such as the number of bits of randomness, communication, and/or correlation, that they require. For example, measurement dependence is a relatively strong resource for modeling singlet-state correlations, with only 1/15 of one bit of correlation required between measurement settings and the underlying variable. It is shown how various ''relaxed'' Bell inequalities may be obtained, which precisely specify the complementary degrees of relaxation required to model any given violation of a standard Bell inequality. The robustness of a class of Kochen-Specker theorems, to relaxation of measurement independence, is also investigated. It is shown that a theorem of Mermin remains valid unless measurement independence is relaxed by 1/3. The Conway-Kochen ''free will'' theorem and a result of Hardy are less robust, failing if measurement independence is relaxed by only 6.5% and 4.5%, respectively. An appendix shows that existence of an outcome-independent model is equivalent to existence of a deterministic model.

  9. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-04-17

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  10. F-center mechanism of long-term relaxation in lead zirconate-titanate-based piezoelectric ceramics. 1. After-heating relaxation

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2015-12-01

    The oxygen vacancies-based model for description of the long-time relaxation processes is suggested. The model takes into account oxygen vacancies on the sample’s surface ends, their conversion into F+- and F0-centers under external effects (due to the liberation of the pyroelectric charge and subsequent relaxation of these centers into the simple oxygen vacancies after the actions termination. The initial sample’s state is electroneutrality one. F-center formation leads to the violation of the original sample’s electroneutrality, and generates DC electric field into the sample. Relaxation of F-centers is accompanied by decreasing of electric field, induced by them, and dielectric constant relaxation as consequent effect.

  11. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  12. The effect of preferred music genre selection versus preferred song selection on experimentally induced anxiety levels.

    Science.gov (United States)

    Walworth, Darcy DeLoach

    2003-01-01

    The purpose of this study was to investigate the differences of experimentally induced anxiety levels reached by subjects listening to no music (n = 30), subjects listening to music selected by the experimenter from the subject's preferred genre or artist listed as relaxing (n = 30), and subjects listening to a specific song they listed as relaxing (n = 30). Subjects consisted of 90 individuals, male and female, randomly assigned to one of the three groups mentioned above. Subjects in either music group filled out a questionnaire prior to participating in the study indicating their preference of music used for relaxation purposes. Subjects in Experimental Group 1 marked their preferred genres and/or artists, and Experimental Group 2 marked specific songs used for relaxation purposes. While the experimenter hypothesized subjects in Experimental Group 2 would show less anxiety than both the control group and Experimental Group 1, there were no significant differences found between the 2 music groups in anxiety levels reached. However, there was a statistically significant difference between the no music control group and both music groups in the anxiety level reached by subjects. Subjects listening to music, both songs chosen by the experimenter and subject selected songs, showed significantly less anxiety than subjects not listening to music.

  13. Cross-relaxation in multiple pulse NQR spin-locking

    Energy Technology Data Exchange (ETDEWEB)

    Beltjukov, P. A.; Kibrik, G. E. [Perm State University, Physics Department (Russian Federation); Furman, G. B., E-mail: gregoryf@bgu.ac.il; Goren, S. D. [Ben Gurion University, Physics Department (Israel)

    2008-01-15

    The experimental and theoretical NQR multiple-pulse spin locking study of cross-relaxation process in solids containing nuclei of two different sorts I > 1/2 and S = 1/2 coupled by the dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of the both spin systems describing the mutual spin lattice relaxation and the cross-relaxation were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence describing by a sum of two exponents. The cross relaxation time is calculated as a function of the multiple-pulse field parameters which agree with the experimental data. The calculated magnetization cross relaxation time vs the strength of the applied magnetic field agrees well with the obtained experimental data.

  14. Collisional relaxation of electron tail distribution

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru; Okamoto, Masao.

    1985-05-01

    Relaxation due to the Coulomb collisions of the electron velocity distribution function with a high energy tail is investigated in detail. In the course of the relaxation, a 'saddle' point can be created in velocity space owing to upsilon -3 dependence of the deflection rate and a positive slope or a 'dip' appears in the tail direction. The time evolution of the electron tail is studied analytically. A comparison is made with numerical results by using a Fokker-Planck code. Also discussed is the kinetic instability concerned with the positive slope during the relaxation. (author)

  15. Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance a2+-activated K+ channels

    Science.gov (United States)

    Xu, Y C; Leung, S W S; Leung, G P H; Man, R Y K

    2015-01-01

    Background and Purpose Kaempferol, a plant flavonoid present in normal human diet, can modulate vasomotor tone. The present study aimed to elucidate the signalling pathway through which this flavonoid enhanced relaxation of vascular smooth muscle. Experimental Approach The effect of kaempferol on the relaxation of porcine coronary arteries to endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) relaxing agents was studied in an in vitro organ chamber setup. The whole-cell patch-clamp technique was used to determine the effect of kaempferol on potassium channels in porcine coronary artery smooth muscle cells (PCASMCs). Key Results At a concentration without direct effect on vascular tone, kaempferol (3 × 10−6 M) enhanced relaxations produced by bradykinin and sodium nitroprusside. The potentiation by kaempferol of the bradykinin-induced relaxation was not affected by Nω-nitro-L-arginine methyl ester, an inhibitor of NO synthase (10−4 M) or TRAM-34 plus UCL 1684, inhibitors of intermediate- and small-conductance calcium-activated potassium channels, respectively (10−6 M each), but was abolished by tetraethylammonium chloride, a non-selective inhibitor of calcium-activated potassium channels (10−3 M), and iberiotoxin, a selective inhibitor of large-conductance calcium-activated potassium channel (KCa1.1; 10−7 M). Iberiotoxin also inhibited the potentiation by kaempferol of sodium nitroprusside-induced relaxations. Kaempferol stimulated an outward-rectifying current in PCASMCs, which was abolished by iberiotoxin. Conclusions and Implications The present results suggest that, in smooth muscle cells of the porcine coronary artery, kaempferol enhanced relaxations caused by endothelium-derived and exogenous NO as well as those due to endothelium-dependent hyperpolarization. This vascular effect of kaempferol involved the activation of KCa1.1 channels. PMID:25652142

  16. New insights into structure-function relationship of the DHPR beta1a subunit in skeletal muscle excitation-contraction coupling using zebrafish 'relaxed' as an expression system

    International Nuclear Information System (INIS)

    Dayal, A.

    2010-01-01

    The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) [beta]1a subunit. The lack of [beta]1a not only impedes functional [alpha]1S membrane expression but also precludes the skeletal muscle-specific ultrastructural arrangement of DHPRs into tetrads opposite ryanodine receptor (RyR1), coherent with the absence of skeletal muscle excitation-contraction (EC) coupling. With the plethora of experimental approaches feasible with zebrafish model organism and importantly with the [beta]1-null mutation having a monogenetic inheritance and because of the survival of the relaxed larvae for some days, we were able to establish the zebrafish relaxed as an expression system. Linking in vitro to in vivo observations, a clear differentiation between the major functional roles of [beta] subunits in EC coupling was feasible. The skeletal muscle [beta]1a subunit was able to restore all parameters of EC coupling upon expression in relaxed myotubes and larvae. Expression of the phylogenetically closest isoform to [beta]1a, the cardiac/neuronal [beta]2a subunit or the most distant neuronal [beta]M from the housefly in relaxed myotubes and larvae was likewise able to fully restore [alpha]1S triad targeting and facilitate charge movement. However, efficient tetrad formation and thus intact DHPR-RyR1 coupling was exclusively promoted by the [beta]1a isoform. Consequently, we postulated a model according to which [beta]1a acts as a unique allosteric modifier of [alpha]1S conformation crucial for skeletal muscle EC coupling. Therefore, unique structural elements in [beta]1a must be present which endow it with this exclusive property. Earlier, a unique hydrophobic heptad repeat motif (LVV) in the [beta]1a C-terminus was postulated by others to be essential for skeletal muscle EC coupling. We wanted to address the question if the proposed [beta]1a heptad repeat motif could be an active element of the DHPR-RyR1 signal transduction

  17. DO FOOT REFLEXOLOGY AND RELAXATION TRAINING DECREASE PREMENSTRUAL SYMPTOMS IN ADOLESCENT FEMALES

    Directory of Open Access Journals (Sweden)

    Marwa A. Mohamed

    2016-10-01

    Full Text Available Background: Premenstrual syndrome is a current condition characterized by troublesome symptoms as tension, irritability, depression, headache, anxiety and loss of self-control, so the aim of this study was to investigate the effect of foot reflexology augmented with relaxation training on premenstrual syndrome in adolescent females. Methods: A sample of 50 volunteers, virgin females diagnosed as premenstrual syndrome was selected from the students of Faculty of Physical Therapy, Cairo University. Their age was ranged between 19 to 23 years with mean value of (21.53±2.27 yrs and BMI was ≤28 Kg/m² with mean value of (24.04±2.41 Kg/m².A detailed medical history was obtained to screen other pathological conditions that may affect the results. Females were randomly assigned into two equal groups. Group (A consisted of 25 subjects who received foot reflexology in addition to relaxation training techniques twice a week for 8 weeks. Group (B consisted of 25 patients, who received relaxation training techniques only twice a week for 8 weeks. Assessment of all subjects in both groups was carried out before and after the treatment program through heart rate, respiratory rate in addition to plasma cortisol level and daily symptoms report chart. Results: Showed a statistical highly significant decrease (p<0.001 in heart rate, respiratory rate, plasma cortisol level as well as daily symptoms report score in group (A while there was a statistical significant decrease (p<0.05 in all variables in group (B. Conclusions: Adding foot reflexology to relaxation training had a great positive effect on premenstrual syndrome in adolescent females than relaxation training only.

  18. Ultraviolet relaxation dynamics of aniline, N, N-dimethylaniline and 3,5-dimethylaniline at 250 nm

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, James O. F.; Saalbach, Lisa; Crane, Stuart W. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Paterson, Martin J. [Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Townsend, Dave, E-mail: D.Townsend@hw.ac.uk [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2015-03-21

    Time-resolved photoelectron imaging was used to investigate the electronic relaxation dynamics of gas-phase aniline, N, N-dimethylaniline, and 3,5-dimethylaniline following ultraviolet excitation at 250 nm. Our analysis was supported by ab initio coupled-cluster calculations evaluating excited state energies and (in aniline) the evolution of a range of excited state physical properties as a function of N–H bond extension. Due to a lack of consistency between several earlier studies undertaken in aniline, the specific aim of this present work was to gain new insight into the previously proposed non-adiabatic coupling interaction between the two lowest lying singlet excited states S{sub 1}(ππ{sup ∗}) and S{sub 2}(3s/πσ{sup ∗}). The methyl-substituted systems N, N-dimethylaniline and 3,5-dimethylaniline were included in order to obtain more detailed dynamical information about the key internal molecular coordinates that drive the S{sub 1}(ππ{sup ∗})/S{sub 2}(3s/πσ{sup ∗}) coupling mechanism. Our findings suggest that in all three systems, both electronic states are directly populated during the initial excitation, with the S{sub 2}(3s/πσ{sup ∗}) state then potentially decaying via either direct dissociation along the N–X stretching coordinate (X = H or CH{sub 3}) or internal conversion to the S{sub 1}(ππ{sup ∗}) state. In aniline and N, N-dimethylaniline, both pathways most likely compete in the depletion of S{sub 2}(3s/πσ{sup ∗}) state population. However, in 3,5-dimethylaniline, only the direct dissociation mechanism appears to be active. This is rationalized in terms of changes in the relative rates of the two decay pathways upon methylation of the aromatic ring system.

  19. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  20. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)