WorldWideScience

Sample records for selective breeding reducing

  1. Integrating genomic selection into dairy cattle breeding programmes: a review.

    Science.gov (United States)

    Bouquet, A; Juga, J

    2013-05-01

    Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However

  2. Signatures of Selection in the Genomes of Commercial and Non-Commercial Chicken Breeds

    Science.gov (United States)

    Elferink, Martin G.; Megens, Hendrik-Jan; Vereijken, Addie; Hu, Xiaoxiang; Crooijmans, Richard P. M. A.; Groenen, Martien A. M.

    2012-01-01

    Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density SNP chips or massively parallel sequencing, have been successfully applied to identify evidence for selective sweeps in chicken, it has been difficult to distinguish patterns of selection and stochastic and breed specific effects. Here we present a study to identify selective sweeps in a large number of chicken breeds (67 in total) using a high-density (58 K) SNP chip. We analyzed commercial chickens representing all major breeding goals. In addition, we analyzed non-commercial chicken diversity for almost all recognized traditional Dutch breeds and a selection of representative breeds from China. Based on their shared history or breeding goal we in silico grouped the breeds into 14 breed groups. We identified 396 chromosomal regions that show suggestive evidence of selection in at least one breed group with 26 of these regions showing strong evidence of selection. Of these 26 regions, 13 were previously described and 13 yield new candidate genes for performance traits in chicken. Our approach demonstrates the strength of including many different populations with similar, and breed groups with different selection histories to reduce stochastic effects based on single populations. PMID:22384281

  3. Prospects for genomic selection in cassava breeding

    Science.gov (United States)

    Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa in order to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on p...

  4. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Directory of Open Access Journals (Sweden)

    Huihua Wang

    Full Text Available Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed.We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality and EDAR (associated with hair thickness were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9 were associated with pre-weaning gain in our previous genome-wide association study.Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  5. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.

    Science.gov (United States)

    Wang, Huihua; Zhang, Li; Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin

    2015-01-01

    Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.

  6. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping.

    Directory of Open Access Journals (Sweden)

    Amaury Vaysse

    2011-10-01

    Full Text Available The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.

  7. Selection and breeding of plant cultivars to minimize cadmium accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C.A. [AAFC Brandon Research Centre, Box 1000A, R.R. 3, Brandon, MB, R7A 5Y3 (Canada)], E-mail: cgrant@agr.gc.ca; Clarke, J.M. [AAFC Semiarid Prairie Agricultural Research Centre, Swift Current, SK, S9H 3X2 (Canada); Duguid, S. [AAFC Morden Research Station, Morden, MB, R6M 1Y5 (Canada); Chaney, R.L. [USDA, ARS, Animal Manure and Byproducts Laboratory, Room 013, Building 007, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705-2350 (United States)

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  8. Diversifying Selection Between Pure-Breed and Free-Breeding Dogs Inferred from Genome-Wide SNP Analysis

    Directory of Open Access Journals (Sweden)

    Małgorzata Pilot

    2016-08-01

    Full Text Available Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome.” This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication.

  9. Genomic selection in plant breeding.

    Science.gov (United States)

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  10. Simulated selection responses for breeding programs including resistance and resilience to parasites in Creole goats.

    Science.gov (United States)

    Gunia, M; Phocas, F; Gourdine, J-L; Bijma, P; Mandonnet, N

    2013-02-01

    The Creole goat is a local breed used for meat production in Guadeloupe (French West Indies). As in other tropical countries, improvement of parasite resistance is needed. In this study, we compared predicted selection responses for alternative breeding programs with or without parasite resistance and resilience traits. The overall breeding goal included traits for production, reproduction, and parasite resilience and resistance to ensure a balanced selection outcome. The production traits were BW and dressing percentage (DP). The reproduction trait was fertility (FER), which was the number of doe kiddings per mating. The resistance trait was worm fecal egg count (FEC), which is a measurement of the number of gastro-intestinal parasite eggs found in the feces. The resilience trait was the packed cell volume (PCV), which is a measurement of the volume of red blood cells in the blood. Dressing percentage, BW, and FEC were measured at 11 mo of age, which is the mating or selling age. Fertility and PCV were measured on females at each kidding period. The breeding program accounting for the overall breeding goal and a selection index including all traits gave annual selection responses of 800 g for BW, 3.75% for FER, 0.08% for DP, -0.005 ln(eggs/g) for FEC, and 0.28% for PCV. The expected selection responses for BW and DP in this breeding program were reduced by 2% and 6%, respectively, compared with a breeding program not accounting for FEC and PCV. The overall breeding program, proposed for the Creole breed, offers the best breeding strategy in terms of expected selection responses, making it possible to improve all traits together. It offers a good balance between production and adaptation traits and may present some interest for the selection of other goat breeds in the tropics.

  11. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Tracing the breeding farm of domesticated pig using feature selection (

    Directory of Open Access Journals (Sweden)

    Taehyung Kwon

    2017-11-01

    Full Text Available Objective Increasing food safety demands in the animal product market have created a need for a system to trace the food distribution process, from the manufacturer to the retailer, and genetic traceability is an effective method to trace the origin of animal products. In this study, we successfully achieved the farm tracing of 6,018 multi-breed pigs, using single nucleotide polymorphism (SNP markers strictly selected through least absolute shrinkage and selection operator (LASSO feature selection. Methods We performed farm tracing of domesticated pig (Sus scrofa from SNP markers and selected the most relevant features for accurate prediction. Considering multi-breed composition of our data, we performed feature selection using LASSO penalization on 4,002 SNPs that are shared between breeds, which also includes 179 SNPs with small between-breed difference. The 100 highest-scored features were extracted from iterative simulations and then evaluated using machine-leaning based classifiers. Results We selected 1,341 SNPs from over 45,000 SNPs through iterative LASSO feature selection, to minimize between-breed differences. We subsequently selected 100 highest-scored SNPs from iterative scoring, and observed high statistical measures in classification of breeding farms by cross-validation only using these SNPs. Conclusion The study represents a successful application of LASSO feature selection on multi-breed pig SNP data to trace the farm information, which provides a valuable method and possibility for further researches on genetic traceability.

  13. Will genomic selection be a practical method for plant breeding?

    Science.gov (United States)

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  14. Plant breeding with marker-assisted selection in Brazil

    Directory of Open Access Journals (Sweden)

    Ney Sussumu Sakiyama

    2014-03-01

    Full Text Available Over the past three decades, molecular marker studies reached extraordinary advances, especially for sequencing and bioinformatics techniques. Marker-assisted selection became part of the breeding program routines of important seed companies, in order to accelerate and optimize the cultivar developing processes. Private seed companies increasingly use marker-assisted selection, especially for the species of great importance to the seed market, e.g. corn, soybean, cotton, and sunflower. In the Brazilian public institutions few breeding programs use it efficiently. The possible reasons are: lack of know-how, lack of appropriate laboratories, few validated markers, high cost, and lack of urgency in obtaining cultivars. In this article we analyze the use and the constraints of marker-assisted selection in plant breeding programs of Brazilian public institutes

  15. ADAM: A computer program to simulate selective-breeding schemes for animals

    DEFF Research Database (Denmark)

    Pedersen, L D; Sørensen, A C; Henryon, M

    2009-01-01

    ADAM is a computer program that models selective breeding schemes for animals using stochastic simulation. The program simulates a population of animals and traces the genetic changes in the population under different selective breeding scenarios. It caters to different population structures......, genetic models, selection strategies, and mating designs. ADAM can be used to evaluate breeding schemes and generate genetic data to test statistical tools...

  16. Selective breeding for increased pheromone production in the boll weevil (Coleoptera: Curculionidae)

    International Nuclear Information System (INIS)

    McCoy, J.R.; Wright, J.E.

    1990-01-01

    The male boll weevil, Anthonomus grandis grandis Boheman, uses an aggregating pheromone to attract females, after which mating often occurs. Sterile boll weevil release programs depend upon this phenomenon to produce sterile matings with feral females. In an effort to increase the effectiveness of the individual sterile male and thereby reduce the number of sterile males required per hectare, a selective-breeding system was used to increase the total pheromone produced by individual male boll weevils. This breeding program increased the total pheromone production by individual male boll weevils to 4.5 times that of the parent population. After irradiation-induced sterilization, there remained 2.2 times more pheromone produced by the selected strain. Therefore, these sterile weevils should be about 2.2 times more attractive to feral females than the parent weevils now in use, and they have the potential to reduce the number of sterile males required in a sterile release program

  17. Do hair-crested drongos reduce prospective territory competition by dismantling their nest after breeding?

    NARCIS (Netherlands)

    Lv, Lei; Li, Jianqiang; Kingma, Sjouke A.; Gao, Chang; Wang, Yong; Komdeur, Jan; Zhang, Zhengwang

    Animals that breed seasonally often use the same territory where they successfully produced young previously. Intra-specific competition may be intense for these high-quality territories, and therefore, natural selection should favour behaviour of territory owners to reduce such competition.

  18. Marker-assisted selection in fish and shellfish breeding schemes

    International Nuclear Information System (INIS)

    Martinez, V.

    2007-01-01

    The main goals of breeding programmes for fish and shellfish are to increase the profitability and sustainability of aquaculture. Traditionally, these have been carried out successfully using pedigree information by selecting individuals based on breeding values predicted for traits measured on candidates using an 'animal model'. This methodology assumes that phenotypes are explained by a large number of genes with small effects and random environmental deviations. However, information on individual genes with medium or large effects cannot be used in this manner. In selective breeding programmes using pedigree information, molecular markers have been used primarily for parentage assignment when tagging individual fish is difficult and to avoid causing common environmental effects from rearing families in separate tanks. The use of these techniques in such conventional breeding programmes is discussed in detail. Exploiting the great biological diversity of many fish and shellfish species, different experimental designs may use either chromosomal manipulations or large family sizes to increase the likelihood of finding the loci affecting quantitative traits, the so-called QTL, by screening the segregation of molecular markers. Using information on identified loci in breeding schemes in aquaculture is expected to be cost-effective compared with traditional breeding methods only when the accuracy of predicting breeding values is rather low, e.g. for traits with low heritability such as disease resistance or carcass quality. One of the problems facing aquaculture is that some of the resources required to locate QTL accurately, such as dense linkage maps, are not yet available for the many species. Recently, however, information from expressed sequence tag (EST) databases has been used for developing molecular markers such as microsatellites and single nucleotide polymorphisms (SNPs). Marker-assisted selection (MAS) or genome-wide marker-assisted selection (G-MAS) using

  19. Possibilities for marker-assisted selection in aquaculture breeding schemes

    International Nuclear Information System (INIS)

    Sonesson, A.K.

    2007-01-01

    FAO estimates that there are around 200 species in aquaculture. However, only a few species have ongoing selective breeding programmes. Marker-assisted selection (MAS) is not used in any aquaculture breeding scheme today. The aim of this chapter, therefore, is to review briefly the current status of aquaculture breeding schemes and to evaluate the possibilities for MAS of aquaculture species. Genetic marker maps have been published for some species in culture. The marker density of these maps is, in general, rather low and the maps are composed of many amplified fragment length polymorphism (AFLP) markers anchored to few microsatellites. Some quantitative trait loci (QTL) have been identified for economically important traits, but they are not yet mapped at a high density. Computer simulations of within-family MAS schemes show a very high increase in genetic gain compared with conventional family-based breeding schemes, mainly due to the large family sizes that are typical for aquaculture breeding schemes. The use of genetic markers to identify individuals and their implications for breeding schemes with control of inbreeding are discussed. (author)

  20. Accuracy of genomic selection in European maize elite breeding populations.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  1. Optimisation of selective breeding program for Nile tilapia (Oreochromis niloticus)

    NARCIS (Netherlands)

    Trong, T.Q.

    2013-01-01

    The aim of this thesis was to optimise the selective breeding program for Nile tilapia in the Mekong Delta region of Vietnam. Two breeding schemes, the “classic” BLUP scheme following the GIFT method (with pair mating) and a rotational mating scheme with own performance selection and

  2. Selection problems and objectives in mutation breeding

    International Nuclear Information System (INIS)

    Mac Key, J.

    1984-01-01

    In plant breeding, major genes are preferably handled by inbreeding, back-crosses and selection through the family/pedigree method. Polygenic systems need gene accumulation, i.e. handling in bulk allowing natural/recurrent selection to operate. The two types of genetic control normally occur together irrespective of whether the variation is created by crossing or by mutagenesis. Cross-breeding can conveniently work with both types of variation and offers a range of genetic backgrounds. Problems are the often enormous recombination potential risking the break-down of already accomplished genic constellations or undesirable linkages. Mutation induction implies a scattered mono- to oligo-factorial variation mostly functioning as a negative load. As a result, it will be difficult and unrealistic to try to explore micromutations, as defined by Gaul, in vegetatively propagated and autogamous crop plants. Quantitative analyses have not been able to give guidance since the induced variation includes disturbed vitality and main or side-effects of events that are possible to define as macro-mutations. The possibility of better exhausting the variation induced will mainly depend on the precision in selection techniques, i.e. by dividing complex traits into their components, by improving environmental conditions for selection, and/or by sharpening the screening technique. Contrary to recombination breeding, mutation-induced variation does not fit a plan encompassing overall agronomic traits simultaneously. The progress has to go step by step. Thus, even more than in cross-breeding, it is important that accurately outlined objectives be set. Some characters, such as flower colour, can easily be defined while others, such as yield, may be more interdependent, calling for compromises difficult to foresee. The complexity of the latter category of traits is illustrated by the interaction pattern in relation to grain yield in cereals where both shoot and root are considered

  3. Will genomic selection be a practical method for plant breeding?

    OpenAIRE

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information avail...

  4. Goals and hurdles for a successful implementation of genomic selection in breeding programme for selected annual and perennial crops.

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk Jan

    Genomic Selection is an important topic in quantitative genetics and breeding. Not only does it allow the full use of current molecular genetic technologies, it stimulates also the development of new methods and models. Genomic selection, if fully implemented in commercial farming, should have a major impact on the productivity of various agricultural systems. But suggested approaches need to be applicable in commercial breeding populations. Many of the published research studies focus on methodologies. We conclude from the reviewed publications, that a stronger focus on strategies for the implementation of genomic selection in advanced breeding lines, introduction of new varieties, hybrids or multi-line crosses is needed. Efforts to find solutions for a better prediction and integration of environmental influences need to continue within applied breeding schemes. Goals of the implementation of genomic selection into crop breeding should be carefully defined and crop breeders in the private sector will play a substantial part in the decision-making process. However, the lack of published results from studies within, or in collaboration with, private companies diminishes the knowledge on the status of genomic selection within applied breeding programmes. Studies on the implementation of genomic selection in plant breeding need to evaluate models and methods with an enhanced emphasis on population-specific requirements and production environments. Adaptation of methods to breeding schemes or changes to breeding programmes for a better integration of genomic selection strategies are needed across species. More openness with a continuous exchange will contribute to successes.

  5. On statistical selection in plant breeding

    NARCIS (Netherlands)

    Dourleijn, C.J.

    1993-01-01

    The ultimate goal of plant breeding is the development of new varieties. An important phase in the development process is testing and selecting potential new varieties. The varieties are tested by means of experiments at various sites, (sometimes) in several years. The observations from the

  6. CLASSICAL AND MOLECULAR CYTOGENETIC STUDIES FOR BREEDING AND SELECTION OF TULIPS

    Directory of Open Access Journals (Sweden)

    Aurel Popescu

    2012-12-01

    Full Text Available Due to their extreme popularity as fresh cut flowers and garden plants, and being used extensively for landscaping, tulips undergone a continuous process of selective breeding. For almost nine decades, classical cytogenetic studies, mainly the chromosome counts, have been an important part in the breeding programme for polyploid tulips. The efficiency of breeding is greatly aided by a thorough knowledge of the occurrence of polyploidy in the plant material. While the traditional cytogenetic approaches are still highly useful in selecting polyploids and aneuploids arising from crosses involving (most often parents of different ploidy or from the material subjected to ploidy manipulation, the new strategies for inducing polyploidy in tulips, either in vivo or in vitro, and advances in molecular cytogenetics are expected to allow a significant increase in breeding efficiency. Together with the shortening of breeding cycle, major genetic improvements could be made for specific traits. In this we review the development of cytogenetic studies in tulips, and the most relevant achievements so far, providing an overview of what we consider to be valuable tools for the processes of selective breeding .

  7. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    Science.gov (United States)

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.

    Science.gov (United States)

    Wang, Yu; Bennewitz, Jörn; Wellmann, Robin

    2017-05-12

    Optimum contribution selection (OCS) is effective for increasing genetic gain, controlling the rate of inbreeding and enables maintenance of genetic diversity. However, this diversity may be caused by high migrant contributions (MC) in the population due to introgression of genetic material from other breeds, which can threaten the conservation of small local populations. Therefore, breeding objectives should not only focus on increasing genetic gains but also on maintaining genetic originality and diversity of native alleles. This study aimed at investigating whether OCS was improved by including MC and modified kinships that account for breed origin of alleles. Three objective functions were considered for minimizing kinship, minimizing MC and maximizing genetic gain in the offspring generation, and we investigated their effects on German Angler and Vorderwald cattle. In most scenarios, the results were similar for Angler and Vorderwald cattle. A significant positive correlation between MC and estimated breeding values of the selection candidates was observed for both breeds, thus traditional OCS would increase MC. Optimization was performed under the condition that the rate of inbreeding did not exceed 1% and at least 30% of the maximum progress was achieved for all other criteria. Although traditional OCS provided the highest breeding values under restriction of classical kinship, the magnitude of MC in the progeny generation was not controlled. When MC were constrained or minimized, the kinship at native alleles increased compared to the reference scenario. Thus, in addition to constraining MC, constraining kinship at native alleles is required to ensure that native genetic diversity is maintained. When kinship at native alleles was constrained, the classical kinship was automatically lowered in most cases and more sires were selected. However, the average breeding value in the next generation was also lower than that obtained with traditional OCS. For local

  9. Evidence of selection signatures that shape the Persian cat breed.

    Science.gov (United States)

    Bertolini, Francesca; Gandolfi, Barbara; Kim, Eui Soo; Haase, Bianca; Lyons, Leslie A; Rothschild, Max F

    2016-04-01

    The Persian cat is mainly characterized by an extremely brachycephalic face as part of the standard body conformation. Despite the popularity, world-wide distribution, and economic importance of the Persian cat as a fancy breed, little is known about the genetics of their hallmark morphology, brachycephaly. Over 800 cats from different breeds including Persian, non-Persian breeds (Abyssinian, Cornish Rex, Bengal, La Perm, Norwegian Forest, Maine Coon, Manx, Oriental, and Siamese), and Persian-derived breeds (British Shorthair, Scottish Fold, Selkirk Rex) were genotyped with the Illumina 63 K feline DNA array. The experimental strategy was composed of three main steps: (i) the Persian dataset was screened for runs of homozygosity to find and select highly homozygous regions; (ii) selected Persian homozygous regions were evaluated for the difference of homozygosity between Persians and those considered non-Persian breeds, and, (iii) the Persian homozygous regions most divergent from the non-Persian breeds were investigated by haplotype analysis in the Persian-derived breeds. Four regions with high homozygosity (H > 0.7) were detected, each with an average length of 1 Mb. Three regions can be considered unique to the Persian breed, with a less conservative haplotype pattern in the Persian-derived breeds. Moreover, two genes, CHL1 and CNTN6 known to determine face shape modification in humans, reside in one of the identified regions and therefore are positional candidates for the brachycephalic face in Persians. In total, the homozygous regions contained several neuronal genes that could be involved in the Persian cat behavior and can provide new insights into cat domestication.

  10. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.).

    Science.gov (United States)

    Bassi, Filippo M; Bentley, Alison R; Charmet, Gilles; Ortiz, Rodomiro; Crossa, Jose

    2016-01-01

    In the last decade the breeding technology referred to as 'genomic selection' (GS) has been implemented in a variety of species, with particular success in animal breeding. Recent research shows the potential of GS to reshape wheat breeding. Many authors have concluded that the estimated genetic gain per year applying GS is several times that of conventional breeding. GS is, however, a new technology for wheat breeding and many programs worldwide are still struggling to identify the best strategy for its implementation. This article provides practical guidelines on the key considerations when implementing GS. A review of the existing GS literature for a range of species is provided and used to prime breeder-oriented considerations on the practical applications of GS. Furthermore, this article discusses potential breeding schemes for GS, genotyping considerations, and methods for effective training population design. The components of selection intensity, progress toward inbreeding in half- or full-sibs recurrent schemes, and the generation of selection are also presented. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  12. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonas

    2015-02-01

    Full Text Available Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies. It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating genomic selection into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken and fish. It outlines tasks to help understanding possible consequences when applying genomic information in

  13. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  14. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs.

    Science.gov (United States)

    Pérez, Ana G; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties ("Picual" and "Arbequina") used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the

  15. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs

    Directory of Open Access Journals (Sweden)

    Ana G. Pérez

    2018-02-01

    Full Text Available Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties (“Picual” and “Arbequina” used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the

  16. Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    Elliot L. Heffner

    2011-03-01

    Full Text Available Genomic selection (GS uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotypes of lines from each cross before conducting GS. This will prolong the selection cycle and may result in lower gains per year than approaches that estimate marker-effects with multiple families from previous selection cycles. In this study, phenotypic selection (PS, conventional marker-assisted selection (MAS, and GS prediction accuracy were compared for 13 agronomic traits in a population of 374 winter wheat ( L. advanced-cycle breeding lines. A cross-validation approach that trained and validated prediction accuracy across years was used to evaluate effects of model selection, training population size, and marker density in the presence of genotype × environment interactions (G×E. The average prediction accuracies using GS were 28% greater than with MAS and were 95% as accurate as PS. For net merit, the average accuracy across six selection indices for GS was 14% greater than for PS. These results provide empirical evidence that multifamily GS could increase genetic gain per unit time and cost in plant breeding.

  17. Experimentally reduced corticosterone release promotes early breeding in black-legged kittiwakes.

    Science.gov (United States)

    Goutte, Aurélie; Clément-Chastel, Céline; Moe, Børge; Bech, Claus; Gabrielsen, Geir Wing; Chastel, Olivier

    2011-06-15

    Breeding at the right time is important for successful reproduction. In birds, stressful environmental conditions are known to delay the timing of breeding but the underlying mechanisms are poorly understood. The stress hormone corticosterone appears to be a good candidate for mediating egg-laying date according to early environmental conditions and physiological state. By experimentally reducing the release of corticosterone in black-legged kittiwakes during the pre-laying period, we tested whether egg-laying date was mechanistically linked to corticosterone levels. Male and female kittiwakes were implanted with a low dose of exogenous corticosterone to inhibit endogenous corticosterone production. According to our predictions, the experimental reduction of corticosterone release was paralleled by a significant advancement of egg laying in females (around 4 days earlier). In addition, females with experimentally reduced corticosterone release gained mass during the pre-laying period compared with controls. Ultimately, the advancement of egg laying in females with experimentally reduced corticosterone levels was associated with an enhanced breeding success. This effect was strongly sex specific. In corticosterone-treated male kittiwakes, egg-laying date and reproductive success were not affected, but breeding probability was lower than in controls. This corticosterone treatment did not influence immediate clutch size, or return rate and breeding decision the following year. Our results support the hypothesis that corticosterone secretion during the pre-laying period mediates the timing of breeding in this long-lived seabird, possibly through the dynamics of energy reserves.

  18. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species.

    Directory of Open Access Journals (Sweden)

    Yuhuan Meng

    Full Text Available Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

  19. Review. Promises, pitfalls and challenges of genomic selection in breeding programs

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Escriche, N.; Gonzalez-Recio, O.

    2011-07-01

    The aim of this work was to review the main challenges and pitfalls of the implementation of genomic selection in the breeding programs of different livestock species. Genomic selection is now one of the main challenges in animal breeding and genetics. Its application could considerably increase the genetic gain in traits of interest. However, the success of its practical implementation depends on the selection scheme characteristics, and these must be studied for each particular case. In dairy cattle, especially in Holsteins, genomic selection is a reality. However, in other livestock species (beef cattle, small ruminants, monogastrics and fish) genomic selection has mainly been used experimentally. The main limitation for its implementation in the mentioned livestock species is the high geno typing costs compared to the low selection value of the candidate. Nevertheless, nowadays the possibility of using single-nucleotide polymorphism (SNP) chips of low density to make genomic selection applications economically feasible is under study. Economic studies may optimize the benefits of genomic selection (GS) to include new traits in the breeding goals. It is evident that genomic selection offers great potential; however, a suitable geno typing strategy and recording system for each case is needed in order to properly exploit it. (Author) 50 refs.

  20. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection.

    Science.gov (United States)

    Haberland, A M; König von Borstel, U; Simianer, H; König, S

    2012-09-01

    Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.

  1. Genomic selection accuracy using multi-family prediction models in a wheat breeding program

    Science.gov (United States)

    Genomic selection (GS) uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotyp...

  2. CASSAVA BREEDING I: THE VALUE OF BREEDING VALUE

    Directory of Open Access Journals (Sweden)

    Hernán Ceballos

    2016-08-01

    Full Text Available Breeding cassava relies on several selection stages (single row trial-SRT; preliminary; advanced; and uniform yield trials - UYT. This study uses data from 14 years of evaluations. From more than 20,000 genotypes initially evaluated only 114 reached the last stage. The objective was to assess how the data at SRT could be used to predict the probabilities of genotypes reaching the UYT. Phenotypic data from each genotype at SRT was integrated into the selection index (SIN used by the cassava breeding program. Average SIN from all the progenies derived from each progenitor was then obtained. Average SIN is an approximation of the breeding value of each progenitor. Data clearly suggested that some genotypes were better progenitors than others (e.g. high number of their progenies reaching the UYT, suggesting important variation in breeding values of progenitors. However, regression of average SIN of each parental genotype on the number of their respective progenies reaching UYT resulted in a negligible coefficient of determination (r2 = 0.05. Breeding value (e.g. average SIN at SRT was not efficient predicting which genotypes were more likely to reach the UYT stage. Number of families and progenies derived from a given progenitor were more efficient predicting the probabilities of the progeny from a given parent reaching the UYT stage. Large within-family genetic variation tends to mask the true breeding value of each progenitor. The use of partially inbred progenitors (e.g. S1 or S2 genotypes would reduce the within-family genetic variation thus making the assessment of breeding value more accurate. Moreover, partial inbreeding of progenitors can improve the breeding value of the original (S0 parental material and sharply accelerate genetic gains. For instance, homozygous S1 genotypes for the dominant resistance to cassava mosaic disease could be generated and selected. All gametes from these selected S1 genotypes would carry the desirable allele

  3. Challenges of captive breeding and re-introduction of selected ...

    African Journals Online (AJOL)

    -introduction of selected primate species in the wild using Centre for Education, Research and Conservation of Primates and Nature (CERCOPAN) and Drill Rehabilitation and Breeding Center (PANDRILLUS) of Cross Rivers State as case ...

  4. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher.

    Science.gov (United States)

    Sheldon, B C; Kruuk, L E B; Merilä, J

    2003-02-01

    Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on

  5. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer

  6. Assessing Genomic Selection Prediction Accuracy in a Dynamic Barley Breeding Population

    Directory of Open Access Journals (Sweden)

    A. H. Sallam

    2015-03-01

    Full Text Available Prediction accuracy of genomic selection (GS has been previously evaluated through simulation and cross-validation; however, validation based on progeny performance in a plant breeding program has not been investigated thoroughly. We evaluated several prediction models in a dynamic barley breeding population comprised of 647 six-row lines using four traits differing in genetic architecture and 1536 single nucleotide polymorphism (SNP markers. The breeding lines were divided into six sets designated as one parent set and five consecutive progeny sets comprised of representative samples of breeding lines over a 5-yr period. We used these data sets to investigate the effect of model and training population composition on prediction accuracy over time. We found little difference in prediction accuracy among the models confirming prior studies that found the simplest model, random regression best linear unbiased prediction (RR-BLUP, to be accurate across a range of situations. In general, we found that using the parent set was sufficient to predict progeny sets with little to no gain in accuracy from generating larger training populations by combining the parent set with subsequent progeny sets. The prediction accuracy ranged from 0.03 to 0.99 across the four traits and five progeny sets. We explored characteristics of the training and validation populations (marker allele frequency, population structure, and linkage disequilibrium, LD as well as characteristics of the trait (genetic architecture and heritability, . Fixation of markers associated with a trait over time was most clearly associated with reduced prediction accuracy for the mycotoxin trait DON. Higher trait in the training population and simpler trait architecture were associated with greater prediction accuracy.

  7. Accelerating the Switchgrass (Panicum virgatum L.) Breeding Cycle Using Genomic Selection Approaches

    Science.gov (United States)

    Lipka, Alexander E.; Lu, Fei; Cherney, Jerome H.; Buckler, Edward S.; Casler, Michael D.; Costich, Denise E.

    2014-01-01

    Switchgrass (Panicum virgatum L.) is a perennial grass undergoing development as a biofuel feedstock. One of the most important factors hindering breeding efforts in this species is the need for accurate measurement of biomass yield on a per-hectare basis. Genomic selection on simple-to-measure traits that approximate biomass yield has the potential to significantly speed up the breeding cycle. Recent advances in switchgrass genomic and phenotypic resources are now making it possible to evaluate the potential of genomic selection of such traits. We leveraged these resources to study the ability of three widely-used genomic selection models to predict phenotypic values of morphological and biomass quality traits in an association panel consisting of predominantly northern adapted upland germplasm. High prediction accuracies were obtained for most of the traits, with standability having the highest ten-fold cross validation prediction accuracy (0.52). Moreover, the morphological traits generally had higher prediction accuracies than the biomass quality traits. Nevertheless, our results suggest that the quality of current genomic and phenotypic resources available for switchgrass is sufficiently high for genomic selection to significantly impact breeding efforts for biomass yield. PMID:25390940

  8. Technological innovation of induced breeding of space and selection of new variety on pepper

    International Nuclear Information System (INIS)

    Guo Yahua; Xie Libo; Wang Xue; Deng Liping

    2004-01-01

    New pepper variety Yujiao No.1 and new pepper lines with different horticultural characters are obtained by new breeding technique: combination of space inducement and regular breeding, field selection and inherited marker

  9. Wetland selection by breeding and foraging black terns in the Prairie Pothole Region of the United States

    Science.gov (United States)

    Steen, Valerie A.; Powell, Abby N.

    2012-01-01

    We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias by replacing occurrence of terns in the models with an index of density. Local wetland variables were more important than landscape variables in predictions of occurrence of breeding and foraging. Wetland size was more important to prediction of foraging than of breeding locations, while floating matted vegetation was more important to prediction of breeding than of foraging locations. The amount of seasonal wetland in the landscape was the only landscape variable important to prediction of both foraging and breeding. Models based on a density index indicated that wetland selection by foraging terns may be more area dependent than that by breeding terns. Our study provides some of the first evidence for differential breeding and foraging wetland selection by Black Terns and for a more limited role of landscape effects and area sensitivity than has been previously shown.

  10. Accuracy and responses of genomic selection on key traits in apple breeding

    NARCIS (Netherlands)

    Muranty, Hélène; Troggio, Michela; Sadok, Ben Inès; Rifaï, Al Mehdi; Auwerkerken, Annemarie; Banchi, E.; Velasco, Riccardo; Stevanato, P.; Weg, van de W.E.; Guardo, Di M.; Kumar, S.; Laurens, François; Bink, M.C.A.M.

    2015-01-01

    The application of genomic selection in fruit tree crops is expected to enhance breeding efficiency by increasing prediction accuracy, increasing selection intensity and decreasing generation interval. The objectives of this study were to assess the accuracy of prediction and selection response in

  11. Selective breeding in organic dairy production

    NARCIS (Netherlands)

    Nauta, W.J.

    2009-01-01

    Organic dairy farming started to take off in the early 1990s, when the European Union laid down organic standards for animal production. Until now, however, only incidental steps have been taken towards organic breeding and organic farmers mainly use breeding stock from conventional breeding

  12. Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees.

    Science.gov (United States)

    Guarna, M Marta; Hoover, Shelley E; Huxter, Elizabeth; Higo, Heather; Moon, Kyung-Mee; Domanski, Dominik; Bixby, Miriam E F; Melathopoulos, Andony P; Ibrahim, Abdullah; Peirson, Michael; Desai, Suresh; Micholson, Derek; White, Rick; Borchers, Christoph H; Currie, Robert W; Pernal, Stephen F; Foster, Leonard J

    2017-08-21

    We present a novel way to select for highly polygenic traits. For millennia, humans have used observable phenotypes to selectively breed stronger or more productive livestock and crops. Selection on genotype, using single-nucleotide polymorphisms (SNPs) and genome profiling, is also now applied broadly in livestock breeding programs; however, selection on protein/peptide or mRNA expression markers has not yet been proven useful. Here we demonstrate the utility of protein markers to select for disease-resistant hygienic behavior in the European honey bee (Apis mellifera L.). Robust, mechanistically-linked protein expression markers, by integrating cis- and trans- effects from many genomic loci, may overcome limitations of genomic markers to allow for selection. After three generations of selection, the resulting marker-selected stock outperformed an unselected benchmark stock in terms of hygienic behavior, and had improved survival when challenged with a bacterial disease or a parasitic mite, similar to bees selected using a phenotype-based assessment for this trait. This is the first demonstration of the efficacy of protein markers for industrial selective breeding in any agricultural species, plant or animal.

  13. Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants.

    Science.gov (United States)

    Lin, Zibei; Shi, Fan; Hayes, Ben J; Daetwyler, Hans D

    2017-05-01

    Heuristic genomic inbreeding controls reduce inbreeding in genomic breeding schemes without reducing genetic gain. Genomic selection is increasingly being implemented in plant breeding programs to accelerate genetic gain of economically important traits. However, it may cause significant loss of genetic diversity when compared with traditional schemes using phenotypic selection. We propose heuristic strategies to control the rate of inbreeding in outbred plants, which can be categorised into three types: controls during mate allocation, during selection, and simultaneous selection and mate allocation. The proposed mate allocation measure GminF allocates two or more parents for mating in mating groups that minimise coancestry using a genomic relationship matrix. Two types of relationship-adjusted genomic breeding values for parent selection candidates ([Formula: see text]) and potential offspring ([Formula: see text]) are devised to control inbreeding during selection and even enabling simultaneous selection and mate allocation. These strategies were tested in a case study using a simulated perennial ryegrass breeding scheme. As compared to the genomic selection scheme without controls, all proposed strategies could significantly decrease inbreeding while achieving comparable genetic gain. In particular, the scenario using [Formula: see text] in simultaneous selection and mate allocation reduced inbreeding to one-third of the original genomic selection scheme. The proposed strategies are readily applicable in any outbred plant breeding program.

  14. Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding.

    Science.gov (United States)

    Grenier, Cécile; Cao, Tuong-Vi; Ospina, Yolima; Quintero, Constanza; Châtel, Marc Henri; Tohme, Joe; Courtois, Brigitte; Ahmadi, Nourollah

    2015-01-01

    Genomic selection (GS) is a promising strategy for enhancing genetic gain. We investigated the accuracy of genomic estimated breeding values (GEBV) in four inter-related synthetic populations that underwent several cycles of recurrent selection in an upland rice-breeding program. A total of 343 S2:4 lines extracted from those populations were phenotyped for flowering time, plant height, grain yield and panicle weight, and genotyped with an average density of one marker per 44.8 kb. The relative effect of the linkage disequilibrium (LD) and minor allele frequency (MAF) thresholds for selecting markers, the relative size of the training population (TP) and of the validation population (VP), the selected trait and the genomic prediction models (frequentist and Bayesian) on the accuracy of GEBVs was investigated in 540 cross validation experiments with 100 replicates. The effect of kinship between the training and validation populations was tested in an additional set of 840 cross validation experiments with a single genomic prediction model. LD was high (average r2 = 0.59 at 25 kb) and decreased slowly, distribution of allele frequencies at individual loci was markedly skewed toward unbalanced frequencies (MAF average value 15.2% and median 9.6%), and differentiation between the four synthetic populations was low (FST ≤0.06). The accuracy of GEBV across all cross validation experiments ranged from 0.12 to 0.54 with an average of 0.30. Significant differences in accuracy were observed among the different levels of each factor investigated. Phenotypic traits had the biggest effect, and the size of the incidence matrix had the smallest. Significant first degree interaction was observed for GEBV accuracy between traits and all the other factors studied, and between prediction models and LD, MAF and composition of the TP. The potential of GS to accelerate genetic gain and breeding options to increase the accuracy of predictions are discussed.

  15. Simple intervention to reduce mosquito breeding in waste stabilisation ponds

    DEFF Research Database (Denmark)

    Ensink, Jeroen H J; Mukhtar, Muhammad; van der Hoek, Wim

    2007-01-01

    Waste stabilisation ponds (WSP) are the preferred method for treatment of urban wastewater in low-income countries but, especially in arid regions, the pond systems can be important breeding sites for mosquitoes of medical importance. In a WSP system in Faisalabad, Pakistan, we assessed the impact...... of simple environmental interventions on mosquito occurrence and abundance. Reducing the amount of floating matter in the ponds, eliminating emergent vegetation and repairing cracks in the cement structure reduced the number of mosquito-positive samples in the intervention ponds to almost zero, whereas...... the control ponds had a significant number of positive samples. This suggests that a combination of simple low-cost interventions is a feasible environmental management strategy for vector control in WSP systems that are located in areas where medically important mosquitoes may breed in the shallow ponds....

  16. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    Science.gov (United States)

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  17. Recurrent selection as breeding strategy for heat tolerance in wheat

    OpenAIRE

    Juarez Campolina Machado; Moacil Alves de Souza; Davi Melo de Oliveira; Adeliano Cargnin; Aderico Júnior Badaró Pimentel; Josiane Cristina de Assis

    2010-01-01

    The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter). The genetic gain ...

  18. Detection of selection signatures for ear carriage in Maltese goat breed

    Directory of Open Access Journals (Sweden)

    Andrea Talenti

    2017-05-01

    Full Text Available Selection and breeding practices in goats have led to the fixation of several traits. This is probably due to the standardization of several peculiar morphological characteristics that have always been one of the major exclusion criteria of individuals from selection. Among these, ear carriage is one of the most ancient and considered a signature of domestication in several species, such as the dog, pig, sheep and goat (Boyko et al., 2010. The availability of improved genomic analyses tools for goats may provide useful information on genes involved in this trait. By studying, for example, the homozygosity decay of haplotypes (contiguous length of alleles such information can be detected. In the current study, we focused on the Maltese goat, a breed showing floppy ears, in comparison with other Italian breeds using a goat medium density SNP chip (Nicoloso et al., 2015. A total 48,767 SNP markers for 369 animals belonging to 16 breeds or populations were analyzed. Genotypes were imputed within population excluding markers without known position on the current genome assembly (ARS1, Bickhart et al., 2017. Population analysis using MDS, ADMIXTURE and fastSTRUCTURE confirmed the good differentiation among the populations. Integrated Haplotype Score (iHS, Sabeti et al., 2007 was performed for each population, comparing the regions detected on the Maltese breed with the others considered to detect genes that may be involved into shaping  ear morphology. These results may provide new insights into ear carriage phenotype by detecting genes that play a pivotal role in shaping the goat phenotypic diversity. Acknowledgement The research was funded by INNOVAGEN project.

  19. Genomic selection for crossbred performance accounting for breed-specific effects.

    Science.gov (United States)

    Lopes, Marcos S; Bovenhuis, Henk; Hidalgo, André M; van Arendonk, Johan A M; Knol, Egbert F; Bastiaansen, John W M

    2017-06-26

    Breed-specific effects are observed when the same allele of a given genetic marker has a different effect depending on its breed origin, which results in different allele substitution effects across breeds. In such a case, single-breed breeding values may not be the most accurate predictors of crossbred performance. Our aim was to estimate the contribution of alleles from each parental breed to the genetic variance of traits that are measured in crossbred offspring, and to compare the prediction accuracies of estimated direct genomic values (DGV) from a traditional genomic selection model (GS) that are trained on purebred or crossbred data, with accuracies of DGV from a model that accounts for breed-specific effects (BS), trained on purebred or crossbred data. The final dataset was composed of 924 Large White, 924 Landrace and 924 two-way cross (F1) genotyped and phenotyped animals. The traits evaluated were litter size (LS) and gestation length (GL) in pigs. The genetic correlation between purebred and crossbred performance was higher than 0.88 for both LS and GL. For both traits, the additive genetic variance was larger for alleles inherited from the Large White breed compared to alleles inherited from the Landrace breed (0.74 and 0.56 for LS, and 0.42 and 0.40 for GL, respectively). The highest prediction accuracies of crossbred performance were obtained when training was done on crossbred data. For LS, prediction accuracies were the same for GS and BS DGV (0.23), while for GL, prediction accuracy for BS DGV was similar to the accuracy of GS DGV (0.53 and 0.52, respectively). In this study, training on crossbred data resulted in higher prediction accuracy than training on purebred data and evidence of breed-specific effects for LS and GL was demonstrated. However, when training was done on crossbred data, both GS and BS models resulted in similar prediction accuracies. In future studies, traits with a lower genetic correlation between purebred and crossbred

  20. Conspecific reproductive success and breeding habitat selection: Implications for the study of coloniality

    Science.gov (United States)

    Danchin, E.; Boulinier, T.; Massot, M.

    1998-01-01

    Habitat selection is a crucial process in the life cycle of animals because it can affect most components of fitness. It has been proposed that some animals cue on the reproductive success of conspecifics to select breeding habitats. We tested this hypothesis with demographic and behavioral data from a 17-yr study of the Black-legged Kittiwake (Rissa tridactyla), a cliff-nesting seabird. As the hypothesis assumes, the Black-legged Kittiwake nesting environment was patchy, and the relative quality of the different patches (i.e., breeding cliffs) varied in time. The average reproductive success of the breeders of a given cliff was predictable from one year to the next, but this predictability faded after several years. The dynamic nature of cliff quality in the long term is partly explained by the autocorrelation of the prevalence of an ectoparasite that influences reproductive success. As predicted by the performance-based conspecific attraction hypothesis, the reproductive success of current breeders on a given cliff was predictive of the reproductive success of new recruits on the cliff in the following year. Breeders tended to recruit to the previous year's most productive cliffs and to emigrate from the least productive ones. Consequently, the dynamics of breeder numbers on the cliffs were explained by local reproductive success on a year-to-year basis. Because, on average, young Black-legged Kittiwakes first breed when 4 yr old, such a relationship probably results from individual choices based on the assessment of previous-year local quality. When breeders changed breeding cliffs between years, they selected cliffs of per capita higher reproductive success. Furthermore, after accounting for the potential effects of age and sex as well as between-year variations, the effect of individual breeding performance on breeding dispersal was strongly influenced by the average reproductive success of other breeders on the same cliff. Individual breeding performance did

  1. Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Science.gov (United States)

    Kijas, James W.; Lenstra, Johannes A.; Hayes, Ben; Boitard, Simon; Porto Neto, Laercio R.; San Cristobal, Magali; Servin, Bertrand; McCulloch, Russell; Whan, Vicki; Gietzen, Kimberly; Paiva, Samuel; Barendse, William; Ciani, Elena; Raadsma, Herman; McEwan, John; Dalrymple, Brian

    2012-01-01

    Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species. PMID:22346734

  2. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    2012-02-01

    Full Text Available Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

  3. Genomic Footprints in Selected and Unselected Beef Cattle Breeds in Korea.

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    Full Text Available Korean Hanwoo cattle have been subjected to intensive artificial selection over the past four decades to improve meat production traits. Another three cattle varieties very closely related to Hanwoo reside in Korea (Jeju Black and Brindle and in China (Yanbian. These breeds have not been part of a breeding scheme to improve production traits. Here, we compare the selected Hanwoo against these similar but presumed to be unselected populations to identify genomic regions that have been under recent selection pressure due to the breeding program. Rsb statistics were used to contrast the genomes of Hanwoo versus a pooled sample of the three unselected population (UN. We identified 37 significant SNPs (FDR corrected in the HW/UN comparison and 21 known protein coding genes were within 1 MB to the identified SNPs. These genes were previously reported to affect traits important for meat production (14 genes, reproduction including mammary gland development (3 genes, coat color (2 genes, and genes affecting behavioral traits in a broader sense (2 genes. We subsequently sequenced (Illumina HiSeq 2000 platform 10 individuals of the brown Hanwoo and the Chinese Yanbian to identify SNPs within the candidate genomic regions. Based on allele frequency differences, haplotype structures, and literature research, we singled out one non-synonymous SNP in the APP gene (APP: c.569C>T, Ala199Val and predicted the mutational effect on the protein structure. We found that protein-protein interactions might be impaired due to increased exposed hydrophobic surfaces of the mutated protein. The APP gene has also been reported to affect meat tenderness in pigs and obesity in humans. Meat tenderness has been linked to intramuscular fat content, which is one of the main breeding goals for brown Hanwoo, potentially supporting a causal influence of the herein described nsSNP in the APP gene.

  4. Genomic Footprints in Selected and Unselected Beef Cattle Breeds in Korea.

    Science.gov (United States)

    Lim, Dajeong; Strucken, Eva M; Choi, Bong Hwan; Chai, Han Ha; Cho, Yong Min; Jang, Gul Won; Kim, Tae-Hun; Gondro, Cedric; Lee, Seung Hwan

    2016-01-01

    Korean Hanwoo cattle have been subjected to intensive artificial selection over the past four decades to improve meat production traits. Another three cattle varieties very closely related to Hanwoo reside in Korea (Jeju Black and Brindle) and in China (Yanbian). These breeds have not been part of a breeding scheme to improve production traits. Here, we compare the selected Hanwoo against these similar but presumed to be unselected populations to identify genomic regions that have been under recent selection pressure due to the breeding program. Rsb statistics were used to contrast the genomes of Hanwoo versus a pooled sample of the three unselected population (UN). We identified 37 significant SNPs (FDR corrected) in the HW/UN comparison and 21 known protein coding genes were within 1 MB to the identified SNPs. These genes were previously reported to affect traits important for meat production (14 genes), reproduction including mammary gland development (3 genes), coat color (2 genes), and genes affecting behavioral traits in a broader sense (2 genes). We subsequently sequenced (Illumina HiSeq 2000 platform) 10 individuals of the brown Hanwoo and the Chinese Yanbian to identify SNPs within the candidate genomic regions. Based on allele frequency differences, haplotype structures, and literature research, we singled out one non-synonymous SNP in the APP gene (APP: c.569C>T, Ala199Val) and predicted the mutational effect on the protein structure. We found that protein-protein interactions might be impaired due to increased exposed hydrophobic surfaces of the mutated protein. The APP gene has also been reported to affect meat tenderness in pigs and obesity in humans. Meat tenderness has been linked to intramuscular fat content, which is one of the main breeding goals for brown Hanwoo, potentially supporting a causal influence of the herein described nsSNP in the APP gene.

  5. Recurrent selection as breeding strategy for heat tolerance in wheat

    Directory of Open Access Journals (Sweden)

    Juarez Campolina Machado

    2010-01-01

    Full Text Available The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter. The genetic gain and the existence of variability show the possibility of successful recurrent selection for heattolerancein wheat.

  6. Microbiome selection could spur next-generation plant breeding strategies

    Directory of Open Access Journals (Sweden)

    Murali Gopal

    2016-12-01

    Full Text Available Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbours in different plant tissues i.e the ‘plant microbiome’, form the holobiome which is now considered as unit of selection: ‘the holobiont’. The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding.

  7. Selection of Breeding Stock among Australian Purebred Dog Breeders, with Particular Emphasis on the Dam

    Directory of Open Access Journals (Sweden)

    Veronika Czerwinski

    2016-11-01

    Full Text Available Every year, thousands of purebred domestic dogs are bred by registered dog breeders. Yet, little is known about the rearing environment of these dogs, or the attitudes and priorities surrounding breeding practices of these dog breeders. The objective of this study was to explore some of the factors that dog breeders consider important for stock selection, with a particular emphasis on issues relating to the dam. Two-hundred and seventy-four Australian purebred dog breeders, covering 91 breeds across all Australian National Kennel Club breed groups, completed an online survey relating to breeding practices. Most breeders surveyed (76% reported specialising in one breed of dog, the median number of dogs and bitches per breeder was two and three respectively, and most breeders bred two litters or less a year. We identified four components, relating to the dam, that were considered important to breeders. These were defined as Maternal Care, Offspring Potential, Dam Temperament, and Dam Genetics and Health. Overall, differences were observed in attitudes and beliefs across these components, showing that there is variation according to breed/breed groups. In particular, the importance of Maternal Care varied according to dog breed group. Breeders of brachycephalic breeds tended to differ the most in relation to Offspring Potential and Dam Genetics and Health. The number of breeding dogs/bitches influenced breeding priority, especially in relation to Dam Temperament, however no effect was found relating to the number of puppies bred each year. Only 24% of breeders used their own sire for breeding. The finding that some breeders did not test for diseases relevant to their breed, such as hip dysplasia in Labrador Retrievers and German Shepherds, provides important information on the need to educate some breeders, and also buyers of purebred puppies, that screening for significant diseases should occur. Further research into the selection of breeding dams

  8. Accuracy of Genomic Selection in a Rice Synthetic Population Developed for Recurrent Selection Breeding.

    Directory of Open Access Journals (Sweden)

    Cécile Grenier

    Full Text Available Genomic selection (GS is a promising strategy for enhancing genetic gain. We investigated the accuracy of genomic estimated breeding values (GEBV in four inter-related synthetic populations that underwent several cycles of recurrent selection in an upland rice-breeding program. A total of 343 S2:4 lines extracted from those populations were phenotyped for flowering time, plant height, grain yield and panicle weight, and genotyped with an average density of one marker per 44.8 kb. The relative effect of the linkage disequilibrium (LD and minor allele frequency (MAF thresholds for selecting markers, the relative size of the training population (TP and of the validation population (VP, the selected trait and the genomic prediction models (frequentist and Bayesian on the accuracy of GEBVs was investigated in 540 cross validation experiments with 100 replicates. The effect of kinship between the training and validation populations was tested in an additional set of 840 cross validation experiments with a single genomic prediction model. LD was high (average r2 = 0.59 at 25 kb and decreased slowly, distribution of allele frequencies at individual loci was markedly skewed toward unbalanced frequencies (MAF average value 15.2% and median 9.6%, and differentiation between the four synthetic populations was low (FST ≤0.06. The accuracy of GEBV across all cross validation experiments ranged from 0.12 to 0.54 with an average of 0.30. Significant differences in accuracy were observed among the different levels of each factor investigated. Phenotypic traits had the biggest effect, and the size of the incidence matrix had the smallest. Significant first degree interaction was observed for GEBV accuracy between traits and all the other factors studied, and between prediction models and LD, MAF and composition of the TP. The potential of GS to accelerate genetic gain and breeding options to increase the accuracy of predictions are discussed.

  9. Do traditional sheep breeders perform conscious selection? An example from a participatory breeding program of Morada Nova sheep.

    Science.gov (United States)

    Arandas, Janaina Kelli Gomes; Alves, Ângelo Giuseppe Chaves; Facó, Olivardo; Belchior, Ernandes Barboza; Shiotsuki, Luciana; de Arruda Leite, Paulo Márcio Barbosa; Ribeiro, Maria Norma

    2017-10-01

    The implementation of sustainable breeding programs requires genetic breeding strategies that are appropriate for the reality production systems. It is also essential that the choice of animal selection criteria be based on breeders' knowledge and objectives. This work is an ethno-zootechnical study of the Morada Nova sheep breed and its crossbreeds. The goals of this study were to register and analyze indigenous breeders' knowledge and practices regarding animal selection criteria and to generate technical information to support a participatory breeding program of the breed. This study was conducted in the Morada Nova municipality in the state of Ceará, Brazil. Semi-structured interviews were evaluated using two groups of individuals, purebred Morada Nova sheep breeders (RMN, n = 13) and breeders of Morada Nova crossbreeds (MMN, n = 48). Interview questions were used to identify local selection criteria adopted by each group in the choice of animals for breeding. Data from the interviews were submitted to frequency distribution analysis and the Shapiro-Wilk test to verify their distribution. Later, the Kruskal-Wallis test was used to compare the two groups of farmers based on that information, in addition to multivariate statistical analysis and evaluation of Smith salience index. Breeders in the RMN group used selection criteria related to breed standards, such as pelage color. In contrast, breeders of the MMN group used criteria related to productivity, such as body conformation and milk production. Breeders should be engaged in the development of breeding programs, and it is important to consider their preferences and objectives when evaluating breeding animals.

  10. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding

    OpenAIRE

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broad...

  11. Effect of Group-Selection Opening Size on Breeding Bird Habitat Use in a Bottomland Forest

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, C.E.; D.C. Guynn, Jr.

    2001-12-01

    Research on the effects of creating group-selection openings of various sizes on breeding birds habitat use in a bottomland hardwood forest of the Upper Coastal Plain of South Carolina. Creation of 0.5-ha group selection openings in southern bottomland forests should provide breeding habitat for some field-edge species in gaps and habitat for forest-interior species and canopy-dwelling forest-edge species between gaps provided that enough mature forest is made available.

  12. Simulated selection responses for breeding programs including resistance and resilience to parasites in Creole goats

    NARCIS (Netherlands)

    Gunia, M.; Phocas, F.; Gourdine, J.L.; Bijma, P.; Mandonnet, N.

    2013-01-01

    The Creole goat is a local breed used for meat production in Guadeloupe (French West Indies). As in other tropical countries, improvement of parasite resistance is needed. In this study, we compared predicted selection responses for alternative breeding programs with or without parasites resistance

  13. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines

    Science.gov (United States)

    Nielsen, Nanna Hellum; Jahoor, Ahmed; Jensen, Jens Due; Orabi, Jihad; Cericola, Fabio; Edriss, Vahid; Jensen, Just

    2016-01-01

    Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines) are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families. PMID:27783639

  14. Genomic Prediction of Seed Quality Traits Using Advanced Barley Breeding Lines.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Genomic selection was recently introduced in plant breeding. The objective of this study was to develop genomic prediction for important seed quality parameters in spring barley. The aim was to predict breeding values without expensive phenotyping of large sets of lines. A total number of 309 advanced spring barley lines tested at two locations each with three replicates were phenotyped and each line was genotyped by Illumina iSelect 9Kbarley chip. The population originated from two different breeding sets, which were phenotyped in two different years. Phenotypic measurements considered were: seed size, protein content, protein yield, test weight and ergosterol content. A leave-one-out cross-validation strategy revealed high prediction accuracies ranging between 0.40 and 0.83. Prediction across breeding sets resulted in reduced accuracies compared to the leave-one-out strategy. Furthermore, predicting across full and half-sib-families resulted in reduced prediction accuracies. Additionally, predictions were performed using reduced marker sets and reduced training population sets. In conclusion, using less than 200 lines in the training set can result in low prediction accuracy, and the accuracy will then be highly dependent on the family structure of the selected training set. However, the results also indicate that relatively small training sets (200 lines are sufficient for genomic prediction in commercial barley breeding. In addition, our results indicate a minimum marker set of 1,000 to decrease the risk of low prediction accuracy for some traits or some families.

  15. Efficient Breeding by Genomic Mating.

    Science.gov (United States)

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  16. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed.

    Science.gov (United States)

    Schiavo, G; Galimberti, G; Calò, D G; Samorè, A B; Bertolini, F; Russo, V; Gallo, M; Buttazzoni, L; Fontanesi, L

    2016-04-01

    In this study, we investigated at the genome-wide level if 20 years of artificial directional selection based on boar genetic evaluation obtained with a classical BLUP animal model shaped the genome of the Italian Large White pig breed. The most influential boars of this breed (n = 192), born from 1992 (the beginning of the selection program of this breed) to 2012, with an estimated breeding value reliability of >0.85, were genotyped with the Illumina Porcine SNP60 BeadChip. After grouping the boars in eight classes according to their year of birth, filtered single nucleotide polymorphisms (SNPs) were used to evaluate the effects of time on genotype frequency changes using multinomial logistic regression models. Of these markers, 493 had a PBonferroni  selection program. The obtained results indicated that the genome of the Italian Large White pigs was shaped by a directional selection program derived by the application of methodologies assuming the infinitesimal model that captured a continuous trend of allele frequency changes in the boar population. © 2015 Stichting International Foundation for Animal Genetics.

  17. Social polyandry, parental investment, sexual selection, and evolution of reduced female gamete size.

    Science.gov (United States)

    Andersson, Malte

    2004-01-01

    Sexual selection in the form of sperm competition is a major explanation for small size of male gametes. Can sexual selection in polyandrous species with reversed sex roles also lead to reduced female gamete size? Comparative studies show that egg size in birds tends to decrease as a lineage evolves social polyandry. Here, a quantitative genetic model predicts that female scrambles over mates lead to evolution of reduced female gamete size. Increased female mating success drives the evolution of smaller eggs, which take less time to produce, until balanced by lowered offspring survival. Mean egg size is usually reduced and polyandry increased by increasing sex ratio (male bias) and maximum possible number of mates. Polyandry also increases with the asynchrony (variance) in female breeding start. Opportunity for sexual selection increases with the maximum number of mates but decreases with increasing sex ratio. It is well known that parental investment can affect sexual selection. The model suggests that the influence is mutual: owing to a coevolutionary feedback loop, sexual selection in females also shapes initial parental investment by reducing egg size. Feedback between sexual selection and parental investment may be common.

  18. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation

    Directory of Open Access Journals (Sweden)

    Parwinder Kaur

    2017-09-01

    Full Text Available Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia’s key pasture legume, subterranean clover (Trifolium subterraneum L.. In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4 and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548 and a downstream lectin receptor protein kinase (TSub_g18549 provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967, linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549 and ribonuclease proteins (TSub_g26974, TSub_g26975. These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most

  19. Study on increasing mutagenic efficiency of radiation breeding for rice

    International Nuclear Information System (INIS)

    Wan Xianguo; Pang Boliang; Zhu Xiaoqi

    1993-04-01

    Increasing mutagenic efficiency and improving selection method are of important topics for crop mutation breeding. Investigation on the radiation breeding for rice (Oryza Sativa L.) showed that the crossing in combination with gamma ray irradiation or laser irradiation and proper selection of dosage rate can increase mutagenic efficiency. According to the correlation of phenotype in M 1 generation and mutation frequency in M 2 for rice, the materials with certain characters were chose as seeds, thus the works of generation selections will be reduced

  20. Sunflower Hybrid Breeding: From Markers to Genomic Selection.

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2017-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi , or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  1. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Directory of Open Access Journals (Sweden)

    Aleksandra Dimitrijevic

    2018-01-01

    Full Text Available In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare

  2. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    Science.gov (United States)

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches

  3. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat.

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2018-01-01

    To evaluate the potential of genomic selection (GS), a selection experiment with GS and phenotypic selection (PS) was performed in an allogamous crop, common buckwheat ( Fagopyrum esculentum Moench). To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598-50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  4. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass

    Directory of Open Access Journals (Sweden)

    Zibei Lin

    2016-03-01

    Full Text Available Genomic selection (GS provides an attractive option for accelerating genetic gain in perennial ryegrass ( improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time. Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot. Genomic estimated breeding values (GEBVs for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively. Higher accuracy of GEBVs was obtained for flowering time (up to 0.7, partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy.

  5. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.

    Science.gov (United States)

    Lin, Zibei; Cogan, Noel O I; Pembleton, Luke W; Spangenberg, German C; Forster, John W; Hayes, Ben J; Daetwyler, Hans D

    2016-03-01

    Genomic selection (GS) provides an attractive option for accelerating genetic gain in perennial ryegrass () improvement given the long cycle times of most current breeding programs. The present study used simulation to investigate the level of genetic gain and inbreeding obtained from GS breeding strategies compared with traditional breeding strategies for key traits (persistency, yield, and flowering time). Base population genomes were simulated through random mating for 60,000 generations at an effective population size of 10,000. The degree of linkage disequilibrium (LD) in the resulting population was compared with that obtained from empirical studies. Initial parental varieties were simulated to match diversity of current commercial cultivars. Genomic selection was designed to fit into a company breeding program at two selection points in the breeding cycle (spaced plants and miniplot). Genomic estimated breeding values (GEBVs) for productivity traits were trained with phenotypes and genotypes from plots. Accuracy of GEBVs was 0.24 for persistency and 0.36 for yield for single plants, while for plots it was lower (0.17 and 0.19, respectively). Higher accuracy of GEBVs was obtained for flowering time (up to 0.7), partially as a result of the larger reference population size that was available from the clonal row stage. The availability of GEBVs permit a 4-yr reduction in cycle time, which led to at least a doubling and trebling genetic gain for persistency and yield, respectively, than the traditional program. However, a higher rate of inbreeding per cycle among varieties was also observed for the GS strategy. Copyright © 2016 Crop Science Society of America.

  6. Empowering breeding programs with new approaches to overcome constraints for selecting superior quality traits of rice

    NARCIS (Netherlands)

    Calingacion, M.N.

    2015-01-01

    Empowering breeding programs with new approaches to overcome constraints for selecting superior quality traits of rice

    Mariafe N. Calingacion

    Most rice breeding programs have focused on improving agronomic traits such as yield, while enhancing grain quality traits

  7. Study on differentiation during embryonic development across selective and ancestral breeds.

    Science.gov (United States)

    An, Fengli; Wang, Jianlin

    2017-06-01

    In order to explore the effect of strain on diverging post-hatch muscle properties, muscle regulation during embryo development was investigated in selected and unselected breeds. Four broiler strains were used: JingNing (JN) chicken (a Chinese native chicken), HuangYu (HY) broiler, BaiYu (BY) broiler and Hyline layer (commercial crossbred chickens). Results showed that the four breeds had almost the same characteristic during different incubation periods. BY broilers moved more than JN and Hyline layers from Hamburger & Hamilton stage (HH)24 to HH31 (P layers from HH27 to HH31 (P layers (P > 0.05); broilers presented smaller fiber diameter than JN chickens before HH31 (P > 0.05). From then on, JN chicken exhibited smaller fiber diameter compared to the broilers (P > 0.05). Western blotting indicated all the breeds had continuous insulin-like growth factor-I (IGF-I) expression, with the highest expression level in broilers from HH19 to HH24 and highest expression level in JN chicks from HH27 to HH31. The results indicated that the diverging growth among breeds was already shown in embryonic stages; the different expression patterns of IGF-I may be involved in cell proliferation and differentiation. © 2016 Japanese Society of Animal Science.

  8. Selective breeding: the future of TB management in African buffalo?

    Science.gov (United States)

    le Roex, N; Berrington, C M; Hoal, E G; van Helden, P D

    2015-09-01

    The high prevalence of bovine tuberculosis (BTB) in African buffalo (Syncerus caffer) in regions of southern African has a negative economic impact on the trade of animals and animal products, represents an ecological threat to biodiversity, and poses a health risk to local communities through the wildlife-cattle-human interface. Test and cull methods may not be logistically feasible in many free-range wildlife systems, and with the presence of co-existing BTB hosts and the limited effectiveness of the BCG vaccine in buffalo, there is a need for alternative methods of BTB management. Selective breeding for increased resistance to BTB in buffalo may be a viable method of BTB management in the future, particularly if genetic information can be incorporated into these schemes. To explore this possibility, we discuss the different strategies that can be employed in selective breeding programmes, and consider the implementation of genetic improvement schemes. We reflect on the suitability of applying this strategy for enhanced BTB resistance in African buffalo, and address the challenges of this approach that must be taken into account. Conclusions and the implications for management are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry

    NARCIS (Netherlands)

    Chavanne, Hervé; Janssen, K.P.E.; Hofherr, Johann; Contini, Franca; Haffray, P.; Komen, J.; Nielsen, E.E.; Bargelloni, L.

    2016-01-01

    The use of selective breeding is still relatively limited in aquaculture species. Information on such activities is sparse, hindering an overall evaluation of their success. Here, we report on the results of an online survey of the major aqua-culture breeding companies operating in Europe. Six main

  10. Passerine birds breeding under chronic noise experience reduced fitness.

    Directory of Open Access Journals (Sweden)

    Julia Schroeder

    Full Text Available BACKGROUND: Fitness in birds has been shown to be negatively associated with anthropogenic noise, but the underlying mechanisms remain obscure. It is however crucial to understand the mechanisms of how urban noise impinges on fitness to obtain a better understanding of the role of chronic noise in urban ecology. Here, we examine three hypotheses on how noise might reduce reproductive output in passerine birds: (H1 by impairing mate choice, (H2 by reducing territory quality and (H3 by impeding chick development. METHODOLOGY/PRINCIPAL FINDINGS: We used long-term data from an island population of house sparrows, Passer domesticus, in which we can precisely estimate fitness. We found that nests in an area affected by the noise from large generators produced fewer young, of lower body mass, and fewer recruits, even when we corrected statistically for parental genetic quality using a cross-fostering set-up, supporting H3. Also, individual females provided their young with food less often when they bred in the noisy area compared to breeding attempts by the same females elsewhere. Furthermore, we show that females reacted flexibly to increased noise levels by adjusting their provisioning rate in the short term, which suggests that noise may be a causal factor that reduces reproductive output. We rejected H1 and H2 because nestbox occupancy, parental body mass, age and reproductive investment did not differ significantly between noisy and quiet areas. CONCLUSIONS/SIGNIFICANCE: OUR RESULTS SUGGEST A PREVIOUSLY UNDESCRIBED MECHANISM TO EXPLAIN HOW ENVIRONMENTAL NOISE CAN REDUCE FITNESS IN PASSERINE BIRDS: by acoustically masking parent-offspring communication. More importantly, using a cross-fostering set-up, our results demonstrate that birds breeding in a noisy environment experience significant fitness costs. Chronic noise is omnipresent around human habitation and may produces similar fitness consequences in a wide range of urban bird species.

  11. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds.

    Directory of Open Access Journals (Sweden)

    Julianna M A Jenkins

    Full Text Available Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection changes, timing of change, and whether all or only a few species alter their resource use is unclear. We compared resource selection for nest sites and resource selection by postfledging juvenile ovenbirds (Seiurus aurocapilla and Acadian flycatchers (Empidonax virescens followed with radio telemetry in Missouri mature forest fragments from 2012-2015. We used Bayesian discrete choice modeling to evaluate support for local vegetation characteristics on the probability of selection for nest sites and locations utilized by different ages of postfledging juveniles. Patterns of resource selection variation were species-specific. Resource selection models indicated that Acadian flycatcher habitat selection criteria were similar for nesting and dependent postfledging juveniles and selection criteria diverged when juveniles became independent from adults. After independence, flycatcher resource selection was more associated with understory foliage density. Ovenbirds differed in selection criteria between the nesting and postfledging periods. Fledgling ovenbirds selected areas with higher densities of understory structure compared to nest sites, and the effect of foliage density on selection increased as juveniles aged and gained independence. The differences observed between two sympatric forest nesting species, in both the timing and degree of change in resource selection criteria over the course of the breeding season, illustrates the importance of considering species-specific traits and postfledging requirements when developing conservation efforts, especially when foraging guilds or

  12. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.

    Science.gov (United States)

    Schrooten, C; Bovenhuis, H; van Arendonk, J A M; Bijma, P

    2005-04-01

    QTL explaining 5% of the additive genetic variance allowed a 35% reduction in the number of progeny tested bulls, while maintaining genetic response at the level of the base scheme. Genetic progress was up to 31.3% higher for schemes with increased embryo production and selection of embryos based on QTL information. The challenge for breeding organizations is to find the optimum breeding program with regard to additional genetic progress and additional (or reduced) cost.

  13. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping

    DEFF Research Database (Denmark)

    Vaysse, Amaury; Ratnakumar, Abhirami; Derrien, Thomas

    2011-01-01

    The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse br...

  14. Potential of Genomic Selection in Mass Selection Breeding of an Allogamous Crop: An Empirical Study to Increase Yield of Common Buckwheat

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    2018-03-01

    Full Text Available To evaluate the potential of genomic selection (GS, a selection experiment with GS and phenotypic selection (PS was performed in an allogamous crop, common buckwheat (Fagopyrum esculentum Moench. To indirectly select for seed yield per unit area, which cannot be measured on a single-plant basis, a selection index was constructed from seven agro-morphological traits measurable on a single plant basis. Over 3 years, we performed two GS and one PS cycles per year for improvement in the selection index. In GS, a prediction model was updated every year on the basis of genotypes of 14,598–50,000 markers and phenotypes. Plants grown from seeds derived from a series of generations of GS and PS populations were evaluated for the traits in the selection index and other yield-related traits. GS resulted in a 20.9% increase and PS in a 15.0% increase in the selection index in comparison with the initial population. Although the level of linkage disequilibrium in the breeding population was low, the target trait was improved with GS. Traits with higher weights in the selection index were improved more than those with lower weights, especially when prediction accuracy was high. No trait changed in an unintended direction in either GS or PS. The accuracy of genomic prediction models built in the first cycle decreased in the later cycles because the genetic bottleneck through the selection cycles changed linkage disequilibrium patterns in the breeding population. The present study emphasizes the importance of updating models in GS and demonstrates the potential of GS in mass selection of allogamous crop species, and provided a pilot example of successful application of GS to plant breeding.

  15. Genomic selection in plant breeding: from theory to practice.

    Science.gov (United States)

    Jannink, Jean-Luc; Lorenz, Aaron J; Iwata, Hiroyoshi

    2010-03-01

    We intuitively believe that the dramatic drop in the cost of DNA marker information we have experienced should have immediate benefits in accelerating the delivery of crop varieties with improved yield, quality and biotic and abiotic stress tolerance. But these traits are complex and affected by many genes, each with small effect. Traditional marker-assisted selection has been ineffective for such traits. The introduction of genomic selection (GS), however, has shifted that paradigm. Rather than seeking to identify individual loci significantly associated with a trait, GS uses all marker data as predictors of performance and consequently delivers more accurate predictions. Selection can be based on GS predictions, potentially leading to more rapid and lower cost gains from breeding. The objectives of this article are to review essential aspects of GS and summarize the important take-home messages from recent theoretical, simulation and empirical studies. We then look forward and consider research needs surrounding methodological questions and the implications of GS for long-term selection.

  16. How can we increase the production, quality and health of our forests by selective breeding

    Energy Technology Data Exchange (ETDEWEB)

    Nanson, A

    1981-01-01

    Selective breeding programmes in Belgium are discussed, and a number of seed plantations are listed. Descriptions are given of the performance of European provenances of spruce and larch and American and Canadian Douglas fir, at 3 plantations in Belgium. An account is given of Belgian success in breeding varieties of spruce with late-opening buds resistant to late frosts. (Refs. 8).

  17. Impact of selective breeding on European aquaculture

    NARCIS (Netherlands)

    Janssen, K.; Chavanne, H.; Berentsen, P.; Komen, H.

    2017-01-01

    Objectives of this study were to determine the combined market share of breeding companies in aquaculture production in Europe, to describe the main characteristics of breeding companies and their programs, and to provide per species estimates on cumulative genetic gain in growth performance.

  18. Strategies for Selecting Crosses Using Genomic Prediction in Two Wheat Breeding Programs.

    Science.gov (United States)

    Lado, Bettina; Battenfield, Sarah; Guzmán, Carlos; Quincke, Martín; Singh, Ravi P; Dreisigacker, Susanne; Peña, R Javier; Fritz, Allan; Silva, Paula; Poland, Jesse; Gutiérrez, Lucía

    2017-07-01

    The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V). After predicting the mean and the variance of each cross, we selected crosses based on mid-parent value, the top 10% of the progeny, and weighted mean and variance within progenies for grain yield, grain protein content, mixing time, and loaf volume in two applied wheat ( L.) breeding programs: Instituto Nacional de Investigación Agropecuaria (INIA) Uruguay and CIMMYT Mexico. Although the variance of the progeny is important to increase the chances of finding superior individuals from transgressive segregation, we observed that the mid-parent values of the crosses drove the genetic gain but the variance of the progeny had a small impact on genetic gain for grain yield. However, the relative importance of the variance of the progeny was larger for quality traits. Overall, the genomic resources and the statistical models are now available to plant breeders to predict both the performance of breeding lines per se as well as the value of progeny from any potential crosses. Copyright © 2017 Crop Science Society of America.

  19. Optimizing the allocation of resources for genomic selection in one breeding cycle.

    Science.gov (United States)

    Riedelsheimer, Christian; Melchinger, Albrecht E

    2013-11-01

    We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype  ×  environment interactions. Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype × environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the

  20. Strategies for use of reproductive technologies in genomic dairy cattle breeding programs

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Sørensen, Anders Christian

    A simulation study was performed for testing the effect of using reproductive technologies in a genomic dairy cattle young bull breeding scheme. The breeding scheme parameters: 1) number of donors, 2) number of progeny per donor, 3) age of the donor, 4) number of sires, and 5) reliability...... of genomic breeding values. The breeding schemes were evaluated according to genetic gain and rate of inbreeding. The relative gain by use of reproductive technologies is 11 to 84 percent points depending on the choice of other breeding scheme parameters. A large donor program with high selection intensity...... of sires provides the highest genetic gain. A relatively higher genetic gain is obtained for higher reliability of GEBV. Extending the donor program and number of selected bulls has a major effect of reducing the rate of inbreeding without compromising genetic gain....

  1. Structuring an Efficient Organic Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    P. Stephen Baenziger

    2011-08-01

    Full Text Available Our long-term goal is to develop wheat cultivars that will improve the profitability and competitiveness of organic producers in Nebraska and the Northern Great Plains. Our approach is to select in early generations for highly heritable traits that are needed for both organic and conventional production (another breeding goal, followed by a targeted organic breeding effort with testing at two organic locations (each in a different ecological region beginning with the F6 generation. Yield analyses from replicated trials at two organic breeding sites and 7 conventional breeding sites from F6 through F12 nurseries revealed, using analyses of variance, biplots, and comparisons of selected lines that it is inappropriate to use data from conventional testing for making germplasm selections for organic production. Selecting and testing lines under organic production practices in different ecological regions was also needed and cultivar selections for organic production were different than those for conventional production. Modifications to this breeding protocol may include growing early generation bulks in an organic cropping system. In the future, our selection efforts should also focus on using state-of-the-art, non-transgenic breeding technologies (genomic selection, marker-assisted breeding, and high throughput phenotyping to synergistically improve organic and conventional wheat breeding.

  2. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery

    DEFF Research Database (Denmark)

    Hickey, John M.; Chiurugwi, Tinashe; Mackay, Ian

    2017-01-01

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human...... that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying...... use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform...

  3. Genomic selection strategies in breeding programs: Strong positive interaction between application of genotypic information and intensive use of young bulls on genetic gain

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Sørensen, Morten Kargo; Berg, Peer

    2012-01-01

    We tested the following hypotheses: (i) breeding schemes with genomic selection are superior to breeding schemes without genomic selection regarding annual genetic gain of the aggregate genotype (ΔGAG), annual genetic gain of the functional traits and rate of inbreeding per generation (ΔF), (ii......) a positive interaction exists between the use of genotypic information and a short generation interval on ΔGAG and (iii) the inclusion of an indicator trait in the selection index will only result in a negligible increase in ΔGAG if genotypic information about the breeding goal trait is known. We examined......, greater contributions of the functional trait to ΔGAG and lower ΔF than the two breeding schemes without genomic selection. Thus, the use of genotypic information may lead to more sustainable breeding schemes. In addition, a short generation interval increases the effect of using genotypic information...

  4. Organic breeding: New trend in plant breeding

    Directory of Open Access Journals (Sweden)

    Berenji Janoš

    2009-01-01

    Full Text Available Organic breeding is a new trend in plant breeding aimed at breeding of organic cultivars adapted to conditions and expectations of organic plant production. The best proof for the need of organic cultivars is the existence of interaction between the performances of genotypes with the kind of production (conventional or organic (graph. 1. The adaptation to low-input conditions of organic production by more eddicient uptake and utilization of plant nutrients is especially important for organic cultivars. One of the basic mechanism of weed control in organic production is the competition of organic cultivars and weeds i.e. the enhanced ability of organic cultivars to suppress the weeds. Resistance/tolerance to diseases and pests is among the most important expectations toward the organic cultivars. In comparison with the methods of conventional plant breeding, in case of organic plant breeding limitations exist in choice of methods for creation of variability and selection classified as permitted, conditionally permitted and banned. The use of genetically modified organisms and their derivated along with induced mutations is not permitted in organic production. The use of molecular markers in organic plant breeding is the only permitted modern method of biotechnology. It is not permitted to patent the breeding material of organic plant breeding or the organic cultivars. .

  5. Use of ionizing radiation in grass breeding. II

    International Nuclear Information System (INIS)

    Svetlik, V.; Indruch, I.; Fojtik, A.; Bajer, K.

    1980-01-01

    Ionizing radiation induced sexuality in this apomictic grass. Sexual strains were isolated and selected individuals were crossed. Polycross and recurrent single cross methods allowed restoring apomixis. The resulting apomictic strains showed excellent traits and transgressed hereditary potentials of parental components. The method is described of breeding and the productivity of individual breeding techniques is discussed. It is shown that the number of strains should be reduced and the most productive strains should be used for the formation of synthetic cultivars. (author)

  6. Genotyping by sequencing (GBS, an ultimate marker-assisted selection (MAS tool to accelerate plant breeding

    Directory of Open Access Journals (Sweden)

    Jiangfeng eHe

    2014-09-01

    Full Text Available Marker-assisted selection (MAS refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP, have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping by sequencing (GBS has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS, genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection (GS under a large scale of plant breeding programs.

  7. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding.

    Science.gov (United States)

    He, Jiangfeng; Zhao, Xiaoqing; Laroche, André; Lu, Zhen-Xiang; Liu, HongKui; Li, Ziqin

    2014-01-01

    Marker-assisted selection (MAS) refers to the use of molecular markers to assist phenotypic selections in crop improvement. Several types of molecular markers, such as single nucleotide polymorphism (SNP), have been identified and effectively used in plant breeding. The application of next-generation sequencing (NGS) technologies has led to remarkable advances in whole genome sequencing, which provides ultra-throughput sequences to revolutionize plant genotyping and breeding. To further broaden NGS usages to large crop genomes such as maize and wheat, genotyping-by-sequencing (GBS) has been developed and applied in sequencing multiplexed samples that combine molecular marker discovery and genotyping. GBS is a novel application of NGS protocols for discovering and genotyping SNPs in crop genomes and populations. The GBS approach includes the digestion of genomic DNA with restriction enzymes followed by the ligation of barcode adapter, PCR amplification and sequencing of the amplified DNA pool on a single lane of flow cells. Bioinformatic pipelines are needed to analyze and interpret GBS datasets. As an ultimate MAS tool and a cost-effective technique, GBS has been successfully used in implementing genome-wide association study (GWAS), genomic diversity study, genetic linkage analysis, molecular marker discovery and genomic selection under a large scale of plant breeding programs.

  8. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Crossa, José; von Zitzewitz, Jarislav; Serret, María Dolors; Araus, José Luis

    2012-05-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. © 2012 Institute of Botany, Chinese Academy of Sciences.

  9. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds

    Science.gov (United States)

    Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg; Andrew J. Kroll

    2017-01-01

    Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection...

  10. Effect of vegetation structure on breeding territory selection by red-winged blackbirds in a floodplain forest restoration project

    Science.gov (United States)

    Maria A. Furey; Dirk E. Burhans; Hong He; Michael A. Gold; Bruce E. Cutter

    2003-01-01

    Our research investigates the role of vegetation structure in the selection of breeding territories by red-winged blackbirds (Agelaius phoeniceus) in two floodplain oak-restoration sites. Perches are used extensively by red-winged blackbirds in territorial display during the spring (Yasukawa and Searcy 1995). We hypothesized that breeding territory...

  11. Progress in the evaluation, use in breeding, and genetic analysis of semi-dwarf mutants of barley

    International Nuclear Information System (INIS)

    Ullrich, S.E.; Muir, C.E.; Washington State Univ., Pullman

    1984-01-01

    Breeding for reduced height in barley (Hordeum vulgare L.) to primarily reduce lodging susceptibility is ongoing in the Washington State University barley breeding program. Two semi-dwarf winter and spring cultivars have been released and a number of advanced lines are being considered for release. Several semi-dwarf sources are utilized, including those from induced mutants in 'Jotun', 'Piroline' and 'Valticky'. In addition, over 200 putative mutants have been selected in the past four years from M 2 sodium azide-treated populations of local cultivars and advanced lines. These are evaluated in the pedigree breeding program and some have been incorporated into male sterile facilitated recurrent selection populations developed for reduced height. The inheritance of dwarfism in one mutant in the cultivar 'Advance' was determined to be controlled by a single recessive gene. (author)

  12. Estimation of breeding values using selected pedigree records.

    Science.gov (United States)

    Morton, Richard; Howarth, Jordan M

    2005-06-01

    Fish bred in tanks or ponds cannot be easily tagged individually. The parentage of any individual may be determined by DNA fingerprinting, but is sufficiently expensive that large numbers cannot be so finger-printed. The measurement of the objective trait can be made on a much larger sample relatively cheaply. This article deals with experimental designs for selecting individuals to be finger-printed and for the estimation of the individual and family breeding values. The general setup provides estimates for both genetic effects regarded as fixed or random and for fixed effects due to known regressors. The family effects can be well estimated when even very small numbers are finger-printed, provided that they are the individuals with the most extreme phenotypes.

  13. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding

    Directory of Open Access Journals (Sweden)

    Donald P. Knowles

    2013-06-01

    Full Text Available Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus and goats (caprine arthritis encephalitis virus [CAEV]. Breed differences in seroprevalence and proviral concentration of OvLV had suggested a strong genetic component in susceptibility to infection by OvLV in sheep. A genetic marker test for susceptibility to OvLV has been developed recently based on the TMEM154 gene with validation data from over 2,800 sheep representing nine cohorts. While no single genotype has been shown to have complete resistance to OvLV, consistent association in thousands of sheep from multiple breeds and management conditions highlight a new strategy for intervention by selective breeding. This genetic marker-assisted selection (MAS has the potential to be a useful addition to existing viral control measures. Further, the discovery of multiple additional genomic regions associated with susceptibility to or control of OvLV suggests that additional genetic marker tests may be developed to extend the reach of MAS in the future. This review will cover the strengths and limitations of existing data from host genetics as an intervention and outline additional questions for future genetic research in sheep, goats, small ruminant lentiviruses, and their host-pathogen interactions.

  14. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding

    Science.gov (United States)

    White, Stephen N.; Knowles, Donald P.

    2013-01-01

    Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus) and goats (caprine arthritis encephalitis virus [CAEV]). Breed differences in seroprevalence and proviral concentration of OvLV had suggested a strong genetic component in susceptibility to infection by OvLV in sheep. A genetic marker test for susceptibility to OvLV has been developed recently based on the TMEM154 gene with validation data from over 2,800 sheep representing nine cohorts. While no single genotype has been shown to have complete resistance to OvLV, consistent association in thousands of sheep from multiple breeds and management conditions highlight a new strategy for intervention by selective breeding. This genetic marker-assisted selection (MAS) has the potential to be a useful addition to existing viral control measures. Further, the discovery of multiple additional genomic regions associated with susceptibility to or control of OvLV suggests that additional genetic marker tests may be developed to extend the reach of MAS in the future. This review will cover the strengths and limitations of existing data from host genetics as an intervention and outline additional questions for future genetic research in sheep, goats, small ruminant lentiviruses, and their host-pathogen interactions. PMID:23771240

  15. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery.

    Science.gov (United States)

    Hickey, John M; Chiurugwi, Tinashe; Mackay, Ian; Powell, Wayne

    2017-08-30

    The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying approach to deliver innovative 'step changes' in the rate of genetic gain at scale.

  16. Selective breeding for scrapie resistance in sheep

    Directory of Open Access Journals (Sweden)

    Cristina Santos Sotomaior

    2012-11-01

    Full Text Available It is well known that the susceptibility of sheep to scrapie is determined by the host’s prion protein gene (PRNP. PRNP polymorphisms at codons 136 (alanine, A/valine, V, 154 (histidine, H/arginine, R and 171 (glutamine, Q/histidine, H/arginine, R are the main determinants of sheep susceptibility/resistance to classical scrapie. There are four major variants of the wild-type ARQ allele: VRQ, AHQ, ARH and ARR. Breeding programs have been developed in the European Union and the USA to increase the frequency of the resistant ARR allele while decreasing the frequency of the susceptible VRQ allele in sheep populations. In Brazil, little PRNP genotyping data are available for sheep, and thus far, no controlled breeding scheme for scrapie has been implemented. This review will focus on important epidemiological aspects of scrapie and the use of genetic resistance as a tool in breeding programs to control the disease.

  17. "Boldness" in the domestic dog differs among breeds and breed groups.

    Science.gov (United States)

    Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D

    2013-07-01

    "Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, ppurpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; pdogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Relationships among and variation within rare breeds of swine.

    Science.gov (United States)

    Roberts, K S; Lamberson, W R

    2015-08-01

    Extinction of rare breeds of livestock threatens to reduce the total genetic variation available for selection in the face of the changing environment and new diseases. Swine breeds facing extinction typically share characteristics such as small size, slow growth rate, and high fat percentage, which limit them from contributing to commercial production. Compounding the risk of loss of variation is the lack of pedigree information for many rare breeds due to inadequate herd books, which increases the chance that producers are breeding closely related individuals. By making genetic data available, producers can make more educated breeding decisions to preserve genetic diversity in future generations, and conservation organizations can prioritize investments in breed preservation. The objective of this study was to characterize genetic variation within and among breeds of swine and prioritize heritage breeds for preservation. Genotypes from the Illumina PorcineSNP60 BeadChip (GeneSeek, Lincoln, NE) were obtained for Guinea, Ossabaw Island, Red Wattle, American Saddleback, Mulefoot, British Saddleback, Duroc, Landrace, Large White, Pietrain, and Tamworth pigs. A whole-genome analysis toolset was used to construct a genomic relationship matrix and to calculate inbreeding coefficients for the animals within each breed. Relatedness and average inbreeding coefficient differed among breeds, and pigs from rare breeds were generally more closely related and more inbred ( Guinea pigs. Tamworth, Duroc, and Mulefoot tended to not cluster with the other 7 breeds.

  19. Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication

    Directory of Open Access Journals (Sweden)

    Pantano Thais

    2008-11-01

    Full Text Available Abstract Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers. The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies and on the selection strategies for improving scrapie resistance while carrying out selection for production traits.

  20. Strategies for selecting and breeding EAB-resistant ash

    Science.gov (United States)

    Jennifer L. Koch; Kathleen Knight; Therese Poland; David W. Carey; Daniel A. Herms; Mary E. Mason

    2011-01-01

    Breeding for pest resistance in forest trees is a proven approach for managing both native and nonnative insects and diseases. A recent study by the Food and Agriculture Organization of the United Nations reports 255 forest tree breeding programs for insect or disease resistance in 33 diff erent countries (http://www.fao.org/forestry/26445/en/). Advantages to...

  1. Breeding of newly licensed wheat variety Huapei 8 and improved ...

    African Journals Online (AJOL)

    H2 was the best selection generation for traits with high heredity ability, and H3 was the best selection for grain traits and yield test. Consequently, we bred and licensed six new wheat varieties derived from anther culture and significantly reduced breeding time to three to five years. Huapei 8 was the newest released wheat ...

  2. Breeding of fungal resistant varieties derived from Grüner Veltliner by chromosomal selection

    Directory of Open Access Journals (Sweden)

    Regner Ferdinand

    2016-01-01

    Full Text Available Traditional cultivar Grüner Veltliner is the most appreciated vine in Austrian viticulture. Due to organic growing the demand for mildew resistance within the same wine profile has increased. Cross breeding can provide such new genotypes which combine traits from different sources by parenthood. Linkage of traits with chromosomes or markers allows to predict some aspects of the phenotype. Equipped with chromosomal assisted selection the development of new varieties could be much easier and faster. On the base of two segregating populations derived from crosses of Grüner Veltliner with Malverina and Seyval blanc we could define correlation of chromosomes with some traits. Mainly ampelographic descriptors and resistance against mildew could be aligned. As a quality parameter of the wine Rotundone analyses were performed and could be attributed to chromosome 5 and 9. Selection supported by the composition of the parental chromosomes enables breeding with some arguments of design. The limits for free choice were the availability of sufficient different genotypes with a broad spectrum of chromosomal combinations. Recently released descendent cultivar Donauveltliner was selected due to the high rate of Traminer alleles.

  3. Initiating genomic selection in tetraploid potato

    DEFF Research Database (Denmark)

    Sverrisdóttir, Elsa; Janss, Luc; Byrne, Stephen

    Breeding for more space and resource efficient crops is important to feed the world’s increasing population. Potatoes produce approximately twice the amount of calories per hectare compared to cereals. The traditional “mate and phenotype” breeding approach is costly and time-consuming; however......, the completion of the genome sequence of potato has enabled the application of genomics-assisted breeding technologies. Genomic selection using genome-wide molecular markers is becoming increasingly applicable to crops as the genotyping costs continue to reduce and it is thus an attractive breeding alternative...... selection, can be obtained with good prediction accuracies in tetraploid potato....

  4. Multiscale habitat use and selection in cooperatively breeding Micronesian kingfishers

    Science.gov (United States)

    Kesler, D.C.; Haig, S.M.

    2007-01-01

    Information about the interaction between behavior and landscape resources is key to directing conservation management for endangered species. We studied multi-scale occurrence, habitat use, and selection in a cooperatively breeding population of Micronesian kingfishers (Todiramphus cinnamominus) on the island of Pohnpei, Federated States of Micronesia. At the landscape level, point-transect surveys resulted in kingfisher detection frequencies that were higher than those reported in 1994, although they remained 15-40% lower than 1983 indices. Integration of spatially explicit vegetation information with survey results indicated that kingfisher detections were positively associated with the amount of wet forest and grass-urban vegetative cover, and they were negatively associated with agricultural forest, secondary vegetation, and upland forest cover types. We used radiotelemetry and remote sensing to evaluate habitat use by individual kingfishers at the home-range scale. A comparison of habitats in Micronesian kingfisher home ranges with those in randomly placed polygons illustrated that birds used more forested areas than were randomly available in the immediate surrounding area. Further, members of cooperatively breeding groups included more forest in their home ranges than birds in pair-breeding territories, and forested portions of study areas appeared to be saturated with territories. Together, these results suggested that forest habitats were limited for Micronesian kingfishers. Thus, protecting and managing forests is important for the restoration of Micronesian kingfishers to the island of Guam (United States Territory), where they are currently extirpated, as well as to maintaining kingfisher populations on the islands of Pohnpei and Palau. Results further indicated that limited forest resources may restrict dispersal opportunities and, therefore, play a role in delayed dispersal and cooperative behaviors in Micronesian kingfishers.

  5. CASSAVA BREEDING II: PHENOTYPIC CORRELATIONS THROUGH THE DIFFERENT STAGES OF SELECTION

    Directory of Open Access Journals (Sweden)

    Orlando Joaqui Barandica

    2016-12-01

    Full Text Available Breeding cassava relies on a phenotypic recurrent selection that takes advantage of the vegetative propagation of this crop. Successive stages of selection (single row trial- SRT; preliminary yield trial – PYT; advanced yield trial – AYT; and uniform yield trials UYT, gradually reduce the number of genotypes as the plot size, number of replications and locations increase. An important feature of this scheme is that, because of the clonal, reproduction of cassava, the same identical genotypes are evaluated throughout these four successive stages of selection. For this study data, from 14 years (more than 30,000 data points of evaluation in a sub-humid tropical environment was consolidated for a meta-analysis. Correlation coefficients for fresh root yield (FRY, dry matter content (DMC, harvest index (HIN and plant type score (PTS along the different stages of selection were estimated. DMC and PTS measured in different trials showed the highest correlation coefficients, indicating a relatively good repeatability. HIN had an intermediate repeatability, whereas FRY had the lowest value. The association between HIN and FRY was lower than expected, suggesting that HIN in early stages was not reliable as indirect selection for FRY in later stages. There was a consistent decrease in the average performance of clones grown in PYTs compared with the earlier evaluation of the same genotypes at SRTs. A feasible explanation for this trend is the impact of the environment on the physiological and nutritional status of the planting material and/or epigenetic effects. The usefulness of HIN is questioned. Measuring this variable takes considerable efforts at harvest time. DMC and FRY showed a weak positive association in SRT (r= 0.21 but a clearly negative one at UYT (r= -0.42. The change if the relationship between these variables is the result of selection. In later stages of selection, the plant is forced to maximize productivity on a dry weight basis

  6. Genomic prediction in early selection stages using multi-year data in a hybrid rye breeding program.

    Science.gov (United States)

    Bernal-Vasquez, Angela-Maria; Gordillo, Andres; Schmidt, Malthe; Piepho, Hans-Peter

    2017-05-31

    The use of multiple genetic backgrounds across years is appealing for genomic prediction (GP) because past years' data provide valuable information on marker effects. Nonetheless, single-year GP models are less complex and computationally less demanding than multi-year GP models. In devising a suitable analysis strategy for multi-year data, we may exploit the fact that even if there is no replication of genotypes across years, there is plenty of replication at the level of marker loci. Our principal aim was to evaluate different GP approaches to simultaneously model genotype-by-year (GY) effects and breeding values using multi-year data in terms of predictive ability. The models were evaluated under different scenarios reflecting common practice in plant breeding programs, such as different degrees of relatedness between training and validation sets, and using a selected fraction of genotypes in the training set. We used empirical grain yield data of a rye hybrid breeding program. A detailed description of the prediction approaches highlighting the use of kinship for modeling GY is presented. Using the kinship to model GY was advantageous in particular for datasets disconnected across years. On average, predictive abilities were 5% higher for models using kinship to model GY over models without kinship. We confirmed that using data from multiple selection stages provides valuable GY information and helps increasing predictive ability. This increase is on average 30% higher when the predicted genotypes are closely related with the genotypes in the training set. A selection of top-yielding genotypes together with the use of kinship to model GY improves the predictive ability in datasets composed of single years of several selection cycles. Our results clearly demonstrate that the use of multi-year data and appropriate modeling is beneficial for GP because it allows dissecting GY effects from genomic estimated breeding values. The model choice, as well as ensuring

  7. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes: I-selection goals and criteria.

    Science.gov (United States)

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses natural processes and local resources rather than chemical inputs to ensure production while limiting the environmental footprint of livestock and crop production systems. Selecting to achieve a maximization of target production criteria has long proved detrimental to fitness traits. However, since the 1990s, developments in animal breeding have also focussed on animal robustness by balancing production and functional traits within overall breeding goals. We discuss here how an agroecological perspective should further shift breeding goals towards functional traits rather than production traits. Breeding for robustness aims to promote individual adaptive capacities by considering diverse selection criteria which include reproduction, animal health and welfare, and adaptation to rough feed resources, a warm climate or fluctuating environmental conditions. It requires the consideration of genotype×environment interactions in the prediction of breeding values. Animal performance must be evaluated in low-input systems in order to select those animals that are adapted to limiting conditions, including feed and water availability, climate variations and diseases. Finally, we argue that there is no single agroecological animal type, but animals with a variety of profiles that can meet the expectations of agroecology. The standardization of both animals and breeding conditions indeed appears contradictory to the agroecological paradigm that calls for an adaptation of animals to local opportunities and constraints in weakly artificialized systems tied to their physical environment.

  8. Ornamental Plant Breeding

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Silva Botelho

    2015-04-01

    Full Text Available World’s ornamental plant market, including domestic market of several countries and its exports, is currently evaluated in 107 billion dollars yearly. Such estimate highlights the importance of the sector in the economy of the countries, as well as its important social role, as it represents one of the main activities, which contributes to income and employment. Therefore a well-structured plant breeding program, which is connected with consumers’ demands, is required in order to fulfill these market needs globally. Activities related to pre-breeding, conventional breeding, and breeding by biotechnological techniques constitute the basis for the successful development of new ornamental plant cultivars. Techniques that involve tissue culture, protoplast fusion and genetic engineering greatly aid conventional breeding (germplasm introduction, plant selection and hybridization, aiming the obtention of superior genotypes. Therefore it makes evident, in the literature, the successful employment of genetic breeding, since it aims to develop plants with commercial value that are also competitive with the ones available in the market.

  9. Tritium breeding blanket

    International Nuclear Information System (INIS)

    Smith, D.; Billone, M.; Gohar, Y.; Baker, C.; Mori, S.; Kuroda, T.; Maki, K.; Takatsu, H.; Yoshida, H.; Raffray, A.; Sviatoslavsky, I.; Simbolotti, G.; Shatalov, G.

    1991-01-01

    The terms of reference for ITER provide for incorporation of a tritium breeding blanket with a breeding ratio as close to unity as practical. A breeding blanket is required to assure an adequate supply of tritium to meet the program objectives. Based on specified design criteria, a ceramic breeder concept with water coolant and an austenitic steel structure has been selected as the first option and lithium-lead blanket concept has been chosen as an alternate option. The first wall, blanket, and shield are integrated into a single unit with separate cooling systems. The design makes extensive use of beryllium to enhance the tritium breeding ratio. The design goals with a tritium breeding ratio of 0.8--0.9 have been achieved and the R ampersand D requirements to qualify the design have been identified. 4 refs., 8 figs., 2 tabs

  10. The importance of scale-dependent ravine characteristics on breeding-site selection by the Burrowing Parrot, Cyanoliseus patagonus

    Directory of Open Access Journals (Sweden)

    Myriam Ramirez-Herranz

    2017-04-01

    Full Text Available In birds, the environmental variables and intrinsic characteristics of the nest have important fitness consequences through its influence on the selection of nesting sites. However, the extent to which these variables interact with variables that operate at the landscape scale, and whether there is a hierarchy among the different scales that influences nest-site selection, is unknown. This interaction could be crucial in burrowing birds, which depend heavily on the availability of suitable nesting locations. One representative of this group is the burrowing parrot, Cyanoliseus patagonus that breeds on specific ravines and forms large breeding colonies. At a particular site, breeding aggregations require the concentration of adequate environmental elements for cavity nesting, which are provided by within ravine characteristics. Therefore, intrinsic ravine characteristics should be more important in determining nest site selection compared to landscape level characteristics. Here, we assess this hypothesis by comparing the importance of ravine characteristics operating at different scales on nest-site selection and their interrelation with reproductive success. We quantified 12 characteristics of 105 ravines in their reproductive habitat. For each ravine we quantified morphological variables, distance to resources and disturbance as well as nest number and egg production in order to compare selected and non-selected ravines and determine the interrelationship among variables in explaining ravine differences. In addition, the number of nests and egg production for each reproductive ravine was related to ravine characteristics to assess their relation to reproductive success. We found significant differences between non-reproductive and reproductive ravines in both intrinsic and extrinsic characteristics. The multidimensional environmental gradient of variation between ravines, however, shows that differences are mainly related to intrinsic

  11. Mutation breeding in malting barley

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Makoto; Sanada, Matsuyoshi

    1984-03-01

    The released varieties of malting barley through mutation breeding is more than ten in number, including foreign varieties. In Japan four varieties has been released so far. We started mutation breeding in 1956 together with cross breeding that we employed before. Until now, Gamma 4, Amagi Nijo 1 and Fuji Nijo 2 have been produced from the direct use of induced mutations and Nirasaki Nijo 8 from the indirect use of them. Mutation breeding has been used mainly in the partial improvement of agronomic characteristics since the selection for malting quality was very complicated. As the variety bred by induced mutation is usually equivalent to the original variety in malting quality, both this new variety and the original one could be cultivated in the same area without any problem on later malt production. Particularly when one farmer cultivates barley in an extensive acreage, he can harvest at the best time according to the different maturing time of each variety. From these points of view, mutation breeding is an efficient tool in malting barley breeding. Mutagens we have used so far are X-rays, ..gamma..-rays, neutron and chemicals such as dES. From our experience in selection, the low dose of radiation and chemical mutagens are more effective in selection of point mutation than the high dose of radiation which tends to produce many abnormal but few practical mutants. (author).

  12. Selection of arboreal termitaria for nesting by cooperatively breeding Micronesian Kingfishers Todiramphus cinnamominus reichenbachii

    Science.gov (United States)

    Kesler, Dylan C.; Haig, Susan M.

    2005-01-01

    Limited nest-site availability appears to be an important factor in the evolution of delayed dispersal and cooperative breeding in some cavity-nesting species. The cooperatively breeding Pohnpei subspecies of Micronesian Kingfisher Todiramphus cinnamominus reichenbachii excavates nest cavities from the nests of arboreal termites Nasutitermes spp., or termitaria. In this first published description of nest-sites for this subspecies, we used surveys, remote sensing and radiotelemetry to evaluate the relationship between nest-site availability and co-operation. Results illustrate that nest termitaria are higher in the forest canopy, larger in volume and occur in areas with more contiguous canopy cover than unused termitaria. Nest termitaria were selected independently of the proximity to forest edges and territory boundaries, and we found no difference in characteristics of termitaria used by cooperative groups and breeding pairs. Logistic regression modelling indicated that termitaria with nest-like characteristics were not limited in abundance, suggesting that neither the prospects of inheriting nesting resources nor limited nest-site abundance are probable explanations for delayed dispersal in the Pohnpei subspecies of Micronesian Kingfisher.

  13. Nest-site selection and nest success of an Arctic-breeding passerine, Smith's Longspur, in a changing climate

    Science.gov (United States)

    McFarland, Heather R.; Kendall, Steve J.; Powell, Abby

    2017-01-01

    Despite changes in shrub cover and weather patterns associated with climate change in the Arctic, little is known about the breeding requirements of most passerines tied to northern regions. We investigated the nesting biology and nest habitat characteristics of Smith's Longspurs (Calcarius pictus) in 2 study areas in the Brooks Range of Alaska, USA. First, we examined variation in nesting phenology in relation to local temperatures. We then characterized nesting habitat and analyzed nest-site selection for a subset of nests (n = 86) in comparison with paired random points. Finally, we estimated the daily survival rate of 257 nests found in 2007–2013 with respect to both habitat characteristics and weather variables. Nest initiation was delayed in years with snow events, heavy rain, and freezing temperatures early in the breeding season. Nests were typically found in open, low-shrub tundra, and never among tall shrubs (mean shrub height at nests = 26.8 ± 6.7 cm). We observed weak nest-site selection patterns. Considering the similarity between nest sites and paired random points, coupled with the unique social mating system of Smith's Longspurs, we suggest that habitat selection may occur at the neighborhood scale and not at the nest-site scale. The best approximating model explaining nest survival suggested a positive relationship with the numbers of days above 21°C that an individual nest experienced; there was little support for models containing habitat variables. The daily nest survival rate was high (0.972–0.982) compared with that of most passerines in forested or grassland habitats, but similar to that of passerines nesting on tundra. Considering their high nesting success and ability to delay nest initiation during inclement weather, Smith's Longspurs may be resilient to predicted changes in weather regimes on the breeding grounds. Thus, the greatest threat to breeding Smith's Longspurs associated with climate change may be the loss of low

  14. CALVING ANALYSIS IN COWS OF CHAROLAIS BREED AT SELECTED FARM

    Directory of Open Access Journals (Sweden)

    KLÁRA VAVRIŠÍNOVÁ

    2001-09-01

    Full Text Available At our work we have analysed the organisation of calving in Charolais breed during the years from 1998 to 2001 at selected farm. Our monitoring of calving during winter season (from January to February shows the percentage of calving was in particular years ranged from 43.2 to 71.1. The most calves were born in February. We found out (total all years diffi cult calving (value 3 in 2 cases in April (1998 and 1999 and 1 case in February (1998 and 1 in March (1999. Calving marked with value 2 (total of all years we found out in January (2 cases, February (3 cases, March (4 cases and from September to December past one case. From 18 cases of diffi cult calving what we found out, 11 calves (61.11 % come from CHV 529 bull. In calves born by normal calving was found out average weight 34.75 kg, in ones born by calving with level 2 of diffi culty 36.36 kg, and in calves born by calving with diffi culty 3 was recorded average weight 41.5 kg. Recorded weight at 210 days of age in mostly cases was similar like in published breed standard.

  15. Home Range Size and Resource Use of Breeding and Non-breeding White Storks Along a Land Use Gradient

    Directory of Open Access Journals (Sweden)

    Damaris Zurell

    2018-06-01

    Full Text Available Biotelemetry is increasingly used to study animal movement at high spatial and temporal resolution and guide conservation and resource management. Yet, limited sample sizes and variation in space and habitat use across regions and life stages may compromise robustness of behavioral analyses and subsequent conservation plans. Here, we assessed variation in (i home range sizes, (ii home range selection, and (iii fine-scale resource selection of white storks across breeding status and regions and test model transferability. Three study areas were chosen within the Central German breeding grounds ranging from agricultural to fluvial and marshland. We monitored GPS-locations of 62 adult white storks equipped with solar-charged GPS/3D-acceleration (ACC transmitters in 2013–2014. Home range sizes were estimated using minimum convex polygons. Generalized linear mixed models were used to assess home range selection and fine-scale resource selection by relating the home ranges and foraging sites to Corine habitat variables and normalized difference vegetation index in a presence/pseudo-absence design. We found strong variation in home range sizes across breeding stages with significantly larger home ranges in non-breeding compared to breeding white storks, but no variation between regions. Home range selection models had high explanatory power and well predicted overall density of Central German white stork breeding pairs. Also, they showed good transferability across regions and breeding status although variable importance varied considerably. Fine-scale resource selection models showed low explanatory power. Resource preferences differed both across breeding status and across regions, and model transferability was poor. Our results indicate that habitat selection of wild animals may vary considerably within and between populations, and is highly scale dependent. Thereby, home range scale analyses show higher robustness whereas fine-scale resource

  16. The key elements for genetic response in Finnish dairy cattle breeding

    Directory of Open Access Journals (Sweden)

    Jarmo Juga

    1998-01-01

    Full Text Available This paper reviews some key elements of Finnish animal breeding research contributing to the Finnish dairy cattle breeding programme and discusses the possibilities and problems in collecting data for genetic evaluation, prediction of breeding values both within and across countries, estimation of the economic value of important traits, and selection of bulls and cows. Economic values are calculated for fertility, udder health and production traits when one genetic standard deviation unit (gen. sd. is changed in each trait independently and the financial returns from selection response in the Finnish dairy cattle breeding programme are estimated. The following components were used to calculate the economic value of mastitis treatments: 1 cost of mastitis including discarded milk and treatment costs, 2 reduction in milk price due to higher somatic cell count, 3 replacement costs and 4 lower production level of the herd due to involuntary culling of cows because of udder problems. A high somatic cell count lowers the price of milk and eventually leads to involuntary culling. For treatments for fertility disorders the following costs were included: 1 treatment costs 2 higher replacement costs and 3 decreased milk production in the herd. Days open included the following costs: 1 extra insemination, 2 reduced annual milk yield and 3 fewer calves born. Animal breeding was found to be a very cost effective investment, yielding returns of FIM 876.9 per cow from one round of selection when the gene flow was followed for over 25 years in the Finnish dairy cattle breeding programme.

  17. Habitat selection of two Acrocephalus warblers breeding in reed beds near Malacky (Western Slovakia)

    Czech Academy of Sciences Publication Activity Database

    Prokešová, Jarmila; Kocian, Ľ.

    2004-01-01

    Roč. 59, č. 5 (2004), s. 637-644 ISSN 0006-3088 Grant - others:VEGA(SK) 1/7197/20; VEGA(SK) 1/0017/03 Institutional research plan: CEZ:AV0Z6093917 Keywords : reed warblers * breeding * habitat selection Subject RIV: EH - Ecology, Behaviour Impact factor: 0.207, year: 2004 http://biologia.savba.sk/59_5_04/Prokesova_J.pdf

  18. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean

    Directory of Open Access Journals (Sweden)

    Joost Stephane

    2009-02-01

    Full Text Available Abstract Background In this study we compare outlier loci detected using a FST based method with those identified by a recently described method based on spatial analysis (SAM. We tested a panel of single nucleotide polymorphisms (SNPs previously genotyped in individuals of goat breeds of southern areas of the Mediterranean basin (Italy, Greece and Albania. We evaluate how the SAM method performs with SNPs, which are increasingly employed due to their high number, low cost and easy of scoring. Results The combined use of the two outlier detection approaches, never tested before using SNP polymorphisms, resulted in the identification of the same three loci involved in milk and meat quality data by using the two methods, while the FST based method identified 3 more loci as under selection sweep in the breeds examined. Conclusion Data appear congruent by using the two methods for FST values exceeding the 99% confidence limits. The methods of FST and SAM can independently detect signatures of selection and therefore can reduce the probability of finding false positives if employed together. The outlier loci identified in this study could indicate adaptive variation in the analysed species, characterized by a large range of climatic conditions in the rearing areas and by a history of intense trade, that implies plasticity in adapting to new environments.

  19. Economic selection index development for Beefmaster cattle II: General-purpose breeding objective.

    Science.gov (United States)

    Ochsner, K P; MacNeil, M D; Lewis, R M; Spangler, M L

    2017-05-01

    An economic selection index was developed for Beefmaster cattle in a general-purpose production system in which bulls are mated to a combination of heifers and mature cows, with resulting progeny retained as replacements or sold at weaning. National average prices from 2010 to 2014 were used to establish income and expenses for the system. Genetic parameters were obtained from the literature. Economic values were estimated by simulating 100,000 animals and approximating the partial derivatives of the profit function by perturbing traits 1 at a time, by 1 unit, while holding the other traits constant at their respective means. Relative economic values for the objective traits calving difficultly direct (CDd), calving difficulty maternal (CDm), weaning weight direct (WWd), weaning weight maternal (WWm), mature cow weight (MW), and heifer pregnancy (HP) were -2.11, -1.53, 18.49, 11.28, -33.46, and 1.19, respectively. Consequently, under the scenario assumed herein, the greatest improvements in profitability could be made by decreasing maintenance energy costs associated with MW followed by improvements in weaning weight. The accuracy of the index lies between 0.218 (phenotypic-based index selection) and 0.428 (breeding values known without error). Implementation of this index would facilitate genetic improvement and increase profitability of Beefmaster cattle operations with a general-purpose breeding objective when replacement females are retained and with weaned calves as the sale end point.

  20. Factors driving territory size and breeding success in a threatened migratory songbird, the Canada Warbler

    Directory of Open Access Journals (Sweden)

    D. T. Tyler Flockhart

    2016-12-01

    Full Text Available Successful conservation of migratory birds demands we understand how habitat factors on the breeding grounds influences breeding success. Multiple factors are known to directly influence breeding success in territorial songbirds. For example, greater food availability and fewer predators can have direct effects on breeding success. However, many of these same habitat factors can also result in higher conspecific density that may ultimately reduce breeding success through density dependence. In this case, there is a negative indirect effect of habitat on breeding success through its effects on conspecific density and territory size. Therefore, a key uncertainty facing land managers is whether important habitat attributes directly influence breeding success or indirectly influence breeding success through territory size. We used radio-telemetry, point-counts, vegetation sampling, predator observations, and insect sampling over two years to provide data on habitat selection of a steeply declining songbird species, the Canada Warbler (Cardellina canadensis. These data were then applied in a hierarchical path modeling framework and an AIC model selection approach to determine the habitat attributes that best predict breeding success. Canada Warblers had smaller territories in areas with high shrub cover, in the presence of red squirrels (Tamiasciurus hudsonicus, at shoreline sites relative to forest-interior sites and as conspecific density increased. Breeding success was lower for birds with smaller territories, which suggests competition for limited food resources, but there was no direct evidence that food availability influenced territory size or breeding success. The negative relationship between shrub cover and territory size in our study may arise because these specific habitat conditions are spatially heterogeneous, whereby individuals pack into patches of preferred breeding habitat scattered throughout the landscape, resulting in reduced

  1. Nest site selection and breeding success in three Turdus thrush species coexisting in an urban environment

    Czech Academy of Sciences Publication Activity Database

    Mikula, P.; Hromada, M.; Albrecht, Tomáš; Tryjanowski, P.

    2014-01-01

    Roč. 49, č. 1 (2014), s. 83-92 ISSN 0001-6454 Institutional support: RVO:68081766 Keywords : breeding success * coexistence * nest-habitat partitioning * nest site selection * predation * synurbization * urban habitat * thrushes Subject RIV: EG - Zoology Impact factor: 0.745, year: 2014

  2. Fitness consequences of timing of migration and breeding in cormorants.

    Directory of Open Access Journals (Sweden)

    Phillip Gienapp

    Full Text Available In most bird species timing of breeding affects reproductive success whereby early breeding is favoured. In migratory species migration time, especially arrival at the breeding grounds, and breeding time are expected to be correlated. Consequently, migration time should also have fitness consequences. However, in contrast to breeding time, evidence for fitness consequences of migration time is much more limited. Climate change has been shown to negatively affect the synchrony between trophic levels thereby leading to directional selection on timing but again direct evidence in avian migration time is scarce. We here analysed fitness consequences of migration and breeding time in great cormorants and tested whether climate change has led to increased selection on timing using a long-term data set from a breeding colony on the island of Vorsø (Denmark. Reproductive success, measured as number of fledglings, correlated with breeding time and arrival time at the colony and declined during the season. This seasonal decline became steeper during the study period for both migration and breeding time and was positively correlated to winter/spring climate, i.e. selection was stronger after warmer winters/springs. However, the increasing selection pressure on timing seems to be unrelated to climate change as the climatic variables that were related to selection strength did not increase during the study period. There is indirect evidence that phenology or abundances of preferred prey species have changed which could have altered selection on timing of migration and breeding.

  3. There is room for selection in a small local pig breed when using optimum contribution selction: A simulation study

    DEFF Research Database (Denmark)

    Gourdine, Jean-Luc; Sørensen, Anders Christian; Rydhmer, Lotta

    2012-01-01

    at random. With optimum contribution selection, genetic progress can be achieved that is almost as great as that with truncation selection based on BLUP breeding values (0.2 to 0.5 vs. 0.3 to 0.5 genetic SD, P

  4. Genomic selection using indicator traits to reduce the environmental impact of milk production

    DEFF Research Database (Denmark)

    Hansen Axelsson, H; Fikse, W F; Kargo, Morten

    2013-01-01

    The aim of this simulation study was to test the hypothesis that phenotype information of specific indicator traits of environmental importance recorded on a small-scale can be implemented in breeding schemes with genomic selection to reduce the environmental impact of milk production. A stochastic...... was, however, best in the scenarios where the genetic correlation between IT and EI was ≥0.30 and the accuracy of direct genomic value was ≥0.40. The genetic gain in EI was 26 to 34% higher when indicator traits such as greenhouse gases in the breath of the cow and methane recorded in respiration...... of direct genomic values will be reasonably high...

  5. MORE ON THE APPROVAL OF ANTONINSKO-ZOZULENETSKIY CARPS OF UKRAINIAN BREEDS

    Directory of Open Access Journals (Sweden)

    O. Oleksiyenko

    2015-12-01

    Full Text Available Purpose. To perform an analysis the fish breeding, biological, productive, exterior indicators of Antoninsko-Zozulenetskiy carps of Ukrainian scaly and Ukrainian framed breeds, their genetic characteristics as well as to provide the methods of the creation of these carps as a selective achievement. Methodology. The works were carried out in accordance with conventional techniques in fish farming and breeding. Carp breeding was conducted by the method of mass continuously improving selection of fish the aim of which is that a complex of fish breeding and management activities create conditions contributing to the development of productive qualities in the selected carp, while selection and breeding activities form and reproduce the leading pedigree group of the stock. Findings. In the conditions of the development of fisheries industry, especially important are the problems of selection and breeding works aimed at improving the biological and economic features of fish farming objects by improving the existing and developing new breeds, inbreeding, zonal types, lines, etc., creating a progressive heterotic structure of breeds and forming highly productive pedigree stocks of fish breeding objects. The main object of commercial fish farming in Ukraine, as in many countries, is carp, so his selection is given much attention. The starting material for producing the Antoninsko-Zozulenetskiy Ukrainian scaly and Ukrainian framed breeds was carp population of Antoninskiy State fish hatchery (Khmelnytsky region, which was a cross between native carp with mirror Galician carp. The principal method of carp breeding was a massive, continuously improving selection with high intensity among younger age groups. An importance during the selection was given to the growth rate of the fish, their exterior and constitutional "strength." For the brood, individuals with the highest body weight, scaly cover of which corresponded to accepted standards, beautiful high

  6. Breeding and Selection of New Switchgrass Varieties for Increased Biomass Production

    Energy Technology Data Exchange (ETDEWEB)

    Taliaferro, C.M.

    2003-05-27

    Switchgrass breeding and genetics research was conducted from 1992-2002 at the Oklahoma State University as part of the national DOE-Bioenergy Feedstock Development Program (BFDP) effort to develop the species as a bioenergy feedstock crop. The fundamental objective of the program was to implement and conduct a breeding program to increase biomass yield capability in switchgrass and develop cultivars for the central and southern United States. Supporting research objectives included: (1) switchgrass germplasm collection, characterization, and enhancement; (2) elucidation of cytogenetic and breeding behavior; and (3) identification of best breeding procedures.

  7. Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine.

    Science.gov (United States)

    Coupel-Ledru, Aude; Lebon, Eric; Christophe, Angélique; Gallo, Agustina; Gago, Pilar; Pantin, Florent; Doligez, Agnès; Simonneau, Thierry

    2016-08-09

    Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface. However, this strategy generally also lowers growth, as stomatal opening is necessary for the capture of atmospheric CO2 that feeds daytime photosynthesis. Here, we considered the reduction in transpiration rate at night (En) as a possible strategy to limit water use without altering growth. For this purpose, we carried out a genetic analysis for En and TE in grapevine, a major crop in drought-prone areas. Using recently developed phenotyping facilities, potted plants of a cross between Syrah and Grenache cultivars were screened for 2 y under well-watered and moderate soil water deficit scenarios. High genetic variability was found for En under both scenarios and was primarily associated with residual diffusion through the stomata. Five quantitative trait loci (QTLs) were detected that underlay genetic variability in En Interestingly, four of them colocalized with QTLs for TE. Moreover, genotypes with favorable alleles on these common QTLs exhibited reduced En without altered growth. These results demonstrate the interest of breeding grapevine for lower water loss at night and pave the way to breeding other crops with this underexploited trait for higher TE.

  8. Breeding for mechanised sesame production in Australia

    International Nuclear Information System (INIS)

    Beech, D.F.; Imrie, B.C.

    2001-01-01

    Introduction of sesame germplasm from Myanmar and Mexico was not satisfactory for successful development of the Australian sesame industry. Therefore, a national breeding programme was undertaken by CSIRO and the Northern Territory Department of Primary Industry and Fisheries (NTDPIF). The main traits considered for selection were latitudinal adaptation, temperature response, growth habit, determinacy, palatability, capsules per leaf axil, seed shattering and seed dormancy. The CSIRO breeding efforts started in 1989 with a hybridization programme using germplasm from Japan, Mexico, Myanmar, Rep. of Korea and Venezuela. This programme resulted in selection in the F 6 generation of branched types released under the names 'Beech's choice' and 'Aussie Gold'. The NTDPIF sesame breeding programme started in 1993 with hybridization of introductions. The Mexican cultivar 'Yori 77' was selected for release, and after several years of intraline selection the uniculm cultivar 'Edith' was released in 1996. Further breeding continues to improve seed retention and resistance to charcoal rot. (author)

  9. Breeds in danger of extintion and biodiversity

    Directory of Open Access Journals (Sweden)

    A. Blasco

    2008-07-01

    Full Text Available Some arguments currently used to support breed conservation are examined. The central point is that we cannot conserve all breeds because we do not have financial resources enough to keep everything (mainly in developing countries and in many cases we do not have special reasons to conserve breeds. A breed is a human product and it should not be confused with specie. A breed can be generated or transformed. We can create synthetic breeds with the best characteristics of several breeds. Selection is not exhausting genetic variability (there are several experiments showing that, and genetic variability within breeds is large. We need reasons to keep breeds in danger in extinction. A breed is a tool, and we can decide to keep it when it is useful because it is specially adapted to some environments (although in this case it should not be in danger of extinction, it can be useful in crossbreeding to shorten the way of obtaining response to selection, or it has some extreme values for traits that may be useful in the future (in this case we have to define clearly which traits and how we expect the future to be. We can add cultural reasons when we have money enough to spend in culture.

  10. Considering genetic characteristics in German Holstein breeding programs.

    Science.gov (United States)

    Segelke, D; Täubert, H; Reinhardt, F; Thaller, G

    2016-01-01

    Recently, several research groups have demonstrated that several haplotypes may cause embryonic loss in the homozygous state. Up to now, carriers of genetic disorders were often excluded from mating, resulting in a decrease of genetic gain and a reduced number of sires available for the breeding program. Ongoing research is very likely to identify additional genetic defects causing embryonic loss and calf mortality by genotyping a large proportion of the female cattle population and sequencing key ancestors. Hence, a clear demand is present to develop a method combining selection against recessive defects (e.g., Holstein haplotypes HH1-HH5) with selection for economically beneficial traits (e.g., polled) for mating decisions. Our proposed method is a genetic index that accounts for the allele frequencies in the population and the economic value of the genetic characteristic without excluding carriers from breeding schemes. Fertility phenotypes from routine genetic evaluations were used to determine the economic value per embryo lost. Previous research has shown that embryo loss caused by HH1 and HH2 occurs later than the loss for HH3, HH4, and HH5. Therefore, an economic value of € 97 was used against HH1 and HH2 and € 70 against HH3, HH4, and HH5. For polled, € 7 per polled calf was considered. Minor allele frequencies of the defects ranged between 0.8 and 3.3%. The polled allele has a frequency of 4.1% in the German Holstein population. A genomic breeding program was simulated to study the effect of changing the selection criteria from assortative mating based on breeding values to selecting the females using the genetic index. Selection for a genetic index on the female path is a useful method to control the allele frequencies by reducing undesirable alleles and simultaneously increasing economical beneficial characteristics maintaining most of the genetic gain in production and functional traits. Additionally, we applied the genetic index to real data and

  11. In vitro irradiation treatment - an effective method of breeding for chrysanthemum

    International Nuclear Information System (INIS)

    Dao Thanh Bang; Nguyen Hong Nhung; Nguyen Phuong Doai; Le Thi Lieu; Nguyen Pham Hung

    2011-01-01

    Recently, mutation induction is one of the an effective tool for crop breeding improvement. However, challenge for breeders is how to find suitable method for vegetative crop. Strong point of in vitro mutation breeding is reduce breeding process, easy to remove chimeric mutant after several cycle multiplication tissue culture. Based on optimal media of callus formation, regeneration and root media in chrysanthemum.The experiment of of irradiation treatment was carried out at the range doses 10, 20, 30, 50 and 70 Gy for callus of bud. From generation of M1V4, promising mutants was selected mostly in the dose of 30 Gy and bring back to in vitro for fixation and multiplication of mutant lines. Selection and evaluation of mutant lines was carried at M1V8. From CN43, crystal yellow and Taiwan purple origin varieties we received three mutants VCM1, VCM2 and VCM3 respectively. All mutant varieties have been certified as regional varieties according to decision of Ministry of Agriculture and Rural Development. The result of research show that combination between in vitro irradiation and tissue culture is effective solution for chrysanthemum breeding in particular and vegetative crop in general. (author)

  12. Applied Genetics and Genomics in Alfalfa Breeding

    Directory of Open Access Journals (Sweden)

    E. Charles Brummer

    2012-03-01

    Full Text Available Alfalfa (Medicago sativa L., a perennial and outcrossing species, is a widely planted forage legume for hay, pasture and silage throughout the world. Currently, alfalfa breeding relies on recurrent phenotypic selection, but alternatives incorporating molecular marker assisted breeding could enhance genetic gain per unit time and per unit cost, and accelerate alfalfa improvement. Many major quantitative trait loci (QTL related to agronomic traits have been identified by family-based QTL mapping, but in relatively large genomic regions. Candidate genes elucidated from model species have helped to identify some potential causal loci in alfalfa mapping and breeding population for specific traits. Recently, high throughput sequencing technologies, coupled with advanced bioinformatics tools, have been used to identify large numbers of single nucleotide polymorphisms (SNP in alfalfa, which are being developed into markers. These markers will facilitate fine mapping of quantitative traits and genome wide association mapping of agronomic traits and further advanced breeding strategies for alfalfa, such as marker-assisted selection and genomic selection. Based on ideas from the literature, we suggest several ways to improve selection in alfalfa including (1 diversity selection and paternity testing, (2 introgression of QTL and (3 genomic selection.

  13. Genomic breeding value prediction:methods and procedures

    NARCIS (Netherlands)

    Calus, M.P.L.

    2010-01-01

    Animal breeding faces one of the most significant changes of the past decades – the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the

  14. Genomics-assisted breeding in fruit trees

    OpenAIRE

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the pl...

  15. The Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations

    Directory of Open Access Journals (Sweden)

    Ana M. Poets

    2016-03-01

    Full Text Available Barley was introduced to North America ∼400 yr ago but adaptation to modern production environments is more recent. Comparisons of allele frequencies among growth habits and spike (inflorescence types in North America indicate that significant genetic differentiation has accumulated in a relatively short evolutionary time span. Allele frequency differentiation is greatest among barley with two-row vs. six-row spikes, followed by spring vs. winter growth habit. Large changes in allele frequency among breeding programs suggest a major contribution of genetic drift and linked selection on genetic variation. Despite this, comparisons of 3613 modern North American cultivated barley breeding lines that differ for spike-type and growth habit permit the discovery of 142 single nucleotide polymorphism (SNP outliers putatively linked to targets of selection. For example, SNPs within the Cbf4, Ppd-H1, and Vrn-H1 loci, which have previously been associated with agronomically adaptive phenotypes, are identified as outliers. Analysis of extended haplotype sharing identifies genomic regions shared within and among breeding populations, suggestive of a number of genomic regions subject to recent selection. Finally, we are able to identify recent bouts of gene flow between breeding populations that could point to the sharing of agronomically adaptive variation. These results are supported by pedigrees and breeders’ understanding of germplasm sharing.

  16. Retrospective and statistical analysis of breeding management on the Italian Heavy Draught Horse breed.

    Science.gov (United States)

    Mantovani, R; Sartori, C; Pigozzi, G

    2013-07-01

    proven stallions. Optimal breeding management could be obtained in stud farms by limiting foaling at 3 years, particularly in feral and semi-feral rearing systems, and using young stallions for 3 to 4 years to maintain a perceptible selection differential with older proven stallions and to reduce cost of services. Later, the selection differential with proven stallions become less consistent and genetic improvement could be slowed down.

  17. Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses.

    Science.gov (United States)

    Orizaola, Germán; Richter-Boix, Alex; Laurila, Anssi

    2016-09-01

    As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in

  18. Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant

    NARCIS (Netherlands)

    Tomotani, Barbara M.; Muijres, Florian T.; Koelman, Julia; Casagrande, Stefania; Visser, Marcel E.

    2018-01-01

    * Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting

  19. Simulated moult reduces flight performance but overlap with breeding does not affect breeding success in a long-distance migrant

    NARCIS (Netherlands)

    Mizumo Tomotani, Barbara; Muijres, F.T.; Koelman, Julia; Casagrande, Stefania; Visser, Marcel E.

    2018-01-01

    1.Long-distance migrants are time-constrained as they need to incorporate many annual cycle stages within a year. Migratory passerines moult in the short interval between breeding and migration. To widen this interval, moult may start while still breeding, but this results in flying with moulting

  20. Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models.

    Science.gov (United States)

    Azevedo Peixoto, Leonardo de; Laviola, Bruno Galvêas; Alves, Alexandre Alonso; Rosado, Tatiana Barbosa; Bhering, Leonardo Lopes

    2017-01-01

    Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY) and the weight of 100 seeds (W100S) using restricted maximum likelihood (REML); to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.

  1. Breeding Jatropha curcas by genomic selection: A pilot assessment of the accuracy of predictive models.

    Directory of Open Access Journals (Sweden)

    Leonardo de Azevedo Peixoto

    Full Text Available Genomic wide selection is a promising approach for improving the selection accuracy in plant breeding, particularly in species with long life cycles, such as Jatropha. Therefore, the objectives of this study were to estimate the genetic parameters for grain yield (GY and the weight of 100 seeds (W100S using restricted maximum likelihood (REML; to compare the performance of GWS methods to predict GY and W100S; and to estimate how many markers are needed to train the GWS model to obtain the maximum accuracy. Eight GWS models were compared in terms of predictive ability. The impact that the marker density had on the predictive ability was investigated using a varying number of markers, from 2 to 1,248. Because the genetic variance between evaluated genotypes was significant, it was possible to obtain selection gain. All of the GWS methods tested in this study can be used to predict GY and W100S in Jatropha. A training model fitted using 1,000 and 800 markers is sufficient to capture the maximum genetic variance and, consequently, maximum prediction ability of GY and W100S, respectively. This study demonstrated the applicability of genome-wide prediction to identify useful genetic sources of GY and W100S for Jatropha breeding. Further research is needed to confirm the applicability of the proposed approach to other complex traits.

  2. Prediction of Genes Related to Positive Selection Using Whole-Genome Resequencing in Three Commercial Pig Breeds

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2015-12-01

    Full Text Available Selective sweep can cause genetic differentiation across populations, which allows for the identification of possible causative regions/genes underlying important traits. The pig has experienced a long history of allele frequency changes through artificial selection in the domestication process. We obtained an average of 329,482,871 sequence reads for 24 pigs from three pig breeds: Yorkshire (n = 5, Landrace (n = 13, and Duroc (n = 6. An average read depth of 11.7 was obtained using whole-genome resequencing on an Illumina HiSeq2000 platform. In this study, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio tests were implemented to detect genes experiencing positive selection for the genome-wide resequencing data generated from three commercial pig breeds. In our results, 26, 7, and 14 genes from Yorkshire, Landrace, and Duroc, respectively were detected by two kinds of statistical tests. Significant evidence for positive selection was identified on genes ST6GALNAC2 and EPHX1 in Yorkshire, PARK2 in Landrace, and BMP6, SLA-DQA1, and PRKG1 in Duroc.These genes are reportedly relevant to lactation, reproduction, meat quality, and growth traits. To understand how these single nucleotide polymorphisms (SNPs related positive selection affect protein function, we analyzed the effect of non-synonymous SNPs. Three SNPs (rs324509622, rs80931851, and rs80937718 in the SLA-DQA1 gene were significant in the enrichment tests, indicating strong evidence for positive selection in Duroc. Our analyses identified genes under positive selection for lactation, reproduction, and meat-quality and growth traits in Yorkshire, Landrace, and Duroc, respectively.

  3. Two generations of selection on restricted best linear unbiased prediction breeding values for income minus feed cost in laying hens.

    Science.gov (United States)

    Hagger, C

    1992-07-01

    Two generations of selection on restricted BLUP breeding values were applied in an experiment with laying hens. Selection had been on phenotype of income minus feed cost (IFC) between 21 and 40 wk of age in the previous five generations. The restriction of no genetic change in egg weight was included in the EBV for power-transformed IFC (i.e., IFCt, with t-values of 3.7 and 3.6 in the two generations, respectively). The experiment consisted of two selection lines plus a randomly bred control of 20 male and 80 female breeders each. Observations on 8,844 survivors to 40 wk were available. Relative to the base population average, the restriction reduced genetic gain in IFC from 4.1 and 3.9% to 2.0 and 2.2% per generation in the two selection lines, respectively. Average EBV for egg weight remained nearly constant after a strong increase in the previous five generations. Rates of genetic gain for egg number, body weight, and feed conversion (feed/egg mass) were not affected significantly. In the seventh generation, a genetic gain in feed conversion of 10.3% relative to the phenotypic mean of the base population was obtained.

  4. Breeding system and pollination biology of the semidomesticated ...

    African Journals Online (AJOL)

    Breeding system and pollination biology of the semidomesticated fruit tree, Tamarindus indica L. (Leguminosae: Caesalpinioideae ): Implications for fruit production, selective breeding, and conservation of genetic resources.

  5. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds.

    Science.gov (United States)

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Francis, Clinton D

    2017-01-01

    Birds breeding in heterogeneous landscapes select nest sites by cueing in on a variety of factors from landscape features and social information to the presence of natural enemies. We focus on determining the relative impact of anthropogenic noise on nest site occupancy, compared to amount of forest cover, which is known to strongly influence the selection process. We examine chronic, industrial noise from natural gas wells directly measured at the nest box as well as site-averaged noise, using a well-established field experimental system in northwestern New Mexico. We hypothesized that high levels of noise, both at the nest site and in the environment, would decrease nest box occupancy. We set up nest boxes using a geospatially paired control and experimental site design and analyzed four years of occupancy data from four secondary cavity-nesting birds common to the Colorado Plateau. We found different effects of noise and landscape features depending on species, with strong effects of noise observed in breeding habitat selection of Myiarchus cinerascens, the Ash-throated Flycatcher, and Sialia currucoides, the Mountain Bluebird. In contrast, the amount of forest cover less frequently explained habitat selection for those species or had a smaller standardized effect than the acoustic environment. Although forest cover characterization and management is commonly employed by natural resource managers, our results show that characterizing and managing the acoustic environment should be an important tool in protected area management. © 2016 by the Ecological Society of America.

  6. Neutronic studies of fissile and fusile breeding blankets

    International Nuclear Information System (INIS)

    Taczanowski, S.

    1984-08-01

    In light of the need of convincing motivation substantiating expensive and inherently applied research (nuclear energy), first a simple comparative study of fissile breeding economics of fusion fission hybrids, spallators and also fast breeder reactors has been carried out. As a result, the necessity of maximization of fissile production (in the first two ones, in fast breeders rather the reprocessing costs should be reduced) has been shown, thus indicating the design strategy (high support ratio) for these systems. In spite of the uncertainty of present projections onto further future and discrepancies in available data even quite conservative assumptions indicate that hybrids and perhaps even earlier - spallators can become economic at realistic uranium price increase and successfully compete against fast breeders. Then on the basis of the concept of the neutron flux shaping aimed at the correlation of the selected cross-sections with the neutron flux, the indications for the maximization of respective reaction rates has been formulated. In turn, these considerations serve as the starting point for the guidelines of breeding blanket nuclear design, which are as follows: 1) The source neutrons must face the multiplying layer (of proper thickness) of possibly low concentration of nuclides attenuating the neutron multiplication (i.e. structure materials, nongaseous coolants). 2) For the most effective trapping of neutrons within the breeding zone (leakage and void streaming reduction) it must contain an efficient moderator (not valid for fissile breeding blankets). 3) All regions of significant slow flux should contain 6 Li in order to reduce parasite neutron captures in there. (orig./HP)

  7. ROOT VEGETABLES, BREEDING TRENDS, RESULTS

    Directory of Open Access Journals (Sweden)

    M. I. Fedorova

    2017-01-01

    Full Text Available The main advantage of root vegetables is their unique specificity and high economic importance. The benefits and medicinal properties of root vegetables being highly demanded by the market requirements to the commodity are highlighted in the article. The main directions of breeding program for root vegetable crops, including species of Apiaceae family with carrot, parsnips; Chenopodioideae family with red beet; Brassicaceae family with radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga. Initial breeding accessions of carrot, red beet, radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga have been selected out to be used for breeding program for heterosis. The mf and ms breeding lines were developed, and with the use of them the new gene pool was created. Variety supporting breeding program and methods were also proposed. 

  8. What drives cooperative breeding?

    Directory of Open Access Journals (Sweden)

    Walter D Koenig

    2017-06-01

    Full Text Available Cooperative breeding, in which more than a pair of conspecifics cooperate to raise young at a single nest or brood, is widespread among vertebrates but highly variable in its geographic distribution. Particularly vexing has been identifying the ecological correlates of this phenomenon, which has been suggested to be favored in populations inhabiting both relatively stable, productive environments and in populations living under highly variable and unpredictable conditions. Griesser et al. provide a novel approach to this problem, performing a phylogenetic analysis indicating that family living is an intermediate step between nonsocial and cooperative breeding birds. They then examine the ecological and climatic conditions associated with these different social systems, concluding that cooperative breeding emerges when family living is favored in highly productive environments, followed secondarily by selection for cooperative breeding when environmental conditions deteriorate and within-year variability increases. Combined with recent work addressing the fitness consequences of cooperative breeding, Griesser et al.'s contribution stands to move the field forward by demonstrating that the evolution of complex adaptations such as cooperative breeding may only be understood when each of the steps leading to it are identified and carefully integrated.

  9. Selective breeding for a behavioral trait changes digit ratio.

    Directory of Open Access Journals (Sweden)

    Reginia H Y Yan

    Full Text Available The ratio of the length of the second digit (index finger divided by the fourth digit (ring finger tends to be lower in men than in women. This 2D:4D digit ratio is often used as a proxy for prenatal androgen exposure in studies of human health and behavior. For example, 2D:4D ratio is lower (i.e. more "masculinized" in both men and women of greater physical fitness and/or sporting ability. Lab mice have also shown variation in 2D:4D as a function of uterine environment, and mouse digit ratios seem also to correlate with behavioral traits, including daily activity levels. Selective breeding for increased rates of voluntary exercise (wheel running in four lines of mice has caused correlated increases in aerobic exercise capacity, circulating corticosterone level, and predatory aggression. Here, we show that this selection regime has also increased 2D:4D. This apparent "feminization" in mice is opposite to the relationship seen between 2D:4D and physical fitness in human beings. The present results are difficult to reconcile with the notion that 2D:4D is an effective proxy for prenatal androgen exposure; instead, it may more accurately reflect effects of glucocorticoids, or other factors that regulate any of many genes.

  10. Hybrid recreation by reverse breeding in Arabidopsis thaliana.

    Science.gov (United States)

    Wijnker, Erik; Deurhof, Laurens; van de Belt, Jose; de Snoo, C Bastiaan; Blankestijn, Hetty; Becker, Frank; Ravi, Maruthachalam; Chan, Simon W L; van Dun, Kees; Lelivelt, Cilia L C; de Jong, Hans; Dirks, Rob; Keurentjes, Joost J B

    2014-04-01

    Hybrid crop varieties are traditionally produced by selecting and crossing parental lines to evaluate hybrid performance. Reverse breeding allows doing the opposite: selecting uncharacterized heterozygotes and generating parental lines from them. With these, the selected heterozygotes can be recreated as F1 hybrids, greatly increasing the number of hybrids that can be screened in breeding programs. Key to reverse breeding is the suppression of meiotic crossovers in a hybrid plant to ensure the transmission of nonrecombinant chromosomes to haploid gametes. These gametes are subsequently regenerated as doubled-haploid (DH) offspring. Each DH carries combinations of its parental chromosomes, and complementing pairs can be crossed to reconstitute the initial hybrid. Achiasmatic meiosis and haploid generation result in uncommon phenotypes among offspring owing to chromosome number variation. We describe how these features can be dealt with during a reverse-breeding experiment, which can be completed in six generations (∼1 year).

  11. Selection of maintaining, method for keeping of biologial purity, patternship and health, regarding viruses infection of distinguished potato breeding lines

    Directory of Open Access Journals (Sweden)

    Luiza MIKE

    2008-05-01

    Full Text Available A large number of potato varieties and distinguished breeding lines disappeared as an effect of nonfavourable climatically conditions and especially by viruses diseases, as well as other biological and viruses degeneration. To avoid the negative effect of degeneration on potato varieties and distinguished breeding lines, the method of selection for maintaining and multiplication of potato is applying in Romania in the frame of National Center for Maintaining of potato varieties and distinguished breeding lines Apa Rosie, Covasna County, which belong to the Station for Research and Development of Potato, Targu Secuiesc, Covasna County.In this center are maintained and multiplied all distinguished varieties and breeding centers from Romania (National Institute for research and Development of Potato and Sugar beet Brasov, Research and Development Station for Agriculture Suceava, Research and Development Station for Potato Targu Secuiesc, Research and development Station for Potato Miercurea Ciuc.Using the method of selection for maintaining it is possible an early identification of somatic mutations, disease (especially viruses infection by visual elimination or by serological testing.The viruses’ infection of potato leads to disturbed the metabolism of plants and produces anatomical – morphological alters as: mosaic, crinkle, rolling, browning of leaves and plants deformation.The disturbing of plant metabolism has as negative effect the reduction of vegetation period, decreasing the yield capacity, depreciation of physical and chemical quality of tubers.The genetically complex structure of cultivated potato (2n = 4x = 48 and strong segregation of long – expected characters in the obtained future progeny by sexual hybridization, complicated many times by nonfavourable linkage, are the backgrounds for initiation of maintain selection.

  12. Genomic Selection for Predicting Fusarium Head Blight Resistance in a Wheat Breeding Program

    Directory of Open Access Journals (Sweden)

    Marcio P. Arruda

    2015-11-01

    Full Text Available Genomic selection (GS is a breeding method that uses marker–trait models to predict unobserved phenotypes. This study developed GS models for predicting traits associated with resistance to head blight (FHB in wheat ( L.. We used genotyping-by-sequencing (GBS to identify 5054 single-nucleotide polymorphisms (SNPs, which were then treated as predictor variables in GS analysis. We compared how the prediction accuracy of the genomic-estimated breeding values (GEBVs was affected by (i five genotypic imputation methods (random forest imputation [RFI], expectation maximization imputation [EMI], -nearest neighbor imputation [kNNI], singular value decomposition imputation [SVDI], and the mean imputation [MNI]; (ii three statistical models (ridge-regression best linear unbiased predictor [RR-BLUP], least absolute shrinkage and operator selector [LASSO], and elastic net; (iii marker density ( = 500, 1500, 3000, and 4500 SNPs; (iv training population (TP size ( = 96, 144, 192, and 218; (v marker-based and pedigree-based relationship matrices; and (vi control for relatedness in TPs and validation populations (VPs. No discernable differences in prediction accuracy were observed among imputation methods. The RR-BLUP outperformed other models in nearly all scenarios. Accuracies decreased substantially when marker number decreased to 3000 or 1500 SNPs, depending on the trait; when sample size of the training set was less than 192; when using pedigree-based instead of marker-based matrix; or when no control for relatedness was implemented. Overall, moderate to high prediction accuracies were observed in this study, suggesting that GS is a very promising breeding strategy for FHB resistance in wheat.

  13. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits

    Science.gov (United States)

    Baylis, Kathy; Hoover, Shelley E.; Currie, Rob W.; Melathopoulos, Andony P.; Pernal, Stephen F.; Foster, Leonard J.; Guarna, M. Marta

    2017-01-01

    Abstract Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper’s profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. PMID:28334400

  14. Natural selection for earlier male arrival to breeding grounds through direct and indirect effects in a migratory songbird

    NARCIS (Netherlands)

    Velmala, William; Helle, Samuli; Ahola, Markus P.; Klaassen, M.R.J.; Lehikoinen, Esa; Rainio, Kalle; Sirkia, Paivi M.; Laaksonen, Toni

    2015-01-01

    For migratory birds, the earlier arrival of males to breeding grounds is often expected to have fitness benefits. However, the selection differential on male arrival time has rarely been decomposed into the direct effect of male arrival and potential indirect effects through female traits. We

  15. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  16. Genomic selection and association mapping in rice (Oryza sativa: effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    Directory of Open Access Journals (Sweden)

    Jennifer Spindel

    2015-02-01

    Full Text Available Genomic Selection (GS is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  17. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    Science.gov (United States)

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  18. A role for selective contraception of individuals in conservation.

    Science.gov (United States)

    Cope, Holly R; Hogg, Carolyn J; White, Peter J; Herbert, Catherine A

    2017-10-28

    Contraception has an established role in managing overabundant populations and preventing undesirable breeding in zoos. We propose that it can also be used strategically and selectively in conservation to increase the genetic and behavioral quality of the animals. In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual and preventing genetically suboptimal breeding through the use of selective contraception. Reproductive suppression of selected individuals in conservation programs has further benefits of allowing animals to be housed as a group in extensive enclosures without interfering with breeding recommendations, which reduces adaptation to captivity and facilitates the expression of wild behaviors and social structures. Before selective contraception can be incorporated into a breeding program, the most suitable method of fertility control must be selected, and this can be influenced by factors such as species life history, age, ease of treatment, potential for reversibility, and desired management outcome for the individual or population. Contraception should then be implemented in the population following a step-by-step process. In this way, it can provide crucial, flexible control over breeding to promote the physical and genetic health and sustainability of a conservation dependent species held in captivity. For Tasmanian devils (Sarcophilus harrisii), black-flanked rock wallabies (Petrogale lateralis), and burrowing bettongs (Bettongia lesueur), contraception can benefit their conservation by maximizing genetic diversity and behavioral integrity in the captive breeding program, or, in the case of the wallabies and bettongs, by reducing populations to a sustainable size when they become locally overabundant. In these examples, contraceptive duration relative to reproductive life, reversibility, and predictability of the contraceptive

  19. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations

    Directory of Open Access Journals (Sweden)

    Nirea Kahsay G

    2012-10-01

    Full Text Available Abstract Background Simulation studies have shown that accuracy and genetic gain are increased in genomic selection schemes compared to traditional aquaculture sib-based schemes. In genomic selection, accuracy of selection can be maximized by increasing the precision of the estimation of SNP effects and by maximizing the relationships between test sibs and candidate sibs. Another means of increasing the accuracy of the estimation of SNP effects is to create individuals in the test population with extreme genotypes. The latter approach was studied here with creation of double haploids and use of non-random mating designs. Methods Six alternative breeding schemes were simulated in which the design of the test population was varied: test sibs inherited maternal (Mat, paternal (Pat or a mixture of maternal and paternal (MatPat double haploid genomes or test sibs were obtained by maximum coancestry mating (MaxC, minimum coancestry mating (MinC, or random (RAND mating. Three thousand test sibs and 3000 candidate sibs were genotyped. The test sibs were recorded for a trait that could not be measured on the candidates and were used to estimate SNP effects. Selection was done by truncation on genome-wide estimated breeding values and 100 individuals were selected as parents each generation, equally divided between both sexes. Results Results showed a 7 to 19% increase in selection accuracy and a 6 to 22% increase in genetic gain in the MatPat scheme compared to the RAND scheme. These increases were greater with lower heritabilities. Among all other scenarios, i.e. Mat, Pat, MaxC, and MinC, no substantial differences in selection accuracy and genetic gain were observed. Conclusions In conclusion, a test population designed with a mixture of paternal and maternal double haploids, i.e. the MatPat scheme, increases substantially the accuracy of selection and genetic gain. This will be particularly interesting for traits that cannot be recorded on the

  20. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection.

    Science.gov (United States)

    Flachowsky, Henryk; Le Roux, Pierre-Marie; Peil, Andreas; Patocchi, Andrea; Richter, Klaus; Hanke, Magda-Viola

    2011-10-01

    Breeding of apple (Malus × domestica) remains a slow process because of protracted generation cycles. Shortening the juvenile phase to achieve the introgression of traits from wild species into prebreeding material within a reasonable time frame is a great challenge. In this study, we evaluated early flowering transgenic apple lines overexpressing the BpMADS4 gene of silver birch with regard to tree morphology in glasshouse conditions. Based on the results obtained, line T1190 was selected for further analysis and application to fast breeding. The DNA sequences flanking the T-DNA were isolated and the T-DNA integration site was mapped on linkage group 4. The inheritance and correctness of the T-DNA integration were confirmed after meiosis. A crossbred breeding programme was initiated by crossing T1190 with the fire blight-resistant wild species Malus fusca. Transgenic early flowering F(1) seedlings were selected and backcrossed with 'Regia' and 98/6-10 in order to introgress the apple scab Rvi2, Rvi4 and powdery mildew Pl-1, Pl-2 resistance genes and the fire blight resistance quantitative trait locus FB-F7 present in 'Regia'. Three transgenic BC'1 seedlings pyramiding Rvi2, Rvi4 and FB-F7, as well as three other BC'1 seedlings combining Pl-1 and Pl-2, were identified. Thus, the first transgenic early flowering-based apple breeding programme combined with marker-assisted selection was established. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Genomic analyses of modern dog breeds.

    Science.gov (United States)

    Parker, Heidi G

    2012-02-01

    A rose may be a rose by any other name, but when you call a dog a poodle it becomes a very different animal than if you call it a bulldog. Both the poodle and the bulldog are examples of dog breeds of which there are >400 recognized worldwide. Breed creation has played a significant role in shaping the modern dog from the length of his leg to the cadence of his bark. The selection and line-breeding required to maintain a breed has also reshaped the genome of the dog, resulting in a unique genetic pattern for each breed. The breed-based population structure combined with extensive morphologic variation and shared human environments have made the dog a popular model for mapping both simple and complex traits and diseases. In order to obtain the most benefit from the dog as a genetic system, it is necessary to understand the effect structured breeding has had on the genome of the species. That is best achieved by looking at genomic analyses of the breeds, their histories, and their relationships to each other.

  2. Breeding for behavioural change in farm animails

    DEFF Research Database (Denmark)

    Sandøe, Peter; D'eath, RB; Lawrence, AB

    2009-01-01

    In farm animal breeding, behavioural traits are rarely included in selection programmes despite their potential to improve animal production and welfare. Breeding goals have been broadened beyond production traits in most farm animal species to include health and functional traits...

  3. Breeding for behavioural change in farm animals

    DEFF Research Database (Denmark)

    D'Eath, R.B.; Conington, J.; Lawrence, A.B.

    2010-01-01

    In farm animal breeding, behavioural traits are rarely included in selection programmes despite their potential to improve animal production and welfare. Breeding goals have been broadened beyond production traits in most farm animal species to include health and functional traits...

  4. Genomics-assisted breeding in fruit trees.

    Science.gov (United States)

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  5. Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs.

    Science.gov (United States)

    Li, Zhengcao; Chen, Jiucheng; Wang, Zhen; Pan, Yuchun; Wang, Qishan; Xu, Ningying; Wang, Zhengguang

    2016-12-01

    Chinese pigs have been undergoing both natural and artificial selection for thousands of years. Jinhua pigs are of great importance, as they can be a valuable model for exploring the genetic mechanisms linked to meat quality and other traits such as disease resistance, reproduction and production. The purpose of this study was to identify distinctive footprints of selection between Jinhua pigs and other breeds utilizing genome-wide SNP data. Genotyping by genome reducing and sequencing was implemented in order to perform cross-population extended haplotype homozygosity to reveal strong signatures of selection for those economically important traits. This work was performed at a 2% genome level, which comprised 152 006 SNPs genotyped in a total of 517 individuals. Population-specific footprints of selective sweeps were searched for in the genome of Jinhua pigs using six native breeds and three European breeds as reference groups. Several candidate genes associated with meat quality, health and reproduction, such as GH1, CRHR2, TRAF4 and CCK, were found to be overlapping with the significantly positive outliers. Additionally, the results revealed that some genomic regions associated with meat quality, immune response and reproduction in Jinhua pigs have evolved directionally under domestication and subsequent selections. The identified genes and biological pathways in Jinhua pigs showed different selection patterns in comparison with the Chinese and European breeds. © 2016 Stichting International Foundation for Animal Genetics.

  6. Usefulness of portable near infrared spectroscopy in olive breeding programs

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Moreno, L.

    2012-11-01

    The usefulness of portable near infrared (NIR) spectroscopy as a simple and efficient method to determine some of the main selection traits in olive breeding is evaluated in this work. Calibration models were developed and evaluated using partial least squares (PLS) regression from samples collected in different selection steps of the breeding work and under different experimental conditions. The results showed that accurate enough models (values of correlation between actual and predicted constituent higher than 0.9) were obtained for oil and moisture content in both cross validation and prediction results. Portable NIR spectroscopy could be used for selection of genotypes on the basis of these characters, providing similar ranking of genotypes than reference methods both in different selection steps of the breeding process (progenies and selection plots) and different experimental conditions (on-tree or under laboratory conditions). The advantages of this technique to improve the efficiency of the evaluation process in olive breeding programs are discussed. (Author) 21 refs.

  7. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).

    Science.gov (United States)

    Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean

    2017-04-28

    Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were

  8. Evaluation of the conformation of stallions of selected horse breeds

    Directory of Open Access Journals (Sweden)

    Tereza Petlachová

    2012-01-01

    Full Text Available The aim of this study was to evaluate the conformation of stallions of the breeds American Quarter Horse (AQH, American Paint Horse (APH, Appaloosa (Appa, the Lipizzaner horse (LH and the Old Kladruby horse (OKH. Representatives of these breeds are characterized as the descendants of horses on the base of the Arab-Berber blood. Western breeds (AQH, APH, Appa due to different environmental conditions, nutrition and the other structure under the influence of a different type of use, type of riding demands differed considerably from the original Spanish-type horses. It was measured a total of 24 body dimensions. Representatives of The American western breeds are statistically highly conclusively (P ≤ 0.01 in 23 of the 24 observed effects. To be precise, they are: smaller wither height as measured by stick, lower at the tail-set, longer neck, narrower chest, longer oblique body length, wider front pelvis length, longer pelvis bones, longer femur bones, shorter hind cannons.A statistically significant difference (P ≤ 0.05 was found in the length of the humerus, where the Old Kladruby Horse has a humerus that is longer by 2.34 cm than that of the APH. The Lipizzaner horse differs statistically highly conclusively (P ≤ 0.01 from the Appaloosa and Old Kladruby horse in the tape length of its head.

  9. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry

    DEFF Research Database (Denmark)

    Chavanne, Hervé; Janssen, Kasper; Hofherr, Johann

    2016-01-01

    –50 % market share. Only part of the European fish aquaculture industry today fully exploits selective breeding to the best advantage. A larger impact assessment still needs to be made by the remainder, particularly on the market share of fish seed (eggs, larvae or juveniles) and its consequences for hatchery...... of molecular tools is now common in all programs, mainly for pedigree traceability. An increasing number of programs use either genomic or marker-assisted selection. Results related to the seed production market confirmed that for Atlantic salmon there are a few dominant players at the European level, with 30...

  10. Implications of the difference between true and predicted breeding values for the study of natural selection and micro-evolution

    NARCIS (Netherlands)

    Postma, E.

    2006-01-01

    The ability to predict individual breeding values in natural populations with known pedigrees has provided a powerful tool to separate phenotypic values into their genetic and environmental components in a nonexperimental setting. This has allowed sophisticated analyses of selection, as well as

  11. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    Science.gov (United States)

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  12. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  13. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  14. Effect of breed on food preference tests for dogs

    Directory of Open Access Journals (Sweden)

    Carolina Pedro Zanatta

    2017-08-01

    Full Text Available This study aimed to determine the differences among four dog breeds as to food selectivity, choice agreement, and the number scores that best evaluate the degree of food choice agreement. For that, 115 food preference tests were analyzed. In each of those tests, 20 dogs were used (eight Beagles, four Labradors, four Siberian Huskies, and four Basset Hounds, in two evaluation days. The medians of intake difference between two diets were calculated for days one, two, and for both days to determine if there were selectivity difference among breeds. A randomized block experimental design was applied, and medians were submitted to the test of Friedmann. Food choice agreement and the degree of agreement among breeds were evaluated by the kappa index, using two different scales. Basset Hounds were the most selective when two different foods were offered, whereas Labradors were the least selective. When performing food preference tests, Siberian Huskies and Basset Hounds are recommended; however, they must be used individually to prevent that the results of one breed could neutralize those of the other breed. The use of a scale of food preference with three scores is recommended in order to obtain results that are more reliable.

  15. Recent and historical recombination in the admixed Norwegian Red cattle breed

    Directory of Open Access Journals (Sweden)

    Grove Harald

    2011-01-01

    Full Text Available Abstract Background Comparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health. While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies. Results A dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r2 was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r2 at short distances than what was found in NRF. Rate of decline in r2 for NRF suggested that to obtain an expected r2 between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs for milk production traits on Bos Taurus chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF. Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0 found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate. Conclusion While LD is reduced in NRF compared to some of the

  16. Effects of cold selective breeding on the body length, fatty acid content, and productivity of the tropical copepod Apocyclops royi (Cyclopoida, Copepoda)

    DEFF Research Database (Denmark)

    Pan, Yen-Ju; Souissi, Anissa; Sadovskaya, Irina

    2017-01-01

    In this study, we conducted a novel approach of selective breeding by using temperature acclimation to enhance the aquaculture potential of the tropical cyclopoid copepod Apocyclops royi. Two copepod culture strains were acclimated separately at high (28°C, control strain) and low (18°C, selective...

  17. Disease burden in four populations of dog and cat breeds compared to mixed-breed dogs and European shorthair cats.

    Science.gov (United States)

    Keijser, S F A; Meijndert, L E; Fieten, H; Carrière, B J; van Steenbeek, F G; Leegwater, P A J; Rothuizen, J; Nielen, M

    2017-05-01

    Current public and professional opinion is that many dog breeds suffer from health issues related to inherited diseases or extreme phenotypes. The aim of this historical comparative observational study was to evaluate the breed-related disease burden in three purebred dog populations (Chihuahua, French bulldog, Labrador retriever) and one purebred cat breed (Persian cats) in the Netherlands by comparison to a control population of mixed-breed dogs and European Shorthair cats. A qualitative query was performed, consisting of a literature review and collecting the expert opinions of University veterinary specialists, to gather insight into potential diseases of the study population. Next, a referral clinic case control study of the patients referred to specific medical disciplines in the University Clinic was performed. The odds ratio (OR) was calculated to determine the likelihood of a patient referred to a particular medical discipline being a certain breed. Together, the qualitative query and the case control study resulted in a list of potentially relevant diseases limited to five organ systems per breed. These were analysed in data from primary practices. Patient files from ten primary practices over a period of two years were manually extracted and examined. Four-hundred individual patient records per breed as well as 1000 non-breed records were randomly selected from the 10 practices, weighted per practice size. Records were then examined and the presence or absence of certain diseases was identified. To evaluate the disease burden per breed, proportional difference (PD) was estimated, as well as the animal's age at presentation in months. The results of the referral clinic case control study showed an overrepresentation (Odds Ratio>1.5) of the selected breeds in several medical specialties, while median age at presentation was in some cases significantly lower than in the non-breed animals. Results of the practice-based extended cross-sectional study showed

  18. Filling the toolbox of precision breeding methods

    NARCIS (Netherlands)

    Schaart, J.G.; Wiel, van de C.C.M.; Lotz, L.A.P.; Smulders, M.J.M.

    2016-01-01

    Plant breeding has
    resulted in numerous
    high-quality crop
    varieties being
    cultivated nowadays.
    Breeding based on
    crossing and selection
    remains an important
    and ongoing activity for
    crop improvement, but
    needs innovation to be
    able to address

  19. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits.

    Science.gov (United States)

    Bixby, Miriam; Baylis, Kathy; Hoover, Shelley E; Currie, Rob W; Melathopoulos, Andony P; Pernal, Stephen F; Foster, Leonard J; Guarna, M Marta

    2017-06-01

    Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper's profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Effects of incorporating environmental cost and risk aversion on economic values of pig breeding goal traits.

    Science.gov (United States)

    Ali, B M; de Mey, Y; Bastiaansen, J W M; Oude Lansink, A G J M

    2018-06-01

    Economic values (EVs) of traits, accounting for environmental impacts and risk preferences of farmers, are required to design breeding goals that contribute to both economic and environmental sustainability. The objective of this study was to assess the effects of incorporating environmental costs and the risk preferences of farmers on the EVs of pig breeding goal traits. A breeding goal consisting of both sow efficiency and production traits was defined for a typical Brazilian farrow-to-finish pig farm with 1,500 productive sows. A mean-variance utility function was employed for deriving the EVs at finishing pig level assuming fixed slaughter weight. The inclusion of risk and risk aversion reduces the economic weights of sow efficiency traits (17%) while increasing the importance of production traits (7%). For a risk-neutral producer, inclusion of environmental cost reduces the economic importance of sow efficiency traits (3%) while increasing the importance of production traits (1%). Genetic changes of breeding goal traits by their genetic standard deviations reduce emissions of greenhouse gases, and excretions of nitrogen and phosphorus per finished pig by up to 6% while increasing farm profit. The estimated EVs could be used to improve selection criteria and thereby contribute to the sustainability of pig production systems. © 2018 The Authors. Journal of Animal Breeding and Genetics published by Blackwell Verlag GmbH.

  1. Studies on mutant breeding of Hibiscus syriacus

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik.

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with γ-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of γ-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10∼12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs

  2. Studies on mutant breeding of Hibiscus syriacus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jin Kyu; Lee, Ki Un; Kim, Young Taik

    1997-01-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has such a characteristic of self-incompatibility that all the plant exist as natural hybrids and have heterogeneous genes. Many domestic 91 varieties of Hibiscus syriacus were collected. Radiosensitivity of H. Syriacus irradiated with {gamma}-ray was investigated in plant cuttings. The plant height was reduced by 45% in 5KR irradiated group, compared to control group. The radiation dose of 5KR could be recommended for mutation breeding of Hibiscus cuttings. Radiosensitivity of {gamma}-ray irradiated Hibiscus seed were investigated. The germination rate, survival rate and plant height was better in the 4KR irradiation plot than control. The radiation dose of 10{approx}12KR are recommended for mutation breeding of Hibiscus. Promising mutant lines were selected form the varieties of Hwarang, Wolsan no. 176, Ilpyondansim, Emille, Hanol, Yongkwang, Saeyongkwang, Chungmu, Imjinhong, Arang, Hungdansim-1 and Hongdansim-2. (author). 66 refs., 16 tabs., 13 figs.

  3. Dog Breed Differences in Visual Communication with Humans.

    Science.gov (United States)

    Konno, Akitsugu; Romero, Teresa; Inoue-Murayama, Miho; Saito, Atsuko; Hasegawa, Toshikazu

    2016-01-01

    Domestic dogs (Canis familiaris) have developed a close relationship with humans through the process of domestication. In human-dog interactions, eye contact is a key element of relationship initiation and maintenance. Previous studies have suggested that canine ability to produce human-directed communicative signals is influenced by domestication history, from wolves to dogs, as well as by recent breed selection for particular working purposes. To test the genetic basis for such abilities in purebred dogs, we examined gazing behavior towards humans using two types of behavioral experiments: the 'visual contact task' and the 'unsolvable task'. A total of 125 dogs participated in the study. Based on the genetic relatedness among breeds subjects were classified into five breed groups: Ancient, Herding, Hunting, Retriever-Mastiff and Working). We found that it took longer time for Ancient breeds to make an eye-contact with humans, and that they gazed at humans for shorter periods of time than any other breed group in the unsolvable situation. Our findings suggest that spontaneous gaze behavior towards humans is associated with genetic similarity to wolves rather than with recent selective pressure to create particular working breeds.

  4. Keeping the Genealogical Structure of Paternal Breed Nuclei in Pigs

    Directory of Open Access Journals (Sweden)

    Maria Voiculescu

    2012-05-01

    Full Text Available For a long period of time pigs as farm animals were considered producing a single ware, pork. Not very long ago the pork market became interested in lean meet. Some breeders tried to have it from the old breeds and lave a lent genetic progress. Other breeders decided to follow the hybridization schemes used in poultry to produce broilers. But in strains with high daily gain and gross muscles the sows fertility declined and by then by disjunction selection they have isolated strains of high fertility. Then the final animal for the market was the cross piglet obtained from these two kinds of strains or lines. The third kind of breeders decided to specializing breeds, selected for as much as possible muscle mass as paternal breeds and breeds specialized for high fertility as maternal breeds. The present paper will present the movement taking place in the genealogy of a breed nucleus of 200sows with closed reproduction. The goal of the families’ movement analysis is to find out how to ensure a convenient genealogy structure preventing consanguinity when some families are extinct by selection for daily gain.

  5. Enhancing genetic gain in the era of molecular breeding.

    Science.gov (United States)

    Xu, Yunbi; Li, Ping; Zou, Cheng; Lu, Yanli; Xie, Chuanxiao; Zhang, Xuecai; Prasanna, Boddupalli M; Olsen, Michael S

    2017-05-17

    As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary

  6. Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding.

    Science.gov (United States)

    Bhat, Javaid A; Ali, Sajad; Salgotra, Romesh K; Mir, Zahoor A; Dutta, Sutapa; Jadon, Vasudha; Tyagi, Anshika; Mushtaq, Muntazir; Jain, Neelu; Singh, Pradeep K; Singh, Gyanendra P; Prabhu, K V

    2016-01-01

    Genomic selection (GS) is a promising approach exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. In plant breeding, it provides opportunities to increase genetic gain of complex traits per unit time and cost. The cost-benefit balance was an important consideration for GS to work in crop plants. Availability of genome-wide high-throughput, cost-effective and flexible markers, having low ascertainment bias, suitable for large population size as well for both model and non-model crop species with or without the reference genome sequence was the most important factor for its successful and effective implementation in crop species. These factors were the major limitations to earlier marker systems viz., SSR and array-based, and was unimaginable before the availability of next-generation sequencing (NGS) technologies which have provided novel SNP genotyping platforms especially the genotyping by sequencing. These marker technologies have changed the entire scenario of marker applications and made the use of GS a routine work for crop improvement in both model and non-model crop species. The NGS-based genotyping have increased genomic-estimated breeding value prediction accuracies over other established marker platform in cereals and other crop species, and made the dream of GS true in crop breeding. But to harness the true benefits from GS, these marker technologies will be combined with high-throughput phenotyping for achieving the valuable genetic gain from complex traits. Moreover, the continuous decline in sequencing cost will make the WGS feasible and cost effective for GS in near future. Till that time matures the targeted sequencing seems to be more cost-effective option for large scale marker discovery and GS, particularly in case of large and un-decoded genomes.

  7. Selection and Breeding of Cattle in Asia: Strategies and Criteria for Improved Breeding. Prepared under the Framework of an RCA Project with the Technical Support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture

    International Nuclear Information System (INIS)

    2009-10-01

    The International Atomic Energy Agency (IAEA) and the Regional Cooperative Agreement for Asia and the Pacific Region (RCA), with the technical support of the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, implemented a Technical Cooperation (TC) project entitled Integrated Approach for Improving Livestock Production Using Indigenous Resources and Conserving the Environment (RAS/5/044). The 23 project counterparts and the IAEA technical officer, based on the lack of standard practices in the region with regard to selection of cattle for breeding purposes, and the need to properly manage the genetic resources within each country for improving the productivity of the existing stock while maintaining the unique and beneficial genetic characteristics of the indigenous breeds, agreed during the first meeting to request the IAEA to recruit a group of experts with the task of preparing guidelines for the selection and breeding of cattle and buffalo on the Asian continent. To address these recommendations, an experts meeting on Selection Criteria for Breeding Heifers was organized and held in Mymensingh, Bangladesh. The meeting was hosted by the Faculty of Veterinary Science of the Bangladesh Agricultural University (BAU) from 6 to 10 February 2006. It was attended by six foreign experts and two local experts, and was supported by the technical officer of RAS/5/044. The experts from countries participating in RAS/5/044 gave presentations on the current state of cattle breeding in their countries and two experts working in industrialized countries within the region (New Zealand and Australia) informed the participants about the existing cattle breeding programmes in their respective countries and offered their perspectives on how similar approaches could be transferred to the Member States participating in RAS/5/044. All experts also made a field visit to a prominent dairy-producing region, to experience at first-hand some of the current programmes

  8. Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle.

    Science.gov (United States)

    Judge, M M; Kelleher, M M; Kearney, J F; Sleator, R D; Berry, D P

    2017-06-01

    Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (F st) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using

  9. The breeding of Japonica Yanjing 10 rice mutant induced by space mutation

    International Nuclear Information System (INIS)

    Wang Jianhua; Chen Xiulan; Zhang Rong; Wang Jinrong; Liu Jian; Jiao Juan; He Zhentian; Wang Lin

    2011-01-01

    The dry seed of mid-maturing Japonica rice Yanjing 10 was used for space mutation breeding which was carried by a satellite for 15 days in 2006. Through three generations of breeding, a group of mutants were obtained. In the article, we reported in detail the breeding procedures, proposed the breeding technical method for space mutation for rice improvement. Planting multiple seedlings per hill to prohibit tillering at SP 1 generation, and bulked selection in combination with directional selection at the SP 2 ∼ SP 3 generation were the two key points of the breeding methods. (authors)

  10. Radiation mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected.

  11. Radiation mutation breeding

    International Nuclear Information System (INIS)

    Song, Hi Sup; Kim, Jae Sung; Kim, Jin Kyu; Shin, In Chul; Lim, Young Taek

    1998-04-01

    In order to develop an advanced technical knowledge for the selection of better mutants, some of the crops were irradiated and the mutation rate, the survival rate and the method for selction of a mutant were studied. Furthermore, this study aimed to obtain basic data applicable to the development of genetic resources by evaluation and analysis the specific character for selection of the superior mutant and its plant breeding. 1. selection of the mutant with a superior resistance against environment in the principal crops 1) New varieties of mutant rices such as Wonpyeongbyeo, Wongwangbyeo, Winmibyeo, and heogseon chalbeyeo (sticky forma) were registered in the national variety list and made an application to crop variety protection right. They are under review now. 2) We also keep on studying on the number of a grain of 8 lines of excellent mutant rice for the purpose of improvement of breeding . 3) We selected 3 lines which have a resistance to pod and stem blight in large soybean, 31 lines with small grain size and higher yield, 112 lines of soybean of cooking, 7 lines of low lipoxygenase content, and 12 lines with decreased phytic acid content by 20 % compared to the previous level. 2. Selection of advanced Mugunwha (Rose of Sharon) mutant 1) Bagseul, a new variety of mutant, was developed and 30 plantlets of it are being proliferated. 2) Fifty-three lines of a mutant having a various morphologies were selected

  12. Genetic trends for growth in the Gudali and Wakwa cattle breeds of ...

    African Journals Online (AJOL)

    Unknown

    two-breed synthetic beef breed, the Wakwa, from mating the American Brahman to the local Gudali and ... response to selection in the Gudali and a two-breed synthetic Wakwa beef breeds has been done by Ebangi (1999). .... Clay Center.

  13. Hybridization among wild boars, local breeds and commercial breeds - preliminary results

    DEFF Research Database (Denmark)

    Iacolina, Laura; Bakan, Jana; Cubric-Curik, Vlatka

    . Hybridization with the domestic pig is known to occur in Europe, however the degree and extent of the phenomenon is not fully understood yet. Introgression is considered to be a treat to biodiversity and could lead to loss of local adaptation or introgression in the wild population of human selected genes....... A better understanding of the hybridization levels at European scale would provide an important tool for the development of management plans aimed at reducing human conflict but also at preserving biodiversity and genetic differentiation. Additionally, this information would provide new perspectives...... gradients in variability levels among the analysed wild and domestic populations. This preliminary results will be further investigated to address the possible presence of hybrid zone(s) in Europe and the possible implications for conservation and management of both wild populations and local pig breeds...

  14. Applying Mendelian rules in rapeseed (Brassica napus breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available Rapeseed is one of the most important sources of edible oil, raw material for industry, as well as feed. The yield and quality of rapeseed have significantly been improved in recent decades as a result of intensive breeding and optimized production technology. The application of Mendel's rules in introducing monogenic traits has also contributed to success in rapeseed breeding. Rule 1, which refers to the uniformity of F1 generation, is now the basis of widespread development of rapeseed hybrids. Rule 2, dealing with genetic segregation in the F2 generation, is the basis for understanding the process of breeding lines. Rule 3, regarding the independent segregation of genes and traits, while exempting linked traits, is the basis of combining different desirable properties by selection. In the last few decades, the systematic use of Mendel's rules has contributed to the improvement of many properties of rapeseed, including tolerance to biotic and abiotic stress, yield and seed quality. Particular progress has been made in breeding for resistance to diseases, including the identification of molecular markers for marker-assisted selection. The next objective of rapeseed breeding is to create varieties with improved tolerance to environmental stress (e.g. frost, heat, and drought. Based on Mendel's rules, classical breeding methods and the latest developments in the field of molecular genetics and breeding, future progress is expected in the field of rapeseed breeding with an emphasis on polygenic, quantitative traits such as biomass, seed, and oil yield.

  15. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H; Enoeda, M [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  16. Breeding biology of tree swallows and house wrens in a gradient of gamma radiation

    International Nuclear Information System (INIS)

    Zach, R.; Mayoh, K.R.

    1982-01-01

    In a gradient of gamma radiation ranging from 38.7 mC.kg -1 .d -1 to background levels of 0.05 μC.kg -1 .d -1 , Tree Swallows (Iridoprocne bicolor) and House Wrens (Troglodytes aedon) avoided nesting in areas of high radiation. Nest boxes selected by swallows and wrens had a mean exposure rate of only 9.3 and 6.6 μC.kg -1 .d -1 , respectively. Lateral and canopy vegetation indices and nest hole height and direction could not explain the observed pattern of box selection. Of the boxes with low exposure rates, swallows selected those with little vegetation cover, whereas wrens chose boxes with heavy cover. It appears that the birds responded to radiaton levels as low as 100 times background but it is not clear whether they actually detected radiation or simply responded to secondary clues. The number of swallows and wrens fledged per box was unrelated to radiation exposure. The same was true for number of eggs, hatching success, fledging success, incubation time, and nestling time. Breeding success was reduced because of infertile eggs, eggs with dead embryos, cracked eggs, predation, adverse weather, abandonment, and parasites. The logistic model was ideally suited for describing gains in mass in nestling swallows and wrens. Growth of nestlings was not related to radiation exposure as indicated by the growth rate constant, asymptotic mass, and the proportion of variation explained by the logistic model. The data show that birds avoided adverse effects of radiation by judicious box selection. However, there were indications that at higher breeding densities birds may use high-exposure boxes, where breeding success or growth of nestlings may become reduced due to radiation

  17. Biotechnology and apple breeding in Japan

    Science.gov (United States)

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  18. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  19. Bee Queen Breeding Methods - Review

    Directory of Open Access Journals (Sweden)

    Silvia Patruica

    2016-05-01

    Full Text Available The biological potential of a bee family is mainly generated by the biological value of the queen. Whether we grow queens widely or just for our own apiaries, we must consider the acquisition of high-quality biological material, and also the creation of optimal feeding and caring conditions, in order to obtain high genetic value queens. Queen breeding technology starts with the setting of hoeing families, nurse families, drone-breeding families – necessary for the pairing of young queens, and also of the families which will provide the bees used to populate the nuclei where the next queens will hatch. The complex of requirements for the breeding of good, high-production queens is sometimes hard to met, under the application of artificial methods. The selection of breeding method must rely on all these requirements and on the beekeeper’s level of training.

  20. Impact of selective genotyping in the training population on accuracy and bias of genomic selection.

    Science.gov (United States)

    Zhao, Yusheng; Gowda, Manje; Longin, Friedrich H; Würschum, Tobias; Ranc, Nicolas; Reif, Jochen C

    2012-08-01

    Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.

  1. A method to define breeding goals for sustainable dairy cattle production.

    Science.gov (United States)

    Nielsen, H M; Christensen, L G; Odegård, J

    2006-09-01

    The objective of this study was to present a method to define breeding goals for sustainable dairy cattle production by adding nonmarket values to market economic values for functional traits in the breeding goal. A nonmarket value can represent the value of improved animal welfare or societal influences for animal production. The nonmarket value for mastitis resistance, conception rate, and stillbirth were derived based on how much farmers or breeding companies were willing to lose in selection response for milk yield to improve functional traits. The desired response for milk yield corresponding to a given percent loss was obtained using desired gain indices. By allowing a 5% loss in the selection response for milk yield, the nonmarket value was found to be 40.4 euro for mastitis resistance, 16.1 euro for conception rate, and 9.7 euro for stillbirth. The nonmarket value increased proportionally with increasing loss in the selection response for milk yield, but the selection response was lower for conception rate than for mastitis resistance because of differences in market economic value and heritability. To increase the response for conception rate, the nonmarket value was also derived for 2 situations, in which the desired responses for milk yield, mastitis resistance, and conception rate were specified. The method can be used to define breeding goals for sustainable production and to increase the response for traits that are at critically low levels. When defining breeding goals for sustainable production, breeding organizations should predict the selection response based on market economic value and add non-market value for traits with unacceptable selection responses.

  2. Breeding of tomorrow's chickens to improve well-being.

    Science.gov (United States)

    Cheng, H-W

    2010-04-01

    Chickens, as well as other animals, have the ability to change their behavior (behavioral plasticity) and physiology (physiological plasticity) based on the costs and benefits to fit their environment (adaptation). Through natural selection, the population preserves and accumulates traits that are beneficial and rejects those that are detrimental in their prevailing environments. The surviving populations are able to contribute more genes associated with beneficial traits for increased fitness to subsequent generations. Natural selection is slow but constant; working over multiple generations, the changes to the population often appear silent or undetectable at a given point in history. Chickens were domesticated from the wild red jungle fowl. The principle of domestication of chickens, as well as other farm animals, by humans is similar to that of natural selection: selecting the best animals with the highest survivability and reproducibility (artificial selection). Compared with natural selection, the process of artificial selection is motivated by human needs and acts more rapidly with more visible results over a short time period. This process has been further accelerated following the development of current breeding programs and the emergence of specialized breeding companies. A laying hen, for example, produces more than 300 hundred eggs a year, whereas a jungle fowl lays 4 to 6 eggs in a year. During the domestication process, chickens retained their capability to adapt to their housing environments, which is usually achieved by genetic changes occurring with each subsequent generation. Genes control the behavioral, physiological, immunological, and psychological responses of animals to stressors, including environmental stimulations. With advances in understanding of genetic mediation of animal physiology and behavior and the discovery of the genome sequences of many species, animal production breeding programs can be improved in both speed and efficiency

  3. [Selective breeding research on new cultivar "ChuanPeng 1" of Curcuma phaeocaulis].

    Science.gov (United States)

    Xia, Qin; Yang, Zhao-wu; Li, Min; Xia, Dong-mei

    2014-11-01

    To breed a new good cultivar of Curcuma phaeocaulis. Three rounds of selection were systematically made for screening the new cultivar using biological technology. Firstly, individual plant selection. Promising individual plant selection was made based on the thousands of Curcuma phaeocaulis resources collected from all over the country. Secondly, strain selection. The promising strain was selected continually from the superior individuals on basis of specificities such as biological characteristics, yield, content of volatile oil and resistance. Thirdly, strain comparison test. The superior strain was selected through strain trial and regional trial. For the new cultivar "ChuanPeng 1" , its main rhizome was in ovoid or spindle shape, and it was fleshy and corpulent. Average amount of rhizome was 4, with 6. 27 cm in length and 3. 37 cm in diameter, while the secondary roots were cylindrical-like, with a yellow green cross section as the main rhizome. Slender root ends were inflated into the fleshy spindle shape, average amount of whose was 25, 3. 20 cm in length and 1. 33 cm in diameter with a yellow green or near white cross section. Average yield of rhizome is 5 314. 5 kg/hm2, while the root is 1 942. 5 kg/hm2, which was 32. 9% and 22. 7% higher than the local main cultivar respectively. The average extract content of rhizome was 15. 41% and content of volatile oil was 2. 82%, which was 15. 60% and 9. 30% higher than the local cultivar respectively. " ChuanPeng 1" has good stability and strong adaptability with high yield and superior internal quality. It can be cultivated and promoted in Jinma River Valley,Sichuan.

  4. Analysis of Plant Breeding on Hadoop and Spark

    Directory of Open Access Journals (Sweden)

    Shuangxi Chen

    2016-01-01

    Full Text Available Analysis of crop breeding technology is one of the important means of computer-assisted breeding techniques which have huge data, high dimensions, and a lot of unstructured data. We propose a crop breeding data analysis platform on Spark. The platform consists of Hadoop distributed file system (HDFS and cluster based on memory iterative components. With this cluster, we achieve crop breeding large data analysis tasks in parallel through API provided by Spark. By experiments and tests of Indica and Japonica rice traits, plant breeding analysis platform can significantly improve the breeding of big data analysis speed, reducing the workload of concurrent programming.

  5. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2015-06-01

    Full Text Available Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and (initially more labor, as seen from the System of Rice Intensification (SRI, whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However, unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the

  6. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  7. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  8. Breeding schemes in reindeer husbandry

    Directory of Open Access Journals (Sweden)

    Lars Rönnegård

    2003-04-01

    Full Text Available The objective of the paper was to investigate annual genetic gain from selection (G, and the influence of selection on the inbreeding effective population size (Ne, for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection.

  9. Selection for adaptation to dietary shifts: towards sustainable breeding of carnivorous fish.

    Directory of Open Access Journals (Sweden)

    Richard Le Boucher

    Full Text Available Genetic adaptation to dietary environments is a key process in the evolution of natural populations and is of great interest in animal breeding. In fish farming, the use of fish meal and fish oil has been widely challenged, leading to the rapidly increasing use of plant-based products in feed. However, high substitution rates impair fish health and growth in carnivorous species. We demonstrated that survival rate, mean body weight and biomass can be improved in rainbow trout (Oncorhynchus mykiss after a single generation of selection for the ability to adapt to a totally plant-based diet (15.1%, 35.3% and 54.4%, respectively. Individual variability in the ability to adapt to major diet changes can be effectively used to promote fish welfare and a more sustainable aquaculture.

  10. Production objectives, trait and breed preferences of farmers keeping N'Dama, Fulani Zebu and crossbred cattle and implications for breeding programs.

    Science.gov (United States)

    Traoré, S A; Markemann, A; Reiber, C; Piepho, H P; Valle Zárate, A

    2017-04-01

    Many local livestock breeds in developing countries are being replaced by exotic breeds, leading to a loss of genetic resources. In southern Mali, for the past two decades, a trend towards increasing crossbreeding between the trypanotolerant N'Dama cattle and the trypano-susceptible Fulani Zebu cattle has been taking place. A survey with 160 farmers owning a cattle herd was carried out in southern Mali to investigate their production objectives, as well as trait and breed preferences and correlated socio-economic determinants in order to understand farmers' breeding decisions and to identify comparative advantages of three breed groups (N'Dama, Fulani Zebu and crossbreds) raised in the study area. Data were analyzed using an exploded logit model. The reasons for raising cattle, as well as trait and breed preferences reflected the multiple objectives of the farmers. Draught power and savings were the most important production objectives. Productive traits were ranked highest; farmers reported large body size as the most preferred trait, followed by fertility, draught ability and milk yield. Crossbreds were the favored breed group. Breed preferences were mainly explained by 'resistance to disease' for N'Dama cattle and 'high market price' for Fulani Zebu and crossbred cattle. Production objectives, trait and breed preferences were mainly influenced by farmer group (local farmers and settled transhumants). Local farmers put comparatively more emphasis on livestock functions linked to crop production such as draught power. They had a higher preference for traction ability as a selection trait and preferred N'Dama over Fulani Zebu cattle. Settled transhumants emphasized milk yield as a selection trait and preferred Fulani Zebu over N'Dama. The results indicate that the trend towards more crossbreeding will continue putting the N'Dama breed under high risk of genetic dilution in southern Mali. The N'Dama cattle remain a valuable breed due to their adaptive traits such as

  11. Investigation of selection methods im mutation breeding of barley for protein quantity and quality

    International Nuclear Information System (INIS)

    Ulonska, E.; Gaul, H.; Baumer, M.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Gruenbach

    1975-01-01

    This mutation breeding programme is investigating the qualification of micro-mutations for the selection of improved protein quality and quantity. Normally, improvement of protein content in micro-mutations is rather small. Therefore, it is important to develop methods and conditions of selection being (a) capable of measuring these small deviations in protein content and quality, and (b) simple to use. In two experiments carried out in 1971 and 1972 nitrogen fertilization was found to be the most important factor in the improvement of selection conditions. There is a highly significant negative correlation between crude protein content and the standard deviation; i.e. the higher the content of crude protein, the lower the variation coefficient. This in turn leads to an increase of genetic variation necessary for better selection progress. Nitrogen fertilization, especially during ear emergence, covers environmental influences - e.g., planting space, sowing rate, growing in different plots (6, 3, 2, 1 rows or in half-ear hills) - to a great extent. Thus, by applying high doses of nitrogen dressings comparable results can be achieved. In an overall selection experiment (testing the entire crossing and mutation material available at Weihenstephan in a stepwise selection from 1971 to 1973) and two selection experiments conducted in 1971 to 1973 with micro-mutants - variety Nota, 4 times X-rayed and the naked barley strain 1606 treated once with EMS - significant selection results were found. (author)

  12. Sugar beet breeding

    Science.gov (United States)

    Sugar beet is a recent crop developed solely for extraction of the sweetener sucrose. Breeding and improvement of Beta vulgaris for sugar has a rich historical record. Sugar beet originated from fodder beet in the 1800s, and selection has increased sugar content from 4 to 6% then to over 18% today. ...

  13. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed

    Science.gov (United States)

    Browett, Sam; McHugo, Gillian; Richardson, Ian W.; Magee, David A.; Park, Stephen D. E.; Fahey, Alan G.; Kearney, John F.; Correia, Carolina N.; Randhawa, Imtiaz A. S.; MacHugh, David E.

    2018-01-01

    Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland. PMID:29520297

  14. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed

    Directory of Open Access Journals (Sweden)

    Sam Browett

    2018-02-01

    Full Text Available Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland.

  15. Induced mutation breeding in fruit trees

    International Nuclear Information System (INIS)

    Sanada, Tetsuro

    1988-01-01

    The black spot disease of Japanese pear is the most serious disease, and Nijusseiki which is one of the leading cultivars of Japanese pear is known to be susceptible to the disease. One branch of a tree planted at the distance of 53 m from a Co-60 source (15 R/day) was selected as a mutant resistant to the disease in 1981, as the spraying of fungicide was reduced when the pathogen was naturally inoculated. The symptom of black spot disease on the mutant observed under field conditions for the period of 5 years after the selection was minimal. The characteristics and the resistance of this mutant were examined. The development of a simple and reliable selection method is essential for mutation breeding. A selection method using a phytotoxin solution was developed. The induced mutant was obviously different from the original Nijusseiki in the susceptibility to the disease, but its resistance was medium. The faint brown spots observed on the leaves and fruit skins of the mutant were due to the aggregation of cytoplasm only in epidermal cells. By the selection method developed, about 500 shoots can be screened in a day. (Kako, I.)

  16. Progress in the molecular and genetic modification breeding of beef cattle in China.

    Science.gov (United States)

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  17. Adaptive breeding habitat selection: Is it for the birds?

    Science.gov (United States)

    Chalfoun, Anna D.; Schmidt, Kenneth A.

    2012-01-01

    The question of why animals choose particular habitats has important implications for understanding behavioral evolution and distribution of organisms in the wild and for delineating between habitats of different quality for conservation and management. Habitats chosen by animals can influence fitness outcomes via the costs (e.g., predation risk) and benefits (e.g., food availability) of habitat use. Habitat preferences should therefore be under selection to favor those that confer fitness advantages (Clark and Shutler 1999). Indeed, prevailing theory suggests that the habitat preferences of animals should be adaptive, such that fitness is higher in preferred habitats (Hildén 1965, Southwood 1977, Martin 1998). However, studies have often identified apparent mismatches between observed habitat preferences and fitness outcomes across a wide variety of taxa (Valladares and Lawton 1991, Mayhew 1997, Kolbe and Janzen 2002, Arlt and Pärt 2007, Mägi et al. 2009). Certainly, one limitation of studies may be that assessment of “fitness” is typically constrained to fitness surrogates such as nest success rather than lifetime reproductive success or classic Fisherian fitness (Endler 1986). Nevertheless, important habitat choices such as nest sites influence the probability that temporarily sedentary, dependent young are discovered by enemies such as predators and parasites. We therefore expect, on average, to see congruence between evolved habitat preferences and relevant components of fitness (e.g., nest success). Here, we (1) review the prevalence of apparent mismatches between avian breeding-habitat preferences and fitness outcomes using nest-site selection as a focus; (2) describe several potential mechanisms for such mismatches, including anthropogenic, methodological, and ecological–evolutionary; and (3) suggest a framework for understanding the contexts in which habitat preferences represent adaptive decisions, with a primary focus on ecological information

  18. Mutation breeding in vivo and in vitro in vegetatively propagated crops

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Latado, R.R.; Tsai, S.M.; Derbyshire, M.T.; Yemma, A.F.; Scarpare Filho, J.A.; Ceravolo, L.; Rossi, A.C.; Namekata, T.; Pompeu, J. Jr.; Figueiredo, J.O.; Pio, R.; Tobias Domingues, E.; Santos, P.C.; Boliani, A.

    2001-01-01

    Mutation breeding in vivo and/or in vitro in vegetatively propagated crops as well as somaclonal variation can be used in Brazil in several crops to increase the genetic variability in characteristics of high importance. This was the objective of this research using ornamentals, citrus and bananas. Somaclonal variants can also be useful in these crops, based on the preliminary results observed in banana (Mycosphaerella musicola); where a short plant variant was selected in Brazil and the mutant resistant to yellow sigatoka, selected in Venezuela, showed resistance also in Brazil. Despite the increase in genetic variability in M 1 V 4 generation obtained after in vitro irradiation of meristems in banana, mutants resistant or tolerant to Fusarium were not selected, perhaps due to the limited number of plants evaluated. In citrus the first results from yield trials showed that following bud irradiation, it was possible to select plants of interest, e.g. mutants with a reduced number of seeds in the fruits. In ornamentals mutants induced by gamma rays in this project were released to the farmers. The results obtained in this research showed that biotechnology is a powerful tool that can be used in several ways in association with mutation breeding. (author)

  19. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan

    Directory of Open Access Journals (Sweden)

    Lekha ePazhamala

    2015-02-01

    Full Text Available Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB through marker assisted selection as well as genomic selection. This would lead to accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile lines, maintainers and hybrids have also been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding.

  20. Localization of canine brachycephaly using an across breed mapping approach.

    Directory of Open Access Journals (Sweden)

    Danika Bannasch

    2010-03-01

    Full Text Available The domestic dog, Canis familiaris, exhibits profound phenotypic diversity and is an ideal model organism for the genetic dissection of simple and complex traits. However, some of the most interesting phenotypes are fixed in particular breeds and are therefore less tractable to genetic analysis using classical segregation-based mapping approaches. We implemented an across breed mapping approach using a moderately dense SNP array, a low number of animals and breeds carefully selected for the phenotypes of interest to identify genetic variants responsible for breed-defining characteristics. Using a modest number of affected (10-30 and control (20-60 samples from multiple breeds, the correct chromosomal assignment was identified in a proof of concept experiment using three previously defined loci; hyperuricosuria, white spotting and chondrodysplasia. Genome-wide association was performed in a similar manner for one of the most striking morphological traits in dogs: brachycephalic head type. Although candidate gene approaches based on comparable phenotypes in mice and humans have been utilized for this trait, the causative gene has remained elusive using this method. Samples from nine affected breeds and thirteen control breeds identified strong genome-wide associations for brachycephalic head type on Cfa 1. Two independent datasets identified the same genomic region. Levels of relative heterozygosity in the associated region indicate that it has been subjected to a selective sweep, consistent with it being a breed defining morphological characteristic. Genotyping additional dogs in the region confirmed the association. To date, the genetic structure of dog breeds has primarily been exploited for genome wide association for segregating traits. These results demonstrate that non-segregating traits under strong selection are equally tractable to genetic analysis using small sample numbers.

  1. Using diets of Canis breeding pairs to assess resource partitioning between sympatric red wolves and coyotes

    Science.gov (United States)

    Hinton, Joseph W.; Ashley, Annaliese K.; Dellinger, Justin A.; Gittleman, John L.; van Manen, Frank T.; Chamberlain, Michael J.

    2017-01-01

    Foraging behaviors of red wolves (Canis rufus) and coyotes (Canis latrans) are complex and their ability to form congeneric breeding pairs and hybridize further complicates our understanding of factors influencing their diets. Through scat analysis, we assessed prey selection of red wolf, coyote, and congeneric breeding pairs formed by red wolves and coyotes, and found that all 3 had similar diets. However, red wolf and congeneric pairs consumed more white-tailed deer (Odocoileus virginianus) than coyote pairs. Coyotes forming breeding pairs with red wolves had 12% more white-tailed deer in their diet than conspecifics paired with coyotes. Contrary to many studies on coyotes in the southeastern United States, we found coyotes in eastern North Carolina to be primarily carnivorous with increased consumption of deer during winter. Although prey selection was generally similar among the 3 groups, differences in diet among different breeding pairs were strongly associated with body mass. Larger breeding pairs consumed more white-tailed deer, and fewer rabbits (Sylvilagus spp.) and other small mammals. Partitioning of food resources by sympatric red wolves and coyotes is likely via differences in the proportions of similar prey consumed, rather than differences in types of prey exploited. Consequently, our results suggest coexistence of red wolves and coyotes in the southeastern United States may not be possible because there are limited opportunities for niche partitioning to reduce competitive interactions.

  2. Fitness consequences of cooperative breeding in the Seychelles warbler

    NARCIS (Netherlands)

    Komdeur, Jan; Richardson, David; Burke, Terry

    2006-01-01

    Inclusive fitness benefits have been suggested as the selective force behind the evolution of cooperative breeding. Assessing the benefits accrued to individual males and females is crucial to understanding the sex-specific helping behavior observed in many cooperatively breeding species. We

  3. Efficient selection against categorically scored hip dysplasia in dogs is possible using best linear unbiased prediction and optimum contribution selection: a simulation study

    DEFF Research Database (Denmark)

    Malm, S; Sørensen, Anders Christian; Fikse, W F

    2013-01-01

    Breeding to reduce the prevalence of categorically scored hip dysplasia (HD), based on phenotypic assessment of radiographic hip status, has had limited success. The aim of this study was to evaluate two selection strategies for improved hip status: truncation selection based on phenotypic record...

  4. Breeding new improved clones for strawberry production in Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves Galvão

    2017-04-01

    Full Text Available Breeding different strawberry genotypes and plant selection in Brazil could result in new cultivars with better environmental adaptations. The aim was to develop and select new F1 strawberry plants with higher potential yields. Twelve hybrid populations were obtained from breeding the cultivars Aromas, Camarosa, Dover, Festival, Oso Grande, Sweet Charlie and Tudla, and 42 F1 hybrids were obtained from each population. An augmented randomized block design was used. Productive traits were measured and heterosis was calculated for all traits. The breedings Dover x Aromas and Camarosa x Aromas both showed 28.6% of their hybrids with a total fruit mass that was higher than that of cv. Aromas, and 9.5 and 14.3% were higher than that of cv. Camarosa, respectively. The breeding of Camarosa x Aromas produced hybrids with high potential yields and a large average fruit mass that reached the commercial standard. Hybrids MCA12-93, MFA12-443 and MCA12-89 showed high potential yields and can be used as parents in strawberry breeding programs.

  5. Genomic breeding value estimation using nonparametric additive regression models

    Directory of Open Access Journals (Sweden)

    Solberg Trygve

    2009-01-01

    Full Text Available Abstract Genomic selection refers to the use of genomewide dense markers for breeding value estimation and subsequently for selection. The main challenge of genomic breeding value estimation is the estimation of many effects from a limited number of observations. Bayesian methods have been proposed to successfully cope with these challenges. As an alternative class of models, non- and semiparametric models were recently introduced. The present study investigated the ability of nonparametric additive regression models to predict genomic breeding values. The genotypes were modelled for each marker or pair of flanking markers (i.e. the predictors separately. The nonparametric functions for the predictors were estimated simultaneously using additive model theory, applying a binomial kernel. The optimal degree of smoothing was determined by bootstrapping. A mutation-drift-balance simulation was carried out. The breeding values of the last generation (genotyped was predicted using data from the next last generation (genotyped and phenotyped. The results show moderate to high accuracies of the predicted breeding values. A determination of predictor specific degree of smoothing increased the accuracy.

  6. Changing nest placement of Hawaiian Common Amakihi during the breeding cycle

    Science.gov (United States)

    van Riper, Charles; Kern, M. D.; Sogge, M. K.

    1993-01-01

    We studied the nesting behavior of the Common Amakihi (Hemignathus virens) from 1970-1981 on the island of Hawaii to determine if the species alters nest placement over a protracted 9-month breeding season. Birds preferentially chose the southwest quadrant of trees in which to build nests during all phases of the breeding season. It appeared that ambient temperature (Ta) was a contributing factor to differential nest placement between early and late phases of the annual breeding cycle. When Ta is low during the early (December-March) breeding period, Common Amakihi selected exposed nesting locations that benefitted them with maximum solar insolation. However, in the later phase of the breeding period (April-July) when Ta was much higher, renesting birds selected nest sites deeper in the canopy in significantly taller trees. This is one of the few documented examples in which a species changes location of nest during a breeding season, thus allowing exploitation of temporally differing microclimatic conditions.

  7. Mutation breeding in mangosteen

    International Nuclear Information System (INIS)

    Mohd Khalid Mohd Zain

    2002-01-01

    Mangosteen the queen of the tropical fruits is apomitic and only a cultivar is reported and it reproduces asexually. Conventional breeding is not possible and the other methods to create variabilities are through genetic engineering and mutation breeding. The former technique is still in the infantry stage in mangosteen research while the latter has been an established tool in breeding to improve cultivars. In this mutation breeding seeds of mangosteen were irradiated using gamma rays and the LD 50 for mangosteen was determined and noted to be very low at 10 Gy. After sowing in the seedbed, the seedlings were transplanted in polybags and observed in the nursery bed for about one year before planted in the field under old oil palm trees in Station MARDI, Kluang. After evaluation and screening, about 120 mutant mangosteen plants were selected and planted in Kluang. The plants were observed and some growth data taken. There were some mutant plants that have good growth vigour and more vigorous that the control plants. The trial are now in the fourth year and the plants are still in the juvenile stage. (Author)

  8. Application of genomic tools in plant breeding.

    Science.gov (United States)

    Pérez-de-Castro, A M; Vilanova, S; Cañizares, J; Pascual, L; Blanca, J M; Díez, M J; Prohens, J; Picó, B

    2012-05-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.

  9. Variation in the prion protein sequence in Dutch goat breeds.

    Science.gov (United States)

    Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M

    2016-10-01

    Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds. © 2016 Blackwell Verlag GmbH.

  10. Studies on mutation breeding of hibiscus syriacuse

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author).

  11. Studies on mutation breeding of hibiscus syriacuse

    International Nuclear Information System (INIS)

    Song, Hee Sub; Kim, Jin Kyu; Lee, Ki Un; Lim, Yong Taek

    1995-12-01

    Hibiscus has been known as a national flower of Korea. Hibiscus has ahch a characteristic of self-incompatibility that all the plants exist as natural hybrids and have heterogeneous genes. Thirth two domestic varieties were propagated. Radiosensitivity of H. syriacus irradiated with gamma ray was investigated in plant cuttings. The plant height was reduced by 45 percent in 5 kR irradiated group compared to control group. The radiation dose of 5 kR could be rrecommended for mutation breeding of Hibiscus cuttings. Promising mutant lines were selected form the varieties of Hwarang Wolsan 176, I1pyondansim and Emille. 6 tabs., 2 figs., 13 refs., 4 ills. (Author)

  12. Application of Doubled Haploid (DH) Technique in Mutation and Conventional Wheat Breeding in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.

    2002-01-01

    Wheat is the second most important staple cereal in Kenya after maize.over the last six years wheat improvement for various stresses and agronomic characteristics have been undertaken through various biotechnological approaches which have been used as complements to the traditional breeding methods. The prime objective in any breeding program is the prevention of the debilitating effects of breeding. In self-pollinated crops such as wheat selection is more efficient homozygous lines than in segregating population. During repeated selfing, to develop homozygousity the vigour of the F1 of M1 plats is lost. Application of biotechnology in crop movement has been suggested as the useful tool in a faster variety development. The double haploid (DH) technique does not only shorten the time of developing homozygous lines but also maintains the heterosis of the F 1 , increase the selection of the efficiency of selection in mutants and increase the effectiveness of selection. in this study DHs were developed from F1 and M4 generation developed from drought tolerance.This was accomplished through the following step: (i)F 1 crosses were produced by crossing three drought tolerant varieties namely Kenya Mbweha, Duma and Ngamia with two highly yielding commercial varieties namely Kenya Chiriku and Kwale in 1998 while mutants were developed through gamma ray irradiation in 1995. (ii) The haploids were produced through chromosome elimination by crossing the F 1 s and the M 4 with maize pollen and (iii) the Double Haploid (DH) were produced by treating the haploid with colchicine. Twenty DH lines were produced from F 1 haploid and 5 from M 4 ones. The DH technique tend to increase uniformity, stability and distinctiveness of the mutants and the segregating populations. Most of the DHs showed wide variation indicating high potential of selection for various agronomic characteristics. Heterosis was realized on a number of characteristics in the DH lines. Through this technique the

  13. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  14. Direct benefits and the evolution of female-biased cooperative breeding in Seychelles warblers

    NARCIS (Netherlands)

    Richardson, David S.; Burke, Terry; Komdeur, Jan; Dunn, P.

    2002-01-01

    Inclusive fitness benefits have been suggested to be a major selective force behind the evolution of cooperative breeding. We investigated the fitness benefits selecting for cooperative breeding in the Seychelles warbler, Acroccphalus sechellensis. A microsatellite-based genotyping method was used

  15. USE OF GROWTH CHAMBERS FOR CABBAGE BREEDING

    Directory of Open Access Journals (Sweden)

    L. L. Bondareva

    2014-01-01

    Full Text Available Use of the growth chambers for cabbage breeding allows the reducing of certain stages of the breeding process and the growing biennial varieties of cabbage in a one-year cycle. In these growth chambers, the nutritional conditions, temperature, and lighting of plants are under control; the open pollination is eliminated.

  16. Influence of farming system and production purpose on the morphostructure of Spanish goat breeds

    Directory of Open Access Journals (Sweden)

    Ana Gonzalez-Martinez

    2014-02-01

    Full Text Available The aim of this study was to examine the possible influence of farming systems, based on the morphostructure of 1,571 female goats drawn from 40 flocks containing seven Spanish breeds (Blanca Andaluza, Blanca Celtiberica, Negra Serrana, Pirenaica, Payoya, Murciano-Granadina and Malagueña raised under four different farming systems. Analysis of morphometric variables showed that the morphostructure of native Spanish goat breeds was linked to the farming system used and thus to the production purpose. The morphostructure of grazing breeds may be more influenced by natural selection within the physical environment and less by human selection. That of stall-fed breeds, by contrast, reflects intense artificial selection aimed at achieving a highly-productive dairy type. For this reason, morphological evaluation systems used in breeding programmes for meat or dual-purpose goat breeds farmed extensively or semi-extensively should be specific, and should reflect the influence of the environment in which these goats are farmed.

  17. Recurrent population improvement of rice breeding facilitated with male sterility

    International Nuclear Information System (INIS)

    Fujimaki, Hiroshi

    1982-01-01

    A new rice breeding system has been developed, making use of genic male sterility to utilize diverse breeding materials and to promote genetic recombination. In this system, recurrent selection technique and introgressive hybridization were used to increase the frequencies of producing desired genotypes and to improve the population in succession. To promote genetic recombination by the recurrent selection technique, intermating within the population is necessary, and to introduce useful germ plasms by the introgressive hybridization, back crossing with new genetic material is necessary. These can be done efficiently by using the recessive alleles for male sterility, and the representative models for thisF type of breeding were presented. (Kaihara, S.)

  18. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  19. A proposed selection index for feedlot profitability based on estimated breeding values.

    Science.gov (United States)

    van der Westhuizen, R R; van der Westhuizen, J

    2009-04-22

    It is generally accepted that feed intake and growth (gain) are the most important economic components when calculating profitability in a growth test or feedlot. We developed a single post-weaning growth (feedlot) index based on the economic values of different components. Variance components, heritabilities and genetic correlations for and between initial weight (IW), final weight (FW), feed intake (FI), and shoulder height (SHD) were estimated by multitrait restricted maximum likelihood procedures. The estimated breeding values (EBVs) and the economic values for IW, FW and FI were used in a selection index to estimate a post-weaning or feedlot profitability value. Heritabilities for IW, FW, FI, and SHD were 0.41, 0.40, 0.33, and 0.51, respectively. The highest genetic correlations were 0.78 (between IW and FW) and 0.70 (between FI and FW). EBVs were used in a selection index to calculate a single economical value for each animal. This economic value is an indication of the gross profitability value or the gross test value (GTV) of the animal in a post-weaning growth test. GTVs varied between -R192.17 and R231.38 with an average of R9.31 and a standard deviation of R39.96. The Pearson correlations between EBVs (for production and efficiency traits) and GTV ranged from -0.51 to 0.68. The lowest correlation (closest to zero) was 0.26 between the Kleiber ratio and GTV. Correlations of 0.68 and -0.51 were estimated between average daily gain and GTV and feed conversion ratio and GTV, respectively. These results showed that it is possible to select for GTV. The selection index can benefit feedlotting in selecting offspring of bulls with high GTVs to maximize profitability.

  20. Plant breeding: Induced mutation technology for crop improvement

    International Nuclear Information System (INIS)

    Novak, F.J.; Brunner, H.

    1992-01-01

    Plant breeding requires genetic variation of useful traits for crop improvement, but the desired variation is often lacking. Mutagenic agents, such as radiation and certain chemicals, can be used to induce mutations and generate genetic variations from which desirable mutants may be selected. After a brief summary of the methods currently employed in plant breeding, especially those inducing genetic engineering, this article describes the activities of the Plant Breeding Unit of the IAEA Laboratories at Seibersdorf, summarizing the research and development areas currently being pursued. The banana plant is chosen to exemplify the Laboratories' research

  1. Genetic diversity and population structure of 20 North European cattle breeds

    DEFF Research Database (Denmark)

    kantanen, J; Olsaker, Ingrid; Holm, Lars-Erik

    2000-01-01

    Blood samples were collected from 743 animals from 15 indigenous, 2 old imported, and 3 commercial North European cattle breeds. The samples were analyzed for 11 erythrocyte antigen systems, 8 proteins, and 10 microsatellites, and used to assess inter- and intrabreed genetic variation and genetic......, allelic diversity has been reduced in several breeds, which was explained by limited effective population sizes over the course of man-directed breed development and demographic bottlenecks of indigenous breeds. A tree showing genetic relationships between breeds was constructed from a matrix of random...... drift-based genetic distance estimates. The breeds were classified on the basis of the tree topology into four major breed groups, defined as Northern indigenous breeds, Southern breeds, Ayrshire and Friesian breeds, and Jersey. Grouping of Nordic breeds was supported by documented breed history...

  2. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches.

    Science.gov (United States)

    Cimadom, Arno; Ulloa, Angel; Meidl, Patrick; Zöttl, Markus; Zöttl, Elisabet; Fessl, Birgit; Nemeth, Erwin; Dvorak, Michael; Cunninghame, Francesca; Tebbich, Sabine

    2014-01-01

    Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance)is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.

  3. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches.

    Directory of Open Access Journals (Sweden)

    Arno Cimadom

    Full Text Available Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea and the sympatric small tree finch (Camarhynchus parvulus, on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundanceis lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.

  4. Plant Breeding by Using Radiation Mutation

    International Nuclear Information System (INIS)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo

    2007-06-01

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits

  5. Plant Breeding by Using Radiation Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Si Yong; Kim, Dong Sub; Lee, Geung Joo (and others)

    2007-06-15

    A mutation breeding is to use physical or chemical mutagens to induce mutagenesis, followed by individual selections with favorable traits. The mutation breeding has many advantages over other breeding methods, which include the usefulness for improving one or two inferior characteristics, applications to broad species with different reproductive systems or to diverse plant materials, native or plant introduction with narrow genetic background, time and cost-effectiveness, and valuable mutant resources for genomic researches. Recent applications of the radiation breeding techniques to developments of flowering plants or food crops with improved functional constituents heightened the public's interests in agriculture and in our genetic resources and seed industries. The goals of this project, therefore, include achieving advances in domestic seed industries and agricultural productivities by developing and using new radiation mutants with favored traits, protecting an intellectual property right of domestic seeds or germplasm, and sharing the valuable mutants and mutated gene information for the genomic and biotech researches that eventually leads to economic benefits.

  6. Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.

    Science.gov (United States)

    Burrow, H M

    2012-05-01

    This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate

  7. Parentage of overlapping offspring of an arboreal-breeding frog with no nest defense: implications for nest site selection and reproductive strategy.

    Science.gov (United States)

    Tung, Wan-Ping; Chen, Yi-Huey; Cheng, Wei-Chun; Chuang, Ming-Feng; Hsu, Wan-Tso; Kam, Yeong-Choy; Lehtinen, Richard M

    2015-01-01

    Overlapping offspring occurs when eggs are laid in a nest containing offspring from earlier reproduction. Earlier studies showed that the parentage is not always obvious due to difficulties in field observation and/or alternative breeding tactics. To unveil the parentage between overlapping offspring and parents is critical in understanding oviposition site selection and the reproductive strategies of parents. Amplectant pairs of an arboreal-breeding frog, Kurixalus eiffingeri, lay eggs in tadpole-occupied nests where offspring of different life stages (embryos and tadpoles) coexist. We used five microsatellite DNA markers to assess the parentage between parents and overlapping offspring. We also tested the hypothesis that the male or female frog would breed in the same breeding site because of the scarcity of nest sites. Results showed varied parentage patterns, which may differ from the phenomenon of overlapping egg clutches reported earlier. Parentage analyses showed that only 58 and 25% of the tadpole-occupied stumps were reused by the same male and female respectively, partially confirming our prediction. Re-nesting by the same individual was more common in males than females, which is most likely related to the cost of tadpole feeding and/or feeding schemes of females. On the other hand, results of parentage analyses showed that about 42 and 75% of male and female respectively bred in tadpole-occupied stumps where tadpoles were genetically unrelated. Results of a nest-choice experiment revealed that 40% of frogs chose tadpole-occupied bamboo cups when we presented identical stumps, without or with tadpoles, suggesting that the habitat saturation hypothesis does not fully explain why frogs used the tadpole-occupied stumps. Several possible benefits of overlapping offspring with different life stages were proposed. Our study highlights the importance of integrating molecular data with field observations to better understand the reproductive biology and nest

  8. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes.

    Science.gov (United States)

    Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J

    2012-02-09

    The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.

  9. Mating animals by minimising the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection

    DEFF Research Database (Denmark)

    Henryon, M; Berg, P; Sørensen, A C

    2009-01-01

    We reasoned that mating animals by minimising the covariance between ancestral contributions (MCAC mating) will generate less inbreeding and at least as much genetic gain as minimum-coancestry mating in breeding schemes where the animals are truncation-selected. We tested this hypothesis by stoch...

  10. Breeding programs for the main economically important traits of zebu dairy cattle

    Directory of Open Access Journals (Sweden)

    Ariosto Ardila Silva

    2010-06-01

    Full Text Available In tropical regions, Gyr and Guzerat breeds (Bos indicus are most explored for dairy industry and are much more adapted to climate. Gyr and Guzerat are Zebu breeds very common in Brazil and they are being used to generate Bos taurus x Bos indicus crosses in order to combine good production, heat and parasite tolerance on the tropics. Breeding programs for the main economically important traits of Zebu dairy cattle have been recently introduced in Brazil and is based on the use of genetically superior sires in the herds. A major objective of QTL (Quantitative Trait Loci and candidate genes is to find genes and markers that can be implemented in breeding programs across marker assisted selection (MAS. In Zebu dairy cattle MAS could be used to pre-select young candidate bulls to progeny testing, thus increasing selection differentials, shortening generation interval and increasing genetic gain

  11. Domestic chickens defy Rensch's rule: sexual size dimorphism in chicken breeds.

    Science.gov (United States)

    Remeš, V; Székely, T

    2010-12-01

    Sexual size dimorphism (SSD), i.e. the difference in sizes of males and females, is a key evolutionary feature that is related to ecology, behaviour and life histories of organisms. Although the basic patterns of SSD are well documented for several major taxa, the processes generating SSD are poorly understood. Domesticated animals offer excellent opportunities for testing predictions of functional explanations of SSD theory because domestic stocks were often selected by humans for particular desirable traits. Here, we analyse SSD in 139 breeds of domestic chickens Gallus gallus domesticus and compare them to their wild relatives (pheasants, partridges and grouse; Phasianidae, 53 species). SSD was male-biased in all chicken breeds, because males were 21.5 ± 0.55% (mean ± SE) heavier than females. The extent of SSD did not differ among breed categories (cock fighting, ornamental and breeds selected for egg and meat production). SSD of chicken breeds was not different from wild pheasants and allies (23.5 ± 3.43%), although the wild ancestor of chickens, the red jungle fowl G. gallus, had more extreme SSD (male 68.8% heavier) than any domesticated breed. Male mass and female mass exhibited positive allometry among pheasants and allies, consistently with the Rensch's rule reported from various taxa. However, body mass scaled isometrically across chicken breeds. The latter results suggest that sex-specific selection on males vs. females is necessary to generate positive allometry, i.e. the Rensch's rule, in wild populations. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  12. The role of molecular markers and marker assisted selection in breeding for organic agriculture

    DEFF Research Database (Denmark)

    Lammerts van Bueren, E.T.; Backes, G.; de Vriend, H.

    2010-01-01

    markers is not self-evident and is often debated. Organic and low-input farming conditions require breeding for robust and flexible varieties, which may be hampered by too much focus on the molecular level. Pros and contras for application of molecular markers in breeding for organic agriculture...... was the topic of a recent European plant breeding workshop. The participants evaluated strengths, weaknesses, opportunities, and threats of the use of molecular markers and we formalized their inputs into breeder’s perspectives and perspectives seen from the organic sector’s standpoint. Clear strengths were...

  13. Testicular Histomorphometric Evaluation of Zebu Bull Breeds

    Directory of Open Access Journals (Sweden)

    Paulo Antônio Terrabuio Andreussi

    2014-12-01

    Full Text Available The objective of this study was to evaluate the quantitative histology and testicular biometrics in zebu bulls of different breeds. Testicular fragments of Nelore (n=10, Polled Nelore (n=6, Gir (n=5, Guzerat (n=5 and Tabapuã bulls (n=5 were used. The fragments were perfusion-fixed in Karnovsky solution, embedded in glycol methacrylate and stained with toluidine blue-1% sodium borate. The Nelore animals had a higher tubular volumetric proportion (85.2% and greater height of the seminiferous epithelium (73.2 µm than the Gir, Guzerat and Tabapuã breeds. The Nelore animals also had a higher volumetric proportion of Leydig cells (5.2% than the Guzerat and Tabapuã breeds. There was no significant difference for any of these parameters between the Nelore and Polled Nelore breeds. The gonadosomatic index, seminiferous tubule diameter, cross-sectional area of the seminiferous tubule and tubule length (total length and length per gram of testicular parenchyma did not vary among the breeds studied. The morphometric parameters evaluated suggested that the genetic selection applied to the Nelore and Polled Nelore breeds improved the efficiency of spermatogenesis in these breeders.

  14. Genomic tools and and prospects for new breeding techniques in flower bulb crops

    Science.gov (United States)

    For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...

  15. Tolerance of Septoria nodorum Berk. in wheat: inheritance and potential in breeding

    International Nuclear Information System (INIS)

    Fossati, A.; Broennimann, A.

    1976-01-01

    Investigations in the genetics of tolerance towards Septoria nodorum Berk. in wheat showed that this tolerance is inherited polygenically and mainly additively. This has to be considered when breeding for tolerance. Crosses should be carried out between parents of the highest possible tolerance. Breeding for tolerance is carried out in two different manners: Conventional breeding and with the use of mutation techniques. The conventional breeding program can be divided into three steps: The choice of the parents, the selection in the narrow sense (F 2 - F 5 ) and the evaluation of the tolerant lines (F 6 till about F 9 ). When producing mutants with tolerance towards Septoria nodorum, another cultivar is treated every year in order to enlarge the genetical basis for selection. 7 cultivars have been treated since 1967. Some tolerant lines could be selected from most of the cultivars used for this treatment. The efficiency of the mutation and selection techniques used is discussed in the case of the cultivar Fermo. Besides the real improvement of tolerance the selection was accompanied in general also by an increase in plant height and grain size. But some tolerant mutants were also found which did not show these side effects. Furthermore, some mutants were selected in which the progress of infection is slowed down. (author)

  16. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    Science.gov (United States)

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  17. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change.

    Science.gov (United States)

    Atlin, Gary N; Cairns, Jill E; Das, Biswanath

    2017-03-01

    Plant breeding is a key mechanism for adaptation of cropping systems to climate change. Much discussion of breeding for climate change focuses on genes with large effects on heat and drought tolerance, but phenology and stress tolerance are highly polygenic. Adaptation will therefore mainly result from continually adjusting allele frequencies at many loci through rapid-cycle breeding that delivers a steady stream of incrementally improved cultivars. This will require access to elite germplasm from other regions, shortened breeding cycles, and multi-location testing systems that adequately sample the target population of environments. The objective of breeding and seed systems serving smallholder farmers should be to ensure that they use varieties developed in the last 10 years. Rapid varietal turnover must be supported by active dissemination of new varieties, and active withdrawal of obsolete ones. Commercial seed systems in temperate regions achieve this through competitive seed markets, but in the developing world, most crops are not served by competitive commercial seed systems, and many varieties date from the end of the Green Revolution (the late 1970s, when the second generation of modern rice and wheat varieties had been widely adopted). These obsolete varieties were developed in a climate different than today's, placing farmers at risk. To reduce this risk, a strengthened breeding system is needed, with freer international exchange of elite varieties, short breeding cycles, high selection intensity, wide-scale phenotyping, and accurate selection supported by genomic technology. Governments need to incentivize varietal release and dissemination systems to continuously replace obsolete varieties.

  18. Influence of farming system and production purpose on the morpho structure of Spanish goat breeds

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Martinez, A.; Herrera, M.; Luque, M.; Rodero, E.

    2014-06-01

    The aim of this study was to examine the possible influence of farming systems, based on the morpho structure of 1,571 female goats drawn from 40 flocks containing seven Spanish breeds (Blanca Andaluza, Blanca Celtiberica, Negra Serrana, Pirenaica, Payoya, Murciano-Granadina and Malaguena) raised under four different farming systems. Analysis of morphometric variables showed that the morphostructure of native Spanish goat breeds was linked to the farming system used and thus to the production purpose. The morphostructure of grazing breeds may be more influenced by natural selection within the physical environment and less by human selection. That of stall-fed breeds, by contrast, reflects intense artificial selection aimed at achieving a highly-productive dairy type. For this reason, morphological evaluation systems used in breeding programmes for meat or dual-purpose goat breeds farmed extensively or semiextensively should be specific, and should reflect the influence of the environment in which these goats are farmed. (Author)

  19. Aedes aegypti breeding ecology in Guerrero: cross-sectional study of mosquito breeding sites from the baseline for the Camino Verde trial in Mexico

    OpenAIRE

    Arcadio Morales-Pérez; Elizabeth Nava-Aguilera; Alejandro Balanzar-Martínez; Antonio Juan Cortés-Guzmán; David Gasga-Salinas; Irma Esther Rodríguez-Ramos; Alba Meneses-Rentería; Sergio Paredes-Solís; José Legorreta-Soberanis; Felipe Gil Armendariz-Valle; Robert J. Ledogar; Anne Cockcroft; Neil Andersson

    2017-01-01

    Abstract Background Understanding the breeding patterns of Aedes aegypti in households and the factors associated with infestation are important for implementing vector control. The baseline survey of a cluster randomised controlled trial of community mobilisation for dengue prevention in Mexico and Nicaragua collected information about the containers that are the main breeding sites, identified possible actions to reduce breeding, and examined factors associated with household infestation. T...

  20. Marketing potential of advanced breeding clones

    Science.gov (United States)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  1. Physiological values of some blood indicators in selected dwarf rabbit breeds

    Directory of Open Access Journals (Sweden)

    V. Šimek

    2017-03-01

    Full Text Available The aim of the present study was to evaluate the effect of breed on haematological and biochemical indicators in 3 dwarf rabbit breeds. In the experiment, 30 sexually intact dwarf rabbit females aged 6 mo were used. With the sole exception of white blood cells and haematocrit value, breed had the most significant effect on the majority of haematological indicators monitored. The red blood cell count was higher in the Dwarf Lop compared to the Netherland Dwarf (+1.91×1012 cells/L; P<0.05 and also the Teddy Dwarf (+1.32×1012 cells/L; P<0.05. For haemoglobin concentration, a higher value was found in the Netherland Dwarf than in the Teddy Dwarf (+39.29 g/L; P<0.05 and the Dwarf Lop (+26.36 g/L; P<0.05. For erythrocytic indicators, the highest values of mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration were found in the Netherland Dwarf. The breed had a significant effect on the urea and potassium values. A higher value of urea was recorded in the Dwarf Lop compared to the Teddy Dwarf (+1.56 mmol/L; P<0.05. For potassium, a higher value was found in the Netherland Dwarf compared to the Teddy Dwarf (+0.85 mmol/L; P<0.05. In addition, a significantly positive correlation (P<0.05 was found between the live weight of dwarf females and values of haematocrit (0.49, albumin (0.54, alanine aminotransferase (0.51, and aspartate aminotransferase (0.41, while a significantly negative correlation (P<0.05 was found between their live weight and values of triacylglycerols (–0.44, alkaline phosphatase (–0.38 and inorganic phosphorus (–0.52.

  2. Non-adaptive territory selection by a bird with exceptionally long parental care

    Directory of Open Access Journals (Sweden)

    Radosław Włodarczyk

    2016-03-01

    Full Text Available High-quality territories are expected to provide greater fitness return for breeding individuals and, thus, are likely to have higher long-term occupation rate in comparison to low-quality territories. However, if environmental and ecological cues used for territory selection cannot reliably predict true territory quality, a mismatch between preferences and fitness may occur. We suggest that this kind of non-adaptive territory selection is more likely in species with long reproductive cycles, as a long time interval between territory establishment and young fledgling should reduce predictability of conditions during the critical stages of brood care. In this study, we investigated adaptiveness of territory selection in a migratory bird with exceptionally long parental care, the mute swan Cygnus olor, which requires over four months to complete the entire reproductive cycle from egg laying to young fledging. For this purpose, we collected information on the long-term (10–19 years occupancy of 222 swan breeding territories and correlated it with reproductive performance (n = 1,345 breeding attempts and body condition of breeding adults. We found that long-term occupancy positively correlated with the timing of breeding, suggesting that individuals settled earlier in the attractive, frequently occupied territories. By contrast, we found no relationship between territory occupancy and reproductive output (hatching and fledging success or adult body condition. The results indicate that at the time of territory selection swans might not be able to reliably assess territory quality, likely due to: (1 exceptionally long period of parental care, which reduces temporal correlation between the conditions at the time of territory selection and conditions during chick rearing; and (2 unpredictability of human-related activities that had a major impact on reproductive output of swan pairs in our population.

  3. Breeding approaches in simultaneous selection for multiple stress tolerance of maize in tropical environments

    Directory of Open Access Journals (Sweden)

    Denić M.

    2007-01-01

    Full Text Available Maize is the principal crop and major staple food in the most countries of Sub-Saharan Africa. However, due to the influence of abiotic and biotic stress factors, maize production faces serious constraints. Among the agro-ecological conditions, the main constraints are: lack and poor distribution of rainfall; low soil fertility; diseases (maize streak virus, downy mildew, leaf blights, rusts, gray leaf spot, stem/cob rots and pests (borers and storage pests. Among the socio-economic production constraints are: poor economy, serious shortage of trained manpower; insufficient management expertise, lack of use of improved varieties and poor cultivation practices. To develop desirable varieties, and thus consequently alleviate some of these constraints, appropriate breeding approaches and field-based methodologies in selection for multiple stress tolerance, were implemented. These approaches are mainly based on: a Crossing selected genotypes with more desirable stress tolerant and other agronomic traits; b Using the disease/pest spreader row method, combined with testing and selection of created progenies under strong to intermediate pressure of drought and low soil fertility in nurseries; and c Evaluation of the varieties developed in multi-location trials under low and "normal" inputs. These approaches provide testing and selection of large number of progenies, which is required for simultaneous selection for multiple stress tolerance. Data obtained revealed that remarkable improvement of the traits under selection was achieved. Biggest progress was obtained in selection for maize streak virus and downy mildew resistance, flintiness and earliness. In the case of drought stress, statistical analyses revealed significant negative correlation between yield and anthesis-silking interval, and between yield and days to silk, but positive correlation between yield and grain weight per ear.

  4. Will sex selection reduce fertility?

    Science.gov (United States)

    Leung, S F

    1994-01-01

    Population control is one of the primary policies applied against poverty in many low income countries. The widespread prevalence of son preference in some countries such as China and India, however, works against any reduction of fertility. This is so because parents often continue to have children until they obtain the number of sons which they desire. The bias against girls has also led to higher abortion and mortality rates of female children. It is frequently argued that if sex selection methods are made available to parents so that they can control the gender of their children, population growth would be lowered and women's welfare improved. The author investigates both theoretically and numerically the impact of sex selection on fertility. A static quantity-quality model of fertility is used to compare fertility choices when parents cannot choose the gender of children versus a situation in which parents can choose gender. Empirical data are drawn from the 1976 Malaysian Family Life Survey. Analysis found that whether sex selection reduces fertility depends upon the second and third derivatives of the utility function and the child expenditure function. A numerical dynamic analysis is also presented. The simulation shows, using empirical dynamic models of fertility and the Monte Carlo integration technique, that sex selection on the firstborn child among the Chinese in Malaysia could reduce fertility by about 3%.

  5. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK.

    Science.gov (United States)

    Bowles, Dianna; Carson, Amanda; Isaac, Peter

    2014-01-01

    There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits) and PRLR (reproductive performance traits) also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the lentivirus.

  6. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK.

    Directory of Open Access Journals (Sweden)

    Dianna Bowles

    Full Text Available There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits and PRLR (reproductive performance traits also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the

  7. A feasibility study on long-life reduced-moderation water reactor with highly protected Pu breeding by doping with minor actinides

    International Nuclear Information System (INIS)

    Hamase, Erina; Damian, Frederic; Poinot-salanon, Christine; Saito, Masaki; Sagara, Hiroshi; Han, Chi Young

    2013-01-01

    Highlights: ► The present paper is focused on a reduced-moderation water reactor. ►237 Np or 241 Am was doped into the inner blanket. ►238 Pu transmuted from MA works as a fissionable nuclide. ► It also contributes to increasing the proliferation resistance of Pu. ► Long-life core and highly protected Pu breeding were simultaneously achieved. - Abstract: The present paper is focused on the feasibility of reduced-moderation water reactor (RMWR) which could simultaneously achieve the extension of core life-time, and highly protected plutonium (Pu) breeding performance with short compound system doubling time (CSDT) by neptunium-237 ( 237 Np) or americium-241 ( 241 Am) doping of the inner blanket of the RMWR. As a preliminary analysis of the RMWR, a simplified fuel pin configuration was analyzed. In case of 60% doping of 237 Np and 241 Am in the inner blanket, the maximum available effective full power days (EFPDs) were much longer and were about 15,100 and 14,200 EFPDs, respectively. For the proliferation resistance of Pu produced in the blanket, the total Pu in the inner and lower/upper blanket was below the practically unusable criterion for an explosive device proposed by Pellaud, and was technically unfeasible for high-technology hypothetical nuclear explosive devices (HNEDs) proposed by Kessler and Kimura. The protected Pu breeding performance was analyzed and in case of 60% doping of 237 Np and 241 Am, CSDT was short by approximately 40 and 50 years. Therefore, the feasibility of RMWR was shown which could simultaneously achieve the extension of core life-time and have highly protected Pu breeding performance with short CSDT by doping the inner blanket with minor actinides (MAs). The objective of this study was thus to evaluate the performance of the concept with respect to the core life-time, proliferation resistance of Pu and CSDT. The technological feasibility of such core concept will have to be evaluated by further dedicated analyses

  8. [Comparison on agronomy and quality characters and breeding of new strains of Erigeron breviscapus].

    Science.gov (United States)

    Yang, Shengchao; Yang, Jianwen; Pan, Yinghua; Li, Guoxing; Liu, Binghua; Zhang, Qiong; Wen, Guosong; Wang, Pingli

    2010-03-01

    To explore breeding method and breed new varieties of Erigeron breviscapus. Superior individual were selected from natural outcrossing population of E. breviscapus, lines and strains were established and selected and compared. The scutellarin contents of two E. breviscapus strains of 2003-15 and 2003-6 through line breeding were 3.21% and 3.01%, respectively, and increased 15.77% and 23.46% comparing with the control strain (QS-1), respectively, the yield increased 20.37% and 17.59%, scutellarin yield per hectare enhanced 39.31% and 44.82%. New varieties of E. breviscapus can be bred through lines breeding.

  9. Recent developments in cattle, pig, sheep and horse breeding - a review

    Directory of Open Access Journals (Sweden)

    Alena Svitáková

    2014-01-01

    Full Text Available The aim of this review was to summarize new genetic approaches and techniques in the breeding of cattle, pigs, sheep and horses. Often production and reproductive traits are treated separately in genetic evaluations, but advantages may accrue to their joint evaluation. A good example is the system in pig breeding. Simplified breeding objectives are generally no longer appropriate and consequently becoming increasingly complex. The goal of selection for improved animal performance is to increase the profit of the production system; therefore, economic selection indices are now used in most livestock breeding programmes. Recent developments in dairy cattle breeding have focused on the incorporation of molecular information into genetic evaluations and on increasing the importance of longevity and health in breeding objectives to maximize the change in profit. For a genetic evaluation of meat yield (beef, pig, sheep, several types of information can be used, including data from performance test stations, records from progeny tests and measurements taken at slaughter. The standard genetic evaluation method of evaluation of growth or milk production has been the multi-trait animal model, but a test-day model with random regression is becoming the new standard, in sheep as well. Reviews of molecular genetics and pedigree analyses for performance traits in horses are described. Genome – wide selection is becoming a world standard for dairy cattle, and for other farm animals it is under development.

  10. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers.

    Science.gov (United States)

    Bigi, D; Marelli, S P; Randi, E; Polli, M

    2015-12-01

    Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of H E found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.

  11. Mitochondrial D-loop sequence variation among Italian horse breeds

    Directory of Open Access Journals (Sweden)

    Zanotti Marta

    2004-11-01

    Full Text Available Abstract The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences.

  12. Application of molecular markers in wheat breeding: Reality or delusion?

    Directory of Open Access Journals (Sweden)

    Kobiljski Borislav

    2004-01-01

    Full Text Available Conventional plant breeding use morphological and phenotypic markers for the identification of important agronomic traits. Plant breeders and scientists continuously seek to develop new techniques, which can be used for faster and more accurate introgression of desirable traits into plants. Over the last several years there has been significant increase in the application of molecular markers in the breeding programmes of different species. So far, detected level of polymorphism and informatitivnes of different molecular marker methods applied in MAS (Marker Assisted Selection studies (RFLP, AFLP, etc. were insufficient either to validate their further use or there were very expensive and of huge healthy risk. Fortunately for wheat (and other crops breeders, the new class of molecular markers - microsatellites have prove recently to be most powerful for MAS. But, due to lack of the knowledge, experience, valid informations and even tradition and habits, many breeders have either negative or repulsive attitude towards implementation of MAS in breeding programes. In this paper the relevant facts regarding implementation of MAS in breeding are discussed in general, and for wheat breeding in particular, in order to summarize merits and limitations in application of microsatellites in MAS selection. .

  13. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.

    Science.gov (United States)

    Daetwyler, Hans D; Hayden, Matthew J; Spangenberg, German C; Hayes, Ben J

    2015-08-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations. Copyright © 2015 by the Genetics Society of America.

  14. Future perspectives of in vitro culture and plant breeding

    DEFF Research Database (Denmark)

    Kuligowska, Katarzyna; Lütken, Henrik Vlk; Hegelund, Josefine Nymark

    2015-01-01

    Conventional breeding and plant improvement increasingly become inadequate to keep up with progression and high quality demands. Thus biotechnological techniques are more and more adopted. Initially, biotechnological tools have supported conventional breeding by in vitro culture techniques......, comprising micropropagation, speeding up multiplication and improving uniformity. Also, crossing barriers of incompatible plants have been overcome using in vitro methods and embryo rescue techniques in wide hybridization approaches. Marker-assisted breeding is employed for targeted selection of DNA...... fragments from parental plants in respect to identification of desired characteristics in offspring or among hybrid plants. Phylogeny-assisted breeding and knowledge about genetic relationships support the ability to develop new hybrids. Finally, chemical and radiation induced mutagenesis are established...

  15. Current trends in plant breeding

    International Nuclear Information System (INIS)

    Jalani, B.S.; Rajanaidu, N.

    2000-01-01

    The current world population is 6 billion and it is likely to reach 7 billion in 2010 and 8 billion 2025. Sufficient food must be produced for the ever increasing human population. The available suitable land for intensive agriculture is limited. We have to produce more food from less land, pesticide, labour and water resources. Hence, increase in crop productivity are essential to feed the world in the next century. Plant breeding provides the avenue to increase the food production to feed the growing world population. Development of a cultivar involves (I) Construction of a genetic model (II) creating a gene pool (III) selection among plants and (IV) testing the selected genotypes for adaptation to the biotic and abiotic environments (Frey, 1999). This paper discusses the trends in plant breeding using the oil palm as a model. It covers (i) genetic resources (ii) physiological traits (III) exploitation of genotype x environment interaction (IV) oil palm clones, and (v) biotechnology application. (Author)

  16. Breeding of newly licensed wheat variety Huapei 8 and improved ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... Full Length Research Paper. Breeding of newly licensed wheat variety Huapei 8 and improved breeding strategy by anther culture ... more efficient in pure line selection rather than the hete- .... Regional and productivity tests showed that Huapei 8 had .... Large-scale production of wheat and triticale double.

  17. Characterisation of White Fulani and Sokoto Gudali cattle breeds in ...

    African Journals Online (AJOL)

    The study was conducted in Bauchi state between January, and July, 1997 to characterize White Fulani and Sokoto Gudali cattle breeds. Thirty animals of both sexes from each breed were randomly selected from fifteen farms/herds. Observations were carried out on both quantitative and qualitative characters. Sokoto ...

  18. Reliabilities of genomic estimated breeding values in Danish Jersey

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Guldbrandtsen, Bernt; Su, Guosheng

    2012-01-01

    In order to optimize the use of genomic selection in breeding plans, it is essential to have reliable estimates of the genomic breeding values. This study investigated reliabilities of direct genomic values (DGVs) in the Jersey population estimated by three different methods. The validation methods...... were (i) fivefold cross-validation and (ii) validation on the most recent 3 years of bulls. The reliability of DGV was assessed using squared correlations between DGV and deregressed proofs (DRPs). In the recent 3-year validation model, estimated reliabilities were also used to assess the reliabilities...... of DGV. The data set consisted of 1003 Danish Jersey bulls with conventional estimated breeding values (EBVs) for 14 different traits included in the Nordic selection index. The bulls were genotyped for Single-nucleotide polymorphism (SNP) markers using the Illumina 54 K chip. A Bayesian method was used...

  19. Effect of selection for lean growth on gonadal development of ...

    African Journals Online (AJOL)

    A primary objective of commercial pig production is lean meat yield in order to satisfy consumer needs. The majority of the commercial pig breeds in South Africa have been selected for high lean growth potential and reduced backfat thickness. There are indications that selection for high lean meat yield may affect the ...

  20. Phenology, nest-site selection and breeding success of a North ...

    African Journals Online (AJOL)

    Gulls are good biological models to investigate anthropogenic changes affecting the environment. We studied the breeding ecology of a monospecific colony of yellow-legged gulls, Larus michahellis on the Algerian island of Srigina, during three consecutive years (2009–2011) and attempted to identify factors influencing ...

  1. Breeding objectives for Targhee sheep.

    Science.gov (United States)

    Borg, R C; Notter, D R; Kuehn, L A; Kott, R W

    2007-11-01

    Breeding objectives were developed for Targhee sheep under rangeland production conditions. Traits considered were those for which EPD were available from the US National Sheep Improvement Program and included direct and maternal effects on 120-d weaning weight (WW and MM, respectively); yearling weight (YW); yearling fleece weight, fiber diameter, and staple length; and percent lamb crop (PLC), measured as the number of lambs born per 100 ewes lambing. A bioeconomic model was used to predict the effects of a change of 1 additive SD in EPD for each trait, holding all other traits constant at their mean, on animal performance, feed requirements, feed costs, and economic returns. Resulting economic weightings were then used to derive selection indexes. Indexes were derived separately for 3 prolificacy levels (1.41, 1.55, and 1.70 lambs/ewe lambing), 2 triplet survival levels (50 and 67%), 2 lamb pricing policies (with or without discounting of prices for heavy feeder lambs), and 3 forage cost scenarios (renting pasture, purchasing hay, or reducing flock size to accommodate increased nutrient requirements for production). Increasing PLC generally had the largest impact on profitability, although an increase in WW was equally important, with low feed costs and no discounting of prices for heavy feeder lambs. Increases in PLC were recommended at all 3 prolificacy levels, but with low triplet survival the value of increasing PLC eventually declined as the mean litter size increased to approximately 2.15 lambs/ewe lambing and above. Increasing YW (independent of WW) increased ewe maintenance costs and reduced profitability. Predicted changes in breeding values for WW and YW under index selection varied with lamb pricing policy and feed costs. With low feed costs or no discounts for heavy lambs, YW increased at a modest rate in association with increasing WW, but with high feed costs or discounting of heavy lambs, genetic trends in WW were reduced by approximately 50% to

  2. Progress and tendency in heavy ion irradiation mutation breeding

    International Nuclear Information System (INIS)

    Zhou Libin; Li Wenjian; Qu Ying; Li Ping

    2008-01-01

    In recent years, the intermediate energy heavy ion biology has been concerned rarely comparing to that of the low-energy ions. In this paper, we summarized the advantage of a new mutation breeding method mediated by intermediate energy heavy ion irradiations. Meanwhile, the present state of this mutation technique in applications of the breeding in grain crops, cash crops and model plants were introduced. And the preview of the heavy ion irradiations in gene-transfer, molecular marker assisted selection and spaceflight mutation breeding operations were also presented. (authors)

  3. Genetic rescue of an endangered domestic animal through outcrossing with closely related breeds: A case study of the Norwegian Lundehund.

    Directory of Open Access Journals (Sweden)

    Astrid V Stronen

    Full Text Available Genetic rescue, outcrossing with individuals from a related population, is used to augment genetic diversity in populations threatened by severe inbreeding and extinction. The endangered Norwegian Lundehund dog underwent at least two severe bottlenecks in the 1940s and 1960s that each left only five inbred dogs, and the approximately 1500 dogs remaining world-wide today appear to descend from only two individuals. The Lundehund has a high prevalence of a gastrointestinal disease, to which all remaining dogs may be predisposed. Outcrossing is currently performed with three Nordic Spitz breeds: Norwegian Buhund, Icelandic Sheepdog, and Norrbottenspets. Examination of single nucleotide polymorphism (SNP genotypes based on 165K loci in 48 dogs from the four breeds revealed substantially lower genetic diversity for the Lundehund (HE 0.035 than for other breeds (HE 0.209-0.284. Analyses of genetic structure with > 15K linkage disequilibrium-pruned SNPs showed four distinct genetic clusters. Pairwise FST values between Lundehund and the candidate breeds were highest for Icelandic Sheepdog, followed by Buhund and Norrbottenspets. We assessed the presence of outlier loci among candidate breeds and examined flanking genome regions (1 megabase for genes under possible selection to identify potential adaptive differences among breeds; outliers were observed in flanking regions of genes associated with key functions including the immune system, metabolism, cognition and physical development. We suggest crossbreeding with multiple breeds as the best strategy to increase genetic diversity for the Lundehund and to reduce the incidence of health problems. For this project, the three candidate breeds were first selected based on phenotypes and then subjected to genetic investigation. Because phenotypes are often paramount for domestic breed owners, such a strategy could provide a helpful approach for genetic rescue and restoration of other domestic populations at

  4. Different Ultimate Factors Define Timing of Breeding in Two Related Species.

    Directory of Open Access Journals (Sweden)

    Veli-Matti Pakanen

    Full Text Available Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony. Alternatively, time-dependent breeding success (the date hypothesis can result from other seasonally deteriorating ecological conditions such as intra- or interspecific competition or predation. We studied the effects of two ultimate factors on the timing of breeding, synchrony and other time-dependent factors (time-dependence, in sympatric populations of two related forest-dwelling passerine species, the great tit (Parus major and the willow tit (Poecile montanus by modelling recruitment with long-term capture-recapture data. We hypothesized that these two factors have different relevance for fitness in these species. We found that local recruitment in both species showed quadratic relationships with both time-dependence and synchrony. However, the importance of these factors was markedly different between the studied species. Caterpillar food played a predominant role in predicting the timing of breeding of the great tit. In contrast, for the willow tit time-dependence modelled as timing in relation to conspecifics was more important for local recruitment than synchrony. High caterpillar biomass experienced during the pre- and post-fledging periods increased local recruitment of both species. These contrasting results confirm that these species experience different selective pressures upon the timing of breeding, and hence responses to climate change may differ. Detailed information about life-history strategies is required to understand the effects of climate change, even in closely related taxa. The temporal match-mismatch hypothesis should be extended to consider

  5. Advances and Challenges in Genomic Selection for Disease Resistance.

    Science.gov (United States)

    Poland, Jesse; Rutkoski, Jessica

    2016-08-04

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens

  6. Genetic diversity and relationships of Vietnamese and European pig breeds

    Energy Technology Data Exchange (ETDEWEB)

    Thuy, N T.D. [Department of Animal Breeding and Biotechnology, University of Hohenheim, Stuttgart (Germany); Institute of Biotechnology (IBT), National Center for Natural Science and Technology, Hanoi (Viet Nam); Melchinger, E; Kuss, A W; Peischl, T; Bartenschlager, H; Geldermann, H [Department of Animal Breeding and Biotechnology, University of Hohenheim, Stuttgart (Germany); Cuong, N V [Institute of Biotechnology (IBT), National Center for Natural Science and Technology, Hanoi (Viet Nam)

    2005-07-01

    Indigenous resources of the Asian pig population are less defined and only rarely compared with European breeds. In this study, five indigenous pig breeds from Viet Nam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Viet Nam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar were chosen for evaluation and comparison of genetic diversity. Samples and data from 317 animals were collected and ten polymorphic microsatellite loci were selected according to the recommendations of the FAO Domestic Animal Diversity Information System (DAD-IS; http://www.fao.org/dad-is/). Effective number of alleles, Polymorphism Information Content (PIC), within-breed diversity, estimated heterozygosities and tests for Hardy-Weinberg equilibrium were determined. Breed differentiation was evaluated using the fixation indices of Wright (1951). Genetic distances between breeds were estimated according to Nei (1972) and used for the construction of UPGMA dendrograms which were evaluated by bootstrapping. Heterozygosity was higher in indigenous Vietnamese breeds than in the other breeds. The Vietnamese indigenous breeds also showed higher genetic diversity than the European breeds and all genetic distances had a strong bootstrap support. The European commercial breeds, in contrast, were closely related and bootstrapping values for genetic distances among them were below 60%. European Wild Boar displayed closer relation with commercial breeds of European origin than with the native breeds from Viet Nam. This study is one of the first to contribute to a genetic characterization of autochthonous Vietnamese pig breeds and it clearly demonstrates that these breeds harbour a rich reservoir of genetic diversity. (author)

  7. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Thuy, N.T.D.; Melchinger, E.; Kuss, A.W.; Peischl, T.; Bartenschlager, H.; Geldermann, H.; Cuong, N.V.

    2005-01-01

    Indigenous resources of the Asian pig population are less defined and only rarely compared with European breeds. In this study, five indigenous pig breeds from Viet Nam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Viet Nam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar were chosen for evaluation and comparison of genetic diversity. Samples and data from 317 animals were collected and ten polymorphic microsatellite loci were selected according to the recommendations of the FAO Domestic Animal Diversity Information System (DAD-IS; http://www.fao.org/dad-is/). Effective number of alleles, Polymorphism Information Content (PIC), within-breed diversity, estimated heterozygosities and tests for Hardy-Weinberg equilibrium were determined. Breed differentiation was evaluated using the fixation indices of Wright (1951). Genetic distances between breeds were estimated according to Nei (1972) and used for the construction of UPGMA dendrograms which were evaluated by bootstrapping. Heterozygosity was higher in indigenous Vietnamese breeds than in the other breeds. The Vietnamese indigenous breeds also showed higher genetic diversity than the European breeds and all genetic distances had a strong bootstrap support. The European commercial breeds, in contrast, were closely related and bootstrapping values for genetic distances among them were below 60%. European Wild Boar displayed closer relation with commercial breeds of European origin than with the native breeds from Viet Nam. This study is one of the first to contribute to a genetic characterization of autochthonous Vietnamese pig breeds and it clearly demonstrates that these breeds harbour a rich reservoir of genetic diversity. (author)

  8. Nest ectoparasites increase physiological stress in breeding birds: an experiment.

    Science.gov (United States)

    Martínez-de la Puente, Josué; Merino, Santiago; Tomás, Gustavo; Moreno, Juan; Morales, Judith; Lobato, Elisa; Martínez, Javier

    2011-02-01

    Parasites are undoubtedly a biotic factor that produces stress. Heat shock proteins (HSPs) are important molecules buffering cellular damage under adverse conditions. During the breeding season, blue tit Cyanistes caeruleus (L.) adults are affected by blood parasites, nest-dwelling parasites and biting flies, potentially affecting their HSP-mediated responses. Here, we treated females with primaquine to reduce blood parasites and fumigated nests with permethrin to reduce nest-dwelling parasites to test whether these treatments affect HSP60 level during the breeding season. Medicated females, but not controls, had a significant reduction of the intensity of infection by Haemoproteus spp. blood parasites. However, final intensity of infection did not differ significantly between groups, and we did not find an effect of medication on change in HSP60 level. Fumigation reduced the abundance of nest-dwelling parasites (mites, fleas and blowfly larvae) and engorged biting midges in nests. Females breeding in non-fumigated nests increased HSP60 levels during the season more than those breeding in fumigated nests. Furthermore, the change in HSP60 level was positively correlated with the abundance of biting midges. These results show how infections by nest ectoparasites during the breeding period can increase the level of HSPs and suggest that biting midges impose physiological costs on breeding female blue tits. Although plausible, the alternative that biting midges prefer to feed on more stressed birds is poorly supported by previous studies.

  9. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Batnini, M.A.; Krichen, L.; Bourguiba, H.; Trifi-Farah, N.; Ruiz, D.; Martínez-Gómez, P.; Rubio, M.

    2016-11-01

    Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian) and a modern (Spanish) apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR) markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening. (Author)

  10. Comparative analysis of traditional and modern apricot breeding programs: A case of study with Spanish and Tunisian apricot breeding germplasm

    Directory of Open Access Journals (Sweden)

    Mohamed A. Batnini

    2016-08-01

    Full Text Available Traditional plant breeding is based on the observation of variation and the selection of the best phenotypes, whereas modern breeding is characterised by the use of controlled mating and the selection of descendants using molecular markers. In this work, a comparative analysis of genetic diversity in a traditional (Tunisian and a modern (Spanish apricot breeding programme was performed at the phenotypic and molecular level using simple sequence repeat (SSR markers. Seven phenotypic traits were evaluated in 42 Tunisian apricot accessions and 30 genotypes from the Spanish apricot programme. In addition, 20 SSR markers previously described as linked to specific phenotypic traits were assayed. Results showed that modern breeding using controlled crosses increases the size of the fruit. The fruit weight average observed in the Tunisian cultivars was of 20.15 g. In the case of traditional Spanish cultivars the average weight was 47.12 g, whereas the average weight of the other progenitors from France, USA and South Africa was 72.85 g. Finally, in the new releases from the CEBAS-CSIC breeding programme, the average weight was 72.82 g. In addition, modern bred cultivars incorporate desirable traits such as self-compatibility and firmness. Cluster and structural analysis based on SSR data clearly differentiates the genotypes according to their geographic origin and pedigree. Finally, results showed an association between some alleles of PaCITA7 and UDP96003 SSR markers with apricot fruit weight, one allele of UDAp407 marker with fruit firmness and one allele of UDP98406 marker with fruit ripening.

  11. Utilization of induced mutations for groundnut breeding in Uganda

    International Nuclear Information System (INIS)

    Busolo-Bulafu, C.M.

    1987-01-01

    Groundnuts (Arachis hypogaea L.) are on high demand in Uganda. There is, therefore, an urgent need to improve groundnut yields through breeding. The main objectives besides yield are the following: 1. To improve disease resistance: (a) rosette virus transmitted by aphids (Aphis craccivora); (b) leafspot caused by Cercospora arachidicola (early) and Cercosporidium personatum (late). 2. To advance the maturity period of high yielding varieties so as to fit better into the rainfall pattern of the main growing areas. 3. To improve seed uniformity, seed size and quality (protein, oil). 4. To reduce plant height by shortening the internodes so as to have more flower production near the ground. For mutation breeding three erect groundnut cultivars were used, Roxo a recommended commercial variety; Red Beauty (Bl) a recommended local variety and No. 534 a tan skinned variety. Seeds of the three varieties were irradiated in 1976 at the FAO/IAEA Agricultural Section of the IAEA Laboratory Seibersdorf, with 1500 rad of fast neutrons (Nf) or 20 krad of 60 Co gamma rays. The pedigree method of selection was used until M9. During 1985 and 1986, seven mutant selections of Red Beauty and one from Roxo were tested in replicated yield trials. Results are given. On the basis of plot yields some of the Red Beauty mutant lines outyielded the parent but not the commercial variety Roxo

  12. Changes in sunflower breeding over the last fifty years

    Directory of Open Access Journals (Sweden)

    Vear Felicity

    2016-03-01

    Full Text Available This article discusses changes in sunflower breeding objectives since the introduction of hybrid varieties 50 years ago. After a reminder of the importance of some early programmes, Canadian in particular, the present situation for each breeding objective is compared with those encountered earlier. Breeding for yield has changed from maximum possible yield under intensive agriculture to yield with resistance to abiotic stresses, moderate droughts and shallow soils in particular, helped by collaboration with agronomists to produce crop models. Breeding for oil has changed from quantity to quality and the value of seed meal is again becoming economically important. Necessary disease resistances vary with agronomic practises and selection pressure on pathogens according to varietal genetics. The possibilities of new types of sunflower are also discussed. Advances in genomics will change breeding procedures, but with rapidly changing molecular techniques, international collaboration is particularly important.

  13. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data.

    Science.gov (United States)

    Zanella, Ricardo; Peixoto, Jane O; Cardoso, Fernando F; Cardoso, Leandro L; Biegelmeyer, Patrícia; Cantão, Maurício E; Otaviano, Antonio; Freitas, Marcelo S; Caetano, Alexandre R; Ledur, Mônica C

    2016-03-30

    Genetic improvement in livestock populations can be achieved without significantly affecting genetic diversity if mating systems and selection decisions take genetic relationships among individuals into consideration. The objective of this study was to examine the genetic diversity of two commercial breeds of pigs. Genotypes from 1168 Landrace (LA) and 1094 Large White (LW) animals from a commercial breeding program in Brazil were obtained using the Illumina PorcineSNP60 Beadchip. Inbreeding estimates based on pedigree (F x) and genomic information using runs of homozygosity (F ROH) and the single nucleotide polymorphisms (SNP) by SNP inbreeding coefficient (F SNP) were obtained. Linkage disequilibrium (LD), correlation of linkage phase (r) and effective population size (N e ) were also estimated. Estimates of inbreeding obtained with pedigree information were lower than those obtained with genomic data in both breeds. We observed that the extent of LD was slightly larger at shorter distances between SNPs in the LW population than in the LA population, which indicates that the LW population was derived from a smaller N e . Estimates of N e based on genomic data were equal to 53 and 40 for the current populations of LA and LW, respectively. The correlation of linkage phase between the two breeds was equal to 0.77 at distances up to 50 kb, which suggests that genome-wide association and selection should be performed within breed. Although selection intensities have been stronger in the LA breed than in the LW breed, levels of genomic and pedigree inbreeding were lower for the LA than for the LW breed. The use of genomic data to evaluate population diversity in livestock animals can provide new and more precise insights about the effects of intense selection for production traits. Resulting information and knowledge can be used to effectively increase response to selection by appropriately managing the rate of inbreeding, minimizing negative effects of inbreeding

  14. Breeding, genetic and genomic of citrus for disease resistance

    Directory of Open Access Journals (Sweden)

    Marcos A. Machado

    2011-10-01

    Full Text Available Although the citriculture is one of the most important economic activities in Brazil, it is based on a small number of varieties. This fact has contributed for the vulnerability of the culture regarding the phytosanitary problems. A higher number of varieties/genotypes with potential for commercial growing, either for the industry or fresh market, has been one of the main objectives of citrus breeding programs. The genetic breeding of citrus has improved, in the last decades, due to the possibility of an association between biotechnological tools and classical methods of breeding. The use of molecular markers for early selection of zygotic seedlings from controlled crosses resulted in the possibility of selection of a high number of new combination and, as a consequence, the establishment of a great number of hybrids in field experiments. The faster new tools are incorporated in the program, the faster is possibility to reach new genotypes that can be tested as a new variety. Good traits should be kept or incorporate, whereas bad traits have to be excluded or minimized in the new genotype. Scion and rootstock can not be considered separately, and graft compatibility, fruit quality and productivity are essential traits to be evaluated in the last stages of the program. The mapping of QTLs has favored breeding programs of several perennial species and in citrus it was possible to map several characteristics with qualitative and quantitative inheritance. The existence of linkage maps and QTLs already mapped, the development of EST and BAC library and the sequencing of the Citrus complete genome altogether make very demanding and urgent the exploration of such data to launch a wider genetic study of citrus. The rising of information on genome of several organisms has opened new approaches looking for integration between breeding, genetic and genome. Genome assisted selection (GAS involves more than gene or complete genome sequencing and is becoming

  15. Impact of reduced marker set estimation of genomic relationship matrices on genomic selection for feed efficiency in Angus cattle

    Directory of Open Access Journals (Sweden)

    Northcutt Sally L

    2010-04-01

    Full Text Available Abstract Background Molecular estimates of breeding value are expected to increase selection response due to improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into breeding value estimation have been proposed, however, most studies have utilized simulated data in which the generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and average daily gain recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship matrix was evaluated in this population. Results Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and breeding value accuracies were similar for AFI and RFI using the numerator and genomic relationship matrices despite fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust estimation of genomic relationship matrices in cattle. Conclusions This research shows that breeding values and their accuracies may be estimated for commercially important sires for traits recorded in experimental populations without the need for pedigree data to establish identity by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available for the generation of a genomic relationship matrix.

  16. Selection and use of microsatellite markers for individual identification and meat traceability of six swine breeds in the Chinese market.

    Science.gov (United States)

    Zhao, Jie; Li, Tingting; Zhu, Chao; Jiang, Xiaoling; Zhao, Yan; Xu, Zhenzhen; Yang, Shuming; Chen, Ailiang

    2018-06-01

    Meat traceability based on molecular markers is exerting a great influence on food safety and will enhance its key role in the future. This study aimed to investigate and verify the polymorphism of 23 microsatellite markers and select the most suitable markers for individual identification and meat traceability of six swine breeds in the Chinese market. The mean polymorphism information content value of these 23 loci was 0.7851, and each locus exhibited high polymorphism in the pooled population. There were 10 loci showing good polymorphism in each breed, namely, Sw632, S0155, Sw2406, Sw830, Sw2525, Sw72, Sw2448, Sw911, Sw122 and CGA. When six highly polymorphic loci were combined, the match probability value for two random individual genotypes among the pig breeds (Beijing Black, Sanyuan and Taihu) was lower than 1.151 E-06. An increasing number of loci indicated a gradually decreasing match probability value and therefore enhanced traceability accuracy. The validation results of tracing 18 blood and corresponding meat samples based on five highly polymorphic loci (Sw2525, S0005, Sw0107, Sw911 and Sw857) were successful, with 100% conformation probability, which provided a foundation for establishing a traceability system for pork in the Chinese market.

  17. Comparative locomotor costs of domestic dogs reveal energetic economy of wolf-like breeds.

    Science.gov (United States)

    Bryce, Caleb M; Williams, Terrie M

    2017-01-15

    The broad diversity in morphology and geographic distribution of the 35 free-ranging members of the family Canidae is only rivaled by that of the domesticated dog, Canis lupus familiaris. Considered to be among nature's most elite endurance athletes, both domestic and wild canids provide a unique opportunity to examine the variability in mammalian aerobic exercise performance and energy expenditure. To determine the potential effects of domestication and selective breeding on locomotor gait and economy in canids, we measured the kinematics and mass-specific metabolism of three large (>20 kg) dog breed groups (northern breeds, retrievers and hounds) of varying morphological and genomic relatedness to their shared progenitor, the gray wolf. By measuring all individuals moving in preferred steady-state gaits along a level transect and on a treadmill, we found distinct biomechanical, kinematic and energetic patterns for each breed group. While all groups exhibited reduced total cost of transport (COT) at faster speeds, the total COT and net COT during trotting and galloping were significantly lower for northern breed dogs (3.0 and 2.1 J kg -1  m -1 , respectively) relative to hound (4.2 and 3.4 J kg -1  m -1 , respectively) and retriever dogs (3.8 and 3.0 J kg -1  m -1 , respectively) of comparable mass. Similarly, northern breeds expended less energy per stride (3.5 J kg -1  stride -1 ) than hounds or retrievers (5.0 and 4.0 J kg -1  stride -1 , respectively). These results suggest that, in addition to their close genetic and morphological ties to gray wolves, northern breed dogs have retained highly cursorial kinematic and physiological traits that promote economical movement across the landscape. © 2017. Published by The Company of Biologists Ltd.

  18. Inventory analysis of West African cattle breeds

    International Nuclear Information System (INIS)

    Belemsaga, D.M.A.; Lombo, Y.; Sylla, S.; Thevenon, S.

    2005-01-01

    The improvement of livestock productivity and the preservation of their genetic diversity to allow breeders to select animals adapted to environmental changes, diseases and social needs, require a detailed inventory and genetic characterization of domesticated animal breeds. Indeed, in developing countries, the notion of breed is not clearly defined, as visual traits are often used and characterization procedures are often subjective. So it is necessary to upgrade the phenotypic approach using genetic information. At CIRDES, a regional centre for subhumid livestock research and development, such studies have been conducted. This paper focuses on cattle breed inventory in seven countries of West Africa as a tool for genetic research on cattle improvement. Data collection was done using a bibliographical study, complemented by in situ investigations. According to phenotypic description and concepts used by indigenous livestock keepers, 13 local cattle breeds were recognized: N'dama, Kouri, the Baoule-Somba group, the Lagoon cattle group, zebu Azawak, zebu Maure, zebu Touareg, zebu Goudali, zebu Bororo, zebu White Fulani, zebu Djelli, zebu Peuhl soudanien and zebu Gobra (Toronke). Nine exotic breeds, (American Brahman, Gir, Girolando, Droughtmaster, Santa Gertrudis, Holstein, Montbeliarde, Jersey and Brown Swiss) and five typical cross-breeds (Holstein x Goudali; Montbeliarde x Goudali; Holstein x Azawak; Brown Swiss x Azawak; and Brown Swiss x zebu peuhl soudanien) were also found. From this initial investigation, the areas of heavy concentration of herds and the most important breeds were described. The review has also indicated the necessity for a balance between improving livestock productivity and the conservation of trypanotolerant breeds at risk of extinction in West Africa. (author)

  19. SPRING BARLEY BREEDING FOR MALTING QUALITY

    Directory of Open Access Journals (Sweden)

    Alžbeta Žofajová

    2010-05-01

    Full Text Available The aim of this contribution is to illustrate the results of spring barley breeding for malting quality and point out an important position of variety in production of  qualitative  raw material for maltinq and beer  industry as well as the system of evaluation the qualitative parameters of breeding materials and adaptation of barley breeding programms to the  new requirements of  malting and beer industry. As an example of the results obtained most recently description is made of the Ezer, Levan, Donaris, Sladar spring barley varieties with very good malting quality and effective resistance to  powdery mildew.  Cultivation of these varieties  and malting barley production with  reduced use  of pesticidies is environmentally friedly alternative. doi:10.5219/50

  20. Rapid genetic diversification within dog breeds as evidenced by a case study on Schnauzers.

    Science.gov (United States)

    Streitberger, K; Schweizer, M; Kropatsch, R; Dekomien, G; Distl, O; Fischer, M S; Epplen, J T; Hertwig, S T

    2012-10-01

    As a result of strong artificial selection, the domesticated dog has arguably become one of the most morphologically diverse vertebrate species, which is mirrored in the classification of around 400 different breeds. To test the influence of breeding history on the genetic structure and variability of today's dog breeds, we investigated 12 dog breeds using a set of 19 microsatellite markers from a total of 597 individuals with about 50 individuals analysed per breed. High genetic diversity was noted over all breeds, with the ancient Asian breeds (Akita, Chow Chow, Shar Pei) exhibiting the highest variability, as was indicated chiefly by an extraordinarily high number of rare and private alleles. Using a Bayesian clustering method, we detected significant genetic stratification within the closely related Schnauzer breeds. The individuals of these three recently differentiated breeds (Miniature, Standard and Giant Schnauzer) could not be assigned to a single cluster each. This hidden genetic structure was probably caused by assortative mating owing to breeders' preferences regarding coat colour types and the underlying practice of breeding in separate lineages. Such processes of strong artificial disruptive selection for different morphological traits in isolated and relatively small lineages can result in the rapid creation of new dog types and potentially new breeds and represent a unique opportunity to study the evolution of genetic and morphological differences in recently diverged populations. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  1. State of the science and challenges of breeding landscape plants with ecological function

    Science.gov (United States)

    Wilde, H Dayton; Gandhi, Kamal J K; Colson, Gregory

    2015-01-01

    Exotic plants dominate esthetically-managed landscapes, which cover 30–40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity. PMID:26504560

  2. Selection for scrapie resistance and simultaneous restriction of inbreeding in the rare sheep breed "Mergellander"

    NARCIS (Netherlands)

    Windig, J.J.; Meuleman, H.; Lansbergen, L.M.T.E.

    2007-01-01

    Scrapie is a fatal infectious neurodegenerative disease for which susceptibility is associated with polymorphisms in the ovine prion protein (PrP) gene. Scrapie-eradication programmes are based on eliminating the susceptible VRQ allele and/or breeding for the resistant ARR allele. In rare breeds or

  3. Increasing litter size in a sheep breed by marker-assisted selection ...

    Indian Academy of Sciences (India)

    1College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China ... breed population (1.76±0.03) was significantly greater than ... BMPR1B gene slightly acted on the growth trait of the 12-.

  4. Marker-assisted selection in common beans and cassava

    International Nuclear Information System (INIS)

    Blair, M.W.; Fregene, M.A.; Beebe, S.E.; Ceballos, H.

    2007-01-01

    Marker-assisted selection (MAS) in common beans (Phaseolus vulgaris L.) and cassava (Manihot esculenta) is reviewed in relation to the breeding system of each crop and the breeding goals of International Agricultural Research Centres (IARCs) and National Agricultural Research Systems (NARS). The importance of each crop is highlighted and examples of successful use of molecular markers within selection cycles and breeding programmes are given for each. For common beans, examples are given of gene tagging for several traits that are important for bean breeding for tropical environments and aspects considered that contribute to successful application of MAS. Simple traits that are tagged with easy-to-use markers are discussed first as they were the first traits prioritized for breeding at the International Center for Tropical Agriculture (CIAT) and with NARS partners in Central America, Colombia and eastern Africa. The specific genes for MAS selection were the bgm-1 gene for bean golden yellow mosaic virus (BGYMV) resistance and the bc-3 gene for bean common mosaic virus (BCMV) resistance. MAS was efficient for reducing breeding costs under both circumstances as land and labour savings resulted from eliminating susceptible individuals. The use of markers for other simply inherited traits in marker-assisted backcrossing and introgression across Andean and Mesoamerican gene pools is suggested. The possibility of using MAS for quantitative traits such as low soil phosphorus adaptation is also discussed as are the advantages and disadvantages of MAS in a breeding programme. For cassava, the use of multiple flanking markers for selection of a dominant gene, CMD2 for cassava mosaic virus (CMV) resistance at CIAT and the International Institute of Tropical Agriculture (IITA) as well as with NARS partners in the United Republic of Tanzania using a participatory plant breeding scheme are reviewed. MAS for the same gene is important during introgression of cassava green mite

  5. Breeding blueberries for a changing global environment: a review

    Science.gov (United States)

    Lobos, Gustavo A.; Hancock, James F.

    2015-01-01

    Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last 100 years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent. PMID:26483803

  6. Breeding blueberries for a changing global environment: a review

    Directory of Open Access Journals (Sweden)

    Gustavo A. Lobos

    2015-09-01

    Full Text Available Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last hundred years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent.

  7. Genome-editing technologies and their potential application in horticultural crop breeding

    Science.gov (United States)

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  8. DNA Microarray as Part of a Genomic-Assisted Breeding Approach

    DEFF Research Database (Denmark)

    Vincze, Éva; Bowra, Steve

    2010-01-01

    ) is the ‘umbrella' term used to describe a suite of tools now being applied to plant breeding. In the context of genomic-assisted breeding, we will briefly discuss in the second section of this chapter the molecular genetic-based tools underpinning GAB (understanding gene expression, candidate gene selection......In the struggle to achieve global food security, crop breeding retains an important role in crop production. A current trend is the diversification of the aims of crop production, to include an increased awareness of aspects and consequences of food quality. The added emphasis on food and feed...... quality made crop breeding more challenging and required a combination of new tools. We illustrate these concepts by taking examples from barley, one of the most ancient of domesticated grains with a diverse profile of utilisation (feed, brewing, new nutritional uses). Genomic-assisted breeding (GAB...

  9. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle.

    Directory of Open Access Journals (Sweden)

    Janos C Hennicke

    Full Text Available In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle.

  10. genetic polymorphism in eight breeds of Algeria

    Indian Academy of Sciences (India)

    Amal Djaout

    2018-05-23

    May 23, 2018 ... 3Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 .... the implementation of future breeding plans in terms of ..... control policies based on selecting rams of resistant geno-.

  11. A review on breeding and genetic strategies in Iranian buffaloes (Bubalus bubalis).

    Science.gov (United States)

    Safari, Abbas; Ghavi Hossein-Zadeh, Navid; Shadparvar, Abdol Ahad; Abdollahi Arpanahi, Rostam

    2018-04-01

    The aim of current study was to review breeding progress and update information on genetic strategies in Iranian buffaloes. Iranian buffalo is one of the vital domestic animals throughout north, north-west, south and south-west of Iran with measurable characteristics both in milk and meat production. The species plays an important role in rural economy of the country due to its unique characteristics such as resistance to diseases and parasites, having long productive lifespan and showing higher capability of consuming low-quality forage. In Iran, total production of milk and meat devoted to buffaloes are 293,000 and 24,700 tons, respectively. Selection activities and milk yield recording are carrying out by the central government through the Animal Breeding Centre of Iran. The main breeding activities of Iranian buffaloes included the estimation of genetic parameters and genetic trends for performance traits using different models and methods, estimation of economic values and selection criteria and analysis of population structure. Incorporating different aspects of dairy buffalo management together with improved housing, nutrition, breeding and milking, is known to produce significant improvements in buffalo production. Therefore, identifying genetic potential of Iranian buffaloes, selection of superior breeds, improving nutritional management and reproduction and developing the education and increasing the skills of practical breeders can be useful in order to enhance the performance and profitability of Iranian buffaloes.

  12. Most of the benefits from genomic selection can be realised by genotyping a proportion of selection candidates

    DEFF Research Database (Denmark)

    Henryon, Mark; Berg, Peer; Sørensen, Anders Christian

    2012-01-01

    allocated to male and female candidates at ratios of 100:0, 75:25, 50:50, 25:75, and 0:100. For genotyped candidates, a direct-genomic value (DGV) was sampled with reliabilities 0.10, 0.50, and 0.90. Ten sires and 300 dams with the highest breeding values after genotyping were selected at each generation......We reasoned that there are diminishing marginal returns from genomic selection as the proportion of genotyped selection candidates is increased and breeding values based on a priori information are used to choose the candidates that are genotyped. We tested this premise by stochastic simulation...... of breeding schemes that resembled those used for pigs. We estimated rates of genetic gain and inbreeding realized by genomic selection in breeding schemes where candidates were phenotyped before genotyping and 0-100% of the candidates were genotyped based on predicted breeding values. Genotypings were...

  13. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    Science.gov (United States)

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  14. Breeds of cattle

    NARCIS (Netherlands)

    Buchanan, David S.; Lenstra, Johannes A.

    2015-01-01

    This chapter gives an overview on the different breeds of cattle (Bos taurus and B. indicus). Cattle breeds are presented and categorized according to utility and mode of origin. Classification and phylogeny of breeds are also discussed. Furthermore, a description of cattle breeds is provided.

  15. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats.

    Science.gov (United States)

    Xu, Haiyang; Das, Sasmita; Sturgill, Marc; Hodgkinson, Colin; Yuan, Qiaoping; Goldman, David; Grasing, Kenneth

    2017-08-01

    The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.

  16. Natural Selection Reduced Diversity on Human Y Chromosomes

    Science.gov (United States)

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  17. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  18. A century of potato breeding: improvement, diversification, and diversity

    Science.gov (United States)

    Breeding within potato has relied almost entirely on phenotypic selection and little is known of the underlying genetic elements being acted upon. To characterize the effects of this selection on phenotypic and genotypic diversity within cultivated potato, the SolCAP 8300 Infinium SNP chip was utili...

  19. Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection.

    Science.gov (United States)

    Schmidt, Malthe; Kollers, Sonja; Maasberg-Prelle, Anja; Großer, Jörg; Schinkel, Burkhard; Tomerius, Alexandra; Graner, Andreas; Korzun, Viktor

    2016-02-01

    Genomic prediction of malting quality traits in barley shows the potential of applying genomic selection to improve selection for malting quality and speed up the breeding process. Genomic selection has been applied to various plant species, mostly for yield or yield-related traits such as grain dry matter yield or thousand kernel weight, and improvement of resistances against diseases. Quality traits have not been the main scope of analysis for genomic selection, but have rather been addressed by marker-assisted selection. In this study, the potential to apply genomic selection to twelve malting quality traits in two commercial breeding programs of spring and winter barley (Hordeum vulgare L.) was assessed. Phenotypic means were calculated combining multilocational field trial data from 3 or 4 years, depending on the trait investigated. Three to five locations were available in each of these years. Heritabilities for malting traits ranged between 0.50 and 0.98. Predictive abilities (PA), as derived from cross validation, ranged between 0.14 to 0.58 for spring barley and 0.40-0.80 for winter barley. Small training sets were shown to be sufficient to obtain useful PAs, possibly due to the narrow genetic base in this breeding material. Deployment of genomic selection in malting barley breeding clearly has the potential to reduce cost intensive phenotyping for quality traits, increase selection intensity and to shorten breeding cycles.

  20. Biotechnology Assisted Wheat Breeding for Organic Agriculture

    DEFF Research Database (Denmark)

    Steffan, Philipp Matthias

    model identified two novel QTL for common bunt resistance located on wheat chromosomes 2B and 7 A. The identification of new resistance loci may help to broaden our understanding of common bunt resistance in wheat, and QTL may potentially be exploited by marker assisted selection in plant breeding. QTL...... markers for common bunt resistance may potentially help to speed up resistance breeding by shortening the long time required for phenotypic disease screening. Here, we report the results of 1. an association mapping study for common bunt resistance, 2. a QTL mapping study for the localization of common...

  1. Assessment of thermal neutron and N-methyl-N-nitrosourea activities in groups of barley mutants with possible breeding use

    International Nuclear Information System (INIS)

    Uhlik, J.; Burianova, S.

    1982-01-01

    During the study of genetic variability induced after the application of thermal neutrons and N-methyl-N-nitrosourea in barley, marked differences were manifest when selected mutated progeny sets with possible breeding use were evaluated. It is recommended on the basis of the results to use separately a chemical mutagen and a physical mutagen for influencing the same material in which it is intended to obtain the largest possible amount of mutated progenies that could be used in breeding. In the set of selected progenies offering the possibility of breeding use, thermal neutrons induced larger proportions of high-tillering progenies, progenies with preference to the first tillers, with longer stalks, with a firm stalk, with one stalk, with an erect ear with deformed spikelets, with ears having deformed first sections, later ripening, with earlier heading time. N-methyl-N-nitrosourea induced larger proportions of progenies with reduced wax production, with broader or narrow blades, with necrosis on leaves, with shorter stalks, with denser ears, with multiple-row ears, with shorter awns, with golden-coloured awns, with medium-early ripening, and with delayed heading time. (author)

  2. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  3. Successes and failures of small ruminant breeding programmes in the tropics: a review

    NARCIS (Netherlands)

    Kosgey, I.S.; Baker, R.L.; Udo, H.M.J.; Arendonk, van J.A.M.

    2006-01-01

    Despite the large numbers and importance of adapted indigenous sheep and goats in the tropics, information on sustainable conventional breeding programmes for them is scarce and often unavailable. This paper reviews within-breed selection strategies for indigenous small ruminants in the tropics,

  4. Matching breeding goals with farming systems to enhance the sustainability of fish farming

    NARCIS (Netherlands)

    Besson, Mathieu

    2017-01-01

    Fish farming is growing but is also facing challenges regarding economic viability and environmental sustainability. Selective breeding could enhance the sustainability of fish farming by changing animal performances. Thus, our aim was to develop sustainable breeding goals by using economic (EV)

  5. Advances and prospects for induced mutation breeding in Helongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1995-12-01

    Induced mutation breeding employed on soybean, spring wheat, maize, millet, fiber flax, chinese cabbage, kidney been and garlic in Heilongjiang province. Thirty-six new varieties had introduced and released from 1980 to 1994, made up 20.6% of total released varieties for the same period, accumulated cultivated area of 3.746 million hm 2 , and increased the income of formers to US dollar 168 million; 72 mutants having specific and utilizing values and traits have also been bred in the province. Basic research such as radiation breeding in combination with distant hybridization, biotechnology, and application new induced factors, improving selection methods, have been achieved; 91 articles have been published. These researches play an important role for increasing induced mutation breeding. Three items of suggestion to develop induced mutation breeding are made. (1 tab.)

  6. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  7. Historical Datasets Support Genomic Selection Models for the Prediction of Cotton Fiber Quality Phenotypes Across Multiple Environments.

    Science.gov (United States)

    Gapare, Washington; Liu, Shiming; Conaty, Warren; Zhu, Qian-Hao; Gillespie, Vanessa; Llewellyn, Danny; Stiller, Warwick; Wilson, Iain

    2018-03-20

    Genomic selection (GS) has successfully been used in plant breeding to improve selection efficiency and reduce breeding time and cost. However, there has not been a study to evaluate GS prediction models that may be used for predicting cotton breeding lines across multiple environments. In this study, we evaluated the performance of Bayes Ridge Regression, BayesA, BayesB, BayesC and Reproducing Kernel Hilbert Spaces regression models. We then extended the single-site GS model to accommodate genotype × environment interaction (G×E) in order to assess the merits of multi- over single-environment models in a practical breeding and selection context in cotton, a crop for which this has not previously been evaluated. Our study was based on a population of 215 upland cotton ( Gossypium hirsutum ) breeding lines which were evaluated for fiber length and strength at multiple locations in Australia and genotyped with 13,330 single nucleotide polymorphic (SNP) markers. BayesB, which assumes unique variance for each marker and a proportion of markers to have large effects, while most other markers have zero effect, was the preferred model. GS accuracy for fiber length based on a single-site model varied across sites, ranging from 0.27 to 0.77 (mean = 0.38), while that of fiber strength ranged from 0.19 to 0.58 (mean = 0.35) using randomly selected sub-populations as the training population. Prediction accuracies from the M×E model were higher than those for single-site and across-site models, with an average accuracy of 0.71 and 0.59 for fiber length and strength, respectively. The use of the M×E model could therefore identify which breeding lines have effects that are stable across environments and which ones are responsible for G×E and so reduce the amount of phenotypic screening required in cotton breeding programs to identify adaptable genotypes. Copyright © 2018, G3: Genes, Genomes, Genetics.

  8. Importance of determining the climatic domains of sheep breeds.

    Science.gov (United States)

    Petit, D; Boujenane, I

    2018-07-01

    The main purpose of the study was to compare the capacity of the major sheep breeds in Morocco to cope with climate changes through the ranges of several climate parameters in which they can be found. We first delimitated the climatic 'domains' of each breed by constructing a database including altitude and climatic parameters (minima mean of the coldest month, maxima mean of the hottest month, annual rainfall, pluviothermic coefficient of Emberger Q 2, annual minima mean and annual maxima mean) on a 30-year period using the representative stations of each breed distribution. The overlap between each breed combination was quantified through a canonical analysis that extracted the most discriminant parameters. The variance analysis of each climatic parameter evidenced two breeds remarkable by their tolerance. The first one is the Timahdite, mainly settled in areas over 1100 m, which can tolerate the greatest variations in annual rainfall and pluviothermic coefficient. In spite of this feature, this breed is endangered owing to the decreasing quality of pastures. The second one is the D'man which apparently can support high variations in extreme temperatures. In fact, this breed is not well adapted to pastures and requires a special microclimate offered by oases. The information reported in this study will be the basis for the establishment of characterization and selection strategies for Moroccan sheep.

  9. Selective containment in EBIS for charge breeding applications

    International Nuclear Information System (INIS)

    Variale, Vincenzo; Valentino, Vincenzo; Bak, Petr A.; Kuznetsov, Gennady I.; Skarbo, Boris; Tiunov, Michael A.; Clauser, Tarcisio; Boggia, Antonio; Raino, Antonio C.

    2008-01-01

    The production of radioactive ion beam (RIB) with the ISOL technique could require a charge breeder device to increase the ion acceleration efficiency and reduce greatly the production cost. The 'charge breeder' is a device designed to accept radioactive 1+ ions in order to increase their charge state up to n+. In the framework of the SPES project, proposed at the INFN-LNL (Padua) for RIB production, an R and D experiment of a charge breeder device, BRIC, has been carried out at LNL. BRIC is an EBIS-type ion charge state breeder in which a radio frequency (RF) quadrupolar field has been superimposed in the trapped ion region to introduce a selective containment with the aim of increasing the ion trapping efficiency. In this paper, the device and the test measurements that demonstrate the selective containment effect due to the RF quadrupolar field are presented. Furthermore, some comments on the possibility of using that device as charge state breeder for RIB production has been also discussed in the conclusions. This experiment has been also considered as R and D program of the RIB European project EURISOL D S

  10. Foraging site choice and diet selection of Meadow Pipits Anthus pratensis breeding on grazed salt marshes

    NARCIS (Netherlands)

    van Klink, Roel; Mandema, Freek S.; Bakker, Jan P.; Tinbergen, Joost M.

    2014-01-01

    Capsule Breeding Meadow Pipits foraged for caterpillars and large spiders in vegetation that was less heterogeneous than vegetation at random locations.Aims To gain a better understanding of the foraging ecology of breeding Meadow Pipits on grazed coastal salt marshes, we tested three hypotheses:

  11. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  12. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  13. Recurrent Selection and Participatory Plant Breeding for Improvement of Two Organic Open-Pollinated Sweet Corn (Zea mays L. Populations

    Directory of Open Access Journals (Sweden)

    Adrienne C. Shelton

    2015-04-01

    Full Text Available Organic growers face unique challenges when raising sweet corn, and benefit from varieties that maintain high eating quality, germinate consistently, deter insect pests, and resist diseases. Genotype by environment rank changes can occur in the performance of cultivars grown on conventional and organic farms, yet few varieties have been bred specifically for organic systems. The objective of this experiment was to evaluate the changes made to open-pollinated sweet corn populations using recurrent selection and a participatory plant breeding (PPB methodology. From 2008 to 2011, four cycles of two open-pollinated (OP sweet corn populations were selected on a certified organic farm in Minnesota using a modified ear-to-row recurrent selection scheme. Selections were made in collaboration with an organic farmer, with selection criteria based on traits identified by the farmer. In 2012 and 2013, the population cycles were evaluated in a randomized complete block design in two certified organic locations in Wisconsin, with multiple replications in each environment. Significant linear trends were found among cycles of selection for quantitative and qualitative traits, suggesting the changes were due to recurrent selection and PPB methodology for these populations. However, further improvement is necessary to satisfy the requirements for a useful cultivar for organic growers.

  14. EVALUATION AND SELECTION OF DIFFERENT VARIETIES AND LINES OF SOYBEAN FOR BREEDING FOR VALUABLE TRAITS IN THE CENTRAL EUROPEAN PART OF RUSSIA

    Directory of Open Access Journals (Sweden)

    D. R. Shafigullin

    2016-01-01

    Full Text Available Soybeans is the most important source of high quality protein using as food and oil. Soybean protein is balanced for amino acid composition that is advantage in comparison with other legumes, oil crops, and cereals. Soybean protein contains all the essential amino acids in a ratio close to the animal protein. Due to the acute deficiency of protein, the interest in soybean production and breeding of new varieties are constantly growing worldwide. The early ripening lines for the duration of the vegetation period and interphase periods of development were selected. The soybean samples with a maximum seed weight per a plant, thousand-seed weight and the largest number of seeds in a bean were revealed. The genotypes with the optimal displays of these traits for the breeding in the different directions were identified.

  15. Development of breeding objectives for beef cattle breeding ...

    African Journals Online (AJOL)

    Mnr J F Kluyts

    However, to solve the simultaneous equations the ... The aggregate breeding value represents a fundamental concept, the breeding objective, which is ..... Two properties characterise a linear programming problem. The first is additivity, ...

  16. Modifications in agricultural and animal breeding current operations to reduce the contamination of food chains

    International Nuclear Information System (INIS)

    Maubert, Henry; Renard, Philippe

    1997-01-01

    After a nuclear accident it is compulsory to reduce as much as possible the population exposure to radioactive aerosols deposed upon soils and different surfaces. The radio-agronomic countermeasures are protection directives applicable to the agricultural system and agro-alimentary chain which enable to implement this commandment. Their intrinsic and cumulated efficiency, the conditions and preoccupations of implementation are now better recognized especially now by their large scale application after the Chernobyl accident. As modifications in the current agricultural operation two procedures are mentioned: the rehabilitation techniques and the utilization of adjuvants. Concerning modifications in the current animal breeding methodology in the specific conditions of animal production and restricted pasturage there are discussed methods of diminishing the metabolic transfer to milk and meat and removing radioactivity by proper and simpler agro-alimentary processing and culinary preparations

  17. Novel Graphical Analyses of Runs of Homozygosity among Species and Livestock Breeds

    Directory of Open Access Journals (Sweden)

    Laura Iacolina

    2016-01-01

    Full Text Available Runs of homozygosity (ROH, uninterrupted stretches of homozygous genotypes resulting from parents transmitting identical haplotypes to their offspring, have emerged as informative genome-wide estimates of autozygosity (inbreeding. We used genomic profiles based on 698 K single nucleotide polymorphisms (SNPs from nine breeds of domestic cattle (Bos taurus and the European bison (Bison bonasus to investigate how ROH distributions can be compared within and among species. We focused on two length classes: 0.5–15 Mb to investigate ancient events and >15 Mb to address recent events (approximately three generations. For each length class, we chose a few chromosomes with a high number of ROH, calculated the percentage of times a SNP appeared in a ROH, and plotted the results. We selected areas with distinct patterns including regions where (1 all groups revealed an increase or decrease of ROH, (2 bison differed from cattle, (3 one cattle breed or groups of breeds differed (e.g., dairy versus meat cattle. Examination of these regions in the cattle genome showed genes potentially important for natural and human-induced selection, concerning, for example, meat and milk quality, metabolism, growth, and immune function. The comparative methodology presented here permits visual identification of regions of interest for selection, breeding programs, and conservation.

  18. Genetic analysis of growth traits in Iranian Makuie sheep breed

    Directory of Open Access Journals (Sweden)

    Mohammad Farhadian

    2012-01-01

    Full Text Available The Makuie sheep is a fat-tailed sheep breed which can be found in the Azerbaijan province of Iran. In 1986, a Makuie sheep breeding station was established in the city of Maku in order to breed, protect and purify this breed. The genetic parameters for birth weight, weaning weight (3 months, 6-month, 9-month and yearling weight, and average daily gain from birth to weaning traits were estimated based on 25 years of data using DFREML software. Six different models were applied and a likelihood ratio test (LRT was used to select the appropriate model. Bivariate analysis was used to define the genetic correlation between studied traits. Based on the LRT, model II was selected as an appropriate model for all studied traits. Direct heritability estimates of birth, weaning, 6-month, 9-month and yearling weights and average daily gain from birth to weaning were 0.36, 0.41, 0.48, 0.42, 0.36 and 0.37, respectively. Estimates of direct genetic correlation between birth and weaning weights, birth and 6-month weights, birth and 9-month weights, as well as between birth and yearling weights were 0.57, 0.49, 0.46 and 0.32, respectively. The results suggest there is a substantial additive genetic variability for studied traits in the Makuie sheep breed population, and the direct additive effect and maternal permanent environment variance are the main source of phenotypic variance.

  19. Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Cros, David; Denis, Marie; Sánchez, Leopoldo; Cochard, Benoit; Flori, Albert; Durand-Gasselin, Tristan; Nouy, Bruno; Omoré, Alphonse; Pomiès, Virginie; Riou, Virginie; Suryana, Edyana; Bouvet, Jean-Marc

    2015-03-01

    Genomic selection empirically appeared valuable for reciprocal recurrent selection in oil palm as it could account for family effects and Mendelian sampling terms, despite small populations and low marker density. Genomic selection (GS) can increase the genetic gain in plants. In perennial crops, this is expected mainly through shortened breeding cycles and increased selection intensity, which requires sufficient GS accuracy in selection candidates, despite often small training populations. Our objective was to obtain the first empirical estimate of GS accuracy in oil palm (Elaeis guineensis), the major world oil crop. We used two parental populations involved in conventional reciprocal recurrent selection (Deli and Group B) with 131 individuals each, genotyped with 265 SSR. We estimated within-population GS accuracies when predicting breeding values of non-progeny-tested individuals for eight yield traits. We used three methods to sample training sets and five statistical methods to estimate genomic breeding values. The results showed that GS could account for family effects and Mendelian sampling terms in Group B but only for family effects in Deli. Presumably, this difference between populations originated from their contrasting breeding history. The GS accuracy ranged from -0.41 to 0.94 and was positively correlated with the relationship between training and test sets. Training sets optimized with the so-called CDmean criterion gave the highest accuracies, ranging from 0.49 (pulp to fruit ratio in Group B) to 0.94 (fruit weight in Group B). The statistical methods did not affect the accuracy. Finally, Group B could be preselected for progeny tests by applying GS to key yield traits, therefore increasing the selection intensity. Our results should be valuable for breeding programs with small populations, long breeding cycles, or reduced effective size.

  20. Selective breeding of two lines of guinea pigs differing in bronchial sensitivity to acetylcholine and histamine exposure.

    Science.gov (United States)

    Mikami, H; Nishibata, R; Kawamoto, Y; Ino, T

    1991-04-01

    We developed two lines of guinea pigs, one as model animals for bronchial asthma with bronchial hypersensitivity and the other with hyposensitivity as a control. In the last four years, the bronchial hypersensitive line (BHS) and hyposensitive line (BHR), both derived from Hartley strain guinea pigs, have been selected by using bronchial reactivity to acetylcholine and to histamine as parameters. Both lines have reached the F6 generation. The following results were obtained with the two lines: 1) Sib and cous in matings, and mating of selected consanguineous individuals were adopted in breeding BHS and BHR. The breeding started with six families, each, but in the F6 generation the number of families decreased to two in each line. 2) Appearance rates of hyper- or hyposensitivity to acetylcholine and histamine increased with successive generations in both lines, which had been completely separated by the F6 generation. 3) Coefficients of inbreeding in BHS and BHR in the F6 generation ranged from 42% to 45% in the former and 42% in the latter. 4) Heritabilities (h2) of BHS and BHR for the appearance rates of sensitivity to acetylcholine were presumed to be 0.54 in the former and 0.69 in the latter. 5) No difference in the body weight of 0, 20, and 40 day-old BHS was observed in any generation. On the other hand, the body weight of 20 and 40 day-old BHR tended to decrease with successive generations. 6) Mean litter sizes of BHS and BHR in each of the generations ranged from 2.24 to 3.47 animals in the former and from 2.63 to 3.38 animals in the latter.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Biotechnological approach in crop improvement by mutation breeding in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soeranto, H.; Sobrizal; Sutarto, Ismiyati; Manurung, Simon; Mastrizal [National Nuclear Energy Agency, Center for Research and Development of Isotope and Radiation Technology, Jakarta (Indonesia)

    2002-02-01

    Mutation breeding has become a proven method of improving crop varieties. Most research on plant mutation breeding in Indonesia is carried out at the Center for Research and Development of Isotope and Radiation Technology, National Nuclear Energy Agency (BATAN). Nowadays, a biotechnological approach has been incorporated in some mutation breeding researches in order to improve crop cultivars. This approach is simply based on cellular totipotency, or the ability to regenerate whole, flowering plants from isolated organs, pieces of tissue, individual cells, and protoplasts. Tissue culture technique has bee extensively used for micro propagation of disease-free plants. Other usage of this technique involves in various steps of the breeding process such as germplasm preservation, clonal propagation, and distant hybridization. Mutation breeding combined with tissue culture technique has made a significant contribution in inducing plant genetic variation, by improving selection technology, and by accelerating breeding time as for that by using anther or pollen culture. In Indonesia, research on mutation breeding combined with tissue culture techniques has been practiced in different crop species including rice, ginger, banana, sorghum etc. Specially in rice, a research on identification of DNA markers linked to blast disease resistance is now still progressing. A compiled report from some research activities is presented in this paper. (author)

  2. The Standardization of the Honeybee Colonies Evaluation Methodology, with Application in Honeybee Breeding Programs, in Romanian Conditions

    OpenAIRE

    Eliza Cauia; Adrian Siceanu; Silvia Patruica; Marian Bura; Agripina Sapcaliu; Maria Magdici

    2010-01-01

    It is well known that breeding is based on phenotypic and behavioural performance assessed at the level of each honeybee colony. By selection, the genes responsible for the desired characters have to be favoured, by evaluation and classification of all colonies involved in a breeding program. Generally, in the beekeeping practice, the most applied method of selection is the mass selection regarding the main objective- honey production. Some more elaborated programs use selection simultaneous ...

  3. Costs Associated with Equine Breeding in Kentucky

    Science.gov (United States)

    Walker, Cassandra L.

    There were approximately 9 million horses in the United States having a 102 billion impact on the U.S. economy (AHC, 2005). Over 1 million of those horses were involved in the breeding sector. In Kentucky, nearly 18% of the horse population have been involved in breeding. Managing an equine enterprise can be difficult, particularly given that many who undertake such endeavors do not have a background or education in business management. Kentucky Cooperative Extension has produced interactive spreadsheets to help horse owners better understand the costs associated with owning horses or managing certain equine businesses, including boarding and training operations. However, there has been little support for breeders. Therefore, the objectives of this study were to provide owners with a list of services offered for breeding and the costs associated with those services. Survey questions were created from a list of topics pertinent to equine breeding and from that list of questions, an electronic survey was created. The survey was sent via Qualtrics Survey Software to collect information on stallion and mare management costs as well as expenses related to owning and breeding. Question topics included veterinary and housing costs, management and advertising expenses, and membership fees. A total of 78 farms were selected from the 2013 breeder's listings for the Kentucky Quarter Horse Association (n = 39) and the Kentucky Thoroughbred Farm Managers' Club (n = 26), and other breed association contacts (n = 13). These farms were selected from the lists by outside individuals who were not related to the project. Participants were asked to answer all questions relevant to the farm. After the initial survey distribution, follow-up e-mails and phone calls were conducted in order to answer any questions participants might have had about the survey. Survey response rate was 32.1% (25 of 78 surveys returned). Farms in Kentucky had an average of two farm-owned and two outside

  4. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice.

    Science.gov (United States)

    Claghorn, Gerald C; Thompson, Zoe; Kay, Jarren C; Ordonez, Genesis; Hampton, Thomas G; Garland, Theodore

    Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that

  5. Genomics for greater efficiency in pigeonpea hybrid breeding

    Directory of Open Access Journals (Sweden)

    Rachit K Saxena

    2015-10-01

    Full Text Available Cytoplasmic genic male sterility based hybrid technology has demonstrated its immense potential in increasing the productivity of various crops, including pigeonpea. This technology has shown promise for breaking the long-standing yield stagnation in pigeonpea. There are difficulties in commercial hybrid seed production due to non-availability of field-oriented technologies such as time-bound assessment of genetic purity of hybrid seeds. Besides this, there are other routine breeding activities which are labour oriented and need more resources. These include breeding and maintenance of new fertility restorers and maintainer lines, diversification of cytoplasm, and incorporation of biotic and abiotic stress resistances. The recent progress in genomics research could accelerate the existing traditional efforts to strengthen the hybrid breeding technology. Marker based seed purity assessment, identification of heterotic groups; selection of new fertility restorers are few areas which have already been initiated. In this paper efforts have been made to identify critical areas and opportunities where genomics can play a leading role and assist breeders in accelerating various activities related to breeding and commercialization of pigeonpea hybrids.

  6. The bald and the beautiful: hairlessness in domestic dog breeds

    Science.gov (United States)

    Harris, Alexander; Dreger, Dayna L.; Davis, Brian W.; Ostrander, Elaine A.

    2017-01-01

    An extraordinary amount of genomic variation is contained within the chromosomes of domestic dogs, manifesting as dramatic differences in morphology, behaviour and disease susceptibility. Morphology, in particular, has been a topic of enormous interest as biologists struggle to understand the small window of dog domestication from wolves, and the division of dogs into pure breeding, closed populations termed breeds. Many traits related to morphology, including body size, leg length and skull shape, have been under selection as part of the standard descriptions for the nearly 400 breeds recognized worldwide. Just as important, however, are the minor traits that have undergone selection by fanciers and breeders to define dogs of a particular appearance, such as tail length, ear position, back arch and variation in fur (pelage) growth patterns. In this paper, we both review and present new data for traits associated with pelage including fur length, curl, growth, shedding and even the presence or absence of fur. Finally, we report the discovery of a new gene associated with the absence of coat in the American Hairless Terrier breed. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994129

  7. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  8. Marker-assisted selection in maize: current status, potential, limitations and perspectives from the private and public sectors

    International Nuclear Information System (INIS)

    Ragot, M.; Lee, M.

    2007-01-01

    More than twenty-five years after the advent of DNA markers, marker-assisted selection (MAS) has become a routine component of some private maize breeding programmes. Line conversion has been one of the most productive applications of MAS in maize breeding, reducing time to market and resulting in countless numbers of commercial products. Recently, applications of MAS for forward breeding have been shown to increase significantly the rate of genetic gain when compared with conventional breeding. Costs associated with MAS are still very high. Further improvements in marker technologies, data handling and analysis, phenotyping and nursery operations are needed to realize the full benefits of MAS for private maize breeding programmes and to allow the transfer of proven approaches and protocols to public breeding programmes in developing countries. (author)

  9. Breeding of cocksfoot cultivars with different maturity

    Directory of Open Access Journals (Sweden)

    Babić Snežana

    2017-01-01

    Full Text Available One of the most important criteria in breeding process of perennial grasses is maturity. Cultivars with different maturity play a very important role in utilization of perennial grasses, by providing the ability to create a mixture of different aspects utilization and time. The first grass species in Serbia whose breeding program involved this criterion was cocksfoot (Dactylis glomerata L.. In general cocksfoot is early to medium-early in maturity in comparison with other grasses and legumes, and that is mayor problem since in the optimum phase for cutting, cocksfoot is often earlier then other species in mixtures. As a result of this work, in the previous period, two cultivars of different maturity were released, Kruševačka 24 (K-24 and Kruševačka 25 (K-25. K-24 is medium and K-25 is late in maturity. New material is adapted to local agro-ecological conditions and productive in the same time. In breeding process of both cultivars initial material originated from autochthonous populations collected in eastern and central Serbia. Material from the wild flora is selected based on medium and late maturity which is already adapted and has good productivity. We applied the standard method of phenotypic recurrent selection with the creation of synthetic varieties by polycross.

  10. Protection of carniolan bee - preserve breed or race of honeybee?

    OpenAIRE

    Božič, Janko

    2015-01-01

    Slovenia protects authentic breed of carniolan bee based on zootechnical legislation. Different varieties of honeybee around the Earth are usually described with the term races and not breeds. Foundations for such nomenclature are in evolution of bee races with natural selection without considerable influence of the men. Acceptance of carniolan bee as a race determines environmental-protection approach in preservation of authentic carniolan bee population. Slovenia is locus typicus of the rac...

  11. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    Science.gov (United States)

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  12. Introduction to mutation breeding and genetic research of soybean in China

    International Nuclear Information System (INIS)

    Zhan Mingkui; Zhao Jingrong

    1988-01-01

    This paper summarized the achievements and developments in mutation breeding and genetic research of soybean. The optimal irradiation dosage was determined for 22 varieties of soybean which have been released and popularized so far. Analyses of mutants, mutant characters and mutation frequency in the generations of M 1 , M 2 and M 3 of soybean were carried out and a procedure of mutation breeding was described. Discussion of the effect of different radiant agents, the selection of progeny induced by radiation, the breeding method by combining mutation with hybridization and resistant varieties with good quality ones have been conducted

  13. Decision analysis for conservation breeding: Maximizing production for reintroduction of whooping cranes

    Science.gov (United States)

    Smith, Des H.V.; Converse, Sarah J.; Gibson, Keith; Moehrenschlager, Axel; Link, William A.; Olsen, Glenn H.; Maguire, Kelly

    2011-01-01

    Captive breeding is key to management of severely endangered species, but maximizing captive production can be challenging because of poor knowledge of species breeding biology and the complexity of evaluating different management options. In the face of uncertainty and complexity, decision-analytic approaches can be used to identify optimal management options for maximizing captive production. Building decision-analytic models requires iterations of model conception, data analysis, model building and evaluation, identification of remaining uncertainty, further research and monitoring to reduce uncertainty, and integration of new data into the model. We initiated such a process to maximize captive production of the whooping crane (Grus americana), the world's most endangered crane, which is managed through captive breeding and reintroduction. We collected 15 years of captive breeding data from 3 institutions and used Bayesian analysis and model selection to identify predictors of whooping crane hatching success. The strongest predictor, and that with clear management relevance, was incubation environment. The incubation period of whooping crane eggs is split across two environments: crane nests and artificial incubators. Although artificial incubators are useful for allowing breeding pairs to produce multiple clutches, our results indicate that crane incubation is most effective at promoting hatching success. Hatching probability increased the longer an egg spent in a crane nest, from 40% hatching probability for eggs receiving 1 day of crane incubation to 95% for those receiving 30 days (time incubated in each environment varied independently of total incubation period). Because birds will lay fewer eggs when they are incubating longer, a tradeoff exists between the number of clutches produced and egg hatching probability. We developed a decision-analytic model that estimated 16 to be the optimal number of days of crane incubation needed to maximize the number of

  14. Weather effects on avian breeding performance and implications of climate change

    Science.gov (United States)

    Skagen, Susan K.; Yackel Adams, Amy A.

    2012-01-01

    The influence of recent climate change on the world’s biota has manifested broadly, resulting in latitudinal range shifts, advancing dates of arrival of migrants and onset of breeding, and altered community relationships. Climate change elevates conservation concerns worldwide because it will likely exacerbate a broad range of identified threats to animal populations. In the past few decades, grassland birds have declined faster than other North American avifauna, largely due to habitat threats such as the intensification of agriculture. We examine the effects of local climatic variations on the breeding performance of a bird endemic to the shortgrass prairie, the Lark Bunting (Calamospiza melanocorys) and discuss the implications of our findings relative to future climate predictions. Clutch size, nest survival, and productivity all positively covaried with seasonal precipitation, yet relatively intense daily precipitation events temporarily depressed daily survival of nests. Nest survival was positively related to average temperatures during the breeding season. Declining summer precipitation may reduce the likelihood that Lark Buntings can maintain stable breeding populations in eastern Colorado although average temperature increases of up to 38C (within the range of this study) may ameliorate declines in survival expected with drier conditions. Historic climate variability in the Great Plains selects for a degree of vagility and opportunism rather than strong site fidelity and specific adaptation to local environments. These traits may lead to northerly shifts in distribution if climatic and habitat conditions become less favorable in the drying southern regions of the Great Plains. Distributional shifts in Lark Buntings could be constrained by future changes in land use, agricultural practices, or vegetative communities that result in further loss of shortgrass prairie habitats.

  15. Use of mutagenous factors in the breeding of vegetatively propagated plants

    International Nuclear Information System (INIS)

    Dryagina, I.V.; Fomenko, N.N.

    1978-01-01

    Given is a review of the literature and authors data on using mutagenous factors with different nature to breed some new and useful forms of plants reproduced vegetatively. The problem history and prospects of the practical application of the method are stated. In particular the data on ionizing radiation use in fruit crop selection to breed mutation forms (effect on buds, pollen, seeds etc.) are presented

  16. Slave Breeding

    OpenAIRE

    Sutch, Richard

    1986-01-01

    This paper reviews the historical work on slave breeding in the ante-bellum United States. Slave breeding consisted of interference in the sexual life of slaves by their owners with the intent and result of increasing the number of slave children born. The weight of evidence suggests that slave breeding occurred in sufficient force to raise the rate of growth of the American slave population despite evidence that only a minority of slave-owners engaged in such practices.

  17. Stronger sexual selection in warmer waters: the case of a sex role reversed pipefish.

    Directory of Open Access Journals (Sweden)

    Nuno M Monteiro

    Full Text Available In order to answer broader questions about sexual selection, one needs to measure selection on a wide array of phenotypic traits, simultaneously through space and time. Nevertheless, studies that simultaneously address temporal and spatial variation in reproduction are scarce. Here, we aimed to investigate the reproductive dynamics of a cold-water pipefish simultaneously through time (encompassing variation within each breeding cycle and as individuals grow and space (by contrasting populations experiencing distinct water temperature regimes in order to test hypothesized differences in sexual selection. Even though the sampled populations inhabited locations with very different water temperature regimes, they exhibited considerable similarities in reproductive parameters. The most striking was the existence of a well-defined substructure in reproductive activity, where larger individuals reproduce for longer periods, which seemed dependent on a high temperature threshold for breeding rather than on the low temperatures that vary heavily according to latitude. Furthermore, the perceived disparities among populations, such as size at first reproduction, female reproductive investment, or degree of sexual size dimorphism, seemed dependent on the interplay between seawater temperature and the operational sex ratio (OSR. Contrary to our expectations of an enhanced opportunity for sexual selection in the north, we found the opposite: higher female reproductive investment coupled with increased sexual size dimorphism in warmer waters, implying that a prolonged breeding season does not necessarily translate into reduced sexual selection pressure. In fact, if the limited sex has the ability to reproduce either continuously or recurrently during the entire breeding season, an increased opportunity for sexual selection might arise from the need to compete for available partners under strongly biased OSRs across protracted breeding seasons. A more general

  18. Genetic relationships between six eastern Pyrenean sheep breeds assessed using microsatellites

    Directory of Open Access Journals (Sweden)

    Ainhoa Ferrando

    2014-11-01

    Full Text Available The knowledge of the genetic composition and relationships among livestock breeds is a necessary step for the implementation of management and conservation plans. This study aims to characterise the genetic diversity and relationships among six sheep breeds of meat aptitude that are spread through the eastern Pyrenees: Tarasconnaise, Castillonnaise and Rouge du Roussillon from France, and Aranesa, Xisqueta and Ripollesa from Spain. All but Tarasconnaise are catalogued as endangered. These breeds do not share the same ancestral origin but commercial trades and gene flow between herds are known to have occurred for centuries. Additionally, two outgroup breeds were included: the Guirra, from a different geographical location, and the Lacaune, a highly selected breed of dairy aptitude. A total of 410 individuals were typed using a panel of 12 microsatellite markers. Statistical, phylogenetic and Bayesian analyses showed that eastern Pyrenean breeds retained high levels of genetic diversity and low, but significant, levels of genetic differentiation (FST = 4.1%. While outgroups were clearly differentiated from other breeds, Pyrenean breeds tended to form two clusters. The first encompassed Tarasconnaise and Aranesa, which probably descend from a common meta-population. The second tended to group the other four breeds. However, none reached high mean Q-values of membership to a discrete cluster. This is consistent with the recent past gene flow between breeds, despite different ancestral genetic origins. The genetic characterisation carried out of the eastern Pyrenean sheep populations provides useful information to support decision making on their conservation and focusing efforts and resources to more singular breeds.

  19. Selection dramatically reduces effective population size in HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Mittler John E

    2008-05-01

    Full Text Available Abstract Background In HIV-1 evolution, a 100–100,000 fold discrepancy between census size and effective population size (Ne has been noted. Although it is well known that selection can reduce Ne, high in vivo mutation and recombination rates complicate attempts to quantify the effects of selection on HIV-1 effective size. Results We use the inbreeding coefficient and the variance in allele frequency at a linked neutral locus to estimate the reduction in Ne due to selection in the presence of mutation and recombination. With biologically realistic mutation rates, the reduction in Ne due to selection is determined by the strength of selection, i.e., the stronger the selection, the greater the reduction. However, the dependence of Ne on selection can break down if recombination rates are very high (e.g., r ≥ 0.1. With biologically likely recombination rates, our model suggests that recurrent selective sweeps similar to those observed in vivo can reduce within-host HIV-1 effective population sizes by a factor of 300 or more. Conclusion Although other factors, such as unequal viral reproduction rates and limited migration between tissue compartments contribute to reductions in Ne, our model suggests that recurrent selection plays a significant role in reducing HIV-1 effective population sizes in vivo.

  20. Development of a genetic tool for product regulation in the diverse British pig breed market

    Directory of Open Access Journals (Sweden)

    Wilkinson Samantha

    2012-11-01

    Full Text Available Abstract Background The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. Results The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. Conclusion The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.

  1. Development of a genetic tool for product regulation in the diverse British pig breed market.

    Science.gov (United States)

    Wilkinson, Samantha; Archibald, Alan L; Haley, Chris S; Megens, Hendrik-Jan; Crooijmans, Richard P M A; Groenen, Martien A M; Wiener, Pamela; Ogden, Rob

    2012-11-15

    The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom. The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average FST of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity. The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.

  2. Willet M. Hays, great benefactor to plant breeding and the founder of our association.

    Science.gov (United States)

    Troyer, A F; Stoehr, H

    2003-01-01

    Willet M. Hays was a great benefactor to plant breeding and the founder of the American Genetic Association (AGA). We commemorate the AGA's centennial. We mined university archives, U.S. Department of Agriculture (USDA) yearbooks, plant breeding textbooks, scientific periodicals, and descendants for information. Willet Hays first recognized the individual plant as the unit of selection and started systematic pure-line selection and progeny tests in 1888. He developed useful plant breeding methods. He selected superior flax (Linum usitatissimum L.), wheat (Triticum vulgare L.), corn (Zea mays L.), barley (Hordeum vulgare L.), and oat (Avena sativa L.) varieties, and discovered Grimm alfalfa (Medicago sativa L.); all became commercially important. He initiated branch stations for better performance testing. Willet Hays befriended colleagues in other universities, in federal stations, in a London conference, and in Europe. He gathered and spread the scientific plant breeding gospel. He also improved rural roads and initiated animal breeding records and agricultural economics records. He started the AGA in 1903, serving as secretary for 10 years. He became assistant secretary of agriculture in 1904. He introduced the project system for agricultural research. He authored or coauthored the Nelson Amendment, the Smith-Lever Act, the Smith-Hughes Act, and the protocol leading to the United Nations Food and Agriculture Organization-all involved teaching agricultural practices that improved the world.

  3. Breeding seasons, molt patterns, and gender and age criteria for selected northeastern Costa Rican resident landbirds

    Science.gov (United States)

    Jared D. Wolfe; Peter Pyle; C. John. Ralph

    2009-01-01

    Detailed accounts of molt and breeding cycles remain elusive for the majority of resident tropical bird species. We used data derived from a museum review and 12 years of banding data to infer breeding seasonality, molt patterns, and age and gender criteria for 27 common landbird species in northeastern Costa Rica. Prealternate molts appear to be rare, only occurring...

  4. Impact of Molecular Technologies on Faba Bean (Vicia faba L. Breeding Strategies

    Directory of Open Access Journals (Sweden)

    Tao Yang

    2012-07-01

    Full Text Available Faba bean (Vicia faba L. is a major food and feed legume because of the high nutritional value of its seeds. The main objectives of faba bean breeding are to improve yield, disease resistance, abiotic stress tolerance, seed quality and other agronomic traits. The partial cross-pollinated nature of faba bean introduces both challenges and opportunities for population development and breeding. Breeding methods that are applicable to self-pollinated crops or open-pollinated crops are not highly suitable for faba bean. However, traditional breeding methods such as recurrent mass selection have been established in faba bean and used successfully in breeding for resistance to diseases. Molecular breeding strategies that integrate the latest innovations in genetics and genomics with traditional breeding strategies have many potential applications for future faba bean cultivar development. Hence, considerable efforts have been undertaken in identifying molecular markers, enriching genetic and genomic resources using high-throughput sequencing technologies and improving genetic transformation techniques in faba bean. However, the impact of research on practical faba bean breeding and cultivar release to farmers has been limited due to disconnects between research and breeding objectives and the high costs of research and implementation. The situation with faba bean is similar to other small crops and highlights the need for coordinated, collaborative research programs that interact closely with commercially focused breeding programs to ensure that technologies are implemented effectively.

  5. Effects of spring conditions on breeding propensity of Greater Snow Goose females

    Directory of Open Access Journals (Sweden)

    Reed, E. T.

    2004-06-01

    Full Text Available Breeding propensity, defined as the probability that a sexually mature adult will breed in a given year, is an important determinant of annual productivity. It is also one of the least known demographic parameters in vertebrates. We studied the relationship between breeding propensity and conditions on spring staging areas (a spring conservation hunt and the breeding grounds (spring snow cover in Greater Snow Geese (Chen caerulescens atlantica, a long distance migrant that breeds in the High Arctic. We combined information from mark–recapture, telemetry, and nest survey data to estimate breeding propensity over a 7– year period. True temporal variation in breeding propensity was considerable (mean: 0.574 [95% CI considering only process variation: 0.13 to 1.0]. Spring snow cover was negatively related to breeding propensity (bsnow=-2,05 ± 0,96 SE and tended to be reduced in years with a spring hunt (b = -0,78 ± 0,35. Nest densities on the breeding colony and fall ratios of young:adults were good indices of annual variation in breeding propensity, with nest densities being slightly more precise. These results suggest that conditions encountered during the pre-breeding period can have a significant impact on productivity of Arctic-nesting birds

  6. Strategy for larch breeding in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Eysteinsson, T. [Iceland Forest Service, Egilsstadir (Iceland)

    1995-12-31

    An accelerated breeding program for Siberian larch was initiated in Iceland in 1992. Siberian larch is an important exotic species, but not fully adapted to Icelandic conditions. Selections are made based on adaptive traits such as growth rhythm and resistance to damage as well as form and growth rate. Seed will be produced in containerised, greenhouse orchards, necessitating selection for fecundity to best use expensive greenhouse space. Research will concentrate on developing flower induction treatments for Siberian larch and ways to maximize seed production and viability. 19 refs

  7. Strategy for larch breeding in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    Eysteinsson, T [Iceland Forest Service, Egilsstadir (Iceland)

    1996-12-31

    An accelerated breeding program for Siberian larch was initiated in Iceland in 1992. Siberian larch is an important exotic species, but not fully adapted to Icelandic conditions. Selections are made based on adaptive traits such as growth rhythm and resistance to damage as well as form and growth rate. Seed will be produced in containerised, greenhouse orchards, necessitating selection for fecundity to best use expensive greenhouse space. Research will concentrate on developing flower induction treatments for Siberian larch and ways to maximize seed production and viability. 19 refs

  8. Use of genetic resources and partial resistances for apple breeding

    OpenAIRE

    Kellerhals, Markus; Duffy, Brion

    2006-01-01

    Modern apple breeding strategies are mainly considering the most advanced selections and culti-vars as parents. This tends to lead to a narrowed genetic basis. The introgression of traditional va-rieties and accessions of the gene pool is often feared due to undesirable characteristics that might be incorporated. However, there is scope for considering a wider genetic basis in apple breeding to support sustainable fruit production systems. The focus at Agroscope Changins-Wädenswil (ACW) is p...

  9. KASPTM genotyping technology and its use in gene­tic-breeding programs (a study of maize

    Directory of Open Access Journals (Sweden)

    Н. Е. Волкова

    2017-06-01

    Full Text Available Purpose. To review publications relating to the key point of the genotyping technology that is competitive allele-specific polymerase chain reaction (which is called now Kompetitive Allele Specific PCR, KASPTM and its use in various genetic-breeding researching (a study of maize. Results. The essence of KASP-genotyping, its advantages are highlighted. The requirements for matrix DNA are presented, since the success of the KASP-analysis depends on its qua­lity and quantity. Examples of global projects of plant breeding for increasing crop yields using the KASP genoty­ping technology are given. The results of KASP genotyping and their introduction into breeding and seed production, in particular, for determining genetic identity, genetic purity, origin check, marker-assisted selection, etc. are presented using maize as an example. It is demonstrated how geno­mic selection according to KASP genotyping technology can lead to rapid genetic enhancement of drought resistance in maize. Comparison of the effectiveness of creating lines with certain traits (for example, combination of high grain yield and drought resistance using traditional breeding approaches (phenotype selection and molecular genetic methods (selection by markers was proved that it takes four seasons (two years in case of greenhouses in order to unlock the potential of the plant genotype using traditional self-pollination, test-crossing and definitions, while using markers, the population was enriched with target alleles during one season. At the same time, there was no need for a stress factor. Conclusions. KASP genotyping technology is a high-precision and effective tool for modern genetics and breeding, which is successfully used to study genetic diversity, genetic relationship, population structure, gene­tic identity, genetic purity, origin check, quantitative locus mapping, allele mapping, marker-assisted selection, marker-assisted breeding. It is expedient and timely to

  10. Application of Genomic Technologies to the Breeding of Trees.

    Science.gov (United States)

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the

  11. Mutation breeding for crop improvement: a review

    International Nuclear Information System (INIS)

    Awan, M.A.

    1999-01-01

    More than 70 years have passed since radiation was used successfully to generate genetic variation in plants. Since the research on theoretical basis of mutagenesis was performed with a peak in the mid sixties. The result of these investigations led to the formulation of methodological principles in the use of various mutagens for the creation and selection of desired variability. The induced genetic variability has been extensively used for evolution of crop varieties as well as in breeding programmes. More than 1800 varieties of 154 plants species have so far been released for commercial cultivation, of which cereals are at the top, demonstrating the economics of the mutation breeding technique. The most frequently occurring mutations have been the short stature and really maturity. In Pakistan, the use of mutation breeding technique for the improvement of crops has also led to the development of 34 cultivars of cotton, rice, wheat, chickpea, mungbean and rapeseed which have played a significant role in increasing crop production in the country. In addition, a wealth of genetic variability has been developed for use in the cross breeding programmes, and the breeders in Pakistan have released six varieties of cotton by using an induced mutant as one of the parents. (author)

  12. POD NUMBER AND PHOTOSYNTHESIS AS PHYSIOLOGICAL SELECTION CRITERIA IN SOYBEAN (Glycine max L. Merrill BREEDING FOR HIGH YIELD

    Directory of Open Access Journals (Sweden)

    S.M. Sitompul

    2015-02-01

    Full Text Available Field studies were conducted in two years using 638 F2 and 1185 F3 lines of selected 16 F1 and 15 F2 parent lines (³80 pods plant-1 to evaluate pod number and CO2 exchange rate (CER as selection criteria. Pod and seed number, and seed weight of individual lines were observed during harvesting time, and CER of randomly selected 32 F2 and 30 F3 lines was measured at initial seed filling stage. The selection of F2 lines based on pod number to generate F3 lines increased the average of seed yield by 39%, and pod number by 77% in F3 lines compared with F2 lines. A close relationships was found between seed weight and pod or seed number per plant. Net CER responded sensitively to a reduction of light in a short-term and showed 78% of F2 lines and all F3 lines with maximum CER (Pmax³20 mmolCO2.m-2.s-1. The ratio of pod number per plant and Pmax varied between lines and were used to group lines resulting in close relationships between Pmax and pod number. It is concluded that the use of pod number and CER (Pmax as selection criteria offers an alternative approach in soybean breeding for high yield.

  13. Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs in the EU, 2008

    DEFF Research Database (Denmark)

    Bole-Hribovšek, Vojislava; Chriél, Mariann; Davies, Robert

    Union was 54 and 88, respectively. Salmonella Derby and Salmonella Typhimurium predominated in both types of holdings. Breeding pigs may be an important source of dissemination of Salmonella throughout the pig-production chain. The results of this survey provide valuable information for setting......Salmonella is a major cause of food-borne illness in humans. Farm animals and foods of animal origin are important sources of human Salmonella infections. This European Union-wide Salmonella baseline survey was conducted in 2008 in holdings with breeding pigs. A total of 1,609 holdings housing...... and selling mainly breeding pigs (breeding holdings) and 3,508 holdings housing breeding pigs and selling mainly pigs for fattening or slaughter (production holdings) from 24 European Union Member States and two non-Member States, were randomly selected and included in the survey. In each selected breeding...

  14. A simple language to script and simulate breeding schemes: the breeding scheme language

    Science.gov (United States)

    It is difficult for plant breeders to determine an optimal breeding strategy given that the problem involves many factors, such as target trait genetic architecture and breeding resource availability. There are many possible breeding schemes for each breeding program. Although simulation study may b...

  15. Selective breeding can increase resistance of Atlantic salmon to furunculosis, infectious salmon anaemia and infectious pancreatic necrosis

    DEFF Research Database (Denmark)

    Kjøglum, Sissel; Henryon, Mark; Aasmundstad, Torunn

    2008-01-01

    We reasoned that by challenging large numbers of Atlantic salmon families with the causative agents of furunculosis, infectious salmon anaemia (ISA) and infectious pancreatic necrosis (IPN), we could show unequivocally that resistance to these diseases expresses moderate-to-high levels of additive...... genetic variation, and that the resistances are weakly correlated genetically. We tested this reasoning by challenging Atlantic salmon from 920 (approximately) full-sib families with the causative agents of furunculosis and ISA, and fish from 265 of these families with the causative agent of IPN. Additive...... indicate that it should be relatively easy to improve resistance to the diseases simultaneously. We believe that there is now strong evidence that selectively breeding Atlantic salmon for resistance can be highly successful...

  16. Breeding implications resulting from classification of patellae luxation in dogs.

    Science.gov (United States)

    van Grevenhof, E M; Hazewinkel, H A W; Heuven, H C M

    2016-08-01

    Patellar luxation (PL) is one of the major hereditary orthopaedic abnormalities observed in a variety of dog breeds. When the patellae move sideways out of the trochlear groove, this is called PL. The PL score varies between dogs from normal to very severe. Reducing the prevalence of PL by breeding could prevent surgery, thereby improve welfare. Orthopaedic specialists differentiate between normal and loose patellae, where the patellae can be moved to the edge of the trochlear groove, considering scoring loose patellae as normal in the future. Loose patellae are considered acceptable for breeding so far by the breeding organization. The aim of this study was to analyse the genetic background of PL to decide on the importance of loose patellae when breeding for healthy dogs. Data are available from two dog breeds, that is Flat-coated Retrievers (n = 3808) and Kooiker dogs (n = 794), with a total of 4602 dogs. Results show that loose patellae indicate that dogs are genetically more susceptible to develop PL because family members of the dogs with loose patellae showed more severe PL. In addition, the estimated breeding values for dogs with loose patellae indicate that breeding values of dogs with loose patellae were worse than breeding values obtained for dogs with a normal score. Given these results, it is advised to orthopaedic specialists to continue to score loose patellae as a separate class and to dog breeders to minimize the use of dogs in breeding with a genetically higher susceptibility for PL. © 2015 Blackwell Verlag GmbH.

  17. Li2O-pebble type tritium breeding blanket for fusion experimental reactor, 1

    International Nuclear Information System (INIS)

    Tone, Tatsuzo; Iida, Hiromasa; Tanaka, Yoshihisa

    1984-01-01

    The fusion experimental reactor is the next stage device in Japan, which is planned to be constructed following the critical plasma experimental device JT-60 being constructed at present. The breeding blanket installed in nuclear fusion reactors is one of most important structures, and it is required to satisfy the fundamental performance of producing and continuously recovering tritium as the nuclear fusion fuel, and other requirement in good coordination. The Li 2 O pebble type breeding blanket that Kawasaki Heavy Industries Ltd. has examined is the concept for resolving the problems of the mass transfer and thermal stress cracking of Li 2 O, which are important in blanket design. In this paper, the concept and characteristics of this breeding blanket are discussed from the viewpoint of the breeding and continuous recovery of tritium, the ease of manufacture and the maintenance of soundness. The breeding blanket is composed of breeding region, tritium purge region, cooling region, plasma stabilizing conductors and blanket container. Li 2 O is excellent in its tritium breeding performance and heat conductivity. The functions required for the breeding blanket, the fundamental structure, the examples of breeding blanket concept, the selection of breeding blanket concept, the characteristics of Li 2 O pebble type blanket and its future prospect are described. (Kako, I.)

  18. To breed or not to breed: a seabird's response to extreme climatic events

    OpenAIRE

    Cubaynes, Sarah; Doherty, Paul F.; Schreiber, E. A.; Gimenez, Olivier

    2010-01-01

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), usin...

  19. Induced mutations in pomoid trees breeding

    International Nuclear Information System (INIS)

    Hamed, Faysal

    1986-01-01

    Induction of mutations in fruit trees by ionizing radiation complements a cross-breeding program. The objectives are: 1) the improvements of methods of induction, identification and selection of useful mutations, and 2) the initiation of useful mutations either for immediate use as improved cultivars or as a parent material for conventional cross-breeding. The induction of mutants in pomoid fruits, with special emphasis on apple, was realized by gamma-ray treatment of dormant scions subsequently propagated on a rootstoch in the nursery. The aim was to obtain compacts, presuming the feasibility of selecting compact shoots formed by the irradiated scions in the first vegetative generation and also assuming that chance of finding (e.g. fruit mutants) would be thus increased rather than lessened. Selection was carried out on one-season old shoots, formed on the same material for two or three seasons, by using a cut-back at the end of the first and second season. The procedure was highly effective. Moderate exposures, resulting in 60% survival gave high mutation frequencies. Buds 6-10 on the primary shoot gave higher frequencies of recognizable mutations than either buds 1-5 or 11-15. Preliminary results seem to indicate that, at least in some apple cultivars, there is opportunity to obtain compact growth types with good biological characteristics. 8 refs. (author)

  20. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations.

    Science.gov (United States)

    Wang, D; Salah El-Basyoni, I; Stephen Baenziger, P; Crossa, J; Eskridge, K M; Dweikat, I

    2012-11-01

    Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping, for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant potential in using non-additive genetic effects for genomic selection in crop breeding practices.

  1. The basic concept of honey bee breeding programs

    NARCIS (Netherlands)

    Uzunov, A.; Brascamp, Pim; Büchler, R.

    2017-01-01

    Selective honey bee breeding is a phenomenon that fascinates beekeepers around the world. They often regard it as one of the most enigmatic and complex aspects of beekeeping. Indeed, according to our experiences participating in many international projects, both beekeepers and bee experts without a

  2. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G T [Universita della Tuscia, Viterbo (Italy); D' Amato, F [Dipartimento di Biologia delle Piante Agrarie, Universita di Pisa (Italy); Avanzi, S [Dipartimento di Botanica, Universita di Pisa (Italy); and others

    1993-12-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  3. Mutation breeding for durum wheat (Triticum turgidum ssp. durum Desf.) improvement in Italy

    International Nuclear Information System (INIS)

    Scarascia-Mugnozza, G.T.; D'Amato, F.; Avanzi, S.

    1993-01-01

    In view of the economic importance of durum wheat in Italy and in the Mediterranean and Near East Region much effort was devoted to its genetic improvement. Lodging susceptibility and straw weakness, particularly under high fertilizer level, were the main reasons of substantially lower yields compared to bread wheat. An experimental mutagenesis programme was started in Italy in 1956 by F. D'Amato and G.T. Scarascia. It included both fundamental genetic studies and applied mutation breeding. Remarkable results were obtained at the 'Laboratorio Applicazioni in Agricoltura', Casaccia Nuclear Research Center, Roma, Italy, in radiobiology, radiogenetics, cytology and cytogenetics, genetics and breeding. Selection among some 1,000 induced mutants and hybridization led to 11 registered mutant varieties, six by the direct use of selected mutants and the remaining from cross-breeding. The economic benefits derived from the developed mutant cultivars are substantial. Mutant varieties have a great impact on durum wheat production, both in Italy and other countries like Bulgaria or Austria where Italian mutants have been used successfully in cross-breeding. (author)

  4. Persistence of accuracy of genomic estimated breeding values over generations in layer chickens

    Directory of Open Access Journals (Sweden)

    Fernando Rohan

    2011-06-01

    Full Text Available Abstract Background The predictive ability of genomic estimated breeding values (GEBV originates both from associations between high-density markers and QTL (Quantitative Trait Loci and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information. Methods The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation. Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability. Results Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values. In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding

  5. ANALYSIS OF THE STRATEGY OF BREEDING OF TOMATO WITH DGENES FOR MULTILEVEL NARROWSHELVE HYDROPONIC SYSTEM

    OpenAIRE

    I. T. Balashova; S. M. Sirota; E. G. Kozar

    2015-01-01

    Using the sporophyte selection accelerates in three times the breeding process of new tomato forms with dgenes for the multilevel narrow-shelve hydroponic technology. Analysis two breeding approaches is presented in this paper: the individual selection of recombinant forms from populations and the target hybridization. The target hybridization increases the productivity of the plant and the weight of one fruit in two times.

  6. Frequencies of genes for coat colour and horns in Nordic cattle breeds

    Directory of Open Access Journals (Sweden)

    Lien Sigbjørn

    2000-11-01

    Full Text Available Abstract Gene frequencies of coat colour and horn types were assessed in 22 Nordic cattle breeds in a project aimed at establishing genetic profiles of the breeds under study. The coat colour loci yielding information on genetic variation were: extension, agouti, spotting, brindle, dun dilution and colour sided. The polled locus was assessed for two alleles. A profound variation between breeds was observed in the frequencies of both colour and horn alleles, with the older breeds generally showing greater variation in observed colour, horn types and segregating alleles than the modern breeds. The correspondence between the present genetic distance matrix and previous molecular marker distance matrices was low (r = 0.08 – 0.12. The branching pattern of a neighbour-joining tree disagreed to some extent with the molecular data structure. The current data indicates that 70% of the total genetic variation could be explained by differences between the breeds, suggesting a much greater breed differentiation than typically found at protein and microsatellite loci. The marked differentiation of the cattle breeds and observed disagreements with the results from the previous molecular data in the topology of the phylogenetic trees are most likely a result of selection on phenotypic characters analysed in this study.

  7. Kin selection versus sexual selection: why the ends do not meet

    DEFF Research Database (Denmark)

    Boomsma, Jacobus J

    2007-01-01

    non-social and cooperative breeding. Sexually selected traits in eusocial lineages are therefore peculiar, and their evolution constrained. Indirect (inclusive) fitness benefits in cooperatively breeding vertebrates appear to be negatively correlated with promiscuity, corroborating that kin selection......I redevelop the hypothesis that lifetime monogamy is a fundamental condition for the evolution of eusocial lineages with permanent non-reproductive castes, and that later elaborations--such as multiply-mated queens and multi-queen colonies--arose without the re-mating promiscuity that characterizes...

  8. The progress of mutation breeding for ornamental plants in China

    International Nuclear Information System (INIS)

    Jin Shouming

    1994-02-01

    In China, research on mutation breeding of ornamental plants was begun in the late 70's. In the past decade, about 40 plant species were tested, and hundreds of useful mutants were obtained. At least 63 mutant varieties have been produced, approved and released for cultivation in rose, chrysanthemum, canna, dahlia, bougainvillea and lotus. A rapid progress in methodology and technology of induced mutation breeding has been achieved, particularly in the selection of starting material, determination of suitable exposure and irradiation dose, expression and isolation of somatic mutation etc. In the future it is necessary to develop more plant species and mutation varieties to improve the mutation breeding method and to raise the economic benefit. Along with the development of China's economy and improvement of people's living standard more and more new varieties of ornamental plants will be required. In view of the good beginning, rich germplasm resource and favorable conditions, the prospect of mutation breeding for ornamental plants in China is very encouraging

  9. Deterministic Simulation of Alternative Breeding Objectives and Schemes for Pure Bred Cattle in Kenya

    International Nuclear Information System (INIS)

    Kahi, A.K.

    2002-01-01

    Alternative breeding objectives and schemes for milk production were evaluated for their economic efficiency using deterministic simulation. A two-tier open nucleus breeding scheme and a young bull system (YBS) were assumed with intensive recording and 100% artificial insemination (AI) in the nucleus and 35% AI in the commercial population, which was assumed to comprise of the smallholder herds. Since most production systems are dual purpose, breeding objectives were defined, which represented different scenarios. These objectives represented the present (objective 1- dual purpose), smallholder (objective 2- dual purpose with limited mature live weight) and future production situations (objective 3- dual purpose with fat based milk price). Breeding objectives differed in the trials included and their economic values while the breeding schemes differed in records available for use as selection criteria as well as in the costs and investment parameters. since the main question for establishing a breeding and recording programme is that of efficiency of investment, the monetary genetic response and profit per cow in the population were used as evaluation criteria. All breeding objectives and schemes realized profits. The objectives and schemes that ranked highly for annual monetary genetic response and total return per cow did not rank the same in profit per cow in all cases. In objective 3, the scheme that assumed records on fat yield (FY) were available for use as selection criterion and that, which assumed no records on FY,differed very little in profit per cow (approximately 4%). Therefore, under the current production and marketing conditions, a breeding scheme that requires measuring of the fat content does not seem to be justified from an economic point of view. There is evidence that a well-organised breeding programme utilizing an open nucleus, a YBS and the smallholder farms as well as commercial population could sustain itself

  10. Improvement of non-key traits in radiata pine breeding programme when long-term economic importance is uncertain.

    Science.gov (United States)

    Li, Yongjun; Dungey, Heidi; Yanchuk, Alvin; Apiolaza, Luis A

    2017-01-01

    Diameter at breast height (DBH), wood density (DEN) and predicted modulus of elasticity (PME) are considered as 'key traits' (KT) in the improvement in radiata pine breeding programmes in New Zealand. Any other traits which are also of interest to radiata pine breeders and forest growers are called 'non-key traits' (NKTs). External resin bleeding (ERB), internal checking (IC), number of heartwood rings (NHR) are three such non-key traits which affect wood quality of radiata pine timber. Economic importance of the KTs and NKTs is hard to define in radiata pine breeding programmes due to long rotation period. Desired-gain index (DGIs) and robust selection were proposed to incorporate NKTs into radiata pine breeding programme in order to deal with the uncertainty of economic importance. Four desired-gain indices A-D were proposed in this study. The desired-gain index A (DGI-A) emphasized growth and led to small decrease in ERB and small increase in IC and NHR. The expected genetic gains of all traits in the desired-gain index B (DGI-B) were in the favourable directions (positive genetic gains in the key traits and negative genetic gains in the non-key traits). The desired-gain index C (DGI-C) placed emphasis on wood density, leading to favourable genetic gain in the NKTs but reduced genetic gains for DBH and PME. The desired-gain index D (DGI-D) exerted a bit more emphasis on the non-key traits, leading large favourable reduction in the non-key traits and lower increase in the key traits compared with the other DGIs. When selecting both the key traits and the non-key traits, the average EBVs of six traits were all in the same directions as the expected genetic gains except for DBH in the DGI-D. When the key traits were measured and selected, internal checking always had a negative (favourable) genetic gain but ERB and NHR had unfavourable genetic gain in the most of time. After removing some individuals with high sensitivity to the change of economic weights, robust

  11. Improvement of non-key traits in radiata pine breeding programme when long-term economic importance is uncertain.

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    Full Text Available Diameter at breast height (DBH, wood density (DEN and predicted modulus of elasticity (PME are considered as 'key traits' (KT in the improvement in radiata pine breeding programmes in New Zealand. Any other traits which are also of interest to radiata pine breeders and forest growers are called 'non-key traits' (NKTs. External resin bleeding (ERB, internal checking (IC, number of heartwood rings (NHR are three such non-key traits which affect wood quality of radiata pine timber. Economic importance of the KTs and NKTs is hard to define in radiata pine breeding programmes due to long rotation period. Desired-gain index (DGIs and robust selection were proposed to incorporate NKTs into radiata pine breeding programme in order to deal with the uncertainty of economic importance. Four desired-gain indices A-D were proposed in this study. The desired-gain index A (DGI-A emphasized growth and led to small decrease in ERB and small increase in IC and NHR. The expected genetic gains of all traits in the desired-gain index B (DGI-B were in the favourable directions (positive genetic gains in the key traits and negative genetic gains in the non-key traits. The desired-gain index C (DGI-C placed emphasis on wood density, leading to favourable genetic gain in the NKTs but reduced genetic gains for DBH and PME. The desired-gain index D (DGI-D exerted a bit more emphasis on the non-key traits, leading large favourable reduction in the non-key traits and lower increase in the key traits compared with the other DGIs. When selecting both the key traits and the non-key traits, the average EBVs of six traits were all in the same directions as the expected genetic gains except for DBH in the DGI-D. When the key traits were measured and selected, internal checking always had a negative (favourable genetic gain but ERB and NHR had unfavourable genetic gain in the most of time. After removing some individuals with high sensitivity to the change of economic weights

  12. Relevance of test information in horse breeding

    NARCIS (Netherlands)

    Ducro, B.J.

    2011-01-01

    The aims of this study were 1) to determine the role of test results of young

    horses in selection for sport performance, 2) to assess the genetic diversity

    of a closed horse breed and 3) the consequences of inbreeding for male

    reproduction. The study was

  13. Studies on plant breeding and genetics by radiation application

    International Nuclear Information System (INIS)

    Kwon, S.H.; Chung, K.H.; Woon, J.L.; Oh, J.H.; Kim, J.R.; Chae, J.C.; Shin, I.C.

    1981-01-01

    This study was conducted to obtain appropriate breeding materials for mutation breeding by evaluation of the soybean germ plasm and to select promising mutants from the progenies of various irradiated populations. Some fundamental studies were carried out to cope with the problems of diseases, insect pests and physiological stresses relevant to local adaptability in soybean. Establishment of a useful technique for induced mutation in barley and some vegetatively propagated plants was also carried out. As results, promising 5 soybean lines were selected from 21 entries tested for productivity and local adaptability at the four different locations. They showed superior yield potential (over 3,000 kg/ha) to the present leading varieties. It is to be hoped that they will be released as new varieties, if they keep the same yield potential in advance tests next year

  14. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations

    Directory of Open Access Journals (Sweden)

    Magretha D. Pierce

    2018-05-01

    breed CNVR variation. Phylogenetic trees were drawn. CNVRs primarily clustered animals of the same breed type together. This study successfully identified, characterized, and analyzed 356 CNVRs within seven cattle breeds. CNVR correlations were evident, with many more correlations being present among the exotic Taurine breeds. CNVR genetic diversity of Sanga, Taurine and Composite breeds was ascertained with breed types exposed to similar selection pressures demonstrating analogous incidences of CNVRs.

  15. R and D activities on radiation induced mutation breeding

    International Nuclear Information System (INIS)

    Lapade, A.G.; Asencion, A.B.; Santos, I.S.; Grafia, A.O.; Veluz, AM.S.; Barrida, A.C.; Marbella, L.J.

    1996-01-01

    This paper summarizes the accomplishments, prospects and future plans of mutation breeding for crop improvement at the Philippine Nuclear Research Institute (PNRI). Mutation induction has become a proven way creating variation within a crop variety and inducing desired attributes that cannot be found in nature or have been lost during evolution. Several improved varieties with desirable traits were successfully developed through induced mutation breeding at our research institute. In rice, mutation breeding has resulted in the development of new varieties: (1) PARC 2, (2) Milagrosa mutant, (3) Bengawan mutant and (4) Azmil mutant. Mutation breeding in leguminous crops has led to the induction of an improved L 114 soybean mutant that is shorter that the original variety but yield about 40% more. Several PAEC mungbean varieties characterized with long pods that are non-shattering were also induced. In asexually propagated crops, an increase in yield and chlorophyll mutants were obtained in sweet potatos. Likewise, chlorophyll mutant which look-like 'ornamental bromeliads' and a mutant with reduced spines have been developed in pineapple Queen variety. At present, we have started a new project in mutation breeding in ornamentals. Tissue culture is being utilized in our mutation breeding program. In the near future, radiation induced mutagenesis coupled with in vitro culture techniques on protoplast culture and somatic hybridization will be integrated into our mutation breeding program to facilitate the production of new crop varieties. (author)

  16. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.

    Science.gov (United States)

    Franklin, Oskar; Palmroth, Sari; Näsholm, Torgny

    2014-11-01

    Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity. © The Author 2014. Published by Oxford University Press. All rights reserved

  17. Evaluation of the sustainability of contrasted pig farming systems: breeding programmes.

    Science.gov (United States)

    Rydhmer, L; Gourdine, J L; de Greef, K; Bonneau, M

    2014-12-01

    The sustainability of breeding activities in 15 pig farming systems in five European countries was evaluated. One conventional and two differentiated systems per country were studied. The Conventional systems were the standard systems in their countries. The differentiated systems were of three categories: Adapted Conventional with focus on animal welfare, meat quality or environment (five systems); Traditional with local breeds in small-scale production (three systems) and Organic (two systems). Data were collected with a questionnaire from nine breeding organisations providing animals and semen to the studied farming systems and from, on average, five farmers per farming system. The sustainability assessment of breeding activities was performed in four dimensions. The first dimension described whether the market for the product was well defined, and whether the breeding goal reflected the farming system and the farmers' demands. The second dimension described recording and selection procedures, together with genetic change in traits that were important in the system. The third dimension described genetic variation, both within and between pig breeds. The fourth dimension described the management of the breeding organisation, including communication, transparency, and technical and human resources. The results show substantial differences in the sustainability of breeding activities, both between farming systems within the same category and between different categories of farming systems. The breeding activities are assessed to be more sustainable for conventional systems than for differentiated systems in three of the four dimensions. In most differentiated farming systems, breeding goals are not related to the system, as these systems use the same genetic material as conventional systems. The breeds used in Traditional farming systems are important for genetic biodiversity, but the small scale of these systems renders them vulnerable. It is hoped that, by

  18. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  19. Characters analysis of genetic improvement at the males population from Romanian Mioritic Shepherd Dog breed

    OpenAIRE

    Dorel Dronca; Nicolae Pacala; Lavinia Stef; Ioan Pet; Ioan Bencsik; Marian Bura; Gabi Dumitrescu; Eliza Simiz; Marioara Nicula; Adela Marcu; Liliana Ciochina Petculescu; Mirela Ahmadi

    2017-01-01

    The aim of this paper was to analyze, within a group of 26 males from Romanian Mioritic Shepherd Dog breed, 13 characters of genetically improved, characters stipulated in, „Selection sheet and body measurements for Romanian shepherds".The animals were registered with the Romanian Mioritic Association Club fromRomania.  Romanian Mioritic Shepherd Dog, was selected from a natural population breed inCarpathian Mountains. In order to develop a genetic improvement program at this effective of 26 ...

  20. Traditional llama husbandry and breeding management in the Ayopaya region, Bolivia.

    Science.gov (United States)

    Markemann, A; Valle Zárate, A

    2010-01-01

    The llama claims the largest population of the domestic South American camelids, most of which are raised in Bolivia. More than 53,000 rural families are dedicated to llama husbandry as part of their livelihood strategy. Contemporary Andean societies deliberately select animals for specific traits and employ substantial livestock management to secure subsistence. This study presents traditional llama husbandry and breeding management activities in the Ayopaya region, Bolivia. Traditional selection traits for male and female llamas are documented and assessed by a ranking and a ratio-scaled evaluation. Husbandry and management parameters are in concordance with other studies conducted in the region, but show a high variation. Average llama herd sizes are rather small (mu = 45.6). In some herds, breeding males are utilized for a long time and mix with other herds, causing concerns about inbreeding. Preferred trait groups for llama males according to farmers' responses were body conformation, fibre, testicle conformation, fleece colour and height at withers. Traditional selection criteria generally relate to the phenotype, but also include the commercially interesting fibre trait. The presented results should be considered in breeding and management programmes for the respective llama population to ensure sustainable use of this genetically and culturally valuable resource.

  1. Selectie tegen gevoeligheid voor scrapie met behoud van genetische variatie = Selection against scrapie susceptibility while maintaining within breed genetic variation

    NARCIS (Netherlands)

    Windig, J.J.; Hoving, A.H.

    2009-01-01

    National legislation to breed for scrapie resistence was changed in 2007. The obligatory use of ARR/ARR rams was suspended in that year. Breeding for scrapie resistance is, however, still stimulated and not suspended. In this report a general advice on how to continue breeding for scrapie resistance

  2. Textbook animal breeding : animal breeding andgenetics for BSc students

    NARCIS (Netherlands)

    Oldenbroek, Kor; Waaij, van der Liesbeth

    2014-01-01

    This textbook contains teaching material on animal breeding and genetics for BSc students. The text book started as an initiative of the Dutch Universities for Applied (Agricultural) Sciences. The textbook is made available by the Animal Breeding and Genomics Centre (ABGC) of Wageningen UR

  3. Bateman's principle is reversed in a cooperatively breeding bird.

    Science.gov (United States)

    Apakupakul, Kathleen; Rubenstein, Dustin R

    2015-04-01

    Bateman's principle is not only used to explain sex differences in mating behaviour, but also to determine which sex has the greater opportunity for sexual selection. It predicts that the relationship between the number of mates and the number of offspring produced should be stronger for males than for females. Yet, it is unclear whether Bateman's principle holds in cooperatively breeding systems where the strength of selection on traits used in intrasexual competition is high in both sexes. We tested Bateman's principle in the cooperatively breeding superb starling (Lamprotornis superbus), finding that only females showed a significant, positive Bateman gradient. We also found that the opportunity for selection was on average higher in females, but that its strength and direction oscillated through time. These data are consistent with the hypothesis that sexual selection underlies the female trait elaboration observed in superb starlings and other cooperative breeders. Even though the Bateman gradient was steeper for females than for males, the year-to-year oscillation in the strength and direction of the opportunity for selection likely explains why cooperative breeders do not exhibit sexual role reversal. Thus, Bateman's principle may not hold in cooperative breeders where both sexes appear to be under mutually strong sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Tritium breeding in fusion reactors

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements

  5. Collaborative Plant Breeding for Organic Agricultural Systems in Developed Countries

    Directory of Open Access Journals (Sweden)

    Isabelle Goldringer

    2011-08-01

    Full Text Available Because organic systems present complex environmental stress, plant breeders may either target very focused regions for different varieties, or create heterogeneous populations which can then evolve specific adaptation through on-farm cultivation and selection. This often leads to participatory plant breeding (PPB strategies which take advantage of the specific knowledge of farmers. Participatory selection requires increased commitment and engagement on the part of the farmers and researchers. Projects may begin as researcher initiatives with farmer participation or farmer initiatives with researcher participation and over time evolve into true collaborations. These projects are difficult to plan in advance because by nature they change to respond to the priorities and interests of the collaborators. Projects need to provide relevant information and analysis in a time-frame that is meaningful for farmers, while remaining scientifically rigorous and innovative. This paper presents two specific studies: the first was a researcher-designed experiment that assessed the potential adaptation of landraces to organic systems through on-farm cultivation and farmer selection. The second is a farmer-led plant breeding project to select bread wheat for organic systems in France. Over the course of these two projects, many discussions among farmers, researchers and farmers associations led to the development of methods that fit the objectives of those involved. This type of project is no longer researcher-led or farmer-led but instead an equal collaboration. Results from the two research projects and the strategy developed for an ongoing collaborative plant breeding project are discussed.

  6. Effects of selection for cooperation and attention in dogs

    Directory of Open Access Journals (Sweden)

    Miklósi Ádám

    2009-07-01

    Full Text Available Abstract Background It has been suggested that the functional similarities in the socio-cognitive behaviour of dogs and humans emerged as a consequence of comparable environmental selection pressures. Here we use a novel approach to account for the facilitating effect of domestication in dogs and reveal that selection for two factors under genetic influence (visual cooperation and focused attention may have led independently to increased comprehension of human communicational cues. Method In Study 1, we observed the performance of three groups of dogs in utilizing the human pointing gesture in a two-way object choice test. We compared breeds selected to work while visually separated from human partners (N = 30, 21 breeds, clustered as independent worker group, with those selected to work in close cooperation and continuous visual contact with human partners (N = 30, 22 breeds, clustered as cooperative worker group, and with a group of mongrels (N = 30. Secondly, it has been reported that, in dogs, selective breeding to produce an abnormal shortening of the skull is associated with a more pronounced area centralis (location of greatest visual acuity. In Study 2, breeds with high cephalic index and more frontally placed eyes (brachycephalic breeds, N = 25, 14 breeds were compared with breeds with low cephalic index and laterally placed eyes (dolichocephalic breeds, N = 25, 14 breeds. Results In Study 1, cooperative workers were significantly more successful in utilizing the human pointing gesture than both the independent workers and the mongrels. In study 2, we found that brachycephalic dogs performed significantly better than dolichocephalic breeds. Discussion After controlling for environmental factors, we have provided evidence that at least two independent phenotypic traits with certain genetic variability affect the ability of dogs to rely on human visual cues. This finding should caution researchers against making simple generalizations

  7. Evolution of the genetic variability of eight French dairy cattle breeds assessed by pedigree analysis.

    Science.gov (United States)

    Danchin-Burge, C; Leroy, G; Brochard, M; Moureaux, S; Verrier, E

    2012-06-01

    A pedigree analysis was performed on eight French dairy cattle breeds to assess their change in genetic variability since a first analysis completed in 1996. The Holstein, Normande and Montbéliarde breeds are selected internationally with over hundreds of thousands cows registered in the performance recording system. Three breeds are internationally selected but with limited numbers of cows in France (Brown Swiss, French Simmental and French Red Pied). The last two remaining breeds (Abondance and Tarentaise) are raised at regional level. The effective numbers of ancestors of cows born between 2004 and 2007 varied between 15 (Abondance and Tarentaise) and 51 (French Red Pied). The effective population sizes (classical approach) varied between 53 (Abondance) and 197 (French Red Pied). This article also compares the genetic variability of the ex situ (collections of the French National Cryobank) and in situ populations. The results were commented in regard to the recent history of gene flows in the different breeds as well as the existence of more or less stringent bottlenecks. Our results showed that whatever the size of the breeds, their genetic diversity impoverished quite rapidly since 1996 and they all could be considered as quite poor from a genetic diversity point of view. It shows the need for setting up cryobanks as gene reservoirs as well as sustainable breeding programmes that include loss of genetic diversity as an integrated control parameter. © 2011 Blackwell Verlag GmbH.

  8. [Genomic selection and its application].

    Science.gov (United States)

    Li, Heng-De; Bao, Zhen-Min; Sun, Xiao-Wen

    2011-12-01

    Selective breeding is very important in agricultural production and breeding value estimation is the core of selective breeding. With the development of genetic markers, especially high throughput genotyping technology, it becomes available to estimate breeding value at genome level, i.e. genomic selection (GS). In this review, the methods of GS was categorized into two groups: one is to predict genomic estimated breeding value (GEBV) based on the allele effect, such as least squares, random regression - best linear unbiased prediction (RR-BLUP), Bayes and principle component analysis, etc; the other is to predict GEBV with genetic relationship matrix, which constructs genetic relationship matrix via high throughput genetic markers and then predicts GEBV through linear mixed model, i.e. GBLUP. The basic principles of these methods were also introduced according to the above two classifications. Factors affecting GS accuracy include markers of type and density, length of haplotype, the size of reference population, the extent between marker-QTL and so on. Among the methods of GS, Bayes and GBLUP are usually more accurate than the others and least squares is the worst. GBLUP is time-efficient and can combine pedigree with genotypic information, hence it is superior to other methods. Although progress was made in GS, there are still some challenges, for examples, united breeding, long-term genetic gain with GS, and disentangling markers with and without contribution to the traits. GS has been applied in animal and plant breeding practice and also has the potential to predict genetic predisposition in humans and study evolutionary dynamics. GS, which is more precise than the traditional method, is a breakthrough at measuring genetic relationship. Therefore, GS will be a revolutionary event in the history of animal and plant breeding.

  9. Mutation breeding for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1977-01-01

    Wheat and broad-bean diseases cause considerable losses under Egyptian conditions; therefore, an attempt was made to induce useful mutations in both crops resistant to diseases which may be of direct or indirect use in breeding programmes. The methodology of artificial inoculation, evaluation, selection, radiation levels used are reported, in addition to the economic importance of the varieties used. This work passed through two phases, the first started in the 1972/73 crop season with a small population, while the second in 1974/75 with a larger one to have a better chance of detecting resistant mutants. In the first phase, a total of 3563M 1 wheat plants was grown in addition to approximately 3600-44,000M 2 and 77,646M 3 plants. Twenty-two M 2 plants were selected as showing lower level of leaf rust development, but further tests showed these plants are not true mutants since they rusted at the same level of their parent varieties. Out of the M 3 plants none showed good resistance. In the second phase, 36,000, 277,080 and 289,492 plants of M 1 , M 2 and M 3 , respectively, were grown and 73M 2 plants were selected as showing complete resistance to leaf and stem rusts. In field beans out of the first phase, a total of 5760, 37,200 and 33,240M 1 , M 2 and M 3 plants, respectively, was grown and none showed a good level of disease resistance although some were less diseased. These were further tested and proved not true mutants for reduced disease development. In the second phase, 8747, 203,520 and 90,285 plants of M 1 , M 2 and M 3 , respectively, were grown and 27M 2 plants were selected as showing a lower level of chocolate spot and rust development. The paper also discusses the use of single versus composite cultures in mutation breeding for disease resistance. (author)

  10. Mutation breeding of autotetraploid Achimenes cultivars

    International Nuclear Information System (INIS)

    Broertjes, C.

    1976-01-01

    Colchicine-induced autotetraploids of three Achimenes cultivars were irradiated with X-rays or fast neutrons. The results were compared, in one cultivar, with those of the irradiated diploid form. The mutation frequency after irradiation of the autotetraploid was a 20-40 fold higher as compared to the corresponding diploid. These results may open new possibilities for mutation breeding, though they are hard to explain. Several promising mutants were selected. (author)

  11. Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.

    Directory of Open Access Journals (Sweden)

    Masashi Soga

    Full Text Available Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches and landscape (amount of suitable habitat surrounding of focal patches factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.

  12. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    Science.gov (United States)

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  13. To breed or not to breed: a seabird's response to extreme climatic events.

    Science.gov (United States)

    Cubaynes, Sarah; Doherty, Paul F; Schreiber, E A; Gimenez, Olivier

    2011-04-23

    Intermittent breeding is an important life-history strategy that has rarely been quantified in the wild and for which drivers remain unclear. It may be the result of a trade-off between survival and reproduction, with individuals skipping breeding when breeding conditions are below a certain threshold. Heterogeneity in individual quality can also lead to heterogeneity in intermittent breeding. We modelled survival, recruitment and breeding probability of the red-footed booby (Sula sula), using a 19 year mark-recapture dataset involving more than 11,000 birds. We showed that skipping breeding was more likely in El-Niño years, correlated with an increase in the local sea surface temperature, supporting the hypothesis that it may be partly an adaptive strategy of birds to face the trade-off between survival and reproduction owing to environmental constraints. We also showed that the age-specific probability of first breeding attempt was synchronized among different age-classes and higher in El-Niño years. This result suggested that pre-breeders may benefit from lowered competition with experienced breeders in years of high skipping probabilities.

  14. Bateman's Principle in Cooperatively Breeding Vertebrates: The Effects of Non-breeding Alloparents on Variability in Female and Male Reproductive Success.

    Science.gov (United States)

    Hauber, Mark E; Lacey, Eileen A

    2005-11-01

    The sex-specific slopes of Bateman's gradients have important implications for understanding animal mating systems, including patterns of sexual selection and reproductive competition. Intersexual differences in the fitness benefits derived from mating with multiple partners are expected to yield distinct patterns of reproductive success for males and females, with variance in direct fitness predicted to be greater among males. These analyses assume that typically all adults are reproductive and that failure to produce offspring is non-adaptive. Among some species of cooperatively breeding birds and mammals, however, non-breeding adult alloparents are common and may comprise the majority of individuals in social groups. The presence of a large number of non-breeding adults, particularly when coupled with greater social suppression of reproduction among females, may alter the relative variance in direct fitness between the sexes, thereby generating an apparent contradiction to Bateman's Paradigm. To explore quantitatively the effects of non-breeding alloparents on variance in reproductive success, we used genetic estimates of parentage and reproductive success drawn from the literature to calculate the relative variability in direct fitness for females and males in alloparental and "other" societies of birds and mammals. Our analyses indicate that in mammals and, to a lesser extent, in birds, variability in direct fitness is greater among females in species characterized by the presence of non-breeding alloparents. These data suggest that social interactions, including social suppression of reproduction, are powerful determinants of individual direct fitness that may modify sex-specific patterns of reproductive variance from those described by Bateman.

  15. Mutation breeding for quality improvement a case study for oilseed crops

    International Nuclear Information System (INIS)

    Roebbelen, G.

    1990-01-01

    The effectiveness of mutation breeding depends on the nature of the genetic system in question, on the availability of efficient screening techniques and on an intelligent integration of the novel genetic variation into an appropriate breeding programme. Oil storage in seeds offer an outstanding example of a biosynthetic process, the end products of which are diverse and sufficiently flexible in their genetic control to allow for improvements of product quality such as economically desired. Sophisticated analytical methods have been developed during the recent decades to quantify relevant steps in seedoil storage even in early generations and in large numbers of small samples. Genetic selection for oilseed quality has been of low intensity in nature; but it has also been one-sided only durign the earlier decades of plant breeding because of the predominantly nutritional consumption of vegetable oils. Today an expanding array of new breeding goals for oleochemical and technical uses is developing. In addition, biotechnical innovations offer promising support to mutation breeding for the domestication or even construction of virtually new oilseed crops for application in both food and non-food uses. The purpose of this paper is to exemplify recent advances and to outline future prospects of mutation breeding for the improvement of oilseed quality. (author). 136 refs, 8 figs, 12 tabs

  16. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa).

    Science.gov (United States)

    Begum, Hasina; Spindel, Jennifer E; Lalusin, Antonio; Borromeo, Teresita; Gregorio, Glenn; Hernandez, Jose; Virk, Parminder; Collard, Bertrand; McCouch, Susan R

    2015-01-01

    Genome-wide association mapping studies (GWAS) are frequently used to detect QTL in diverse collections of crop germplasm, based on historic recombination events and linkage disequilibrium across the genome. Generally, diversity panels genotyped with high density SNP panels are utilized in order to assay a wide range of alleles and haplotypes and to monitor recombination breakpoints across the genome. By contrast, GWAS have not generally been performed in breeding populations. In this study we performed association mapping for 19 agronomic traits including yield and yield components in a breeding population of elite irrigated tropical rice breeding lines so that the results would be more directly applicable to breeding than those from a diversity panel. The population was genotyped with 71,710 SNPs using genotyping-by-sequencing (GBS), and GWAS performed with the explicit goal of expediting selection in the breeding program. Using this breeding panel we identified 52 QTL for 11 agronomic traits, including large effect QTLs for flowering time and grain length/grain width/grain-length-breadth ratio. We also identified haplotypes that can be used to select plants in our population for short stature (plant height), early flowering time, and high yield, and thus demonstrate the utility of association mapping in breeding populations for informing breeding decisions. We conclude by exploring how the newly identified significant SNPs and insights into the genetic architecture of these quantitative traits can be leveraged to build genomic-assisted selection models.

  17. The ecology of cooperative breeding behaviour.

    Science.gov (United States)

    Shen, Sheng-Feng; Emlen, Stephen T; Koenig, Walter D; Rubenstein, Dustin R

    2017-06-01

    Ecology is a fundamental driving force for the evolutionary transition from solitary living to breeding cooperatively in groups. However, the fact that both benign and harsh, as well as stable and fluctuating, environments can favour the evolution of cooperative breeding behaviour constitutes a paradox of environmental quality and sociality. Here, we propose a new model - the dual benefits framework - for resolving this paradox. Our framework distinguishes between two categories of grouping benefits - resource defence benefits that derive from group-defended critical resources and collective action benefits that result from social cooperation among group members - and uses insider-outsider conflict theory to simultaneously consider the interests of current group members (insiders) and potential joiners (outsiders) in determining optimal group size. We argue that the different grouping benefits realised from resource defence and collective action profoundly affect insider-outsider conflict resolution, resulting in predictable differences in the per capita productivity, stable group size, kin structure and stability of the social group. We also suggest that different types of environmental variation (spatial vs. temporal) select for societies that form because of the different grouping benefits, thus helping to resolve the paradox of why cooperative breeding evolves in such different types of environments. © 2017 John Wiley & Sons Ltd/CNRS.

  18. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice.

    Science.gov (United States)

    Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M

    2008-09-01

    Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.

  19. Extent of linkage disequilibrium and effective population size in four South African Sanga cattle breeds

    Directory of Open Access Journals (Sweden)

    Sithembile Olga Makina

    2015-12-01

    Full Text Available Knowledge on the extent of linkage disequilibrium (LD in livestock populations is essential to determine the minimum distance between markers required for effective coverage when conducting genome-wide association studies. This study evaluated the extent of LD, persistence of allelic phase and effective population size (Ne for four Sanga cattle breeds in South Africa including the Afrikaner (n=44, Nguni (n=54, Drakensberger (n=47 and Bonsmara breeds (n=46, using Angus (n=31 and Holstein (n=29 as reference populations. We found that moderate LD extends up to inter-marker distances of 40-60 kb in Angus (0.21 and Holstein (0.21 and up to 100 kb in Afrikaner (0.20. This suggests that genomic selection and association studies performed within these breeds using an average inter-marker r2 ≥ 0.20 would require about 30,000 -50,000 SNPs. However, r2 ≥ 0.20 extended only up to 10-20 kb in the Nguni and Drakensberger and 20-40 kb in the Bonsmara indicating that 75,000 to 150,000 SNPs would be necessary for genome-wide association studies in these breeds. Correlation between alleles at contiguous loci indicated that phase was not strongly preserved between breeds. This suggests the need for breed-specific reference populations in which a much greater density of markers should be scored to identify breed specific haplotypes which may then be imputed into multi-breed commercial populations. Analysis of effective population size based on the extent of LD, revealed Ne=95 (Nguni, Ne=87 (Drakensberger, Ne=77 (Bonsmara and Ne=41 (Afrikaner. Results of this study form the basis for implementation of genomic selection programs in the Sanga breeds of South Africa.

  20. Molecular evolution of the Bovini tribe (Bovidae, Bovinae: Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?

    Directory of Open Access Journals (Sweden)

    McCulloch Alan

    2009-04-01

    Full Text Available Abstract Background If mutation within the coding region of the genome is largely not adaptive, the ratio of nonsynonymous (dN to synonymous substitutions (dS per site (dN/dS should be approximately equal among closely related species. Furthermore, dN/dS in divergence between species should be equivalent to dN/dS in polymorphisms. This hypothesis is of particular interest in closely related members of the Bovini tribe, because domestication has promoted rapid phenotypic divergence through strong artificial selection of some species while others remain undomesticated. We examined a number of genes that may be involved in milk production in Domestic cattle and a number of their wild relatives for evidence that domestication had affected molecular evolution. Elevated rates of dN/dS were further queried to determine if they were the result of positive selection, low effective population size (Ne or reduced selective constraint. Results We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus and Mithan (Bos frontalis and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations. Conclusion The effect of selection depends on effective population size and the selection coefficient (Nes. Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the

  1. Helper contributions in the cooperatively breeding laughing kookaburra: feeding young is no laughing matter.

    Science.gov (United States)

    Legge

    2000-05-01

    I studied the contributions of individuals to incubation and nestling feeding in a population of cooperatively breeding laughing kookaburras, Dacelo novaeguineae. In most cooperatively breeding birds where nest success is limited by nestling starvation, related helpers increase the overall level of provisioning to the nest, thus boosting the production of nondescendent kin. However, although partial brood loss is the largest cause of lost productivity in kookaburra nests, additional helpers failed to increase overall provisioning. Instead, all group members, but especially helpers, reduced their feeding contributions as group size increased. Breeders and helpers reduced the size of prey delivered, and helpers also reduced the number of feeding visits. An important benefit of helping in kookaburras may be to allow all group members to reduce their effort. Within groups, contributions to care depended on status, sex, group size and the brood size. Breeding males delivered the most food. Breeding females provisioned less than their partner, but their effort was comparable to that of male helpers. Female helpers contributed the least food. Incubation effort followed similar patterns. The relatedness of helpers to the brood had no impact on their provisioning. Across all group sizes, helpers generally brought larger items to the nest than breeders. Copyright 2000 The Association for the Study of Animal Behaviour.

  2. Non-additive Effects in Genomic Selection

    Directory of Open Access Journals (Sweden)

    Luis Varona

    2018-03-01

    Full Text Available In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii they allow the definition of mate allocation procedures between candidates for selection; and (iii they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection.

  3. Mating strategy and breeding patterns of the foothill yellow-legged frog (Rana boylii)

    Science.gov (United States)

    Clara A. Wheeler; Hartwell H. Welsh Jr.

    2008-01-01

    The Foothill Yellow-legged Frog (Rana boylii) has declined across much of its native range in California. Improper stream management may lower egg mass survival and reduce the availability of suitable breeding habitats. We collected data during six breeding-seasons (2002-2007) along an unregulated stream in northwestern California. We monitored...

  4. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  5. Production systems of Creole goat and their implications for a breeding programme.

    Science.gov (United States)

    Gunia, M; Mandonnet, N; Arquet, R; de la Chevrotière, C; Naves, M; Mahieu, M; Alexandre, G

    2010-12-01

    The Creole goat is a local meat breed well adapted to the tropical environment of Guadeloupe, a French island in the Caribbean. A survey of 47 goat farmers was conducted in May 2008 to describe the Guadeloupean goat farming systems. It was the preliminary step for the implementation of a breeding programme for Creole goats. Farmers had 31 does on average. A small number (4%) kept only Creole goats. Most of them (62%) had a mixed herd of Creole and crossbreds. One-third of them (34%) reared only crossbred goats. Farmers appreciate the rusticity and resistance of the Creole goat but consider its growth as too slow. The most desired traits for goat selection were conformation and growth for males (77% of the answers). These traits were also important for females (30% of the answers). Maternal qualities were also frequently cited (maternal behaviour 23%, reproduction 20% and milk production 17%). Disease resistance was not seen as an important trait (10% and 7% of the answers for bucks and does, respectively). A typology constituted of five groups of farmers was also created. Farmers of three groups were retained to participate at a selection programme. They kept Creole goats and have expressed a strong willingness to join a selection programme. The results of the survey suggest that a breeding programme should mostly focus on the Creole goat as a maternal breed. Real consideration should be given to disease resistance. The Creole goat has indeed a key role to play in the sustainability of local farming systems.

  6. Blé Poitou”, beginning of a participatory project for co-breeding (wheat and legumes)

    OpenAIRE

    Serpolay-Besson , Estelle; Goldringer , Isabelle; Aubin , Thibaud

    2012-01-01

    A group of farmers of the Poitou region in France, already expert in on-farm maize population selection, would like to acquire the same know-how with wheat and legume in co-breeding. They asked INRA to build a participatory breeding project with them with this view. The first year was dedicated to the cultivation and common evaluation of several varieties on a platform. More than having learnt how to breed wheat, the farmers say they have learnt how to observe wheat and are now able to do on-...

  7. Holstein-Friesian milk performance in organic farming in North Spain: Comparison with other systems and breeds

    Directory of Open Access Journals (Sweden)

    Ruth Rodríguez-Bermúdez

    2017-04-01

    Full Text Available Organic systems are highly dependent on the environment and require animals well adapted to local conditions. In Spain, organic dairy farmers are not satisfied with the productive performance of their herds and ask for technical advice to obtain suitable animals for organic systems. The milk productive performance (milk yield, nutritional composition, and somatic cell count of Holstein-Friesian cows in organic farming in North Spain compared with conventional farms has been analysed. When breed diversity was present in the same organic farm, Holstein-Friesian milk performance was compared with other breeds and/or crosses. Holstein-Friesian cows in organic farming produce slightly less milk than grazing conventional cows, but milk was similar in composition and somatic cell count across systems. The limited data from organic farms where breed diversity exists indicate that Holstein-Friesian cows produce numerically more milk than other breeds and crosses but with statistically lower protein content. Considering that in Spain organic milk production is mostly used for liquid milk consumption and that the payment system is based only on milk volume, Holstein-Friesian cows would better fit the farmer interests than other breeds or crosses. However, in addition to productive performance, reproductive efficiency, animal health and consumer’s preferences should be fully considered when selecting a breed for organic production. If Holstein-Friesian was the selected breed, efforts should be made to identify cows within the breed that are best adapted to organic conditions. New productive, reproductive, nutritional and economic studies would be needed to develop a genetic merit index for organic systems.

  8. Thymus transplantation and disease prevention in the diabetes-prone Bio-Breeding rat

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Bellgrau, D.

    1989-01-01

    Bio-Breeding rat T lymphocytes proliferate poorly in response to alloantigen. Transplantation of Bio-Breeding rats with fetal thymus tissue from diabetes resistant rats leads to an improvement in the T cell proliferative response, but only if the thymus contains bone marrow-derived, radiation-resistant thymic antigen presenting cells of the diabetes-resistant phenotype. The current study provides evidence that thymus transplantation leading to the restoration of Bio-Breeding T cell proliferative function can also significantly reduce the incidence of insulitis and prevent the development of diabetes. It appears that a defect in the bone marrow-derived thymic APC population contributes to an abnormal maturation of Bio-Breeding T lymphocytes which in turn predisposes animals to insulitis and diabetic disease

  9. Limits to captive breeding of mammals in zoos.

    Science.gov (United States)

    Alroy, John

    2015-06-01

    Captive breeding of mammals in zoos is the last hope for many of the best-known endangered species and has succeeded in saving some from certain extinction. However, the number of managed species selected is relatively small and focused on large-bodied, charismatic mammals that are not necessarily under strong threat and not always good candidates for reintroduction into the wild. Two interrelated and more fundamental questions go unanswered: have the major breeding programs succeeded at the basic level of maintaining and expanding populations, and is there room to expand them? I used published counts of births and deaths from 1970 to 2011 to quantify rates of growth of 118 captive-bred mammalian populations. These rates did not vary with body mass, contrary to strong predictions made in the ecological literature. Most of the larger managed mammalian populations expanded consistently and very few programs failed. However, growth rates have declined dramatically. The decline was predicted by changes in the ratio of the number of individuals within programs to the number of mammal populations held in major zoos. Rates decreased as the ratio of individuals in programs to populations increased. In other words, most of the programs that could exist already do exist. It therefore appears that debates over the general need for captive-breeding programs and the best selection of species are moot. Only a concerted effort could create room to manage a substantially larger number of endangered mammals. © 2015, Society for Conservation Biology.

  10. Genetically influenced resistance to stress and disease in salmonids in relation to present-day breeding practice - a short review

    Directory of Open Access Journals (Sweden)

    Jan Mendel

    2018-01-01

    Full Text Available While intensive fish production has many advantages, it also has a number of drawbacks as regards disease and stress. To date, there has been no conclusive review of disease resistance at Czech fish farms. The aim of the study was to describe briefly the existing salmonid breeding practice in the Czech Republic and to point out the trends and new possibilities gaining ground around Europe. However, the present situation in the Czech stocks is not rare at all and therefore it is used here as a model example representing numerous breeding practices in Europe. Stress and disease resistance in fish is polygenic and quantitative, making selection for such traits difficult. In recent years, however, fish breeding methods have developed rapidly, with the use of genetic analysis tools, for example, now allowing much greater selection accuracy. Gradual progress in understanding the importance of individual genetic markers offers many new options that can be utilised in breeding practice. New selection methods, such as quantitative trait loci (QTLs and genomic selection, are increasingly employed in European aquaculture. Next generation sequencing techniques now help in the finding of new and promising QTLs that can be used in assisted selection. This review maps the current progress in improving salmonid resistance to stress and disease in aquaculture and at the same time provides the breeders with a short overview of the latest tools of genetically controlled breeding and of the newest products available at the European market.

  11. Selection decisions among reindeer herders in Finland

    Directory of Open Access Journals (Sweden)

    Kirsi Muuttoranta

    2011-04-01

    Full Text Available Selection of breeding animals is a tool to improve the revenues in animal production. Information about selection practices and criteria are essential in assessing the possibilities for systematic selection schemes. Attitudes of reindeer herders towards use of selection in improving production were investigated by means of interviews. We interviewed the managers of reindeer herding cooperatives concerning their selection decisions. Fortyfive out of 56 managers answered to the semi-structured questionnaire. Among herding operations, selection of breeding animals was regarded by managers as critical for calf’s autumn weight and survival. The main selection criteria were calf’s health, vigour, body size and muscularity, dam or dam line, and maternal care. Hair quality and hair length were important as well, while such often quoted traits as antler characteristics, e.g. early shedding of antler velvet and thick antler bases, were unimportant. The results show that reindeer herders i acknowledge the importance and effects of selective breeding, and ii have empirical knowledge to list the most important selection criteria.

  12. Agriculture modifies the seasonal decline of breeding success in a tropical wild bird population

    Science.gov (United States)

    Cartwright, Samantha J; Nicoll, Malcolm A C; Jones, Carl G; Tatayah, Vikash; Norris, Ken

    2014-01-01

    become worse over time. Our results suggest that forest restoration designed to reduce the detrimental impacts of agriculture on breeding may also help reduce the detrimental effects of breeding late due to wetter springs. Our results therefore highlight the importance of considering the interactive effects of environmental change when managing wild populations. PMID:25558086

  13. Multiple Breed Validation of Five QTL Affecting Mastitis Resistance

    DEFF Research Database (Denmark)

    Vilkki, Johanna; Dolezal, Marlies A; Sahana, Goutam

    to mastitis were identified by GWAS using high-density SNP array in the Finnish Ayrshire and Brown Swiss breeds. These targeted regions were analyzed for polymorphisms from 20X whole-genome sequences of 38 ancestral bulls of the two populations. A set of 384 SNPs were selected based on their ranking from...... (on BTA3, BTA6, BTA8, BTA19, and BTA27) agreed across the breeds, but no identical associated SNPs were detected. Higher power (imputation to bigger population samples) will be needed to confirm results. On BTA6 the results indicate several QTL within a 5 Mb region. The results provide a basis...

  14. IMPLEMENTATION OF DNA MARKERS TO IMPROVE BREEDING OF FORAGE LEGUMES

    Directory of Open Access Journals (Sweden)

    S. Grljušić

    2008-09-01

    Full Text Available The low rates of estimated genetic gains in forage legumes breeding have emphasized the need for new breeding methods that would increase efficiency in forage selection and provide reliable improvement. Information on application of molecular methodologies and tools for the enhancement of the current empirical phenotype-based selection moved us toward implementation of DNA markers to our breeding activities. Firstly, attention was given to identification of genetic variability within the forage species involved in program and comparison of conventional and molecular marker efficiency in variability evaluation. RAPDs were used (i to estimate availability of alfalfa (Medicago sativa L. and Medicago falcata L. genetic variation and (ii to identify changes of red clover (Trifolium pratense L. variability after natural selection. SSRs were applied to evaluate diversity within and among field pea (Pisum sativum L. var. arvense and sativum groups/varieties. A total of 90 (alfalfa or 92 (red clover polymorphic bands was found by RAPDs. Total number of SSR alleles recorded was 118. The average Roger's distance per species/genus estimated was 0.29 (red clover, 0.33 (alfalfa and 0.51 (field pea. 2D PCo analysis of each species/genus separated materials into respective groups. A high degree of genetic variation within populations/varieties of each investigated species was found by AMOVA. The correspondence between pairs of matrices based on the morphological and molecular data was significant (p=0.95 only for red clover. RAPD and SSR data have given valuable information on genetic structure of materials and provided a description that determines heterogeneity. Further studies will be focused on identifying quantitative trait loci and marker assisted selection.

  15. Rootstock breeding in Prunus species: Ongoing efforts and new challenges

    Directory of Open Access Journals (Sweden)

    Felipe Gainza

    2015-08-01

    Full Text Available The current global agricultural challenges imply the need to generate new technologies and farming systems. In this context, rootstocks are an essential component in modern agriculture. Most currently used are those clonally propagated and there are several ongoing efforts to develop this type of plant material. Despite this tendency, lesser number of rootstock breeding programs exists in comparison to the large number of breeding programs for scion cultivars. In the case of rootstocks, traits evaluated in new selection lines are quite different: From the agronomic standpoint vigor is a key issue in order to establish high-density orchards. Other important agronomic traits include compatibility with a wide spectrum of cultivars from different species, good tolerance to root hypoxia, water use efficiency, aptitude to extract or exclude certain soil nutrients, and tolerance to soil or water salinity. Biotic stresses are also important: Resistance/tolerance to pests and diseases, such as nematodes, soil-borne fungi, crown gall, bacterial canker, and several virus, viroids, and phytoplasms. In this sense, the creation of new rootstocks at Centro de Estudios Avanzados en Fruticultura (CEAF offers an alternative to stone fruit crop, particularly in Chile, where just a few alternatives are commercially available, and there are site-specific problems. The implementation of molecular markers in order to give support to the phenotypic evaluation of plant breeding has great potential assisting the selection of new genotypes of rootstocks. Marker-Assisted Selection (MAS can shorten the time required to obtain new cultivars and can make the process more cost-effective than selection based exclusively on phenotype, but more basic research is needed to well understood the molecular and physiological mechanisms behind the studied trait.

  16. [Investigation of Acaroid mites breeding in stored dry fruits].

    Science.gov (United States)

    Tao, Ning; Zhan, Xiao-dong; Sun, En-tao; Li, Chao-pin

    2015-12-01

    To study the species and density of Acaroid mites breeding in stored dry fruits. The samples from the dried fruit stores and warehouses were collected, and the mites breeding in them were separated, then the slides with mites were prepared and observed by a light microscope for species identification and counting. The indexes such as the breeding density, species richness index, diversity index and evenness index were calculated. Totally 12 species of Acaroid mites belonging to 6 families and 10 genera were obtained from the total 49 samples. The dominant mite species were Carpoglyphus lactis, Tyrophagus putrescentiae, Acarus siro, and Caloglyphus berlesei. The breeding densities of mites in longans, filberts and plum candies were 79.78, 48.91, 35.73 mites/g, respectively, which were higher than those in other dry fruits. The seasonal variation experiment of mites found that the average breeding density of acaroid mites was higher in July and October, the richness index and diversity index reached the highest value in July, and the evenness index was higher in January and April. The observation of the growth and decline of Acaroid mites under the artificial condition found the number of Caloglyphus berlesei declined sharply and Tyrophagus putrescentiae first increased and then decreased. The pollution of Acaroid mites is serious in the stored dried fruits, for which the positive prevention and control measures to the mite breeding should be taken to reduce the harm.

  17. Temporal variability and cooperative breeding: testing the bet-hedging hypothesis in the acorn woodpecker.

    Science.gov (United States)

    Koenig, Walter D; Walters, Eric L

    2015-10-07

    Cooperative breeding is generally considered an adaptation to ecological constraints on dispersal and independent breeding, usually due to limited breeding opportunities. Although benefits of cooperative breeding are typically thought of in terms of increased mean reproductive success, it has recently been proposed that this phenomenon may be a bet-hedging strategy that reduces variance in reproductive success (fecundity variance) in populations living in highly variable environments. We tested this hypothesis using long-term data on the polygynandrous acorn woodpecker (Melanerpes formicivorus). In general, fecundity variance decreased with increasing sociality, at least when controlling for annual variation in ecological conditions. Nonetheless, decreased fecundity variance was insufficient to compensate for reduced per capita reproductive success of larger, more social groups, which typically suffered lower estimated mean fitness. We did, however, find evidence that sociality in the form of larger group size resulted in increased fitness in years following a small acorn crop due to reduced fecundity variance. Bet-hedging, although not the factor driving sociality in general, may play a role in driving acorn woodpecker group living when acorns are scarce and ecological conditions are poor. © 2015 The Author(s).

  18. Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding

    International Nuclear Information System (INIS)

    Yamashita, Kiyonobu.

    1995-01-01

    The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)

  19. Progress In Breeding Diploid Genetic Stocks Of Banana With ...

    African Journals Online (AJOL)

    Selected genetically related diploid Musa materials of the base, first, and second generations of the breeding programme in the International Institute of Tropical Agriculture (IITA) high rainfall station, Onne were evaluated for black Sigatoka resistance and agronomic performance. This was done in order to assess the ...

  20. Breeding for Welfare in outdoor pig production : simulation study

    NARCIS (Netherlands)

    Gourdine, J.L.; Greef, de K.H.; Rydhmer, L.

    2010-01-01

    Despite the societal and market attention, to our knowledge, there is no breeding program for outdoor pig production in which improvement in animal welfare is emphasized. In this study, a dam-line selected for an outdoor production system was simulated. The purpose was to investigate the

  1. Accelerator molten-salt breeding and thorium fuel cycle

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Nakahara, Yasuaki; Kato, Yoshio; Ohno, Hideo; Mitachi, Kohshi.

    1990-01-01

    The recent efforts at the development of fission energy utilization have not been successful in establishing fully rational technology. A new philosophy should be established on the basis of the following three principles: (1) thorium utilization, (2) molten-salt fuel concept, and (3) separation of fissile-breeding and power-generating functions. Such philosophy is called 'Thorium Molten-Salt Nuclear Energy Synergetics [THORIMS-NES]'. The present report first addresses the establishment of 233 U breeding fuel cycle, focusing on major features of the Breeding and Chemical Processing Centers and a small molten-salt power station (called FUJI-II). The development of fissile producing breeders is discussed in relation to accelerator molten-salt breeder (AMSB), impact fusion molten-salt breeder, and inertial-confined fusion hybrid molten-salt breeder. Features of the accelerator molten-salt breeder are described, focusing on technical problems with accelerator breeders (or spallators), design principle of the accelerator molten-salt breeder, selection of molten salt compositions, and nuclear- and reactor-chemical aspects of AMSB. Discussion is also made of further research and development efforts required in the future for AMSB. (N.K.)

  2. Commonalities in Development of Pure Breeds and Population Isolates Revealed in the Genome of the Sardinian Fonni's Dog

    Science.gov (United States)

    Dreger, Dayna L.; Davis, Brian W.; Cocco, Raffaella; Sechi, Sara; Di Cerbo, Alessandro; Parker, Heidi G.; Polli, Michele; Marelli, Stefano P.; Crepaldi, Paola; Ostrander, Elaine A.

    2016-01-01

    The island inhabitants of Sardinia have long been a focus for studies of complex human traits due to their unique ancestral background and population isolation reflecting geographic and cultural restriction. Population isolates share decreased genomic diversity, increased linkage disequilibrium, and increased inbreeding coefficients. In many regions, dogs and humans have been exposed to the same natural and artificial forces of environment, growth, and migration. Distinct dog breeds have arisen through human-driven selection of characteristics to meet an ideal standard of appearance and function. The Fonni’s Dog, an endemic dog population on Sardinia, has not been subjected to an intensive system of artificial selection, but rather has developed alongside the human population of Sardinia, influenced by geographic isolation and unregulated selection based on its environmental adaptation and aptitude for owner-desired behaviors. Through analysis of 28 dog breeds, represented with whole-genome sequences from 13 dogs and ∼170,000 genome-wide single nucleotide variants from 155 dogs, we have produced a genomic illustration of the Fonni’s Dog. Genomic patterns confirm within-breed similarity, while population and demographic analyses provide spatial identity of Fonni’s Dog to other Mediterranean breeds. Investigation of admixture and fixation indices reveals insights into the involvement of Fonni’s Dogs in breed development throughout the Mediterranean. We describe how characteristics of population isolates are reflected in dog breeds that have undergone artificial selection, and are mirrored in the Fonni’s Dog through traditional isolating factors that affect human populations. Lastly, we show that the genetic history of Fonni’s Dog parallels demographic events in local human populations. PMID:27519604

  3. Species-environment associations and predicted distribution of Black Oystercatcher breeding pairs in Haida Gwaii, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Sebastian Dalgarno

    2017-12-01

    Full Text Available We present a species distribution model (SDM for prediction of Black Oystercatcher (Haematopus bachmani breeding pair occurrence in Haida Gwaii, British Columbia. Boosted regression trees, a machine learning algorithm, was used to fit the model. In total, 14 predictors were selected a priori through development of a conceptual model. Breeding pair occurrence data were compiled from two available surveys conducted in 2005 and 2010 (545 km of shoreline surveyed in total. All data were aggregated to common model units (vector polyline shoreline segments approximately 100 m in length, which approximate breeding territory size. The final model, which included eight predictors (distance to treeline, island area, wave exposure, shoreline type, intertidal area within 50 m, segment length, rat occurrence, and intertidal area within 1000 m, had excellent predictive ability assessed by 10-fold cross-validation (AUC = 0.89. Predictive ability was reduced when the model was trained and tested on spatially (AUC = 0.86 and temporally (AUC = 0.83 independent data. Distance to treeline and island area had greatest influence on the model (RI = 41.5% and RI = 36.7%, respectively; we hypothesized that these predictors are related to avoidance of predators. Partial dependence plots revealed that breeding pairs tended to occur: further from the treeline, on small islands, at high wave exposures, at moderate intertidal area, on bedrock or gravel shoreline types, and on islands without rats. However, breeding pairs tended not to occur on very small islands and at very high wave exposures, which we hypothesize to reflect avoidance of nest washout. Results may inform local conservation and management efforts, i.e., from predictive maps, and eventual development of a high-resolution (~100 m model for prediction of Black Oystercatcher breeding pairs at a regional scale. Further, methods and GIS data sets developed may be used to model distribution of other coastal species

  4. Selective Breeding under Saline Stressed Conditions of Canola Mutations Induced by Gamma Rays

    International Nuclear Information System (INIS)

    Amer, I.M.; Moustafa, H.A.M.; Mansour, M.F.

    2009-01-01

    Mutation breeding program has been initiated for inducing canola mutations tolerance to saline stressed conditions for growing at harsh land in Egypt. Therefore, seed lots of three cultivars and exotic variety (Bactol, Serow 4, Serow 6 and Evita) were subjected to 100,400 and 600 Gy of gamma rays. Mass selection with 20 % intensity for high number of pods per plant has been done in each treatment in M2 generation. However, individually plants with high number of pods / plant were selected from each variety in M3 generation for test under saline stressed conditions at Ras Sudr region in M4 (8600 and 8300 ppm salinity for soil and irrigation, respectively). The obtained results revealed that eight mutated families from 12- test families in M4 generation surpassed their parents in seed yield / plant and related characters ( plant height ,fruiting zone length , No. of branches , No. of pods / plant ). In addition, the mutant F93 characterized by fast growing and non shuttering pods reflecting 50.4% over Evita control in seed yield/ plant. Twelve mutant lines in M5 represented the mutant families were grown in sandy-loam soil at Inshas region. The three mutant lines (L 22, L 38 and L 45) continuously surpassed their parents in seed yield and related characters, but the increases were less than the previous generation. The increase was 22.3 %, 38.7 % and 36.7 % over seed yield of respective parents. Moreover, mutant L66 exhibited an increase in its yield components in M5 at Inshas only, suggesting that gene expression and genomic structure extremely influenced by environmental factors. Genetic stability for the obtained mutations could be done at different environmental conditions in further studies

  5. Refining QTL with high-density SNP genotyping and whole genome sequence in three cattle breeds

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    Genome-wide association study was carried out in Nordic Holsteins, Nordic Red and Jersey breeds for functional traits using BovineHD Genotyping BreadChip (Illumina, San Diego, CA). The association analyses were carried out using both linear mixed model approach and a Bayesian variable selection...... method. Principal components were used to account for population structure. The QTL segregating in all three breeds were selected and a few of the most significant ones were followed in further analyses. The polymorphisms in the identified QTL regions were imputed using 90 whole genome sequences...

  6. Plant breeding and genetics newsletter. No. 3

    International Nuclear Information System (INIS)

    1999-06-01

    This third issue of the Plant Breeding and Genetics Newsletter highlights forthcoming events including regional (Afra) training course on 'molecular characterization of genetic biodiversity in traditional and neglected crops selected for improvement through mutation techniques' and seminar on 'mutation techniques and biotechnology for tropical and subtropical plant improvement in Asia and Pacific regions'. Status of existing co-ordinated and technical co-operation research projects is also summarized

  7. A Ranking Approach to Genomic Selection.

    Science.gov (United States)

    Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori

    2015-01-01

    Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.

  8. Report from the FAO/IAEA Plant Breeding and Genetics Section

    International Nuclear Information System (INIS)

    1989-01-01

    Technology development is a pre-requisite for further success in practical applications of nuclear techniques in plant genetics and crop improvement. The Research Contract Programme of the IAEA is a good means to stimulate the needed technology development. Present FAO/IAEA Co-ordinated Research Programmes concentrate upon the incorporation of in-vitro culture techniques into mutation breeding projects: In cereals by doubled-haploids for accelerating mutation selection, in root and tuber crops by eliminating chimerism through somatic embryogenesis, in mutation breeding for disease resistance by attempting in-vitro selection using pathotoxins where applicable. The Plant Breeding Unit of the Agency's Seibersdorf Laboratory contributes particularly to the methodology of mutation induction by irradiation of plant material before or during in-vitro culture. Whether the FAO/IAEA Plant Breeding and Genetics Section should include already molecular genetics in its research and training programmes was the main question addressed to a Consultants' Meeting in November. The answer was definitely positive regarding the use of Restriction Fragment Length Polymorphism, but deferred other more sophisticated work recognizing the limited resources. Another new subject matter seriously considered now is the development of tracer techniques for the diagnosis of viruses, viroids and similar causal agents of plant diseases, which eventually could lead to better ways of distinguishing between resistance and susceptibility, particularly in vegetatively propagated and perennial crops. The resources for such work still have to be found. If resources become available, we would also like to start a co-ordinated research programme on domestication of plants for industrial purposes. Project proposals are welcome. As far as assistance to Member States is concerned, in 1988 we began to pay more attention to plant breeding problems in Africa. There was interaction with oil seed breeders during an

  9. Analysis of breed effects on semen traits in light horse, warmblood, and draught horse breeds.

    Science.gov (United States)

    Gottschalk, Maren; Sieme, Harald; Martinsson, Gunilla; Distl, Ottmar

    2016-05-01

    In the present study, systematic effects on semen quality traits were investigated in 381 stallions representing 22 breeds. All stallions were used for AI either at the Lower Saxon National Stud Celle or the North Rhine-Westphalian National Stud Warendorf. A total of 71,078 fresh semen reports of the years 2001 to 2014 were edited for analysis of gel-free volume, sperm concentration, total number of sperm, progressive motility, and total number of progressively motile sperm. Breed differences were studied for warmblood and light horse breeds of both national studs (model I) and for warmblood breeds and the draught horse breed Rhenish German Coldblood from the North Rhine-Westphalian National stud (model II) using mixed model procedures. The fixed effects of age class, year, and month of semen collection had significant influences on all semen traits in both analyses. A significant influence of the horse breed was found for all semen traits but gel-free volume in both statistical models. Comparing warmblood and light horse stallions of both national studs, we observed highest sperm concentrations, total numbers of sperm, and total numbers of progressively motile sperm in Anglo-Arabian stallions. The draught horse breed Rhenish German Coldblood had the highest least squares means for gel-free volume, whereas all other investigated semen traits were significantly lower in this breed compared to the warmblood stallions under study. The variance components among stallions within breeds were significant for all semen traits and accounted for 40% to 59% of the total variance. The between-breed-variance among stallions was not significant underlining the similar size of the random stallion effect in each of the horse breeds analyzed here. In conclusion, breed and stallion are accounting for a significant proportion of the variation in semen quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  11. Meat tenderness genetic polymorphisms occurrence and distribution in five Zebu breeds in Mexico

    Directory of Open Access Journals (Sweden)

    Gaspar Manuel Parra-Bracamonte

    2015-09-01

    Conclusions: Although the relatively low occurrence of favorable alleles in assessed loci may limit their use in selection programs, genotyping availability might be a practical and comprehensive tool for introgression programs by marker assisted selection and management as to improve meat tenderness of Zebu breeds.

  12. Breeding high yielding, high protein spring wheats: Problems, progress and approaches to further advances

    International Nuclear Information System (INIS)

    Konzak, C.F.; Rubenthaler, G.L.

    1984-01-01

    Preliminary data offer promise that advances have been made in breeding hard red spring wheat selections with a yielding capacity about equal to current cultivars and with an increased capacity for producing high protein grain. The most promising new selections are derivatives of Magnif 41M1, CI17689, a semi-dwarf mutant of an Argentinian high protein cultivar. Rapid changes in disease and pest problems also required immediate attention and a reorientation of breeding materials and goals. Selection procedures suggested as promising include early generation (F 2 and F 3 ) screening for disease resistance and agronomic type, with screening for protein content delayed until F 4 or F 5 . Cultural conditions conducive for expressing the highest yield capacity are proposed as optimum for identifying those selections also able to produce high protein grain. A goal of routine production of 14.5% (or higher) protein grain is considered necessary and achievable under fertility management conditions required for maximum yield expression of agronomically competitive cultivars. Agronomically improved sources of high protein genes, an increasing number of induced high protein mutants, and numerous high protein crossbred derivatives of T. dicoccoides and Aegilops species have recently become available. These new or improved germplasm sources as well as a considerable reserve of yet untapped germplasm variability in other accessions of wild T. dicoccoides offer increased optimism that further, rapid advances in the breeding of adapted high yielding, high protein wheats are achievable. Improved breeding schemes, using induced male sterility mutants either to aid in crossing or to develop male sterile facilitated recurrent selection (MSFRS) populations, should contribute towards an earlier achievement of the desired goal while providing the basis for buffering against rapid changes in disease and pest problems

  13. Breeding performance in the Italian chicken breed Mericanel della Brianza

    Directory of Open Access Journals (Sweden)

    Stefano P. Marelli

    2010-11-01

    Full Text Available In Italy, 90 local avian breeds were described, the majority (61% were classified extinct and only 8.9 % still diffused. Therefore, efforts for conservation of Italian avian breeds are urgently required. The aim of this study was to record the breeding performance of the Italian breed Mericanel della Brianza and multiply a small population, in order to develop a conservation program. Fourteen females and 8 males were available at the beginning of the reproductive season in 2009 and organized in 8 families (1 male/1-2 females kept in floor pens. Birds received a photoperiod of 14L:10D and fed ad libitum. Breeding performance was recorded from March to June. Egg production and egg weight were recorded daily; eggs were set every 2 weeks and fertility, embryo mortality and hatchability were recorded. Mean egg production was 37% and mean egg weight was 34±3.49 g. High fertility values were recorded in the first three settings, from 94 to 87%, and the overall mean fertility value was 81.6%. Overall hatchability was only 49.6% due to a high proportion of dead embryos. Embryo mortality occurred mainly between day 2 and 7 of incubation and during hatch. Highest hatchability values were recorded in setting 1 and 2, 69 and 60% respectively, and a great decrease was found in the following settings. Great variations in egg production, fertility, hatchability and embryo mortality were found among families. The present results are the basic knowledge on reproductive parameters necessary to improve the reproductive efficiency of the breed within a conservation plan.

  14. Progress of mutation breeding in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Purivirojkul, Watchara; Vithayatherarat, Pradab [Pathumthani Rice Research Center (Thailand)

    2001-03-01

    The objectives in rice improvement in Thailand are to improve not only for high yielding and good grain quality but also for resistance to diseases and insects and tolerance to biotic stresses. Brief history of research and progress in rice mutation breeding in Thailand is presented. It includes the varieties of method such as using gamma rays, fast neutron and chemical mutagens, for example EMS (ethylmethane sulfonate) and EI (ethylene imine) for mutation works. Among all, improvements of Pathumthani 60 for short-statured plant type, RD23 for blast resistance, Basmati 370 for short-statured plant type, and Pra Doo Daeng for short-statured plant type and awnless grain are reported. To conclude, it is important to find the adequate doses of mutagen treatments that give maximum mutation frequencies, to know the optimal treatments or proper selection methods and to have well-defined objectives to create the success of mutation breeding. (S. Ohno)

  15. Progress of mutation breeding in Thailand

    International Nuclear Information System (INIS)

    Purivirojkul, Watchara; Vithayatherarat, Pradab

    2001-01-01

    The objectives in rice improvement in Thailand are to improve not only for high yielding and good grain quality but also for resistance to diseases and insects and tolerance to biotic stresses. Brief history of research and progress in rice mutation breeding in Thailand is presented. It includes the varieties of method such as using gamma rays, fast neutron and chemical mutagens, for example EMS (ethylmethane sulfonate) and EI (ethylene imine) for mutation works. Among all, improvements of Pathumthani 60 for short-statured plant type, RD23 for blast resistance, Basmati 370 for short-statured plant type, and Pra Doo Daeng for short-statured plant type and awnless grain are reported. To conclude, it is important to find the adequate doses of mutagen treatments that give maximum mutation frequencies, to know the optimal treatments or proper selection methods and to have well-defined objectives to create the success of mutation breeding. (S. Ohno)

  16. Identifying artificial selection signals in the chicken genome.

    Directory of Open Access Journals (Sweden)

    Yunlong Ma

    Full Text Available Identifying the signals of artificial selection can contribute to further shaping economically important traits. Here, a chicken 600k SNP-array was employed to detect the signals of artificial selection using 331 individuals from 9 breeds, including Jingfen (JF, Jinghong (JH, Araucanas (AR, White Leghorn (WL, Pekin-Bantam (PB, Shamo (SH, Gallus-Gallus-Spadiceus (GA, Rheinlander (RH and Vorwerkhuhn (VO. Per the population genetic structure, 9 breeds were combined into 5 breed-pools, and a 'two-step' strategy was used to reveal the signals of artificial selection. GA, which has little artificial selection, was defined as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found signals derived from standing and de-novo genetic variations have contributed to adaptive evolution during artificial selection. Further enrichment analysis suggests that the genomic regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH, responsible for economic traits, such as fertility, growth and immunization. Overall, this study found a series of genes that contribute to the improvement of chicken breeds and revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental information in future chicken functional genomics study.

  17. Breeding biology of Tree Swallows and House Wrens in a gradient of gamma radiation

    International Nuclear Information System (INIS)

    Zach, R.; Mayoh, K.R.

    1982-01-01

    In a gradient of gamma radiation from 38.7 mC kg - 1 .d - 1 to background levels of 0.05 μC. kg - 1 . d - 1 to background levels of 0.05 μC . kg - 1 . d - 1 , Tree Swallows (Iridoprocne bicolor) and House Wrens (Troglodytes aedon) avoided nesting in areas of high radiation. Nest boxes selected by swallows and wrens had a mean exposure rate of only 9.3 and 6.6 μC . kg - 1 . d - 1 , respectively. Lateral and canopy vegetation indices and nest hole height and direction could not explain the observed pattern of box selection. Of the boxes with low exposure rates, swallows selected those with little vegetation cover, whereas wrens chose boxes and heavy cover. It appears that the birds responded to radiation levels as low as 100 times background, but it is not clear whether they actually detected radiation or simply responded to secondary clues. The number of swallows and wrens fledged per box was unrelated to radiation exposure. The same was true for number of eggs, hatching success, fledging success, incubation time, and nestling time. Breeding success was reduced because of infertile eggs, eggs with dead embryos, cracked eggs, predation, adverse weather, abandonment, and parasites. The logistic model was ideally suited for describing gains in mass in nestling swallows and wrens. Growth of nestlings was not related to radiation exposure as indicated by the growth rate constant, asymptotic mass, and the proportion of variation explained by the logistic model. Breeding and growth performance were similar in studies not involving experimental radiation

  18. The research progress of genomic selection in livestock.

    Science.gov (United States)

    Li, Hong-wei; Wang, Rui-jun; Wang, Zhi-ying; Li, Xue-wu; Wang, Zhen-yu; Yanjun, Zhang; Rui, Su; Zhihong, Liu; Jinquan, Li

    2017-05-20

    With the development of gene chip and breeding technology, genomic selection in plants and animals has become research hotspots in recent years. Genomic selection has been extensively applied to all kinds of economic livestock, due to its high accuracy, short generation intervals and low breeding costs. In this review, we summarize genotyping technology and the methods for genomic breeding value estimation, the latter including the least square method, RR-BLUP, GBLUP, ssGBLUP, BayesA and BayesB. We also cover basic principles of genomic selection and compare their genetic marker ranges, genomic selection accuracy and operational speed. In addition, we list common indicators, methods and influencing factors that are related to genomic selection accuracy. Lastly, we discuss latest applications and the current problems of genomic selection at home and abroad. Importantly, we envision future status of genomic selection research, including multi-trait and multi-population genomic selection, as well as impact of whole genome sequencing and dominant effects on genomic selection. This review will provide some venues for other breeders to further understand genome selection.

  19. Plant Breeding and Genetics Newsletter, No. 31, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    induction) and capacity built; technology packages are further tested and debugged in research networks (CRPs); and then the technology is transferred to our counterparts in Member States through Technical Cooperation projects. Two CRPs will close in 2013. You will find more information about CRP D2.40.12, ''Enhancing the Efficiency of Induced Mutagenesis through an Integrated Biotechnology Pipeline'', in this issue. This CRP proposed to address efficiency of mutation induction through the assembly, adaptation and interlacing of novel cellular and molecular biology techniques to achieve a seamless dove- tailing of validated processes into a modular pipeline: cellular and molecular biology techniques addressing the bottlenecks imposed by the need to generate large mutant populations rapidly in appropriate genetic backgrounds (homozygous for the mutation events, devoid of chimeras and in contemporary breeding materials). By scrutinizing target genes for desired changes, the need for field trials of large populations will be precluded. Milestones include the development of rapid techniques for dissolution of chimeras in vegetatively propagated banana; establishment of barley TILLING for targeting genes controlling drought; microspore mutagenesis for instant production of homozygous true breeding mutant lines; reduced representation next-generation sequencing approaches to screen mutant rice populations; and development and validation of low cost methods for mutant screening. Major milestones have been reached in CRP D2.40.23, ''Isolation and Characterization of Genes Involved in Mutagenesis of Crop Plants''. Genes encoding core proteins of the repair pathway in rice have been cloned and are being characterized. Whole genome scanning in soybean is under way for naturally mutated and selected genes. A chloroplast mutator gene and mutations caused by it have been identified in barley, and three putative DNA repair genes in pea are currently under study. Mutant populations of rice

  20. Using breed composition, breed differences, selection tools, and new technologies to optimize commercial cattle production and allocation of beef cattle in research programs

    Science.gov (United States)

    Indicators of breed composition such as hair color and ear length often result in increased or decreased prices of young calves marketed into feedlots. Similarly, feedlot research trials are often initiated with blended cattle from multiple sources with little more than coat color used as a blockin...

  1. Use of radiation for plant breeding in Japan: results and future

    International Nuclear Information System (INIS)

    Yamaguchi, I.

    1998-01-01

    In 1966, as the first breeds by radiation mutation in Japan, 'Reimei', a rice variety with increased lodging resistance by short culm mutation and Raiden', an early variety by mutation of soybean obtained by extreme late variety with nematoda resistance were bred and registered in the Ministry of Agriculture and Forestry. Since these characteristics of 'short culm' and early maturing' have a comparatively high mutation rate and ease of selection, among seed propagation crops many kinds of those varieties improved to have either of these characteristics or both of them at the same time by mutation breeding are bred. In Japan, varieties bred by use of mutation breeding count 107 (as of April 1998). Among crops, that with the most varieties is chrysanthemum, which has 20 varieties and the next is rice with 15 varieties. The other 38 varieties of crops such as grains, beans, industrial crops, vegetables, flowering plants, flowering trees and fruit trees, mutation breeding varieties are widely bred. Among mutagens used, gamma ray holds 80%. The recent development in the research of DNA recombination is amazing and plant bodies which have introduced useful genes which other plants have are being obtained. Radiation mutation breeding, however, has the advantages of breeding new varieties by improving only one or two characteristics of excellent races. Radiation mutation breeding and DNA recombination technologies, therefore, may need to be utilized separately according to respective purposes. In the future, for radiation mutation breeding, mutants with quality characteristics which others do not have, corresponding to the diverse demand on agricultural products must come to be required. On the other hand, by the crops like banana for which ordinary breeding is almost impossible, the expectation for radiation mutation breeding will be more and more heightened. In addition, the accumulation of studies on controlling the direction of mutation which has been regarded

  2. The body constitution type influence on charolais breeds cattle meat production and quality

    OpenAIRE

    Jukna V.; Jukna Č.; Pečiulaitienė N.; Meškinytė-Kaušilienė E.

    2011-01-01

    The article presents data the most common body constitution types and their impact on meat production and quality on Charolais breed. Four body constitution types were researched in the breed: large, small, muscular and lightweight (commercial) type. For each type were selected in 15-16 uncastrated bulls, which were reared Control feeding station in identical feeding and storage conditions of up to 500 days age. Feeding control has been carried out from 210...

  3. Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection

    KAUST Repository

    Chen, Lisha

    2012-12-01

    The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.

  4. Selection for milk coagulation properties predicted by Fourier transform infrared spectroscopy in the Italian Holstein-Friesian breed.

    Science.gov (United States)

    Chessa, S; Bulgari, O; Rizzi, R; Calamari, L; Bani, P; Biffani, S; Caroli, A M

    2014-07-01

    Milk coagulation is based on a series of physicochemical changes at the casein micelle level, resulting in formation of a gel. Milk coagulation properties (MCP) are relevant for cheese quality and yield, important factors for the dairy industry. They are also evaluated in herd bulk milk to reward or penalize producers of Protected Designation of Origin cheeses. The economic importance of improving MCP justifies the need to account for this trait in the selection process. A pilot study was carried out to determine the feasibility of including MCP in the selection schemes of the Italian Holstein. The MCP were predicted in 1,055 individual milk samples collected in 16 herds (66 ± 24 cows per herd) located in Brescia province (northeastern Italy) by means of Fourier transform infrared (FTIR) spectroscopy. The coefficient of determination of prediction models indicated moderate predictions for milk rennet coagulation time (RCT=0.65) and curd firmness (a₃₀=0.68), and poor predictions for curd-firming time (k₂₀=0.49), whereas the range error ratio (8.9, 6.9, and 9.5 for RCT, k₂₀, and a₃₀, respectively) indicated good practical utility of the predictive models for all parameters. Milk proteins were genotyped and casein haplotypes (αS₁-, β-, αS₂-, and κ-casein) were reconstructed. Data from 51 half-sib families (19.9 ± 16.4 daughters per sire) were analyzed by an animal model to estimate (1) the genetic parameters of predicted RCT, k₂₀, and a₃₀; (2) the breeding values for these predicted clotting variables; and (3) the effect of milk protein genotypes and casein haplotypes on predicted MCP (pMCP). This is the first study to estimate both genetic parameters and breeding values of pMCP, together with the effects of milk protein genotypes and casein haplotypes, that also considered k₂₀, probably the most important parameter for the dairy industry (because it indicates the time for the beginning of curd-cutting). Heritability of predicted

  5. Estimation of genetic parameters for growth traits in a breeding program for rainbow trout (Oncorhynchus mykiss) in China.

    Science.gov (United States)

    Hu, G; Gu, W; Bai, Q L; Wang, B Q

    2013-04-26

    Genetic parameters and breeding values for growth traits were estimated in the first and, currently, the only family selective breeding program for rainbow trout (Oncorhynchus mykiss) in China. Genetic and phenotypic data were collected for growth traits from 75 full-sibling families with a 2-generation pedigree. Genetic parameters and breeding values for growth traits of rainbow trout were estimated using the derivative-free restricted maximum likelihood method. The goodness-of-fit of the models was tested using Akaike and Bayesian information criteria. Genetic parameters and breeding values were estimated using the best-fit model for each trait. The values for heritability estimating body weight and length ranged from 0.20 to 0.45 and from 0.27 to 0.60, respectively, and the heritability of condition factor was 0.34. Our results showed a moderate degree of heritability for growth traits in this breeding program and suggested that the genetic and phenotypic tendency of body length, body weight, and condition factor were similar. Therefore, the selection of phenotypic values based on pedigree information was also suitable in this research population.

  6. The potential of aspen clonal forestry in Alberta: breeding regions and estimates of genetic gain from selection.

    Directory of Open Access Journals (Sweden)

    Tim Gylander

    Full Text Available BACKGROUND: Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. METHODOLOGY/PRINCIPAL FINDINGS: Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5-8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH ranged from 0.36 to 0.64, allowing 5-15% genetic gains in height and 9-34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. CONCLUSION/SIGNIFICANCE: Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ~40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta.

  7. The Potential of Aspen Clonal Forestry in Alberta: Breeding Regions and Estimates of Genetic Gain from Selection

    Science.gov (United States)

    Gylander, Tim; Hamann, Andreas; Brouard, Jean S.; Thomas, Barb R.

    2012-01-01

    Background Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. Methodology/Principal Findings Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5–8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH) ranged from 0.36 to 0.64, allowing 5–15% genetic gains in height and 9–34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. Conclusion/Significance Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ∼40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta. PMID:22957006

  8. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection

    OpenAIRE

    Daetwyler, Hans D.; Hayden, Matthew J.; Spangenberg, German C.; Hayes, Ben J.

    2015-01-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selec...

  9. Selection for components of complex characteristics - indirect selection

    International Nuclear Information System (INIS)

    Haensel, H.

    1984-01-01

    A hierarchy of complexity exists in plant characteristics. The efficiency of indirect selection for a complex characteristic by a sub-trait depends on the heritability of the complex characteristic (hsub(c)), the heritability of the sub-trait (hsub(s)), and the genotypic correlation between sub-trait and complex characteristic (rsub(s.c)). In 1961 hsub(s)Xrsub(s.c)>hsub(c) was postulated, when indirect selection becomes more efficient than direct selection. Numerical examples for this relationship are given and a table for indirect selection for yield in wheat is elaborated. Efficiency ranking of sub-traits in indirect selection may change with climate, conditions of cultivation, the level of other sub-traits, the level of the complex characteristic already reached by breeding, and the breeding material. An example shows that regression analysis for different sub-traits on the same complex characteristic, and an estimation of the differences of the within - and the between - variety slopes, may help to select the more efficient sub-trait. In another example, where simultaneous selection was made for two polygenic characteristics, one directly and the other indirectly by two sub-traits, less than half the F 5 -lines had to be continued, when using the more efficient sub-trait. (author)

  10. indigenous cattle breeds

    African Journals Online (AJOL)

    Received 31 August 1996; accepted 20 March /998. Mitochondrial DNA cleavage patterns from representative animals of the Afrikaner and Nguni sanga cattle breeds, indigenous to Southern Africa, were compared to the mitochondrial DNA cleavage patterns of the Brahman (zebu) and the Jersey. (taurine) cattle breeds.

  11. Genomic dairy cattle breeding

    DEFF Research Database (Denmark)

    Mark, Thomas; Sandøe, Peter

    2010-01-01

    the thoughts of breeders and other stakeholders on how to best make use of genomic breeding in the future. Intensive breeding has played a major role in securing dramatic increases in milk yield since the Second World War. Until recently, the main focus in dairy cattle breeding was on production traits...... it less accountable to the concern of private farmers for the welfare of their animals. It is argued that there is a need to mobilise a wide range of stakeholders to monitor developments and maintain pressure on breeding companies so that they are aware of the need to take precautionary measures to avoid...

  12. Across Breed QTL Detection and Genomic Prediction in French and Danish Dairy Cattle Breeds

    DEFF Research Database (Denmark)

    van den Berg, Irene; Guldbrandtsen, Bernt; Hozé, C

    Our objective was to investigate the potential benefits of using sequence data to improve across breed genomic prediction, using data from five French and Danish dairy cattle breeds. First, QTL for protein yield were detected using high density genotypes. Part of the QTL detected within breed was...

  13. In potato breeding, fewer chromosomes may be better

    Science.gov (United States)

    The autotetraploid nature of the potato crop hinders breeding progress. In this paper, I describe the advantages of moving to a diploid inbred-hybrid system. This will allow us to reduce the genetic load in potato while assembling desirable combinations of genes. This effort requires us to generate ...

  14. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  15. Comparison between morphometric measurements os current herd Mangalarga Marchador males and breed champions

    Directory of Open Access Journals (Sweden)

    Juliano Martins Santiago

    2013-01-01

    Full Text Available Equines morphometric analysis is an important method of selection related to functionality of the species. Mangalarga Marchador is the most important horse Brazilian breed and its evolution can be observed in specialized exhibition where owners expase their herd with the breed exponents, adopting them as selection parameters. In this context the study aimed to compare the morphometric measures of Mangalarga Marchador males herd with the champions of breed, using as parameters breed standards and Eclectic System of Proportions for saddle horse. Experimental design was completely randomized and treatments were the Mangalarga Marchador male herd, represented by all horses registered from 2000 to 2012, wich had measurements stored in Associação Brasileira de Criadores do Cavalo Mangalarga Marchador (ABCCMM service studbook database, totaling 15,482 animals, and the champions of breed, represented by 222 horses champions who participated of the 29th, 30th or 31th Exposição Nacional do Cavalo Mangalarga Marchador. Variables evaluated were height at withers and at rump, length of the head, neck, dorse, rump, shoulder and body, width of head and of rump, thoracic perimeter and cannon perimeter. Average linear measurements were related to length of head, according to Eclectic System of Proportions for saddle horse. Results were submitted to variance analysis and averages were compared by Fisher test (p<0.05. Regarding the current herd of males Mangalarga Marchador, the champions of the race showed greater length of neck, dorse, rump and body, height at withers and at rump, width of rump, cannon perimeter and shorter length of the shoulder. It was concluded that although larger, the champions horses Mangalarga Marchador are proportionally similar to current herd. Mangalarga Marchador horses have not yet reached the height considered ideal by breed standard and their proportions are different from those recommended by Eclectic System of Proportions for

  16. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  17. Tritium breeding materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.A.

    1984-01-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  18. Determinants of breeding distributions of ducks

    Science.gov (United States)

    Johnson, D.H.; Grier, J.W.

    1988-01-01

    The settling of breeding habitat by migratory waterfowl is a topic of both theoretical and practical interest. We use the results of surveys conducted annually during 1955-81 in major breeding areas to examine the factors that affect the distributions of 10 common North American duck species. Three patterns of settling are described: homing, opportunistic, and flexible. Homing is generally more pronounced among species that use more stable (more predictable) wetlands, such as the redhead (Aythya americana), canvasback (A. valisineria), lesser scaup (A. affinis), mallard (Anas platyrhynchos), gadwall (Anas strepera), and northern shoveler (Anas clypeata). Opportunistic settling is more prevalent among species that use less stable (less predictable) wetlands, such as northern pintail (Anas acuta) and blue-winged teal (Anas discors). Flexible settling is exhibited to various degrees by most species.The 10 species are shown to fall along a natural ordination reflecting different life history characteristics. Average values of indices of r- and K-selection indicated that pintail, mallard, blue-winged teal, and shoveler have the most features associated with unstable or unpredictable environments. Gadwall, American wigeon (Anas americana), and green-winged teal (Anas crecca) were intermediate, and attributes of the diving ducks were associated with the use of stable or predictable environments.Some species--notably mallard, gadwall, blue-winged teal, redhead, and canvasback--tend to fill available breeding habitat first in the central portions of their range, and secondly in peripheral areas. Other species--American wigeon, green-winged teal, northern shoveler, northern pintail, and lesser scaup--fill their habitat in the order it is encountered during spring migration.Age and sex classes within species vary in their settling pattern. Some of this variation can be predicted from the mating systems of ducks in which breeding females, especially successful ones, have a

  19. The influence of cross-breeding Zlotnicka Spotted native breed sows ...

    African Journals Online (AJOL)

    To sum up, it is possible to say that the raw meat of Zlotnicka Spotted pigs and their cross-breeds with Duroc and Polish Large White breeds is characterised by good quality and because of its considerable intramuscular fat content, it has a high culinary and processing value, especially for ripening products. Key words: Pigs ...

  20. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding.

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.