WorldWideScience

Sample records for selective epitaxial growth

  1. Large-area selective CVD epitaxial growth of Ge on Si substrates

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Nanver, L.K.

    2011-01-01

    Selective epitaxial growth of crystalline Ge on Si in a standard ASM Epsilon 2000 CVD reactor is investigated for the fabrication of Ge p+n diodes. At the deposition temperature of 700?C, most of the lattice mismatch-defects are trapped within first 300nm of Ge growth and good quality single crystal

  2. Ge-on-Si : Single-Crystal Selective Epitaxial Growth in a CVD Reactor

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.B.; Nanver, L.K.

    2012-01-01

    A standard Si/SiGe ASM CVD reactor that was recently modified for merging GaAs and Si epitaxial growth in one system is utilized to achieve intrinsic and doped epitaxial Ge-on-Si with low threading dislocation and defect densities. For this purpose, the system is equipped with 2% diluted GeH4 as the

  3. Selective epitaxial growth of Ge1-xSnx on Si by using metal-organic chemical vapor deposition

    Science.gov (United States)

    Washizu, Tomoya; Ike, Shinichi; Inuzuka, Yuki; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2017-06-01

    Selective epitaxial growth of Ge and Ge1-xSnx layers on Si substrates was performed by using metal-organic chemical vapor deposition (MOCVD) with precursors of tertiary-butyl-germane (t-BGe) and tri-butyl-vinyl-tin (TBVSn). We investigated the effects of growth temperature and total pressure during growth on the selectivity and the crystallinity of the Ge and Ge1-xSnx epitaxial layers. Under low total pressure growth conditions, the dominant mechanism of the selective growth of Ge epitaxial layers is the desorption of the Ge precursors. At a high total pressure case, it is needed to control the surface migration of precursors to realize the selectivity because the desorption of Ge precursors was suppressed. The selectivity of Ge growth was improved by diffusion of the Ge precursors on the SiO2 surfaces when patterned substrates were used at a high total pressure. The selective epitaxial growth of Ge1-xSnx layer was also realized using MOCVD. We found that the Sn precursors less likely to desorb from the SiO2 surfaces than the Ge precursors.

  4. Epitaxial growth of hybrid nanostructures

    Science.gov (United States)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  5. Selective epitaxial growth of stepwise SiGe:B at the recessed sources and drains: A growth kinetics and strain distribution study

    Directory of Open Access Journals (Sweden)

    Sangmo Koo

    2016-09-01

    Full Text Available The selective epitaxial growth of Si1-xGex and the related strain properties were studied. Epitaxial Si1-xGex films were deposited on (100 and (110 orientation wafers and on patterned Si wafers with recessed source and drain structures via ultrahigh vacuum chemical vapor deposition using different growing steps and Ge concentrations. The stepwise process was split into more than 6 growing steps that ranged in thicknesses from a few to 120 nm in order to cover the wide stages of epitaxial growth. The growth rates of SiGe on the plane and patterned wafers were examined and a dependence on the surface orientation was identified. As the germanium concentration increased, defects were generated with thinner Si1-xGex growth. The defect generation was the result of the strain evolution which was examined for channel regions with a Si1-xGex source/drain (S/D structure.

  6. Epitaxial growth of CZT(S,Se) on silicon

    Science.gov (United States)

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  7. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    Science.gov (United States)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  8. Selective growth of Ge1- x Sn x epitaxial layer on patterned SiO2/Si substrate by metal-organic chemical vapor deposition

    Science.gov (United States)

    Takeuchi, Wakana; Washizu, Tomoya; Ike, Shinichi; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have investigated the selective growth of a Ge1- x Sn x epitaxial layer on a line/space-patterned SiO2/Si substrate by metal-organic chemical vapor deposition. We examined the behavior of a Sn precursor of tributyl(vinyl)tin (TBVSn) during the growth on Si and SiO2 substrates and investigated the effect of the Sn precursor on the selective growth. The selective growth of the Ge1- x Sn x epitaxial layer was performed under various total pressures and growth temperatures of 300 and 350 °C. The selective growth of the Ge1- x Sn x epitaxial layer on the patterned Si region is achieved at a low total pressure without Ge1- x Sn x growth on the SiO2 region. In addition, we found that the Sn content in the Ge1- x Sn x epitaxial layer increases with width of the SiO2 region for a fixed Si width even with low total pressure. To control the Sn content in the selective growth of the Ge1- x Sn x epitaxial layer, it is important to suppress the decomposition and migration of Sn and Ge precursors.

  9. Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors

    International Nuclear Information System (INIS)

    Liu, Zhaojun; Ma, Jun; Huang, Tongde; Liu, Chao; May Lau, Kei

    2014-01-01

    In this Letter, we report selective epitaxial growth of monolithically integrated GaN-based light emitting diodes (LEDs) with AlGaN/GaN high-electron-mobility transistor (HEMT) drivers. A comparison of two integration schemes, selective epitaxial removal (SER), and selective epitaxial growth (SEG) was made. We found the SER resulted in serious degradation of the underlying LEDs in a HEMT-on-LED structure due to damage of the p-GaN surface. The problem was circumvented using the SEG that avoided plasma etching and minimized device degradation. The integrated HEMT-LEDs by SEG exhibited comparable characteristics as unintegrated devices and emitted modulated blue light by gate biasing

  10. Effect of gas flow on the selective area growth of gallium nitride via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Kasarla, K. R.; Korakakis, D.

    2007-08-01

    The effect of gas flow on the selective area growth (SAG) of gallium nitride (GaN) grown via metal organic vapor phase epitaxy (MOVPE) has been investigated. In this study, the SAG of GaN was carried out on a silicon dioxide striped pattern along the GaN direction. SAG was initiated with the striped pattern oriented parallel and normal to the incoming gas flow in a horizontal reactor. The orientation of the pattern did not impact cross section of the structure after re-growth as both orientations resulted in similar trapezoidal structures bounded by the (0 0 0 1) and {1 1 2¯ n} facets ( n≈1.7-2.2). However, the growth rates were shown to depend on the orientation of the pattern as the normally oriented samples exhibited enhanced vertical and cross-sectional growth rates compared to the parallel oriented samples. All growths occurred under identical conditions and therefore the difference in growth rates must be attributed to a difference in mass transport of species.

  11. Mushroom-free selective epitaxial growth of Si, SiGe and SiGe:B raised sources and drains

    Science.gov (United States)

    Hartmann, J. M.; Benevent, V.; Barnes, J. P.; Veillerot, M.; Lafond, D.; Damlencourt, J. F.; Morvan, S.; Prévitali, B.; Andrieu, F.; Loubet, N.; Dutartre, D.

    2013-05-01

    We have evaluated various Cyclic Selective Epitaxial Growth/Etch (CSEGE) processes in order to grow "mushroom-free" Si and SiGe:B Raised Sources and Drains (RSDs) on each side of ultra-short gate length Extra-Thin Silicon-On-Insulator (ET-SOI) transistors. The 750 °C, 20 Torr Si CSEGE process we have developed (5 chlorinated growth steps with four HCl etch steps in-between) yielded excellent crystalline quality, typically 18 nm thick Si RSDs. Growth was conformal along the Si3N4 sidewall spacers, without any poly-Si mushrooms on top of unprotected gates. We have then evaluated on blanket 300 mm Si(001) wafers the feasibility of a 650 °C, 20 Torr SiGe:B CSEGE process (5 chlorinated growth steps with four HCl etch steps in-between, as for Si). As expected, the deposited thickness decreased as the total HCl etch time increased. This came hands in hands with unforeseen (i) decrease of the mean Ge concentration (from 30% down to 26%) and (ii) increase of the substitutional B concentration (from 2 × 1020 cm-3 up to 3 × 1020 cm-3). They were due to fluctuations of the Ge concentration and of the atomic B concentration [B] in such layers (drop of the Ge% and increase of [B] at etch step locations). Such blanket layers were a bit rougher than layers grown using a single epitaxy step, but nevertheless of excellent crystalline quality. Transposition of our CSEGE process on patterned ET-SOI wafers did not yield the expected results. HCl etch steps indeed helped in partly or totally removing the poly-SiGe:B mushrooms on top of the gates. This was however at the expense of the crystalline quality and 2D nature of the ˜45 nm thick Si0.7Ge0.3:B recessed sources and drains selectively grown on each side of the imperfectly protected poly-Si gates. The only solution we have so far identified that yields a lesser amount of mushrooms while preserving the quality of the S/D is to increase the HCl flow during growth steps.

  12. Selective epitaxial growth properties and strain characterization of Si1- x Ge x in SiO2 trench arrays

    Science.gov (United States)

    Koo, Sangmo; Jang, Hyunchul; Ko, Dae-Hong

    2017-04-01

    In this study, we investigated the formation of a Si1- x Ge x fin structure in SiO2 trench arrays via an ultra-high-vacuum chemical-vapor deposition (UHV-CVD) selective epitaxial growth (SEG) process. Defect generation and microstructures of Si1- x Ge x fin structures with different Ge concentrations ( x = 0.2, 0.3 and 0.45) were examined. In addition, the strain evolution of a Si1- x Ge x fin structure was analyzed by using reciprocal space mapping (RSM). An (111) facet was formed from the Si1- x Ge x epi-layer and SiO2 trench wall interface to minimize the interface and the surface energy. The Si1- x Ge x fin structures were fully relaxed along the direction perpendicular to the trenches regardless of the Ge concentration. On the other hand, the fin structures were fully or partially strained along the direction parallel to the trenches depending on the Ge concentration: fully strained Si0.8Ge0.2 and Si0.7Ge0.3, and a Si0.55Ge0.45 strain-relaxed buffer. We further confirmed that the strain on the Si1- x Ge x fin structures remained stable after oxide removal and H2/N2 post-annealing.

  13. Growth of pseudomorphic structures through organic epitaxy

    International Nuclear Information System (INIS)

    Kaviyil, Sreejith Embekkat; Sassella, Adele; Borghesi, Alessandro; Campione, Marcello; Su Genbo; He Youping; Chen Chenjia

    2012-01-01

    The control of molecular orientation in thin solid film phases of organic semiconductors is a basic factor for the exploitation of their physical properties for optoelectronic devices. We compare structural and optical properties of thin films of the organic semiconductor α-quarterthiophene grown by molecular beam epitaxy on different organic substrates. We show how epitactic interactions, characteristic of the surface of organic crystals, can drive the orientation of the crystalline overlayer and the selection of specific polymorphs and new pseudomorphic phases. We identify a key role in this phenomenon played by the marked groove-like corrugations present in some organic crystal surfaces. Since different polymorphs possess rather different performance in terms of, e.g., charge carrier mobility, this strategy is demonstrated to allow for the growth of oriented phases with enhanced physical properties, while keeping the substrate at room temperature. These results provide useful guidelines for the design of technological substrates for organic epitaxy and they substantiate the adoption of an organic epitaxy approach for the fabrication of optoelectronic devices based on thin films of organic semiconductors.

  14. Selective-area growth of GaN nanowires on SiO{sub 2}-masked Si (111) substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, J. E.; Doundoulakis, G. [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Lymperakis, L. [Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Eftychis, S.; Georgakilas, A., E-mail: alexandr@physics.uoc.gr [Department of Physics, University of Crete, P. O. Box 2208, 71003 Heraklion (Greece); Adikimenakis, A.; Tsagaraki, K.; Androulidaki, M.; Konstantinidis, G. [Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, N. Plastira 100, 70013 Heraklion (Greece); Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P. [Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patriarchou Grigoriou and Neapoleos 27, 15310 Aghia Paraskevi, Athens (Greece); Koukoula, T.; Kehagias, Th.; Komninou, Ph. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-06-14

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO{sub 2} mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  15. Epitaxial growth of silicon for layer transfer

    Science.gov (United States)

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  16. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    Science.gov (United States)

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-09

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.

  17. Epitaxial growth of rhenium with sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seongshik [National Institute of Standards and Technology, Boulder, CO 80305 (United States) and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)]. E-mail: soh@boulder.nist.gov; Hite, Dustin A. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Cicak, K. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Osborn, Kevin D. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Simmonds, Raymond W. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); McDermott, Robert [University of California, Santa Barbara, CA 93106 (United States); Cooper, Ken B. [University of California, Santa Barbara, CA 93106 (United States); Steffen, Matthias [University of California, Santa Barbara, CA 93106 (United States); Martinis, John M. [University of California, Santa Barbara, CA 93106 (United States); Pappas, David P. [National Institute of Standards and Technology, Boulder, CO 80305 (United States)

    2006-02-21

    We have grown epitaxial Rhenium (Re) (0001) films on {alpha}-Al{sub 2}O{sub 3} (0001) substrates using sputter deposition in an ultra high vacuum system. We find that better epitaxy is achieved with DC rather than with RF sputtering. With DC sputtering, epitaxy is obtained with the substrate temperatures above 700 deg. C and deposition rates below 0.1 nm/s. The epitaxial Re films are typically composed of terraced hexagonal islands with screw dislocations, and island size gets larger with high temperature post-deposition annealing. The growth starts in a three dimensional mode but transforms into two dimensional mode as the film gets thicker. With a thin ({approx}2 nm) seed layer deposited at room temperature and annealed at a high temperature, the initial three dimensional growth can be suppressed. This results in larger islands when a thick film is grown at 850 deg. C on the seed layer. We also find that when a room temperature deposited Re film is annealed to higher temperatures, epitaxial features start to show up above {approx}600 deg. C, but the film tends to be disordered.

  18. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    Science.gov (United States)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  19. Influence of the carrier Gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rozhavskaya, M. M., E-mail: MRozhavskaya@gmail.com; Lundin, V. V.; Zavarin, E. E.; Troshkov, S. I.; Brunkov, P. N.; Tsatsulnikov, A. F. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-03-15

    The influence of the carrier gas, trimethylgallium flow, and growth time on the character of the selective epitaxy of GaN in stripe windows oriented along the crystallographic direction Left-Pointing-Angle-Bracket 11-bar00 Right-Pointing-Angle-Bracket GaN for various widths of the mask between the stripes is studied. It is shown that the addition of nitrogen in the reactor atmosphere leads to changes in the form of the stripes in the case of wide (40 {mu}m) mask from a rectangular form restricted by a {l_brace}1 1-bar20{r_brace} lateral face to a trapezoidal form restricted by a {l_brace}1 1-bar22{r_brace} lateral face. It is also shown that during growth in the nitrogen-hydrogen mixture, the gallium flow starts to considerably affect the form of the growing stripes. It is shown that the process is significantly unstable, which leads to a noticeable variation in the form type as the transverse section of the stripe increases.

  20. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    Science.gov (United States)

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  1. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu

    2013-01-01

    Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures......-resolution environmental transmission electron microscope at a low CO pressure was recorded. We achieved highly preferential growth of semiconducting SWNTs (~90%) with an exceptionally large population of (6, 5) tubes (53%) in an ambient CO atmosphere. Particularly, we also demonstrated high enrichment in (7, 6) and (9, 4......) at a low growth temperature. These findings open new perspectives both for structural control of SWNTs and for elucidating the growth mechanisms....

  2. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  3. Shaping metal nanocrystals through epitaxial seeded growth

    Energy Technology Data Exchange (ETDEWEB)

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  4. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A.

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  5. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  6. One-step Ge/Si epitaxial growth.

    Science.gov (United States)

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  7. Use of halide transport in epitaxial growth of InP and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K. [Hungarian Academy of Sciences, Budapest (Hungary). Research Inst. for Technical Physics

    1996-12-31

    In this paper methods and results in the InP (and related) growth practice are reviewed, classified and summarized on the basis of the recent literature. The aim is to show the present place and role of the halogen transport in the epitaxial growth. In the case of InP the importance of the classical hydride method is still high. Though MOVPE technique dominates in the case of growth of the compounds with In content, atomic layer epitaxy and selective area growth are successful with auxiliary application of the halogen transport. Chlorine assisted MOVPE has an increasing role.

  8. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    Science.gov (United States)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  9. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.; Buckley, M. R.; Gerbode, S. J.; Cohen, I.

    2010-01-01

    -scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics

  10. Selective epitaxy of semiconductor nanopyramids for nanophotonics

    Energy Technology Data Exchange (ETDEWEB)

    Poole, P J; Dalacu, D; Lefebvre, J; Williams, R L, E-mail: philip.poole@nrc-cnrc.gc.ca [Institute for Microstructural Sciences, National Research Council, Ottawa, ON, K1A 0R6 (Canada)

    2010-07-23

    We present a detailed study of the parameters which affect the geometrical perfection of nanopyramids used for the site-selected nucleation of quantum dots. Through an understanding of crystal facet formation, we demonstrate that undesirable high index planes can be suppressed using carefully optimized lithography together with properly orientated source fluxes in the growth reactor. High quality InP nanopyramids are reported with individual InAs/InP quantum dots positioned with high precision. This represents an important milestone for the fabrication of complex quantum dot based nanophotonic devices.

  11. Growth of high purity semiconductor epitaxial layers by liquid phase ...

    Indian Academy of Sciences (India)

    Unknown

    semiconductor materials in high purity form by liquid phase epitaxy (LPE) technique. Various possible sources of impurities in such ... reference to the growth of GaAs layers. The technique of growing very high purity layers ... the inner walls of the gas lines and (e) the containers for storing, handling and cleaning of the mate-.

  12. Epitaxial growth mechanisms of graphene and effects of substrates

    OpenAIRE

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-01-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-hepta...

  13. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  14. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Eddaoudi, Mohamed

    2017-01-01

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  15. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  16. Epitaxial growth on porous GaAs substrates

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Nohavica, Dušan; Gladkov, Petar; Hulicius, Eduard; Pangrác, Jiří; Piksová, K.

    2013-01-01

    Roč. 16, č. 1 (2013), s. 59-64 ISSN 1631-0748 R&D Projects: GA ČR GAP102/10/1201; GA ČR GAP108/10/0253 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : Electrochemical etching * Porous semiconductors * Epitaxial growth * GaAs Subject RIV: BH - Optics, Masers, Lasers; JA - Electronics ; Optoelectronics, Electrical Engineering (FZU-D) Impact factor: 1.483, year: 2013

  17. Layered growth model and epitaxial growth structures for SiCAlN alloys

    International Nuclear Information System (INIS)

    Liu Zhaoqing; Ni Jun; Su Xiaoao; Dai Zhenhong

    2009-01-01

    Epitaxial growth structures for (SiC) 1-x (AlN) x alloys are studied using a layered growth model. First-principle calculations are used to determine the parameters in the layered growth model. The phase diagrams of epitaxial growth are given. There is a rich variety of the new metastable polytype structures at x=1/6 ,1/5 ,1/4 ,1/3 , and 1/2 in the layered growth phase diagrams. We have also calculated the electronic properties of the short periodical SiCAlN alloys predicted by our layered growth model. The results show that various ordered structures of (SiC) 1-x (AlN) x alloys with the band gaps over a wide range are possible to be synthesized by epitaxial growth.

  18. Growth and characterization of Hg 1– Cd Te epitaxial films by ...

    Indian Academy of Sciences (India)

    Growth of Hg1–CdTe epitaxial films by a new technique called asymmetric vapour phase epitaxy (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication have ...

  19. Growth and characterization of Hg1–xCdxTe epitaxial films by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Growth of Hg1–xCdxTe epitaxial films by a new technique called asymmetric vapour phase epitaxy. (ASVPE) has been carried out on CdTe and CZT substrates. The critical problems faced in normal vapour phase epitaxy technique like poor surface morphology, composition gradient and dislocation multiplication.

  20. Direct Measurements of Island Growth and Step-Edge Barriers in Colloidal Epitaxy

    KAUST Repository

    Ganapathy, R.

    2010-01-21

    Epitaxial growth, a bottom-up self-assembly process for creating surface nano- and microstructures, has been extensively studied in the context of atoms. This process, however, is also a promising route to self-assembly of nanometer- and micrometer-scale particles into microstructures that have numerous technological applications. To determine whether atomic epitaxial growth laws are applicable to the epitaxy of larger particles with attractive interactions, we investigated the nucleation and growth dynamics of colloidal crystal films with single-particle resolution. We show quantitatively that colloidal epitaxy obeys the same two-dimensional island nucleation and growth laws that govern atomic epitaxy. However, we found that in colloidal epitaxy, step-edge and corner barriers that are responsible for film morphology have a diffusive origin. This diffusive mechanism suggests new routes toward controlling film morphology during epitaxy.

  1. Epitaxial growth mechanisms of graphene and effects of substrates

    Science.gov (United States)

    Özçelik, V. Ongun; Cahangirov, S.; Ciraci, S.

    2012-06-01

    The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms in the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.

  2. SiC epitaxy growth using chloride-based CVD

    International Nuclear Information System (INIS)

    Henry, Anne; Leone, Stefano; Beyer, Franziska C.; Pedersen, Henrik; Kordina, Olof; Andersson, Sven; Janzén, Erik

    2012-01-01

    The growth of thick epitaxial SiC layers needed for high-voltage, high-power devices is investigated with the chloride-based chemical vapor deposition. High growth rates exceeding 100 μm/h can be obtained, however to obtain device quality epilayers adjustments of the process parameters should be carried out appropriately for the chemistry used. Two different chemistry approaches are compared: addition of hydrogen chloride to the standard precursors or using methyltrichlorosilane, a molecule that contains silicon, carbon and chlorine. Optical and electrical techniques are used to characterize the layers.

  3. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  4. Nanoscale abnormal grain growth in (001) epitaxial ceria

    International Nuclear Information System (INIS)

    Solovyov, Vyacheslav F.; Develos-Bagarinao, Katherine; Nykypanchuk, Dmytro

    2009-01-01

    X-ray reciprocal-space mapping and atomic force microscopy (AFM) are used to study kinetics and mechanisms of lateral grain growth in epitaxial (001) ceria (CeO 2 ) deposited by pulsed laser deposition on (001) yttria-stabilized zirconia (YSZ) and (12 lowbar 10) (r-cut) sapphire. Rate and character of the grain growth during postannealing at 1050 deg. C are found to be strongly dependent on the type of the epitaxial substrate. Films deposited on YSZ exhibit signatures of normal grain growth, which stagnated after the lateral grain size reaches 40 nm, consistent with the grain-boundary pinning by the thermal grooving. In contrast, when r-cut sapphire substrate was used, abnormal (secondary) grain growth is observed. A small population of grains grow to well over 100 nm consuming smaller, 100 nm large (001) terminations and rendering the sample single-crystalline quality. The grain growth is accompanied by reduction in lateral rms strain, resulting in a universal grain size--rms strain dependence. Analysis of the AFM and x-ray diffraction data leads to the conclusion that bimodal initial grain population consisting of grains with very different sizes is responsible for initiation of the abnormal growth in (001) CeO 2 films on r-cut sapphire. Due to different surface chemistry, when a YSZ substrate is used, the initial grain distribution is monomodal, therefore only normal growth is active. We demonstrate that a 2.2 deg. miscut of the sapphire substrate eliminates the large-grain population, thus suppressing abnormal grain growth. It is concluded that utilization of abnormal grain growth is a promising way for synthesis of large (001) ceria terminations.

  5. New phenomena in epitaxial growth: solid films on quasicrystalline substrates

    International Nuclear Information System (INIS)

    Fournee, V; Thiel, P A

    2005-01-01

    An overview is given of the research conducted in the field of solid film growth on quasiperiodic surfaces. An atomistic description of quasicrystalline surfaces is presented and discussed in relation to bulk structural models. The various systems for which thin film growth has been attempted so far are reviewed. Emphasis is placed on the nucleation mechanisms of the solid films, on their growth modes in relation to the nature of the deposited metals, on the possibility of intermixing or alloying at the interface and on the epitaxial relationships at the crystal-quasicrystal interfaces. We also describe situations where the deposited elements adopt a quasiperiodic structure, which opens up the possibility of extending our understanding of the relation between quasiperiodicity and the physical properties of such structurally and chemically complex solids. (topical review)

  6. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    International Nuclear Information System (INIS)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah; Patriarche, Gilles; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Heer, Walt A. de; Berger, Claire

    2016-01-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  7. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    Energy Technology Data Exchange (ETDEWEB)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.; Ougazzaden, Abdallah, E-mail: aougazza@georgiatech-metz.fr [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Patriarche, Gilles [CNRS, Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Sundaram, Suresh; El Gmili, Youssef [CNRS UMI 2958, Georgia Institute of Technology, 2 Rue Marconi, 57070 Metz (France); Salvestrini, Jean-Paul [Université de Lorraine, CentraleSupélec, LMOPS, EA4423, 57070 Metz (France); Heer, Walt A. de [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS, Institut Néel, BP166, 38042 Grenoble Cedex 9 (France)

    2016-03-07

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  8. Abstracts of 4. International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology

    International Nuclear Information System (INIS)

    2001-01-01

    4. International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology is the periodically held forum for discussion the problems connected with manufacturing of different nanostructures (thin films, quantum wells, quantum dots) needed in microelectronics. Preparation of such materials with desirable optical, electrical and magnetic properties being determined by their chemical composition and crystal structure has been discussed in detail during the workshop sessions. Optimization of crystal growth methods such as VPE and MBE from the view point of obtained material properties has also been extensively discussed

  9. Epitaxial growth of Cu on Cu(001): Experiments and simulations

    International Nuclear Information System (INIS)

    Furman, Itay; Biham, Ofer; Zuo, Jiang-Kai; Swan, Anna K.; Wendelken, John

    2000-01-01

    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semiempirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well

  10. Epitaxial growth of fcc Ti films on Al(001) surfaces

    International Nuclear Information System (INIS)

    Saleh, A.A.; Shutthanandan, V.; Shivaparan, N.R.; Smith, R.J.; Tran, T.T.; Chambers, S.A.

    1997-01-01

    High-energy ion scattering (HEIS), x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction (XPD) were used to study the growth of thin Ti films on Al(001) surfaces. The Al surface peak area in the backscattered ion spectrum of MeV He + ions, incident along the [00 bar 1] direction, was used to monitor the atomic structure of the Ti films during growth. An initial decrease in the area was observed indicating epitaxial film growth. This decrease continued up to a critical film thickness of about 5.5 ML, after which point the structure of the film changed. Titanium films 3, 5, and 9 ML thick were characterized using XPD in the same chamber. Both the HEIS and XPD results show that the Ti films grow with an fcc structure on Al(001). A tetragonal distortion of 2.4% in the fcc Ti film was measured using ions incident along the [10 bar 1] direction. Although there is a general similarity of fcc Ti growth on both Al(001) and Al(110), the submonolayer growth regime does show differences for the two surfaces. copyright 1997 The American Physical Society

  11. Molecular Beam Epitaxy Growth of Transition Metal Dichalcogenides

    Science.gov (United States)

    Yue, Ruoyu

    The exponential growth of Si-based technology has finally reached its limit, and a new generation of devices must be developed to continue scaling. A unique class of materials, transition metal dichalcogenides (TMD), have attracted great attention due to their remarkable optical and electronic properties at the atomic thickness scale. Over the past decade, enormous efforts have been put into TMD research for application in low-power devices. Among these studies, a high-quality TMD synthesis method is essential. Molecular beam epitaxy (MBE) can enable high-quality TMD growth by combining high purity elemental sources and an ultra-high vacuum growth environment, together with the back-end-of-line compatible growth temperatures. Although many TMD candidates have been grown by MBE with promising microstructure, the limited grain size (improvement in grain size was achieved through this study. Results from both experiment and simulation showed that reducing the growth rate, enabled by high growth temperature and low metal flux, is vital to nucleation density control. Meanwhile, providing a chalcogen-rich growth environment will promote larger grain lateral growth by suppressing vertical growth. Applying the knowledge learned from the nucleation study, we sucessfully integrated the MBE-grown WSe2 into Si complementary metal-oxide-semiconductor (CMOS) compatible field-effect transistors (FETs). Excellent transport properties, such as field effect hole mobilities (40 cm 2/V·s) with orders of magnitude improvement over the reported values of MBE-grown TMDs, are shown. These studies provide a comprehensive understanding of the MBE synthesis of TMDs and devices, indicating the great potential of integrating TMDs into CMOS process flows for the future electronics.

  12. Computer graphic investigation on the epitaxial growth of superconductor films

    International Nuclear Information System (INIS)

    Miyamoto, A.; Iwamoto, S.; Inui, T.; Agusa, K.

    1989-01-01

    A mechanism of the epitaxial growth the oxide superconductor films has been investigated by using the computer graphics for the combination of orthorhombic Ba 2 YCu 3 O 7-x with substrate crystals such as SrTiO 3 MgO, and ZrO 2 . The (001) plane Ba 2 YCu 3 O 7-x with substrate crystals such as SrTiO 3 , MgO, and ZrO 2 . The (001) plane of Ba 2 YCu 3 O 7-x has been shown to fit the (100) plane of SrTiO 3 , MgO, and ZrO 2 . A crystallographic fit has also been proved between the (110) plane of Ba 2 YCu 3 O 7-x and the (110) plane of SrTiO 3 . These results are consistent with the experimental data about the epitaxial growth of the Ba 2 YCu 3 O 7-x films. Furthermore, detailed investigation of atomic arrangements has indicated some differences in the ionic interaction at the superconductor-substrate interface among SrTiO 3 , MgO, and ZrO 2 substrates. As for ZrO 2 (100) plane, for examples, ionic arrangements at the oxide layer is favorable only for the interaction with Y 3+ layer of Ba 2 YCu 3 O 7-x , while the Zr-O layer of ZrO 2 can interact with both Ba-O layer and Cu-O layer of Ba 2 YCu 3 O 7-x

  13. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires

    NARCIS (Netherlands)

    Sciacca, Beniamino; Mann, Sander A.; Tichelaar, Frans D.; Zandbergen, Henny W.; Van Huis, Marijn A.; Garnett, Erik C.

    2014-01-01

    The epitaxial growth of monocrystalline semiconductors on metal nanostructures is interesting from both fundamental and applied perspectives. The realization of nanostructures with excellent interfaces and material properties that also have controlled optical resonances can be very challenging. Here

  14. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  15. Molecular-beam epitaxial growth and ion-beam analysis systems for functional materials research

    International Nuclear Information System (INIS)

    Takeshita, H.; Aoki, Y.; Yamamoto, S.; Naramoto, H.

    1992-01-01

    Experimental systems for molecular beam epitaxial growth and ion beam analysis have been designed and constructed for the research of inorganic functional materials such as thin films and superlattices. (author)

  16. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed here are Ka-band (38 GHz) group III-nitride power FETs and the dislocation density reducing epitaxial growth methods (LPE) needed for their...

  17. Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ding Jian; Zhang Di; Konomi, Takaharu; Saito, Katsuhiko; Guo Qixin

    2012-01-01

    ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates.

  18. Epitaxial growth and new phase of single crystal Dy by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, Kai-Yueh; Homma, Hitoshi; Schuller, I.K.

    1987-09-01

    We have grown two novel epitaxial phases of dysprosium (Dy) on vanadium (V) by molecular beam epitaxy technique. Surface and bulk structures are studied by in-situ reflection high energy electron diffraction (RHEED) and x-ray diffraction techniques. The new hcp phases are ∼4% expanded uniformly in-plane (0001), and ∼9% and ∼4% expanded out of plane along the c-axes for non-interrupted and interrupted deposition case, respectively. We also observed (2 x 2), (3 x 3), and (4 x 4) Dy surface reconstruction patterns and a series of transitions as the Dy film thickness increases. 12 refs., 3 figs

  19. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2014-02-01

    Full Text Available We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001 substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 108 cm−2 at 750 °C than that of the low temperature grown sample (1.1 × 109 cm−2 at 730 °C. A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  20. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    Science.gov (United States)

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  1. Epitaxial growth of tungsten layers on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Pengyuan; Ozsdolay, Brian D.; Gall, Daniel, E-mail: galld@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Smooth single crystal W(001) layers were grown on MgO(001) substrates by magnetron sputtering at 900 °C. X-ray diffraction ω–2θ scans, ω-rocking curves, pole figures, and reciprocal space maps indicate a 45°-rotated epitaxial relationship: (001){sub W}‖(001){sub MgO} and [010]{sub W}‖[110]{sub MgO}, and a relaxed lattice constant of 3.167 ± 0.001 nm. A residual in-plane biaxial compressive strain is primarily attributed to differential thermal contraction after growth and decreases from −0.012 ± 0.001 to −0.001 ± 0.001 with increasing layer thickness d = 4.8–390 nm, suggesting relaxation during cooling by misfit dislocation growth through threading dislocation glide. The in-plane x-ray coherence length increases from 3.4 to 33.6 nm for d = 4.8–390 nm, while the out-of-plane x-ray coherence length is identical to the layer thickness for d ≤ 20 nm, but is smaller than d for d ≥ 49.7 nm, indicating local strain variations along the film growth direction. X-ray reflectivity analyses indicate that the root-mean-square surface roughness increases from 0.50 ± 0.05 to 0.95 ± 0.05 nm for d = 4.8–19.9 nm, suggesting a roughness exponent of 0.38, but remains relatively constant for d > 20 nm with a roughness of 1.00 ± 0.05 nm at d = 47.9 nm.

  2. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  3. STM investigation of epitaxial Si growth for the fabrication of a Si-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars; Hallam, Toby; Curson, Neil J.; Simmons, Michelle Y.; Clark, Robert G

    2003-05-15

    We investigate the morphology of epitaxial Si layers grown on clean and on hydrogen terminated Si(0 0 1) to explore the growth strategy for the fabrication of a Si-based quantum computer. We use molecular beam epitaxy to deposit 5 monolayers of silicon at a temperature of 250 deg. C and scanning tunnelling microscopy to image the surface at room temperature after growth and after various rapid annealing steps in the temperature range of 350-600 deg. C. The epitaxial layer grown on the hydrogenated surface shows a significantly higher surface roughness due to a lower mobility of silicon surface atoms in the presence of hydrogen. Annealing at temperatures {>=}550 deg. C reduces the roughness of both epitaxial layers to the value of a clean silicon surface. However, the missing dimer defect density of the epitaxial layer grown on the hydrogenated surface remains higher by a factor of two compared to the layer grown on clean Si(0 0 1). Our results suggest a quantum computer growth strategy in which the hydrogen resist layer is desorbed before the epitaxial silicon layer is grown at low temperature to encapsulate phosphorus quantum bits.

  4. Growth and properties of epitaxial iron oxide layers

    NARCIS (Netherlands)

    Voogt, F.C; Fujii, T; Hibma, T; Zhang, G.L.; Smulders, P.J M

    1996-01-01

    Epitaxial layers of iron oxides have been grown on a MgO(001) substrate by evaporating natural Fe or Fe-57 from Knudsen cells in the presence of a NO2 flow directed to the substrate. The resulting layers have been investigated in situ with LEED, RHEED, AES and XPS and ex situ with GEMS and ion beam

  5. Epitaxial growth with pulsed deposition: Submonolayer scaling and Villain instability

    DEFF Research Database (Denmark)

    Hinnemann, Berit; Hinrichsen, H.; Wolf, D.E.

    2003-01-01

    It has been observed experimentally that under certain conditions, pulsed laser deposition (PLD) produces smoother surfaces than ordinary molecular beam epitaxy (MBE). So far, the mechanism leading to the improved quality of surfaces in PLD is not yet fully understood. In the present work, we...

  6. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  7. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  8. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  9. Atomic layer epitaxy of ZnO for applications in molecular beam epitaxy growth of GaN and InGaN

    International Nuclear Information System (INIS)

    Godlewski, M.; Szczerbakow, A.; Ivanov, V. Yu.; Barski, A.; Goldys, E.M.

    2000-01-01

    We report the successful atomic layer epitaxy growth of thin ZnO films and their use for GaN and InGaN epitaxy. The properties of ZnO epilayers, obtained by four different procedures, are analysed, as well as of GaN and InGaN films grown on ZnO-coated Si and GaAs by MBE. (author)

  10. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Metaferia, Wondwosen; Kataria, Himanshu; Sun, Yan-Ting; Lourdudoss, Sebastian

    2015-01-01

    In an attempt to achieve an InP–Si heterointerface, a new and generic method, the corrugated epitaxial lateral overgrowth (CELOG) technique in a hydride vapor phase epitaxy reactor, was studied. An InP seed layer on Si (0 0 1) was patterned into closely spaced etched mesa stripes, revealing the Si surface in between them. The surface with the mesa stripes resembles a corrugated surface. The top and sidewalls of the mesa stripes were then covered by a SiO 2 mask after which the line openings on top of the mesa stripes were patterned. Growth of InP was performed on this corrugated surface. It is shown that growth of InP emerges selectively from the openings and not on the exposed silicon surface, but gradually spreads laterally to create a direct interface with the silicon, hence the name CELOG. We study the growth behavior using growth parameters. The lateral growth is bounded by high index boundary planes of {3 3 1} and {2 1 1}. The atomic arrangement of these planes, crystallographic orientation dependent dopant incorporation and gas phase supersaturation are shown to affect the extent of lateral growth. A lateral to vertical growth rate ratio as large as 3.6 is achieved. X-ray diffraction studies confirm substantial crystalline quality improvement of the CELOG InP compared to the InP seed layer. Transmission electron microscopy studies reveal the formation of a direct InP–Si heterointerface by CELOG without threading dislocations. While CELOG is shown to avoid dislocations that could arise due to the large lattice mismatch (8%) between InP and Si, staking faults could be seen in the layer. These are probably created by the surface roughness of the Si surface or SiO 2 mask which in turn would have been a consequence of the initial process treatments. The direct InP–Si heterointerface can find applications in high efficiency and cost-effective Si based III–V semiconductor multijunction solar cells and optoelectronics integration. (paper)

  11. Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature

    Science.gov (United States)

    Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.

    2018-06-01

    Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.

  12. Zirconia thin films from aqueous precursors: Processing, microstructural development, and epitaxial growth

    International Nuclear Information System (INIS)

    Miller, K.T.

    1991-01-01

    Thin films of ZrO 2 (Y 2 O 3 ) were prepared from aqueous salt precursors by spin coating. Films were pyrolyzed to produce porous polycrystalline thin films of 5-10 nm grain size. Subsequent microstructural development depends greatly upon the nature of the substrate. Upon randomly oriented sapphire, the films initially sintered to full density; further heat treatment and grain growth causes these films to break into interconnected islands and finally isolated particles. Thermodynamic calculations predict that breakup is energetically favorable when the grain-size film-thickness ratio exceeds a critical value. Upon basal-plane-oriented sapphire, grain growth and breakup prefer the (100) oriented grains, presumably because this orientation is a special interface of low energy. The isolated, oriented grains produced by film breakup act as seeds for the growth of newly deposited material. Upon (100) cubic zirconia, true epitaxial films develop. Epitaxial growth was observed for lattice mismatches up to 1.59%. Growth proceeds from a fine epitaxial layer which is produced during the initial stages of heat treatment, consuming the porous polycrystalline material and producing a dense epitaxial thin film whose misfit is accommodated by a combination of film strain and misfit dislocations

  13. Epitaxial Growth of Germanium on Silicon for Light Emitters

    Directory of Open Access Journals (Sweden)

    Chengzhao Chen

    2012-01-01

    Full Text Available This paper describes the role of Ge as an enabler for light emitters on a Si platform. In spite of the large lattice mismatch of ~4.2% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared light emitters with various structures are reviewed, including the tensile-strained Ge epilayer, the Ge epilayer with a delta-doping SiGe layer, and the Ge/SiGe multiple quantum wells on Si. The fundamentals of photoluminescence physics in the different Ge structures are discussed briefly.

  14. Merging Standard CVD Techniques for GaAs and Si Epitaxial Growth

    NARCIS (Netherlands)

    Sammak, A.; De Boer, W.; Van den Bogaard, A.; Nanver, L.K.

    2010-01-01

    A commercial Chemical Vapor Deposition (CVD) system, the ASMI Epsilon 2000 designed for Si and SiGe epitaxy, has, for the first time, been equipped for the growth of GaAs compounds in a manner that does not exclude the use of the system also for Si-based depositions. With the new system, intrinsic,

  15. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  16. Molecular-beam epitaxy growth and characterization of 5-μm quantum cascade laser

    International Nuclear Information System (INIS)

    Mamutin, V V; Ustinov, V M; Ilyinskaya, N D; Baydakova, M V; Ber, B Ya; Kasantsev, D Yu

    2011-01-01

    Molecular-beam epitaxy growth of 5 μm emitting strain-compensated quantum semiconductor laser (QCL) is reported. The QCL structure is characterized by complementary techniques: high-resolution X-ray diffraction and dynamical secondary-ion mass-spectrometry, that reveal the high quality of QCL structure and in-depth distribution of chemical composition, respectively.

  17. New synthesis method for the growth of epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.Z. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Hwang, C.G.; Jozwiak, C.M.; Koehl, A. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Schmid, A.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94709 (United States); Lanzara, A., E-mail: ALanzara@lbl.gov [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2011-04-15

    Highlights: {yields} We report a new straightforward method for the synthesis of micrometer scale graphene sheets. {yields} The process is based on a face to face mehtod in which two SiC substrates are placed one on top of the other and are heated simultaneously, leading to highly homogeneous samples. {yields} The number of graphene layers is determined by the annealing temperature. - Abstract: As a viable candidate for an all-carbon post-CMOS electronics revolution, epitaxial graphene has attracted significant attention. To realize its application potential, reliable methods for fabricating large-area single-crystalline graphene domains are required. A new way to synthesize high quality epitaxial graphene, namely 'face-to-face' method, has been reported in this paper. The structure and morphologies of the samples are characterized by low-energy electron diffraction, atomic force microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy. The grown samples show better quality and larger length scales than samples grown through conventional thermal desorption. Moreover, the graphene thickness can be easily controlled by changing annealing temperature.

  18. Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Fedorov A

    2010-01-01

    Full Text Available Abstract We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background.

  19. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  20. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  1. Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition

    International Nuclear Information System (INIS)

    Comes, Ryan; Liu Hongxue; Lu Jiwei; Gu, Man; Khokhlov, Mikhail; Wolf, Stuart A.

    2013-01-01

    Complex oxide epitaxial film growth is a rich and exciting field, owing to the wide variety of physical properties present in oxides. These properties include ferroelectricity, ferromagnetism, spin-polarization, and a variety of other correlated phenomena. Traditionally, high quality epitaxial oxide films have been grown via oxide molecular beam epitaxy or pulsed laser deposition. Here, we present the growth of high quality epitaxial films using an alternative approach, the pulsed electron-beam deposition technique. We demonstrate all three epitaxial growth modes in different oxide systems: Frank-van der Merwe (layer-by-layer); Stranski-Krastanov (layer-then-island); and Volmer-Weber (island). Analysis of film quality and morphology is presented and techniques to optimize the morphology of films are discussed.

  2. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian [Laboratory of Semiconductor Materials, Department of Materials and Nano Physics, KTH—Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Pietralunga, Silvia M. [CNR-Institute for Photonics and Nanotechnologies, P. Leonardo da Vinci, 32 20133 Milano (Italy); Zani, Maurizio; Tagliaferri, Alberto [Department of Physics Politecnico di Milano, P. Leonardo da Vinci, 32 20133 Milano (Italy)

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  3. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    International Nuclear Information System (INIS)

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η p =14.4±0.4% and η p =14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  4. Epitaxial growth of Ge-Sb-Te based phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, Karthick

    2013-07-30

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb{sub 2}Te{sub 3} thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb{sub 2}Te{sub 3} to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  5. Epitaxial growth of Ge-Sb-Te based phase change materials

    International Nuclear Information System (INIS)

    Perumal, Karthick

    2013-01-01

    Ge-Sb-Te based phase change materials are considered as a prime candidate for optical and electrical data storage applications. With the application of an optical or electrical pulse, they can be reversibly switched between amorphous and crystalline state, thereby exhibiting large optical and electrical contrast between the two phases, which are then stored as information in the form of binary digits. Single crystalline growth is interesting from both the academic and industrial perspective, as ordered Ge-Sb-Te based metamaterials are known to exhibit switching at reduced energies. The present study deals with the epitaxial growth and analysis of Ge-Sb-Te based thin films. The first part of the thesis deals with the epitaxial growth of GeTe. Thin films of GeTe were grown on highly mismatched Si(111) and (001) substrates. On both the substrate orientations the film grows along [111] direction with an amorphous-to-crystalline transition observed during the initial stages of growth. The amorphous-to-crystalline transition was studied in-vivo using azimuthal reflection high-energy electron diffraction scans and grazing incidence X-ray diffraction. In the second part of the thesis epitaxy and characterization of Sb 2 Te 3 thin films are presented. The third part of the thesis deals with the epitaxy of ternary Ge-Sb-Te alloys. The composition of the films are shown to be highly dependent on growth temperatures and vary along the pseudobinary line from Sb 2 Te 3 to GeTe with increase in growth temperatures. A line-of-sight quadrupole mass spectrometer was used to reliably control the GeSbTe growth temperature. Growth was performed at different Ge, Sb, Te fluxes to study the compositional variation of the films. Incommensurate peaks are observed along the [111] direction by X-ray diffraction. The possibility of superstructural vacancy ordering along the [111] direction is discussed.

  6. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    International Nuclear Information System (INIS)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-01-01

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface

  7. Epitaxial growth of lithium fluoride on the (1 1 1) surface of CaF 2

    Science.gov (United States)

    Klumpp, St; Dabringhaus, H.

    1999-08-01

    Growth of lithium fluoride by molecular beam epitaxy on the (1 1 1) surface of calcium fluoride crystals was studied by TEM and LEED for crystal temperatures from 400 to 773 K and impinging lithium fluoride fluxes from 3×10 11 to 3×10 14 cm -2 s -1. Growth starts, usually, at the steps on the (1 1 1) surface of CaF 2. For larger step distances and at later growth stages also growth on the terraces between the steps is found. Preferably, longish, roof-like crystallites are formed, which can be interpreted by growth of LiF(2 0 1¯)[0 1 0] parallel to CaF 2(1 1 1)[ 1¯ 0 1]. To a lesser extent square crystallites, i.e. growth with LiF(0 0 1), and, rarely, three-folded pyramidal crystallites, i.e. growth with LiF(1 1 1) parallel to CaF 2(1 1 1), are observed. While the pyramidal crystallites show strict epitaxial orientation with LiF[ 1¯ 0 1]‖CaF 2[ 1¯ 0 1] and LiF[ 1¯ 0 1]‖CaF 2[1 2¯ 1], only about 80% of the square crystallites exhibit an epitaxial alignment, where LiF[1 0 0]‖CaF 2[ 1¯ 0 1] is preferred to LiF[1 1 0]‖CaF 2[ 1¯ 0 1]. The epitaxial relationships are discussed on the basis of theoretically calculated adsorption positions of the lithium fluoride monomer and dimer on the terrace and at the steps of the CaF 2(1 1 1) surface.

  8. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  9. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  10. Germanium growth on electron beam lithography patterned Si3N4/Si(001) substrate using molecular beam epitaxy

    Science.gov (United States)

    Sarkar, Subhendu Sinha; Katiyar, Ajit K.; Sarkar, Arijit; Dhar, Achintya; Rudra, Arun; Khatri, Ravinder K.; Ray, Samit Kumar

    2018-04-01

    It is important to investigate the growth dynamics of Ge adatoms under different surface stress regimes of the patterned dielectric to control the selective growth of self-assembled Ge nanostructures on silicon. In the present work, we have studied the growth of Ge by molecular beam epitaxy on nanometer scale patterned Si3N4/Si(001) substrates generated using electron beam lithography. The pitch of the patterns has been varied to investigate its effect on the growth of Ge in comparison to un-patterned Si3N4. For the patterned Si3N4 film, Ge did not desorbed completely from the Si3N4 film and hence no site selective growth pattern is observed. Instead, depending upon the pitch, Ge growth has occurred in different growth modes around the openings in the Si3N4. For the un-patterned substrate, the morphology exhibits the occurrence of uniform 3D clustering of Ge adatoms on Si3N4 film. This variation in the growth modes of Ge is attributed to the variation of residual stress in the Si3N4 film for different pitch of holes, which has been confirmed theoretically through Comsol Multiphysics simulation. The variation in stress for different pitches resulted in modulation of surface energy of the Si3N4 film leading to the different growth modes of Ge.

  11. Epitaxial growth of silicon and germanium on (100-oriented crystalline substrates by RF PECVD at 175 °C

    Directory of Open Access Journals (Sweden)

    Mauguin O.

    2012-11-01

    Full Text Available We report on the epitaxial growth of crystalline Si and Ge thin films by standard radio frequency plasma enhanced chemical vapor deposition at 175 °C on (100-oriented silicon substrates. We also demonstrate the epitaxial growth of silicon films on epitaxially grown germanium layers so that multilayer samples sustaining epitaxy could be produced. We used spectroscopic ellipsometry, Raman spectroscopy, transmission electron microscopy and X-ray diffraction to characterize the structure of the films (amorphous, crystalline. These techniques were found to provide consistent results and provided information on the crystallinity and constraints in such lattice-mismatched structures. These results open the way to multiple quantum-well structures, which have been so far limited to few techniques such as Molecular Beam Epitaxy or MetalOrganic Chemical Vapor Deposition.

  12. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan; Li, Peng; Li, Jun; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    ) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115

  13. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species

    Science.gov (United States)

    Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe

    2018-04-01

    Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.

  14. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Balzer, F., E-mail: fbalzer@mci.sdu.dk [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Sun, R. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Parisi, J. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany); Rubahn, H.-G. [University of Southern Denmark, Mads Clausen Institute, Alsion 2, DK-6400 Sønderborg (Denmark); Lützen, A. [University of Bonn, Kekulé Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Schiek, M. [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg (Germany)

    2015-12-31

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  15. Epitaxial growth of a methoxy-functionalized quaterphenylene on alkali halide surfaces

    International Nuclear Information System (INIS)

    Balzer, F.; Sun, R.; Parisi, J.; Rubahn, H.-G.; Lützen, A.; Schiek, M.

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of low energy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Both domains from upright molecules as well as fiber-like crystallites from lying molecules form. Neither a wetting layer from lying molecules nor widespread epitaxial fiber growth on the substrates is detected. Our results focus on the upright standing molecules, which condense into a thin film phase with an enlarged layer spacing compared to the bulk phase. - Highlights: • Growth of a methoxy-functionalized para-phenylene on dielectric surfaces is investigated. • Low-energy electron diffraction and X-ray diffraction techniques are employed for structural characterization. • Epitaxial growth of upright molecules only is documented. • Polarized optical microscopy together with atomic force microscopy complements the findings.

  16. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Greul, Thomas; Comenda, Christian; Preis, Karl; Gerdenitsch, Johann; Sagl, Raffaela; Hassel, Achim Walter

    2013-01-01

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm −2 ) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  17. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martínez, A., E-mail: alm@cactus.iico.uaslp.mx, E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F. [Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, San Luis Potosí, SLP 78000 (Mexico); Lastras-Montaño, L. A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Lastras-Montaño, M. A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  18. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Directory of Open Access Journals (Sweden)

    A. Lastras-Martínez

    2014-03-01

    Full Text Available We report on real time-resolved Reflectance-difference (RD spectroscopy of GaAs(001 grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  19. Liquid phase electro epitaxy growth kinetics of GaAs-A three-dimensional numerical simulation study

    International Nuclear Information System (INIS)

    Mouleeswaran, D.; Dhanasekaran, R.

    2006-01-01

    A three-dimensional numerical simulation study for the liquid phase electro epitaxial growth kinetic of GaAs is presented. The kinetic model is constructed considering (i) the diffusive and convective mass transport, (ii) the heat transfer due to thermoelectric effects such as Peltier effect, Joule effect and Thomson effect, (iii) the electric current distribution with electromigration and (iv) the fluid flow coupled with concentration and temperature fields. The simulations are performed for two configurations namely (i) epitaxial growth from the arsenic saturated gallium rich growth solution, i.e., limited solution model and (ii) epitaxial growth from the arsenic saturated gallium rich growth solution with polycrystalline GaAs feed. The governing equations of liquid phase electro epitaxy are solved numerically with appropriate initial and boundary conditions using the central difference method. Simulations are performed to determine the following, a concentration profiles of solute atoms (As) in the Ga-rich growth solution, shape of the substrate evolution, the growth rate of the GaAs epitaxial film, the contributions of Peltier effect and electromigration of solute atoms to the growth with various experimental growth conditions. The growth rate is found to increase with increasing growth temperature and applied current density. The results are discussed in detail

  20. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    2011-01-01

    Epitaxial growth of Ce0.8Gd0.2O2(CGO) films on (001) TiO2-terminated SrTiO3 substrates by pulsed laser deposition was investigated using in situ reflective high energy electron diffraction. The initial film growth shows a Stransky–Krastanov growth mode. However, this three-dimensional island...... formation is replaced by a two-dimensional island nucleation during further deposition, which results in atomically smooth CGO films. The obtained high-quality CGO films may be attractive for the electrolyte of solid-oxide fuel cells operating at low temperature....

  1. Epitaxial growth of InP on SI by MOCVD

    International Nuclear Information System (INIS)

    Konushi, F.; Seki, A.; Kudo, J.; Sato, H.; Kakimoto, S.; Fukushima, T.; Kubota, Y.; Koba, M.

    1988-01-01

    The authors have studied the heteroepitaxial growth of InP on large diameter Si substrates using MOCVD. A new MOCVD system with four inch wafer size capability was utilized in the growth. Single domain InP films have been successfully grown on four inch Si substrates by using a new heterostructure with a thin GaAs intermediate layer. In this paper, the authors describe the crystalline quality and residual stress of InP epilayers, estimated by etch pit density and x-ray diffraction, respectively. The authors also reports on the reduction of EPD by post-growth annealing

  2. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    Science.gov (United States)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  3. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  4. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  5. Epitaxial growth of nobel metals on alumina substrates

    International Nuclear Information System (INIS)

    Al-Mohammad, A.

    2007-06-01

    The influence of the reconstructed (0001) α-Al 2 O 3 surface on the heteroepitaxial growth and adhesion properties of small metal particles (gold, silver and copper) of noncontinuous thin films has been investigated. The crystallographic structure and morphology of substrate surfaces were examined by Reflection High Energy Electron Diffraction and Atomic Force Microscopy techniques. The reconstructed surfaces are terminated by one or more Aluminum atomic layers. By means of the Transmission Electronic Microscopy, the various granulometric and lattice parameters variations are investigated during different stages of the heteroepitaxial growth of metallic thin films. We estimated the adhesion energy values for each case of metal//(0001)α-Al 2 O 3 interfaces by two methods: the maximum cluster density and the Lifshits theory of Van der Waals energy of interfaces. The results of both methods are in good agreement. Using these methods, we found interfaces Hamaker's constants values and we investigated all the heteroepitaxial growth steps.(author)

  6. Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD

    Science.gov (United States)

    Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri

    2014-07-01

    We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.

  7. Step driven competitive epitaxial and self-limited growth of graphene on copper surface

    Directory of Open Access Journals (Sweden)

    Lili Fan

    2011-09-01

    Full Text Available The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on copper surface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on copper surface. Our results showed that wide and high steps promoted epitaxial growth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayer graphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

  8. Growth of Sr2CrReO6 epitaxial thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Orna, J.; Morellon, L.; Algarabel, P.A.; Pardo, J.A.; Magen, C.; Varela, M.; Pennycook, S.J.; De Teresa, J.M.; Ibarra, M.R.

    2010-01-01

    We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr 2 CrReO 6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr 2 CrReO 6 (SCRO) (0 0 1) [1 0 0]-parallel SrTiO 3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of M S (300 K)=1 μ B /f.u. and ρ (300 K)=2.8 mΩ cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is T C =481(2) K. We believe these materials be of interest as electrodes in spintronic devices.

  9. Epitaxial Growth of Hard Ferrimagnetic Mn3Ge Film on Rhodium Buffer Layer

    Directory of Open Access Journals (Sweden)

    Atsushi Sugihara

    2015-06-01

    Full Text Available Mn\\(_3\\Ge has a tetragonal Heusler-like D0\\(_{22}\\ crystal structure, exhibiting a large uniaxial magnetic anisotropy and small saturation magnetization due to its ferrimagnetic spin structure; thus, it is a hard ferrimagnet. In this report, epitaxial growth of a Mn\\(_3\\Ge film on a Rh buffer layer was investigated for comparison with that of a film on a Cr buffer layer in terms of the lattice mismatch between Mn\\(_3\\Ge and the buffer layer. The film grown on Rh had much better crystalline quality than that grown on Cr, which can be attributed to the small lattice mismatch. Epitaxial films of Mn\\(_3\\Ge on Rh show somewhat small coercivity (\\(H_{\\rm c}\\ = 12.6 kOe and a large perpendicular magnetic anisotropy (\\(K_{\\rm u}\\ = 11.6 Merg/cm\\(^3\\, comparable to that of the film grown on Cr.

  10. Liquid Solution Phase Epitaxial Growth of Al-doped f-SiC for LEDs

    DEFF Research Database (Denmark)

    Tang, Kai; Ma, Xiang; van der Eijk, Casper

    light quality and longer lifespan, compared to the current yellow phosphor based white LEDs. Liquid phase epitaxy technology is able to yield a high crystalline quality in terms of structural perfection owing to the fact that it is a near equilibrium process. In addition, the technological equipment...... are presented and discussed. Since operational temperature of LPE growth is much lower than that currently used in physical vapour transport (PVT) process, it is expected to save the energy consumption for SiC crystal growth....

  11. Real time ellipsometry for monitoring plasma-assisted epitaxial growth of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy)]. E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Capezzuto, Pio [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Brown, April S. [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Kim, Tong-Ho [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Choi, Soojeong [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States)

    2006-10-31

    GaN is grown on Si-face 4H-SiC(0 0 0 1) substrates using remote plasma-assisted methods including metalorganic chemical vapour deposition (RP-MOCVD) and molecular beam epitaxy (MBE). Real time spectroscopic ellipsometry is used for monitoring all the steps of substrate pre-treatments and the heteroepitaxial growth of GaN on SiC. Our characterization emphasis is on understanding the nucleation mechanism and the GaN growth mode, which depend on the SiC surface preparation.

  12. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    International Nuclear Information System (INIS)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-01-01

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs

  13. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.

  14. Epitaxial growth of thin single-crystals and their quality study by Rutherford scattering in channeling conditions

    International Nuclear Information System (INIS)

    Kirsch, Robert.

    1975-01-01

    Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr

  15. Epitaxial growth of semiconducting β-FeSi2 and its application to light-emitting diodes

    International Nuclear Information System (INIS)

    Suemasu, T.; Takakura, K.; Li, Cheng; Ozawa, Y.; Kumagai, Y.; Hasegawa, F.

    2004-01-01

    In this paper, we review the detailed study of epitaxial growth of β-FeSi 2 films by reactive deposition epitaxy (RDE), multilayer technique and molecular beam epitaxy (MBE). The p- and n-type β-FeSi 2 was formed when it was grown under an Fe-rich and an Si-rich condition, respectively. The maximum electron and hole mobilities of the β-FeSi 2 epitaxial films reached 6900 and 13000 cm 2 /V·s for the n- and p-type β-FeSi 2 , respectively, at around 50 K. Room temperature (RT) 1.6 μm electroluminescence (EL) was realized by optimizing the growth conditions for p-Si/β-FeSi 2 particles/n-Si structures prepared by RDE for β-FeSi 2 and by MBE for Si

  16. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  17. Molecular-beam epitaxy growth of high-performance midinfrared diode lasers

    International Nuclear Information System (INIS)

    Turner, G.W.; Choi, H.K.; Calawa, D.R.

    1994-01-01

    Recent advances in the performance of GaInAsSb/AlGaAsSb quantum-well diode lasers have been directly related to improvements in the quality of the molecular-beam epitaxy (MBE)-grown epitaxial layers. These improvements have been based on careful measurement and control of lattice matching and intentional strain, changes in shutter sequencing at interfaces, and a generally better understanding of the growth of Sb-based epitaxial materials. By using this improved MBE-grown material, significantly enhanced performance has been obtained for midinfrared lasers. These lasers, which are capable of ∼2-μm emission at room temperature, presently exhibit threshold current densities of 143 A/cm 2 , continuous wave powers of 1.3 W, and diffraction-limited powers of 120 mW. Such high-performance midinfrared diode lasers are of interest for a wide variety of applications, including eye-safe laser radar, remote sensing of atmospheric contaminants and wind turbulence, laser surgery, and pumping of solid-state laser media. 12 refs., 3 figs

  18. Small fluctuations in epitaxial growth via conservative noise

    International Nuclear Information System (INIS)

    Patrone, Paul N; Wang Rongrong; Margetis, Dionisios

    2011-01-01

    We study the combined effect of growth (material deposition from above) and nearest-neighbor entropic and force-dipole interactions in a stochastically perturbed system of N line defects (steps) on a vicinal crystal surface in 1+1 dimensions. First, we formulate a general model of conservative white noise and derive simplified formulas for the terrace width distribution and terrace width correlations in the limit N → ∞ for small step fluctuations. Our general result expresses terrace width correlations as an interplay of noise covariance and step interaction strength. Second, we apply our formalism to two specific noise models which stem, respectively, from (i) the fluctuation-dissipation theorem for diffusion of adsorbed atoms; and (ii) the phenomenological consideration of deposition-flux-induced asymmetric attachment and detachment of atoms at step edges. In both cases of noise, we find that terrace width correlations decay exponentially with the step number difference; this behavior leads to vanishing correlations in the macroscopic limit. Our analysis may be used to (i) determine the noise in quasi-one-dimensional surfaces and (ii) assess the validity of previous mean field approximations.

  19. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    OpenAIRE

    Hongling Wei; Zhengwei Chen; Zhenping Wu; Wei Cui; Yuanqi Huang; Weihua Tang

    2017-01-01

    Ga2O3 with a wide bandgap of ∼ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. Th...

  20. Epitaxial growth of SrTiO3 thin film on Si by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhou, X. Y.; Miao, J.; Dai, J. Y.; Chan, H. L. W.; Choy, C. L.; Wang, Y.; Li, Q.

    2007-01-01

    SrTiO 3 thin films have been deposited on Si (001) wafers by laser molecular beam epitaxy using an ultrathin Sr layer as the template. X-ray diffraction measurements indicated that SrTiO 3 was well crystallized and epitaxially aligned with Si. Cross-sectional observations in a transmission electron microscope revealed that the SrTiO 3 /Si interface was sharp, smooth, and fully crystallized. The thickness of the Sr template was found to be a critical factor that influenced the quality of SrTiO 3 and the interfacial structure. Electrical measurements revealed that the SrTiO 3 film was highly resistive

  1. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui; Jeong, Jong Seok; Mkhoyan, K. Andre; Jalan, Bharat, E-mail: bjalan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layer growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.

  2. Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-01-01

    LaVO 3 thin films were grown on SrTiO 3 (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO 3 films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application

  3. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  4. Quantum wire spectroscopy and epitaxial growth velocities in InGaAs-InP heterostructures

    International Nuclear Information System (INIS)

    Worlock, J.M.; Peeters, F.M.; Cox, H.M.; Morais, P.C.

    1990-06-01

    We study excitons bound to quantum wires of InGaAs embedded in an InP matrix, where the wires vary from 2.93A angstrom to a.1172A angstrom (one to four monolayers) thick and from 25A angstrom to 250A angstrom wide. We combine spectroscopic data from measurements of photoluminescence with variational calculations of the binding energies of excitons to the wires to deduce the wire widths and thickness. The widths are then related to the growth times to deduce lateral growth velocities in the vapor levitation epitaxial technique. Monolayer growth rates, at ∼ 80A angstrom/sec, are significantly faster than growth rates for the multilayer wires. (author)

  5. Mathematical model for predicting molecular-beam epitaxy growth rates for wafer production

    International Nuclear Information System (INIS)

    Shi, B.Q.

    2003-01-01

    An analytical mathematical model for predicting molecular-beam epitaxy (MBE) growth rates is reported. The mathematical model solves the mass-conservation equation for liquid sources in conical crucibles and predicts the growth rate by taking into account the effect of growth source depletion on the growth rate. Assumptions made for deducing the analytical model are discussed. The model derived contains only one unknown parameter, the value of which can be determined by using data readily available to MBE growers. Procedures are outlined for implementing the model in MBE production of III-V compound semiconductor device wafers. Results from use of the model to obtain targeted layer compositions and thickness of InP-based heterojunction bipolar transistor wafers are presented

  6. Molecular-beam epitaxial growth and characterization of quaternary III-nitride compounds

    International Nuclear Information System (INIS)

    Monroy, E.; Gogneau, N.; Enjalbert, F.; Fossard, F.; Jalabert, D.; Bellet-Amalric, E.; Dang, Le Si; Daudin, B.

    2003-01-01

    We report on the controlled growth and characterization of quaternary AlGaInN compounds by plasma-assisted molecular beam epitaxy. Two-dimensional growth is achieved with a monolayer of In segregating at the growth front. In incorporation is hindered by increasing growth temperature and Al mole fraction, which is explained by the lower binding energy of InN compared to GaN and AlN. The mosaicity of the layers is determined by the substrate quality, whereas the alloy disorder increases with the Al content, independent of the In mole fraction. Room temperature photoluminescence is dominated by a narrow band-edge emission, whose Stokes shift and activation energy increase with the In content. This behavior is interpreted in terms of carrier localization in self-formed alloy inhomogeneities. An In-related band bowing parameter of 2.5 eV has been estimated

  7. Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming; Yu, Dapeng; Wu, Xiaosong, E-mail: xswu@pku.edu.cn [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-01-05

    We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effect results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.

  8. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    Science.gov (United States)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the

  9. Growth of CrTe thin films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Sreenivasan, M.G.; Hou, X.J.; Teo, K.L.; Jalil, M.B.A.; Liew, T.; Chong, T.C.

    2006-01-01

    We report the growth of Cr 1-δ Te films on (100) GaAs substrates using ZnTe buffer layers by solid-source molecular-beam epitaxial technique. RHEED patterns indicate a clear structural change during the initial stages of deposition. Temperature-dependent magnetization results reveal that different NiAs-related phases of Cr 1-δ Te can be obtained at different substrate temperatures. By varying the film thickness, a metastable zinc blende structure of CrTe could be obtained at lower substrate temperature

  10. Contribution of numerical simulation to silicon carbide bulk growth and epitaxy

    International Nuclear Information System (INIS)

    Meziere, Jerome; Pons, Michel; Cioccio, Lea Di; Blanquet, Elisabeth; Ferret, Pierre; Dedulle, Jean-Marc; Baillet, Francis; Pernot, Etienne; Anikin, Michail; Madar, Roland; Billon, Thierry

    2004-01-01

    High temperature epitaxial processes for SiC bulk and thin films by physical vapour transport and chemical vapour deposition are reviewed from an academic point of view using heat and mass transfer modelling and simulation. The objective is to show that this modelling approach could provide information on fabrication and characterization for the improvement of the knowledge of the growth history. Recent results of our integrated research programme on SiC, taking into account the fabrication, process modelling and characterization, will be presented

  11. Epitaxial growth of textured YBa2Cu3O7-δ films on silver

    International Nuclear Information System (INIS)

    Liu Dan-Min; Liu Wei-Peng; Suo Hong-Li; Zhou Mei-Ling

    2005-01-01

    YBa 2 Cu 3 O 7-δ (YBCO) films were deposited on (100), (110) and (111) oriented silver single crystals and {100} left angle 100 right angle, {110} left angle 211 right angle, {110} left angle 100 right angle +{110} left angle 011 right angle {110} left angle 011 right angle and {012} left angle 100 right angle textured Ag substrates using pulsed laser deposition. The relationship between the epitaxial growth YBCO film and silver substrate has been determined. It is shown that among polycrystalline Ag substrates, {110} left angle 011 right angle textured tape is suitable for the deposition of YBCO thin films having strong texture. (orig.)

  12. Epitaxial growth of quantum rods with high aspect ratio and compositional contrast

    International Nuclear Information System (INIS)

    Li, L. H.; Patriarche, G.; Fiore, A.

    2008-01-01

    The epitaxial growth of quantum rods (QRs) on GaAs was investigated. It was found that GaAs thickness in the GaAs/InAs superlattice used for QR formation plays a key role in improving the QR structural properties. Increasing the GaAs thickness results in both an increased In compositional contrast between the QRs and surrounding layer, and an increased QR length. QRs with an aspect ratio of up to 10 were obtained, representing quasiquantum wires in a GaAs matrix. Due to modified confinement and strain potential, such nanostructure is promising for controlling gain polarization

  13. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  14. Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height

    International Nuclear Information System (INIS)

    Leal, F F; Ferreira, S C; Ferreira, S O

    2011-01-01

    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier. (fast track communication)

  15. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  16. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Aheli Ghosh

    2017-09-01

    Full Text Available The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ∼0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90  ° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness < 2 nm. Temperature dependent Hall mobility measurements and the modelling thereof indicated that ionized impurity scattering limited carrier mobility in Ge layer. Capacitance- and conductance-voltage measurements were performed to determine the effect of epilayer dislocation density on interfacial defect states (Dit and their energy distribution. Finally, extracted Dit values were benchmarked against published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  17. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  18. Growth of GaSb1-xBix by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Roy, Ivy Saha

    2012-01-01

    Molecular beam epitaxy for GaSb1-xBix is investigated in this article. The growth window for incorporation of Bi in GaSb was found. Strategies of avoiding formation of Bi droplets and enhancing Bi incorporation were studied. The Bi incorporation was confirmed by SIMS and RBS measurements. The Bi ......As substrates were compared and no apparent difference for Bi incorporation was found.......Molecular beam epitaxy for GaSb1-xBix is investigated in this article. The growth window for incorporation of Bi in GaSb was found. Strategies of avoiding formation of Bi droplets and enhancing Bi incorporation were studied. The Bi incorporation was confirmed by SIMS and RBS measurements. The Bi...... concentration in the samples was found to increase with increasing growth temperature and Bi flux. The position of GaSb1-xBix layer peak in XRD rocking curves is found to be correlated to Bi composition. Surface and structural properties of the samples were also investigated. Samples grown on GaSb and Ga...

  19. Growth, structural, and electrical properties of germanium-on-silicon heterostructure by molecular beam epitaxy

    Science.gov (United States)

    Ghosh, Aheli; Clavel, Michael B.; Nguyen, Peter D.; Meeker, Michael A.; Khodaparast, Giti A.; Bodnar, Robert J.; Hudait, Mantu K.

    2017-09-01

    The growth, morphological, and electrical properties of thin-film Ge grown by molecular beam epitaxy on Si using a two-step growth process were investigated. High-resolution x-ray diffraction analysis demonstrated ˜0.10% tensile-strained Ge epilayer, owing to the thermal expansion coefficient mismatch between Ge and Si, and negligible epilayer lattice tilt. Micro-Raman spectroscopic analysis corroborated the strain-state of the Ge thin-film. Cross-sectional transmission electron microscopy revealed the formation of 90° Lomer dislocation network at Ge/Si heterointerface, suggesting the rapid and complete relaxation of Ge epilayer during growth. Atomic force micrographs exhibited smooth surface morphology with surface roughness published Dit data for Ge MOS devices, as a function of threading dislocation density within the Ge layer. The results obtained were comparable with Ge MOS devices integrated on Si via alternative buffer schemes. This comprehensive study of directly-grown epitaxial Ge-on-Si provides a pathway for the development of Ge-based electronic devices on Si.

  20. Study of molecular-beam epitaxy growth on patterned GaAs (311)A substrates with different mesa height

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.

    2000-01-01

    We report on the evolution of the growth front during molecular-beam epitaxy on GaAs (3 1 1)A substrates stripe patterned along the [ ] direction as a function of the mesa height. During growth (1 0 0) and (2 1 1)A facets are formed and expand at the corners near the two opposite lying ( )A and (1 1

  1. Molecular beam epitaxy growth of InSb1-xBix thin films

    DEFF Research Database (Denmark)

    Yuxin Song; Shumin Wang; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1-xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  2. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    NARCIS (Netherlands)

    Bohnen, T.

    2010-01-01

    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III

  3. InAs/GaAs(001) molecular beam epitaxial growth in a scanning tunnelling microscope

    International Nuclear Information System (INIS)

    Bastiman, F; Cullis, A G; Hopkinson, M

    2010-01-01

    The growth on InAs on GaAs(001) has attracted great interest and investigation over the past few decades primarily due to the opto-electronic properties of the self-assembled quantum dot (QD) arrays formed. Scanning tunnelling microscopy (STM) has been extensively employed to investigate the complicated and spontaneous mechanism of QD growth via molecular beam epitaxy (MBE). Classically, combined MBE-STM requires quenching the sample after growth and transferring it to an arsenic-free high vacuum chamber which houses the STM system. However, without access to the phenomenon as a dynamic process a basic understanding remains elusive. In order to access surface dynamics, MBE and STM must be combined into a single element. The system herein discussed allows the operation of MBE sources in an STM system relating to InAs/GaAs(001) surfaces.

  4. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  5. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  6. SiC epitaxial layer growth in a novel multi-wafer VPE reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burk, A.A. Jr.; O`Loughlin, M.J. [Northrop Grumman Advanced Technology Lab., Baltimore, MD (United States); Mani, S.S. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    Preliminary results are presented for SiC epitaxial layer growth employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7 x 2-inch) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600 C. Specular epitaxial layers have been grown in the reactor at growth rates from 3-5 {mu}m/hr. The thickest layer grown to data was 42 {mu}m. The layers exhibit minimum unintentional n-type doping of {proportional_to}1 x 10{sup 15} cm{sup -3}, room temperature mobilities of {proportional_to}1000 cm{sup 2}/Vs, and intentional n-type doping from {proportional_to}5 x 10{sup 15} cm{sup -3} to >1 x 10{sup 19} cm{sup -3}. Intrawafer thickness and doping uniformities of 4% and 7% (standard deviation/mean) have been obtained, respectively, on 35 mm diameter substrates. Recently, 3% thickness uniformity has been demonstrated on a 50 mm substrate. Within a run, wafer-to-wafer thickness deviation is {proportional_to}4-14%. Doping variation is currently larger, ranging as much as a factor of two from the highest to the lowest doped wafer. Continuing efforts to improve the susceptor temperature uniformity and reduce unintentional hydrocarbon generation to improve layer uniformity and reproducibility, are presented. (orig.) 18 refs.

  7. Investigation of the growth of In2O3 on Y-stabilized ZrO2(100) by oxygen plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Bourlange, A.; Payne, D.J.; Palgrave, R.G.; Foord, J.S.; Egdell, R.G.; Jacobs, R.M.J.; Schertel, A.; Hutchison, J.L.; Dobson, P.J.

    2009-01-01

    Thin films of In 2 O 3 have been grown on Y-stabilised ZrO 2 (100) substrates by oxygen plasma assisted molecular beam epitaxy over a range of substrate temperatures between 650 o C and 900 o C. Growth at 650 o C leads to continuous but granular films and complete extinction of substrate core level structure in X-ray photoelectron spectroscopy. However with increasing substrate temperature the films break up into a series of discrete micrometer sized islands. Both the continuous and the island films have excellent epitaxial relationship with the substrate as gauged by X-ray diffraction and selected area electron diffraction and lattice imaging in high resolution transmission electron microscopy.

  8. Growth of conductive HfO{sub 2-x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Kleebe, Hans-Joachim [Institut fuer Angewandte Geowissenschaften, TU Darmstadt (Germany)

    2009-07-01

    Thin films of oxygen deficient hafnium oxide were grown on single crystal c-cut and r-cut sapphire substrates by reactive molecular beam epitaxy. The oxidation conditions during growth were varied within a wide range using RF-activated oxygen. Hafnium oxide thin films were characterized using X-ray diffraction, resistivity measurements ({rho}-T) and transmission electron microscopy (TEM). The results show a dramatic increase in conductivity of the deposited oxygen deficient hafnium oxide thin films with decreasing oxidation conditions during growth. The electrical properties of deficient hafnium oxide thin films varied from insulating over semiconducting to conducting. X-ray diffraction data as well as TEM data rule out the possibility of conductivity due to metallic hafnium.

  9. Aluminum Gallium Nitride Alloys Grown via Metalorganic Vapor-Phase Epitaxy Using a Digital Growth Technique

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-04-01

    This work investigates the use of a digital growth technique as a viable method for achieving high-quality aluminum gallium nitride (Al x Ga1- x N) films via metalorganic vapor-phase epitaxy. Digital alloys are superlattice structures with period thicknesses of a few monolayers. Alloys with an AlN mole fraction ranging from 0.1 to 0.9 were grown by adjusting the thickness of the AlN layer in the superlattice. High-resolution x-ray diffraction was used to determine the superlattice period and c-lattice parameter of the structure, while reciprocal-space mapping was used to determine the a-lattice parameter and evaluate growth coherency. A comparison of the measured lattice parameter with both the nominal value and also the underlying buffer layer is discussed.

  10. Morphology and grain structure evolution during epitaxial growth of Ag films on native-oxide-covered Si surface

    International Nuclear Information System (INIS)

    Hur, Tae-Bong; Kim, Hong Koo; Perello, David; Yun, Minhee; Kulovits, Andreas; Wiezorek, Joerg

    2008-01-01

    Epitaxial nanocrystalline Ag films were grown on initially native-oxide-covered Si(001) substrates using radio-frequency magnetron sputtering. Mechanisms of grain growth and morphology evolution were investigated. An epitaxially oriented Ag layer (∼5 nm thick) formed on the oxide-desorbed Si surface during the initial growth phase. After a period of growth instability, characterized as kinetic roughening, grain growth stagnation, and increase of step-edge density, a layer of nanocrystalline Ag grains with a uniform size distribution appeared on the quasi-two-dimensional layer. This hierarchical process of film formation is attributed to the dynamic interplay between incoming energetic Ag particles and native oxide. The cyclic interaction (desorption and migration) of the oxide with the growing Ag film is found to play a crucial role in the characteristic evolution of grain growth and morphology change involving an interval of grain growth stagnation

  11. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxyGrowth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  12. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    International Nuclear Information System (INIS)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-01-01

    We report the growth and characterization of III-nitride ternary thin films (Al x Ga 1−x N, In x Al 1−x N and In x Ga 1−x N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxyGrowth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures

  13. Dynamic grazing incidence fast atom diffraction during molecular beam epitaxial growth of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, P., E-mail: atkinson@insp.jussieu.fr; Eddrief, M. [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France); CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75005 Paris (France); Etgens, V. H. [CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75005 Paris (France); VeDeCom-Université Versailles Saint-Quentin en Yvelines, Versailles (France); Khemliche, H., E-mail: hocine.khemliche@u-psud.fr; Debiossac, M.; Mulier, M.; Lalmi, B.; Roncin, P. [ISMO UMR8214 CNRS-Université Paris-Sud, Orsay F-91400 (France); Momeni, A. [ISMO UMR8214 CNRS-Université Paris-Sud, Orsay F-91400 (France); Univ. Cergy Pontoise, F-95031 Cergy (France)

    2014-07-14

    A Grazing Incidence Fast Atom Diffraction (GIFAD) system has been mounted on a commercial molecular beam epitaxy chamber and used to monitor GaAs growth in real-time. In contrast to the conventionally used Reflection High Energy Electron Diffraction, all the GIFAD diffraction orders oscillate in phase, with the change in intensity related to diffuse scattering at step edges. We show that the scattered intensity integrated over the Laue circle is a robust method to monitor the periodic change in surface roughness during layer-by-layer growth, with oscillation phase and amplitude independent of incidence angle and crystal orientation. When there is a change in surface reconstruction at the start of growth, GIFAD intensity oscillations show that there is a corresponding delay in the onset of layer-by-layer growth. In addition, changes in the relative intensity of different diffraction orders have been observed during growth showing that GIFAD has the potential to provide insight into the preferential adatom attachment sites on the surface reconstruction during growth.

  14. Effects of film polarities on InN growth by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Xu, K.; Yoshikawa, A.

    2003-01-01

    Effects of the film polarity on InN growth were investigated in molecular-beam epitaxy (MBE). It was found that N-polarity InN could be grown at higher temperatures than In-polarity one. For the In-polarity films, which were grown on Ga-polar GaN template, the highest growth temperature was limited below 500 deg. C, and the surface morphology and crystal quality tended to be poor mainly because of the tolerated low growth temperature. While for the N-polarity InN films, which were grown on MBE-grown N-polar GaN, the growth temperature could be as high as 600 deg. C. The step-flow-like growth morphology was achieved for the InN films grown with N polarity at 580 deg. C. The resulting full widths of half maximum of x-ray rocking curve around InN (002) and (102) reflections were about 200-250 and 950-1100 arc sec, respectively. The photoluminescence of the InN films peaked at 0.697 eV. The recording Hall mobility of InN film grown in N polarity is 1400 cm 2 /V s with a background carrier concentration of 1.56x10 18 cm -3 at room temperature. For both-polarity films, we found N-rich condition was necessary for the stable InN growth

  15. Molecular Beam Epitaxy Growth of High Crystalline Quality LiNbO3

    Science.gov (United States)

    Tellekamp, M. Brooks; Shank, Joshua C.; Goorsky, Mark S.; Doolittle, W. Alan

    2016-12-01

    Lithium niobate is a multi-functional material with wide reaching applications in acoustics, optics, and electronics. Commercial applications for lithium niobate require high crystalline quality currently limited to bulk and ion sliced material. Thin film lithium niobate is an attractive option for a variety of integrated devices, but the research effort has been stagnant due to poor material quality. Both lattice matched and mismatched lithium niobate are grown by molecular beam epitaxy and studied to understand the role of substrate and temperature on nucleation conditions and material quality. Growth on sapphire produces partially coalesced columnar grains with atomically flat plateaus and no twin planes. A symmetric rocking curve shows a narrow linewidth with a full width at half-maximum (FWHM) of 8.6 arcsec (0.0024°), which is comparable to the 5.8 arcsec rocking curve FWHM of the substrate, while the film asymmetric rocking curve is 510 arcsec FWHM. These values indicate that the individual grains are relatively free of long-range disorder detectable by x-ray diffraction with minimal measurable tilt and twist and represents the highest structural quality epitaxial material grown on lattice mismatched sapphire without twin planes. Lithium niobate is also grown on lithium tantalate producing high quality coalesced material without twin planes and with a symmetric rocking curve of 193 arcsec, which is nearly equal to the substrate rocking curve of 194 arcsec. The surface morphology of lithium niobate on lithium tantalate is shown to be atomically flat by atomic force microscopy.

  16. Epitaxial growth of higher transition-temperature VO2 films on AlN/Si

    Directory of Open Access Journals (Sweden)

    Tetiana Slusar

    2016-02-01

    Full Text Available We report the epitaxial growth and the mechanism of a higher temperature insulator-to-metal-transition (IMT of vanadium dioxide (VO2 thin films synthesized on aluminum nitride (AlN/Si (111 substrates by a pulsed-laser-deposition method; the IMT temperature is TIMT ≈ 350 K. X-ray diffractometer and high resolution transmission electron microscope data show that the epitaxial relationship of VO2 and AlN is VO2 (010 ‖ AlN (0001 with VO2 [101] ‖   AlN   [ 2 1 ̄ 1 ̄ 0 ] zone axes, which results in a substrate-induced tensile strain along the in-plane a and c axes of the insulating monoclinic VO2. This strain stabilizes the insulating phase of VO2 and raises TIMT for 10 K higher than TIMT single crystal ≈ 340 K in a bulk VO2 single crystal. Near TIMT, a resistance change of about four orders is observed in a thick film of ∼130 nm. The VO2/AlN/Si heterostructures are promising for the development of integrated IMT-Si technology, including thermal switchers, transistors, and other applications.

  17. Sub-monolayer growth of titanium, cobalt, and palladium on epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Anastasia; Kilchert, Franziska; Schneider, M. Alexander [Lehrstuhl fuer Festkoerperphysik, Friedrich-Alexander Universitaet Erlangen-Nuernberg (FAU), Erlangen (Germany); Link, Stefan; Stoehr, Alexander; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2017-11-15

    We deposited metals (Ti, Co, Pd) typically used as seed layers for contacts on epitaxial graphene on SiC(0001) and studied the early stages of growth in the sub-monolayer regime by Scanning Tunneling Microscopy (STM). All three metals do not wet the substrate and Ostwalt ripening occurs at temperatures below 400 K. The analysis of the epitaxial orientation of the metal adislands revealed their specific alignment to the graphene lattice. It is found that the apparent height of the islands as measured by STM strongly deviates from their true topographic height. This is interpreted as an indication of the presence of scattering processes within the metal particles that increase the transparency of the metal-graphene interface for electrons. Even large islands are easily picked up by the tip of the STM allowing insight into the bonding between metal island and graphene surface and into mechanisms leading to metal intercalation. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Growth of CoSi2 on Si(001) by reactive deposition epitaxy

    International Nuclear Information System (INIS)

    Lim, C.W.; Shin, C.-S.; Gall, D.; Zuo, J.M.; Petrov, I.; Greene, J.E.

    2005-01-01

    CaF 2 -structure CoSi 2 layers were formed on Si(001) by reactive deposition epitaxy (RDE) and compared with CoSi 2 layers obtained by conventional solid phase growth (SPG). In both sets of experiments, Co was deposited by ultrahigh-vacuum magnetron sputtering and CoSi 2 formed at 600 deg. C. However, in the case of RDE, CoSi 2 formation occurred during Co deposition while for SPG, Co was deposited at 25 deg. C and silicidation took place during subsequent annealing. X-ray diffraction pole figures and transmission electron microscopy results demonstrate that RDE CoSi 2 layers are epitaxial with a cube-on-cube relationship (001) CoSi 2 parallel (001) Si and [100] CoSi 2 parallel[100] Si . In contrast, SPG films are polycrystalline with an average grain size of ≅1000 A and a mixed 111/002/022/112 orientation. We attribute the striking difference to rapid Co diffusion into the Si(001) substrate during RDE for which the high Co/Si reactivity gives rise to a flux-limited reaction resulting in the direct formation of the disilicide phase. In contrast, sequential nucleation and transformation among increasingly Si-rich phases--from orthorhombic Co 2 Si to cubic CoSi to CoSi 2 --during SPG results in polycrystalline layers with a complex texture

  19. Growth of defect-free GaAsSbN axial nanowires via self-catalyzed molecular beam epitaxy

    Science.gov (United States)

    Sharma, Manish; Deshmukh, Prithviraj; Kasanaboina, Pavan; Reynolds, C. Lewis, Jr.; Liu, Yang; Iyer, Shanthi

    2017-12-01

    Bandgap reduction of 10% by incorporation of a dilute amount of N is reported for the first time, in axial GaAsSb nanowires (NWs) grown on Si (111) via Ga-assisted molecular beam epitaxy. Impact of N incorporation on the surface morphology, NW growth kinetics, and their structural and optical properties were examined. Dilute nitride NWs with Sb composition of 7 at% did not exhibit any noticeable planar defects, as revealed by the absence of satellite twin peaks in the selected-area diffraction pattern and high-resolution transmission electron microscopy imaging. Point defects were also minimal in as-grown dilute nitride NWs, as ascertained from the comparison of low-temperature photoluminescence spectra as well as the shape and shift of Raman modes, with in situ annealed NWs in different ambients. Evidence of enhanced incorporation of N was found in the NWs in situ annealed in N ambient, but with deteriorated optical quality due to simultaneous creation of N-induced defects. The lack of any noticeable defects in the as-grown GaAsSbN NWs demonstrates the advantage of the vapor-liquid-solid mechanism responsible for growth of axial configuration over the vapor-solid growth mechanism for core-shell NWs as well as their thin film counterpart, which commonly exhibit N-induced point defects.

  20. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  1. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  2. Growth and characterization of ultrathin epitaxial MnO film on Ag(001)

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-07-01

    We present here a comprehensive growth procedure to obtain a well-ordered MnO(001) ultrathin film on Ag(001) substrate. Depending upon the oxygen partial pressure during the growth, different phases of manganese oxide have been detected by Low Energy Electron Diffraction (LEED) and X-ray Photoelectron Spectroscopic (XPS) studies. A modified growth scheme has been adopted to get well-ordered and stoichiometric MnO(001) ultrathin film. The detailed growth mechanism of epitaxial MnO film on Ag(001) has been studied step by step, using LEED and XPS techniques. Observation of sharp (1 × 1) LEED pattern with a low inelastic background, corresponds to a long-range atomic order with low defect densities indicating the high structural quality of the film. The Mn 2p and Mn 3s core-level spectra confirm the oxidation state as well as the stoichiometry of the grown MnO films. Apart from the growth optimization, the evolution of strain relaxation of the MnO(001) film with film thickness has been explored.

  3. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A.

    2008-01-01

    The mechanisms of Ga-assisted GaAs nanowires grown by molecular beam epitaxy are addressed. The axial and radial growth rates as a function of the Ga rate and As pressure indicate that on the opposite of what is observed in thin film epitaxy, the growth rate of the nanowires is arsenic limited. As a consequence, the axial growth rate of the wires can be controlled by the As 4 pressure. Additionally, due to the small As 4 pressure leading to nanowire growth, the deposition on the facets is very slow, leading to a much lower radial growth rate. Finally, we present a model that is able to accurately describe the presented observations and predicts a maximum length of nontapered nanowires of 40 μm

  4. Surface Reaction Kinetics of Ga(1-x)In(x)P Growth During Pulsed Chemical Beam Epitaxy

    National Research Council Canada - National Science Library

    Dietz, N; Beeler, S. C; Schmidt, J. W; Tran, H. T

    2000-01-01

    ... into the surface reaction kinetics during an organometallic deposition process. These insights will allow us to move the control point closer to the point where the growth occurs, which in a chemical been epitaxy process is a surface reaction layer (SRL...

  5. Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth

    Czech Academy of Sciences Publication Activity Database

    Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.

    2014-01-01

    Roč. 37, č. 6 (2014), s. 793-807 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : singular boundary value problem * epitaxial growth * radial solution Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mma.2836/full

  6. Impact of GaN transition layers in the growth of GaN epitaxial layer on silicon

    International Nuclear Information System (INIS)

    Zhao Danmei; Zhao Degang; Jiang Desheng; Liu Zongshun; Zhu Jianjun; Chen Ping; Liu Wei; Li Xiang; Shi Ming

    2015-01-01

    A method for growing GaN epitaxial layer on Si (111) substrate is investigated. Due to the large lattice mismatch between GaN and AlN, GaN grown directly above an AlN buffer layer on the Si substrate turns out to be of poor quality. In this study, a GaN transition layer is grown additionally on the AlN buffer before the GaN epitaxial growth. By changing the growth conditions of the GaN transition layer, we can control the growth and merging of islands and control the transfer time from 3D to 2D growth mode. With this method, the crystalline quality of the GaN epitaxial layer can be improved and the crack density is reduced. Here, we have investigated the impact of a transition layer on the crystalline quality and stress evolution of a GaN epitaxial layer with methods of X-ray diffraction, optical microscopy and in situ reflectivity trace. With the increasing thickness of transition layer, the crack decreases and the crystalline quality is improved. But when the transition layer exceeds a critical thickness, the crystalline quality of the epilayer becomes lower and the crack density increases. (paper)

  7. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Hongling Wei

    2017-11-01

    Full Text Available Ga2O3 with a wide bandgap of ∼ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It’s also demonstrated that the CuGa2O4 film has a bandgap of ∼ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  8. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    Science.gov (United States)

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  9. Epitaxial growth of cubic Gd{sub 2}O{sub 3} thin films on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molle, A; Wiemer, C; Bhuiyan, M D N K; Tallarida, G; Fanciulli, M [CNR-INFM, Laboratorio Nazionale MDM, via C. Olivetti 2, I-20041 Agrate Brianza (Italy)], E-mail: alessandro.molle@mdm.infm.it

    2008-03-15

    Gd{sub 2}O{sub 3} thin films were grown on Ge (001) substrates by molecular beam epitaxy. The epitaxial character of the film is demonstrated by electron diffraction during the growth. The structural characterization of the films shows that the Gd{sub 2}O{sub 3} forms a bixbyite polymorph with a (110) out-of-plane orientation. The formation of bixbyite structured Gd{sub 2}O{sub 3} is discussed in terms of the atomic arrangement of the oxide planes on the Ge(001) surface.

  10. Nucleation of two-dimensional islands on Si (111) during high-temperature epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Sitnikov, S. V., E-mail: sitnikov@isp.nsc.ru; Kosolobov, S. S.; Latyshev, A. V. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-02-15

    The process of two-dimensional island nucleation at the surface of ultra large Si (111) during hightemperature epitaxial growth is studied by in situ ultrahigh-vacuum reflection electron microscopy. The critical terrace size D{sub crit}, at which a two-dimensional island is nucleated in the center, is measured in the temperature range 900–1180°C at different silicon fluxes onto the surface. It is found that the parameter D{sub crit}{sup 2} is a power function of the frequency of island nucleation, with the exponent χ = 0.9 ± 0.05 in the entire temperature range under study. It is established that the kinetics of nucleus formation is defined by the diffusion of adsorbed silicon atoms at temperatures of up to 1180°C and the minimum critical nucleus size corresponds to 12 silicon atoms.

  11. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  12. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  13. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    Energy Technology Data Exchange (ETDEWEB)

    Weiser, P S; Prawer, S; Nugent, K W; Bettiol, A A; Kostidis, L I; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 {mu}m{sup 2}. After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs.

  14. Growth of semiconductor alloy InGaPBi on InP by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, K; Wang, P; Pan, W W; Wu, X Y; Yue, L; Gong, Q; Wang, S M

    2015-01-01

    We report the first successful growth of InGaPBi single crystals on InP substrate with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InGaPBi thin films reveal excellent surface and structural qualities, making it a promising new III–V compound family member for heterostructures. The strain can be tuned between tensile and compressive by adjusting Ga and Bi compositions. The maximum achieved Bi concentration is 2.2 ± 0.4% confirmed by Rutherford backscattering spectroscopy. Room temperature photoluminescence shows strong and broad light emission at energy levels much smaller than the InP bandgap. (paper)

  15. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    Science.gov (United States)

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  16. Homo-epitaxial diamond film growth on ion implanted diamond substrates

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Nugent, K.W.; Bettiol, A.A.; Kostidis, L.I.; Jamieson, D.N.

    1996-01-01

    The nucleation of CVD diamond is a complicated process, governed by many interrelated parameters. In the present work we attempt to elucidate the effect of strain on the growth of a homo-epitaxial CVD diamond. We have employed laterally confined high dose (MeV) Helium ion implantation to produce surface swelling of the substrate. The strain is enhanced by the lateral confinement of the implanted region to squares of 100 x 100 μm 2 . After ion implantation, micro-Raman spectroscopy was employed to map the surface strain. The substrates were then inserted into a CVD reactor and a CVD diamond film was grown upon them. Since the strained regions were laterally confined, it was then possible to monitor the effect of strain on diamond nucleation. The substrates were also analysed using Rutherford Backscattering Spectroscopy (RBS), Proton induced X-ray Emission (PIXE) and Ion Beam induced Luminescence (IBIL). 7 refs., 5 figs

  17. Molecular beam epitaxial growth of graphene and ridge-structure networks of graphene

    International Nuclear Information System (INIS)

    Maeda, Fumihiko; Hibino, Hiroki

    2011-01-01

    By gas-source molecular beam epitaxy (MBE) using cracked ethanol, we grew graphene at substrate temperatures between 600 and 915 °C on graphene formed on SiC(0 0 0 1) by thermal decomposition. To investigate the substrate temperature dependence of graphene growth we analysed the MBE-grown graphene by Raman spectroscopy and in situ x-ray photoelectron spectroscopy (XPS) and observed it by atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (TEM). Analyses using the G-band peak and the peak intensity ratio between D- and G-band peaks in the Raman spectra revealed that growth at higher temperatures improved the crystallinity and increased the domain size. Although the growth rate decreased at higher temperatures, as revealed by XPS, these results indicated that growth at a higher temperature is effective in obtaining graphene of higher quality. Furthermore, the AFM and TEM observations revealed a network of fin-like ridge structures of graphene sticking out from the surface. The presence of these 'graphene nanofins' indicated that two-dimensional islands of graphene are surrounded by the nanofins, and the island size was estimated to be 67 nm using the average distance between the nanofins.

  18. Optimization of hetero-epitaxial growth for the threading dislocation density reduction of germanium epilayers

    Science.gov (United States)

    Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui

    2018-04-01

    In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.

  19. Fast growth rate of epitaxial β-Ga2O3 by close coupled showerhead MOCVD

    Science.gov (United States)

    Alema, Fikadu; Hertog, Brian; Osinsky, Andrei; Mukhopadhyay, Partha; Toporkov, Mykyta; Schoenfeld, Winston V.

    2017-10-01

    We report on the growth of epitaxial β-Ga2O3 thin films on c-plane sapphire substrates using a close coupled showerhead MOCVD reactor. Ga(DPM)3 (DPM = dipivaloylmethanate), triethylgallium (TEGa) and trimethylgallium (TMGa) metal organic (MO) precursors were used as Ga sources and molecular oxygen was used for oxidation. Films grown from each of the Ga sources had high growth rates, with up to 10 μm/hr achieved using a TMGa precursor at a substrate temperature of 900 °C. As confirmed by X-ray diffraction, the films grown from each of the Ga sources were the monoclinic (2 bar 0 1) oriented β-Ga2O3 phase. The optical bandgap of the films was also estimated to be ∼4.9 eV. The fast growth rate of β-Ga2O3 thin films obtained using various Ga-precursors has been achieved due to the close couple showerhead design of the MOCVD reactor as well as the separate injection of oxygen and MO precursors, preventing the premature oxidation of the MO sources. These results suggest a pathway to overcoming the long-standing challenge of realizing fast growth rates for Ga2O3 using the MOCVD method.

  20. Growth mechanisms of plasma-assisted molecular beam epitaxy of green emission InGaN/GaN single quantum wells at high growth temperatures

    International Nuclear Information System (INIS)

    Yang, W. C.; Wu, C. H.; Tseng, Y. T.; Chiu, S. Y.; Cheng, K. Y.

    2015-01-01

    The results of the growth of thin (∼3 nm) InGaN/GaN single quantum wells (SQWs) with emission wavelengths in the green region by plasma-assisted molecular beam epitaxy are present. An improved two-step growth method using a high growth temperature up to 650 °C is developed to increase the In content of the InGaN SQW to 30% while maintaining a strong luminescence intensity near a wavelength of 506 nm. The indium composition in InGaN/GaN SQW grown under group-III-rich condition increases with increasing growth temperature following the growth model of liquid phase epitaxy. Further increase in the growth temperature to 670 °C does not improve the photoluminescence property of the material due to rapid loss of indium from the surface and, under certain growth conditions, the onset of phase separation

  1. Crystallography and Growth of Epitaxial Oxide Films for Fundamental Studies of Cathode Materials Used in Advanced Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Leonid A. Bendersky

    2017-05-01

    Full Text Available Li-ion battery systems, synthesized as epitaxial thin films, can provide powerful insights into their electrochemical processes. Crystallographic analysis shows that many important cathode oxides have an underlying similarity: their structures can be considered as different ordering schemes of Li and transition metal ions within a pseudo-cubic sublattice of oxygen anions arranged in a face-center cubic (FCC fashion. This oxygen sublattice is compatible with SrTiO3 and similar perovskite oxides, thus perovskites can be used as supporting substrates for growing epitaxial cathode films. The predicted epitaxial growth and crystallographic relations were experimentally verified for different oxide films deposited by pulsed laser deposition (PLD on SrTiO3 or SrRuO3/SrTiO3 of different orientations. The results based on cross-sectional high-resolution TEM of the following films are presented in the paper: (a trigonal LiCoO2; (b orthorhombic LiMnO2; (c monoclinic Li2MnO3; (d compositionally-complex monoclinic Li1.2Mn0.55Ni0.15Co0.1O2. All results demonstrated the feasibility of epitaxial growth for these materials, with the growth following the predicted cube-on-cube orientation relationship between the cubic and pseudo-cubic oxygen sublattices of a substrate and a film, respectively.

  2. Epitaxial growth and properties of YBaCuO thin films

    International Nuclear Information System (INIS)

    Geerk, J.; Linker, G.; Meyer, O.

    1989-08-01

    The growth quality of YBaCuO thin films deposited by sputtering on different substrates (Al 2 O 3 , MgO, SrTiO 3 , Zr(Y)O 2 ) has been studied by X-ray diffraction and channeling experiments as a function of the deposition temperature. Besides the substrate orientation, the substrate temperature is the parameter determining whether films grow in c-, a-, (110) or mixed directions. Epitaxial growth correlates with high critical current values in the films of up to 5.5x10 6 A/cm 2 at 77 K. Ultrathin films with thicknesses down to 2 nm were grown revealing three-dimensional superconducting behaviour. Films on (100) SrTiO 3 of 9 nm thickness and below are partially strained indicating commensurate growth. From the analysis of the surface disorder 1 displaced Ba atom per Ba 2 Y row was obtained indicating that the disordered layer thickness is about 0.6 nm. Tunnel junctions fabricated on these films reveal gap-like structures near ±16 mV and ±30 mV. (orig.) [de

  3. Controlling the growth of epitaxial graphene on metalized diamond (111) surface

    International Nuclear Information System (INIS)

    Cooil, S. P.; Wells, J. W.; Hu, D.; Evans, D. A.; Niu, Y. R.; Zakharov, A. A.; Bianchi, M.

    2015-01-01

    The 2-dimensional transformation of the diamond (111) surface to graphene has been demonstrated using ultrathin Fe films that catalytically reduce the reaction temperature needed for the conversion of sp 3 to sp 2 carbon. An epitaxial system is formed, which involves the re-crystallization of carbon at the Fe/vacuum interface and that enables the controlled growth of monolayer and multilayer graphene films. In order to study the initial stages of single and multilayer graphene growth, real time monitoring of the system was preformed within a photoemission and low energy electron microscope. It was found that the initial graphene growth occurred at temperatures as low as 500 °C, whilst increasing the temperature to 560 °C was required to produce multi-layer graphene of high structural quality. Angle resolved photoelectron spectroscopy was used to study the electronic properties of the grown material, where a graphene-like energy momentum dispersion was observed. The Dirac point for the first layer is located at 2.5 eV below the Fermi level, indicating an n-type doping of the graphene due to substrate interactions, while that of the second graphene layer lies close to the Fermi level

  4. Amorphous inclusions during Ge and GeSn epitaxial growth via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gencarelli, F., E-mail: federica.gencarelli@imec.be [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium); Shimura, Y. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Kumar, A. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Vincent, B.; Moussa, A.; Vanhaeren, D.; Richard, O.; Bender, H. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, W. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Nuclear and Radiation Physics Section, KU Leuven, B-3001 Leuven (Belgium); Caymax, M.; Loo, R. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, M. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Dept. of Metallurgy and Materials Engineering, KU Leuven, B-3001 Leuven (Belgium)

    2015-09-01

    In this work, we discuss the characteristics of particular island-type features with an amorphous core that are developed during the low temperature epitaxial growth of Ge and GeSn layers by means of chemical vapor deposition with Ge{sub 2}H{sub 6}. Although further investigations are needed to unambiguously identify the origin of these features, we suggest that they are originated by the formation of clusters of H and/or contaminants atoms during growth. These would initially cause the formation of pits with crystalline rough facets over them, resulting in ring-shaped islands. Then, when an excess surface energy is overcome, an amorphous phase would nucleate inside the pits and fill them. Reducing the pressure and/or increasing the growth temperature can be effective ways to prevent the formation of these features, likely due to a reduction of the surface passivation from H and/or contaminant atoms. - Highlights: • Island features with amorphous cores develop during low T Ge(Sn) CVD with Ge{sub 2}H{sub 6.} • These features are thoroughly characterized in order to understand their origin. • A model is proposed to describe the possible evolution of these features. • Lower pressures and/or higher temperatures avoid the formation of these features.

  5. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rueda-Fonseca, P.; Orrù, M. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Bellet-Amalric, E.; Robin, E. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J., E-mail: joel.cibert@neel.cnrs.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France)

    2016-04-28

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  6. Epitaxial growth of SrTiO3/YBa2Cu3O7 - x heterostructures by plasma-enhanced metalorganic chemical vapor deposition

    Science.gov (United States)

    Liang, S.; Chern, C. S.; Shi, Z. Q.; Lu, P.; Safari, A.; Lu, Y.; Kear, B. H.; Hou, S. Y.

    1994-06-01

    We report heteroepitaxial growth of SrTiO3 on YBa2Cu3O7-x/LaAlO3 substrates by plasma-enhanced metalorganic chemical vapor deposition. X-ray diffraction results indicated that SrTiO3 films were epitaxially grown on a (001) YBa2Cu3O7-x surface with [100] orientation perpendicular to the surface. The film composition, with Sr/Ti molar ratio in the range of 0.9 to 1.1, was determined by Rutherford backscattering spectrometry and energy dispersive spectroscopy. The thickness of the SrTiO3 films is 0.1-0.2 μm. The epitaxial growth was further evidenced by high-resolution transmission electron microscopy and selected area diffraction. Atomically abrupt SrTiO3/YBa2Cu3O7-x interface and epitaxial growth with [100]SrTiO3∥[001]YBa2Cu3O7-x were observed in this study. The superconducting transition temperature of the bottom YBa2Cu3O7-x layer, as measured by ac susceptometer, did not significantly degrade after the growth of overlayer SrTiO3. The capacitance-voltage measurements showed that the dielectric constant of the SrTiO3 films was as high as 315 at a signal frequency of 100 KHz. The leakage current density through the SrTiO3 films is about 1×10-6 A/cm2 at 2-V operation. Data analysis on the current-voltage characteristic indicated that the conduction process is related to bulk-limited Poole-Frenkel emission.

  7. Growth kinetics and properties of ZnO/ZnMgO heterostructures grown by radical-source molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, S.V. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Ioffe Physico-Technical Institute, Polytekhnicheskaya Street 26, 194021 St. Petersburg (Russian Federation); El-Shaer, A.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Str. 66, 38106 Braunschweig (Germany); Shubina, T.V.; Listoshin, S.B. [Ioffe Physico-Technical Institute, Polytekhnicheskaya Street 26, 194021 St. Petersburg (Russian Federation)

    2007-07-01

    A phenomenological approach to quantitative description of Zn(Mg)O growth by radical-source molecular beam epitaxy, based on the experimental studies of RHEED intensity oscillations, has been developed. It allows a precise control of growth rate, composition and stoichiometry at any growth temperature, Along with optimization of a growth initiation procedure on a c-sapphire, it is necessary condition for fabrication of high quality ZnO epilayers and ZnO/ZnMgO heterostructures in a wide Mg composition range. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Growth of HfO{sub x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany)

    2008-07-01

    Thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. The conditions for the growth of single oriented hafnium oxide thin films have been established. Hafnium oxide thin films were characterized by X-ray diffraction and optical absorption measurements. It was found that hafnium oxide thin films grown on r-cut sapphire were (00l) oriented whereas, on c-cut sapphire, hafnium oxide films showed different orientations depending on the growth temperature and oxidation conditions. The hafnium oxide films grown at higher temperature and under strong oxidation conditions yielded (001) oriented films on c-cut sapphire whereas slightly weaker oxidation condition leads to (111) oriented hafnium oxide films. The bandgap deducted from optical absorption measurement carried out on hafnium oxide films grown under optimized conditions agreed well with the values reported in literature. A range of oxygen deficient thin films of hafnium oxide were also grown on single crystal sapphire substrates in order to investigate the effect of oxygen vacancies on dielectric properties of hafnium oxide. The oxygen deficient thin films of hafnium oxide show a decrease in bandgap with increase in oxygen deficiency.

  9. MBE growth and design of II-VI heterostructures for epitaxial lift-off

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ian A.; Vallance, Erin C.; Prior, Kevin A. [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh (United Kingdom); Moug, Richard T.; Tamargo, Maria C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    Epitaxial lift-off (ELO) is a post-growth process that allows the active part of a semiconductor structure to be transferred from its growth substrate to a new one. This is a well established technique for III-V semiconductors, and has previously been demonstrated for ZnSe-based alloys grown on GaAs using a metastable MgS sacrificial layer, taking advantage of the huge difference in etch rates of MgS and ZnSe. We report here the first successful extension of this process to II-VI layers grown on InP by using a MgSe sacrificial layer. By using the correct etching conditions, MgSe has been found to work effectively as a sacrificial layer. 5 x 5 mm{sup 2} square pieces of material can be lifted and deposited on glass substrates without any deterioration in the structural or optical properties; as confirmed by optical microscopy and photoluminescence (PL) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Tassie K. [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Cook, Seyoung [Materials Science; Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wan, Gang [Materials Science; Hong, Hawoong [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Marks, Laurence D. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States; Fong, Dillon D. [Materials Science

    2018-01-31

    Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as a function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.

  11. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  12. Roles of kinetics and energetics in the growth of AlN by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Im, I. H.; Minegishi, T.; Hanada, T.; Lee, S. W.; Cho, M. W.; Yao, T.; Oh, D. C.; Chang, J. H.

    2006-01-01

    The roles of kinetics and energetics in the growth processes of AlN on c-sapphire by plasma assisted molecular beam epitaxy are investigated by varying the growth rate from 1 to 31 A/min and the substrate temperature from 800 to 1000 .deg. C. The energetics is found to govern the growth of AlN in the low-growth rate region even at a low substrate temperature of 800 .deg. C owing to the enhanced residence time of adatoms, thereby increasing the surface migration length. As the growth rate increases, the growth tends to be governed by kinetics because of a reduction in the residence time of adatoms. Consequently, the surface roughness and crystal quality are greatly improved for the low-growth-rate case. In addition, the lattice strain relaxation is completed from the beginning of epitaxy for energetics-limiting growth while lattice strain relaxation is retarded for kinetics-limiting growth because of pre-existing partial strain relaxation. Energetics becomes more favorable as the substrate temperature is raised because of an increase in the surface diffusion length owing to an enhanced diffusion coefficient. Consequently high-crystal-quality AlN layers are grown under the energetics-limiting growth condition with a screw dislocation density of 7.4 x 10 8 cm -2 even for a thin 42-nm thick film.

  13. Selective area growth of GaN rod structures by MOVPE: Dependence on growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Wang, Xue; Erenburg, Milena; Al-Suleiman, Mohamed Aid Mansur; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bergbauer, Werner [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Strassburg, Martin [Osram Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany)

    2011-07-15

    Selective area growth of GaN nanorods by metalorganic vapor phase epitaxy is highly demanding for novel applications in nano-optoelectronic and nanophotonics. Recently, we report the successful selective area growth of GaN nanorods in a continuous-flow mode. In this work, as examples, we show the morphology dependence of GaN rods with {mu}m or sub-{mu}m in diameters on growth conditions. Firstly, we found that the nitridation time is critical for the growth, with an optimum from 90 to 180 seconds. This leads to more homogeneous N-polar GaN rods growth. A higher temperature during GaN rod growth tends to increase the aspect ratio of the GaN rods. This is due to the enhanced surface diffusion of growth species. The V/III ratio is also an important parameter for the GaN rod growth. Its increase causes reduction of the aspect ratio of GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface than it on {l_brace}1-100{r_brace} m-planes by supplying more NH{sub 3} (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Epitaxial growth of YBa2Cu3O7-δ thin films on LiNbO3 substrates

    International Nuclear Information System (INIS)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C.

    1989-01-01

    In situ epitaxial growth of YBa 2 Cu 3 O 7-δ thin films on Y-cut LiNbO 3 substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ( c (R=0) of 92 K. High critical current density of J c (77 K)=2x10 5 A/cm 2 is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the c axis is normal to the substrate plane and the a axis is at 45 degree to the [11.0] direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane

  15. Growth of InN on 6H-SiC by plasma assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, April S.; Kim, Tong-Ho; Choi, Soojeong; Wu, Pae; Morse, Michael [Department of Electrical and Computer Engineering, Duke University, 128 Hudson Hall, Durham, NC (United States); Losurdo, Maria; Giangregorio, Maria M.; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM UdR Bari, via Orabona, 4, 70126 Bari (Italy); Moto, Akihiro [Innovation Core SEI, Inc., 3235 Kifer Road, Santa Clara, CA 95051 (United States)

    2006-06-15

    We have investigated the growth of InN films by plasma assisted molecular beam epitaxy on the Si-face of 6H-SiC(0001). Growth is performed under In-rich conditions using a two-step process consisting of the deposition of a thin, low-temperature 350 C InN buffer layer, followed by the subsequent deposition of the InN epitaxial layer at 450 C. The effect of buffer annealing is investigated. The structural and optical evolution of the growing layer has been monitored in real time using RHEED and spectroscopic ellipsometry. Structural, morphological, electrical and optic properties are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Photo-irradiation effects on GaAs atomic layer epitaxial growth. GaAs no genshiso epitaxial seicho ni okeru hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y.; Sasaki, M.; Ishikawa, H. (Toshiba Corp., Kawasaki (Japan). Research and Development Center)

    1990-08-10

    Single atomic layer epitaxy (ALE) aims at controlling a growing film at a precision of single molecular layer. In this article, it is reported that the growth temperature range of ALE was expanded by the vertical irradiation of KrF exima laser (248 nm) onto the substrate for the ALE growth of GaAs using the metalorganic chemical vapor deposition (MOCVD) method. Thanks for the results of the above experiment, it was demonstrated that the irradiation effect was not thermal, but photochemical. In addition, this article studies the possibility of adsorption layer irradiation and surface irradiation as the photo-irradiation mechanism, and points out that coexistence of both irradiation mechanisms can be considered and, in case of exima laser, strong possibility of direct irradiation of the adsorption layer because of its high power density. Hereinafter, by using both optical growth ALE and thermal growth ALE jointly, the degree of freedom of combination of hetero ALE increases and its application to various material systems becomes possible. 16 refs., 6 figs.

  17. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    Science.gov (United States)

    2016-09-15

    AFRL-AFOSR-VA-TR-2016-0319 Chirality -Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and...TELEPHONE NUMBER (Include area code) DISTRIBUTION A: Distribution approved for public release. 15-06-2016 final Jun 2014 - Jun 2016 Chirality ...for Public Release; Distribution is Unlimited. In this report, we present our efforts in establishing a novel and effective approach for chirality

  18. Study on initial stage of hetero-epitaxial growth by glancing angle scattering of fast ions from surfaces

    International Nuclear Information System (INIS)

    Fujii, Yoshikazu; Toba, Kazuaki; Narumi, Kazumasa; Kimura, Kenji; Mannami, Michihiko

    1993-01-01

    Initial stages of epitaxial growth of lead chalcogenides on the (100) surface of SnTe under UHV conditions are studied from the angular distribution of scattered ions at glancing angle incidence of 0.7 MeV He ions on the growing surfaces. Real time measurement of the angular distribution is performed during the growth. Anomalous broadening of the angular distribution is observed at the initial stage of the growth. The broadening is attributed to the surface wrinkles induced by a square network of misfit edge dislocations. (author)

  19. Liquid Phase Epitaxial Growth of Al-doped f-SiC for White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Tang, Kai; Ma, Xiang; can der Eijk, Casper

    efficiency, better light quality and longer lifespan, compared to the current yellow phosphor based white LEDs.Liquid phase epitaxy technology can yield a high crystalline quality in terms of structural perfection owing to the fact that it is a near equilibrium crystalline growth process. In addition....... The experimental results are presented and discussed. Since operational temperature of LPE growth is much lower than that currently used in physical vapour transport (PVT) process, it is expected to save the energy consumption for SiC crystal growth....

  20. Comprehensive modeling of solid phase epitaxial growth using Lattice Kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Martin-Bragado, Ignacio

    2013-01-01

    Damage evolution of irradiated silicon is, and has been, a topic of interest for the last decades for its applications to the semiconductor industry. In particular, sometimes, the damage is heavy enough to collapse the lattice and to locally amorphize the silicon, while in other cases amorphization is introduced explicitly to improve other implanted profiles. Subsequent annealing of the implanted samples heals the amorphized regions through Solid Phase Epitaxial Regrowth (SPER). SPER is a complicated process. It is anisotropic, it generates defects in the recrystallized silicon, it has a different amorphous/crystalline (A/C) roughness for each orientation, leaving pits in Si(1 1 0), and in Si(1 1 1) it produces two modes of recrystallization with different rates. The recently developed code MMonCa has been used to introduce a physically-based comprehensive model using Lattice Kinetic Monte Carlo that explains all the above singularities of silicon SPER. The model operates by having, as building blocks, the silicon lattice microconfigurations and their four twins. It detects the local configurations, assigns microscopical growth rates, and reconstructs the positions of the lattice locally with one of those building blocks. The overall results reproduce the (a) anisotropy as a result of the different growth rates, (b) localization of SPER induced defects, (c) roughness trends of the A/C interface, (d) pits on Si(1 1 0) regrown surfaces, and (e) bimodal Si(1 1 1) growth. It also provides physical insights of the nature and shape of deposited defects and how they assist in the occurrence of all the above effects

  1. Polarized Emission from Conjugated Polymer Chains Aligned by Epitaxial Growth during Off-Center Spin-Coating

    Directory of Open Access Journals (Sweden)

    Takuya Anzai

    2017-01-01

    Full Text Available Due to their macromolecular nature, conjugated polymers can be relatively easily aligned by applying a variety of processes resulting in either elongation or ordering of their conjugated backbones. Processes that induce chain alignment include electrospinning, mechanical rubbing, epitaxial growth, and nanoconfinement and unidirectional deposition techniques such as off-center spin-coating. In this study, we compare these deposition techniques by applying them to a green-emitting conjugated polymer material that exhibits liquid crystalline phase behavior. Our study reveals that while methods such as electrospinning and mechanical rubbing can be useful to locally generate polymer chain alignment, the combination of epitaxial growth using 1,3,5-trichlorobenzene as crystallizing agent with off-center spin-coating results in the formation of anisotropic nanofiber-like structures with enhanced crystallinity degree and polarized light-emission properties. The unidirectional epitaxial growth was also applied to a red-emitting polymer that exhibits polarization ratios up to 4.1. Our results emphasize that this simple solution formulation and process can be used for the fabrication of polarized thin films of a variety of conjugated polymers with potential applications in the advanced display technologies or analytical equipment fields.

  2. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  3. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao

    2010-02-23

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  4. Epitaxial growth and optical investigations of ZnTeO alloys

    International Nuclear Information System (INIS)

    Nabetani, Y.; Okuno, T.; Aoki, K.; Kato, T.; Matsumoto, T.; Hirai, T.

    2006-01-01

    We have grown zincblende-structured ZnTeO alloy semiconductors on GaAs substrates by molecular beam epitaxy using RF-excited O. O concentrations measured by secondary ion mass spectroscopy were found to increase with the increase of O 2 flow rate supplied during the growth, while the change of lattice constant measured by X-ray diffraction does not follow Vegard's law. It is considered that the O atoms are incorporated not only into group-VI sites but also as interstitials. Formation of other compounds such as ZnTeO 3 , Zn 2 Te 3 O 8 , and TeO 2 was not detected. Optical reflectance spectroscopy revealed the increase of the band-gap energy with O concentration that can be interpreted as the repulsive interaction between the energy states originated in the localized states of O and the conduction-band edge of host ZnTe. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao; Zeng, Hua Chun

    2010-01-01

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  6. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  7. Growth, structure and phase transitions of epitaxial nanowires of III-V semiconductors

    International Nuclear Information System (INIS)

    Glas, F; Patriarche, G; Harmand, J C

    2010-01-01

    We review and illustrate the impact of TEM on the study of nanowires of non-nitride III-V semiconductors, with particular emphasis on the understanding of the thermodynamics and kinetics of their formation assisted by nano-sized catalyst particles. Besides providing basic information about the morphology of the nanowires and their growth rate as a function of diameter, TEM offers insights into the peculiar crystalline structure that they adopt. We discuss the formation of the unusual wurtzite hexagonal crystalline phase and that of planar stacking defects in these nanowires and show that they are kinetically controlled. We also demonstrate the transformation of wurtzite into cubic sphalerite upon epitaxial burying of the nanowires. Nanowires are particularly interesting in that they allow the fabrication of precisely positioned quantum dots with well-defined geometries. In this respect, we discuss the formation of strained quantum-size inclusions in nanowires, their critical dimensions and the kinetic and thermodynamic factors governing the changes of the crystalline structure that sometimes occur around a hetero-interface.

  8. Thin film growth of CaFe2As2 by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hatano, T; Fujimoto, R; Nakamura, I; Mori, Y; Ikuta, H; Kawaguchi, T; Harada, S; Ujihara, T

    2016-01-01

    Film growth of CaFe 2 As 2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe 2 As 2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch. (paper)

  9. Thin film growth of CaFe2As2 by molecular beam epitaxy

    Science.gov (United States)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  10. Molecular Beam Epitaxial Growth and Characterization of Graphene and Hexagonal Boron Nitride Two-Dimensional Layers

    Science.gov (United States)

    Zheng, Renjing

    Van der Waals (vdW) materials (also called as two-dimensional (2D) material in some literature) systems have received extensive attention recently due to their potential applications in next-generation electronics platform. Exciting properties have been discovered in this field, however, the performance and properties of the systems rely on the materials' quality and interface significantly, leading to the urgent need for scalable synthesis of high-quality vdW crystals and heterostructures. Toward this direction, this dissertation is devoted on the study of Molecular Beam Epitaxy (MBE) growth and various characterization of vdW materials and heterostructures, especially graphene and hexagonal boron nitride (h-BN). The goal is to achieve high-quality vdW materials and related heterostructures. There are mainly four projects discussed in this dissertation. The first project (Chapter 2) is about MBE growth of large-area h-BN on copper foil. After the growth, the film was transferred onto SiO2 substrate for characterization. It is observed that as-grown film gives evident h-BN Raman spectrum; what's more, h-BN peak intensity and position is dependent on film thickness. N-1s and B-1s XPS peaks further suggest the formation of h-BN. AFM and SEM images show the film is flat and continuous over large area. Our synthesis method shows it's possible to use MBE to achieve h-BN growth and could also pave a way for some unique structure, such as h-BN/graphene heterostructures and doped h-BN films by MBE. The second project (Chapter 3) is focused on establishment of grapehene/h-BN heterostructure on cobalt (Co) film. In-situ epitaxial growth of graphene/h-BN heterostructures on Co film substrate was achieved by using plasma-assisted MBE. The direct graphene/h-BN vertical stacking structures were demonstrated and further confirmed by various characterizations, such as Raman spectroscopy, SEM, XPS and TEM. Large area heterostructures consisting of single- /bilayer graphene and

  11. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    International Nuclear Information System (INIS)

    Li Yanbo; Zhang Yang; Zhang Yuwei; Wang Baoqiang; Zhu Zhanping; Zeng Yiping

    2012-01-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (Ga Sb ) defect.

  12. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  13. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  14. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin, E-mail: jianlin@ece.ucr.edu [Quantum Structures Laboratory, Department of Electrical and Computer Engineering, University of California, Riverside, California 92521 (United States); Zheng, Jian-Guo [Irvine Materials Research Institute, University of California, Irvine, California 92697-2800 (United States)

    2016-07-25

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5–6 nm)/G (26–27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ∼2.5–3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  15. A Molecular Dynamics Study of the Epitaxial Growth of Metallic Nanoclusters Softly Deposited on Substrates with Very Different Lattice Parameter

    International Nuclear Information System (INIS)

    Jimenez-Saez, J C; Perez-MartIn, A M C; Jimenez-RodrIguez, J J

    2007-01-01

    The soft deposition of Cu and Au clusters on Au(001) and Cu(001) surfaces respectively is studied by constant-temperature molecular-dynamics simulations. The initial shape of the nanoclusters is icosahedral or truncated octahedral (Wulff type). Their number of atoms ranges between 12 and 1289 atoms. Bombardment energy is of the order of a few meV/atom. The atomic interactions are mimicked by a many-body potential based on the tightbinding model. The effect of the temperature as activation to get the complete epitaxy is analysed. We have found that Cu clusters manage to align their {002} planes with the substrate by increasing the temperature. However, there is not epitaxial growth in any case since the lattice becomes bcc or important stacking faults are generated. For Au clusters, the alignment of these planes is practically independent of the temperature

  16. The growth of III-V nitrides heterostructure on Si substrate by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Beh, K.P.; Yam, F.K.; Chin, C.W.; Tneh, S.S.; Hassan, Z.

    2010-01-01

    This paper reports the growth of InGaN/GaN/AlN epitaxial layer on Si(1 1 1) substrate by utilizing plasma-assisted molecular beam epitaxy (PA-MBE) system. The as-grown film was characterized using high-resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). High work function metals, iridium and gold were deposited on the film as metal contacts and their electrical characteristics at pre- and post-annealing were studied. The structural quality of this film is comparative to the values reported in the literature, and the indium molar fraction is 0.57 by employing Vegard's law. The relatively low yellow band emission signifies the grown film is of high quality. For metal contact studies it was found that the post-annealed sample for 5 min shows good conductivity as compared to the other samples.

  17. Molecular beam epitaxy growth and characterization of two-six materials for visible semiconductor lasers

    Science.gov (United States)

    Zeng, Linfei

    This thesis proposes the molecular beam epitaxy (MBE) growth and characterization of a new Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se based semiconductor materials system on InP substrates for visible light emitting diodes (LED) and lasers. The growth conditions for lattice-matched Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se layers with the desired bandgap have been established and optimized. A chemical etching technique to measure the defect density of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se materials has been established. The accuracy of this method for revealing stacking faults and dislocations was verified by plan-view TEM. Using the techniques such as III-V buffer layer, Zn-irradiation, low-temperature growth, ZnCdSe interfacial layer and growth interruption to improve the quality of the interface of III-V and II-VI, the material quality of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se has been improved dramatically. Defect density has been reduced from 10sp{10}\\ cmsp{-2} to {˜}5×10sp4\\ cmsp{-2}. The properties of this material system such as the quality and strain state in the epilayer, the dependence of bandgap on temperature, and the band offset have been studied by using double crystal x-ray diffraction, photoluminescence and capacitance voltage measurements. The ZnCdSe/ZnCdMgSe based quantum well (QW) structures have been grown and studied. Optically pumped lasing with emission range from red to blue has been obtained from ZnCdSe/ZnCdMgSe based separate-confinement single QW laser structures. The results demonstrate the potential for these materials as integrated full color display devices. Preliminary studies of the degradation behavior of ZnCdSe/ZnCdMgSe QW were performed. No dark line defects (DLDs) were observed during the degradation. A very strong room temperature differential negative resistance behavior was observed from Al/Znsb{0.61}Cdsb{0.39}Se/nsp+-InP devices, which is useful in millimeter-wave applications. We also found that these devices can be set to either in highly conductive or

  18. Stabilisation of late transition metal and noble metal films in hexagonal and body centred tetragonal phases by epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Hueger, E.

    2005-08-26

    In this work ultrathin metallic films with a crystal phase different to their natural bulk structure were produced by hetero-epitaxial growth on metallic substrates. A further aim of this work was to understand the initiation, growth and stability of crystal phase modifications of these films. there exist cases where the films turn beyond the pseudomorphic-growth to a crystal phase different from their natural bulk structure. The present work presents and discusses such a case in addition to the general phenomenon of pseudomorphic-growth. In particular it is shown that metals whose natural phase is face centred cubic (fcc) can be grown in body centred tetragonal (bct) or hexagonal close packed (hcp) phases in the form of thin films on (001) surfaces of appropriate substrates. The growth behavior, electron diffraction analysis, appearance conditions, geometric fit considerations, examples and a discussion of the phase stability of non-covered films and superlattices is given reviewing all epitaxial-systems whose diffraction pattern can be explained by the hexagonal or pseudomorphic bct phase. (orig.)

  19. Growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Oshima, Yuichi; Ahmadi, Elaheh; Kaun, Stephen; Wu, Feng; Speck, James S.

    2018-01-01

    We investigated the homoepitaxial growth and etching characteristics of (001) β-Ga2O3 by plasma-assisted molecular beam epitaxy. The growth rate of β-Ga2O3 increased with increasing Ga-flux, reaching a clear plateau of 56 nm h-1, and then decreased at higher Ga-flux. The growth rate decreased from 56 to 42 nm h-1 when the substrate temperature was increased from 750 °C to 800 °C. The growth rate was negative (net etching) when only Ga-flux was supplied. The etching rate proportionally increased with increasing the Ga-flux, reaching 84 nm h-1. The etching was enhanced at higher temperatures. It was found that Ga-etching of (001) β-Ga2O3 substrates prior to the homoepitaxial growth markedly improved the surface roughness of the film.

  20. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    Science.gov (United States)

    Shintri, Shashidhar S.

    /Ge/(211)Si was achieved by block co-polymer (BCP) lithography. Conditions for selective CdTe epitaxy was achieved and results showed different defect propagation mechanism at the patterned interface compared to the films grown on blanket Si. In another study, patterning of ˜360 nm holes in SiO2/(211)Si was done by molecular transfer lithography (MxL). Conditions for selective Ge and CdTe epitaxy were achieved which was the most challenging part of this work. Thin CdTe films were characterized to check the effect of nanopatterning. Certain results invariably showed that CdTe grown on nanopatterned substrates demonstrated promise of defect reduction and blocking close to the growth interface. But presently, nanopatterning also offers some serious challenges such as uniformity of patterns and substrate cleaning prior to growth for successful implementation of epitaxy on very large areas. Such factors resulted in degradation of overall crystal quality and will be discussed in this work. This is the first successful demonstration of selective (211)B CdTe epitaxy on Si by MOVPE using some of the relatively novel and promising nanopatterning techniques.

  1. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  2. Growth and characterization of metamorphic InAs/GaSb tunnel heterojunction on GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jheng-Sin; Clavel, Michael B.; Hudait, Mantu K., E-mail: mantu.hudait@vt.edu [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Pandey, Rahul [Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Datta, Suman [Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Meeker, Michael; Khodaparast, Giti A. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-06-28

    The structural, morphological, optical, and electrical transport characteristics of a metamorphic, broken-gap InAs/GaSb p-i-n tunnel diode structure, grown by molecular beam epitaxy on GaAs, were demonstrated. Precise shutter sequences were implemented for the strain-balanced InAs/GaSb active layer growth on GaAs, as corroborated by high-resolution X-ray analysis. Cross-sectional transmission electron microscopy and detailed micrograph analysis demonstrated strain relaxation primarily via the formation of 90° Lomer misfit dislocations (MDs) exhibiting a 5.6 nm spacing and intermittent 60° MDs at the GaSb/GaAs heterointerface, which was further supported by a minimal lattice tilt of 180 arc sec observed during X-ray analysis. Selective area diffraction and Fast Fourier Transform patterns confirmed the full relaxation of the GaSb buffer layer and quasi-ideal, strain-balanced InAs/GaSb heteroepitaxy. Temperature-dependent photoluminescence measurements demonstrated the optical band gap of the GaSb layer. Strong optical signal at room temperature from this structure supports a high-quality material synthesis. Current–voltage characteristics of fabricated InAs/GaSb p-i-n tunnel diodes measured at 77 K and 290 K demonstrated two bias-dependent transport mechanisms. The Shockley–Read–Hall generation–recombination mechanism at low bias and band-to-band tunneling transport at high bias confirmed the p-i-n tunnel diode operation. This elucidated the importance of defect control in metamorphic InAs/GaSb tunnel diodes for the implementation of low-voltage and high-performance tunnel field effect transistor applications.

  3. Growth of epitaxial Pt thin films on (0 0 1) SrTiO{sub 3} by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kahsay, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Ferrater, C.; Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Rebled, J.M. [Departament d’Electrònica, Universitat de Barcelona Institut de Nanociència i Nanotecnologia IN 2UB, 08028 Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    The growth of platinum thin film by rf magnetron sputtering on SrTiO{sub 3}(0 0 1) substrates for oxide based devices was investigated. Platinum films grown at temperatures higher than 750 °C were epitaxial ([1 0 0]Pt(0 0 1)//[1 0 0]STO(0 0 1)), whereas at lower temperatures Pt(1 1 1) films were obtained. The surface morphology of the Pt films showed a strong dependence on the deposition temperature as was revealed by atomic force microscopy (AFM). At elevated temperatures there is a three-dimensional (3D) growth of rectangular atomically flat islands with deep boundaries between them. On the other hand, at low deposition temperatures, a two-dimensional (2D) layered growth was observed. The transition from 2D to 3D growth modes was observed that occurs for temperatures around 450 °C. The obtained epitaxial thin films also formed an atomically sharp interface with the SrTiO{sub 3}(0 0 1) substrate as confirmed by HRTEM.

  4. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    International Nuclear Information System (INIS)

    Sutarto, Ronny

    2009-01-01

    quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M 4,5 edges, we have confirmed that the films are completely free from Eu 3+ contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 μB. A threshold behavior was not observed for Gd concentrations as low as 0.2 %. Analysis of the

  5. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    Energy Technology Data Exchange (ETDEWEB)

    Sutarto, Ronny

    2009-07-06

    this respect the quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M{sub 4,5} edges, we have confirmed that the films are completely free from Eu{sup 3+} contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 {mu}B. A threshold behavior was not observed for Gd concentrations

  6. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface

    KAUST Repository

    Li, Ming Yang

    2015-07-30

    Two-dimensional transition metal dichalcogenides (TMDCs) such as molybdenum sulfide MoS2 and tungsten sulfide WSe2 have potential applications in electronics because they exhibit high on-off current ratios and distinctive electro-optical properties. Spatially connected TMDC lateral heterojunctions are key components for constructing monolayer p-n rectifying diodes, light-emitting diodes, photovoltaic devices, and bipolar junction transistors. However, such structures are not readily prepared via the layer-stacking techniques, and direct growth favors the thermodynamically preferred TMDC alloys. We report the two-step epitaxial growth of lateral WSe2-MoS2 heterojunction, where the edge of WSe2 induces the epitaxial MoS2 growth despite a large lattice mismatch. The epitaxial growth process offers a controllable method to obtain lateral heterojunction with an atomically sharp interface.

  7. Growth of Ca2MnO4 Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    International Nuclear Information System (INIS)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W.; Grygiel, C.; Rohrer, G. S.; Salvador, P. A.; Velazquez, M.; Kloe, R. de

    2014-01-01

    The local epitaxial growth of pulsed laser deposited Ca 2 MnO 4 films on polycrystalline spark plasma sintered Sr 2 TiO 4 substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca 2 MnO 4 grain had a single OR with the Sr 2 TiO 4 grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001] film ||[100][001] sub . The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides

  8. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    Science.gov (United States)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-10-01

    The free hole carriers in GaN have been limited to concentrations in the low 1018cm-3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ˜10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ˜1.5×1019cm-3.

  9. Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN

    International Nuclear Information System (INIS)

    Namkoong, Gon; Trybus, Elaissa; Lee, Kyung Keun; Moseley, Michael; Doolittle, W. Alan; Look, David C.

    2008-01-01

    The free hole carriers in GaN have been limited to concentrations in the low 10 18 cm -3 range due to the deep activation energy, lower solubility, and compensation from defects, therefore, limiting doping efficiency to about 1%. Herein, we report an enhanced doping efficiency up to ∼10% in GaN by a periodic doping, metal modulation epitaxy growth technique. The hole concentrations grown by periodically modulating Ga atoms and Mg dopants were over ∼1.5x10 19 cm -3

  10. One unit-cell seed layer induced epitaxial growth of heavily nitrogen doped anatase TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T L; Hirose, Y; Hitosugi, T; Hasegawa, T [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)], E-mail: chen@ksp.or.jp

    2008-03-21

    We present a novel way to obtain heavily nitrogen doped anatase TiO{sub 2} films by using a solid-state nitrogen source. Epitaxial growth of the films was realized by introducing one unit-cell seed layer, which was indicated by reflection high-energy electron diffraction as intensity oscillation. Results of x-ray diffraction and x-ray photoelectron spectroscopy confirmed that the films were in the anatase phase heavily doped with nitrogen of {approx}15 at%. The films obtained exhibited considerable narrowing of the optical bandgap, resulting in an enhancement of absorption in the visible-light region. (fast track communication)

  11. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Shen, Ji-Lin

    2013-01-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  12. Epitaxial growth of manganese oxide films on MgAl2O4 (001) substrates and the possible mechanism

    Science.gov (United States)

    Ren, Lizhu; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2014-03-01

    Three types of manganese oxide films were grown on MgAl2O4 (001) substrates by plasma-assisted molecular beam epitaxy (PA-MBE) under different growth rates and substrate temperatures. The structural characteristics and chemical compositions of the films were investigated by using in-situ reflection high-energy electron diffraction (RHEED), ex-situ X-ray diffraction, Raman, and X-ray photoelectron spectra (XPS). At a lower substrate temperature (730 K), the epitaxial film tends to form mixed phases with a coexistence of Mn3O4 and Mn5O8 in order to relieve the mismatch-strain. However, at a higher substrate temperature (750 K), all of the films crystallize into Mn3O4; the critical thickness of the film grown under a lower growth rate (7 Å/min) is much larger than that under a high growth rate (10 Å/min). When the film reaches a certain critical thickness, the surface will become fairly rough, and another oriented phase Mn3O4 would crystallize on such a surface.

  13. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  14. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  15. Investigation into the use of molecular hydrogen on the growth of gallium nitride via metal-organic molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Billingsley, Daniel; Pritchett, David; Henderson, Walter; Carver, Alexander G.; Burnham, Shawn D.; Doolittle, W.A. [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2008-07-01

    Molecular hydrogen (H{sub 2}) has been investigated as a means to improve ammonia nitridation efficiency and attempts to reduce carbon contamination in ammonia-based metal-organic molecular beam epitaxy (MOMBE). A 30% improvement in crystalline quality, inferred from XRD, as well as an increase in subsequent GaN bulk growth rate was observed when bare sapphire was subject to H{sub 2} annealing before nitridation. However, the use of H{sub 2} during GaN homoepitaxy on GaN templates resulted in increased carbon contamination and decreased growth rate of GaN. The results demonstrate promise and proper uses of H{sub 2} during GaN growth under certain conditions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Effects of substrate anisotropy and edge diffusion on submonolayer growth during molecular beam epitaxy: A Kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Devkota, J.; Shrestha, S.P.

    2007-12-01

    We have performed Kinetic Monte Carlo simulation work to study the effect of diffusion anisotropy, bonding anisotropy and edge diffusion on island formation at different temperatures during the sub-monolayer film growth in Molecular Beam Epitaxy. We use simple cubic solid on solid model and event based Bortz, Kalos and Labowitch (BKL) algorithm on the Kinetic Monte Carlo method to simulate the physical phenomena. We have found that the island morphology and growth exponent are found to be influenced by substrate anisotropy as well as edge diffusion, however they do not play a significant role in island elongation. The growth exponent and island size distribution are observed to be influenced by substrate anisotropy but are negligibly influenced by edge diffusion. We have found fractal islands when edge diffusion is excluded and compact islands when edge diffusion is included. (author)

  17. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    Science.gov (United States)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  18. Initial stages of the ion-beam assisted epitaxial GaN film growth on 6H-SiC(0001)

    International Nuclear Information System (INIS)

    Neumann, L.; Gerlach, J.W.; Rauschenbach, B.

    2012-01-01

    Ultra-thin gallium nitride (GaN) films were deposited using the ion-beam assisted molecular-beam epitaxy technique. The influence of the nitrogen ion to gallium atom flux ratio (I/A ratio) during the early stages of GaN nucleation and thin film growth directly, without a buffer layer on super-polished 6H-SiC(0001) substrates was studied. The deposition process was performed at a constant substrate temperature of 700 °C by evaporation of Ga and irradiation with hyperthermal nitrogen ions from a constricted glow-discharge ion source. The hyperthermal nitrogen ion flux was kept constant and the kinetic energy of the ions did not exceed 25 eV. The selection of different I/A ratios in the range from 0.8 to 3.2 was done by varying the Ga deposition rate between 5 × 10 13 and 2 × 10 14 at. cm −2 s −1 . The crystalline surface structure during the GaN growth was monitored in situ by reflection high-energy electron diffraction. The surface topography of the films as well as the morphology of separated GaN islands on the substrate surface was examined after film growth using a scanning tunneling microscope without interruption of ultra-high vacuum. The results show, that the I/A ratio has a major impact on the properties of the resulting ultra-thin GaN films. The growth mode, the surface roughness, the degree of GaN coverage of the substrate and the polytype mixture depend notably on the I/A ratio. - Highlights: ► Ultra-thin epitaxial GaN films prepared by hyperthermal ion-beam assisted deposition. ► Surface structure and topography studied during and after initial growth stages. ► Growth mode dependent on nitrogen ion to gallium atom flux ratio. ► Change from three-dimensional to two-dimensional growth for Ga-rich growth conditions.

  19. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-01-01

    . Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective

  20. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  1. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  2. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires

    Science.gov (United States)

    Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua

    2018-03-01

    Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.

  3. Epitaxial growth of fcc-CoxNi100-x thin films on MgO(110) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    Co x Ni 100-x (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co x Ni 100-x film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co x Ni 100-x films are in agreement within ±0.5% with the values of the respective bulk Co x Ni 100-x crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110) fcc film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  4. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  5. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  6. Molecular-beam epitaxy growth and structural characterization of semiconductor-ferromagnet heterostructures by grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.K.

    2005-12-19

    The present work is devoted to the growth of the ferromagnetic metal MnAs on the semiconductor GaAs by molecular-beam epitaxy (MBE). The MnAs thin films are deposited on GaAs by molecular-beam epitaxy (MBE). Grazing incidence diffraction (GID) and reflection high-energy electron diffraction (RHEED) are used in situ to investigate the nucleation, evolution of strain, morphology and interfacial structure during the MBE growth. Four stages of the nucleation process during growth of MnAs on GaAs(001) are revealed by RHEED azimuthal scans. GID shows that further growth of MnAs films proceed via the formation of relaxed islands at a nominal thickness of 2.5 ML which increase in size and finally coalesce to form a continuous film. Early on, an ordered array of misfit dislocations forms at the interface releasing the misfit strain even before complete coalescence occurs. The fascinating complex nucleation process of MnAs on GaAs(0 0 1) contains elements of both Volmer-Weber and Stranski-Krastanov growth. A nonuniform strain amounting to 0.66%, along the [1 -1 0] direction and 0.54%, along the [1 1 0] direction is demonstrated from x-ray line profile analysis. A high correlation between the defects is found along the GaAs[1 1 0] direction. An extremely periodic array of misfit dislocations with a period of 4.95{+-}0.05 nm is formed at the interface along the [1 1 0] direction which releases the 7.5% of misfit. The inhomogeneous strain due to the periodic dislocations is confined at the interface within a layer of 1.6 nm thickness. The misfit along the [1 -1 0] direction is released by the formation of a coincidence site lattice. (orig.)

  7. Effect of strain, substrate surface and growth rate on B-doping in selectively grown SiGe layers

    International Nuclear Information System (INIS)

    Ghandi, R.; Kolahdouz, M.; Hallstedt, J.; Wise, R.; Wejtmans, Hans; Radamson, H.H.

    2008-01-01

    In this work, the role of strain and growth rate on boron incorporation in selective epitaxial growth (SEG) of B-doped Si 1-x Ge x (x = 0.15-0.25) layers in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. A focus has been made on the strain distribution and B incorporation in SEG of SiGe layers

  8. Effect of strain, substrate surface and growth rate on B-doping in selectively grown SiGe layers

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, R. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)], E-mail: ghandi@kth.se; Kolahdouz, M.; Hallstedt, J. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden); Wise, R.; Wejtmans, Hans [Texas Instrument, 13121 TI Boulevard, Dallas, Tx 75243 (United States); Radamson, H.H. [School of Information and Communication Technology, KTH (Royal Institute of Technology), Isafjordsg. 22-26, Electrum 229, 16640 Kista (Sweden)

    2008-11-03

    In this work, the role of strain and growth rate on boron incorporation in selective epitaxial growth (SEG) of B-doped Si{sub 1-x}Ge{sub x} (x = 0.15-0.25) layers in recessed or unprocessed (elevated) openings for source/drain applications in CMOS has been studied. A focus has been made on the strain distribution and B incorporation in SEG of SiGe layers.

  9. Epitaxial growth of "infinite layer” thin films and multilayers by rf magnetron sputtering

    OpenAIRE

    Fàbrega, L.; Koller, E.; Triscone, J. M.; Fischer, Ø.

    2017-01-01

    We report on the preparation and characterization of epitaxial ACuO2 (A = Sr, Ca, Ba) thin films and multilayers with the so- called infinite layer (IL) structure, by rf magnetron sputtering. Films and multilayers without Ba have a remarkable crystal quality, whereas those containing this large ion are often multiphased and unstable. In spite of the excellent crystalline quality of these samples, obtaining thin films having both IL structure and displaying superconducting properties has not s...

  10. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110) fcc single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within ±0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  11. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110){sub fcc} single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within {+-}0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  12. Epitaxial growth of topological insulator Bi{sub 2}Se{sub 3} film on Si(111) with atomically sharp interface

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Namrata [Department of Electrical and Computer Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Kim, Yong Seung [Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Edrey, Eliav; Brahlek, Matthew; Horibe, Yoichi [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Iida, Keiko; Tanimura, Makoto [Research Department, Nissan Arc, Ltd. Yokosuka, Kanagawa 237-0061 (Japan); Li Guohong; Feng Tian; Lee, Hang-Dong; Gustafsson, Torgny; Andrei, Eva [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Oh, Seongshik, E-mail: ohsean@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854 (United States)

    2011-10-31

    Atomically sharp epitaxial growth of Bi{sub 2}Se{sub 3} films is achieved on Si(111) substrate with molecular beam epitaxy. Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi{sub 2}Se{sub 3} films on Si substrates. With a single-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi{sub 2}Se{sub 3} and Si substrate, as verified by reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM) and X-ray diffraction. The lattice constant of Bi{sub 2}Se{sub 3} is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi{sub 2}Se{sub 3} film down to the first quintuple layer without any second phase or an amorphous layer.

  13. Growth of AlN/Pt heterostructures on amorphous substrates at low temperatures via atomic layer epitaxy

    International Nuclear Information System (INIS)

    Nepal, N.; Goswami, R.; Qadri, S.B.; Mahadik, N.A.; Kub, F.J.; Eddy, C.R.

    2014-01-01

    Recent results on atomic layer epitaxy (ALE) growth and characterization of (0 0 0 1)AlN on highly oriented (1 1 1)Pt layers on amorphous HfO 2 /Si(1 0 0) are reported. HfO 2 was deposited by atomic layer deposition on Si(1 0 0) followed by ALE growth of Pt(15 nm) and, subsequently, AlN(60 nm) at 500 °C. Based on the X-ray diffraction and transmission electron microscopy measurements, the Pt and AlN layers are highly oriented along the (1 1 1) and (0 0 0 2) directions, respectively. Demonstrations of AlN/Pt heterostructures open up the possibility of new state-of-the-art microelectromechanical systems devices

  14. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  15. Temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Kumagai, Yoshinao; Adachi, Hirokazu; Otake, Aya; Higashikawa, Yoshihiro; Togashi, Rie; Murakami, Hisashi; Koukitu, Akinori

    2010-01-01

    The temperature dependence of InN growth on (0001) sapphire substrates by atmospheric pressure hydride vapor phase epitaxy (HVPE) was investigated. N-polarity single-crystal InN layers were successfully grown at temperatures ranging from 400 to 500 C. The a and c lattice constants of InN layers grown at 450 C or below were slightly larger than those of InN layers grown above 450 C due to oxygen incorporation that also increased the carrier concentration. The optical absorption edge of the InN layer decreased from above 2.0 to 0.76 eV when the growth temperature was increased from 450 to 500 C. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Effects of growth rate on structural property and adatom migration behaviors for growth of GaInNAs/GaAs (001) by molecular beam epitaxy

    Science.gov (United States)

    Li, Jingling; Gao, Peng; Zhang, Shuguang; Wen, Lei; Gao, Fangliang; Li, Guoqiang

    2018-03-01

    We have investigated the structural properties and the growth mode of GaInNAs films prepared at different growth rates (Rg) by molecular beam epitaxy. The crystalline structure is studied by high resolution X-ray diffraction, and the evolution of GaInNAs film surface morphologies is studied by atomic force microscopy. It is found that both the crystallinity and the surface roughness are improved by increasing Rg, and the change in the growth mode is attributed to the adatom migration behaviors particularly for In atoms, which is verified by elemental analysis. In addition, we have presented some theoretical calculation results related to the N adsorption energy to show the unique N migration behavior, which is instructive to interpret the growth mechanism of GaInNAs films.

  17. In induced reconstructions of Si(1 1 1) as superlattice matched epitaxial templates for InN growth

    International Nuclear Information System (INIS)

    Kuyyalil, Jithesh; Tangi, Malleswararao; Shivaprasad, S.M.

    2013-01-01

    Graphical abstract: Display Omitted Highlights: ► A novel growth method to form InN at low growth temperatures. ► Use of Si reconstruction as a growth template for group III nitrides. ► Band gap variation of InN – Moss–Burstein shift – non-parabolic conduction band for InN. ► Super lattice matching epitaxy of metal induced reconstructions with III–V unit cell. -- Abstract: Indium induced surface reconstructions of Si(1 1 1)-7 × 7 are used as templates to grow high quality InN. We grow InN on Si(1 1 1)-7 × 7, Si(1 1 1)-4 × 1-In and Si(1 1 1)-1 × 1-In reconstructed surfaces and study the quality of the films formed using complementary characterization tools. InN grown on Si(1 1 1)-1 × 1-In reconstruction shows superior film quality with lowest band-edge emission having a narrow full width at half maximum, intense and narrow 0 0 0 2 X-ray diffraction, low surface roughness and carrier concentration an order lower than other samples. We attribute the high quality of the film formed at 300 °C to the integral matching of InN and super lattice dimensions, we also study the reasons for the band gap variation of InN in the literature. Present study demonstrates the proposed Superlattice Matched Epitaxy can be a general approach to grow good quality InN at much lower growth temperature on compatible In induced reconstructions of the Si surface.

  18. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    Science.gov (United States)

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  19. Real-time observation of epitaxial crystal growth in gaseous environment using x-ray diffraction and x-ray reflectometry

    International Nuclear Information System (INIS)

    Kawamura, Tomoaki; Bhunia, Satyaban; Watanabe, Yoshio; Fujikawa, Seiji

    2008-01-01

    We made the x-ray diffractometer combined with the MOCVD growth system for the real-time observation of epitaxial growth in gaseous environment, and investigated the growth mechanism of InP crystals. Changes of the (-5/2 O) Bragg diffraction during the growth revealed that the growth starts immediately after the In source has been supplied and gradually stopped, owing to the migrating In atoms on the surface. Additionally, one can easily determine the growth modes, including 3-dimensional mode, layer-by-layer mode, and step-flow mode, by observing the change of x-ray reflectivity with various growth conditions. (author)

  20. 3C-SiC epitaxial films deposited by reactive magnetron sputtering: Growth, characterization and device development

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, Qamar ul.

    1994-01-01

    Epitaxial 3C-SiC films were grown on silicon substrates by reactive magnetron sputtering of pure Si target in a mixed Ar-CH[sub 4] discharges. Films were grown on Si(001), and 4 degrees off-oriented (001) substrates. Epitaxial 3C-SiC films with sharp interface to Si substrates have been grown at substrate temperatures [<=] 900 degrees C. Above 900 degrees C interfacial reaction starts resulting in a rough SiC/Si interface. The carbon content as well as the crystalline structure was also found to be strongly dependent on CH[sub 4] partial pressure (PCH[sub 4]) and stoichiometric composition can only be obtained in a narrow PCH[sub 4] range. Films grown on Si(001) substrates contained anti domain boundaries as evident by cross-sectional transmission electron microscopy (XTEM). Films grown on (111)-oriented substrates were epitaxial at 850 degrees C but contained double positioning domains as determined by X-ray diffraction analysis and XTEM. High quality films were obtained on 4 degrees off-oriented Si(001) substrates at T[sub s]=850 degrees C and PCH[sub 4]=0.6 mTorr. Films grown on off-oriented substrates showed atomically sharp interface to Si and also a smooth top surface. SiO[sub 2] layer grown on such films showed atomically sharp oxide/film interface. Also the growth of epitaxial Si films on top of SiC films was realized. Au-Schottky diodes fabricated on (001)-oriented 3C-SiC films showed good rectification with a leakage current density = 4 [mu]A cm[sup -2], a breakdown voltage of -15 V, an ideality factor of 1.27 and a barrier height of 1.04 eV. Metal oxide semiconductor structures were fabricated by thermally grown SiO[sub 2] on (111)-oriented SiC films. The capacitance-voltage measurements showed the accumulation, depletion and deep depletion region in the C-V curve. The interface trap densities were 3-7 x 10[sup 11] cm[sup -2] eV[sup -1]. Finally 3C-SiC/Si heterojunction diodes processed showed good rectification and the diode had a breakdown at -110 V.

  1. 3C-SiC epitaxial films deposited by reactive magnetron sputtering: Growth, characterization and device development

    International Nuclear Information System (INIS)

    Wahab, Qamar ul.

    1994-01-01

    Epitaxial 3C-SiC films were grown on silicon substrates by reactive magnetron sputtering of pure Si target in a mixed Ar-CH 4 discharges. Films were grown on Si(001), and 4 degrees off-oriented (001) substrates. Epitaxial 3C-SiC films with sharp interface to Si substrates have been grown at substrate temperatures ≤ 900 degrees C. Above 900 degrees C interfacial reaction starts resulting in a rough SiC/Si interface. The carbon content as well as the crystalline structure was also found to be strongly dependent on CH 4 partial pressure (PCH 4 ) and stoichiometric composition can only be obtained in a narrow PCH 4 range. Films grown on Si(001) substrates contained anti domain boundaries as evident by cross-sectional transmission electron microscopy (XTEM). Films grown on (111)-oriented substrates were epitaxial at 850 degrees C but contained double positioning domains as determined by X-ray diffraction analysis and XTEM. High quality films were obtained on 4 degrees off-oriented Si(001) substrates at T s =850 degrees C and PCH 4 =0.6 mTorr. Films grown on off-oriented substrates showed atomically sharp interface to Si and also a smooth top surface. SiO 2 layer grown on such films showed atomically sharp oxide/film interface. Also the growth of epitaxial Si films on top of SiC films was realized. Au-Schottky diodes fabricated on (001)-oriented 3C-SiC films showed good rectification with a leakage current density = 4 μA cm -2 , a breakdown voltage of -15 V, an ideality factor of 1.27 and a barrier height of 1.04 eV. Metal oxide semiconductor (MOS) structures were fabricated by thermally grown SiO 2 on (111)-oriented SiC films. The capacitance-voltage measurements showed the accumulation, depletion and deep depletion region in the C-V curve. The interface trap densities were 3-7 x 10 11 cm -2 eV -1 . Finally 3C-SiC/Si heterojunction diodes processed showed good rectification and the diode had a breakdown at -110 V. 59 refs, figs, tabs

  2. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate

    International Nuclear Information System (INIS)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-01

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10 10 cm −2 , and that the lateral and the vertical interdot spacing were ∼10 and ∼2.5 nm, respectively. (paper)

  3. Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate.

    Science.gov (United States)

    Ma, Y J; Zhong, Z; Yang, X J; Fan, Y L; Jiang, Z M

    2013-01-11

    We investigated the molecular beam epitaxy growth of three-dimensional (3D) Ge quantum dot crystals (QDCs) on periodically pit-patterned Si substrates. A series of factors influencing the growth of QDCs were investigated in detail and the optimized growth conditions were found. The growth of the Si buffer layer and the first quantum dot (QD) layer play a key role in the growth of QDCs. The pit facet inclination angle decreased with increasing buffer layer thickness, and its optimized value was found to be around 21°, ensuring that all the QDs in the first layer nucleate within the pits. A large Ge deposition amount in the first QD layer favors strain build-up by QDs, size uniformity of QDs and hence periodicity of the strain distribution; a thin Si spacer layer favors strain correlation along the growth direction; both effects contribute to the vertical ordering of the QDCs. Results obtained by atomic force microscopy and cross-sectional transmission electron microscopy showed that 3D ordering was achieved in the Ge QDCs with the highest ever areal dot density of 1.2 × 10(10) cm(-2), and that the lateral and the vertical interdot spacing were ~10 and ~2.5 nm, respectively.

  4. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    Science.gov (United States)

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Epitaxial growth of matched metallic ErP0.6As0.4 layers on GaAs

    International Nuclear Information System (INIS)

    Guivarc'h, A.; Le Corre, A.; Gaulet, J.; Guenais, B.; Minier, M.; Ropars, G.; Badoz, P.A.; Duboz, J.Y.

    1990-01-01

    Successful growth of (001)ErP 0.6 As 0.4 single crystal film on (001) GaAs has been demonstrated. The epitaxial metallic layers reproducibly showed lattice mismatch below 5 10 -4 . This is, to the authors' knowledge, the first report of a stable, epitaxial and lattice-matched metal/compound semiconductor heterostructure. The ErP 0.6 As 0.4 /n-GaAs diodes yielded excellent I-V characteristics with an ideality factor of 1.1 and barrier height of 0.88 eV. For a 240 Angstrom- thick film, metallic behavior was observed with resistivities of 25 and 86 μΩcm at 1.5 K and room temperature, respectively. As the other Er compounds ErP, ErAs, ErSb and ErSi 2 , ErP 0.6 As 0.4 presents an abrupt drop in resistivity in the vicinity of the liquid helium temperature, due to a paramagnetic to antiferromagnetic phase transition

  6. Growth of β-FeSi2 layers on Si (111) by solid phase and reactive deposition epitaxies

    International Nuclear Information System (INIS)

    Miquita, D.R.; Paniago, R.; Rodrigues, W.N.; Moreira, M.V.B.; Pfannes, H.-D.; Oliveira, A.G. de

    2005-01-01

    Iron silicides were grown on Si (111) substrates by Solid Phase Epitaxy (SPE) and Reactive Deposition Epitaxy (RDE) to identify the optimum conditions to obtain the semiconducting β-FeSi 2 phase. The films were produced under different growth and annealing conditions and analyzed in situ and ex situ by X-ray Photoelectron Spectroscopy, and ex situ by Conversion Electron Moessbauer Spectroscopy. The use of these techniques allowed the investigation of different depth regions of the grown layer. Films of the ε-FeSi and β-FeSi 2 phases were obtained as well as the mixtures Fe 3 Si + ε-FeSi and ε-FeSi + β-FeSi 2 . The sequence Fe 3 Si→ε-FeSi→β-FeSi 2 was found upon annealing, where the phase transformation occurred due to the migration of silicon atoms from the substrate to the surface region of the grown layer. The best conditions for the phase transformation in SPE samples were met after annealing in the range 700 - 800 deg. C. For the RDE samples, the transition to the beta phase occurred between 600 and 700 deg. C, but pure β-FeSi 2 was obtained only after two hours of annealing at 700 deg. C

  7. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Bin [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Jia, Ren-Xu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Hu, Ji-Chao [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China); Tsai, Cheng-Ying [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Lin, Hao-Hsiung, E-mail: hhlin@ntu.edu.tw [Graduate Institute of Electronics Engineering, National Taiwan University, 10617 Taipei, Taiwan (China); Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 10617 Taipei, Taiwan (China); Zhang, Yu-Ming [School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi’an 710071 (China)

    2015-12-01

    Highlights: • A step-by-step experiment to investigate the growth mechanism of SiC hetero-epitaxial is proposed. • It has shown protrusive regular “hill” morphology with much lower density of DPB defect in our experiment, which normally were in high density with shallow groove. Based on the defect morphology, an anisotropy migration rate phenomenon of adatoms has been regarded as forming the morphology of DPB defects and a new “DPB defects assist epitaxy” growth mode has been proposed based on Frank-van der Merwe growth mode. - Abstract: To investigate the growth mechanism of hetero-epitaxial SiC, a step-by-step experiment of 3C-SiC epitaxial layers grown on 4H-SiC on-axis substrates by the CVD method are reported in this paper. Four step experiments with four one-quarter 4H-SiC wafers were performed. Optical microscopy and atomic force microscopy (AFM) were used to characterize the morphology of the epitaxial layers. It was previously found that the main factor affecting the epilayer morphology was double-positioning boundary (DPB) defects, which normally were in high density with shallow grooves. However, a protrusive regular “hill” morphology with a much lower density was shown in our experiment in high-temperature growth conditions. The anisotropic migration of adatoms is regarded as forming the morphology of DPB defects, and a new “DPB defects assist epitaxy” growth mode has been proposed based on the Frank-van der Merwe growth mode. Raman spectroscopy and X-ray diffraction were used to examine the polytypes and the quality of the epitaxial layers.

  8. Mechanism for selective growth in electrical steel

    Science.gov (United States)

    Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo

    2018-01-01

    Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110} annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.

  9. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. High growth rate GaN on 200 mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors

    Science.gov (United States)

    Charles, M.; Baines, Y.; Bavard, A.; Bouveyron, R.

    2018-02-01

    It is increasingly important to reduce the cycle time of epitaxial growth, in order to reduce the costs of device fabrication, especially for GaN based structures which typically have growth cycles of several hours. We have performed a comprehensive study using metal-organic vapor phase epitaxy (MOVPE) investigating the effects of changing GaN growth rates from 0.9 to 14.5 μm/h. Although there is no significant effect on the strain incorporated in the layers, we have seen changes in the surface morphology which can be related to the change in dislocation behaviour and surface diffusion effects. At the small scale, as seen by AFM, increased dislocation density for higher growth rates leads to increased pinning of growth terraces, resulting in more closely spaced terraces. At a larger scale of hundreds of μm observed by optical profiling, we have related the formation of grains to the rate of surface diffusion of adatoms using a random walk model, implying diffusion distances from 30 μm for the highest growth rates up to 100 μm for the lowest. The increased growth rate also increases the intrinsic carbon incorporation which can increase the breakdown voltage of GaN films. Despite an increased threading dislocation density, these very high growth rates of 14.5 μm/hr by MOVPE have been shown to be appealing for reducing epitaxial growth cycle times and therefore costs in High Electron Mobility Transistor (HEMT) structures.

  11. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  12. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    NARCIS (Netherlands)

    Bayraktar, Muharrem; Chopra, A.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2014-01-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In

  13. Growth hormone and selective attention : A review

    NARCIS (Netherlands)

    Quik, Elise H.; van Dam, P. Sytze; Kenemans, J. Leon

    Introduction: The relation between growth hormone (GH) secretion and general cognitive function has been established. General cognitive functioning depends on core functions including selective attention, which have not been addressed specifically in relation to GH. The present review addresses

  14. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  15. Growth of misfit dislocation-free p/p+ thick epitaxial silicon wafers on Ge-B-codoped substrates

    International Nuclear Information System (INIS)

    Jiang Huihua; Yang Deren; Ma Xiangyang; Tian Daxi; Li Liben; Que Duanlin

    2006-01-01

    The growth of p/p + silicon epitaxial silicon wafers (epi-wafers) without misfit dislocations has been successfully achieved by using heavily boron-doped Czochralski (CZ) silicon wafers codoped with desirable level of germanium as the substrates. The lattice compensation by codoping of germanium and boron into the silicon matrix to reduce the lattice mismatch between the substrate (heavily boron-doped) and epi-layer (lightly boron-doped) is the basic idea underlying in the present achievement. In principle, the codoping of germanium and boron in the CZ silicon can be tailored to achieve misfit dislocation-free epi-layer with required thickness. It is reasonably expected that the presented solution to elimination of misfit dislocations in the p/p + silicon wafers can be applied in the volume production

  16. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons

    KAUST Repository

    Fan, Zhanxi; Chen, Ye; Zhu, Yihan; Wang, Jie; Li, Bing; Zong, Yun; Han, Yu; Zhang, Hua

    2016-01-01

    Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core-shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.

  17. Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Malinverni, Marco; Grandjean, Nicolas

    2016-02-01

    We grew heavily Mg-doped GaN using ammonia molecular-beam epitaxy. The use of low growth temperature (740 °C) allows decreasing the incorporation of donor-like defects (p-type doping compensation. As a result, a net acceptor concentration of 7 × 1019 cm-3 was achieved, and the hole concentration measured by Hall effect was as high as 2 × 1019 cm-3 at room temperature. Using such a high Mg doping level, we fabricated GaN backward diodes without polarization-assisted tunneling. The backward diodes exhibited a tunneling-current density of 225 A/cm2 at a reverse bias of -1 V at room temperature.

  18. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons

    KAUST Repository

    Fan, Zhanxi

    2016-09-12

    Metal nanomaterials normally adopt the same crystal structure as their bulk counterparts. Herein, for the first time, the unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures have been synthesized on 4H Au nanoribbons (NRBs) via solution-phase epitaxial growth under ambient conditions. Interestingly, the 4H Au NRBs undergo partial phase transformation from 4H to face-centered cubic (fcc) structures after the metal coating. As a result, a series of polytypic 4H/fcc bimetallic Au@M (M = Ir, Rh, Os, Ru and Cu) core-shell NRBs has been obtained. We believe that the rational crystal structure-controlled synthesis of metal nanomaterials will bring new opportunities for exploring their phase-dependent physicochemical properties and promising applications.

  19. Growth of Highly Epitaxial YBa2Cu3O7-δ Films from a Simple Propionate-Based Solution

    DEFF Research Database (Denmark)

    Yue, Zhao; Torres, Pol; Tang, Xiao

    2015-01-01

    Intensive investigations have been conducted to develop epitaxial oxide thin films with superior electromagnetic performance by low-cost chemical solution deposition routes. In this paper, a novel propionate-based precursor solution without involving any other additive was proposed and employed...... to grow superconducting YBa2Cu3O7-δ (YBCO) films on LaAlO3 (LAO) single crystals. The precursor solutions are stable with a long shelf life of up to several months. Since the primary compositions are propionates after evaporating the solvent, the toxic reagents and evolved gases during solution synthesis...... and heat treatment can be eliminated completely. In this process, rapid pyrolysis and high conversation rate can also be achieved during growth of YBCO films in comparison with the conventional trifluoroacetate metal organic deposition routes. Remarkably, a 210 nm YBCO film exhibits high superconducting...

  20. Epitaxial growth of high temperature superconductors by cathodic sputtering I: thin films of YBaCuO

    International Nuclear Information System (INIS)

    Navacerrada, M.A.; Sefrioui, Z.; Arias, D.; Varela, M.; Loos, G.; Leon, C.; Lucia, M.L.; Santamaria, J.; Sanchez-Quesada, F.

    1998-01-01

    High quality c-oriented YBa 2 Cu 3 O 7 -x thin films have been grown on SrTiO 3 (100)substrates by high pressure sputtering in pure oxygen atmosphere. Low angle X-ray diffraction and atomic force microscopy were performed on films less than 250 angstrom thick showing a plenitude better than one unit cell. Moreover, the structural characterization by means of X ray φ scans showed that growth is epitaxial. The critical temperature has been measured by different ways and was always in the range 89.5-90.5K. the resistance transition is sharper than 1K and the mutual inductance response always shows magnetic losses peaks narrower than 0.3K. Critical current densities are in excess of 10''''6 angstrom/cm''''2 at 77K. (Author) 8 refs

  1. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    International Nuclear Information System (INIS)

    Mi, Z; Zhao, S; Djavid, M; Liu, X; Kang, J; Woo, S Y; Bugnet, M; Botton, G A; Kong, X; Guo, H; Ji, W; Liu, Z

    2016-01-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p -type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented. (paper)

  2. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  3. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernà ndez-Altable, Ví ctor; Dalmases, Mariona; Falqui, Andrea; Casu, Alberto; Torruella, Pau; Estradé , Sò nia; Peiró , Francesca; Figuerola, Albert

    2015-01-01

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  4. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  5. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  6. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  7. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    Science.gov (United States)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  8. Epitaxial growth and electronic structure of oxyhydride SrVO{sub 2}H thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa; Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Yamada, Keisuke; Onozuka, Tomoya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shigematsu, Kei [Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan); Minohara, Makoto; Kumigashira, Hiroshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Mikazuki-cho, Hyogo 679-5198 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan)

    2016-08-28

    Oxyhydride SrVO{sub 2}H epitaxial thin films were fabricated on SrTiO{sub 3} substrates via topotactic hydridation of oxide SrVO{sub 3} films using CaH{sub 2}. Structural and composition analyses suggested that the SrVO{sub 2}H film possessed one-dimensionally ordered V-H{sup −}-V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO{sub 2}H film was reversible to SrVO{sub 3} by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V{sup 3+} valence state in the SrVO{sub 2}H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  9. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  10. Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wofford, Joseph M., E-mail: joewofford@gmail.com, E-mail: lopes@pdi-berlin.de; Lopes, Joao Marcelo J., E-mail: joewofford@gmail.com, E-mail: lopes@pdi-berlin.de; Riechert, Henning [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany); Speck, Florian; Seyller, Thomas [Technische Universität Chemnitz, Institut für Physik, Reichenhainer Str. 70, 09126 Chemnitz (Germany)

    2016-07-28

    The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al{sub 2}O{sub 3}(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.

  11. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  12. Epitaxial growth and control of the sodium content in Na{sub x}CoO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinskiy, Philipp [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Major, Marton [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); WIGNER RCP, RMKI, H-1525 Budapest, P.O.B. 49 (Hungary); Donner, Wolfgang [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2013-10-31

    Single-phase c-axis oriented Na{sub x}CoO{sub 2} thin films were grown on (001) SrTiO{sub 3} single-crystal substrates, using pulsed laser deposition. X-ray diffraction analysis indicates the epitaxial growth of Na{sub x}CoO{sub 2} thin films in two domains, rotated in-plane by 15 and 45 degrees relative to [100] SrTiO{sub 3}. The sodium stoichiometry x of the films can be controlled in a range of 0.38 < x < 0.84 by in-situ post-deposition annealing the Na{sub x}CoO{sub 2} films at 720 – 760 °C in oxygen for 10 – 30 min. γ - Na{sub x}CoO{sub 2} films are obtained with a full width at half maximum of the (002) Na{sub x}CoO{sub 2} rocking curve below 0.2 degrees. The post-deposition annealing can substitute commonly used chemical deintercalation of Na which is typically associated with a loss in crystallinity. - Highlights: • Single phase Na{sub x}CoO{sub 2} thin films grown by pulsed laser deposition • Epitaxial relations of Na{sub x}CoO{sub 2} thin films on (001) SrTiO{sub 3} substrates • Multi-domain thin films • Control of sodium content by in-situ annealing of Na{sub x}CoO{sub 2} thin films.

  13. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    Science.gov (United States)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be -oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  14. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    nanostructured without patterning the graphene itself. This method produces graphene nanostructures with atomically smooth edges that ultimately determine the transport properties of these structures. The coherent collection of papers in this special issue of Journal of Physics D: Applied Physics provides a snapshot of the current state of the art, presented by leading experts, highlighting various aspects of the science and technology of epitaxial graphene. This collection systematically addresses the production of epitaxial graphene on the two polar faces of silicon carbide, as well as the structural and electronic properties of the graphene films. Special attention is paid to the rapidly emerging field of chemically modified graphene, which promises to introduce a bandgap into the electronic structure of graphene, which is critical for many electronic applications. Also presented are methods to incorporate properties of the silicon carbide itself, as well as advanced methods to produce high-quality graphene and graphene nanostructures using structured growth methods.

  15. Epitaxial growth of GaN/AlN/InAlN heterostructures for HEMTs in horizontal MOCVD reactors with different designs

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Yagovkina, M. A.; Ustinov, V. M. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Cherkashin, N. A. [CEMES–CNRS—Université de Toulouse (France)

    2016-09-15

    The epitaxial growth of InAlN layers and GaN/AlN/InAlN heterostructures for HEMTs in growth systems with horizontal reactors of the sizes 1 × 2', 3 × 2', and 6 × 2' is investigated. Studies of the structural properties of the grown InAlN layers and electrophysical parameters of the GaN/AlN/InAlN heterostructures show that the optimal quality of epitaxial growth is attained upon a compromise between the growth conditions for InGaN and AlGaN. A comparison of the epitaxial growth in different reactors shows that optimal conditions are realized in small-scale reactors which make possible the suppression of parasitic reactions in the gas phase. In addition, the size of the reactor should be sufficient to provide highly homogeneous heterostructure parameters over area for the subsequent fabrication of devices. The optimal compositions and thicknesses of the InAlN layer for attaining the highest conductance in GaN/AlN/InAlN transistor heterostructures.

  16. CBE growth of high-quality ZnO epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Shaer, A.; Bakin, A.; Mofor, A.C.; Kreye, M.; Waag, A. [Institute of Semiconductor Technology, Technical University Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Stoimenos, J. [Physics Department, Aristotele University, Univ. Campus, 54006 Thessaloniki (Greece); Pecz, B. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary); Heuken, M. [Aixtron AG, Kackertstr. 15-17, 52072 Aachen (Germany)

    2006-03-15

    Further improvements on the recently reported novel approach to zinc oxide Chemical Beam Epitaxy (CBE) are presented. Hydrogen peroxide is employed as a very efficient novel oxidant. ZnO layers with a thickness from 100 nm to 600 nm were grown on c-sapphire using a MgO buffer. PL-mapping as well as conductivity mapping shows a good uniformity across the 2 inch ZnO-on-sapphire epiwafers. The measured surface roughness for the best layers is as low as 0.26 nm. HRXRD measurements of the obtained ZnO layers show excellent quality of the single crystalline ZnO. The FWHM of the HRXRD (0002) rocking curves measured for the 2 inch ZnO-on-sapphire wafers is as low as 27 arcsec with a very high lateral homogeneity across the whole wafer. Plane view HRTEM observations reveal the very good quality of the ZnO films. The results indicate that CBE is a suitable technique to fabricate ZnO of very high structural quality, which can eventually be used as an alternative to bulk ZnO substrates. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Zhao, Jia, E-mail: zhao62@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Wang, Qi, E-mail: qwang@math.sc.edu [Department of Mathematics, University of South Carolina, Columbia, SC 29208 (United States); Beijing Computational Science Research Center, Beijing (China); School of Materials Science and Engineering, Nankai University, Tianjin (China)

    2017-03-15

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg–Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the “Invariant Energy Quadratization” (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  18. Selective-area vapour-liquid-solid growth of InP nanowires

    International Nuclear Information System (INIS)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J

    2009-01-01

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO 2 mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO 2 mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  19. Selective-area vapour-liquid-solid growth of InP nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Dalacu, Dan; Kam, Alicia; Guy Austing, D; Wu Xiaohua; Lapointe, Jean; Aers, Geof C; Poole, Philip J, E-mail: dan.dalacu@nrc-cnrc.gc.c [Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6 (Canada)

    2009-09-30

    A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO{sub 2} mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO{sub 2} mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.

  20. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study

    Science.gov (United States)

    Hall, Joshua; Pielić, Borna; Murray, Clifford; Jolie, Wouter; Wekking, Tobias; Busse, Carsten; Kralj, Marko; Michely, Thomas

    2018-04-01

    Based on an ultra-high vacuum compatible two-step molecular beam epitaxy synthesis with elemental sulphur, we grow clean, well-oriented, and almost defect-free monolayer islands and layers of the transition metal disulphides MoS2, TaS2 and WS2. Using scanning tunneling microscopy and low energy electron diffraction we investigate systematically how to optimise the growth process, and provide insight into the growth and annealing mechanisms. A large band gap of 2.55 eV and the ability to move flakes with the scanning tunneling microscope tip both document the weak interaction of MoS2 with its substrate consisting of graphene grown on Ir(1 1 1). As the method works for the synthesis of a variety of transition metal disulphides on different substrates, we speculate that it could be of great use for providing hitherto unattainable high quality monolayers of transition metal disulphides for fundamental spectroscopic investigations.

  1. Highly c-axis oriented growth of GaN film on sapphire (0001 by laser molecular beam epitaxy using HVPE grown GaN bulk target

    Directory of Open Access Journals (Sweden)

    S. S. Kushvaha

    2013-09-01

    Full Text Available Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001 substrates by laser molecular beam epitaxy (LMBE were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM, micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS. The x-ray rocking curve full width at a half maximum (FWHM value for (0002 reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002 plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  2. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    Science.gov (United States)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  3. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  4. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-01-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12 nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2 eV, which corresponds to a 3.2 eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior

  5. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  6. Epitaxial Reactor Development for Growth of Silicon-on-Insulator Devices.

    Science.gov (United States)

    1987-04-01

    emision from substrate reflected from interface 40 Constructive interference condition 2tc= n X / 1 * Destrictive interference condition 2tD= (2n+1) X...combinations of growth conditions resulted in no oxide growth on the original silicon wafer. Growths occurred for Si:O molecular ratios higher than 1:1...growth rates occurred at 1050 0 C with water vapor at 1250 cc/min and silane at 50 cc/min. These results are shown in Table 6. The molecular ratio was 2:1

  7. Analysis of temperature profiles and the mechanism of silicon substrate plastic deformation under epitaxial growth

    International Nuclear Information System (INIS)

    Mirkurbanov, H.A.; Sazhnev, S.V.; Timofeev, V.N.

    2004-01-01

    Full text: Thermal treatment of silicon wafers holds one of the major place in the manufacturing of semi-conductor devices. Thermal treatment includes wafer annealing, thermal oxidation, epitaxial growing etc. Quality of wafers in the high-temperature processes (900-1200 deg C) is estimated by the density of structural defects, including areas of plastic deformation, which are shown as the slip lines appearance. Such areas amount to 50-60 % of total wafer surface. The plastic deformation is caused by the thermal stresses. Experimental and theoretical researches allowed to determine thermal balance and to construct a temperature profiles throughout the plate surface. Thermal stresses are caused by temperature drop along the radius of a wafer and at the basic peripheral ring. The threshold temperature drop between center f a wafer and its peripherals (ΔT) for slip lines appearance, amounts to 15-17 deg. C. At the operating temperature of 900-1200 deg. C and ΔT>20 deg. C, the stresses reach the silicon yield point. According to the results of the researches of structure and stress profiles in a wafer, the mechanism of slip lines formation has been constructed. A source of dislocations is the rear broken layer of thickness 8-10 microns, formed after polishing. The micro-fissures with a density 10 5 -10 6 cm -2 are the sources of dislocations. Dislocations move on a surface of a wafer into a slip plane (111). On a wafer surface with orientation (111) it is possible to allocate zones where the tangential stress vector is most favorably directed with respect to a slip plane leaving on a surface, i.e. the shift stresses are maximal in the slip plane. The way to eliminate plastic deformation is to lower the temperature drop to a level of <15 deg. C and elimination of the broken layer in wafer

  8. Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation

    International Nuclear Information System (INIS)

    Riedl, C; Coletti, C; Starke, U

    2010-01-01

    Graphene, a monoatomic layer of graphite, hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This paper reviews the controlled growth of epitaxial graphene layers on SiC(0 0 0 1) and the manipulation of their electronic structure. We show that epitaxial graphene on SiC grows on top of a carbon interface layer that-although it has a graphite-like atomic structure-does not display the linear π-bands typical for graphene due to a strong covalent bonding to the substrate. Only the second carbon layer on top of this interface acts like monolayer graphene. With a further carbon layer, a graphene bilayer system develops. During the growth of epitaxial graphene on SiC(0 0 0 1) the number of graphene layers can be precisely controlled by monitoring the π-band structure. Experimental fingerprints for in situ growth control could be established. However, due to the influence of the interface layer, epitaxial graphene on SiC(0 0 0 1) is intrinsically n-doped and the layers have a long-range corrugation in their density of states. As a result, the Dirac point energy where the π-bands cross is shifted away from the Fermi energy, so that the ambipolar properties of graphene cannot be exploited. We demonstrate methods to compensate and eliminate this structural and electronic influence of the interface. We show that the band structure of epitaxial graphene on SiC(0 0 0 1) can be precisely tailored by functionalizing the graphene surface with tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) molecules. Charge neutrality can be achieved for mono- and bilayer graphene. On epitaxial bilayer graphene, where a band gap opens due to the asymmetric electric field across the layers imposed by the interface, the magnitude of this band gap

  9. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  10. Epitaxial growth of YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on LiNbO sub 3 substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (US))

    1989-09-18

    {ital In} {ital situ} epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on {ital Y}-cut LiNbO{sub 3} substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ({lt}1 K) superconducting transition with {ital T}{sub {ital c}}({ital R}=0) of 92 K. High critical current density of {ital J}{sub {ital c}}(77 K)=2{times}10{sup 5} A/cm{sup 2} is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the {ital c} axis is normal to the substrate plane and the {ital a} axis is at 45{degree} to the (11.0) direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane.

  11. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.

    Science.gov (United States)

    Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae

    2017-06-07

    Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

  12. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    Science.gov (United States)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  13. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    Science.gov (United States)

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  14. Antimony segregation in Ge and formation of n-type selectively doped Ge films in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru; Antonov, A. V.; Drozdov, M. N.; Schmagin, V. B.; Novikov, A. V. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Spirin, K. E. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation)

    2015-10-14

    Antimony segregation in Ge(001) films grown by molecular beam epitaxy was studied. A quantitative dependence of the Sb segregation ratio in Ge on growth temperature was revealed experimentally and modeled theoretically taking into account both the terrace-mediated and step-edge-mediated segregation mechanisms. A nearly 5-orders-of-magnitude increase in the Sb segregation ratio in a relatively small temperature range of 180–350 °C was obtained, which allowed to form Ge:Sb doped layers with abrupt boundaries and high crystalline quality using the temperature switching method that was proposed earlier for Si-based structures. This technique was employed for fabrication of different kinds of n-type Ge structures which can be useful for practical applications like heavily doped n{sup +}-Ge films or δ-doped layers. Estimation of the doping profiles sharpness yielded the values of 2–5 nm per decade for the concentration gradient at the leading edge and 2–3 nm for the full-width-half-maximum of the Ge:Sb δ-layers. Electrical characterization of grown Ge:Sb structures revealed nearly full electrical activation of Sb atoms and the two-dimensional nature of charge carrier transport in δ-layers.

  15. Epitaxial growth of M-plane GaN on ZnO micro-rods by plasma-assisted molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    Shuo-Ting You

    2015-12-01

    Full Text Available We have studied the GaN grown on ZnO micro-rods by plasma-assisted molecular beam epitaxy. From the analyses of GaN microstructure grown on non-polar M-plane ZnO surface ( 10 1 ̄ 0 by scanning transmission electron microscope, we found that the ZnGa2O4 compound was formed at the M-plane hetero-interface, which was confirmed by polarization-dependent photoluminescence. We demonstrated that the M-plane ZnO micro-rod surface can be used as an alternative substrate to grow high quality M-plane GaN epi-layers.

  16. Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Berger, S.; Quoizola, S.; Fave, A.; Kaminski, A.; Perichon, S.; Barbier, D.; Laugier, A.

    2001-01-01

    The aim of this experiment is to grow a thin silicon layer ( 2 atmosphere, and finally LPE silicon growth with different temperature profiles in order to obtain a silicon layer on the sacrificial porous silicon (p-Si). We observed a pyramidal growth on the surface of the (100) porous silicon but the coalescence was difficult to obtain. However, on a p-Si (111) oriented wafer, homogeneous layers were obtained. (orig.)

  17. Continuous growth of low-temperature Si epitaxial layer with heavy phosphorous and boron doping using photoepitaxy

    International Nuclear Information System (INIS)

    Yamazaki, T.; Minakata, H.; Ito, T.

    1990-01-01

    The authors grew p + -n + silicon epitaxial layers, heavily doped with phosphorus and boron, continuously at 650 degrees C using low-temperature photoepitaxy. Then N + photoepitaxial layer with a phosphorus concentration above 10 17 cm -3 grown on p - substrate shows high-density surface pits, and as a result, poor crystal quality. However, when this n + photoepitaxial layer is grown continuously on a heavily boron-doped p + photoepitaxial layer, these surface pits are drastically decreased, disappearing completely above a hole concentration of 10 19 cm -3 in the p + photoepitaxial layer. The phosphorus activation ratio and electron Hall mobility in the heavily phosphorus-doped n + photoexpitaxial layer were also greatly improved. The authors investigated the cause of the surface pitting using a scanning transmission electron microscope, secondary ion mass spectroscopy, and energy-dispersive x-ray spectroscopy. They characterized the precipitation of phosphorus atoms on the crystal surface at the initial stage of the heavily phosphorus-doped n + photoexpitaxial layer growth

  18. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Yao, Q.; Shen, D. W.

    2016-01-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO 3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO 3 and iso-polarity LaAlO 3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO 3 (111) substrate was more suitable than Nb-doped SrTiO 3 . In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO 3 based superlattices.

  19. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    Science.gov (United States)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  20. Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2

    International Nuclear Information System (INIS)

    Greene, J.E.

    1984-01-01

    The understanding of the physics of ion-surface interactions has progressed sufficiently to allow sputter depositinn to be used as a crystal growth technique for depositing a wide variety of single crystal elemental, compound, alloy, and superlattice semiconductors. In many cases, films with essentially bulk values of carrier concentrations and mobilities have been obtained. The controlled use of low energy particle bombardment of the growing film during sputter deposition has been shown to affect all stages of crystal growth ranging from adatom mobilities and nucleation kinetics to elemental incorporation probabilities. Such effects provide inherent advantages for sputter deposition over other vapor phase techniques for the low temperature growth of compound and alloy semiconductors and are essential in allowing the growth of new and unique single crystal metastable semiconductors. Part 1 of this review includes sections on experimental techniques, the physics of ion-surface interactions, and ion bombardment effects on film nucleation and growth, while Part 2 presents a discussion of recent results in the growth of elemental, III-V, II-VI, IV-VI, metastable, and other compound semiconductors

  1. InGaN nanocolumn growth self-induced by in-situ annealing and ion irradiation during growth process with molecular beam epitaxy method

    Science.gov (United States)

    Xue, Junjun; Cai, Qing; Zhang, Baohua; Ge, Mei; Chen, Dunjun; Zheng, Jianguo; Zhi, Ting; Tao, Zhikuo; Chen, Jiangwei; Wang, Lianhui; Zhang, Rong; Zheng, Youdou

    2017-11-01

    Incubation and shape transition are considered as two essential processes for nucleating of self-assembly InGaN nanocolumns (NCs) in traditional way. We propose a new approach for nuclei forming directly by in-situ annealing and ion irradiating the InGaN template during growing process. The nanoislands, considered as the nuclei of NCs, were formed by a combinational effect of thermal and ion etching (TIE), which made the gaps of the V-pits deeper and wider. On account of the decomposition of InGaN during TIE process, more nitride-rich amorphous alloys would intent to accumulate in the corroded V-pits. The amorphous alloys played a key role to promote the following growth from 2D regime into Volmer-Weber growth regime so that the NC morphology took place, rather than a compact film. As growth continued, the subsequently epitaxial InGaN alloys on the annealed NC nuclei were suffered in biaxial compressive stress for losing part of indium content from the NC nuclei during the TIE process. Strain relaxation, accompanied by thread dislocations, came up and made the lattice planes misoriented, which prevented the NCs from coalescence into a compact film at later period of growing.

  2. Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoran; Cao, Yanwei; Pal, B.; Middey, S.; Kareev, M.; Choi, Y.; Shafer, P.; Haskel, D.; Arenholz, E.; Chakhalian, J.

    2017-12-01

    We report on the selective fabrication of high-quality Sr2IrO4 and SrIrO3 epitaxial thin films from a single polycrystalline Sr2IrO4 target by pulsed laser deposition. Using a combination of x-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant x-ray absorption spectroscopy measurements taken at the Ir L edge and the O K edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1IrnO3n+1 series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer an approach to the synthesis of ultrathin films of the RP series of iridates and can be extended to other complex oxides with layered structure.

  3. Real-time growth study of plasma assisted atomic layer epitaxy of InN films by synchrotron x-ray methods

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Anderson, Virginia R. [American Society for Engineering Education, 1818 N Street NW, Washington, DC 20036; Johnson, Scooter D. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Downey, Brian P. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; Meyer, David J. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375; DeMasi, Alexander [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Robinson, Zachary R. [Department of Physics, SUNY College at Brockport, 350 New Campus Dr, Brockport, New York 14420; Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215; Eddy, Charles R. [U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375

    2017-03-13

    The temporal evolution of high quality indium nitride (InN) growth by plasma-assisted atomic layer epitaxy (ALEp) on a-plane sapphire at 200 and 248 °C was probed by synchrotron x-ray methods. The growth was carried out in a thin film growth facility installed at beamline X21 of the National Synchrotron Light Source at Brookhaven National Laboratory and at beamline G3 of the Cornell High Energy Synchrotron Source, Cornell University. Measurements of grazing incidence small angle x-ray scattering (GISAXS) during the initial cycles of growth revealed a broadening and scattering near the diffuse specular rod and the development of scattering intensities due to half unit cell thick nucleation islands in the Yoneda wing with correlation length scale of 7.1 and 8.2 nm, at growth temperatures (Tg) of 200 and 248 °C, respectively. At about 1.1 nm (two unit cells) of growth thickness nucleation islands coarsen, grow, and the intensity of correlated scattering peak increased at the correlation length scale of 8.0 and 8.7 nm for Tg = 200 and 248 °C, respectively. The correlated peaks at both growth temperatures can be fitted with a single peak Lorentzian function, which support single mode growth. Post-growth in situ x-ray reflectivity measurements indicate a growth rate of ~0.36 Å/cycle consistent with the growth rate previously reported for self-limited InN growth in a commercial ALEp reactor. Consistent with the in situ GISAXS study, ex situ atomic force microscopy power spectral density measurements also indicate single mode growth. Electrical characterization of the resulting film revealed an electron mobility of 50 cm2/V s for a 5.6 nm thick InN film on a-plane sapphire, which is higher than the previously reported mobility of much thicker InN films grown at higher temperature by molecular beam epitaxy directly on sapphire. These early results indicated that in situ synchrotron x-ray study of the epitaxial growth kinetics of InN films is a very powerful method to

  4. Plasmas for the low-temperature growth of high-quality GaN films by molecular beam epitaxy and remote plasma MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Capezzuto, P.; Bruno, G. [Plasmachemistry Research Center, CNR, Bari (Italy); Namkoong, G.; Doolittle, W.A.; Brown, A.S. [Georgia Inst. of Tech., Atlanta (United States). School of Electrical and Computer Engineering, Microelectronic Research Center

    2002-03-16

    GaN heteroepitaxial growth on sapphire (0001) substrates was carried out by both radio-frequency (rf) remote plasma metalorganic chemical vapor deposition (RP-MOCVD) and molecular beam epitaxy (MBE). A multistep growth process including substrate plasma cleaning and nitridation, buffer growth, its subsequent annealing and epilayer growth was used. In order to achieve a better understanding of the GaN growth, in-situ real time investigation of the surface chemistry is performed for all the steps using the conventional reflection high-energy electron spectroscopy (RHEED) during the MBE process, while laser reflectance interferometry (LRI) and spectroscopic ellipsometry (SE), which do not require UHV conditions, are used for the monitoring of the RP-MOCVD process. The chemistry of the rf N{sub 2} plasma sapphire nitridation and its effect on the epilayer growth and quality are discussed in both MBE and RP-MOCVD. (orig.)

  5. Growth and characterization of germanium epitaxial film on silicon (001 with germane precursor in metal organic chemical vapour deposition (MOCVD chamber

    Directory of Open Access Journals (Sweden)

    Kwang Hong Lee

    2013-09-01

    Full Text Available The quality of germanium (Ge epitaxial film grown directly on a silicon (Si (001 substrate with 6° off-cut using conventional germane precursor in a metal organic chemical vapour deposition (MOCVD system is studied. The growth sequence consists of several steps at low temperature (LT at 400 °C, intermediate temperature ramp (LT-HT of ∼10 °C/min and high temperature (HT at 600 °C. This is followed by post-growth annealing in hydrogen at temperature ranging from 650 to 825 °C. The Ge epitaxial film of thickness ∼ 1 μm experiences thermally induced tensile strain of 0.11 % with a treading dislocation density (TDD of ∼107/cm2 and the root-mean-square (RMS roughness of ∼ 0.75 nm. The benefit of growing Ge epitaxial film using MOCVD is that the subsequent III-V materials can be grown in-situ without the need of breaking the vacuum hence it is manufacturing worthy.

  6. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1 (n = 1, 2 and 3) phases by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J.

    2013-01-01

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO 3 and NdGaO 3 substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La n+1 Ni n O 3n+1 (n = 1, 2 and 3) have been epitaxially grown on SrTiO 3 (0 0 1) or NdGaO 3 (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time

  7. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  8. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  9. Critical parameters for the molecular beam epitaxial growth of 1.55 μm (Ga,In)(N,As) multiple quantum wells

    International Nuclear Information System (INIS)

    Ishikawa, Fumitaro; Luna, Esperanza; Trampert, Achim; Ploog, Klaus H.

    2006-01-01

    The authors discuss the effect of substrate temperature and As beam equivalent pressure (BEP) on the molecular beam epitaxial growth of (Ga,In)(N,As) multiple quantum wells (MQWs). Transmission electron microscopy studies reveal that a low substrate temperature essentially prevents composition modulations. Secondary ion mass spectrometry results indicate that a low As BEP reduces the incorporation competition of group V elements. The low substrate temperature and low As BEP growth condition leads to (Ga,In)(N,As) MQWs containing more than 4% N preserving good structural and optical properties, and hence demonstrating 1.55 μm photoluminescence emission at room temperature

  10. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    the preparation of ultrathin seed layers in the first stage of the deposition process is often envisaged to control the growth and physical properties of the subsequent coating. This work suggests that the limitations of conventional pulsed laser deposition (PLD), performed at moderate temperature (400°C......10 layers with a thickness of 4 nm, 13 nm and 22 nm, respectively, grown on Mg(100), were studied by atomic force microscopy and X-ray reflectometry....

  11. Epitaxial growth of Si1−xGex alloys and Ge on Si(100) by electron-cyclotron-resonance Ar plasma chemical vapor deposition without substrate heating

    International Nuclear Information System (INIS)

    Ueno, Naofumi; Sakuraba, Masao; Murota, Junichi; Sato, Shigeo

    2014-01-01

    By using electron-cyclotron-resonance (ECR) Ar-plasma chemical vapor deposition (CVD) without substrate heating, the epitaxial growth process of Si 1−x Ge x alloy and Ge films deposited directly on dilute-HF-treated Si(100) was investigated. From the reflection high energy electron diffraction patterns of the deposited Si 1−x Ge x alloy (x = 0.50, 0.75) and Ge films on Si(100), it is confirmed that epitaxial growth can be realized without substrate heating, and that crystallinity degradation at larger film thickness is observed. The X-ray diffraction peak of the epitaxial films reveals the existence of large compressive strain, which is induced by lattice matching with the Si(100) substrate at smaller film thicknesses, as well as strain relaxation behavior at larger film thicknesses. The Ge fraction of Si 1−x Ge x thin film is in good agreement with the normalized GeH 4 partial pressure. The Si 1−x Ge x deposition rate increases with an increase of GeH 4 partial pressure. The GeH 4 partial pressure dependence of partial deposition rates [(Si or Ge fraction) × (Si 1−x Ge x thickness) / (deposition time)] shows that the Si partial deposition rate is slightly enhanced by the existence of Ge. From these results, it is proposed that the ECR-plasma CVD process can be utilized for Ge fraction control in highly-strained heterostructure formation of group IV semiconductors. - Highlights: • Si 1−x Ge x alloy and Ge were epitaxially grown on Si(100) without substrate heating. • Large strain and its relaxation behavior can be observed by X-ray diffraction. • Ge fraction of Si 1−x Ge x is equal to normalized GeH 4 partial pressure. • Si partial deposition rate is slightly enhanced by existence of Ge

  12. Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach

    KAUST Repository

    Eddaoudi, Mohamed

    2016-01-28

    Embodiments include a method of making a metal organic framework membrane comprising contacting a substrate with a solution including a metal ion and contacting the substrate with a solution including an organic ligand, sufficient to form one or more layers of a metal organic framework on a substrate. Embodiments further include a defect-free metal organic framework membrane comprising MSiF6(pyz)2, wherein M is a metal, wherein the thickness of the membrane is less than 1,000 µm, and wherein the metal organic has a growth orientation along the [110] plane relative to a substrate.

  13. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    Science.gov (United States)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  14. Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Yongjin; Hu, Fangren; Hane, Kazuhiro

    2011-01-01

    We report here the lateral epitaxial overgrowth (LEO) of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy (MBE) growth with radio frequency nitrogen plasma as a gas source. Two kinds of GaN nanostructures are defined by electron beam lithography and realized on a GaN substrate by fast atom beam etching. The epitaxial growth of GaN by MBE is performed on the prepared GaN template, and the selective growth of GaN takes place with the assistance of GaN nanostructures. The LEO of GaN produces novel GaN epitaxial structures which are dependent on the shape and the size of the processed GaN nanostructures. Periodic GaN hexagonal pyramids are generated inside the air holes, and GaN epitaxial strips with triangular section are formed in the grating region. This work provides a promising way for producing novel GaN-based devices by the LEO of GaN using the MBE technique

  15. Systematic study of influence of growth parameters on island morphology during molecular beam epitaxy growth: A Monte Carlo study

    International Nuclear Information System (INIS)

    Shankar Prasad Shrestha; Park, C.-Y.

    2006-05-01

    We have made a systematic study of influence of diffusion flux ratio (D/F), diffusional anisotropy (DA) and sticking anisotropy (SA) on island morphology to show the influence of each growth parameter on island morphology in presence of the other growth parameters. Our results show that the influence of D/F ratio and DA on island morphology depends on the sticking anisotropy of the adatoms. At the intermediate anisotropic case, increase in D/F ratio results in transition of the island morphology from 1d nature to 2 d nature. In anisotropic diffusion case, D/F ratio can change the growth direction of the island morphology. We also find that only sticking anisotropy is not sufficient to produce elongated islands, low D/F ratio is also essential. (author)

  16. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    International Nuclear Information System (INIS)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V; Lai, Z; Henry, A; Janzen, E; Pippel, E; Woltersdorf, J

    2011-01-01

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T C ) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T C = 11.3 K and critical current density of about 2.5 MA cm -2 at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  17. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    Energy Technology Data Exchange (ETDEWEB)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V [Group for Advanced Receiver Development, Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Lai, Z [Nanofabrication Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Henry, A; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Pippel, E; Woltersdorf, J, E-mail: dimitar.dochev@chalmers.se [Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2011-03-15

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T{sub C}) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T{sub C} = 11.3 K and critical current density of about 2.5 MA cm{sup -2} at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  18. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  19. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  20. Nanostructure formation during relatively high temperature growth of Mn-doped GaAs by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Del Río-De Santiago, A.; Méndez-García, V.H. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Martínez-Velis, I.; Casallas-Moreno, Y.L. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); López-Luna, E. [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico); Yu Gorbatchev, A. [IICO-UASLP, Av. Karakorum 1470, Lomas 4a. Sección, San Luis Potosí, S.L.P. 78210, México (Mexico); López-López, M. [Physics Department, CINVESTAV-IPN, Apdo. Postal 14470 D. F. México, México (Mexico); Cruz-Hernández, E., E-mail: esteban.cruz@uaslp.mx [CIACyT-UASLP, Sierra Leona Av. # 550, Lomas 2a Secc, San Luis Potosí, S.L.P. 78210, México (Mexico)

    2015-04-01

    Highlights: • The formation of different kind of nanostructures in GaMnAs layers depending on Mn concentration at relative HT-MBE is reported. In this Mn% range, it is found the formation of nanogrooves, nanoleaves, and nanowires. • It is shown the progressive photoluminescence transitions from purely GaAsMn zinc blende (for Mn% = 0.01) to a mixture of zinc blende and wurtzite GaAsMn (for Mn% = 0.2). • A critical thickness for the Mn catalyst effect was determined by RHEED. - Abstract: In the present work, we report on molecular beam epitaxy growth of Mn-doped GaAs films at the relatively high temperature (HT) of 530 °C. We found that by increasing the Mn atomic percent, Mn%, from 0.01 to 0.2, the surface morphology of the samples is strongly influenced and changes from planar to corrugated for Mn% values from 0.01 to 0.05, corresponding to nanostructures on the surface with dimensions of 200–300 nm and with the shape of leave, to nanowire-like structures for Mn% values above 0.05. From reflection high-energy electron diffraction patterns, we observed the growth mode transition from two- to three-dimensional occurring at a Mn% exceeding 0.05. The optical and electrical properties were obtained from photoluminescence (PL) and Hall effect measurements, respectively. For the higher Mn concentration, besides the Mn related transitions at approximately 1.41 eV, PL spectra sharp peaks are present between 1.43 and 1.49 eV, which we related to the coexistence of zinc blende and wurtzite phases in the nanowire-like structures of this sample. At Mn% of 0.04, an increase of the carrier mobility up to a value of 1.1 × 10{sup 3} cm{sup 2}/Vs at 77 K was found, then decreases as Mn% is further increased due to the strengthening of the ionized impurity scattering.

  1. Growth of cubic GaN on a nitrided AlGaAs (001) substrate by using hydried vapor phase epitaxy

    International Nuclear Information System (INIS)

    Lee, H. J.; Yang, M.; Ahn, H. S.; Kim, K. H.; Yi, J. Y.; Jang, K. S.; Chang, J. H.; Kim, H. S.; Cho, C. R.; Kim, S. W.

    2006-01-01

    GaN layers were grown on AlGaAs (001) substrates by using hydride vapor phase epitaxy (HVPE). Growth parameters such as the nitridation temperature of the AlGaAs substrate and the growth rate of the GaN layer were found to be critical determinants for the growth of cubic GaN layer. Nitridation of the AlGaAs surface was performed in a NH 3 atmosphere at a temperature range of 550 - 700 .deg. C. GaN layers were grown at different growth rates on the nitrided AlGaAs substrates. The surface morphologies and the chemical constituents of the nitrided AlGaAs layers were characterized with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For the optical and the crystalline characterization of the GaN films, cathodoluminescence (CL) and X-ray diffraction (XRD) were carried out.

  2. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Nakata, Yuka; Takahasi, Masamitu [Graduate School of Materials Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Hyogo 678-1297 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Hyogo 679-5148 (Japan); Ikeda, Kazuma [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Ohshita, Yoshio; Morohara, Osamu; Geka, Hirotaka; Moriyasu, Yoshitaka [Advanced Devices and Sensor Systems Development Center, Asahi Kasei Co. Ltd., 2-1 Samejima, Fuji 416-8501 (Japan)

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain size was smaller for all film thicknesses.

  3. Growth of epitaxially oriented Ag nanoislands on air-oxidized Si(1 1 1)-(7 × 7) surfaces: Influence of short-range order on the substrate

    International Nuclear Information System (INIS)

    Roy, Anupam; Bhattacharjee, K.; Ghatak, J.; Dev, B.N.

    2012-01-01

    Clean Si(1 1 1)-(7 × 7) surfaces, followed by air-exposure, have been investigated by reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM). Fourier transforms (FTs) of STM images show the presence of short-range (7 × 7) order on the air-oxidized surface. Comparison with FTs of STM images from a clean Si(1 1 1)-(7 × 7) surface shows that only the 1/7th order spots are present on the air-oxidized surface. The oxide layer is ∼2-3 nm thick, as revealed by cross-sectional transmission electron microscopy (XTEM). Growth of Ag islands on these air-oxidized Si(1 1 1)-(7 × 7) surfaces has been investigated by in situ RHEED and STM and ex situ XTEM and scanning electron microscopy. Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while preferred orientation evolves when Ag is deposited at higher substrate temperatures. For deposition at 550 °C face centered cubic Ag nanoislands grow with a predominant epitaxial orientation [11 ¯ 0] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si along with its twin [1 ¯ 10] Ag ||[11 ¯ 0] Si , (1 1 1) Ag || (1 1 1) Si , as observed for epitaxial growth of Ag on Si(1 1 1) surfaces. The twins are thus rotated by a 180° rotation of the Ag unit cell about the Si[1 1 1] axis. It is intriguing that Ag nanoislands follow an epitaxial relationship with the Si(1 1 1) substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently the short-range order on the oxide surface influences the crystallographic orientation of the Ag nanoislands.

  4. Growth of Ca{sub 2}MnO{sub 4} Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lacotte, M.; David, A.; Pravarthana, D.; Prellier, W., E-mail: wilfrid.prellier@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Grygiel, C. [Laboratoire CIMAP, CEA, CNRS UMR 6252, ENSICAEN, Université de Basse-Normandie, 6 Bd Maréchal Juin, F-14050 Caen Cedex 4 (France); Rohrer, G. S.; Salvador, P. A. [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Velazquez, M. [CNRS, Université de Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Kloe, R. de [AMETEK B.V, EDAX Application Laboratory, Tilburg (Netherlands)

    2014-12-28

    The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.

  5. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE

    Science.gov (United States)

    Li, Shunfeng; Wang, Xue; Mohajerani, Matin Sadat; Fündling, Sönke; Erenburg, Milena; Wei, Jiandong; Wehmann, Hergo-Heinrich; Waag, Andreas; Mandl, Martin; Bergbauer, Werner; Strassburg, Martin

    2013-02-01

    Selective area growth of GaN rods by metalorganic vapor phase epitaxy has attracted great interest due to its novel applications in optoelectronic and photonics. In this work, we will present the dependence of GaN rod morphology on various growth parameters i.e. growth temperature, H2/N2 carrier gas concentration, V/III ratio, total carrier gas flow and reactor pressure. It is found that higher growth temperature helps to increase the aspect ratio of the rods, but reduces the height homogeneity. Furthermore, H2/N2 carrier gas concentration is found to be a critical factor to obtain vertical rod growth. Pure nitrogen carrier gas leads to irregular growth of GaN structure, while an increase of hydrogen carrier gas results in vertical GaN rod growth. Higher hydrogen carrier gas concentration also reduces the diameter and enhances the aspect of the GaN rods. Besides, increase of V/III ratio causes reduction of the aspect ratio of N-polar GaN rods, which could be explained by the relatively lower growth rate on (000-1) N-polar top surface when supplying more ammonia. In addition, an increase of the total carrier gas flow leads to a decrease in the diameter and the average volume of GaN rods. These phenomena are tentatively explained by the change of partial pressure of the source materials and boundary layer thickness in the reactor. Finally, it is shown that the average volume of the N-polar GaN rods keeps a similar value for a reactor pressure PR of 66 and 125 mbar, while an incomplete filling of the pattern opening is observed with PR of 250 mbar. Room temperature photoluminescence spectrum of the rods is also briefly discussed.

  6. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    International Nuclear Information System (INIS)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J.

    1996-01-01

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs

  7. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J. [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1996-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  8. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K B; Ridgway, M C; Llewellyn, D J [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1997-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  9. Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition

    International Nuclear Information System (INIS)

    McDaniel, M.D.; Posadas, A.; Wang, T.; Demkov, A.A.; Ekerdt, J.G.

    2012-01-01

    Epitaxial anatase titanium dioxide (TiO 2 ) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO 2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225–250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10 −7 Pa) for 1–2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO 2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO 2 growth. X-ray diffraction revealed that the TiO 2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO 2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates. - Highlights: ► Epitaxial anatase films are grown by atomic layer deposition (ALD) on Si(001). ► Four unit cells of SrTiO 3 on silicon create a stable template for ALD. ► TiO 2 thin films have a compressed c-axis and an expanded a-axis. ► Up to 100 nm thick TiO 2 films remain highly ordered in the (001) direction.

  10. Growth of epitaxial (Sr, Ba){sub n+1}Ru{sub n}O{sub 3n}P+{sub 1}films

    Energy Technology Data Exchange (ETDEWEB)

    Schlom, D.G.; Knapp, S.B.; Wozniak, S. [Department of Materials Science and Engineering, Penn State University, University Park, PA (United States); Zou, L.N.; Park, J.; Liu, Y. [Department of Physics, Penn State University, University Park, PA (United States); Hawley, M.E.; Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM (United States); Dabkowski, A.; Dabkowska, H.A. [Institute of Materials Research, McMaster University, Hamilton, Ontario (Canada); Uecker, R.; Reiche, P. [Institute of Crystal Growth, Berlin (Germany)

    1997-12-01

    We have grown epitaxial (Sr,Ba){sub n+1}Ru{sub n}O{sub 3n+1} films, n = 1, 2 and {infinity}, by pulsed laser deposition (PLD) and controlled their orientation by choosing appropriate substrates. The growth conditions yielding phase-pure films have been mapped out. Resistivity versus temperature measurements show that both a-axis and c-axis films of Sr{sub 2}RuO{sub 4} are metallic, but not superconducting. The latter is probably due to the presence of low-level impurities that are difficult to avoid given the target preparation process involved in growing these films by PLD. (author)

  11. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces

    KAUST Repository

    Shekhah, Osama; Eddaoudi, Mohamed

    2013-01-01

    Highly-oriented ZIF-8 thin films with controllable thickness were grown on an -OH-functionalized Au substrate using the liquid phase epitaxy method at room temperature, as evidenced by SEM and PXRD. The adsorption-desorption properties of the resulting ZIF-8 thin film were investigated for various VOCs using the QCM technique. © The Royal Society of Chemistry 2013.

  12. Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Virginia R.; Nepal, Neeraj; Johnson, Scooter D.; Robinson, Zachary R.; Nath, Anindya; Kozen, Alexander C.; Qadri, Syed B.; DeMasi, Alexander; Hite, Jennifer K.; Ludwig, Karl F.; Eddy, Charles R.

    2017-05-01

    Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layer epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.

  13. Large-area, laterally-grown epitaxial semiconductor layers

    Science.gov (United States)

    Han, Jung; Song, Jie; Chen, Danti

    2017-07-18

    Structures and methods for confined lateral-guided growth of a large-area semiconductor layer on an insulating layer are described. The semiconductor layer may be formed by heteroepitaxial growth from a selective growth area in a vertically-confined, lateral-growth guiding structure. Lateral-growth guiding structures may be formed in arrays over a region of a substrate, so as to cover a majority of the substrate region with laterally-grown epitaxial semiconductor tiles. Quality regions of low-defect, stress-free GaN may be grown on silicon.

  14. Si(001):B gas-source molecular-beam epitaxy: Boron surface segregation and its effect on film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Glass, G.; Spila, T.; Taylor, N.; Park, S.Y.; Abelson, J.R.; Greene, J.E. [Department of Materials Science, Coordinated Science Laboratory, and Materials Research Laboratory, University of Illinois, 1101 West Springfield, Urbana, Illinois 61801 (United States)

    1997-09-01

    B-doped Si(001) films, with concentrations C{sub B} up to 1.7{times}10{sup 22}cm{sup {minus}3}, were grown by gas-source molecular-beam epitaxy from Si{sub 2}H{sub 6} and B{sub 2}H{sub 6} at T{sub s}=500{endash}800{degree}C. D{sub 2} temperature-programed desorption (TPD) spectra were then used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s}. In these measurements, as-deposited films were flash heated to desorb surface hydrogen, cooled, and exposed to atomic deuterium until saturation coverage. Strong B surface segregation was observed with surface-to-bulk B concentration ratios ranging up to 1200. TPD spectra exhibited {beta}{sub 2} and {beta}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced peaks {beta}{sub 2}{sup {asterisk}} and {beta}{sub 1}{sup {asterisk}}. Increasing {theta}{sub B} increased the area under {beta}{sub 2}{sup {asterisk}} and {beta}{sub 1}{sup {asterisk}} at the expense of {beta}{sub 2} and {beta}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.53eV, and to explain and model the effects of high B coverages on Si(001) growth kinetics. Film deposition rates R increase by {ge}50{percent} with increasing C{sub B}{tilde {gt}}1{times}10{sup 19}cm{sup {minus}3} at T{sub s}{le}550{degree}C, due primarily to increased H desorption rates from B-backbonded Si adatoms, and decrease by corresponding amounts at T{sub s}{ge}600{degree}C due to decreased adsorption site densities. At T{sub s}{ge}700{degree}C, high B coverages also induce {l_brace}113{r_brace} facetting. {copyright} {ital 1997 American Institute of Physics.}

  15. Polarity driven simultaneous growth of free-standing and lateral GaAsP epitaxial nanowires on GaAs (001) substrate

    International Nuclear Information System (INIS)

    Sun, Wen; Xu, Hongyi; Guo, Yanan; Gao, Qiang; Hoe Tan, Hark; Jagadish, Chennupati; Zou, Jin

    2013-01-01

    Simultaneous growth of 〈111〉 B free-standing and ±[110] lateral GaAsP epitaxial nanowires on GaAs (001) substrates were observed and investigated by electron microscopy and crystallographic analysis. It was found that the growth of both free-standing and lateral ternary nanowires via Au catalysts was driven by the fact that Au catalysts prefer to maintain low-energy (111) B interfaces with surrounding GaAs(P) materials: in the case of free-standing nanowires, Au catalysts maintain (111) B interfaces with their underlying GaAsP nanowires; while in the case of lateral nanowires, each Au catalyst remain their side (111) B interfaces with the surrounding GaAs(P) material during the lateral nanowire growth

  16. Influence of the interface on growth rates in AlN/GaN short period superlattices via metal organic vapor phase epitaxy

    Science.gov (United States)

    Rodak, L. E.; Korakakis, D.

    2011-11-01

    AlN/GaN short period superlattices are well suited for a number of applications including, but not limited to, digital alloys, intersubband devices, and emitters. In this work, AlN/GaN superlattices with periodicities ranging from 10 to 20 Å have been grown via metal organic vapor phase epitaxy in order to investigate the influence of the interface on the binary alloy growth rates. The GaN growth rate at the interface was observed to decrease with increasing GaN thickness while the AlN growth rate remained constant. This has been attributed to a decrease in the decomposition rate of GaN at the hetero-interface as seen in other III-V hetero-structures.

  17. Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  18. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  19. Growth of gallium nitride based devices on silicon(001) substrates by metalorganic vapor phase epitaxy; Wachstum von Galliumnitrid-basierten Bauelementen auf Silizium(001)-Substraten mittels metallorganischer Gasphasenepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Reiher, Fabian

    2009-02-25

    The main topic of this thesis is to investigate GaN-based layer systems grown by metalorganic vapor phase epitaxy on Si(001) substrates. A temperature shift up to 45 K is measured for a complete device structure on a 2-inch silicon substrate. By using a 40 nm thin LT-AlN-seed layer (680 C), the GaN crystallites on Si(001) substrates are almost oriented with their GaN(10 anti 12)-planes parallel to the Si(001)-plane. A four-fold azimuthal symmetry occurs for these layers, with the GaN[10 anti 11]-direction is aligned parallel to one of the four equivalent left angle 110 right angle -directions, respectively. However, a mono-crystalline and fully coalesced GaN-layer with this crystallographic orientation could not yet been obtained. If a deposition temperature of more than 1100 C is used for the AlN-seed layer, solely the GaN[0001]- growth direction of crystallites occurs in the main GaN layer on Si(001) substrates. These c-axis oriented GaN columns feature two opposite azimuthal alignments that are rotated by 90 with respect to each other and with GaN[11 anti 20] parallel Si[110] and GaN[10 anti 10] parallel Si[110], respectively. By using 4 off-oriented substrates towards the Si[110]-direction, one certain azimuthal texture component can be selected. The critical value of the miscut angle corresponds to theoretical calculations predicting the occurrence of atomic double steps on the Si(001) surface. The achieved crystallographic quality of the GaN layers on Si(001) is characterized by having a tilt of FWHM=0.27 and a twist of FWHM=0.8 of the crystallites, determined by X-ray diffraction. A completely crack-free, up to 2.5 {mu}m thick, and mono-crystalline GaN-template can be realized on Si(001), integrating 4 or 5 LT-AlN-interlayers in the GaN buffer structure. Based on this structure, the first successful implementation of an (InGaN/GaN)-LED on Si(001) is achieved. Furthermore, the possible fabrication of GaN-based FET-structures is demonstrated with a fully

  20. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  1. Epitaxial rare-earth superlattices and films

    International Nuclear Information System (INIS)

    Salamon, M.B.; Beach, R.S.; Flynn, C.P.; Matheny, A.; Tsui, F.; Rhyne, J.J.

    1992-01-01

    This paper reports on epitaxial growth of rare-earth superlattices which is demonstrated to have opened important new areas of research on magnetic materials. The propagation magnetic order through non-magnetic elements, including its range and anisotropy, has been studied. The importance of magnetostriction in determining the phase diagram is demonstrated by the changes induced by epitaxial clamping. The cyrstallinity of epitaxial superlattices provides the opportunity to study interfacial magnetism by conventional x-ray and neutron scattering methods

  2. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  3. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  4. Nanosheet controlled epitaxial growth of PbZr0.52Ti0.48O3 thin films on glass substrates

    Science.gov (United States)

    Bayraktar, M.; Chopra, A.; Bijkerk, F.; Rijnders, G.

    2014-09-01

    Integration of PbZr0.52Ti0.48O3 (PZT) films on glass substrates is of high importance for device applications. However, to make use of the superior ferro- and piezoelectric properties of PZT, well-oriented crystalline or epitaxial growth with control of the crystal orientation is a prerequisite. In this article, we report on epitaxial growth of PZT films with (100)- and (110)-orientation achieved by utilizing Ca2Nb3O10 (CNO) and Ti0.87O2 (TO) nanosheets as crystalline buffer layers. Fatigue measurements demonstrated stable ferroelectric properties of these films up to 5 × 109 cycles. (100)-oriented PZT films on CNO nanosheets show a large remnant polarization of 21 μC/cm2 that is the highest remnant polarization value compared to (110)-oriented and polycrystalline films reported in this work. A piezoelectric response of 98 pm/V is observed for (100)-oriented PZT film which is higher than the values reported in the literature on Si substrates.

  5. Ge(001):B gas-source molecular beam epitaxy: B surface segregation, hydrogen desorption, and film growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.; Greene, J.E. [Materials Science Department, the Coordinated Science Laboratory and the Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    1999-03-01

    Ultrahigh B-doped Ge(001) layers, with concentrations C{sub B} up to 8{times}10{sup 21} cm{sup {minus}3}, were grown by gas-source molecular beam epitaxy from Ge{sub 2}H{sub 6} and B{sub 2}H{sub 6} at temperatures T{sub s}=325{degree}C (in the surface-reaction-limited regime) and 600{degree}C (in the flux-limited regime). The samples were quenched, D site exchanged for H, and D{sub 2} temperature-programed desorption (TPD) used to determine B coverages {theta}{sub B} as a function of C{sub B} and T{sub s} by comparison with B-adsorbed Ge(001) reference samples with known {theta}{sub B} values. During Ge(001):B film growth, strong surface B segregation to the second layer was observed with surface-to-bulk B concentration ratios ranging up to 6000. The TPD spectra exhibited {alpha}{sub 2} and {alpha}{sub 1} peaks associated with dideuteride and monodeuteride desorption as well as lower-temperature B-induced {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} peaks associated with deuterium desorption from Ge{sup {asterisk}} surface atoms with B backbonds. Increasing {theta}{sub B} expanded the area under {alpha}{sub 2}{sup {asterisk}} and {alpha}{sub 1}{sup {asterisk}} at the expense of {alpha}{sub 2} and {alpha}{sub 1} and decreased the total D coverage {theta}{sub D}. The TPD results were used to determine the B segregation enthalpy, {minus}0.64 eV, and to explain and model the effects of high B coverages on Ge(001) growth kinetics. At T{sub s}=325{degree}C, where B segregation is kinetically hindered, film deposition rates R{sub Ge} are not a strong function of C{sub B}, exhibiting only a small decrease at C{sub B}{approx_gt}5{times}10{sup 18} cm{sup {minus}3}. However, at T{sub s}=600{degree}C, R{sub Ge} decreases by up to 40{percent} with increasing C{sub B}{approx_gt}1{times}10{sup 18} cm{sup {minus}3}. This is due primarily to the combination of B-induced Ge dimer vacancies and the deactivation of surface dangling bonds caused by charge transfer

  6. Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)

    International Nuclear Information System (INIS)

    Sohel, Mohammad; Munoz, Martin; Tamargo, Maria C.

    2004-01-01

    High crystalline quality zinc-blende structure Zn (1-x) Mg x Se epitaxial layers were grown on InP (001) substrates by molecular beam epitaxy. Their band gap energies were determined as a function of Mg concentration and a linear dependence was observed. The band gap of the Zn (1-x) Mg x Se closely lattice matched to InP was found to be 3.59 eV at 77 K and the extrapolated value for zinc-blende MgSe was determined to be 3.74 eV. Quantum wells of Zn (1-x) Cd x Se with Zn (1-x) Mg x Se as the barrier layer were grown which exhibit near ultraviolet emission

  7. Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    Hanjong Paik

    2017-11-01

    Full Text Available Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001 DyScO3 substrate exhibited a mobility of 183 cm2 V−1 s−1 at room temperature and 400 cm2 V−1 s−1 at 10 K despite the high concentration (1.2 × 1011 cm−2 of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects—possibly (BaO2 crystallographic shear defects or point defects—significantly reduce the electron mobility.

  8. Growth of high-quality hexagonal InN on 3C-SiC (001) by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yaguchi, Hiroyuki; Hijikata, Yasuto; Yoshida, Sadafumi; Kitamura, Yoshihiro; Nishida, Kenji; Iwahashi, Yohei

    2005-01-01

    We have grown hexagonal InN (h-InN) films on 3C-SiC (001) substrates by RF-N 2 plasma molecular beam epitaxy taking account of small lattice mismatch between h-InN (10-10) and 3C-SiC (110). It was found from X-ray diffraction (XRD) measurements that h-InN grows with h-InN (0001) vertical stroke vertical stroke 3C-SiC (001) and h-InN (1-100) vertical stroke vertical stroke 3C-SiC (110). XRD measurements also revealed that the h-InN epitaxial layers grown on 3C-SiC (001) are composed of single domain. Strong and sharp photoluminescence from the h-InN was clearly observed at around 0.69 eV. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    Science.gov (United States)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  10. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  11. Self-Catalyzed Growth of Axial GaAs/GaAsSb Nanowires by Molecular Beam Epitaxy for Photodetectors

    Science.gov (United States)

    2015-06-01

    MOVPE Metal organic vapor phase epitaxy NCA Nano Channel Aluminum NW Nanowire PL Photoluminescence PMMA Poly methyl methacrylate...GaAs (111) B substrate. The NWs were grown using a nanochannel alumina ( NCA ) template. It was later shown by Dubrovskii et al. [16], that the NWs... cathode gun. The type of signals produced are secondary electron (SE), back scattered electron (BSE), characteristic X- rays, specimen current and

  12. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2

    International Nuclear Information System (INIS)

    Xiao, Zewen; Ran, Fan-Yong; Hiramatsu, Hidenori; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2014-01-01

    BaZn 2 As 2 is expected for a good p-type semiconductor and has two crystalline phases of an orthorhombic α phase and a higher-symmetry tetragonal β phase. Here, we report that high-quality epitaxial films of the tetragonal β-BaZn 2 As 2 were grown on single-crystal MgO (001) substrates by a reactive solid-phase epitaxy technique. Out-of-plane and in-plane epitaxial relationships between the film and the substrate were BaZn 2 As 2 (00 l)//MgO (001) and BaZn 2 As 2 [200]//MgO [200], respectively. The full-widths at half maximum were 0.082° for a 008 out-of-plane rocking curve and 0.342° for a 200 in-plane rocking curve. A step-and-terrace structure was observed by atomic force microscopy. The band gap of β-BaZn 2 As 2 was evaluated to be around 0.2 eV, which is much smaller than that of a family compound LaZnOAs (1.5 eV). Density functional theory calculation using the Heyd–Scuseria–Ernzerhof hybrid functionals supports the small band gap. - Highlights: • High-quality epitaxial β-BaZn 2 As 2 films were obtained. • The band gap of β-BaZn 2 As 2 was evaluated to around 0.2 eV. • Hybrid Heyd–Scuseria–Ernzerhof calculation supports the small band gap

  13. Epitaxial growth of new half-metallic ferromagnet 'zinc-blende CrAs' and the substrate temperature dependence

    International Nuclear Information System (INIS)

    Mizuguchi, Masaki; Akinaga, Hiro; Manago, Takashi; Ono, Kanta; Oshima, Masaharu; Shirai, Masafumi

    2002-01-01

    Epitaxial zinc-blende CrAs thin films were grown at two different temperatures. CrAs (2 nm) grown at 200 deg. C formed plateau-shapes, whereas CrAs (2 nm) grown at 300 deg. C formed dispersed dots. The thin film grown at 200 deg. C showed ferromagnetic behavior at room temperature, and the Curie temperature was estimated to be over 400 K

  14. Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxy

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Wacaser, Brent A.; Petersen, Dirch Hjorth

    2008-01-01

    deposition (CVD) or metal organic VPE (MOVPE). However, VPE of semiconducting nanowires is not compatible with several microfabrication processes due to the high synthesis temperatures and issues such as cross-contamination interfering with the intended microsystem or the VPE process. By selectively heating...... a small microfabricated heater, growth of nanowires can be achieved locally without heating the entire microsystem, thereby reducing the compatibility problems. The first demonstration of epitaxial growth of silicon nanowires by this method is presented and shows that the microsystem can be used for rapid...

  15. Solid phase epitaxial growth of high mobility La:BaSnO_3 thin films co-doped with interstitial hydrogen

    International Nuclear Information System (INIS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Moram, Michelle A.; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO_3 thin films on SrTiO_3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO_3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm"2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO_3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO_3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO_3 thin films were increased to 3 × 10"1"9" cm"−"3 and in La:BaSnO_3 thin films from 6 × 10"1"9" cm"−"3 to 1.5 × 10"2"0" cm"−"3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO_3 electron effective mass of 0.27 ± 0.05 m_0 and an optical mobility of 26 ± 7 cm"2/Vs. As compared to La:BaSnO_3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO_3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  16. Thickness and growth-condition dependence of in-situ mobility and carrier density of epitaxial thin-film Bi2Se3

    International Nuclear Information System (INIS)

    Hellerstedt, Jack; Fuhrer, Michael S.; Edmonds, Mark T.; Zheng, C. X.; Chen, J. H.; Cullen, William G.

    2014-01-01

    Bismuth selenide Bi 2 Se 3 was grown by molecular beam epitaxy, while carrier density and mobility were measured directly in situ as a function of film thickness. Carrier density shows high interface n-doping (1.5 × 10 13  cm −2 ) at the onset of film conduction and bulk dopant density of ∼5 × 10 11  cm −2 per quintuple-layer unit, roughly independent of growth temperature profile. Mobility depends more strongly on the growth temperature and is related to the crystalline quality of the samples quantified by ex-situ atomic force microscopy measurements. These results indicate that Bi 2 Se 3 as prepared by widely employed parameters is n-doped before exposure to atmosphere, the doping is largely interfacial in origin, and dopants are not the limiting disorder in present Bi 2 Se 3 films.

  17. Cathodoluminescence of GaN diped with Zn in the process of epitaxial growth and by the method of ionic implantation

    International Nuclear Information System (INIS)

    Khasanov, I.Sh.; Gippius, A.A.; Kuznetsov, A.V.; Petrov, M.N.; Sletov, M.M.

    1984-01-01

    The cathodoluminescence (CL) method was used to investigate the epitaxial GaN layers doped with Zn both in the process of growth and by the method of ionic implantation for the purpose of clarifying the effect of doping technique on impurity luminescence. It was shown that (2-3)x10 18 cm -3 concentration is optimal with respect to intensity of impurity ''blue'' luminescence for gallium nitride doped with Zn. The intensity of GaN ''blue'' luminescence during Zn ionic implantation is several times lower as compared with doping in the process of growth. This is related to incomplete optical activation of impurity atoms in the process of postimplantation thermal annealing. Increase of zinc concentration above optimal during ionic implantation intensifies crystal lattice disordering, which is supported by intensification of 1.7 eV cathodoluminescence band in spectra conditioned by defects

  18. Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, D. V., E-mail: Inquisitor@ipm.sci-nnov.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Daniltsev, V. M.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Skorokhodov, E. V.; Shaleev, M. V.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-11-15

    Influence of the Ge layer thickness and annealing conditions on the parameters of relaxed Ge/Si(001) layers grown by molecular beam epitaxy via two-stage growth is investigated. The dependences of the threading dislocation density and surface roughness on the Ge layer thickness, annealing temperature and time, and the presence of a hydrogen atmosphere are obtained. As a result of optimization of the growth and annealing conditions, relaxed Ge/Si(001) layers which are thinner than 1 μm with a low threading dislocation density on the order of 10{sup 7} cm{sup –2} and a root mean square roughness of less than 1 nm are obtained.

  19. Composition–dependent growth dynamics of selectively grown InGaAs nanowires

    International Nuclear Information System (INIS)

    Kohashi, Y; Hara, S; Motohisa, J

    2014-01-01

    We grew gallium-rich (x > 0.50) and indium-rich (x < 0.50) In 1 − x Ga x As nanowires by catalyst–free selective-area metal–organic vapor-phase epitaxy (SA-MOVPE), and compared their growth dynamics dependence on V/III ratio. It was found that the growth dynamics of In 1 − x Ga x As nanowires is clearly dependent on the alloy composition x. Specifically, for gallium–rich nanowire growth, the axial growth rate of nanowires initially increased with decreasing V/III ratio, and then started to decrease when the V/III ratio continued to decrease below a critical value. On the other hand, axial growth rate of indium-rich nanowires monotonically decreased with decreasing V/III ratio. In addition, the alloy composition was strongly dependent on the V/III ratio for gallium-rich nanowire growth, while it was relatively independent of the V/III ratio for indium-rich nanowire growth. We discuss the origin of dissimilarity in the growth dynamics dependence on V/III ratio between gallium-rich and indium-rich InGaAs nanowire growth, and conclude that it is due to the inherent dissimilarity between GaAs and InAs. Our finding provides important guidelines for achieving precise control of the diameter, height, and alloy composition of nanowires suitable for future nanowire-based electronics. (papers)

  20. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping

    2017-01-18

    Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods is demonstrated. The nanotripods emerge on the top of hexagonal GaN nanowires, which are selectively grown on pillar-patterned GaN templates using molecular beam epitaxy. High-resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N-polarity. The zb-GaN is formed by the poor diffusion of adatoms, and it can be suppressed by improving the ability of the Ga adatoms to migrate as the growth temperature increased. This controllable epitaxy of hierarchical GaN nanotripods allows quantum dots to be located at the phase junctions of the nanotripods and nanowires, suggesting a new recipe for multichannel quantum devices.

  1. Addition of Sb as a surfactant for the growth of nonpolar a-plane GaN by using mixed-source hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Ok, Jin Eun; Jo, Dong Wan; Yun, Wy Il; Han, Young Hun; Jeon, Hun Soo; Lee, Gang Suok; Jung, Se Gyo; Bae, Seon Min; Ahn, Hyung Soo; Yang, Min

    2011-01-01

    The influence of Sb as a surfactant on the morphology and on the structural and the optical characteristics of a-plane GaN grown on r-plane sapphire by using mixed-source hydride vapor phase epitaxy was investigated. The a-plane GaN:Sb layers were grown at various temperatures ranging from 1000 .deg. C to 1100 .deg. C, and the reactor pressure was maintained at 1 atm. The atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD) and photoluminescence(PL) results indicated that the surface morphologies and the structural and the optical characteristics of a-plane GaN were markedly improved, compared to the a-plane GaN layers grown without Sb, by using Sb as a surfactant. The addition of Sb was found to alter epitaxial lateral overgrowth (ELO) facet formation. The Sb was not detected from the a-plane-GaN epilayers within the detection limit of the energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) measurements, suggesting that Sb act as a surfactant during the growth of a-plane GaN by using mixed-source HVPE method.

  2. Epitaxial growth of InN on c-plane sapphire by pulsed laser deposition with r.f. nitrogen radical source

    International Nuclear Information System (INIS)

    Ohta, J.; Fujioka, H.; Honke, T.; Oshima, M.

    2004-01-01

    We have grown InN films on c-plane sapphire substrates by pulsed laser deposition (PLD) with a radio frequency nitrogen radical source for the first time and investigated the effect of the substrate surface nitridation on the structural and electrical properties of InN films with reflection high energy electron diffraction (RHEED), atomic force microscope, the Hall effect measurements and high-resolution X-ray diffraction (HRXRD). RHEED and HRXRD characterizations revealed that high-quality InN grows epitaxially on sapphire by PLD and its epitaxial relationship is InN (0 0 0 1) parallel sapphire (0 0 0 1) and InN [2 -1 -1 0] parallel sapphire [1 0 -1 0]. The InN crystalline quality and the electron mobility are improved by the substrate nitridation process. The area of the pits at the InN surface is reduced by the substrate nitridation process probably due to the reduction in the interface energy between InN and the substrate. The full width at half maximum of the -1 -1 2 4 X-ray rocking curve for InN grown by the present technique without using any buffer layers was as small as 34.8 arcmin. These results indicate that the present technique is promising for the growth of the high-quality InN films

  3. Growth of strained InGaAs/GaAs quantum wells and index guided injection lasers over nonplanar substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Arent, D.J.; Galeuchet, Y.D.; Nilsson, S.; Meier, H.P.

    1990-01-01

    Strained InGaAs/GaAs quantum wells were grown on nonplanar substrates by molecular beam epitaxy and studied by scanning electron microscopy and low temperature spatially and spectrally resolved cathodoluminescence spectroscopy. For (100) ridges and grooves formed with (311)A sidewalls, almost complete removal of In from the strained quantum wells on the (311)A facet is observed. Corresponding increases of In content in the quantum wells grown on the (100) facets indicate that most if not all of the In is displaced from the (311)A facet via interplanar adatom migration. Ga adatom migration is also observed under our growth conditions such that quantum wells grown nominally near the critical layer thickness on structures less than ≅2.5 μm wide are no longer pseudomorphically strained, as detected by luminescence linewidth analysis. We present the first results of strained InGaAs/GaAs index guided injection lasers grown by single-step molecular beam epitaxy over nonplanar substrates and show that differences greater than 50 meV in the effective band gap of a 70 A quantum well can be achieved between the gain region and the nonabsorbing waveguide without relaxing the strain. Room temperature threshold currents as low as 6 mA for 4 μmx750 μm uncoated devices lasing continuously at a wavelength of 1.01 μm have been achieved

  4. Position-controlled epitaxial III-V nanowires on silicon

    NARCIS (Netherlands)

    Roest, A.L.; Verheijen, M.A.; Wunnicke, O.; Serafin, S.N.; Wondergem, H.J.; Bakkers, E.P.A.M.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the VLS mechanism with laser ablation as well as metal-organic vapour phase epitaxy. The hetero-epitaxial growth of the III-V nanowires on silicon was confirmed with x-ray diffraction

  5. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico)

    2008-07-01

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E{sub 1} optical transition as a probe. We follow the kinetics of the deposition of GaAs and In{sub 0.3}Ga{sub 0.7}As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As{sub 4} or As{sub 2} flux pressure of 5 x 10{sup -6} Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Xiang, N.

    2007-01-01

    The authors investigated the growth of Al thin films on GaAs (100) substrates by molecular beam epitaxy. It is found that the growth at 550 degree sign C results in a texture that consists of (100)Al[010](parallel sign)(100)GaAs[011] and (100)Al[010](parallel sign)(100)GaAs[010] rotated 45 degree sign with respect to each other, while the growth at 300 degree sign C leads to a mixture phase of (100)Al[010](parallel sign)(100)GaAs[011] and (110)Al[001](parallel sign)(100)GaAs[011]. In situ annealing of the Al film grown at 300 degree sign C causes a reorientation of the crystalline from (100)Al[010](parallel sign)(100)GaAs[011] to (110)Al[001](parallel sign)(100)GaAs[011]. The grain sizes of the Al film are increased by the increased growth temperature and in situ annealing; the ratio of the exposed to the covered surface is not changed significantly by changing the growth temperature but decreased by annealing; and the small islands in between the large ones are removed by annealing. These observations are explained based on island migration and coalescence

  7. High-Temperature Growth of GaN and Al x Ga1- x N via Ammonia-Based Metalorganic Molecular-Beam Epitaxy

    Science.gov (United States)

    Billingsley, Daniel; Henderson, Walter; Doolittle, W. Alan

    2010-05-01

    The effect of high-temperature growth on the crystalline quality and surface morphology of GaN and Al x Ga1- x N grown by ammonia-based metalorganic molecular-beam epitaxy (NH3-MOMBE) has been investigated as a means of producing atomically smooth films suitable for device structures. The effects of V/III ratio on the growth rate and surface morphology are described herein. The crystalline quality of both GaN and AlGaN was found to mimic that of the GaN templates, with (002) x-ray diffraction (XRD) full-widths at half- maximum (FWHMs) of ~350 arcsec. Nitrogen-rich growth conditions have been found to provide optimal surface morphologies with a root-mean-square (RMS) roughness of ~0.8 nm, yet excessive N-rich environments have been found to reduce the growth rate and result in the formation of faceted surface pitting. AlGaN exhibits a decreased growth rate, as compared with GaN, due to increased N recombination as a result of the increased pyrolysis of NH3 in the presence of Al. AlGaN films grown directly on GaN templates exhibited Pendellösung x-ray fringes, indicating an abrupt interface and a planar AlGaN film. AlGaN films grown for this study resulted in an optimal RMS roughness of ~0.85 nm with visible atomic steps.

  8. Reflectance-anisotropy study of the dynamics of molecular beam epitaxy growth of GaAs and InGaAs on GaAs(001)

    International Nuclear Information System (INIS)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F.; Balderas-Navarro, R.E.

    2008-01-01

    Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E 1 optical transition as a probe. We follow the kinetics of the deposition of GaAs and In 0.3 Ga 0.7 As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As 4 or As 2 flux pressure of 5 x 10 -6 Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    International Nuclear Information System (INIS)

    Peng, W.; Lemee, N.; Holc, J.; Kosec, M.; Blinc, R.; Karkut, M.G.

    2009-01-01

    We have grown lead iron niobate thin films with composition Pb(Fe 1/2 Nb 1/2 )O 3 (PFN) on (0 0 1) SrTiO 3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM≤0.09 deg.). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.

  10. Epitaxial growth of Er, Ti doped LiNbO3 films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Yoshiga, Tsuyoshi; Kajitani, Naofumi; Takeda, Yuki; Sato, Shoji; Wakita, Koichi; Ohnishi, Naoyuki; Hotta, Kazutoshi; Kurachi, Masato

    2006-01-01

    Erbium (Er 3+ ) doped lithium niobate (LiNbO 3 ) thick films were deposited on z-cut congruent LiNbO 3 (LN) substrate by the sol-gel method from the 0.20 mol/dm 3 precursor solution containing various Er 3+ concentration and 0.10 mol/dm 3 poly(vinyl alcohol) (PVA), and their crystal characteristics were evaluated. The Er 3+ concentration in the LN film was controlled by the Er 3+ concentration in the starting solution. The orientation relationships between Er doped LN films and substrates were determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy, and (006) oriented Er doped LN epitaxial layers with parallel epitaxial relationships could be grown on the z-cut LN wafer. Moreover, it was made clear from the electron beam diffraction measurements that the film came to be polycrystalline, when the Er concentration was over 3 mol%. The refractive index of Er-doped LN films decreased with increasing Er concentration. 1.5 mol% Ti: 1.0 mol% Er LN films, which acted as a waveguide, were prepared by our so-gel method. It showed the 1530 nm emission by 980 nm excitation, which was considered to be due to the Er 3+ corresponding to the 4 I 13/2 → 4 I 15/2 transition. (author)

  11. Insight into the epitaxial growth of high optical quality GaAs{sub 1–x}Bi{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, D. A., E-mail: daniel.beaton@nrel.gov; Mascarenhas, A.; Alberi, K. [National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States)

    2015-12-21

    The ternary alloy GaAs{sub 1–x}Bi{sub x} is a potentially important material for infrared light emitting devices, but its use has been limited by poor optical quality. We report on the synthesis of GaAs{sub 1–x}Bi{sub x} epi-layers that exhibit narrow, band edge photoluminescence similar to other ternary GaAs based alloys, e.g., In{sub y}Ga{sub 1–y}As. The measured spectral linewidths are as low as 14 meV and 37 meV at low temperature (6 K) and room temperature, respectively, and are less than half of previously reported values. The improved optical quality is attributed to the use of incident UV irradiation of the epitaxial surface and the presence of a partial surface coverage of bismuth in a surfactant layer during epitaxy. Comparisons of samples grown under illuminated and dark conditions provide insight into possible surface processes that may be altered by the incident UV light. The improved optical quality now opens up possibilities for the practical use of GaAs{sub 1–x}Bi{sub x} in optoelectronic devices.

  12. Accompanying growth and room-temperature ferromagnetism of η-Mn3N2 thin films by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yu, Fengmei; Liu, Yajing; Yang, Mei; Wu, Shuxiang; Zhou, Wenqi; Li, Shuwei

    2013-01-01

    η-phase manganese nitride films have been grown on LaAlO 3 (100) and LaSrAlO 4 (001) substrates by using plasma-assisted molecular beam epitaxy. On the basis of reflective high energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy, it is confirmed that two types of η-Mn 3 N 2 with different lattice constants coexist in the films due to the lattice mismatches between the Mn 3 N 2 films and the substrates. Magnetic properties of the films were characterized by a superconducting quantum interference device magnetometer at room temperature. The Mn 3 N 2 films on LaAlO 3 substrate were found to have room-temperature ferromagnetism. Two potential interaction mechanisms are proposed regarding the origin of the observed ferromagnetism. - Highlights: ► The films of two types of η-Mn 3 N 2 have been grown by molecular beam epitaxy. ► Mn 3 N 2 A and Mn 3 N 2 B coexisted in the films on LaAlO 3 and LaSrAlO 4 . ► The room-temperature ferromagnetism of the Mn 3 N 2 films on LaAlO 3 was obtained

  13. Epitaxial Growth of MgxCa1-xO on GaN by Atomic Layer Deposition.

    Science.gov (United States)

    Lou, Xiabing; Zhou, Hong; Kim, Sang Bok; Alghamdi, Sami; Gong, Xian; Feng, Jun; Wang, Xinwei; Ye, Peide D; Gordon, Roy G

    2016-12-14

    We demonstrate for the first time that a single-crystalline epitaxial Mg x Ca 1-x O film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched Mg x Ca 1-x O/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard's law. An atomically sharp interface from cross-sectional transmission electron microscopy (TEM) confirmed the high quality of the epitaxy. High-temperature capacitance-voltage characterization showed that the film with composition Mg 0.25 Ca 0.75 O has the lowest interfacial defect density. With this optimal oxide composition, a Mg 0.25 Ca 0.75 O/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility (MOS-HEMT) device was fabricated. An ultrahigh on/off ratio of 10 12 and a near ideal SS of 62 mV/dec were achieved with this device.

  14. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); Su, Cheng-Yong [MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou (China); State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou (China)

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Epitaxial Growth of Hetero-Ln-MOF Hierarchical Single Crystals for Domain- and Orientation-Controlled Multicolor Luminescence 3D Coding Capability.

    Science.gov (United States)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-11-13

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Epitaxial growth of hetero-Ln-MOF hierarchical single crystals for domain- and orientation-controlled multicolor luminescence 3D coding capability

    International Nuclear Information System (INIS)

    Pan, Mei; Zhu, Yi-Xuan; Wu, Kai; Chen, Ling; Hou, Ya-Jun; Yin, Shao-Yun; Wang, Hai-Ping; Fan, Ya-Nan; Su, Cheng-Yong

    2017-01-01

    Core-shell or striped heteroatomic lanthanide metal-organic framework hierarchical single crystals were obtained by liquid-phase anisotropic epitaxial growth, maintaining identical periodic organization while simultaneously exhibiting spatially segregated structure. Different types of domain and orientation-controlled multicolor photophysical models are presented, which show either visually distinguishable or visible/near infrared (NIR) emissive colors. This provides a new bottom-up strategy toward the design of hierarchical molecular systems, offering high-throughput and multiplexed luminescence color tunability and readability. The unique capability of combining spectroscopic coding with 3D (three-dimensional) microscale spatial coding is established, providing potential applications in anti-counterfeiting, color barcoding, and other types of integrated and miniaturized optoelectronic materials and devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Molecular-beam epitaxial growth of insulating AlN on surface-controlled 6H-SiC substrate by HCl gas etching

    International Nuclear Information System (INIS)

    Onojima, Norio; Suda, Jun; Matsunami, Hiroyuki

    2002-01-01

    Insulating AlN layers were grown on surface-controlled 6H-SiC subtrates by molecular-beam epitaxy (MBE) using elemental Al and rf plasma-excited nitrogen (N*). HCl gas etching was introduced as an effective pretreatment method of substrate for MBE growth of AlN. 6H-SiC substrates pretreated by HCl gas etching had no surface polishing scratches and an atomically flat surface. In addition, evident ( 3 √x 3 √)R30 deg. surface reconstruction was observed even before thermal cleaning. AlN layers grown on this substrate had no defects related to surface polishing scratches and excellent insulating characteristics

  18. Epitaxial growth of chalcopyrite CuInS2 films on GaAs (001) substrates by evaporation method with elemental sources

    International Nuclear Information System (INIS)

    Nozomu, Tsuboi; Satoshi, Kobayash; Nozomu, Tsuboi; Takashi, Tamogami

    2010-01-01

    Full text : Ternary chalcopyrite semiconductor CuInS 2 is one of the potential candidates for absorber layers in high-efficiency thin film solar cells due to its direct bandgap Eg of 1.5 eV, which matches with solar spectrum. However, CuInS 2 solar cells face the problem of lower solar conversion efficiency compared with Cu(InGa)Se 2 solar cells. Investigation of fundamental properties of CuInS 2 films is necessary to understand key issues for solar cell performance. Although in bulk CuInS 2 is known to crystallize into chalcopyrite (CH) structure, in thin film other structures such as Cu-Au (CA) and sphalerite (SP) structures may coexist. It was reported epitaxial growth of slightly Cu-rich CuInS 2 films with c-axis orientated CA only and/or with a mixture of a- and c-axes orientated CH structures on GaP (001) at substrate temperature of 500 degrees using the conventional evaporation method with three elemental sources. Successful growth of epitaxial CH structured CuInS 2 were observed for films grown on GaP at 570 degrees with slightly Cu-rich composition. In this paper, CuInS 2 films with various [Cu]/[In] ratios are grown on GaAs(001) substrates, and the composition range in terms of the [Cu]/[In] ratio where epitaxial films with CH structure grow and the structural qualities of the films are discussed in comparison with those on GaP substrates. Films with various ratios of [Cu]/[In]=0.8 ≤1.9 are grown at 500 degrees and 570 degrees using the evaporation system described in our previous reports. Regardless of the substrate temperature, noticeable X-ray diffraction (XRD) peaks of CH structured CuInS 2 phase are observed in slightly Cu-rich films. However, reflection high energy electron diffraction (RHEED) patterns of the slightly Cu-rich films grown at 570 degrees exhibit noticeable spots not only due to the CH structure but also due to the CA structure. The amount of the CA structure is considered to be small because of the absence of the XRD peaks of the CA

  19. Analysis of growth characteristics in short-term divergently selected ...

    African Journals Online (AJOL)

    weeks of age body weight in divergent lines of Japanese quail. Growth curves for both sexes within each selection group resembled the general sigmoid shape of a typical growth curve. Gompertz model curves and the observed growth curves were ...

  20. Model experiments on growth modes and interface electronics of CuInS{sub 2}: Ultrathin epitaxial films on GaAs(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Wolfram [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Lewerenz, Hans-Joachim [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91101 (United States); Pettenkofer, Christian [Institute Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Kekulestrasse 5, 12489, Berlin (Germany)

    2014-09-15

    The heterojunction formation between GaAs(100) and CuInS{sub 2} is investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). Thin layers of CuInS{sub 2} films were deposited in a step-by-step process on wet chemically pre-treated GaAs(100) surfaces by molecular beam epitaxy (MBE) with a total upper thickness limit of the films of 60 nm. The film growth starts from a sulfur-rich GaAs(100) surface. XPS core level analysis of the substrate and film reveals initially a transitory growth regime with the formation of a Ga containing chalcopyrite phase. With increasing film thickness, a change in stoichiometry from Cu-poor to Cu-rich composition is observed. The evaluation of the LEED data shows the occurrence of a recrystallization process where the film orientation follows that of the substrate with the epitaxial relation GaAs{100} parallel CuInS{sub 2}{001}. On the completed junction with a CuInS{sub 2} film thickness of 60 nm, the band discontinuities of the GaAs(100)/CuInS{sub 2} structure measured with XPS and UPS were determined as ΔE{sub V} = 0.1 ± 0.1 eV and ΔE{sub C} = 0.0 ± 0.1 eV, thus showing a type II band alignment. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Epitaxial growth of sexi-thiophene and para-hexaphenyl and its implications for the fabrication of self-assembled lasing nano-fibres

    International Nuclear Information System (INIS)

    Simbrunner, Clemens

    2013-01-01

    Over the last few years, epitaxially grown self-assembled organic nano-structures became of increasing interest due to their high potential for implementation within opto-electronic devices. Exemplarily, the epitaxial growth of the rod-like molecules para-hexaphenyl (p-6P) and α-sexi-thiophene (6T) is discussed within this review. Both molecules tend to crystallize in highly asymmetric elongated entities which are also called nano-fibres. It is demonstrated that the obtained needle orientations and morphologies result from a complex interplay between various parameters e.g. substrate surface symmetry, molecular adsorption, crystal structure and contact plane. The interplay and its implications on the fabrication of self-assembled waveguiding nano-fibres and optical resonator structures are discussed and substantiated by a comparison with the reported literature. In further consequence, it is demonstrated that a precise control on the molecular adsorption geometry and the crystal contact plane represents a fundamental key parameter for the fabrication of self-assembled nano-fibres. As both parameters are basically determined by the chosen molecule–substrate material couple, the possible spectrum of molecular building blocks for the fabrication of waveguiding and lasing nano-structures can be predicted by the discussed growth model. A possible expansion of this common valid concept is presented by the utilization of organic–organic heteroepitaxy. Based on the reported p-6P/6T heterostructures which have been fabricated on various substrate surfaces, it is substantiated that the fabrication of organic–organic interfaces can be effectively used to gain control on the molecular adsorption geometry. As the proposed strategy still lacks a precise control of the obtained crystal contact plane, further strategies are discussed which potentially lead to a controlled fabrication of opto-electronic devices based on self-assembled organic nano-structures. (invited review)

  2. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  3. Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A

    International Nuclear Information System (INIS)

    Ha, Neul; Kuroda, Takashi; Liu, Xiangming; Mano, Takaaki; Mitsuishi, Kazutaka; Noda, Takeshi; Sakuma, Yoshiki; Sakoda, Kazuaki; Castellano, Andrea; Sanguinetti, Stefano

    2014-01-01

    We demonstrate the formation of InAs quantum dots (QDs) on InAlAs/InP(111)A by means of droplet epitaxy. The C 3v symmetry of the (111)A substrate enabled us to realize highly symmetric QDs that are free from lateral elongations. The QDs exhibit a disk-like truncated shape with an atomically flat top surface. Photoluminescence signals show broad-band spectra at telecommunication wavelengths of 1.3 and 1.5 μm. Strong luminescence signals are retained up to room temperature. Thus, our QDs are potentially useful for realizing an entangled photon-pair source that is compatible with current telecommunication fiber networks

  4. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    International Nuclear Information System (INIS)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng; Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-01-01

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO 2 mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission

  5. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng, E-mail: gfyang@jiangnan.edu.cn; Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin [School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  6. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  7. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    Science.gov (United States)

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  8. Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary III-nitride layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Fernandez-Garrido, S.; Pereiro, J.; Munoz, E.; Calleja, E.; Redondo-Cubero, A.; Gago, R.; Bertram, F.; Christen, J.; Luna, E.; Trampert, A.

    2008-01-01

    Indium incorporation into wurtzite (0001)-oriented In x Al y Ga 1-x-y N layers grown by plasma-assisted molecular beam epitaxy was studied as a function of the growth temperature (565-635 deg. C) and the AlN mole fraction (0.01< y<0.27). The layer stoichiometry was determined by Rutherford backscattering spectrometry (RBS). RBS shows that indium incorporation decreased continuously with increasing growth temperature due to thermally enhanced dissociation of In-N bonds and for increasing AlN mole fractions. High resolution x-ray diffraction and transmission electron microscopy (TEM) measurements did not show evidence of phase separation. The mosaicity of the quaternary layers was found to be mainly determined by the growth temperature and independent on alloy composition within the range studied. However, depending on the AlN mole fraction, nanometer-sized composition fluctuations were detected by TEM. Photoluminescence spectra showed a single broad emission at room temperature, with energy and bandwidth S- and W-shaped temperature dependences typical of exciton localization by alloy inhomogeneities. Cathodoluminescence measurements demonstrated that the alloy inhomogeneities, responsible of exciton localization, occur on a lateral length scale below 150 nm, which is corroborated by TEM

  9. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  10. Growth and characterization of Ge nano-structures on Si(113) by adsorbate-mediated epitaxy; Wachstum und Charakterisierung von Ge-Nanostrukturen auf Si(113) durch Adsorbat-modifizierte Epitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, T.

    2006-11-15

    In the work presented here Ge nano-structures on Si(113) substrates have been grown by adsorbate-mediated epitaxy at sample temperatures between 400 C and 700 C. The Ge nano-islands and nano-layers have been investigated regarding their atomic reconstruction, morphology, strain state, chemical composition and defect structure. Various in-situ and ex-situ experimental techniques have been used, as there are low-energy electron diffraction, low-energy electron microscopy, X-ray photoemission electron microscopy, spot profile analysis low-energy electron diffraction, grazing incidence X-ray diffraction, scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. On a clean Si(113) surface Ge preferentially nucleates at surface step edges and forms a wetting layer exhibiting a Ge-(2 x 2) surface reconstruction. With increasing growth temperature the Ge islands are elongated in the [33 anti 2] direction. Simultaneously, the average island size increases with decreasing island density. From the Arrhenius-like behaviour of the island density, a Ge adatom diffusion barrier height of about 0.53 eV is deduced. At 600 C the Si concentration of the islands amounts to about 41% and the residual lattice strain of the islands is found to about 23 %. The adsorption of Gallium on a clean Si(113) substrate leads to the formation of well ordered surface facets in the [1 anti 10] direction with a periodicity of about 43 nm in the [33 anti 2] direction. From reciprocal space maps in different ({kappa} {sub perpendicular} {sub to} -{kappa} {sub parallel}) planes both facet angles are determined to be about 9.8 with respect to the [113] direction. Thus the facet orientations are identified to be (112) and (115), showing (6 x 1) and (4 x 1) surface reconstructions, respectively. Ge deposition on the faceted Si(113) leads to a high density of ordered 3D Ge nano-islands beaded at the surface facets. The size of these islands is

  11. Pumping requirements and options for molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

    International Nuclear Information System (INIS)

    McCollum, M.J.; Plano, M.A.; Haase, M.A.; Robbins, V.M.; Jackson, S.L.; Cheng, K.Y.; Stillman, G.E.

    1989-01-01

    This paper discusses the use of gas sources in growth by MBE as a result of current interest in growth of InP/InGaAsP/InGaAs lattice matched to InP. For gas flows greater than a few sccm, pumping speed requirements dictate the use of turbomolecular or diffusion pumps. GaAs samples with high p-type mobilities have been grown with diffusion pumped molecular beam epitaxial system. According to the authors, this demonstration of the inherent cleanliness of a properly designed diffusion pumping system indicates that a diffusion pump is an excellent inexpensive and reliable choice for growth by molecular beam epitaxy and gas source molecular beam epitaxy/chemical beam epitaxy

  12. Study on ECR dry etching and selective MBE growth of AlGaN/GaN for fabrication of quantum nanostructures on GaN (0001) substrates

    International Nuclear Information System (INIS)

    Oikawa, Takeshi; Ishikawa, Fumitaro; Sato, Taketomo; Hashizume, Tamotsu; Hasegawa, Hideki

    2005-01-01

    This paper attempts to form AlGaN/GaN quantum wire (QWR) network structures on patterned GaN (0001) substrates by selective molecular beam epitaxy (MBE) growth. Substrate patterns were prepared along - and -directions by electron cyclotron resonance assisted reactive-ion beam etching (ECR-RIBE) process. Selective growth was possible for both directions in the case of GaN growth, but only in the -direction in the case of AlGaN growth. A hexagonal QWR network was successfully grown on a hexagonal mesa pattern by combining the -direction and two other equivalent directions. AFM observation confirmed excellent surface morphology of the grown network. A clear cathodoluminescence (CL) peak coming from the embedded AlGaN/GaN QWR structure was clearly identified

  13. ZnO nanorods arrays with Ag nanoparticles on the (002) plane derived by liquid epitaxy growth and electrodeposition process

    International Nuclear Information System (INIS)

    Yin Xingtian; Que Wenxiu; Shen Fengyu

    2011-01-01

    Well-aligned ZnO nanorods (NRs) arrays with Ag nanoparticles (NPs) on the (002) plane are obtained by combining a liquid epitaxy technique with an electrodeposition process. Cyclic voltammetry study is employed to understand the electrochemical behaviors of the electrodeposition system, and potentiostatic method is employed to deposit silver NPs on the ZnO NRs in the electrolyte with an Ag + concentration of 1 mM. X-ray diffraction analysis is used to study the crystalline properties of the as-prepared samples, and energy dispersive X-ray is adopted to confirm the composition at the surface of the deposited samples. Results indicate only a small quantity of silver can be deposited on the surface of the samples. Effect of the deposition potential and time on the morphological properties of the resultant Ag NPs/ZnO NRs are investigated in detail. Scanning electron microscopy images and transmission electron microscopy images indicate that the Ag NPs deposited on the (002) plane of the ZnO NRs with a large dispersion in diameter can be obtained by a single potentiostatic deposition process, while dense Ag NPs with a much smaller diameter dispersion on the top of the ZnO NRs, most of which locate on the conical tip of the ZnO NRs, can be obtained by a two-potentiostatic deposition process, The mechanism of this deposition process is also suggested.

  14. Molecular beam epitaxy growth of In0.52Al0.48As/In0.53Ga0.47As metamorphic high electron mobility transistor employing growth interruption and in situ rapid thermal annealing

    International Nuclear Information System (INIS)

    Ihn, Soo-Ghang; Jo, Seong June; Song, Jong-In

    2006-01-01

    We investigated the effects of high temperature (∼700 deg. C) in situ rapid thermal annealing (RTA) carried out during growth interruption between spacer and δ-doping layers of an In 0.52 Al 0.48 As/In 0.53 Ga 0.47 As metamorphic high electron mobility transistor (MHEMT) grown on a compositionally graded InGaAlAs buffer layer. The in situ RTA improved optical and structural properties of the MHEMT without degradation of transport property, while postgrowth RTA improved the structural property of the MHEMT but significantly degraded mobility due to the defect-assisted Si diffusion. The results indicate the potential of the in situ RTA for use in the growth of high-quality metamorphic epitaxial layers for optoelectronic applications requiring improved optical and electrical properties

  15. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    Science.gov (United States)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  16. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  17. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  18. Origin of the near-band-edge photoluminescence in ZnO nanorods realised by vapour phase epitaxy and aqueous chemical growth

    Energy Technology Data Exchange (ETDEWEB)

    Bekeny, C.; Hilker, B.; Wischmeier, L.; Voss, T. [IFP, University of Bremen, P.O Box 330440, 28334 Bremen (Germany); Postels, B.; Mofor, A.; Bakin, Andrey; Waag, A. [IHT, TU Braunschweig, P.O Box 3329, 38023 Braunschweig (Germany)

    2007-07-01

    Well established high temperature growth techniques like the vapourliquid-solid (VLS: 1100 C) and vapour-phase-epitaxy (VPE: 800 C) have been successfully optimized while the low-temperature aqueous chemical growth (ACG: 90 C) is being extended to yield large-scale high quality ZnO nanorods. Here, a detailed and systematic photoluminescence (PL) study is presented to understand the microscopic processes responsible for the near-band-edge (NBE) emission in nanorods obtained from these processes. For the ACG samples, the as-grown nanorods show relatively broad NBE emission (15 meV) attributed to the presence of large donor densities. After annealing in various atmospheres at {proportional_to}800 C, a significant reduction of the linewidth ({proportional_to}4 meV) and even the appearance of relatively sharp excitonic transitions is explained by the drastic reduction of the donor density. In contrast, the as-grown VPE and VLS samples exhibit well-resolved and sharp peaks resulting from exciton-related transitions. There is a shift in the room-temperature PL peak for VLS and VPE samples and is shown to result from contributions of the free exciton peak, its first and second order phonon replicas and not due to quantum confinement and or laser heating as assumed in literature.

  19. Epitaxial growth of 100-μm thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  20. Molecular beam epitaxial growth of oriented and uniform Ge{sub 2}Sb{sub 2}Te{sub 5} nanoparticles with compact dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Beining; Sun, Yu; Wu, Jie; Yuan, Long; Wu, Xiaofeng; Huang, Keke; Feng, Shouhua, E-mail: shfeng@jlu.edu.cn [Jilin University, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry (China)

    2017-02-15

    The scaling-down of phase change memory cell is critical to achieve high-performance and high-density memory devices. Herein, we report that Ge{sub 2}Sb{sub 2}Te{sub 5} nanoparticles along the [1 1 1] direction were synthesized without templates or etching in a molecular beam epitaxy system. Under non-stoichiometric Ge:Sb:Te beam ratio condition, the growth of high-density Ge{sub 2}Sb{sub 2}Te{sub 5} nanoparticles was achieved by Zn-doping. The average diameter of the nanoparticles is 8 nm, and the full width at half maximum of the size distribution is 2.7 nm. Our results suggest that the size and shape modifications of Ge{sub 2}Sb{sub 2}Te{sub 5} nanoparticles could be induced by Zn-doping which influences the nucleation in the growth process. In addition, the bonding states of Zn and Te verified by X-ray photoelectron spectroscopy proved that Zn atoms located in the Ge{sub 2}Sb{sub 2}Te{sub 5} matrix. This approach exemplified here can be applied to the sub-20 nm phase change memory devices and may also be extendable to be served in the design and development of more materials with phase transitions.

  1. Effect of selection for lean growth on gonadal development of ...

    African Journals Online (AJOL)

    A primary objective of commercial pig production is lean meat yield in order to satisfy consumer needs. The majority of the commercial pig breeds in South Africa have been selected for high lean growth potential and reduced backfat thickness. There are indications that selection for high lean meat yield may affect the ...

  2. Molecular beam epitaxy of GaAs nanowires and their sustainability for optoelectronic applications. Comparing Au- and self-assisted growth methods

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Steffen

    2011-09-28

    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1 % is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

  3. Atomic oxygen effect on the in situ growth of stoichiometric YBa2Cu3O7 - delta epitaxial films by facing targets 90° off-axis radiofrequency magnetron sputtering

    Science.gov (United States)

    Oya, Gin-ichiro; Diao, Chien Chen; Imai, Syozo; Uzawa, Takaaki; Sawada, Yasuji; Sugai, Tokuko; Nakajima, Kensuke; Yamashita, Tsutomu

    1995-06-01

    (110)- and (103)-oriented almost stoichiometric YBa2Cu3O7-δ (YBCO) films have been grown epitaxially on hot SrTiO3 (110) substrates using a 90° off-axis rf magnetron sputtering technique, for fabrication of vertical sandwich-type YBCO/insulator/YBCO or YBCO/normal metal/YBCO Josephson junctions utilizing the high-quality YBCO films. The YBCO epitaxial films with high transition temperatures Tc of ˜90 K have been deposited in situ only under the conditions of substrate temperatures Ts of ˜650-˜700 °C and oxygen partial pressure PO2 of ˜5×10-3-˜10×10-3 Torr, which are in close proximity to the critical stability/decomposition line for YBa2Cu3O6 in the ordinary Y-Ba-Cu-O phase diagram. Using a quadrupole mass spectrometer, a high density of atomic oxygen has directly been observed to be efficiently produced in the sputter glow discharge under the above optimum conditions of PO2. This atomic oxygen has played a key role in promoting the formation of the perovskite structure and the epitaxial growth of the YBCO films. Furthermore, Shapiro steps have successfully been observed for a Nb-YBCO point-contact junction, which is made by pressing a Nb needle on a surface-etched YBCO epitaxial film, under 525.4 GHz submillimeter-wave irradiation.

  4. The effect of metal-rich growth conditions on the microstructure of Sc{sub x}Ga{sub 1-x}N films grown using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, H.C.L.; Moram, M.A. [Department of Materials, Imperial College London (United Kingdom); Goff, L.E. [Department of Materials, Imperial College London (United Kingdom); Department of Physics, University of Cambridge (United Kingdom); Barradas, N.P. [CTN - Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Alves, E. [IPFN - Instituto de Plasmas e Fusao Nuclear, Lisboa (Portugal); Laboratorio de Aceleradores e Tecnologias de Radiacao, Instituto Superior Tecnico, Universidade de Lisboa, Bobadela LRS (Portugal); Pereira, S. [CICECO and Department of Physics, Universidade de Aveiro (Portugal); Beere, H.E.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A. [Department of Physics, University of Cambridge (United Kingdom)

    2015-12-15

    Epitaxial Sc{sub x}Ga{sub 1-x}N films with 0 ≤ x ≤ 0.50 were grown using molecular beam epitaxy under metal-rich conditions. The Sc{sub x}Ga{sub 1-x}N growth rate increased with increasing Sc flux despite the use of metal-rich growth conditions, which is attributed to the catalytic decomposition of N{sub 2} induced by the presence of Sc. Microstructural analysis showed that phase-pure wurtzite Sc{sub x}Ga{sub 1-x}N was achieved up to x = 0.26, which is significantly higher than that previously reported for nitrogen-rich conditions, indicating that the use of metal-rich conditions can help to stabilise wurtzite phase Sc{sub x}Ga{sub 1-x}N. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  6. Influence of V/III growth flux ratio on trap states in m-plane GaN grown by ammonia-based molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhang, Z.; Arehart, A. R.; Hurni, C. A.; Speck, J. S.; Ringel, S. A.

    2012-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) were utilized to investigate the behavior of deep states in m-plane, n-type GaN grown by ammonia-based molecular beam epitaxy (NH 3 -MBE) as a function of systematically varied V/III growth flux ratios. Levels were detected at E C - 0.14 eV, E C - 0.21 eV, E C - 0.26 eV, E C - 0.62 eV, E C - 0.67 eV, E C - 2.65 eV, and E C - 3.31 eV, with the concentrations of several traps exhibiting systematic dependencies on V/III ratio. The DLTS spectra are dominated by traps at E C - 0.14 eV and E C - 0.67 eV, whose concentrations decreased monotonically with increasing V/III ratio and decreasing oxygen impurity concentration, and by a trap at E C - 0.21 eV that revealed no dependence of its concentration on growth conditions, suggestive of different physical origins. Higher concentrations of deeper trap states detected by DLOS with activation energies of E C - 2.65 eV and E C - 3.31 eV in each sample did not display measureable sensitivity to the intentionally varied V/III ratio, necessitating further study on reducing these deep traps through growth optimization for maximizing material quality of NH 3 -MBE grown m-plane GaN.

  7. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  8. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  9. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bhuiyan, M S; Paranthaman, M; Sathyamurthy, S; Aytug, T; Kang, S; Lee, D F; Goyal, A; Payzant, E A; Salama, K

    2003-01-01

    We have grown epitaxial CeO 2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 C in a gas mixture of Ar-4%H 2 for 15 min. Detailed x-ray studies indicate that CeO 2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8 deg. and 7.5 deg., respectively. High temperature in situ XRD studies show that the nucleation of CeO 2 films starts at 600 C and the growth completes within 5 min when heated at 1100 C. SEM and AFM investigations of CeO 2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD CeO 2 -buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, J c , of about 1.5 MA cm -2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/CeO 2 (spin-coated)/Ni-W

  10. Epitaxial growth of branched {alpha}-Fe{sub 2}O{sub 3}/SnO{sub 2} nano-heterostructures with improved lithium-ion battery performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weiwei; Cheng, Chuanwei; Jia, Xingtao; Yu, Ting; Fan, Hong Jin [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Liu, Jinping; Jiang, Jian [Institute of Nanoscience and Nanotechnology, Department of Physics, Huazhong Normal University, Wuhan 430079 (China); Tay, Yee Yan; Hng, Huey Hoon [School of Materials Science and Engineering, Nanyang Technological University, 639798 (Singapore); Zhang, Jixuan; Gong, Hao [Department of Materials Science and Engineering, National University of Singapore, 117576 (Singapore)

    2011-07-08

    We report the synthesis of a novel branched nano-heterostructure composed of SnO{sub 2} nanowire stem and {alpha}-Fe{sub 2}O{sub 3} nanorod branches by combining a vapour transport deposition and a facile hydrothermal method. The epitaxial relationship between the branch and stem is investigated by high resolution transmission electron microscopy (HRTEM). The SnO{sub 2} nanowire is determined to grow along the [101] direction, enclosed by four side surfaces. The results indicate that distinct crystallographic planes of SnO{sub 2} stem can induce different preferential growth directions of secondary nanorod branches, leading to six-fold symmetry rather than four-fold symmetry. Moreover, as a proof-of-concept demonstration of the function, such {alpha}-Fe{sub 2}O{sub 3}/SnO{sub 2} composite material is used as a lithium-ion batteries (LIBs) anode material. Low initial irreversible loss and high reversible capacity are demonstrated, in comparison to both single components. The synergetic effect exerted by SnO{sub 2} and {alpha}-Fe{sub 2}O{sub 3} as well as the unique branched structure are probably responsible for the enhanced performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Closed-loop MBE growth of droplet-free GaN with very metal rich conditions using Metal Modulated Epitaxy with Mg and In

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, S.D.; Henderson, W.; Doolittle, W.A. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2008-07-01

    Improvements to the Metal Modulated Epitaxy (MME) technique are achieved through computer controlled shutter transitions based on feedback from RHEED transients (S. D. Burnham and W. A. Doolittle, J. Vac. Sci. Technol. B 24, 2100 (2006)), thus creating a closed-loop control system for nitride MBE, the first of its kind. A high-sensitivity 22 bit camera is used to determine when RHEED transients have subsided, upon which a shutter transition is initiated allowing the efficient buildup and depletion of the metal bilayer, which improves surface morphology and growth rate compared to the standard MME technique. RMS surface roughness was reduced by 41% by using this 'Smart Shuttering' improvement to MME. A substantially higher peak concentration of Mg, approaching 2% atomic concentration, was achieved using the MME technique. As expected, a negligible amount of In was incorporated into the very Ga-rich films. Using the new closed loop control system developed for MBE, the surface morphology was improved for GaN films while highly repeatable holes concentrations as high as 4.7 x 10{sup 18} cm{sup -3} with 1.07 cm{sup 2}/V-sec mobility was obtained. This approach offers great promise for improved reproducibility and improved material quality. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. A modified gradient approach for the growth of low-density InAs quantum dot molecules by molecular beam epitaxy

    Science.gov (United States)

    Sharma, Nandlal; Reuter, Dirk

    2017-11-01

    Two vertically stacked quantum dots that are electronically coupled, so called quantum dot molecules, are of great interest for the realization of solid state building blocks for quantum communication networks. We present a modified gradient approach to realize InAs quantum dot molecules with a low areal density so that single quantum dot molecules can be optically addressed. The individual quantum dot layers were prepared by solid source molecular beam epitaxy depositing InAs on GaAs(100). The bottom quantum dot layer has been grown without substrate rotation resulting in an In-gradient across the surface, which translated into a density gradient with low quantum dot density in a certain region of the wafer. For the top quantum dot layer, separated from the bottom quantum dot layer by a 6 nm thick GaAs barrier, various InAs amounts were deposited without an In-gradient. In spite of the absence of an In-gradient, a pronounced density gradient is observed for the top quantum dots. Even for an In-amount slightly below the critical thickness for a single dot layer, a density gradient in the top quantum dot layer, which seems to reproduce the density gradient in the bottom layer, is observed. For more or less In, respectively, deviations from this behavior occur. We suggest that the obvious influence of the bottom quantum dot layer on the growth of the top quantum dots is due to the strain field induced by the buried dots.

  13. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  14. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  15. Continuous epitaxial growth of extremely strong Cu6Sn5 textures at liquid-Sn/(111)Cu interface under temperature gradient

    Science.gov (United States)

    Zhong, Y.; Zhao, N.; Liu, C. Y.; Dong, W.; Qiao, Y. Y.; Wang, Y. P.; Ma, H. T.

    2017-11-01

    As the diameter of solder interconnects in three-dimensional integrated circuits (3D ICs) downsizes to several microns, how to achieve a uniform microstructure with thousands of interconnects on stacking chips becomes a critical issue in 3D IC manufacturing. We report a promising way for fabricating fully intermetallic interconnects with a regular grain morphology and a strong texture feature by soldering single crystal (111) Cu/Sn/polycrystalline Cu interconnects under the temperature gradient. Continuous epitaxial growth of η-Cu6Sn5 at cold end liquid-Sn/(111)Cu interfaces has been demonstrated. The resultant η-Cu6Sn5 grains show faceted prism textures with an intersecting angle of 60° and highly preferred orientation with their ⟨ 11 2 ¯ 0 ⟩ directions nearly paralleling to the direction of the temperature gradient. These desirable textures are maintained even after soldering for 120 min. The results pave the way for controlling the morphology and orientation of interfacial intermetallics in 3D packaging technologies.

  16. Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography

    KAUST Repository

    Li, Feifei

    2013-05-21

    Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis of highly luminescent core-shell UCNCs in the "aqueous" phase under mild conditions using innocuous reagents. A microwave-assisted approach allowed for layer-by-layer epitaxial growth of a hydrophilic NaGdF4 shell on NaYF4:Yb, Er cores. During this process, surface defects of the nanocrystals could be gradually passivated by the homogeneous shell deposition, resulting in obvious enhancement in the overall upconversion emission efficiency. In addition, the up-down conversion dual-mode luminescent NaYF4:Yb, Er@NaGdF4:Ce, Ln (Eu, Tb, Sm, Dy) nanocrystals were also synthesized to further validate the successful formation of the core-shell structure. More significantly, based on their superior solubility and stability in water solution, high upconversion efficiency and Gd-doped predominant X-ray absorption, the as-prepared NaYF4:Yb, Er@NaGdF4 core-shell UCNCs exhibited high contrast in in vitro cell imaging and in vivo X-ray computed tomography (CT) imaging, demonstrating great potential as multiplexed luminescent biolabels and CT contrast agents.

  17. B12P2: Improved Epitaxial Growth and Evaluation of Alpha Irradiation on its Electrical Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Frye, Clint D. [Kansas State Univ., Manhattan, KS (United States)

    2016-10-17

    The wide bandgap (3.35 eV) semiconductor icosahedral boron phosphide (B12P2) has been reported to self-heal from radiation damage from β particles (electrons) with energies up to 400 keV by demonstrating no lattice damage using transmission electron microscopy. This property could be exploited to create radioisotope batteries–semiconductor devices that directly convert the decay energy from a radioisotope to electricity. Such devices potentially have enormous power densities and decades-long lifetimes. To date, the radiation hardness of B12P2 has not been characterized by electrical measurements nor have B12P2 radioisotope batteries been realized. Therefore, this study was undertaken to evaluate the radiation hardness of B12P2 after improving its epitaxial growth, developing ohmic electrical contacts, and reducing the residual impurities. Subsequently, the effects of radiation from a radioisotope on the electrical transport properties of B12P2 were tested.

  18. Self-assembled GaInNAs/GaAsN quantum dot lasers: solid source molecular beam epitaxy growth and high-temperature operation

    Directory of Open Access Journals (Sweden)

    Yoon SF

    2006-01-01

    Full Text Available AbstractSelf-assembled GaInNAs quantum dots (QDs were grown on GaAs (001 substrate using solid-source molecular-beam epitaxy (SSMBE equipped with a radio-frequency nitrogen plasma source. The GaInNAs QD growth characteristics were extensively investigated using atomic-force microscopy (AFM, photoluminescence (PL, and transmission electron microscopy (TEM measurements. Self-assembled GaInNAs/GaAsN single layer QD lasers grown using SSMBE have been fabricated and characterized. The laser worked under continuous wave (CW operation at room temperature (RT with emission wavelength of 1175.86 nm. Temperature-dependent measurements have been carried out on the GaInNAs QD lasers. The lowest obtained threshold current density in this work is ∼1.05 kA/cm2from a GaInNAs QD laser (50 × 1,700 µm2 at 10 °C. High-temperature operation up to 65 °C was demonstrated from an unbonded GaInNAs QD laser (50 × 1,060 µm2, with high characteristic temperature of 79.4 K in the temperature range of 10–60 °C.

  19. Formation of gallium nitride templates and freestanding substrates by hydride vapor phase epitaxy for homoepitaxial growth of III-nitride devices

    Science.gov (United States)

    Williams, Adrian Daniel

    Gallium nitride (GaN) is a direct wide band gap semiconductor currently under heavy development worldwide due to interest in its applications in ultra-violet optoelectronics, power electronics, devices operating in harsh environments (high temperature or corrorsive), etc. While a number of devices have been demonstrated with this material and its related alloys, the unavailability of GaN substrates is seen as one of the current major bottlenecks to both material quality and device performance. This dissertation is concerned with the synthesis of high quality GaN substrates by the hydride vapor phase epitaxy method (HVPE). In this work, the flow of growth precursors in a home-built HVPE reactor was modeled by the Navier-Stokes equation and solved by finite element analysis to promote uniformity of GaN on 2'' sapphire substrates. Kinetics of growth was studied and various regimes of growth were identified to establish a methodology for HVPE GaN growth, independent of reactor geometry. GaN templates as well as bulk substrates were fabricated in this work. Realization of freestanding GaN substrates was achieved through discovery of a natural stress-induced method of separating bulk GaN from sapphire via mechanical failure of a low-temperature GaN buffer layer. Such a process eliminates the need for pre- or post-processing of sapphire substrates, as is currently the standard. Stress in GaN-on-sapphire is discussed, with the dominant contributor identified as thermal stress due to thermal expansion coefficient mismatch between the two materials. This thermal stress is analyzed using Stoney's equation and conditions for crack-free growth of thick GaN substrates were identified. An etch-back process for planarizing GaN templates was also developed and successfully applied to rough GaN templates. The planarization of GaN has been mainly addressed by chemo-mechanical polishing (CMP) methods in the literature, with notable shortcomings including the inability to effectively

  20. The Growth of Thin Epitaxial Copper Films on Ruthenium (0001)and Oxygen-Precovered Ruthenium (0001) as studied by X-ray Photoelectron diffraction

    International Nuclear Information System (INIS)

    Ruebush, Scott Daniel

    1997-01-01

    demonstrates the considerable usefulness of XPD in studying epitaxial overlayer growth with and without surfactants present

  1. Molecular beam epitaxy a short history

    CERN Document Server

    Orton, J W

    2015-01-01

    This volume describes the development of molecular beam epitaxy from its origins in the 1960s through to the present day. It begins with a short historical account of other methods of crystal growth, both bulk and epitaxial, to set the subject in context, emphasising the wide range of semiconductor materials employed. This is followed by an introduction to molecular beams and their use in the Stern-Gerlach experiment and the development of the microwave MASER.

  2. Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques

    International Nuclear Information System (INIS)

    Secco, Eleonora; Minj, Albert; Garro, Núria; Cantarero, Andrés; Colchero, Jaime; Urban, Arne; Oppo, Carla Ivana; Malindretos, Joerg; Rizzi, Angela

    2015-01-01

    The growth selectivity and structural quality of GaN nanowires obtained by plasma-assisted molecular beam epitaxy on pre-patterned GaN(0001) templates are investigated by means of non-destructive techniques. Optimum control over the nanowire arrangement and size requires a pitch between the mask apertures below twice the diffusion length of Ga atoms. Lower pitches, however, seem to slightly diminish the structural quality of the material, as revealed by the increase of the Raman peak linewidths. The photoluminescence spectra of the nanowires show a considerable presence of basal plane stacking faults, whose density increases for decreasing nanowire diameter. The capabilities of Kelvin probe force microscopy for imaging these kind of defects are also demonstrated. (paper)

  3. Structural characterization of selective area growth GaN nanowires by non-destructive optical and electrical techniques

    Science.gov (United States)

    Secco, Eleonora; Minj, Albert; Garro, Núria; Cantarero, Andrés; Colchero, Jaime; Urban, Arne; Ivana Oppo, Carla; Malindretos, Joerg; Rizzi, Angela

    2015-08-01

    The growth selectivity and structural quality of GaN nanowires obtained by plasma-assisted molecular beam epitaxy on pre-patterned GaN(0001) templates are investigated by means of non-destructive techniques. Optimum control over the nanowire arrangement and size requires a pitch between the mask apertures below twice the diffusion length of Ga atoms. Lower pitches, however, seem to slightly diminish the structural quality of the material, as revealed by the increase of the Raman peak linewidths. The photoluminescence spectra of the nanowires show a considerable presence of basal plane stacking faults, whose density increases for decreasing nanowire diameter. The capabilities of Kelvin probe force microscopy for imaging these kind of defects are also demonstrated.

  4. Formation of grown-in defects in molecular beam epitaxial Ga(In)NP: Effects of growth conditions and postgrowth treatments

    International Nuclear Information System (INIS)

    Dagnelund, D.; Buyanova, I. A.; Wang, X. J.; Chen, W. M.; Utsumi, A.; Furukawa, Y.; Wakahara, A.; Yonezu, H.

    2008-01-01

    Effects of growth conditions and post-growth treatments, such as presence of N ions, N 2 flow, growth temperature, In alloying, and postgrowth rapid thermal annealing (RTA), on formation of grown-in defects in Ga(In)NP prepared by molecular beam epitaxy are studied in detail by the optically detected magnetic resonance (ODMR) technique. Several common residual defects, such as two Ga-interstitial defects (i.e., Ga i -A and Ga i -B) and two unidentified defects with a g factor around 2 (denoted by S1 and S2), are closely monitored. Bombardment of impinging N ions on grown sample surface is found to facilitate formation of these defects. Higher N 2 flow is shown to have an even more profound effect than a higher number of ions in introducing these defects. Incorporation of a small amount of In (e.g., 5.1%) in GaNP seems to play a minor role in the formation of the defects. In GaInNP with 45% of In; however, the defects were found to be abundant. Effect of RTA on the defects is found to depend on initial configurations of Ga i -related defects formed during the growth. In the alloys where the Ga i -A and Ga i -B defects are absent in the as-grown samples (i.e., GaNP grown at a low temperature of 460 deg. C), the concentrations of the two Ga i defects are found to increase after postgrowth RTA. This indicates that the defects originally introduced in the as-grown alloys have been transformed into the more thermally stable Ga i -A and Ga i -B during RTA. On the other hand, when the Ga i -A and Ga i -B are readily abundant (e.g., at higher growth temperatures (≥500 deg. C), RTA leads to a slight reduction of the Ga i -A and Ga i -B ODMR signals. The S2 defect is also shown to be thermally stable upon the RTA treatment

  5. Crystal growth and scintillation properties of selected fluoride crystals for VUV scintillators

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Yamaji, A.; Yokota, Y.; Kurosawa, S.; Král, Robert; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 401, Sep (2014), s. 833-838 ISSN 0022-0248. [International Conference on Crystal Growth and Epitaxy /17./. Warsaw, 11.08.2013-16..08.2013] R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : vacuum-ultra-violet emission * micro-pulling-down method * barium -lutetium fluoride * erbium fluoride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.698, year: 2014

  6. Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Dimakis, E.; Iliopoulos, E.; Tsagaraki, K.; Kehagias, Th.; Komninou, Ph.; Georgakilas, A.

    2005-01-01

    The thermodynamic aspects of indium-face InN growth by radio frequency plasma-assisted molecular-beam epitaxy (rf-MBE) and the nucleation of InN on gallium-face GaN (0001) surface were investigated. The rates of InN decomposition and indium desorption from the surface were measured in situ using reflected high-energy electron diffraction and the rf-MBE 'growth window' of In-face InN (0001) was identified. It is shown that sustainable growth can be achieved only when the arrival rate of active nitrogen species on the surface is higher than the arrival rate of indium atoms. The maximum substrate temperature permitting InN growth as a function of the active nitrogen flux was determined. The growth mode of InN on Ga-face GaN (0001) surface was investigated by reflected high-energy electron diffraction and atomic force microscopy. It was found to be of the Volmer-Weber-type for substrate temperatures less than 350 deg. C and of the Stranski-Krastanov for substrate temperatures between 350 and 520 deg. C. The number of monolayers of initial two-dimensional growth, in the case of Stranski-Krastanov mode, varies monotonically with substrate temperature, from 2 ML at 400 deg. C to about 12 ML at 500 deg. C. The evolution and coalescence of nucleated islands were also investigated as a function of substrate temperature. It was found that at higher temperature their coalescence is inhibited leading to porous-columnar InN thin films, which exhibit growth rates higher than the nominal value. Therefore, in order to achieve continuous InN layers on GaN (0001) a two-step growth approach is introduced. In that approach, InN is nucleated at low temperatures on GaN and the growth continues until full coalescence of the nucleated islands. Subsequently, this nucleation layer is overgrown at higher substrate temperature in order to achieve high-quality continuous films. The InN films grown by the two-step method were investigated by x-ray diffraction, Hall-effect measurements, and

  7. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Hong, M.H. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)], E-mail: HONG_Minghui@dsi.a-star.edu.sg; Tan, L.S. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Zhou, Y. [Data Storage Institute, Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Chen, G.X. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)

    2008-01-31

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices.

  8. Selective growth of gallium nitride nanowires by femtosecond laser patterning

    International Nuclear Information System (INIS)

    Ng, D.K.T.; Hong, M.H.; Tan, L.S.; Zhou, Y.; Chen, G.X.

    2008-01-01

    We report on gallium nitride (GaN) nanowires grown using pulsed laser ablation, adopting the vapor-liquid-solid (VLS) growth mechanism. The GaN nanowires are obtained based on the principle that a catalyst is required to initiate the nanowires growth. Locations of the GaN nanowires are patterned using femtosecond laser and focused ion beam. Scanning electron microscopy (SEM) is used to characterize the nanowires. This patterning of GaN nanowires will enable selective growth of nanowires and bottom-up assembly of integrated electronic and photonic devices

  9. Systematic study on dynamic atomic layer epitaxy of InN on/in +c-GaN matrix and fabrication of fine-structure InN/GaN quantum wells: Role of high growth temperature

    Science.gov (United States)

    Yoshikawa, Akihiko; Kusakabe, Kazuhide; Hashimoto, Naoki; Hwang, Eun-Sook; Imai, Daichi; Itoi, Takaomi

    2016-12-01

    The growth kinetics and properties of nominally 1-ML (monolayer)-thick InN wells on/in +c-GaN matrix fabricated using dynamic atomic layer epitaxy (D-ALEp) by plasma-assisted molecular beam epitaxy were systematically studied, with particular attention given to the effects of growth temperature. Attention was also given to how and where the ˜1-ML-thick InN layers were frozen or embedded on/in the +c-GaN matrix. The D-ALEp of InN on GaN was a two-stage process; in the 1st stage, an "In+N" bilayer/monolayer was formed on the GaN surface, while in the 2nd, this was capped by a GaN barrier layer. Each process was monitored in-situ using spectroscopic ellipsometry. The target growth temperature was above 620 °C and much higher than the upper critical epitaxy temperature of InN (˜500 °C). The "In+N" bilayer/monolayer tended to be an incommensurate phase, and the growth of InN layers was possible only when they were capped with a GaN layer. The InN layers could be coherently inserted into the GaN matrix under self-organizing and self-limiting epitaxy modes. The growth temperature was the most dominant growth parameter on both the growth process and the structure of the InN layers. Reflecting the inherent growth behavior of D-ALEp grown InN on/in +c-GaN at high growth temperature, the embedded InN layers in the GaN matrix were basically not full-ML in coverage, and the thickness of sheet-island-like InN layers was essentially either 1-ML or 2-ML. It was found that these InN layers tended to be frozen at the step edges on the GaN and around screw-type threading dislocations. The InN wells formed type-I band line-up heterostructures with GaN barriers, with exciton localization energies of about 300 and 500 meV at 15 K for the 1-ML and 2-ML InN wells, respectively.

  10. Construction of the World Health Organization child growth standards: Selection of methods for attained growth curves

    NARCIS (Netherlands)

    Borghi, E.; Onis, M. de; Garza, C.; Broeck, J. van den; Frongillo, E.A.; Grummer-Strawn, L.; Buuren, S. van; Pan, H.; Molinari, L.; Martorell, R.; Onyango, A.W.; Martines, J.C.; Pinol, A.; Siyam, A.; Victoria, C.G.; Bhan, M.K.; Araújo, C.L.; Lartey, A.; Owusu, W.B.; Bhandari, N.; Norum, K.R.; Bjoerneboe, G.-E.Aa.; Mohamed, A.J.; Dewey, K.G.; Belbase, K.; Chumlea, C.; Cole, T.; Shrimpton, R.; Albernaz, E.; Tomasi, E.; Cássia Fossati da Silveira, R. de; Nader, G.; Sagoe-Moses, I.; Gomez, V.; Sagoe-Moses, C.; Taneja, S.; Rongsen, T.; Chetia, J.; Sharma, P.; Bahl, R.; Baerug, A.; Tufte, E.; Alasfoor, D.; Prakash, N.S.; Mabry, R.M.; Al Rajab, H.J.; Helmi, S.A.; Nommsen-Rivers, L.A.; Cohen, R.J.; Heinig, M.J.

    2006-01-01

    The World Health Organization (WHO), in collaboration with a number of research institutions worldwide, is developing new child growth standards. As part of a broad consultative process for selecting the best statistical methods, WHO convened a group of statisticians and child growth experts to

  11. Epitaxial growth of mixed conducting layered Ruddlesden–Popper La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) phases by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk

    2013-10-15

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) single crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.

  12. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  13. Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111 substrates: a potential route to fabricate topological insulator p-n junction

    Directory of Open Access Journals (Sweden)

    Zhaoquan Zeng

    2013-07-01

    Full Text Available High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111 substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111 substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111 substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111 substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  14. Molecular beam epitaxial growth mechanism of ZnSe epilayers on (100) GaAs as determined by reflection high-energy electron diffraction, transmission electron microscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, P.; Hommel, D.; Behr, T.; Heinke, H.; Waag, A.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1994-04-14

    The properties of molecular beam epitaxial growth of ZnSe epilayers deposited directly on a GaAs substrate are compared to those grown on a GaAs buffer layer. The superior quality of the latter is confirmed by RHEED, TEM and X-ray diffraction. Based on RHEED oscillation studies, a model explaining the dependence of the ZnSe growth rate on Zn and Se fluxes and the substrate temperature is developed taking into account physisorbed and chemisorbed states. For partially relaxed epilayers, the correlation between the relaxation state and the crystalline mosaicity, as found by high resolution X-ray diffraction, is discussed

  15. Metropolitan migration and population growth in selected developing countries.

    Science.gov (United States)

    1983-01-01

    The purpose of this article is to estimate the components of metropolitan population growth in selected developing countries during 1960-1970 period. The study examines population growth in 26 cities: 5 are in Africa, 8 in Asia, and 13 in Latin America, using data from national census publications. These cities in general are the political capitals of their countries, but some additional large cities were selected in Brazil, Mexico, and South Africa. All cities, at the beginning of the 1960-1970 decade had over 500,000 population; Accra, the only exception, reached this population level during the 1960s. Some cities had over 4 million residents in 1970. Net migration contributed about 37% to total metropolitan population growth; the remainder of the growth is attributable to natural increase. Migration has a much stronger impact on metropolitan growth than suggested by the above figure: 1) Several metropolitan areas, for various reasons, are unlikely to receive many migrants; without those cities, the share of metropolitan growth from net migration is 44%. 2) Estimates of the natural increase of migrants after their arrival in the metropolitan areas, when added to migration itself, changes the total contribution of migration to 49% in some metropolitan areas. 3) Even where net migration contributes a smaller proportion to metropolitan growth than natural increase, the rates of net migration are generally high and should be viewed in the context of rapid metropolitan population growth from natural increase alone. Finally, the paper also compares the components of metropolitan growth with the components of growth in the remaining urban areas. The results show that the metropolitan areas, in general, grow faster than the remaining urban areas, and that this more rapid growth is mostly due to a higher rate of net migration. Given the significance of migration for metropolitan growth, further investigations of the effects of these migration streams, particularly with

  16. MBE growth and characterization of GaAs1-x Sb x epitaxial layers on Si (0 0 1) substrates

    International Nuclear Information System (INIS)

    Toda, T.; Nishino, F.; Kato, A.; Kambayashi, T.; Jinbo, Y.; Uchitomi, N.

    2006-01-01

    We investigated the growth of GaAs 1- x Sb x (x=1.0, 0.82, 0.69, 0.44, 0.0) layers on Si (0 0 1) substrates using AlSb as a buffer layer. Epilayers were grown as a function of As beam equivalent pressure (BEP) under a constant Sb BEP, and they were then characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and micro-Raman scattering analysis. We confirmed that GaAs 1- x Sb x layers have been successfully grown on Si substrates by introducing AlSb layers

  17. Growth of GaAs-based VCSEL/RCE Structures for Optoelectronic Applications via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    A. S. Somintac

    2003-06-01

    Full Text Available High intensity and sharp emission peaks, at light-hole (842 nm and heavy-hole (857 nm excitonic transitionsfor a 90 Å GaAs quantum well (QW were observed for vertical-cavity surface-emitting laser (VCSELstructure. Excellent wavelength selectivity and sensitivity were demonstrated by resonant cavity enhanced(RCE photodetector at 859 nm, corresponding to the energy level of a 95 Å GaAs quantum well.

  18. Growth of GaAs-based VCSEL/RCE Structures for Optoelectronic Applications via Molecular Beam Epitaxy

    OpenAIRE

    A. S. Somintac; E. Estacio,; M. F. Bailon; A. A. Salvador

    2003-01-01

    High intensity and sharp emission peaks, at light-hole (842 nm) and heavy-hole (857 nm) excitonic transitionsfor a 90 Å GaAs quantum well (QW) were observed for vertical-cavity surface-emitting laser (VCSEL)structure. Excellent wavelength selectivity and sensitivity were demonstrated by resonant cavity enhanced(RCE) photodetector at 859 nm, corresponding to the energy level of a 95 Å GaAs quantum well.

  19. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R. [Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany)

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  20. In-situ transmission electron microscopy of the solid-phase epitaxial growth of GaAs: sample preparation and artifact characterization

    International Nuclear Information System (INIS)

    Llewellyn, D.J.; Llewellyn, D.J.; Belay, K.B.; Ridgway, M.C.

    1998-01-01

    In-situ transmission electron microscopy (TEM) has been used to characterize the solid phase epitaxial growth of amorphized GaAs at a temperature of 260 deg C. To maximize heat transfer from the heated holder to the sample and minimize electron-irradiation induced artifacts, non-conventional methodologies were utilized for the preparation of cross-sectional samples. GaAs 3x1 mm rectangular wafers were cleaved then glued face-to-face to form a wafer stack size of 3x3 mm while maintaining the TEM region at the center. This stack was subsequently polished on the cross-section to a thickness of ∼ 200 μm. A 3 mm disc was then cut perpendicular to the cross-section using a Gatan ultrasonic cutter. The disc was polished then dimpled on both sides to a thickness of ∼ 15 μm. This was ion-beam milled at liquid nitrogen temperature to an electron-transparent layer. From a comparison of in-situ and ex-situ measurements of the recrystallization rate, the actual sample temperature during in-situ characterization was estimated to deviate by ≤ 20 deg C from that of the heated holder. The influence of electron-irradiation was found to be negligible by comparing the recrystallization rate and microstructure of irradiated and unirradiated regions of comparable thickness. Similarly, the influence of the 'thin-foil effect' was found to be negligible by comparing the recrystallization rate and microstructure of thick and thin regions, the former determined after the removal of the sample from the microscope and further ion-beam milling of tens of microns of material. In conclusion, the potential influence of artifacts during in-situ TEM can be minimized by the appropriate choice of sample preparation procedures. (authors)

  1. Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Du, Cheng; Gao, Xiaohui; Zhuang, Zhihua; Cheng, Chunfeng; Zheng, Fuqin; Li, Xiaokun; Chen, Wei

    2017-01-01

    Highlights: • PtAu nanoalloy surface is heteroepitaxially grown on the pre-synthesized Au nano-pentagrams. • The PtAu/Au nano-pentagrams exhibit excellent electrocatalytic activity for ethanol oxidation. • The charge transfer resistance of PtAu/Au is lower than that of commercial Pt/C. • The durability and anti-poisoning ability of PtAu/Au is much better than those of commercial Pt/C - Abstract: Improving Pt utilization is of fundamental importance for many significant processes in energy conversion, which is strongly dependent on the surface structure of used catalysts. Based on the traditional Pt-on-Au system which has been proved to be an ideal nanostructure for improving the catalytic activity and stability of Pt, and the recent follow-up studies on this system, we introduce here a new strategy for fabricating Pt surface with high-index facets over the Pt-on-Au system. To achieve this goal, we elaborately designed and fabricated a unique zigzag PtAu alloy nanosurface on Au nano-pentagrams (PtAu/Au NPs) through epitaxial growth of Pt along the high-index facets on the pre-synthesized Au nano-pentagrams. Owing to the surface electronic interaction between Au and Pt and the exposed high-index facets from the unique morphology of zigzag PtAu alloy nanosurface, the as-prepared PtAu/Au NPs exhibited excellent electrocatalytic performance toward ethanol oxidation reaction (EOR) in alkaline condition. The specific activity (8.3 mA cm"−"2) and mass activity (4.4 A mg"−"1) obtained from PtAu/Au NPs are about 5.2 and 5.5 times, respectively, higher than those from commercial Pt/C for EOR.

  2. Growth of 1.5 micron gallium indium nitrogen arsenic antimonide vertical cavity surface emitting lasers by molecular beam epitaxy

    Science.gov (United States)

    Wistey, Mark Allan

    Fiber optics has revolutionized long distance communication and long haul networks, allowing unimaginable data speeds and noise-free telephone calls around the world for mere pennies per hour at the trunk level. But the high speeds of optical fiber generally do not extend to individual workstations or to the home, in large part because it has been difficult and expensive to produce lasers which emitted light at wavelengths which could take advantage of optical fiber. One of the most promising solutions to this problem is the development of a new class of semiconductors known as dilute nitrides. Dilute nitrides such as GaInNAs can be grown directly on gallium arsenide, which allows well-established processing techniques. More important, gallium arsenide allows the growth of vertical-cavity surface-emitting lasers (VCSELs), which can be grown in dense, 2D arrays on each wafer, providing tremendous economies of scale for manufacturing, testing, and packaging. Unfortunately, GaInNAs lasers have suffered from what has been dubbed the "nitrogen penalty," with high thresholds and low efficiency as the fraction of nitrogen in the semiconductor was increased. This thesis describes the steps taken to identify and essentially eliminate the nitrogen penalty. Protecting the wafer surface from plasma ignition, using an arsenic cap, greatly improved material quality. Using a Langmuir probe, we further found that the nitrogen plasma source produced a large number of ions which damaged the wafer during growth. The ions were dramatically reduced using deflection plates. Low voltage deflection plates were found to be preferable to high voltages, and simulations showed low voltages to be adequate for ion removal. The long wavelengths from dilute nitrides can be partly explained by wafer damage during growth. As a result of these studies, we demonstrated the first CW, room temperature lasers at wavelengths beyond 1.5mum on gallium arsenide, and the first GaInNAs(Sb) VCSELs beyond 1

  3. The epitaxial growth and interfacial strain study of VO{sub 2}/MgF{sub 2} (001) films by synchrotron based grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fan, L.L. [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Chen, S. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Liu, Q.H. [Science and Technology on Electro-optical Information Security Control Laboratory, Tianjin 300300 (China); Liao, G.M.; Chen, Y.L.; Ren, H. [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zou, C.W., E-mail: czou@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2016-09-05

    High quality VO{sub 2} films with different thickness were epitaxially grown on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. The evolution of interfacial strain was investigated by synchrotron based grazing incidence X-ray diffraction. By adjusting the incidence angles, the penetration depth of X-ray in VO{sub 2} film could be controlled and the thickness-depend lattice distortion in the epitaxial VO{sub 2} film was investigated. Due to the lattice mismatching, the pronounced tensile strain was observed in ultra-thin VO{sub 2} film. As the film thickness increasing, the interfacial strain relaxed gradually and became fully relaxed for thick VO{sub 2} films. Combined with the electric transport measurement, it was revealed that the phase transition temperature of ultra-thin VO{sub 2} film decreased greatly. The effect of interfacial strain induced phase transition modulation and the intrinsic mechanism was systematically discussed. - Highlights: • We prepared high quality VO{sub 2} epitaxial films on MgF{sub 2} (001) substrates by oxide molecular beam epitaxy method. • Synchrotron radiation grazing incidence X-ray diffraction was employed to detect evolution of strain along depth profile. • Based on a classic band structure model, the mechanism of strain controlled phase transition of VO{sub 2} was discussed.

  4. Epitaxial growth and processing of InP films in a ``novel`` remote plasma-MOCVD apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, G. [Bari Univ. (Italy). Centro di Studio per la Chimica; Losurdo, M. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capezzuto, P. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capozzi, V. [Bari Univ. (Italy). Ist. di Fisica; Lorusso, F.G. [Bari Univ. (Italy). Ist. di Fisica; Minafra, A. [Bari Univ. (Italy). Ist. di Fisica

    1996-06-01

    A new remote plasma MOCVD apparatus for the treatment and deposition of III-V materials and, specifically, of indium phosphide, has been developed. The plasma source is used to produce hydrogen atoms and to predissociate phosphine for, respectively, the reduction of native oxide on InP substrate surface and the InP deposition. In situ diagnostics by optical emission spectroscopy, mass spectrometry, and spectroscopic ellipsometry are used to fingerprint the gas phase and the growth surface. The plasma cleaning process effectively reduce the InP oxide layer without surface damage. Indium phosphide epilayers deposited from trimethylindium and plasma activated PH{sub 3} show singular photoluminescence spectra with signal intensity higher than that of the best InP film deposited under conventional MOCVD condition (without PH{sub 3} plasma preactivation). (orig.)

  5. Epitaxial lateral overgrowth - a tool for dislocation blockade in multilayer system

    International Nuclear Information System (INIS)

    Zytkiewicz, Z.R.

    1998-01-01

    Results on epitaxial lateral overgrowth of GaAs layers are reported. The methods of controlling the growth anisotropy, the effect of substrate defects filtration in epitaxial lateral overgrowth procedure and influence of the mask on properties of epitaxial lateral overgrowth layers will be discussed. The case od GaAs epitaxial lateral overgrowth layers grown by liquid phase epitaxy on heavily dislocated GaAs substrates was chosen as an example to illustrate the processes discussed. The similarities between our results and those reported recently for GaN layers grown laterally by metalorganic vapour phase epitaxy will be underlined. (author)

  6. Selection theory of free dendritic growth in a potential flow.

    Science.gov (United States)

    von Kurnatowski, Martin; Grillenbeck, Thomas; Kassner, Klaus

    2013-04-01

    The Kruskal-Segur approach to selection theory in diffusion-limited or Laplacian growth is extended via combination with the Zauderer decomposition scheme. This way nonlinear bulk equations become tractable. To demonstrate the method, we apply it to two-dimensional crystal growth in a potential flow. We omit the simplifying approximations used in a preliminary calculation for the same system [Fischaleck, Kassner, Europhys. Lett. 81, 54004 (2008)], thus exhibiting the capability of the method to extend mathematical rigor to more complex problems than hitherto accessible.

  7. Ln{sup 3+}:KLu(WO{sub 4}){sub 2}/KLu(WO{sub 4}){sub 2} epitaxial layers: Crystal growth and physical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, O.; Pujol, M.C.; Sole, R.; Bolanos, W.; Carvajal, J.J.; Massons, J.; Aguilo, M. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain); Diaz, F. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain)], E-mail: f.diaz@urv.cat

    2008-01-15

    Monoclinic epitaxial layers of single doped KLu{sub 1-x}Ln{sub x}(WO{sub 4}){sub 2} (Ln{sup 3+} = Yb{sup 3+} and Tm{sup 3+}) have been grown on optically passive KLuW substrates by liquid phase epitaxy (LPE) technique using K{sub 2}W{sub 2}O{sub 7} as solvent. The ytterbium content in the layer is in the range of 0.05 < x < 0.75 atomic substitution and the studied thulium concentrations are 0.05 < x < 0.10. The grown epitaxies are free of macroscopic defects and only in highly ytterbium-doped epilayers do some cracks or inclusions appear. The refractive indices of the epilayers were determined. The absorption and emission cross sections of ytterbium and thulium in KLuW are characterised and laser generation results are presented and discussed.

  8. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Directory of Open Access Journals (Sweden)

    Tatjana Ladnorg

    2013-10-01

    Full Text Available Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE. The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.

  9. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Science.gov (United States)

    Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof

    2013-01-01

    Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458

  10. Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range

    DEFF Research Database (Denmark)

    Semenova, Elizaveta; Kulkova, Irina; Kadkhodazadeh, Shima

    2014-01-01

    . In order to extract the QD benefits for the longer telecommunication wavelength range the technology of QD fabrication should be developed for InP based materials. In our work, we take advantage of both QD fabrication methods Stranski-Krastanow (SK) and selective area growth (SAG) employing block copolymer...

  11. Fabrication and Characterization of Highly Oriented N-Doped ZnO Nanorods by Selective Area Epitaxy

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2015-01-01

    Full Text Available High-quality nitrogen-doped ZnO nanorods have been selectively grown on patterned and bare ZnO templates by the combination of nanoimprint lithography and chemical vapor transport methods. The grown nanorods exhibited uniformity in size and orientation as well as controllable density and surface-to-volume ratio. The structural and optical properties of ZnO nanorods and the behaviour of N dopants have been investigated by means of the scanning electron microscope, photoluminescence (PL spectra, and Raman scattering spectra. The additional vibration modes observed in Raman spectra of N-doped ZnO nanorods provided solid evidence of N incorporation in ZnO nanorods. The difference of excitonic emissions from ZnO nanorods with varied density and surface-to-volume ratio suggested the different spatial distribution of intrinsic defects. It was found that the defects giving rise to acceptor-bound exciton (A0X emission were most likely to distribute in the sidewall surface with nonpolar characteristics, while the donor bound exciton (D0X emission related defects distributed uniformly in the near top polar surface.

  12. Epitaxial III-V nanowires on silicon for vertical devices

    NARCIS (Netherlands)

    Bakkers, E.P.A.M.; Borgström, M.T.; Einden, Van Den W.; Weert, van M.H.M.; Helman, A.; Verheijen, M.A.

    2006-01-01

    We show the epitaxial integration of III-V semiconductor nanowires with silicon technology. The wires are grown by the Vapor-Liquid-Solid (VLS) mechanism with laser ablation as well as metal organic vapor phase epitaxy. The VLS growth enables the fabrication of complex axial and radial

  13. Growth of BaSi2 continuous films on Ge(111) by molecular beam epitaxy and fabrication of p-BaSi2/n-Ge heterojunction solar cells

    Science.gov (United States)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Toko, Kaoru; Suemasu, Takashi

    2017-05-01

    We grew BaSi2 films on Ge(111) substrates by various growth methods based on molecular beam epitaxy (MBE). First, we attempted to form BaSi2 films directly on Ge(111) by MBE without templates. We next formed BaSi2 films using BaGe2 templates as commonly used for MBE growth of BaSi2 on Si substrates. Contrary to our prediction, the lateral growth of BaSi2 was not promoted by these two methods; BaSi2 formed not into a continuous film but into islands. Although streaky patterns of reflection high-energy electron diffraction were observed inside the growth chamber, no X-ray diffraction lines of BaSi2 were observed in samples taken out from the growth chamber. Such BaSi2 islands were easily to get oxidized. We finally attempted to form a continuous BaSi2 template layer on Ge(111) by solid phase epitaxy, that is, the deposition of amorphous Ba-Si layers onto MBE-grown BaSi2 epitaxial islands, followed by post annealing. We achieved the formation of an approximately 5-nm-thick BaSi2 continuous layer by this method. Using this BaSi2 layer as a template, we succeeded in forming a-axis-oriented 520-nm-thick BaSi2 epitaxial films on Ge substrates, although (111)-oriented Si grains were included in the grown layer. We next formed a B-doped p-BaSi2(20 nm)/n-Ge(111) heterojunction solar cell. A wide-spectrum response from 400 to 2000 nm was achieved. At an external bias voltage of 1 V, the external quantum efficiency reached as high as 60%, demonstrating the great potential of BaSi2/Ge combination. However, the efficiency of a solar cell under AM1.5 illumination was quite low (0.1%). The origin of such a low efficiency was examined.

  14. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  15. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  16. Effect of selection for relative growth rate and bodyweight of mice on rate, composition and efficiency of growth

    NARCIS (Netherlands)

    Bakker, H.

    1974-01-01

    To evaluate the effect of selection for parameters of a growth curve, four selection lines and a control line were started from one base population. In the selection lines is selected for a large and a small relative growth rate between 21 and 29 days (RGH and RGL) and for a large and

  17. Epitaxial growth and properties of AlGaN-based UV-LEDs on Si(111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Phannee

    2010-07-08

    An increasing demand for bright and efficient ultraviolet light emitting diodes (UVLEDs) is generated by numerous applications such as biochemical sensors, purification and sterilization, and solid-state white lighting. Al{sub x}Ga{sub 1-x}N is a promising material to develop UVLEDs due to the direct wide-bandgap material for emission wavelengths in the UV range and the capability of n- and p-type doping. To develop UV-LEDs on Si substrates is very interesting for low-cost UV-light sources since the Si substrate is available at low cost, in large-diameter size enabling the integration with well-known Si electronics. This work presents the first crack-free AlGaN-based UV-LEDs on Si(111) substrates by MOVPE growth. This AlGaN-based UV-LED on Si(111) substrate consists of Al{sub 0.1}Ga{sub 0.9}N:Si layers on LT-AlN/HT-AlN SL buffer layers and an active layer of GaN/Al{sub 0.1}Ga{sub 0.9}N MQWs followed by Mg-doped (GaN/Al{sub 0.1}Ga{sub 0.9}N) superlattices and GaN:Mg cap layers. It yields a {proportional_to}350 nm UV electroluminescence at room temperature and a turn-on voltage in a range of 2.6-3.1 V by current-voltage (I-V) measurements. The novel LT-AlN/HT-AlN superlattice buffer layers efficiently improve the crystalline quality of Al{sub x}Ga{sub 1-x}N layers and compensate a thermal tensile strain in Al{sub x}Ga{sub 1-x}N layers after cooling as observed by in-situ curvature measurements. The dislocation density could be reduced from 8.4 x 10{sup 10} cm{sup -2} in the AlN-based SLs to 1.8 x 10{sup 10} cm{sup -2} in the Al{sub 0.1}Ga{sub 0.9}N layers as determined by cross-sectional transmission electron microscopy (TEM) measurements. Crack-free Al{sub x}Ga{sub 1-x}N layers grown on these LT-AlN/HT-AlN superlattices with 0.05{<=}x{<=} 0.65 are achieved on Si substrates with good crystalline, optical, and electrical properties. The best crystalline quality of Al{sub 0.1}Ga{sub 0.9}N is obtained with {omega}-FWHMs of the (0002) and (10-10) reflections of

  18. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Braic, M.; Zoita, N.C.; Danila, M.; Grigorescu, C.E.A.; Logofatu, C.

    2015-01-01

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH 4 . The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC 0.84 thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH 4 . • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed

  19. Metal organic vapor phase epitaxy growth of (Al)GaN heterostructures on SiC/Si(111) templates synthesized by topochemical method of atoms substitution

    DEFF Research Database (Denmark)

    Rozhavskaya, Mariia M.; Kukushkin, Sergey A.; Osipov, Andrey V.

    2017-01-01

    We report a novel approach for metal organic vapor phase epitaxy of (Al)GaN heterostructures on Si substrates. An approximately 90–100 nm thick SiC buffer layer is synthesized using the reaction between Si substrate and CO gas. Highresolution transmission electron microscopy reveals sharp...

  20. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Sohei [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yang, Chang [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-30

    InO{sub x}F{sub y} thin films were epitaxially grown on Y-stabilized ZrO{sub 2} (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T{sub S}), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T{sub S} (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T{sub S}, y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T{sub S} ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO{sub x}F{sub y} epitaxial thin films with high fluorine concentration were grown on Y:ZrO{sub 2}. • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3.

  1. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    International Nuclear Information System (INIS)

    Okazaki, Sohei; Hirose, Yasushi; Nakao, Shoichiro; Yang, Chang; Harayama, Isao; Sekiba, Daiichiro; Hasegawa, Tetsuya

    2014-01-01

    InO x F y thin films were epitaxially grown on Y-stabilized ZrO 2 (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T S ), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T S (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T S , y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T S ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO x F y epitaxial thin films with high fluorine concentration were grown on Y:ZrO 2 . • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3

  2. Hetero-epitaxial growth of TiC films on MgO(001) at 100 °C by DC reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Braic, M. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Zoita, N.C., E-mail: cnzoita@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Danila, M. [National Institute for Research and Development in Microtechnology, 126A Erou Iancu Nicolae Blvd., 077190 Bucharest (Romania); Grigorescu, C.E.A. [National Institute for Optoelectronics, 409 Atomistilor St., 077125 Magurele (Romania); Logofatu, C. [National Institute of Materials Physics, 105 bis Atomistilor St., 077125 Magurele (Romania)

    2015-08-31

    Hetero-epitaxial TiC thin films were deposited at 100 °C on MgO(001) by DC reactive magnetron sputtering in a mixture of Ar and CH{sub 4}. The 62 nm thick films were analyzed for elemental composition and chemical bonding by Auger electron spectroscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. The crystallographic structure investigation by high resolution X-ray diffraction revealed that the films consist of two layers: an interface partially strained epilayer with high crystalline quality, and a relaxed layer, formed by columnar grains, maintaining the epitaxial relationship with the substrate. The films presented smooth surfaces (RMS roughness ~ 0.55 nm), with circular equi-sized grains/crystallites, as observed by atomic force microscopy. The Hall measurements in Van der Pauw geometry revealed relatively high resistivity value ~ 620 μΩ cm, ascribed to electron scattering on interfaces, on grain boundaries and on different defects/dislocations. - Highlights: • Hetero-epitaxial TiC{sub 0.84} thin films were grown on MgO(001) at 100 °C by magnetron sputtering. • 62 nm thick films were synthesized by magnetron sputtering, using Ti, Ar and CH{sub 4}. • The film comprises a partially strained interface epilayer and a relaxed top layer. • Both layers preserve the epitaxial relationship with the substrate. • Low RMS surface roughness ~ 0.55 nm and grains with mean lateral size of ~ 38.5 nm were observed.

  3. Growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Itoi, Takaomi [Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Yoshikawa, Akihiko, E-mail: yoshi@faculty.chiba-u.jp [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Graduate School of Engineering, Kogakuin University, Hachioji, Tokyo 192-0015 (Japan)

    2016-04-11

    The growth kinetics and structural perfection of (InN){sub 1}/(GaN){sub 1–20} short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN){sub 1}/(GaN){sub 4} SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  4. Growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices on +c-GaN template in dynamic atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kusakabe, Kazuhide; Hashimoto, Naoki; Wang, Ke; Imai, Daichi; Itoi, Takaomi; Yoshikawa, Akihiko

    2016-01-01

    The growth kinetics and structural perfection of (InN)_1/(GaN)_1_–_2_0 short-period superlattices (SPSs) were investigated with their application to ordered alloys in mind. The SPSs were grown on +c-GaN template at 650 °C by dynamic atomic layer epitaxy in conventional plasma-assisted molecular beam epitaxy. It was found that coherent structured InN/GaN SPSs could be fabricated when the thickness of the GaN barrier was 4 ML or above. Below 3 ML, the formation of SPSs was quite difficult owing to the increased strain in the SPS structure caused by the use of GaN as a template. The effective or average In composition of the (InN)_1/(GaN)_4 SPSs was around 10%, and the corresponding InN coverage in the ∼1 ML-thick InN wells was 50%. It was found that the effective InN coverage in ∼1 ML-thick InN wells could be varied with the growth conditions. In fact, the effective In composition could be increased up to 13.5%, i.e., the corresponding effective InN coverage was about 68%, by improving the capping/freezing speed by increasing the growth rate of the GaN barrier layer.

  5. Modelling, Design, Growth and Characterization of Strain Balanced Quantum Cascade Lasers (3-11mum), grown by Gas Source Molecular Beam Epitaxy

    Science.gov (United States)

    Bandyopadhyay, Neelanjan

    Quantum Cascade Laser (QCL) is a compact room temperature (RT) source of mid-infrared radiation, which can be used for spectroscopic detection of trace amount of chemicals. The mid-infrared spectral range between (3-11 microm), has a dense array of absorption lines of numerous molecules, due to the presence of fundamental vibrational modes. The goal of this thesis can be subdivided into two parts. Firstly, short wavelength QCLs, emitting below 4microm, perform poorly at RT, due to inter-valley Gamma --- L carrier scattering, carrier escape to the continuum, heat removal from the core region at high power density corresponding to short wavelength operation, and large interface scattering due to highly strained materials. Secondly, it is desirable to have a single QCL based source emitting between 6-10microm, which be used to detect multiple molecules having their peak absorptions far apart, inside this spectral range. However, gain bandwidth of a single core QCL is relatively small, so laser emission cannot be tuned over a wide spectral range. This thesis describes the working principle of a QCL based on superlattice transport, rate equations, scattering mechanism, and waveguide design. The choice of the material system for this work and the fundamentals of band structure engineering has been derived. Gas source molecular beam epitaxy - growth optimization and characterization is one of the most important features of this work, especially for short wavelength QCLs, and has been explained in depth. Different strategies for design of active region design of short wavelength QCL and heterogeneous broadband QCL has been explored. The major milestones, of this research was the world's first watt level continuous wave (CW), RT demonstration at 3.76 microm, which was followed by another milestone of the first CW, RT demonstration at 3.39microm and 3.55microm, and finally the elusive result of QCL emitting at CW, RT at a wavelength as short as lambda ~3microm, a record. In

  6. The effect of growth interruptions at the interfaces in epitaxially grown GaInAsSb/AlGaAsSb multiple-quantum-wells studied with high-resolution x-ray diffraction and photoluminescence

    International Nuclear Information System (INIS)

    Selvig, E; Myrvaagnes, G; Bugge, R; Haakenaasen, R; Fimland, B O

    2006-01-01

    Molecular beam epitaxy has been used to grow GaInAsSb/AlGaAsSb multiple-quantum-well (MQW) structures. Growth has been interrupted at the interfaces between the wells and the barriers. During the growth interruptions, the interfaces have been exposed to Sb x (x=1, 2) and As 2 fluxes. The structures have been studied using high-resolution x-ray diffraction (HRXRD) and photoluminescence (PL). The As content in the interface layers has been found to have a large impact on the HRXRD curves. The As content in the interface layers has been determined by simulation of HRXRD rocking curves. We also show how highly strained interfaces cause more satellite peaks to appear in HRXRD rocking curves. PL spectra show that interrupting growth at the interfaces between wells and barriers and exposing the interfaces to an Sb soak result in flatter interfaces

  7. Growth and characterization of Ge nanostructures selectively grown on patterned Si

    International Nuclear Information System (INIS)

    Cheng, M.H.; Ni, W.X.; Luo, G.L.; Huang, S.C.; Chang, J.J.; Lee, C.Y.

    2008-01-01

    By utilizing different distribution of strain fields around the edges of oxide, which are dominated by a series of sizes of oxide-patterned windows, long-range ordered self-assembly Ge nanostructures, such as nano-rings, nano-disks and nano-dots, were selectively grown by ultra high vacuum chemical vapor deposition (UHV-CVD) on Si (001) substrates. High-resolution double-crystal symmetrical ω/2θ scans and two-dimensional reciprocal space mapping (2D-RSM) technologies employing the triple axis X-ray diffractometry have been used to evaluate the quality and strain status of as-deposited as well as in-situ annealed Ge nanostructures. Furthermore, we also compare the quality and strain status of Ge epilayers grown on planar unpatterned Si substrates. It was found that the quality of all Ge epitaxial structures is improved after in-situ annealing process and the quality of Ge nano-disk structures is better than that of Ge epilayers on planar unpatterned Si substrates, because oxide sidewalls are effective dislocation sinks. We also noted that the degree of relaxation for as-deposited Ge epilayers on planar unpatterned Si substrates is less than that for as-deposited Ge nano-disk structures. After in-situ annealing process, all Ge epitaxial structures are almost at full relaxation whatever Ge epitaxial structures grew on patterned or unpatterned Si substrates

  8. Investigation on orientation, epitaxial growth and microstructure of a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ films prepared on (001), (110) and (111) SrTiO3 single crystal substrates by spray atomizing and coprecipitating laser chemical vapor deposition

    Science.gov (United States)

    Zhao, Pei; Wang, Ying; Huang, Zhi liang; Mao, Yangwu; Xu, Yuan Lai

    2015-04-01

    a-axis-, c-axis-, (103)/(110)- and (113)-oriented YBa2Cu3O7-δ (YBCO) films were pareared by spray atomizing and coprecipitating laser chemical vapor deposition. The surface of the a-axis-oriented YBCO film consisted of rectangular needle-like grains whose in-plane epitaxial growth relationship was YBCO [100] // STO [001] (YBCO [001] // STO [100]), and that of the c-axis-oriented YBCO film consisted of dense flat surface with epitaxial growth relationship of YBCO [001] // STO [001] (YBCO [100] //STO [100]). For the (103)/(110)-oriented and (113)-oriented YBCO film, they showed wedge-shaped and triangle-shaped grains, with corresponding in-plane epitaxial growth relationship of YBCO [110] // STO [110] (YBCO [010] // STO [010]) and YBCO [100] // STO [100] (YBCO [113] // STO [111], respectively.

  9. Liquid-phase epitaxy of InGaAsP solid solutions on profiled substrates of InP(100)

    International Nuclear Information System (INIS)

    Dvoryankin, V.F.; Kaevitser, L.R.; Komarov, A.A.; Telegin, A.A.; Khusid, L.B.; Chernushin, M.D.

    1990-01-01

    Peculiarities of selective growth of InGaAsP solid solutions under liquid-phase epitaxy in shallow grooves are considered. InGaAsP crystals grown in grooves oriented along crystallografic [110] and [011] directions are determined to trend to equilibrium form under two-phase epitaxy, while wedge-shaped form of In 0.77 Ga 0.23 As 0.53 P 0.45 and In 0.53 P o.45 and IN 0.59 Ga 0.41 As 0.83 P 0.12 epitaxial layers obtained in grooves is determined by their composition only and does not depend on groove configuration

  10. Growth of low disorder GaAs/AlGaAs heterostructures by molecular beam epitaxy for the study of correlated electron phases in two dimensions

    Science.gov (United States)

    Watson, John D.

    The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation. The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth and cryogenic measurement techniques outlined in chapters 2 and 3, respectively. In addition to a generic introduction to the molecular beam epitaxy growth technique, chapter 2 summarizes some of what was learned about the material purity issues currently limiting the low temperature electron mobility. Finally, a series of appendices are included which detail the experimental methods used over the course of the research. Chapter 4 presents an experiment examining transport in a low density two-dimensional hole system in which the hole density could be varied by means of an evaporated back gate. At low temperature, the mobility reached a maximum of 2.6 x 106 cm2/Vs at a density of 6.2 x 1010 cm-2 which is the highest reported mobility in a two-dimensional hole system to date. In addition, it was found that the mobility as a function of density did not follow a power law with a single exponent. Instead, it was found that the power law varied with density, indicating a cross-over between dominant scattering mechanisms at low density and high density. At low density the mobility was found to be limited by remote ionized impurity scattering, while at high density the dominant scattering mechanism was found to be background impurity scattering. Chapter 5 details an experiment

  11. Growth of high mobility GaN and AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Webb, James B.; Tang, H.; Bardwell, J. A.; Coleridge, P.

    2001-01-01

    Ammonia molecular-beam epitaxy has been used to grow high-quality epilayers of GaN and AlGaN/GaN heterostructure field-effect transistor (HFET) structures on insulating 4H-SiC. The growth process, which used a magnetron sputter epitaxy deposited buffer layer of AlN, has been described previously. Ex situ pretreatment of the SiC substrate was found to be unnecessary. For a single 2.0 μm thick silicon doped epilayer, a room temperature (RT) electron mobility of 500 cm2/Vs was measured at a carrier density of 6.6x10 16 cm -3 . For the HFET structure, a room temperature mobility of 1300 cm2/Vs at a sheet carrier density of 3.3x10 12 cm -2 was observed, increasing to 11000 cm2/Vs at 77 K. The surface morphology of the layers indicated a coalesced mesa structure similar to what we observed for growth on sapphire, but with a lower overall defect density and correspondingly larger grain size. The observation of well-resolved Shubnikov de Haas oscillations at fields as low as 3 T indicated a relatively smooth interface. [copyright] 2001 American Institute of Physics

  12. Advanced Photon Source Activity Report 2002 at Argonne National Laboratory, Argonne, IL, December 2003 - contribution title:''Microdiffraction Study of Epitaxial Growth and Lattice Tilts in Oxide Films on Polycrystalline Metal Substrates''

    International Nuclear Information System (INIS)

    Budai, J.D.

    2004-01-01

    Texture, the preference for a particular crystallographic orientation in polycrystalline materials, plays an important role in controlling such diverse materials properties as corrosion resistance, recording density in magnetic media and electrical transport in superconductors [1]. Without texture, polycrystalline oxide superconductors contain many high-angle, weak-linked grain boundaries which reduce critical current densities by several orders of magnitude [2]. One approach for inducing texture in oxide superconductors has been the epitaxial growth of films on rolling-assisted biaxially-textured substrates (RABiTS) [3]. In this approach, rolled Ni foils are recrystallized under conditions that lead to a high degree of biaxial {001} cube texture. Subsequent deposition of epitaxial oxide buffer layers (typically CeO 2 and YSZ as chemical barriers) and superconducting YBCO preserves the lattice alignment, eliminating high-angle boundaries and enabling high critical current densities, J c > 10 6 /cm 2 . Conventional x-ray diffraction using ω- and φ-scans typically shows macroscopic biaxial texture to within ∼5 o -10 o FWHM for all layers, but does not describe the local microstructural features that control the materials properties. Understanding and controlling the local texture and microstructural evolution of processes associated with heteroepitaxial growth, differential thermal contraction and cracking remain significant challenges in this complex system [4], as well as in many other technologically important thin-film applications

  13. Growth and coalescence control of inclined c-axis polar and semipolar GaN multilayer structures grown on Si(111), Si(112), and Si(115) by metalorganic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Szymański, Tomasz, E-mail: tomasz.szymanski@pwr.edu.pl; Wośko, Mateusz; Paszkiewicz, Bartłomiej; Paszkiewicz, Bogdan; Paszkiewicz, Regina [The Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Sankowska, Iwona [The Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warszawa (Poland)

    2016-09-15

    Herein, silicon substrates in alternative orientations from the commonly used Si(111) were used to enable the growth of polar and semipolar GaN-based structures by the metalorganic vapor phase epitaxy method. Specifically, Si(112) and Si(115) substrates were used for the epitaxial growth of nitride multilayer structures, while the same layer schemes were also deposited on Si(111) for comparison purposes. Multiple approaches were studied to examine the influence of the seed layers and the growth process conditions upon the final properties of the GaN/Si(11x) templates. Scanning electron microscope images were acquired to examine the topography of the deposited samples. It was observed that the substrate orientation and the process conditions allow control to produce an isolated GaN block growth or a coalesced layer growth, resulting in inclined c-axis GaN structures under various forms. The angles of the GaN c-axis inclination were determined by x-ray diffraction measurements and compared with the results obtained from the analysis of the atomic force microscope (AFM) images. The AFM image analysis method to determine the structure tilt was found to be a viable method to estimate the c-axis inclination angles of the isolated blocks and the not-fully coalesced layers. The quality of the grown samples was characterized by the photoluminescence method conducted at a wide range of temperatures from 77 to 297 K, and was correlated with the sample degree of coalescence. Using the free-excitation peak positions plotted as a function of temperature, analytical Bose-Einstein model parameters were fitted to obtain further information about the grown structures.

  14. Preferential nucleation and growth of InAs/GaAs(0 0 1) quantum dots on defected sites by droplet epitaxy

    International Nuclear Information System (INIS)

    Chen, Z.B.; Lei, W.; Chen, B.; Wang, Y.B.; Liao, X.Z.; Tan, H.H.; Zou, J.; Ringer, S.P.; Jagadish, C.

    2013-01-01

    A double-layer InAs/GaAs(0 0 1) quantum dot structure grown by droplet epitaxy was found to have V-shaped defects, with the two arms of each defect originating from a buried quantum dot and extended to the top surface. Quantum dots on the sample surface nucleated and grew preferentially on top of the arms of the V-shaped defects. The mechanism behind the observed phenomenon was discussed

  15. Properties of ZrN films as substrate masks in liquid phase epitaxial lateral overgrowth of compound semiconductors

    International Nuclear Information System (INIS)

    Dobosz, D.; Zytkiewicz, Z.R.; Jakiela, R.; Golaszewska, K.; Kaminska, E.; Piotrowska, A.; Piotrowski, T.T.; Barcz, A.

    2005-01-01

    The usefulness of ZrN films as masks for epitaxial lateral overgrowth of GaAs and GaSb by liquid phase epitaxy is studied. It was observed that during the growth process ZrN masks are mechanically stable, they adhere strongly to the substrate and do not show any signs of degradation even at the growth temperature as high as 750 C. Moreover, perfect selectivity of GaAs and GaSb epitaxy was obtained on ZrN masked substrates ensuring the growth wide and thin layers. To study the influence of growth conditions on electrical resistivity of the mask, ZrN films deposited on GaAs substrates were annealed in various atmospheres. It was found that at temperatures higher than about 580 C the ZrN masks become highly resistive when heat-treated in hydrogen flow employed during growth. Usually, LPE growth temperature for GaAs is higher. Thus, ELO growth of GaAs by LPE becomes more difficult, though still possible, if ZrN masks are to be applied as buried electrical contacts. For GaSb ELO layers however, typical LPE growth temperature is about 480 C. This allows us to grow high quality GaSb ELO layers by LPE still preserving high electrical conductivity of ZrN mask. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A. [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Skibitzki, O.; Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Institute of Physics and Chemistry, BTU Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2016-07-28

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  17. Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates

    International Nuclear Information System (INIS)

    Balasubramanian, K.R.; Chang, Kai-Chieh; Mohammad, Feroz A.; Porter, Lisa M.; Salvador, Paul A.; DiMaio, Jeffrey; Davis, Robert F.

    2006-01-01

    Epitaxial hexagonal YMnO 3 (h-YMnO 3 ) films having sharp (00l) X-ray diffraction peaks were grown above 700 deg. C in 5 mTorr O 2 via pulsed laser deposition both on as-received wurtzite GaN/AlN/6H-SiC(001) (w-GaN) substrates as well as on w-GaN surfaces that were etched in 50% HF solution. High-resolution transmission electron microscopy revealed an interfacial layer between film and the unetched substrate; this layer was absent in those samples wherein an etched substrate was used. However, the substrate treatment did not affect the epitaxial arrangement between the h-YMnO 3 film and w-GaN substrate. The epitaxial relationships of the h-YMnO 3 films with the w-GaN(001) substrate was determined via X-ray diffraction to be (001) YMnO 3 -parallel (001) GaN : [11-bar0] YMnO 3 -parallel [110] GaN ; in other words, the basal planes of the film and the substrate are aligned parallel to one another, as are the most densely packed directions in planes of the film and the substrate. Interestingly, this arrangement has a larger lattice mismatch than if the principal axes of the unit cells were aligned

  18. Growth and magnetotransport properties of epitaxial films of the layered perovskite La2-2xSr1+2xMn2O7

    International Nuclear Information System (INIS)

    Philipp, J.B.; Alff, L.; Gross, R.; Klein, J.; Recher, C.

    2002-01-01

    Epitaxial thin films of the bilayered perovskite La 2-2x Sr 1+2x Mn 2 O 7 (x=0.3, 0.4) have been grown by laser molecular beam epitaxy on NdGaO 3 substrates. Magnetotransport measurements with the current in the ab-plane and along the c-axis direction showed an intrinsic c-axis tunneling magnetoresistance effect associated with nonlinear current-voltage-characteristics for the x=0.3 compound. Besides the colossal magnetoresistance effect around the Curie temperature T C , at temperatures below about 40 K an additional high-field magnetoresistance was found most likely due to a strain and disorder induced re-entrant spin glass state in both the x=0.3 and 0.4 compounds. Our experiments show that the substrate induced coherency strain in the high quality epitaxial films results in magnetotransport properties that show markedly different behavior from those of single crystals. (orig.)

  19. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  20. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported